| 1 | //===-- SPIRVEmitIntrinsics.cpp - emit SPIRV intrinsics ---------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // The pass emits SPIRV intrinsics keeping essential high-level information for |
| 10 | // the translation of LLVM IR to SPIR-V. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "SPIRV.h" |
| 15 | #include "SPIRVBuiltins.h" |
| 16 | #include "SPIRVSubtarget.h" |
| 17 | #include "SPIRVTargetMachine.h" |
| 18 | #include "SPIRVUtils.h" |
| 19 | #include "llvm/ADT/DenseSet.h" |
| 20 | #include "llvm/ADT/StringSet.h" |
| 21 | #include "llvm/IR/IRBuilder.h" |
| 22 | #include "llvm/IR/InstIterator.h" |
| 23 | #include "llvm/IR/InstVisitor.h" |
| 24 | #include "llvm/IR/IntrinsicsSPIRV.h" |
| 25 | #include "llvm/IR/PatternMatch.h" |
| 26 | #include "llvm/IR/TypedPointerType.h" |
| 27 | #include "llvm/Support/CommandLine.h" |
| 28 | #include "llvm/Transforms/Utils/Local.h" |
| 29 | |
| 30 | #include <cassert> |
| 31 | #include <queue> |
| 32 | #include <unordered_set> |
| 33 | |
| 34 | // This pass performs the following transformation on LLVM IR level required |
| 35 | // for the following translation to SPIR-V: |
| 36 | // - replaces direct usages of aggregate constants with target-specific |
| 37 | // intrinsics; |
| 38 | // - replaces aggregates-related instructions (extract/insert, ld/st, etc) |
| 39 | // with a target-specific intrinsics; |
| 40 | // - emits intrinsics for the global variable initializers since IRTranslator |
| 41 | // doesn't handle them and it's not very convenient to translate them |
| 42 | // ourselves; |
| 43 | // - emits intrinsics to keep track of the string names assigned to the values; |
| 44 | // - emits intrinsics to keep track of constants (this is necessary to have an |
| 45 | // LLVM IR constant after the IRTranslation is completed) for their further |
| 46 | // deduplication; |
| 47 | // - emits intrinsics to keep track of original LLVM types of the values |
| 48 | // to be able to emit proper SPIR-V types eventually. |
| 49 | // |
| 50 | // TODO: consider removing spv.track.constant in favor of spv.assign.type. |
| 51 | |
| 52 | using namespace llvm; |
| 53 | |
| 54 | static cl::opt<bool> |
| 55 | SpirvEmitOpNames("spirv-emit-op-names" , |
| 56 | cl::desc("Emit OpName for all instructions" ), |
| 57 | cl::init(Val: false)); |
| 58 | |
| 59 | namespace llvm::SPIRV { |
| 60 | #define GET_BuiltinGroup_DECL |
| 61 | #include "SPIRVGenTables.inc" |
| 62 | } // namespace llvm::SPIRV |
| 63 | |
| 64 | namespace { |
| 65 | |
| 66 | class SPIRVEmitIntrinsics |
| 67 | : public ModulePass, |
| 68 | public InstVisitor<SPIRVEmitIntrinsics, Instruction *> { |
| 69 | SPIRVTargetMachine *TM = nullptr; |
| 70 | SPIRVGlobalRegistry *GR = nullptr; |
| 71 | Function *CurrF = nullptr; |
| 72 | bool TrackConstants = true; |
| 73 | bool HaveFunPtrs = false; |
| 74 | DenseMap<Instruction *, Constant *> AggrConsts; |
| 75 | DenseMap<Instruction *, Type *> AggrConstTypes; |
| 76 | DenseSet<Instruction *> AggrStores; |
| 77 | std::unordered_set<Value *> Named; |
| 78 | |
| 79 | // map of function declarations to <pointer arg index => element type> |
| 80 | DenseMap<Function *, SmallVector<std::pair<unsigned, Type *>>> FDeclPtrTys; |
| 81 | |
| 82 | // a register of Instructions that don't have a complete type definition |
| 83 | bool CanTodoType = true; |
| 84 | unsigned TodoTypeSz = 0; |
| 85 | DenseMap<Value *, bool> TodoType; |
| 86 | void insertTodoType(Value *Op) { |
| 87 | // TODO: add isa<CallInst>(Op) to no-insert |
| 88 | if (CanTodoType && !isa<GetElementPtrInst>(Val: Op)) { |
| 89 | auto It = TodoType.try_emplace(Key: Op, Args: true); |
| 90 | if (It.second) |
| 91 | ++TodoTypeSz; |
| 92 | } |
| 93 | } |
| 94 | void eraseTodoType(Value *Op) { |
| 95 | auto It = TodoType.find(Val: Op); |
| 96 | if (It != TodoType.end() && It->second) { |
| 97 | It->second = false; |
| 98 | --TodoTypeSz; |
| 99 | } |
| 100 | } |
| 101 | bool isTodoType(Value *Op) { |
| 102 | if (isa<GetElementPtrInst>(Val: Op)) |
| 103 | return false; |
| 104 | auto It = TodoType.find(Val: Op); |
| 105 | return It != TodoType.end() && It->second; |
| 106 | } |
| 107 | // a register of Instructions that were visited by deduceOperandElementType() |
| 108 | // to validate operand types with an instruction |
| 109 | std::unordered_set<Instruction *> TypeValidated; |
| 110 | |
| 111 | // well known result types of builtins |
| 112 | enum WellKnownTypes { Event }; |
| 113 | |
| 114 | // deduce element type of untyped pointers |
| 115 | Type *deduceElementType(Value *I, bool UnknownElemTypeI8); |
| 116 | Type *deduceElementTypeHelper(Value *I, bool UnknownElemTypeI8); |
| 117 | Type *deduceElementTypeHelper(Value *I, std::unordered_set<Value *> &Visited, |
| 118 | bool UnknownElemTypeI8, |
| 119 | bool IgnoreKnownType = false); |
| 120 | Type *deduceElementTypeByValueDeep(Type *ValueTy, Value *Operand, |
| 121 | bool UnknownElemTypeI8); |
| 122 | Type *deduceElementTypeByValueDeep(Type *ValueTy, Value *Operand, |
| 123 | std::unordered_set<Value *> &Visited, |
| 124 | bool UnknownElemTypeI8); |
| 125 | Type *deduceElementTypeByUsersDeep(Value *Op, |
| 126 | std::unordered_set<Value *> &Visited, |
| 127 | bool UnknownElemTypeI8); |
| 128 | void maybeAssignPtrType(Type *&Ty, Value *I, Type *RefTy, |
| 129 | bool UnknownElemTypeI8); |
| 130 | |
| 131 | // deduce nested types of composites |
| 132 | Type *deduceNestedTypeHelper(User *U, bool UnknownElemTypeI8); |
| 133 | Type *deduceNestedTypeHelper(User *U, Type *Ty, |
| 134 | std::unordered_set<Value *> &Visited, |
| 135 | bool UnknownElemTypeI8); |
| 136 | |
| 137 | // deduce Types of operands of the Instruction if possible |
| 138 | void deduceOperandElementType(Instruction *I, |
| 139 | SmallPtrSet<Instruction *, 4> *IncompleteRets, |
| 140 | const SmallPtrSet<Value *, 4> *AskOps = nullptr, |
| 141 | bool IsPostprocessing = false); |
| 142 | |
| 143 | void preprocessCompositeConstants(IRBuilder<> &B); |
| 144 | void preprocessUndefs(IRBuilder<> &B); |
| 145 | |
| 146 | Type *reconstructType(Value *Op, bool UnknownElemTypeI8, |
| 147 | bool IsPostprocessing); |
| 148 | |
| 149 | void replaceMemInstrUses(Instruction *Old, Instruction *New, IRBuilder<> &B); |
| 150 | void processInstrAfterVisit(Instruction *I, IRBuilder<> &B); |
| 151 | bool insertAssignPtrTypeIntrs(Instruction *I, IRBuilder<> &B, |
| 152 | bool UnknownElemTypeI8); |
| 153 | void insertAssignTypeIntrs(Instruction *I, IRBuilder<> &B); |
| 154 | void insertAssignPtrTypeTargetExt(TargetExtType *AssignedType, Value *V, |
| 155 | IRBuilder<> &B); |
| 156 | void replacePointerOperandWithPtrCast(Instruction *I, Value *Pointer, |
| 157 | Type *ExpectedElementType, |
| 158 | unsigned OperandToReplace, |
| 159 | IRBuilder<> &B); |
| 160 | void insertPtrCastOrAssignTypeInstr(Instruction *I, IRBuilder<> &B); |
| 161 | bool shouldTryToAddMemAliasingDecoration(Instruction *Inst); |
| 162 | void insertSpirvDecorations(Instruction *I, IRBuilder<> &B); |
| 163 | void insertConstantsForFPFastMathDefault(Module &M); |
| 164 | void processGlobalValue(GlobalVariable &GV, IRBuilder<> &B); |
| 165 | void processParamTypes(Function *F, IRBuilder<> &B); |
| 166 | void processParamTypesByFunHeader(Function *F, IRBuilder<> &B); |
| 167 | Type *deduceFunParamElementType(Function *F, unsigned OpIdx); |
| 168 | Type *deduceFunParamElementType(Function *F, unsigned OpIdx, |
| 169 | std::unordered_set<Function *> &FVisited); |
| 170 | |
| 171 | bool deduceOperandElementTypeCalledFunction( |
| 172 | CallInst *CI, SmallVector<std::pair<Value *, unsigned>> &Ops, |
| 173 | Type *&KnownElemTy, bool &Incomplete); |
| 174 | void deduceOperandElementTypeFunctionPointer( |
| 175 | CallInst *CI, SmallVector<std::pair<Value *, unsigned>> &Ops, |
| 176 | Type *&KnownElemTy, bool IsPostprocessing); |
| 177 | bool deduceOperandElementTypeFunctionRet( |
| 178 | Instruction *I, SmallPtrSet<Instruction *, 4> *IncompleteRets, |
| 179 | const SmallPtrSet<Value *, 4> *AskOps, bool IsPostprocessing, |
| 180 | Type *&KnownElemTy, Value *Op, Function *F); |
| 181 | |
| 182 | CallInst *buildSpvPtrcast(Function *F, Value *Op, Type *ElemTy); |
| 183 | void replaceUsesOfWithSpvPtrcast(Value *Op, Type *ElemTy, Instruction *I, |
| 184 | DenseMap<Function *, CallInst *> Ptrcasts); |
| 185 | void propagateElemType(Value *Op, Type *ElemTy, |
| 186 | DenseSet<std::pair<Value *, Value *>> &VisitedSubst); |
| 187 | void |
| 188 | propagateElemTypeRec(Value *Op, Type *PtrElemTy, Type *CastElemTy, |
| 189 | DenseSet<std::pair<Value *, Value *>> &VisitedSubst); |
| 190 | void propagateElemTypeRec(Value *Op, Type *PtrElemTy, Type *CastElemTy, |
| 191 | DenseSet<std::pair<Value *, Value *>> &VisitedSubst, |
| 192 | std::unordered_set<Value *> &Visited, |
| 193 | DenseMap<Function *, CallInst *> Ptrcasts); |
| 194 | |
| 195 | void replaceAllUsesWith(Value *Src, Value *Dest, bool DeleteOld = true); |
| 196 | void replaceAllUsesWithAndErase(IRBuilder<> &B, Instruction *Src, |
| 197 | Instruction *Dest, bool DeleteOld = true); |
| 198 | |
| 199 | void applyDemangledPtrArgTypes(IRBuilder<> &B); |
| 200 | |
| 201 | GetElementPtrInst *simplifyZeroLengthArrayGepInst(GetElementPtrInst *GEP); |
| 202 | |
| 203 | bool runOnFunction(Function &F); |
| 204 | bool postprocessTypes(Module &M); |
| 205 | bool processFunctionPointers(Module &M); |
| 206 | void parseFunDeclarations(Module &M); |
| 207 | |
| 208 | void useRoundingMode(ConstrainedFPIntrinsic *FPI, IRBuilder<> &B); |
| 209 | |
| 210 | void emitUnstructuredLoopControls(Function &F, IRBuilder<> &B); |
| 211 | |
| 212 | // Tries to walk the type accessed by the given GEP instruction. |
| 213 | // For each nested type access, one of the 2 callbacks is called: |
| 214 | // - OnLiteralIndexing when the index is a known constant value. |
| 215 | // Parameters: |
| 216 | // PointedType: the pointed type resulting of this indexing. |
| 217 | // If the parent type is an array, this is the index in the array. |
| 218 | // If the parent type is a struct, this is the field index. |
| 219 | // Index: index of the element in the parent type. |
| 220 | // - OnDynamnicIndexing when the index is a non-constant value. |
| 221 | // This callback is only called when indexing into an array. |
| 222 | // Parameters: |
| 223 | // ElementType: the type of the elements stored in the parent array. |
| 224 | // Offset: the Value* containing the byte offset into the array. |
| 225 | // Return true if an error occurred during the walk, false otherwise. |
| 226 | bool walkLogicalAccessChain( |
| 227 | GetElementPtrInst &GEP, |
| 228 | const std::function<void(Type *PointedType, uint64_t Index)> |
| 229 | &OnLiteralIndexing, |
| 230 | const std::function<void(Type *ElementType, Value *Offset)> |
| 231 | &OnDynamicIndexing); |
| 232 | |
| 233 | // Returns the type accessed using the given GEP instruction by relying |
| 234 | // on the GEP type. |
| 235 | // FIXME: GEP types are not supposed to be used to retrieve the pointed |
| 236 | // type. This must be fixed. |
| 237 | Type *getGEPType(GetElementPtrInst *GEP); |
| 238 | |
| 239 | // Returns the type accessed using the given GEP instruction by walking |
| 240 | // the source type using the GEP indices. |
| 241 | // FIXME: without help from the frontend, this method cannot reliably retrieve |
| 242 | // the stored type, nor can robustly determine the depth of the type |
| 243 | // we are accessing. |
| 244 | Type *getGEPTypeLogical(GetElementPtrInst *GEP); |
| 245 | |
| 246 | Instruction *buildLogicalAccessChainFromGEP(GetElementPtrInst &GEP); |
| 247 | |
| 248 | public: |
| 249 | static char ID; |
| 250 | SPIRVEmitIntrinsics(SPIRVTargetMachine *TM = nullptr) |
| 251 | : ModulePass(ID), TM(TM) {} |
| 252 | Instruction *visitInstruction(Instruction &I) { return &I; } |
| 253 | Instruction *visitSwitchInst(SwitchInst &I); |
| 254 | Instruction *visitGetElementPtrInst(GetElementPtrInst &I); |
| 255 | Instruction *visitBitCastInst(BitCastInst &I); |
| 256 | Instruction *visitInsertElementInst(InsertElementInst &I); |
| 257 | Instruction *visitExtractElementInst(ExtractElementInst &I); |
| 258 | Instruction *visitInsertValueInst(InsertValueInst &I); |
| 259 | Instruction *visitExtractValueInst(ExtractValueInst &I); |
| 260 | Instruction *visitLoadInst(LoadInst &I); |
| 261 | Instruction *visitStoreInst(StoreInst &I); |
| 262 | Instruction *visitAllocaInst(AllocaInst &I); |
| 263 | Instruction *visitAtomicCmpXchgInst(AtomicCmpXchgInst &I); |
| 264 | Instruction *visitUnreachableInst(UnreachableInst &I); |
| 265 | Instruction *visitCallInst(CallInst &I); |
| 266 | |
| 267 | StringRef getPassName() const override { return "SPIRV emit intrinsics" ; } |
| 268 | |
| 269 | bool runOnModule(Module &M) override; |
| 270 | |
| 271 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 272 | ModulePass::getAnalysisUsage(AU); |
| 273 | } |
| 274 | }; |
| 275 | |
| 276 | bool isConvergenceIntrinsic(const Instruction *I) { |
| 277 | const auto *II = dyn_cast<IntrinsicInst>(Val: I); |
| 278 | if (!II) |
| 279 | return false; |
| 280 | |
| 281 | return II->getIntrinsicID() == Intrinsic::experimental_convergence_entry || |
| 282 | II->getIntrinsicID() == Intrinsic::experimental_convergence_loop || |
| 283 | II->getIntrinsicID() == Intrinsic::experimental_convergence_anchor; |
| 284 | } |
| 285 | |
| 286 | bool expectIgnoredInIRTranslation(const Instruction *I) { |
| 287 | const auto *II = dyn_cast<IntrinsicInst>(Val: I); |
| 288 | if (!II) |
| 289 | return false; |
| 290 | switch (II->getIntrinsicID()) { |
| 291 | case Intrinsic::invariant_start: |
| 292 | case Intrinsic::spv_resource_handlefrombinding: |
| 293 | case Intrinsic::spv_resource_getpointer: |
| 294 | return true; |
| 295 | default: |
| 296 | return false; |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | // Returns the source pointer from `I` ignoring intermediate ptrcast. |
| 301 | Value *getPointerRoot(Value *I) { |
| 302 | if (auto *II = dyn_cast<IntrinsicInst>(Val: I)) { |
| 303 | if (II->getIntrinsicID() == Intrinsic::spv_ptrcast) { |
| 304 | Value *V = II->getArgOperand(i: 0); |
| 305 | return getPointerRoot(I: V); |
| 306 | } |
| 307 | } |
| 308 | return I; |
| 309 | } |
| 310 | |
| 311 | } // namespace |
| 312 | |
| 313 | char SPIRVEmitIntrinsics::ID = 0; |
| 314 | |
| 315 | INITIALIZE_PASS(SPIRVEmitIntrinsics, "emit-intrinsics" , "SPIRV emit intrinsics" , |
| 316 | false, false) |
| 317 | |
| 318 | static inline bool isAssignTypeInstr(const Instruction *I) { |
| 319 | return isa<IntrinsicInst>(Val: I) && |
| 320 | cast<IntrinsicInst>(Val: I)->getIntrinsicID() == Intrinsic::spv_assign_type; |
| 321 | } |
| 322 | |
| 323 | static bool isMemInstrToReplace(Instruction *I) { |
| 324 | return isa<StoreInst>(Val: I) || isa<LoadInst>(Val: I) || isa<InsertValueInst>(Val: I) || |
| 325 | isa<ExtractValueInst>(Val: I) || isa<AtomicCmpXchgInst>(Val: I); |
| 326 | } |
| 327 | |
| 328 | static bool isAggrConstForceInt32(const Value *V) { |
| 329 | return isa<ConstantArray>(Val: V) || isa<ConstantStruct>(Val: V) || |
| 330 | isa<ConstantDataArray>(Val: V) || |
| 331 | (isa<ConstantAggregateZero>(Val: V) && !V->getType()->isVectorTy()); |
| 332 | } |
| 333 | |
| 334 | static void setInsertPointSkippingPhis(IRBuilder<> &B, Instruction *I) { |
| 335 | if (isa<PHINode>(Val: I)) |
| 336 | B.SetInsertPoint(I->getParent()->getFirstNonPHIOrDbgOrAlloca()); |
| 337 | else |
| 338 | B.SetInsertPoint(I); |
| 339 | } |
| 340 | |
| 341 | static void setInsertPointAfterDef(IRBuilder<> &B, Instruction *I) { |
| 342 | B.SetCurrentDebugLocation(I->getDebugLoc()); |
| 343 | if (I->getType()->isVoidTy()) |
| 344 | B.SetInsertPoint(I->getNextNode()); |
| 345 | else |
| 346 | B.SetInsertPoint(*I->getInsertionPointAfterDef()); |
| 347 | } |
| 348 | |
| 349 | static bool requireAssignType(Instruction *I) { |
| 350 | if (const auto *Intr = dyn_cast<IntrinsicInst>(Val: I)) { |
| 351 | switch (Intr->getIntrinsicID()) { |
| 352 | case Intrinsic::invariant_start: |
| 353 | case Intrinsic::invariant_end: |
| 354 | return false; |
| 355 | } |
| 356 | } |
| 357 | return true; |
| 358 | } |
| 359 | |
| 360 | static inline void reportFatalOnTokenType(const Instruction *I) { |
| 361 | if (I->getType()->isTokenTy()) |
| 362 | report_fatal_error(reason: "A token is encountered but SPIR-V without extensions " |
| 363 | "does not support token type" , |
| 364 | gen_crash_diag: false); |
| 365 | } |
| 366 | |
| 367 | static void emitAssignName(Instruction *I, IRBuilder<> &B) { |
| 368 | if (!I->hasName() || I->getType()->isAggregateType() || |
| 369 | expectIgnoredInIRTranslation(I)) |
| 370 | return; |
| 371 | |
| 372 | // We want to be conservative when adding the names because they can interfere |
| 373 | // with later optimizations. |
| 374 | bool KeepName = SpirvEmitOpNames; |
| 375 | if (!KeepName) { |
| 376 | if (isa<AllocaInst>(Val: I)) { |
| 377 | KeepName = true; |
| 378 | } else if (auto *CI = dyn_cast<CallBase>(Val: I)) { |
| 379 | Function *F = CI->getCalledFunction(); |
| 380 | if (F && F->getName().starts_with(Prefix: "llvm.spv.alloca" )) |
| 381 | KeepName = true; |
| 382 | } |
| 383 | } |
| 384 | |
| 385 | if (!KeepName) |
| 386 | return; |
| 387 | |
| 388 | reportFatalOnTokenType(I); |
| 389 | setInsertPointAfterDef(B, I); |
| 390 | LLVMContext &Ctx = I->getContext(); |
| 391 | std::vector<Value *> Args = { |
| 392 | I, MetadataAsValue::get( |
| 393 | Context&: Ctx, MD: MDNode::get(Context&: Ctx, MDs: MDString::get(Context&: Ctx, Str: I->getName())))}; |
| 394 | B.CreateIntrinsic(ID: Intrinsic::spv_assign_name, Types: {I->getType()}, Args); |
| 395 | } |
| 396 | |
| 397 | void SPIRVEmitIntrinsics::replaceAllUsesWith(Value *Src, Value *Dest, |
| 398 | bool DeleteOld) { |
| 399 | GR->replaceAllUsesWith(Old: Src, New: Dest, DeleteOld); |
| 400 | // Update uncomplete type records if any |
| 401 | if (isTodoType(Op: Src)) { |
| 402 | if (DeleteOld) |
| 403 | eraseTodoType(Op: Src); |
| 404 | insertTodoType(Op: Dest); |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | void SPIRVEmitIntrinsics::replaceAllUsesWithAndErase(IRBuilder<> &B, |
| 409 | Instruction *Src, |
| 410 | Instruction *Dest, |
| 411 | bool DeleteOld) { |
| 412 | replaceAllUsesWith(Src, Dest, DeleteOld); |
| 413 | std::string Name = Src->hasName() ? Src->getName().str() : "" ; |
| 414 | Src->eraseFromParent(); |
| 415 | if (!Name.empty()) { |
| 416 | Dest->setName(Name); |
| 417 | if (Named.insert(x: Dest).second) |
| 418 | emitAssignName(I: Dest, B); |
| 419 | } |
| 420 | } |
| 421 | |
| 422 | static bool IsKernelArgInt8(Function *F, StoreInst *SI) { |
| 423 | return SI && F->getCallingConv() == CallingConv::SPIR_KERNEL && |
| 424 | isPointerTy(T: SI->getValueOperand()->getType()) && |
| 425 | isa<Argument>(Val: SI->getValueOperand()); |
| 426 | } |
| 427 | |
| 428 | // Maybe restore original function return type. |
| 429 | static inline Type *restoreMutatedType(SPIRVGlobalRegistry *GR, Instruction *I, |
| 430 | Type *Ty) { |
| 431 | CallInst *CI = dyn_cast<CallInst>(Val: I); |
| 432 | if (!CI || CI->isIndirectCall() || CI->isInlineAsm() || |
| 433 | !CI->getCalledFunction() || CI->getCalledFunction()->isIntrinsic()) |
| 434 | return Ty; |
| 435 | if (Type *OriginalTy = GR->findMutated(Val: CI->getCalledFunction())) |
| 436 | return OriginalTy; |
| 437 | return Ty; |
| 438 | } |
| 439 | |
| 440 | // Reconstruct type with nested element types according to deduced type info. |
| 441 | // Return nullptr if no detailed type info is available. |
| 442 | Type *SPIRVEmitIntrinsics::reconstructType(Value *Op, bool UnknownElemTypeI8, |
| 443 | bool IsPostprocessing) { |
| 444 | Type *Ty = Op->getType(); |
| 445 | if (auto *OpI = dyn_cast<Instruction>(Val: Op)) |
| 446 | Ty = restoreMutatedType(GR, I: OpI, Ty); |
| 447 | if (!isUntypedPointerTy(T: Ty)) |
| 448 | return Ty; |
| 449 | // try to find the pointee type |
| 450 | if (Type *NestedTy = GR->findDeducedElementType(Val: Op)) |
| 451 | return getTypedPointerWrapper(ElemTy: NestedTy, AS: getPointerAddressSpace(T: Ty)); |
| 452 | // not a pointer according to the type info (e.g., Event object) |
| 453 | CallInst *CI = GR->findAssignPtrTypeInstr(Val: Op); |
| 454 | if (CI) { |
| 455 | MetadataAsValue *MD = cast<MetadataAsValue>(Val: CI->getArgOperand(i: 1)); |
| 456 | return cast<ConstantAsMetadata>(Val: MD->getMetadata())->getType(); |
| 457 | } |
| 458 | if (UnknownElemTypeI8) { |
| 459 | if (!IsPostprocessing) |
| 460 | insertTodoType(Op); |
| 461 | return getTypedPointerWrapper(ElemTy: IntegerType::getInt8Ty(C&: Op->getContext()), |
| 462 | AS: getPointerAddressSpace(T: Ty)); |
| 463 | } |
| 464 | return nullptr; |
| 465 | } |
| 466 | |
| 467 | CallInst *SPIRVEmitIntrinsics::buildSpvPtrcast(Function *F, Value *Op, |
| 468 | Type *ElemTy) { |
| 469 | IRBuilder<> B(Op->getContext()); |
| 470 | if (auto *OpI = dyn_cast<Instruction>(Val: Op)) { |
| 471 | // spv_ptrcast's argument Op denotes an instruction that generates |
| 472 | // a value, and we may use getInsertionPointAfterDef() |
| 473 | setInsertPointAfterDef(B, I: OpI); |
| 474 | } else if (auto *OpA = dyn_cast<Argument>(Val: Op)) { |
| 475 | B.SetInsertPointPastAllocas(OpA->getParent()); |
| 476 | B.SetCurrentDebugLocation(DebugLoc()); |
| 477 | } else { |
| 478 | B.SetInsertPoint(F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca()); |
| 479 | } |
| 480 | Type *OpTy = Op->getType(); |
| 481 | SmallVector<Type *, 2> Types = {OpTy, OpTy}; |
| 482 | SmallVector<Value *, 2> Args = {Op, buildMD(Arg: getNormalizedPoisonValue(Ty: ElemTy)), |
| 483 | B.getInt32(C: getPointerAddressSpace(T: OpTy))}; |
| 484 | CallInst *PtrCasted = |
| 485 | B.CreateIntrinsic(ID: Intrinsic::spv_ptrcast, Types: {Types}, Args); |
| 486 | GR->buildAssignPtr(B, ElemTy, Arg: PtrCasted); |
| 487 | return PtrCasted; |
| 488 | } |
| 489 | |
| 490 | void SPIRVEmitIntrinsics::replaceUsesOfWithSpvPtrcast( |
| 491 | Value *Op, Type *ElemTy, Instruction *I, |
| 492 | DenseMap<Function *, CallInst *> Ptrcasts) { |
| 493 | Function *F = I->getParent()->getParent(); |
| 494 | CallInst *PtrCastedI = nullptr; |
| 495 | auto It = Ptrcasts.find(Val: F); |
| 496 | if (It == Ptrcasts.end()) { |
| 497 | PtrCastedI = buildSpvPtrcast(F, Op, ElemTy); |
| 498 | Ptrcasts[F] = PtrCastedI; |
| 499 | } else { |
| 500 | PtrCastedI = It->second; |
| 501 | } |
| 502 | I->replaceUsesOfWith(From: Op, To: PtrCastedI); |
| 503 | } |
| 504 | |
| 505 | void SPIRVEmitIntrinsics::propagateElemType( |
| 506 | Value *Op, Type *ElemTy, |
| 507 | DenseSet<std::pair<Value *, Value *>> &VisitedSubst) { |
| 508 | DenseMap<Function *, CallInst *> Ptrcasts; |
| 509 | SmallVector<User *> Users(Op->users()); |
| 510 | for (auto *U : Users) { |
| 511 | if (!isa<Instruction>(Val: U) || isSpvIntrinsic(Arg: U)) |
| 512 | continue; |
| 513 | if (!VisitedSubst.insert(V: std::make_pair(x&: U, y&: Op)).second) |
| 514 | continue; |
| 515 | Instruction *UI = dyn_cast<Instruction>(Val: U); |
| 516 | // If the instruction was validated already, we need to keep it valid by |
| 517 | // keeping current Op type. |
| 518 | if (isa<GetElementPtrInst>(Val: UI) || |
| 519 | TypeValidated.find(x: UI) != TypeValidated.end()) |
| 520 | replaceUsesOfWithSpvPtrcast(Op, ElemTy, I: UI, Ptrcasts); |
| 521 | } |
| 522 | } |
| 523 | |
| 524 | void SPIRVEmitIntrinsics::propagateElemTypeRec( |
| 525 | Value *Op, Type *PtrElemTy, Type *CastElemTy, |
| 526 | DenseSet<std::pair<Value *, Value *>> &VisitedSubst) { |
| 527 | std::unordered_set<Value *> Visited; |
| 528 | DenseMap<Function *, CallInst *> Ptrcasts; |
| 529 | propagateElemTypeRec(Op, PtrElemTy, CastElemTy, VisitedSubst, Visited, |
| 530 | Ptrcasts: std::move(Ptrcasts)); |
| 531 | } |
| 532 | |
| 533 | void SPIRVEmitIntrinsics::propagateElemTypeRec( |
| 534 | Value *Op, Type *PtrElemTy, Type *CastElemTy, |
| 535 | DenseSet<std::pair<Value *, Value *>> &VisitedSubst, |
| 536 | std::unordered_set<Value *> &Visited, |
| 537 | DenseMap<Function *, CallInst *> Ptrcasts) { |
| 538 | if (!Visited.insert(x: Op).second) |
| 539 | return; |
| 540 | SmallVector<User *> Users(Op->users()); |
| 541 | for (auto *U : Users) { |
| 542 | if (!isa<Instruction>(Val: U) || isSpvIntrinsic(Arg: U)) |
| 543 | continue; |
| 544 | if (!VisitedSubst.insert(V: std::make_pair(x&: U, y&: Op)).second) |
| 545 | continue; |
| 546 | Instruction *UI = dyn_cast<Instruction>(Val: U); |
| 547 | // If the instruction was validated already, we need to keep it valid by |
| 548 | // keeping current Op type. |
| 549 | if (isa<GetElementPtrInst>(Val: UI) || |
| 550 | TypeValidated.find(x: UI) != TypeValidated.end()) |
| 551 | replaceUsesOfWithSpvPtrcast(Op, ElemTy: CastElemTy, I: UI, Ptrcasts); |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | // Set element pointer type to the given value of ValueTy and tries to |
| 556 | // specify this type further (recursively) by Operand value, if needed. |
| 557 | |
| 558 | Type * |
| 559 | SPIRVEmitIntrinsics::deduceElementTypeByValueDeep(Type *ValueTy, Value *Operand, |
| 560 | bool UnknownElemTypeI8) { |
| 561 | std::unordered_set<Value *> Visited; |
| 562 | return deduceElementTypeByValueDeep(ValueTy, Operand, Visited, |
| 563 | UnknownElemTypeI8); |
| 564 | } |
| 565 | |
| 566 | Type *SPIRVEmitIntrinsics::deduceElementTypeByValueDeep( |
| 567 | Type *ValueTy, Value *Operand, std::unordered_set<Value *> &Visited, |
| 568 | bool UnknownElemTypeI8) { |
| 569 | Type *Ty = ValueTy; |
| 570 | if (Operand) { |
| 571 | if (auto *PtrTy = dyn_cast<PointerType>(Val: Ty)) { |
| 572 | if (Type *NestedTy = |
| 573 | deduceElementTypeHelper(I: Operand, Visited, UnknownElemTypeI8)) |
| 574 | Ty = getTypedPointerWrapper(ElemTy: NestedTy, AS: PtrTy->getAddressSpace()); |
| 575 | } else { |
| 576 | Ty = deduceNestedTypeHelper(U: dyn_cast<User>(Val: Operand), Ty, Visited, |
| 577 | UnknownElemTypeI8); |
| 578 | } |
| 579 | } |
| 580 | return Ty; |
| 581 | } |
| 582 | |
| 583 | // Traverse User instructions to deduce an element pointer type of the operand. |
| 584 | Type *SPIRVEmitIntrinsics::deduceElementTypeByUsersDeep( |
| 585 | Value *Op, std::unordered_set<Value *> &Visited, bool UnknownElemTypeI8) { |
| 586 | if (!Op || !isPointerTy(T: Op->getType()) || isa<ConstantPointerNull>(Val: Op) || |
| 587 | isa<UndefValue>(Val: Op)) |
| 588 | return nullptr; |
| 589 | |
| 590 | if (auto ElemTy = getPointeeType(Ty: Op->getType())) |
| 591 | return ElemTy; |
| 592 | |
| 593 | // maybe we already know operand's element type |
| 594 | if (Type *KnownTy = GR->findDeducedElementType(Val: Op)) |
| 595 | return KnownTy; |
| 596 | |
| 597 | for (User *OpU : Op->users()) { |
| 598 | if (Instruction *Inst = dyn_cast<Instruction>(Val: OpU)) { |
| 599 | if (Type *Ty = deduceElementTypeHelper(I: Inst, Visited, UnknownElemTypeI8)) |
| 600 | return Ty; |
| 601 | } |
| 602 | } |
| 603 | return nullptr; |
| 604 | } |
| 605 | |
| 606 | // Implements what we know in advance about intrinsics and builtin calls |
| 607 | // TODO: consider feasibility of this particular case to be generalized by |
| 608 | // encoding knowledge about intrinsics and builtin calls by corresponding |
| 609 | // specification rules |
| 610 | static Type *getPointeeTypeByCallInst(StringRef DemangledName, |
| 611 | Function *CalledF, unsigned OpIdx) { |
| 612 | if ((DemangledName.starts_with(Prefix: "__spirv_ocl_printf(" ) || |
| 613 | DemangledName.starts_with(Prefix: "printf(" )) && |
| 614 | OpIdx == 0) |
| 615 | return IntegerType::getInt8Ty(C&: CalledF->getContext()); |
| 616 | return nullptr; |
| 617 | } |
| 618 | |
| 619 | // Deduce and return a successfully deduced Type of the Instruction, |
| 620 | // or nullptr otherwise. |
| 621 | Type *SPIRVEmitIntrinsics::deduceElementTypeHelper(Value *I, |
| 622 | bool UnknownElemTypeI8) { |
| 623 | std::unordered_set<Value *> Visited; |
| 624 | return deduceElementTypeHelper(I, Visited, UnknownElemTypeI8); |
| 625 | } |
| 626 | |
| 627 | void SPIRVEmitIntrinsics::maybeAssignPtrType(Type *&Ty, Value *Op, Type *RefTy, |
| 628 | bool UnknownElemTypeI8) { |
| 629 | if (isUntypedPointerTy(T: RefTy)) { |
| 630 | if (!UnknownElemTypeI8) |
| 631 | return; |
| 632 | insertTodoType(Op); |
| 633 | } |
| 634 | Ty = RefTy; |
| 635 | } |
| 636 | |
| 637 | bool SPIRVEmitIntrinsics::walkLogicalAccessChain( |
| 638 | GetElementPtrInst &GEP, |
| 639 | const std::function<void(Type *, uint64_t)> &OnLiteralIndexing, |
| 640 | const std::function<void(Type *, Value *)> &OnDynamicIndexing) { |
| 641 | // We only rewrite i8* GEP. Other should be left as-is. |
| 642 | // Valid i8* GEP must always have a single index. |
| 643 | assert(GEP.getSourceElementType() == |
| 644 | IntegerType::getInt8Ty(CurrF->getContext())); |
| 645 | assert(GEP.getNumIndices() == 1); |
| 646 | |
| 647 | auto &DL = CurrF->getDataLayout(); |
| 648 | Value *Src = getPointerRoot(I: GEP.getPointerOperand()); |
| 649 | Type *CurType = deduceElementType(I: Src, UnknownElemTypeI8: true); |
| 650 | |
| 651 | Value *Operand = *GEP.idx_begin(); |
| 652 | ConstantInt *CI = dyn_cast<ConstantInt>(Val: Operand); |
| 653 | if (!CI) { |
| 654 | ArrayType *AT = dyn_cast<ArrayType>(Val: CurType); |
| 655 | // Operand is not constant. Either we have an array and accept it, or we |
| 656 | // give up. |
| 657 | if (AT) |
| 658 | OnDynamicIndexing(AT->getElementType(), Operand); |
| 659 | return AT == nullptr; |
| 660 | } |
| 661 | |
| 662 | assert(CI); |
| 663 | uint64_t Offset = CI->getZExtValue(); |
| 664 | |
| 665 | do { |
| 666 | if (ArrayType *AT = dyn_cast<ArrayType>(Val: CurType)) { |
| 667 | uint32_t EltTypeSize = DL.getTypeSizeInBits(Ty: AT->getElementType()) / 8; |
| 668 | assert(Offset < AT->getNumElements() * EltTypeSize); |
| 669 | uint64_t Index = Offset / EltTypeSize; |
| 670 | Offset = Offset - (Index * EltTypeSize); |
| 671 | CurType = AT->getElementType(); |
| 672 | OnLiteralIndexing(CurType, Index); |
| 673 | } else if (StructType *ST = dyn_cast<StructType>(Val: CurType)) { |
| 674 | uint32_t StructSize = DL.getTypeSizeInBits(Ty: ST) / 8; |
| 675 | assert(Offset < StructSize); |
| 676 | (void)StructSize; |
| 677 | const auto &STL = DL.getStructLayout(Ty: ST); |
| 678 | unsigned Element = STL->getElementContainingOffset(FixedOffset: Offset); |
| 679 | Offset -= STL->getElementOffset(Idx: Element); |
| 680 | CurType = ST->getElementType(N: Element); |
| 681 | OnLiteralIndexing(CurType, Element); |
| 682 | } else if (auto *VT = dyn_cast<FixedVectorType>(Val: CurType)) { |
| 683 | Type *EltTy = VT->getElementType(); |
| 684 | TypeSize EltSizeBits = DL.getTypeSizeInBits(Ty: EltTy); |
| 685 | assert(EltSizeBits % 8 == 0 && |
| 686 | "Element type size in bits must be a multiple of 8." ); |
| 687 | uint32_t EltTypeSize = EltSizeBits / 8; |
| 688 | assert(Offset < VT->getNumElements() * EltTypeSize); |
| 689 | uint64_t Index = Offset / EltTypeSize; |
| 690 | Offset -= Index * EltTypeSize; |
| 691 | CurType = EltTy; |
| 692 | OnLiteralIndexing(CurType, Index); |
| 693 | |
| 694 | } else { |
| 695 | // Unknown composite kind; give up. |
| 696 | return true; |
| 697 | } |
| 698 | } while (Offset > 0); |
| 699 | |
| 700 | return false; |
| 701 | } |
| 702 | |
| 703 | Instruction * |
| 704 | SPIRVEmitIntrinsics::buildLogicalAccessChainFromGEP(GetElementPtrInst &GEP) { |
| 705 | auto &DL = CurrF->getDataLayout(); |
| 706 | IRBuilder<> B(GEP.getParent()); |
| 707 | B.SetInsertPoint(&GEP); |
| 708 | |
| 709 | std::vector<Value *> Indices; |
| 710 | Indices.push_back(x: ConstantInt::get( |
| 711 | Ty: IntegerType::getInt32Ty(C&: CurrF->getContext()), V: 0, /* Signed= */ IsSigned: false)); |
| 712 | walkLogicalAccessChain( |
| 713 | GEP, |
| 714 | OnLiteralIndexing: [&Indices, &B](Type *EltType, uint64_t Index) { |
| 715 | Indices.push_back( |
| 716 | x: ConstantInt::get(Ty: B.getInt64Ty(), V: Index, /* Signed= */ IsSigned: false)); |
| 717 | }, |
| 718 | OnDynamicIndexing: [&Indices, &B, &DL](Type *EltType, Value *Offset) { |
| 719 | uint32_t EltTypeSize = DL.getTypeSizeInBits(Ty: EltType) / 8; |
| 720 | Value *Index = B.CreateUDiv( |
| 721 | LHS: Offset, RHS: ConstantInt::get(Ty: Offset->getType(), V: EltTypeSize, |
| 722 | /* Signed= */ IsSigned: false)); |
| 723 | Indices.push_back(x: Index); |
| 724 | }); |
| 725 | |
| 726 | SmallVector<Type *, 2> Types = {GEP.getType(), GEP.getOperand(i_nocapture: 0)->getType()}; |
| 727 | SmallVector<Value *, 4> Args; |
| 728 | Args.push_back(Elt: B.getInt1(V: GEP.isInBounds())); |
| 729 | Args.push_back(Elt: GEP.getOperand(i_nocapture: 0)); |
| 730 | llvm::append_range(C&: Args, R&: Indices); |
| 731 | auto *NewI = B.CreateIntrinsic(ID: Intrinsic::spv_gep, Types: {Types}, Args: {Args}); |
| 732 | replaceAllUsesWithAndErase(B, Src: &GEP, Dest: NewI); |
| 733 | return NewI; |
| 734 | } |
| 735 | |
| 736 | Type *SPIRVEmitIntrinsics::getGEPTypeLogical(GetElementPtrInst *GEP) { |
| 737 | |
| 738 | Type *CurType = GEP->getResultElementType(); |
| 739 | |
| 740 | bool Interrupted = walkLogicalAccessChain( |
| 741 | GEP&: *GEP, OnLiteralIndexing: [&CurType](Type *EltType, uint64_t Index) { CurType = EltType; }, |
| 742 | OnDynamicIndexing: [&CurType](Type *EltType, Value *Index) { CurType = EltType; }); |
| 743 | |
| 744 | return Interrupted ? GEP->getResultElementType() : CurType; |
| 745 | } |
| 746 | |
| 747 | Type *SPIRVEmitIntrinsics::getGEPType(GetElementPtrInst *Ref) { |
| 748 | if (Ref->getSourceElementType() == |
| 749 | IntegerType::getInt8Ty(C&: CurrF->getContext()) && |
| 750 | TM->getSubtargetImpl()->isLogicalSPIRV()) { |
| 751 | return getGEPTypeLogical(GEP: Ref); |
| 752 | } |
| 753 | |
| 754 | Type *Ty = nullptr; |
| 755 | // TODO: not sure if GetElementPtrInst::getTypeAtIndex() does anything |
| 756 | // useful here |
| 757 | if (isNestedPointer(Ty: Ref->getSourceElementType())) { |
| 758 | Ty = Ref->getSourceElementType(); |
| 759 | for (Use &U : drop_begin(RangeOrContainer: Ref->indices())) |
| 760 | Ty = GetElementPtrInst::getTypeAtIndex(Ty, Idx: U.get()); |
| 761 | } else { |
| 762 | Ty = Ref->getResultElementType(); |
| 763 | } |
| 764 | return Ty; |
| 765 | } |
| 766 | |
| 767 | Type *SPIRVEmitIntrinsics::deduceElementTypeHelper( |
| 768 | Value *I, std::unordered_set<Value *> &Visited, bool UnknownElemTypeI8, |
| 769 | bool IgnoreKnownType) { |
| 770 | // allow to pass nullptr as an argument |
| 771 | if (!I) |
| 772 | return nullptr; |
| 773 | |
| 774 | // maybe already known |
| 775 | if (!IgnoreKnownType) |
| 776 | if (Type *KnownTy = GR->findDeducedElementType(Val: I)) |
| 777 | return KnownTy; |
| 778 | |
| 779 | // maybe a cycle |
| 780 | if (!Visited.insert(x: I).second) |
| 781 | return nullptr; |
| 782 | |
| 783 | // fallback value in case when we fail to deduce a type |
| 784 | Type *Ty = nullptr; |
| 785 | // look for known basic patterns of type inference |
| 786 | if (auto *Ref = dyn_cast<AllocaInst>(Val: I)) { |
| 787 | maybeAssignPtrType(Ty, Op: I, RefTy: Ref->getAllocatedType(), UnknownElemTypeI8); |
| 788 | } else if (auto *Ref = dyn_cast<GetElementPtrInst>(Val: I)) { |
| 789 | Ty = getGEPType(Ref); |
| 790 | } else if (auto *Ref = dyn_cast<LoadInst>(Val: I)) { |
| 791 | Value *Op = Ref->getPointerOperand(); |
| 792 | Type *KnownTy = GR->findDeducedElementType(Val: Op); |
| 793 | if (!KnownTy) |
| 794 | KnownTy = Op->getType(); |
| 795 | if (Type *ElemTy = getPointeeType(Ty: KnownTy)) |
| 796 | maybeAssignPtrType(Ty, Op: I, RefTy: ElemTy, UnknownElemTypeI8); |
| 797 | } else if (auto *Ref = dyn_cast<GlobalValue>(Val: I)) { |
| 798 | if (auto *Fn = dyn_cast<Function>(Val: Ref)) { |
| 799 | Ty = SPIRV::getOriginalFunctionType(F: *Fn); |
| 800 | GR->addDeducedElementType(Val: I, Ty); |
| 801 | } else { |
| 802 | Ty = deduceElementTypeByValueDeep( |
| 803 | ValueTy: Ref->getValueType(), |
| 804 | Operand: Ref->getNumOperands() > 0 ? Ref->getOperand(i: 0) : nullptr, Visited, |
| 805 | UnknownElemTypeI8); |
| 806 | } |
| 807 | } else if (auto *Ref = dyn_cast<AddrSpaceCastInst>(Val: I)) { |
| 808 | Type *RefTy = deduceElementTypeHelper(I: Ref->getPointerOperand(), Visited, |
| 809 | UnknownElemTypeI8); |
| 810 | maybeAssignPtrType(Ty, Op: I, RefTy, UnknownElemTypeI8); |
| 811 | } else if (auto *Ref = dyn_cast<IntToPtrInst>(Val: I)) { |
| 812 | maybeAssignPtrType(Ty, Op: I, RefTy: Ref->getDestTy(), UnknownElemTypeI8); |
| 813 | } else if (auto *Ref = dyn_cast<BitCastInst>(Val: I)) { |
| 814 | if (Type *Src = Ref->getSrcTy(), *Dest = Ref->getDestTy(); |
| 815 | isPointerTy(T: Src) && isPointerTy(T: Dest)) |
| 816 | Ty = deduceElementTypeHelper(I: Ref->getOperand(i_nocapture: 0), Visited, |
| 817 | UnknownElemTypeI8); |
| 818 | } else if (auto *Ref = dyn_cast<AtomicCmpXchgInst>(Val: I)) { |
| 819 | Value *Op = Ref->getNewValOperand(); |
| 820 | if (isPointerTy(T: Op->getType())) |
| 821 | Ty = deduceElementTypeHelper(I: Op, Visited, UnknownElemTypeI8); |
| 822 | } else if (auto *Ref = dyn_cast<AtomicRMWInst>(Val: I)) { |
| 823 | Value *Op = Ref->getValOperand(); |
| 824 | if (isPointerTy(T: Op->getType())) |
| 825 | Ty = deduceElementTypeHelper(I: Op, Visited, UnknownElemTypeI8); |
| 826 | } else if (auto *Ref = dyn_cast<PHINode>(Val: I)) { |
| 827 | Type *BestTy = nullptr; |
| 828 | unsigned MaxN = 1; |
| 829 | DenseMap<Type *, unsigned> PhiTys; |
| 830 | for (int i = Ref->getNumIncomingValues() - 1; i >= 0; --i) { |
| 831 | Ty = deduceElementTypeByUsersDeep(Op: Ref->getIncomingValue(i), Visited, |
| 832 | UnknownElemTypeI8); |
| 833 | if (!Ty) |
| 834 | continue; |
| 835 | auto It = PhiTys.try_emplace(Key: Ty, Args: 1); |
| 836 | if (!It.second) { |
| 837 | ++It.first->second; |
| 838 | if (It.first->second > MaxN) { |
| 839 | MaxN = It.first->second; |
| 840 | BestTy = Ty; |
| 841 | } |
| 842 | } |
| 843 | } |
| 844 | if (BestTy) |
| 845 | Ty = BestTy; |
| 846 | } else if (auto *Ref = dyn_cast<SelectInst>(Val: I)) { |
| 847 | for (Value *Op : {Ref->getTrueValue(), Ref->getFalseValue()}) { |
| 848 | Ty = deduceElementTypeByUsersDeep(Op, Visited, UnknownElemTypeI8); |
| 849 | if (Ty) |
| 850 | break; |
| 851 | } |
| 852 | } else if (auto *CI = dyn_cast<CallInst>(Val: I)) { |
| 853 | static StringMap<unsigned> ResTypeByArg = { |
| 854 | {"to_global" , 0}, |
| 855 | {"to_local" , 0}, |
| 856 | {"to_private" , 0}, |
| 857 | {"__spirv_GenericCastToPtr_ToGlobal" , 0}, |
| 858 | {"__spirv_GenericCastToPtr_ToLocal" , 0}, |
| 859 | {"__spirv_GenericCastToPtr_ToPrivate" , 0}, |
| 860 | {"__spirv_GenericCastToPtrExplicit_ToGlobal" , 0}, |
| 861 | {"__spirv_GenericCastToPtrExplicit_ToLocal" , 0}, |
| 862 | {"__spirv_GenericCastToPtrExplicit_ToPrivate" , 0}}; |
| 863 | // TODO: maybe improve performance by caching demangled names |
| 864 | |
| 865 | auto *II = dyn_cast<IntrinsicInst>(Val: I); |
| 866 | if (II && II->getIntrinsicID() == Intrinsic::spv_resource_getpointer) { |
| 867 | auto *HandleType = cast<TargetExtType>(Val: II->getOperand(i_nocapture: 0)->getType()); |
| 868 | if (HandleType->getTargetExtName() == "spirv.Image" || |
| 869 | HandleType->getTargetExtName() == "spirv.SignedImage" ) { |
| 870 | for (User *U : II->users()) { |
| 871 | Ty = cast<Instruction>(Val: U)->getAccessType(); |
| 872 | if (Ty) |
| 873 | break; |
| 874 | } |
| 875 | } else if (HandleType->getTargetExtName() == "spirv.VulkanBuffer" ) { |
| 876 | // This call is supposed to index into an array |
| 877 | Ty = HandleType->getTypeParameter(i: 0); |
| 878 | if (Ty->isArrayTy()) |
| 879 | Ty = Ty->getArrayElementType(); |
| 880 | else { |
| 881 | assert(Ty && Ty->isStructTy()); |
| 882 | uint32_t Index = cast<ConstantInt>(Val: II->getOperand(i_nocapture: 1))->getZExtValue(); |
| 883 | Ty = cast<StructType>(Val: Ty)->getElementType(N: Index); |
| 884 | } |
| 885 | Ty = reconstitutePeeledArrayType(Ty); |
| 886 | } else { |
| 887 | llvm_unreachable("Unknown handle type for spv_resource_getpointer." ); |
| 888 | } |
| 889 | } else if (II && II->getIntrinsicID() == |
| 890 | Intrinsic::spv_generic_cast_to_ptr_explicit) { |
| 891 | Ty = deduceElementTypeHelper(I: CI->getArgOperand(i: 0), Visited, |
| 892 | UnknownElemTypeI8); |
| 893 | } else if (Function *CalledF = CI->getCalledFunction()) { |
| 894 | std::string DemangledName = |
| 895 | getOclOrSpirvBuiltinDemangledName(Name: CalledF->getName()); |
| 896 | if (DemangledName.length() > 0) |
| 897 | DemangledName = SPIRV::lookupBuiltinNameHelper(DemangledCall: DemangledName); |
| 898 | auto AsArgIt = ResTypeByArg.find(Key: DemangledName); |
| 899 | if (AsArgIt != ResTypeByArg.end()) |
| 900 | Ty = deduceElementTypeHelper(I: CI->getArgOperand(i: AsArgIt->second), |
| 901 | Visited, UnknownElemTypeI8); |
| 902 | else if (Type *KnownRetTy = GR->findDeducedElementType(Val: CalledF)) |
| 903 | Ty = KnownRetTy; |
| 904 | } |
| 905 | } |
| 906 | |
| 907 | // remember the found relationship |
| 908 | if (Ty && !IgnoreKnownType) { |
| 909 | // specify nested types if needed, otherwise return unchanged |
| 910 | GR->addDeducedElementType(Val: I, Ty: normalizeType(Ty)); |
| 911 | } |
| 912 | |
| 913 | return Ty; |
| 914 | } |
| 915 | |
| 916 | // Re-create a type of the value if it has untyped pointer fields, also nested. |
| 917 | // Return the original value type if no corrections of untyped pointer |
| 918 | // information is found or needed. |
| 919 | Type *SPIRVEmitIntrinsics::deduceNestedTypeHelper(User *U, |
| 920 | bool UnknownElemTypeI8) { |
| 921 | std::unordered_set<Value *> Visited; |
| 922 | return deduceNestedTypeHelper(U, Ty: U->getType(), Visited, UnknownElemTypeI8); |
| 923 | } |
| 924 | |
| 925 | Type *SPIRVEmitIntrinsics::deduceNestedTypeHelper( |
| 926 | User *U, Type *OrigTy, std::unordered_set<Value *> &Visited, |
| 927 | bool UnknownElemTypeI8) { |
| 928 | if (!U) |
| 929 | return OrigTy; |
| 930 | |
| 931 | // maybe already known |
| 932 | if (Type *KnownTy = GR->findDeducedCompositeType(Val: U)) |
| 933 | return KnownTy; |
| 934 | |
| 935 | // maybe a cycle |
| 936 | if (!Visited.insert(x: U).second) |
| 937 | return OrigTy; |
| 938 | |
| 939 | if (isa<StructType>(Val: OrigTy)) { |
| 940 | SmallVector<Type *> Tys; |
| 941 | bool Change = false; |
| 942 | for (unsigned i = 0; i < U->getNumOperands(); ++i) { |
| 943 | Value *Op = U->getOperand(i); |
| 944 | assert(Op && "Operands should not be null." ); |
| 945 | Type *OpTy = Op->getType(); |
| 946 | Type *Ty = OpTy; |
| 947 | if (auto *PtrTy = dyn_cast<PointerType>(Val: OpTy)) { |
| 948 | if (Type *NestedTy = |
| 949 | deduceElementTypeHelper(I: Op, Visited, UnknownElemTypeI8)) |
| 950 | Ty = getTypedPointerWrapper(ElemTy: NestedTy, AS: PtrTy->getAddressSpace()); |
| 951 | } else { |
| 952 | Ty = deduceNestedTypeHelper(U: dyn_cast<User>(Val: Op), OrigTy: OpTy, Visited, |
| 953 | UnknownElemTypeI8); |
| 954 | } |
| 955 | Tys.push_back(Elt: Ty); |
| 956 | Change |= Ty != OpTy; |
| 957 | } |
| 958 | if (Change) { |
| 959 | Type *NewTy = StructType::create(Elements: Tys); |
| 960 | GR->addDeducedCompositeType(Val: U, Ty: NewTy); |
| 961 | return NewTy; |
| 962 | } |
| 963 | } else if (auto *ArrTy = dyn_cast<ArrayType>(Val: OrigTy)) { |
| 964 | if (Value *Op = U->getNumOperands() > 0 ? U->getOperand(i: 0) : nullptr) { |
| 965 | Type *OpTy = ArrTy->getElementType(); |
| 966 | Type *Ty = OpTy; |
| 967 | if (auto *PtrTy = dyn_cast<PointerType>(Val: OpTy)) { |
| 968 | if (Type *NestedTy = |
| 969 | deduceElementTypeHelper(I: Op, Visited, UnknownElemTypeI8)) |
| 970 | Ty = getTypedPointerWrapper(ElemTy: NestedTy, AS: PtrTy->getAddressSpace()); |
| 971 | } else { |
| 972 | Ty = deduceNestedTypeHelper(U: dyn_cast<User>(Val: Op), OrigTy: OpTy, Visited, |
| 973 | UnknownElemTypeI8); |
| 974 | } |
| 975 | if (Ty != OpTy) { |
| 976 | Type *NewTy = ArrayType::get(ElementType: Ty, NumElements: ArrTy->getNumElements()); |
| 977 | GR->addDeducedCompositeType(Val: U, Ty: NewTy); |
| 978 | return NewTy; |
| 979 | } |
| 980 | } |
| 981 | } else if (auto *VecTy = dyn_cast<VectorType>(Val: OrigTy)) { |
| 982 | if (Value *Op = U->getNumOperands() > 0 ? U->getOperand(i: 0) : nullptr) { |
| 983 | Type *OpTy = VecTy->getElementType(); |
| 984 | Type *Ty = OpTy; |
| 985 | if (auto *PtrTy = dyn_cast<PointerType>(Val: OpTy)) { |
| 986 | if (Type *NestedTy = |
| 987 | deduceElementTypeHelper(I: Op, Visited, UnknownElemTypeI8)) |
| 988 | Ty = getTypedPointerWrapper(ElemTy: NestedTy, AS: PtrTy->getAddressSpace()); |
| 989 | } else { |
| 990 | Ty = deduceNestedTypeHelper(U: dyn_cast<User>(Val: Op), OrigTy: OpTy, Visited, |
| 991 | UnknownElemTypeI8); |
| 992 | } |
| 993 | if (Ty != OpTy) { |
| 994 | Type *NewTy = VectorType::get(ElementType: Ty, EC: VecTy->getElementCount()); |
| 995 | GR->addDeducedCompositeType(Val: U, Ty: normalizeType(Ty: NewTy)); |
| 996 | return NewTy; |
| 997 | } |
| 998 | } |
| 999 | } |
| 1000 | |
| 1001 | return OrigTy; |
| 1002 | } |
| 1003 | |
| 1004 | Type *SPIRVEmitIntrinsics::deduceElementType(Value *I, bool UnknownElemTypeI8) { |
| 1005 | if (Type *Ty = deduceElementTypeHelper(I, UnknownElemTypeI8)) |
| 1006 | return Ty; |
| 1007 | if (!UnknownElemTypeI8) |
| 1008 | return nullptr; |
| 1009 | insertTodoType(Op: I); |
| 1010 | return IntegerType::getInt8Ty(C&: I->getContext()); |
| 1011 | } |
| 1012 | |
| 1013 | static inline Type *getAtomicElemTy(SPIRVGlobalRegistry *GR, Instruction *I, |
| 1014 | Value *PointerOperand) { |
| 1015 | Type *PointeeTy = GR->findDeducedElementType(Val: PointerOperand); |
| 1016 | if (PointeeTy && !isUntypedPointerTy(T: PointeeTy)) |
| 1017 | return nullptr; |
| 1018 | auto *PtrTy = dyn_cast<PointerType>(Val: I->getType()); |
| 1019 | if (!PtrTy) |
| 1020 | return I->getType(); |
| 1021 | if (Type *NestedTy = GR->findDeducedElementType(Val: I)) |
| 1022 | return getTypedPointerWrapper(ElemTy: NestedTy, AS: PtrTy->getAddressSpace()); |
| 1023 | return nullptr; |
| 1024 | } |
| 1025 | |
| 1026 | // Try to deduce element type for a call base. Returns false if this is an |
| 1027 | // indirect function invocation, and true otherwise. |
| 1028 | bool SPIRVEmitIntrinsics::deduceOperandElementTypeCalledFunction( |
| 1029 | CallInst *CI, SmallVector<std::pair<Value *, unsigned>> &Ops, |
| 1030 | Type *&KnownElemTy, bool &Incomplete) { |
| 1031 | Function *CalledF = CI->getCalledFunction(); |
| 1032 | if (!CalledF) |
| 1033 | return false; |
| 1034 | std::string DemangledName = |
| 1035 | getOclOrSpirvBuiltinDemangledName(Name: CalledF->getName()); |
| 1036 | if (DemangledName.length() > 0 && |
| 1037 | !StringRef(DemangledName).starts_with(Prefix: "llvm." )) { |
| 1038 | const SPIRVSubtarget &ST = TM->getSubtarget<SPIRVSubtarget>(F: *CalledF); |
| 1039 | auto [Grp, Opcode, ExtNo] = SPIRV::mapBuiltinToOpcode( |
| 1040 | DemangledCall: DemangledName, Set: ST.getPreferredInstructionSet()); |
| 1041 | if (Opcode == SPIRV::OpGroupAsyncCopy) { |
| 1042 | for (unsigned i = 0, PtrCnt = 0; i < CI->arg_size() && PtrCnt < 2; ++i) { |
| 1043 | Value *Op = CI->getArgOperand(i); |
| 1044 | if (!isPointerTy(T: Op->getType())) |
| 1045 | continue; |
| 1046 | ++PtrCnt; |
| 1047 | if (Type *ElemTy = GR->findDeducedElementType(Val: Op)) |
| 1048 | KnownElemTy = ElemTy; // src will rewrite dest if both are defined |
| 1049 | Ops.push_back(Elt: std::make_pair(x&: Op, y&: i)); |
| 1050 | } |
| 1051 | } else if (Grp == SPIRV::Atomic || Grp == SPIRV::AtomicFloating) { |
| 1052 | if (CI->arg_size() == 0) |
| 1053 | return true; |
| 1054 | Value *Op = CI->getArgOperand(i: 0); |
| 1055 | if (!isPointerTy(T: Op->getType())) |
| 1056 | return true; |
| 1057 | switch (Opcode) { |
| 1058 | case SPIRV::OpAtomicFAddEXT: |
| 1059 | case SPIRV::OpAtomicFMinEXT: |
| 1060 | case SPIRV::OpAtomicFMaxEXT: |
| 1061 | case SPIRV::OpAtomicLoad: |
| 1062 | case SPIRV::OpAtomicCompareExchangeWeak: |
| 1063 | case SPIRV::OpAtomicCompareExchange: |
| 1064 | case SPIRV::OpAtomicExchange: |
| 1065 | case SPIRV::OpAtomicIAdd: |
| 1066 | case SPIRV::OpAtomicISub: |
| 1067 | case SPIRV::OpAtomicOr: |
| 1068 | case SPIRV::OpAtomicXor: |
| 1069 | case SPIRV::OpAtomicAnd: |
| 1070 | case SPIRV::OpAtomicUMin: |
| 1071 | case SPIRV::OpAtomicUMax: |
| 1072 | case SPIRV::OpAtomicSMin: |
| 1073 | case SPIRV::OpAtomicSMax: { |
| 1074 | KnownElemTy = isPointerTy(T: CI->getType()) ? getAtomicElemTy(GR, I: CI, PointerOperand: Op) |
| 1075 | : CI->getType(); |
| 1076 | if (!KnownElemTy) |
| 1077 | return true; |
| 1078 | Incomplete = isTodoType(Op); |
| 1079 | Ops.push_back(Elt: std::make_pair(x&: Op, y: 0)); |
| 1080 | } break; |
| 1081 | case SPIRV::OpAtomicStore: { |
| 1082 | if (CI->arg_size() < 4) |
| 1083 | return true; |
| 1084 | Value *ValOp = CI->getArgOperand(i: 3); |
| 1085 | KnownElemTy = isPointerTy(T: ValOp->getType()) |
| 1086 | ? getAtomicElemTy(GR, I: CI, PointerOperand: Op) |
| 1087 | : ValOp->getType(); |
| 1088 | if (!KnownElemTy) |
| 1089 | return true; |
| 1090 | Incomplete = isTodoType(Op); |
| 1091 | Ops.push_back(Elt: std::make_pair(x&: Op, y: 0)); |
| 1092 | } break; |
| 1093 | } |
| 1094 | } |
| 1095 | } |
| 1096 | return true; |
| 1097 | } |
| 1098 | |
| 1099 | // Try to deduce element type for a function pointer. |
| 1100 | void SPIRVEmitIntrinsics::deduceOperandElementTypeFunctionPointer( |
| 1101 | CallInst *CI, SmallVector<std::pair<Value *, unsigned>> &Ops, |
| 1102 | Type *&KnownElemTy, bool IsPostprocessing) { |
| 1103 | Value *Op = CI->getCalledOperand(); |
| 1104 | if (!Op || !isPointerTy(T: Op->getType())) |
| 1105 | return; |
| 1106 | Ops.push_back(Elt: std::make_pair(x&: Op, y: std::numeric_limits<unsigned>::max())); |
| 1107 | FunctionType *FTy = SPIRV::getOriginalFunctionType(CB: *CI); |
| 1108 | bool IsNewFTy = false, IsIncomplete = false; |
| 1109 | SmallVector<Type *, 4> ArgTys; |
| 1110 | for (auto &&[ParmIdx, Arg] : llvm::enumerate(First: CI->args())) { |
| 1111 | Type *ArgTy = Arg->getType(); |
| 1112 | if (ArgTy->isPointerTy()) { |
| 1113 | if (Type *ElemTy = GR->findDeducedElementType(Val: Arg)) { |
| 1114 | IsNewFTy = true; |
| 1115 | ArgTy = getTypedPointerWrapper(ElemTy, AS: getPointerAddressSpace(T: ArgTy)); |
| 1116 | if (isTodoType(Op: Arg)) |
| 1117 | IsIncomplete = true; |
| 1118 | } else { |
| 1119 | IsIncomplete = true; |
| 1120 | } |
| 1121 | } else { |
| 1122 | ArgTy = FTy->getFunctionParamType(i: ParmIdx); |
| 1123 | } |
| 1124 | ArgTys.push_back(Elt: ArgTy); |
| 1125 | } |
| 1126 | Type *RetTy = FTy->getReturnType(); |
| 1127 | if (CI->getType()->isPointerTy()) { |
| 1128 | if (Type *ElemTy = GR->findDeducedElementType(Val: CI)) { |
| 1129 | IsNewFTy = true; |
| 1130 | RetTy = |
| 1131 | getTypedPointerWrapper(ElemTy, AS: getPointerAddressSpace(T: CI->getType())); |
| 1132 | if (isTodoType(Op: CI)) |
| 1133 | IsIncomplete = true; |
| 1134 | } else { |
| 1135 | IsIncomplete = true; |
| 1136 | } |
| 1137 | } |
| 1138 | if (!IsPostprocessing && IsIncomplete) |
| 1139 | insertTodoType(Op); |
| 1140 | KnownElemTy = |
| 1141 | IsNewFTy ? FunctionType::get(Result: RetTy, Params: ArgTys, isVarArg: FTy->isVarArg()) : FTy; |
| 1142 | } |
| 1143 | |
| 1144 | bool SPIRVEmitIntrinsics::deduceOperandElementTypeFunctionRet( |
| 1145 | Instruction *I, SmallPtrSet<Instruction *, 4> *IncompleteRets, |
| 1146 | const SmallPtrSet<Value *, 4> *AskOps, bool IsPostprocessing, |
| 1147 | Type *&KnownElemTy, Value *Op, Function *F) { |
| 1148 | KnownElemTy = GR->findDeducedElementType(Val: F); |
| 1149 | if (KnownElemTy) |
| 1150 | return false; |
| 1151 | if (Type *OpElemTy = GR->findDeducedElementType(Val: Op)) { |
| 1152 | OpElemTy = normalizeType(Ty: OpElemTy); |
| 1153 | GR->addDeducedElementType(Val: F, Ty: OpElemTy); |
| 1154 | GR->addReturnType( |
| 1155 | ArgF: F, DerivedTy: TypedPointerType::get(ElementType: OpElemTy, |
| 1156 | AddressSpace: getPointerAddressSpace(T: F->getReturnType()))); |
| 1157 | // non-recursive update of types in function uses |
| 1158 | DenseSet<std::pair<Value *, Value *>> VisitedSubst{std::make_pair(x&: I, y&: Op)}; |
| 1159 | for (User *U : F->users()) { |
| 1160 | CallInst *CI = dyn_cast<CallInst>(Val: U); |
| 1161 | if (!CI || CI->getCalledFunction() != F) |
| 1162 | continue; |
| 1163 | if (CallInst *AssignCI = GR->findAssignPtrTypeInstr(Val: CI)) { |
| 1164 | if (Type *PrevElemTy = GR->findDeducedElementType(Val: CI)) { |
| 1165 | GR->updateAssignType(AssignCI, Arg: CI, |
| 1166 | OfType: getNormalizedPoisonValue(Ty: OpElemTy)); |
| 1167 | propagateElemType(Op: CI, ElemTy: PrevElemTy, VisitedSubst); |
| 1168 | } |
| 1169 | } |
| 1170 | } |
| 1171 | // Non-recursive update of types in the function uncomplete returns. |
| 1172 | // This may happen just once per a function, the latch is a pair of |
| 1173 | // findDeducedElementType(F) / addDeducedElementType(F, ...). |
| 1174 | // With or without the latch it is a non-recursive call due to |
| 1175 | // IncompleteRets set to nullptr in this call. |
| 1176 | if (IncompleteRets) |
| 1177 | for (Instruction *IncompleteRetI : *IncompleteRets) |
| 1178 | deduceOperandElementType(I: IncompleteRetI, IncompleteRets: nullptr, AskOps, |
| 1179 | IsPostprocessing); |
| 1180 | } else if (IncompleteRets) { |
| 1181 | IncompleteRets->insert(Ptr: I); |
| 1182 | } |
| 1183 | TypeValidated.insert(x: I); |
| 1184 | return true; |
| 1185 | } |
| 1186 | |
| 1187 | // If the Instruction has Pointer operands with unresolved types, this function |
| 1188 | // tries to deduce them. If the Instruction has Pointer operands with known |
| 1189 | // types which differ from expected, this function tries to insert a bitcast to |
| 1190 | // resolve the issue. |
| 1191 | void SPIRVEmitIntrinsics::deduceOperandElementType( |
| 1192 | Instruction *I, SmallPtrSet<Instruction *, 4> *IncompleteRets, |
| 1193 | const SmallPtrSet<Value *, 4> *AskOps, bool IsPostprocessing) { |
| 1194 | SmallVector<std::pair<Value *, unsigned>> Ops; |
| 1195 | Type *KnownElemTy = nullptr; |
| 1196 | bool Incomplete = false; |
| 1197 | // look for known basic patterns of type inference |
| 1198 | if (auto *Ref = dyn_cast<PHINode>(Val: I)) { |
| 1199 | if (!isPointerTy(T: I->getType()) || |
| 1200 | !(KnownElemTy = GR->findDeducedElementType(Val: I))) |
| 1201 | return; |
| 1202 | Incomplete = isTodoType(Op: I); |
| 1203 | for (unsigned i = 0; i < Ref->getNumIncomingValues(); i++) { |
| 1204 | Value *Op = Ref->getIncomingValue(i); |
| 1205 | if (isPointerTy(T: Op->getType())) |
| 1206 | Ops.push_back(Elt: std::make_pair(x&: Op, y&: i)); |
| 1207 | } |
| 1208 | } else if (auto *Ref = dyn_cast<AddrSpaceCastInst>(Val: I)) { |
| 1209 | KnownElemTy = GR->findDeducedElementType(Val: I); |
| 1210 | if (!KnownElemTy) |
| 1211 | return; |
| 1212 | Incomplete = isTodoType(Op: I); |
| 1213 | Ops.push_back(Elt: std::make_pair(x: Ref->getPointerOperand(), y: 0)); |
| 1214 | } else if (auto *Ref = dyn_cast<BitCastInst>(Val: I)) { |
| 1215 | if (!isPointerTy(T: I->getType())) |
| 1216 | return; |
| 1217 | KnownElemTy = GR->findDeducedElementType(Val: I); |
| 1218 | if (!KnownElemTy) |
| 1219 | return; |
| 1220 | Incomplete = isTodoType(Op: I); |
| 1221 | Ops.push_back(Elt: std::make_pair(x: Ref->getOperand(i_nocapture: 0), y: 0)); |
| 1222 | } else if (auto *Ref = dyn_cast<GetElementPtrInst>(Val: I)) { |
| 1223 | if (GR->findDeducedElementType(Val: Ref->getPointerOperand())) |
| 1224 | return; |
| 1225 | KnownElemTy = Ref->getSourceElementType(); |
| 1226 | Ops.push_back(Elt: std::make_pair(x: Ref->getPointerOperand(), |
| 1227 | y: GetElementPtrInst::getPointerOperandIndex())); |
| 1228 | } else if (auto *Ref = dyn_cast<LoadInst>(Val: I)) { |
| 1229 | KnownElemTy = I->getType(); |
| 1230 | if (isUntypedPointerTy(T: KnownElemTy)) |
| 1231 | return; |
| 1232 | Type *PointeeTy = GR->findDeducedElementType(Val: Ref->getPointerOperand()); |
| 1233 | if (PointeeTy && !isUntypedPointerTy(T: PointeeTy)) |
| 1234 | return; |
| 1235 | Ops.push_back(Elt: std::make_pair(x: Ref->getPointerOperand(), |
| 1236 | y: LoadInst::getPointerOperandIndex())); |
| 1237 | } else if (auto *Ref = dyn_cast<StoreInst>(Val: I)) { |
| 1238 | if (!(KnownElemTy = |
| 1239 | reconstructType(Op: Ref->getValueOperand(), UnknownElemTypeI8: false, IsPostprocessing))) |
| 1240 | return; |
| 1241 | Type *PointeeTy = GR->findDeducedElementType(Val: Ref->getPointerOperand()); |
| 1242 | if (PointeeTy && !isUntypedPointerTy(T: PointeeTy)) |
| 1243 | return; |
| 1244 | Ops.push_back(Elt: std::make_pair(x: Ref->getPointerOperand(), |
| 1245 | y: StoreInst::getPointerOperandIndex())); |
| 1246 | } else if (auto *Ref = dyn_cast<AtomicCmpXchgInst>(Val: I)) { |
| 1247 | KnownElemTy = isPointerTy(T: I->getType()) |
| 1248 | ? getAtomicElemTy(GR, I, PointerOperand: Ref->getPointerOperand()) |
| 1249 | : I->getType(); |
| 1250 | if (!KnownElemTy) |
| 1251 | return; |
| 1252 | Incomplete = isTodoType(Op: Ref->getPointerOperand()); |
| 1253 | Ops.push_back(Elt: std::make_pair(x: Ref->getPointerOperand(), |
| 1254 | y: AtomicCmpXchgInst::getPointerOperandIndex())); |
| 1255 | } else if (auto *Ref = dyn_cast<AtomicRMWInst>(Val: I)) { |
| 1256 | KnownElemTy = isPointerTy(T: I->getType()) |
| 1257 | ? getAtomicElemTy(GR, I, PointerOperand: Ref->getPointerOperand()) |
| 1258 | : I->getType(); |
| 1259 | if (!KnownElemTy) |
| 1260 | return; |
| 1261 | Incomplete = isTodoType(Op: Ref->getPointerOperand()); |
| 1262 | Ops.push_back(Elt: std::make_pair(x: Ref->getPointerOperand(), |
| 1263 | y: AtomicRMWInst::getPointerOperandIndex())); |
| 1264 | } else if (auto *Ref = dyn_cast<SelectInst>(Val: I)) { |
| 1265 | if (!isPointerTy(T: I->getType()) || |
| 1266 | !(KnownElemTy = GR->findDeducedElementType(Val: I))) |
| 1267 | return; |
| 1268 | Incomplete = isTodoType(Op: I); |
| 1269 | for (unsigned i = 0; i < Ref->getNumOperands(); i++) { |
| 1270 | Value *Op = Ref->getOperand(i_nocapture: i); |
| 1271 | if (isPointerTy(T: Op->getType())) |
| 1272 | Ops.push_back(Elt: std::make_pair(x&: Op, y&: i)); |
| 1273 | } |
| 1274 | } else if (auto *Ref = dyn_cast<ReturnInst>(Val: I)) { |
| 1275 | if (!isPointerTy(T: CurrF->getReturnType())) |
| 1276 | return; |
| 1277 | Value *Op = Ref->getReturnValue(); |
| 1278 | if (!Op) |
| 1279 | return; |
| 1280 | if (deduceOperandElementTypeFunctionRet(I, IncompleteRets, AskOps, |
| 1281 | IsPostprocessing, KnownElemTy, Op, |
| 1282 | F: CurrF)) |
| 1283 | return; |
| 1284 | Incomplete = isTodoType(Op: CurrF); |
| 1285 | Ops.push_back(Elt: std::make_pair(x&: Op, y: 0)); |
| 1286 | } else if (auto *Ref = dyn_cast<ICmpInst>(Val: I)) { |
| 1287 | if (!isPointerTy(T: Ref->getOperand(i_nocapture: 0)->getType())) |
| 1288 | return; |
| 1289 | Value *Op0 = Ref->getOperand(i_nocapture: 0); |
| 1290 | Value *Op1 = Ref->getOperand(i_nocapture: 1); |
| 1291 | bool Incomplete0 = isTodoType(Op: Op0); |
| 1292 | bool Incomplete1 = isTodoType(Op: Op1); |
| 1293 | Type *ElemTy1 = GR->findDeducedElementType(Val: Op1); |
| 1294 | Type *ElemTy0 = (Incomplete0 && !Incomplete1 && ElemTy1) |
| 1295 | ? nullptr |
| 1296 | : GR->findDeducedElementType(Val: Op0); |
| 1297 | if (ElemTy0) { |
| 1298 | KnownElemTy = ElemTy0; |
| 1299 | Incomplete = Incomplete0; |
| 1300 | Ops.push_back(Elt: std::make_pair(x&: Op1, y: 1)); |
| 1301 | } else if (ElemTy1) { |
| 1302 | KnownElemTy = ElemTy1; |
| 1303 | Incomplete = Incomplete1; |
| 1304 | Ops.push_back(Elt: std::make_pair(x&: Op0, y: 0)); |
| 1305 | } |
| 1306 | } else if (CallInst *CI = dyn_cast<CallInst>(Val: I)) { |
| 1307 | if (!CI->isIndirectCall()) |
| 1308 | deduceOperandElementTypeCalledFunction(CI, Ops, KnownElemTy, Incomplete); |
| 1309 | else if (HaveFunPtrs) |
| 1310 | deduceOperandElementTypeFunctionPointer(CI, Ops, KnownElemTy, |
| 1311 | IsPostprocessing); |
| 1312 | } |
| 1313 | |
| 1314 | // There is no enough info to deduce types or all is valid. |
| 1315 | if (!KnownElemTy || Ops.size() == 0) |
| 1316 | return; |
| 1317 | |
| 1318 | LLVMContext &Ctx = CurrF->getContext(); |
| 1319 | IRBuilder<> B(Ctx); |
| 1320 | for (auto &OpIt : Ops) { |
| 1321 | Value *Op = OpIt.first; |
| 1322 | if (AskOps && !AskOps->contains(Ptr: Op)) |
| 1323 | continue; |
| 1324 | Type *AskTy = nullptr; |
| 1325 | CallInst *AskCI = nullptr; |
| 1326 | if (IsPostprocessing && AskOps) { |
| 1327 | AskTy = GR->findDeducedElementType(Val: Op); |
| 1328 | AskCI = GR->findAssignPtrTypeInstr(Val: Op); |
| 1329 | assert(AskTy && AskCI); |
| 1330 | } |
| 1331 | Type *Ty = AskTy ? AskTy : GR->findDeducedElementType(Val: Op); |
| 1332 | if (Ty == KnownElemTy) |
| 1333 | continue; |
| 1334 | Value *OpTyVal = getNormalizedPoisonValue(Ty: KnownElemTy); |
| 1335 | Type *OpTy = Op->getType(); |
| 1336 | if (Op->hasUseList() && |
| 1337 | (!Ty || AskTy || isUntypedPointerTy(T: Ty) || isTodoType(Op))) { |
| 1338 | Type *PrevElemTy = GR->findDeducedElementType(Val: Op); |
| 1339 | GR->addDeducedElementType(Val: Op, Ty: normalizeType(Ty: KnownElemTy)); |
| 1340 | // check if KnownElemTy is complete |
| 1341 | if (!Incomplete) |
| 1342 | eraseTodoType(Op); |
| 1343 | else if (!IsPostprocessing) |
| 1344 | insertTodoType(Op); |
| 1345 | // check if there is existing Intrinsic::spv_assign_ptr_type instruction |
| 1346 | CallInst *AssignCI = AskCI ? AskCI : GR->findAssignPtrTypeInstr(Val: Op); |
| 1347 | if (AssignCI == nullptr) { |
| 1348 | Instruction *User = dyn_cast<Instruction>(Val: Op->use_begin()->get()); |
| 1349 | setInsertPointSkippingPhis(B, I: User ? User->getNextNode() : I); |
| 1350 | CallInst *CI = |
| 1351 | buildIntrWithMD(IntrID: Intrinsic::spv_assign_ptr_type, Types: {OpTy}, Arg: OpTyVal, Arg2: Op, |
| 1352 | Imms: {B.getInt32(C: getPointerAddressSpace(T: OpTy))}, B); |
| 1353 | GR->addAssignPtrTypeInstr(Val: Op, AssignPtrTyCI: CI); |
| 1354 | } else { |
| 1355 | GR->updateAssignType(AssignCI, Arg: Op, OfType: OpTyVal); |
| 1356 | DenseSet<std::pair<Value *, Value *>> VisitedSubst{ |
| 1357 | std::make_pair(x&: I, y&: Op)}; |
| 1358 | propagateElemTypeRec(Op, PtrElemTy: KnownElemTy, CastElemTy: PrevElemTy, VisitedSubst); |
| 1359 | } |
| 1360 | } else { |
| 1361 | eraseTodoType(Op); |
| 1362 | CallInst *PtrCastI = |
| 1363 | buildSpvPtrcast(F: I->getParent()->getParent(), Op, ElemTy: KnownElemTy); |
| 1364 | if (OpIt.second == std::numeric_limits<unsigned>::max()) |
| 1365 | dyn_cast<CallInst>(Val: I)->setCalledOperand(PtrCastI); |
| 1366 | else |
| 1367 | I->setOperand(i: OpIt.second, Val: PtrCastI); |
| 1368 | } |
| 1369 | } |
| 1370 | TypeValidated.insert(x: I); |
| 1371 | } |
| 1372 | |
| 1373 | void SPIRVEmitIntrinsics::replaceMemInstrUses(Instruction *Old, |
| 1374 | Instruction *New, |
| 1375 | IRBuilder<> &B) { |
| 1376 | while (!Old->user_empty()) { |
| 1377 | auto *U = Old->user_back(); |
| 1378 | if (isAssignTypeInstr(I: U)) { |
| 1379 | B.SetInsertPoint(U); |
| 1380 | SmallVector<Value *, 2> Args = {New, U->getOperand(i: 1)}; |
| 1381 | CallInst *AssignCI = |
| 1382 | B.CreateIntrinsic(ID: Intrinsic::spv_assign_type, Types: {New->getType()}, Args); |
| 1383 | GR->addAssignPtrTypeInstr(Val: New, AssignPtrTyCI: AssignCI); |
| 1384 | U->eraseFromParent(); |
| 1385 | } else if (isMemInstrToReplace(I: U) || isa<ReturnInst>(Val: U) || |
| 1386 | isa<CallInst>(Val: U)) { |
| 1387 | U->replaceUsesOfWith(From: Old, To: New); |
| 1388 | } else { |
| 1389 | llvm_unreachable("illegal aggregate intrinsic user" ); |
| 1390 | } |
| 1391 | } |
| 1392 | New->copyMetadata(SrcInst: *Old); |
| 1393 | Old->eraseFromParent(); |
| 1394 | } |
| 1395 | |
| 1396 | void SPIRVEmitIntrinsics::preprocessUndefs(IRBuilder<> &B) { |
| 1397 | std::queue<Instruction *> Worklist; |
| 1398 | for (auto &I : instructions(F: CurrF)) |
| 1399 | Worklist.push(x: &I); |
| 1400 | |
| 1401 | while (!Worklist.empty()) { |
| 1402 | Instruction *I = Worklist.front(); |
| 1403 | bool BPrepared = false; |
| 1404 | Worklist.pop(); |
| 1405 | |
| 1406 | for (auto &Op : I->operands()) { |
| 1407 | auto *AggrUndef = dyn_cast<UndefValue>(Val&: Op); |
| 1408 | if (!AggrUndef || !Op->getType()->isAggregateType()) |
| 1409 | continue; |
| 1410 | |
| 1411 | if (!BPrepared) { |
| 1412 | setInsertPointSkippingPhis(B, I); |
| 1413 | BPrepared = true; |
| 1414 | } |
| 1415 | auto *IntrUndef = B.CreateIntrinsic(ID: Intrinsic::spv_undef, Args: {}); |
| 1416 | Worklist.push(x: IntrUndef); |
| 1417 | I->replaceUsesOfWith(From: Op, To: IntrUndef); |
| 1418 | AggrConsts[IntrUndef] = AggrUndef; |
| 1419 | AggrConstTypes[IntrUndef] = AggrUndef->getType(); |
| 1420 | } |
| 1421 | } |
| 1422 | } |
| 1423 | |
| 1424 | void SPIRVEmitIntrinsics::preprocessCompositeConstants(IRBuilder<> &B) { |
| 1425 | std::queue<Instruction *> Worklist; |
| 1426 | for (auto &I : instructions(F: CurrF)) |
| 1427 | Worklist.push(x: &I); |
| 1428 | |
| 1429 | while (!Worklist.empty()) { |
| 1430 | auto *I = Worklist.front(); |
| 1431 | bool IsPhi = isa<PHINode>(Val: I), BPrepared = false; |
| 1432 | assert(I); |
| 1433 | bool KeepInst = false; |
| 1434 | for (const auto &Op : I->operands()) { |
| 1435 | Constant *AggrConst = nullptr; |
| 1436 | Type *ResTy = nullptr; |
| 1437 | if (auto *COp = dyn_cast<ConstantVector>(Val: Op)) { |
| 1438 | AggrConst = COp; |
| 1439 | ResTy = COp->getType(); |
| 1440 | } else if (auto *COp = dyn_cast<ConstantArray>(Val: Op)) { |
| 1441 | AggrConst = COp; |
| 1442 | ResTy = B.getInt32Ty(); |
| 1443 | } else if (auto *COp = dyn_cast<ConstantStruct>(Val: Op)) { |
| 1444 | AggrConst = COp; |
| 1445 | ResTy = B.getInt32Ty(); |
| 1446 | } else if (auto *COp = dyn_cast<ConstantDataArray>(Val: Op)) { |
| 1447 | AggrConst = COp; |
| 1448 | ResTy = B.getInt32Ty(); |
| 1449 | } else if (auto *COp = dyn_cast<ConstantAggregateZero>(Val: Op)) { |
| 1450 | AggrConst = COp; |
| 1451 | ResTy = Op->getType()->isVectorTy() ? COp->getType() : B.getInt32Ty(); |
| 1452 | } |
| 1453 | if (AggrConst) { |
| 1454 | SmallVector<Value *> Args; |
| 1455 | if (auto *COp = dyn_cast<ConstantDataSequential>(Val: Op)) |
| 1456 | for (unsigned i = 0; i < COp->getNumElements(); ++i) |
| 1457 | Args.push_back(Elt: COp->getElementAsConstant(i)); |
| 1458 | else |
| 1459 | llvm::append_range(C&: Args, R: AggrConst->operands()); |
| 1460 | if (!BPrepared) { |
| 1461 | IsPhi ? B.SetInsertPointPastAllocas(I->getParent()->getParent()) |
| 1462 | : B.SetInsertPoint(I); |
| 1463 | BPrepared = true; |
| 1464 | } |
| 1465 | auto *CI = |
| 1466 | B.CreateIntrinsic(ID: Intrinsic::spv_const_composite, Types: {ResTy}, Args: {Args}); |
| 1467 | Worklist.push(x: CI); |
| 1468 | I->replaceUsesOfWith(From: Op, To: CI); |
| 1469 | KeepInst = true; |
| 1470 | AggrConsts[CI] = AggrConst; |
| 1471 | AggrConstTypes[CI] = deduceNestedTypeHelper(U: AggrConst, UnknownElemTypeI8: false); |
| 1472 | } |
| 1473 | } |
| 1474 | if (!KeepInst) |
| 1475 | Worklist.pop(); |
| 1476 | } |
| 1477 | } |
| 1478 | |
| 1479 | static void createDecorationIntrinsic(Instruction *I, MDNode *Node, |
| 1480 | IRBuilder<> &B) { |
| 1481 | LLVMContext &Ctx = I->getContext(); |
| 1482 | setInsertPointAfterDef(B, I); |
| 1483 | B.CreateIntrinsic(ID: Intrinsic::spv_assign_decoration, Types: {I->getType()}, |
| 1484 | Args: {I, MetadataAsValue::get(Context&: Ctx, MD: MDNode::get(Context&: Ctx, MDs: {Node}))}); |
| 1485 | } |
| 1486 | |
| 1487 | static void createRoundingModeDecoration(Instruction *I, |
| 1488 | unsigned RoundingModeDeco, |
| 1489 | IRBuilder<> &B) { |
| 1490 | LLVMContext &Ctx = I->getContext(); |
| 1491 | Type *Int32Ty = Type::getInt32Ty(C&: Ctx); |
| 1492 | MDNode *RoundingModeNode = MDNode::get( |
| 1493 | Context&: Ctx, |
| 1494 | MDs: {ConstantAsMetadata::get( |
| 1495 | C: ConstantInt::get(Ty: Int32Ty, V: SPIRV::Decoration::FPRoundingMode)), |
| 1496 | ConstantAsMetadata::get(C: ConstantInt::get(Ty: Int32Ty, V: RoundingModeDeco))}); |
| 1497 | createDecorationIntrinsic(I, Node: RoundingModeNode, B); |
| 1498 | } |
| 1499 | |
| 1500 | static void createSaturatedConversionDecoration(Instruction *I, |
| 1501 | IRBuilder<> &B) { |
| 1502 | LLVMContext &Ctx = I->getContext(); |
| 1503 | Type *Int32Ty = Type::getInt32Ty(C&: Ctx); |
| 1504 | MDNode *SaturatedConversionNode = |
| 1505 | MDNode::get(Context&: Ctx, MDs: {ConstantAsMetadata::get(C: ConstantInt::get( |
| 1506 | Ty: Int32Ty, V: SPIRV::Decoration::SaturatedConversion))}); |
| 1507 | createDecorationIntrinsic(I, Node: SaturatedConversionNode, B); |
| 1508 | } |
| 1509 | |
| 1510 | static void addSaturatedDecorationToIntrinsic(Instruction *I, IRBuilder<> &B) { |
| 1511 | if (auto *CI = dyn_cast<CallInst>(Val: I)) { |
| 1512 | if (Function *Fu = CI->getCalledFunction()) { |
| 1513 | if (Fu->isIntrinsic()) { |
| 1514 | unsigned const int IntrinsicId = Fu->getIntrinsicID(); |
| 1515 | switch (IntrinsicId) { |
| 1516 | case Intrinsic::fptosi_sat: |
| 1517 | case Intrinsic::fptoui_sat: |
| 1518 | createSaturatedConversionDecoration(I, B); |
| 1519 | break; |
| 1520 | default: |
| 1521 | break; |
| 1522 | } |
| 1523 | } |
| 1524 | } |
| 1525 | } |
| 1526 | } |
| 1527 | |
| 1528 | Instruction *SPIRVEmitIntrinsics::visitCallInst(CallInst &Call) { |
| 1529 | if (!Call.isInlineAsm()) |
| 1530 | return &Call; |
| 1531 | |
| 1532 | const InlineAsm *IA = cast<InlineAsm>(Val: Call.getCalledOperand()); |
| 1533 | LLVMContext &Ctx = CurrF->getContext(); |
| 1534 | |
| 1535 | Constant *TyC = UndefValue::get(T: IA->getFunctionType()); |
| 1536 | MDString *ConstraintString = MDString::get(Context&: Ctx, Str: IA->getConstraintString()); |
| 1537 | SmallVector<Value *> Args = { |
| 1538 | buildMD(Arg: TyC), |
| 1539 | MetadataAsValue::get(Context&: Ctx, MD: MDNode::get(Context&: Ctx, MDs: ConstraintString))}; |
| 1540 | for (unsigned OpIdx = 0; OpIdx < Call.arg_size(); OpIdx++) |
| 1541 | Args.push_back(Elt: Call.getArgOperand(i: OpIdx)); |
| 1542 | |
| 1543 | IRBuilder<> B(Call.getParent()); |
| 1544 | B.SetInsertPoint(&Call); |
| 1545 | B.CreateIntrinsic(ID: Intrinsic::spv_inline_asm, Args: {Args}); |
| 1546 | return &Call; |
| 1547 | } |
| 1548 | |
| 1549 | // Use a tip about rounding mode to create a decoration. |
| 1550 | void SPIRVEmitIntrinsics::useRoundingMode(ConstrainedFPIntrinsic *FPI, |
| 1551 | IRBuilder<> &B) { |
| 1552 | std::optional<RoundingMode> RM = FPI->getRoundingMode(); |
| 1553 | if (!RM.has_value()) |
| 1554 | return; |
| 1555 | unsigned RoundingModeDeco = std::numeric_limits<unsigned>::max(); |
| 1556 | switch (RM.value()) { |
| 1557 | default: |
| 1558 | // ignore unknown rounding modes |
| 1559 | break; |
| 1560 | case RoundingMode::NearestTiesToEven: |
| 1561 | RoundingModeDeco = SPIRV::FPRoundingMode::FPRoundingMode::RTE; |
| 1562 | break; |
| 1563 | case RoundingMode::TowardNegative: |
| 1564 | RoundingModeDeco = SPIRV::FPRoundingMode::FPRoundingMode::RTN; |
| 1565 | break; |
| 1566 | case RoundingMode::TowardPositive: |
| 1567 | RoundingModeDeco = SPIRV::FPRoundingMode::FPRoundingMode::RTP; |
| 1568 | break; |
| 1569 | case RoundingMode::TowardZero: |
| 1570 | RoundingModeDeco = SPIRV::FPRoundingMode::FPRoundingMode::RTZ; |
| 1571 | break; |
| 1572 | case RoundingMode::Dynamic: |
| 1573 | case RoundingMode::NearestTiesToAway: |
| 1574 | // TODO: check if supported |
| 1575 | break; |
| 1576 | } |
| 1577 | if (RoundingModeDeco == std::numeric_limits<unsigned>::max()) |
| 1578 | return; |
| 1579 | // Convert the tip about rounding mode into a decoration record. |
| 1580 | createRoundingModeDecoration(I: FPI, RoundingModeDeco, B); |
| 1581 | } |
| 1582 | |
| 1583 | Instruction *SPIRVEmitIntrinsics::visitSwitchInst(SwitchInst &I) { |
| 1584 | BasicBlock *ParentBB = I.getParent(); |
| 1585 | Function *F = ParentBB->getParent(); |
| 1586 | IRBuilder<> B(ParentBB); |
| 1587 | B.SetInsertPoint(&I); |
| 1588 | SmallVector<Value *, 4> Args; |
| 1589 | SmallVector<BasicBlock *> BBCases; |
| 1590 | Args.push_back(Elt: I.getCondition()); |
| 1591 | BBCases.push_back(Elt: I.getDefaultDest()); |
| 1592 | Args.push_back(Elt: BlockAddress::get(F, BB: I.getDefaultDest())); |
| 1593 | for (auto &Case : I.cases()) { |
| 1594 | Args.push_back(Elt: Case.getCaseValue()); |
| 1595 | BBCases.push_back(Elt: Case.getCaseSuccessor()); |
| 1596 | Args.push_back(Elt: BlockAddress::get(F, BB: Case.getCaseSuccessor())); |
| 1597 | } |
| 1598 | CallInst *NewI = B.CreateIntrinsic(ID: Intrinsic::spv_switch, |
| 1599 | Types: {I.getOperand(i_nocapture: 0)->getType()}, Args: {Args}); |
| 1600 | // remove switch to avoid its unneeded and undesirable unwrap into branches |
| 1601 | // and conditions |
| 1602 | replaceAllUsesWith(Src: &I, Dest: NewI); |
| 1603 | I.eraseFromParent(); |
| 1604 | // insert artificial and temporary instruction to preserve valid CFG, |
| 1605 | // it will be removed after IR translation pass |
| 1606 | B.SetInsertPoint(ParentBB); |
| 1607 | IndirectBrInst *BrI = B.CreateIndirectBr( |
| 1608 | Addr: Constant::getNullValue(Ty: PointerType::getUnqual(C&: ParentBB->getContext())), |
| 1609 | NumDests: BBCases.size()); |
| 1610 | for (BasicBlock *BBCase : BBCases) |
| 1611 | BrI->addDestination(Dest: BBCase); |
| 1612 | return BrI; |
| 1613 | } |
| 1614 | |
| 1615 | static bool isFirstIndexZero(const GetElementPtrInst *GEP) { |
| 1616 | if (GEP->getNumIndices() == 0) |
| 1617 | return false; |
| 1618 | if (const auto *CI = dyn_cast<ConstantInt>(Val: GEP->getOperand(i_nocapture: 1))) { |
| 1619 | return CI->getZExtValue() == 0; |
| 1620 | } |
| 1621 | return false; |
| 1622 | } |
| 1623 | |
| 1624 | Instruction *SPIRVEmitIntrinsics::visitGetElementPtrInst(GetElementPtrInst &I) { |
| 1625 | IRBuilder<> B(I.getParent()); |
| 1626 | B.SetInsertPoint(&I); |
| 1627 | |
| 1628 | if (TM->getSubtargetImpl()->isLogicalSPIRV() && !isFirstIndexZero(GEP: &I)) { |
| 1629 | // Logical SPIR-V cannot use the OpPtrAccessChain instruction. If the first |
| 1630 | // index of the GEP is not 0, then we need to try to adjust it. |
| 1631 | // |
| 1632 | // If the GEP is doing byte addressing, try to rebuild the full access chain |
| 1633 | // from the type of the pointer. |
| 1634 | if (I.getSourceElementType() == |
| 1635 | IntegerType::getInt8Ty(C&: CurrF->getContext())) { |
| 1636 | return buildLogicalAccessChainFromGEP(GEP&: I); |
| 1637 | } |
| 1638 | |
| 1639 | // Look for the array-to-pointer decay. If this is the pattern |
| 1640 | // we can adjust the types, and prepend a 0 to the indices. |
| 1641 | Value *PtrOp = I.getPointerOperand(); |
| 1642 | Type *SrcElemTy = I.getSourceElementType(); |
| 1643 | Type *DeducedPointeeTy = deduceElementType(I: PtrOp, UnknownElemTypeI8: true); |
| 1644 | |
| 1645 | if (auto *ArrTy = dyn_cast<ArrayType>(Val: DeducedPointeeTy)) { |
| 1646 | if (ArrTy->getElementType() == SrcElemTy) { |
| 1647 | SmallVector<Value *> NewIndices; |
| 1648 | Type *FirstIdxType = I.getOperand(i_nocapture: 1)->getType(); |
| 1649 | NewIndices.push_back(Elt: ConstantInt::get(Ty: FirstIdxType, V: 0)); |
| 1650 | for (Value *Idx : I.indices()) |
| 1651 | NewIndices.push_back(Elt: Idx); |
| 1652 | |
| 1653 | SmallVector<Type *, 2> Types = {I.getType(), I.getPointerOperandType()}; |
| 1654 | SmallVector<Value *, 4> Args; |
| 1655 | Args.push_back(Elt: B.getInt1(V: I.isInBounds())); |
| 1656 | Args.push_back(Elt: I.getPointerOperand()); |
| 1657 | Args.append(in_start: NewIndices.begin(), in_end: NewIndices.end()); |
| 1658 | |
| 1659 | auto *NewI = B.CreateIntrinsic(ID: Intrinsic::spv_gep, Types: {Types}, Args: {Args}); |
| 1660 | replaceAllUsesWithAndErase(B, Src: &I, Dest: NewI); |
| 1661 | return NewI; |
| 1662 | } |
| 1663 | } |
| 1664 | } |
| 1665 | |
| 1666 | SmallVector<Type *, 2> Types = {I.getType(), I.getOperand(i_nocapture: 0)->getType()}; |
| 1667 | SmallVector<Value *, 4> Args; |
| 1668 | Args.push_back(Elt: B.getInt1(V: I.isInBounds())); |
| 1669 | llvm::append_range(C&: Args, R: I.operands()); |
| 1670 | auto *NewI = B.CreateIntrinsic(ID: Intrinsic::spv_gep, Types: {Types}, Args: {Args}); |
| 1671 | replaceAllUsesWithAndErase(B, Src: &I, Dest: NewI); |
| 1672 | return NewI; |
| 1673 | } |
| 1674 | |
| 1675 | Instruction *SPIRVEmitIntrinsics::visitBitCastInst(BitCastInst &I) { |
| 1676 | IRBuilder<> B(I.getParent()); |
| 1677 | B.SetInsertPoint(&I); |
| 1678 | Value *Source = I.getOperand(i_nocapture: 0); |
| 1679 | |
| 1680 | // SPIR-V, contrary to LLVM 17+ IR, supports bitcasts between pointers of |
| 1681 | // varying element types. In case of IR coming from older versions of LLVM |
| 1682 | // such bitcasts do not provide sufficient information, should be just skipped |
| 1683 | // here, and handled in insertPtrCastOrAssignTypeInstr. |
| 1684 | if (isPointerTy(T: I.getType())) { |
| 1685 | replaceAllUsesWith(Src: &I, Dest: Source); |
| 1686 | I.eraseFromParent(); |
| 1687 | return nullptr; |
| 1688 | } |
| 1689 | |
| 1690 | SmallVector<Type *, 2> Types = {I.getType(), Source->getType()}; |
| 1691 | SmallVector<Value *> Args(I.op_begin(), I.op_end()); |
| 1692 | auto *NewI = B.CreateIntrinsic(ID: Intrinsic::spv_bitcast, Types: {Types}, Args: {Args}); |
| 1693 | replaceAllUsesWithAndErase(B, Src: &I, Dest: NewI); |
| 1694 | return NewI; |
| 1695 | } |
| 1696 | |
| 1697 | void SPIRVEmitIntrinsics::insertAssignPtrTypeTargetExt( |
| 1698 | TargetExtType *AssignedType, Value *V, IRBuilder<> &B) { |
| 1699 | Type *VTy = V->getType(); |
| 1700 | |
| 1701 | // A couple of sanity checks. |
| 1702 | assert((isPointerTy(VTy)) && "Expect a pointer type!" ); |
| 1703 | if (Type *ElemTy = getPointeeType(Ty: VTy)) |
| 1704 | if (ElemTy != AssignedType) |
| 1705 | report_fatal_error(reason: "Unexpected pointer element type!" ); |
| 1706 | |
| 1707 | CallInst *AssignCI = GR->findAssignPtrTypeInstr(Val: V); |
| 1708 | if (!AssignCI) { |
| 1709 | GR->buildAssignType(B, Ty: AssignedType, Arg: V); |
| 1710 | return; |
| 1711 | } |
| 1712 | |
| 1713 | Type *CurrentType = |
| 1714 | dyn_cast<ConstantAsMetadata>( |
| 1715 | Val: cast<MetadataAsValue>(Val: AssignCI->getOperand(i_nocapture: 1))->getMetadata()) |
| 1716 | ->getType(); |
| 1717 | if (CurrentType == AssignedType) |
| 1718 | return; |
| 1719 | |
| 1720 | // Builtin types cannot be redeclared or casted. |
| 1721 | if (CurrentType->isTargetExtTy()) |
| 1722 | report_fatal_error(reason: "Type mismatch " + CurrentType->getTargetExtName() + |
| 1723 | "/" + AssignedType->getTargetExtName() + |
| 1724 | " for value " + V->getName(), |
| 1725 | gen_crash_diag: false); |
| 1726 | |
| 1727 | // Our previous guess about the type seems to be wrong, let's update |
| 1728 | // inferred type according to a new, more precise type information. |
| 1729 | GR->updateAssignType(AssignCI, Arg: V, OfType: getNormalizedPoisonValue(Ty: AssignedType)); |
| 1730 | } |
| 1731 | |
| 1732 | void SPIRVEmitIntrinsics::replacePointerOperandWithPtrCast( |
| 1733 | Instruction *I, Value *Pointer, Type *ExpectedElementType, |
| 1734 | unsigned OperandToReplace, IRBuilder<> &B) { |
| 1735 | TypeValidated.insert(x: I); |
| 1736 | |
| 1737 | // Do not emit spv_ptrcast if Pointer's element type is ExpectedElementType |
| 1738 | Type *PointerElemTy = deduceElementTypeHelper(I: Pointer, UnknownElemTypeI8: false); |
| 1739 | if (PointerElemTy == ExpectedElementType || |
| 1740 | isEquivalentTypes(Ty1: PointerElemTy, Ty2: ExpectedElementType)) |
| 1741 | return; |
| 1742 | |
| 1743 | setInsertPointSkippingPhis(B, I); |
| 1744 | Value *ExpectedElementVal = getNormalizedPoisonValue(Ty: ExpectedElementType); |
| 1745 | MetadataAsValue *VMD = buildMD(Arg: ExpectedElementVal); |
| 1746 | unsigned AddressSpace = getPointerAddressSpace(T: Pointer->getType()); |
| 1747 | bool FirstPtrCastOrAssignPtrType = true; |
| 1748 | |
| 1749 | // Do not emit new spv_ptrcast if equivalent one already exists or when |
| 1750 | // spv_assign_ptr_type already targets this pointer with the same element |
| 1751 | // type. |
| 1752 | if (Pointer->hasUseList()) { |
| 1753 | for (auto User : Pointer->users()) { |
| 1754 | auto *II = dyn_cast<IntrinsicInst>(Val: User); |
| 1755 | if (!II || |
| 1756 | (II->getIntrinsicID() != Intrinsic::spv_assign_ptr_type && |
| 1757 | II->getIntrinsicID() != Intrinsic::spv_ptrcast) || |
| 1758 | II->getOperand(i_nocapture: 0) != Pointer) |
| 1759 | continue; |
| 1760 | |
| 1761 | // There is some spv_ptrcast/spv_assign_ptr_type already targeting this |
| 1762 | // pointer. |
| 1763 | FirstPtrCastOrAssignPtrType = false; |
| 1764 | if (II->getOperand(i_nocapture: 1) != VMD || |
| 1765 | dyn_cast<ConstantInt>(Val: II->getOperand(i_nocapture: 2))->getSExtValue() != |
| 1766 | AddressSpace) |
| 1767 | continue; |
| 1768 | |
| 1769 | // The spv_ptrcast/spv_assign_ptr_type targeting this pointer is of the |
| 1770 | // same element type and address space. |
| 1771 | if (II->getIntrinsicID() != Intrinsic::spv_ptrcast) |
| 1772 | return; |
| 1773 | |
| 1774 | // This must be a spv_ptrcast, do not emit new if this one has the same BB |
| 1775 | // as I. Otherwise, search for other spv_ptrcast/spv_assign_ptr_type. |
| 1776 | if (II->getParent() != I->getParent()) |
| 1777 | continue; |
| 1778 | |
| 1779 | I->setOperand(i: OperandToReplace, Val: II); |
| 1780 | return; |
| 1781 | } |
| 1782 | } |
| 1783 | |
| 1784 | if (isa<Instruction>(Val: Pointer) || isa<Argument>(Val: Pointer)) { |
| 1785 | if (FirstPtrCastOrAssignPtrType) { |
| 1786 | // If this would be the first spv_ptrcast, do not emit spv_ptrcast and |
| 1787 | // emit spv_assign_ptr_type instead. |
| 1788 | GR->buildAssignPtr(B, ElemTy: ExpectedElementType, Arg: Pointer); |
| 1789 | return; |
| 1790 | } else if (isTodoType(Op: Pointer)) { |
| 1791 | eraseTodoType(Op: Pointer); |
| 1792 | if (!isa<CallInst>(Val: Pointer) && !isa<GetElementPtrInst>(Val: Pointer)) { |
| 1793 | // If this wouldn't be the first spv_ptrcast but existing type info is |
| 1794 | // uncomplete, update spv_assign_ptr_type arguments. |
| 1795 | if (CallInst *AssignCI = GR->findAssignPtrTypeInstr(Val: Pointer)) { |
| 1796 | Type *PrevElemTy = GR->findDeducedElementType(Val: Pointer); |
| 1797 | assert(PrevElemTy); |
| 1798 | DenseSet<std::pair<Value *, Value *>> VisitedSubst{ |
| 1799 | std::make_pair(x&: I, y&: Pointer)}; |
| 1800 | GR->updateAssignType(AssignCI, Arg: Pointer, OfType: ExpectedElementVal); |
| 1801 | propagateElemType(Op: Pointer, ElemTy: PrevElemTy, VisitedSubst); |
| 1802 | } else { |
| 1803 | GR->buildAssignPtr(B, ElemTy: ExpectedElementType, Arg: Pointer); |
| 1804 | } |
| 1805 | return; |
| 1806 | } |
| 1807 | } |
| 1808 | } |
| 1809 | |
| 1810 | // Emit spv_ptrcast |
| 1811 | SmallVector<Type *, 2> Types = {Pointer->getType(), Pointer->getType()}; |
| 1812 | SmallVector<Value *, 2> Args = {Pointer, VMD, B.getInt32(C: AddressSpace)}; |
| 1813 | auto *PtrCastI = B.CreateIntrinsic(ID: Intrinsic::spv_ptrcast, Types: {Types}, Args); |
| 1814 | I->setOperand(i: OperandToReplace, Val: PtrCastI); |
| 1815 | // We need to set up a pointee type for the newly created spv_ptrcast. |
| 1816 | GR->buildAssignPtr(B, ElemTy: ExpectedElementType, Arg: PtrCastI); |
| 1817 | } |
| 1818 | |
| 1819 | void SPIRVEmitIntrinsics::insertPtrCastOrAssignTypeInstr(Instruction *I, |
| 1820 | IRBuilder<> &B) { |
| 1821 | // Handle basic instructions: |
| 1822 | StoreInst *SI = dyn_cast<StoreInst>(Val: I); |
| 1823 | if (IsKernelArgInt8(F: CurrF, SI)) { |
| 1824 | replacePointerOperandWithPtrCast( |
| 1825 | I, Pointer: SI->getValueOperand(), ExpectedElementType: IntegerType::getInt8Ty(C&: CurrF->getContext()), |
| 1826 | OperandToReplace: 0, B); |
| 1827 | } |
| 1828 | if (SI) { |
| 1829 | Value *Op = SI->getValueOperand(); |
| 1830 | Value *Pointer = SI->getPointerOperand(); |
| 1831 | Type *OpTy = Op->getType(); |
| 1832 | if (auto *OpI = dyn_cast<Instruction>(Val: Op)) |
| 1833 | OpTy = restoreMutatedType(GR, I: OpI, Ty: OpTy); |
| 1834 | if (OpTy == Op->getType()) |
| 1835 | OpTy = deduceElementTypeByValueDeep(ValueTy: OpTy, Operand: Op, UnknownElemTypeI8: false); |
| 1836 | replacePointerOperandWithPtrCast(I, Pointer, ExpectedElementType: OpTy, OperandToReplace: 1, B); |
| 1837 | return; |
| 1838 | } |
| 1839 | if (LoadInst *LI = dyn_cast<LoadInst>(Val: I)) { |
| 1840 | Value *Pointer = LI->getPointerOperand(); |
| 1841 | Type *OpTy = LI->getType(); |
| 1842 | if (auto *PtrTy = dyn_cast<PointerType>(Val: OpTy)) { |
| 1843 | if (Type *ElemTy = GR->findDeducedElementType(Val: LI)) { |
| 1844 | OpTy = getTypedPointerWrapper(ElemTy, AS: PtrTy->getAddressSpace()); |
| 1845 | } else { |
| 1846 | Type *NewOpTy = OpTy; |
| 1847 | OpTy = deduceElementTypeByValueDeep(ValueTy: OpTy, Operand: LI, UnknownElemTypeI8: false); |
| 1848 | if (OpTy == NewOpTy) |
| 1849 | insertTodoType(Op: Pointer); |
| 1850 | } |
| 1851 | } |
| 1852 | replacePointerOperandWithPtrCast(I, Pointer, ExpectedElementType: OpTy, OperandToReplace: 0, B); |
| 1853 | return; |
| 1854 | } |
| 1855 | if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Val: I)) { |
| 1856 | Value *Pointer = GEPI->getPointerOperand(); |
| 1857 | Type *OpTy = nullptr; |
| 1858 | |
| 1859 | // Logical SPIR-V is not allowed to use Op*PtrAccessChain instructions. If |
| 1860 | // the first index is 0, then we can trivially lower to OpAccessChain. If |
| 1861 | // not we need to try to rewrite the GEP. We avoid adding a pointer cast at |
| 1862 | // this time, and will rewrite the GEP when visiting it. |
| 1863 | if (TM->getSubtargetImpl()->isLogicalSPIRV() && !isFirstIndexZero(GEP: GEPI)) { |
| 1864 | return; |
| 1865 | } |
| 1866 | |
| 1867 | // In all cases, fall back to the GEP type if type scavenging failed. |
| 1868 | if (!OpTy) |
| 1869 | OpTy = GEPI->getSourceElementType(); |
| 1870 | |
| 1871 | replacePointerOperandWithPtrCast(I, Pointer, ExpectedElementType: OpTy, OperandToReplace: 0, B); |
| 1872 | if (isNestedPointer(Ty: OpTy)) |
| 1873 | insertTodoType(Op: Pointer); |
| 1874 | return; |
| 1875 | } |
| 1876 | |
| 1877 | // TODO: review and merge with existing logics: |
| 1878 | // Handle calls to builtins (non-intrinsics): |
| 1879 | CallInst *CI = dyn_cast<CallInst>(Val: I); |
| 1880 | if (!CI || CI->isIndirectCall() || CI->isInlineAsm() || |
| 1881 | !CI->getCalledFunction() || CI->getCalledFunction()->isIntrinsic()) |
| 1882 | return; |
| 1883 | |
| 1884 | // collect information about formal parameter types |
| 1885 | std::string DemangledName = |
| 1886 | getOclOrSpirvBuiltinDemangledName(Name: CI->getCalledFunction()->getName()); |
| 1887 | Function *CalledF = CI->getCalledFunction(); |
| 1888 | SmallVector<Type *, 4> CalledArgTys; |
| 1889 | bool HaveTypes = false; |
| 1890 | for (unsigned OpIdx = 0; OpIdx < CalledF->arg_size(); ++OpIdx) { |
| 1891 | Argument *CalledArg = CalledF->getArg(i: OpIdx); |
| 1892 | Type *ArgType = CalledArg->getType(); |
| 1893 | if (!isPointerTy(T: ArgType)) { |
| 1894 | CalledArgTys.push_back(Elt: nullptr); |
| 1895 | } else if (Type *ArgTypeElem = getPointeeType(Ty: ArgType)) { |
| 1896 | CalledArgTys.push_back(Elt: ArgTypeElem); |
| 1897 | HaveTypes = true; |
| 1898 | } else { |
| 1899 | Type *ElemTy = GR->findDeducedElementType(Val: CalledArg); |
| 1900 | if (!ElemTy && hasPointeeTypeAttr(Arg: CalledArg)) |
| 1901 | ElemTy = getPointeeTypeByAttr(Arg: CalledArg); |
| 1902 | if (!ElemTy) { |
| 1903 | ElemTy = getPointeeTypeByCallInst(DemangledName, CalledF, OpIdx); |
| 1904 | if (ElemTy) { |
| 1905 | GR->addDeducedElementType(Val: CalledArg, Ty: normalizeType(Ty: ElemTy)); |
| 1906 | } else { |
| 1907 | for (User *U : CalledArg->users()) { |
| 1908 | if (Instruction *Inst = dyn_cast<Instruction>(Val: U)) { |
| 1909 | if ((ElemTy = deduceElementTypeHelper(I: Inst, UnknownElemTypeI8: false)) != nullptr) |
| 1910 | break; |
| 1911 | } |
| 1912 | } |
| 1913 | } |
| 1914 | } |
| 1915 | HaveTypes |= ElemTy != nullptr; |
| 1916 | CalledArgTys.push_back(Elt: ElemTy); |
| 1917 | } |
| 1918 | } |
| 1919 | |
| 1920 | if (DemangledName.empty() && !HaveTypes) |
| 1921 | return; |
| 1922 | |
| 1923 | for (unsigned OpIdx = 0; OpIdx < CI->arg_size(); OpIdx++) { |
| 1924 | Value *ArgOperand = CI->getArgOperand(i: OpIdx); |
| 1925 | if (!isPointerTy(T: ArgOperand->getType())) |
| 1926 | continue; |
| 1927 | |
| 1928 | // Constants (nulls/undefs) are handled in insertAssignPtrTypeIntrs() |
| 1929 | if (!isa<Instruction>(Val: ArgOperand) && !isa<Argument>(Val: ArgOperand)) { |
| 1930 | // However, we may have assumptions about the formal argument's type and |
| 1931 | // may have a need to insert a ptr cast for the actual parameter of this |
| 1932 | // call. |
| 1933 | Argument *CalledArg = CalledF->getArg(i: OpIdx); |
| 1934 | if (!GR->findDeducedElementType(Val: CalledArg)) |
| 1935 | continue; |
| 1936 | } |
| 1937 | |
| 1938 | Type *ExpectedType = |
| 1939 | OpIdx < CalledArgTys.size() ? CalledArgTys[OpIdx] : nullptr; |
| 1940 | if (!ExpectedType && !DemangledName.empty()) |
| 1941 | ExpectedType = SPIRV::parseBuiltinCallArgumentBaseType( |
| 1942 | DemangledCall: DemangledName, ArgIdx: OpIdx, Ctx&: I->getContext()); |
| 1943 | if (!ExpectedType || ExpectedType->isVoidTy()) |
| 1944 | continue; |
| 1945 | |
| 1946 | if (ExpectedType->isTargetExtTy() && |
| 1947 | !isTypedPointerWrapper(ExtTy: cast<TargetExtType>(Val: ExpectedType))) |
| 1948 | insertAssignPtrTypeTargetExt(AssignedType: cast<TargetExtType>(Val: ExpectedType), |
| 1949 | V: ArgOperand, B); |
| 1950 | else |
| 1951 | replacePointerOperandWithPtrCast(I: CI, Pointer: ArgOperand, ExpectedElementType: ExpectedType, OperandToReplace: OpIdx, B); |
| 1952 | } |
| 1953 | } |
| 1954 | |
| 1955 | Instruction *SPIRVEmitIntrinsics::visitInsertElementInst(InsertElementInst &I) { |
| 1956 | // If it's a <1 x Type> vector type, don't modify it. It's not a legal vector |
| 1957 | // type in LLT and IRTranslator will replace it by the scalar. |
| 1958 | if (isVector1(Ty: I.getType())) |
| 1959 | return &I; |
| 1960 | |
| 1961 | SmallVector<Type *, 4> Types = {I.getType(), I.getOperand(i_nocapture: 0)->getType(), |
| 1962 | I.getOperand(i_nocapture: 1)->getType(), |
| 1963 | I.getOperand(i_nocapture: 2)->getType()}; |
| 1964 | IRBuilder<> B(I.getParent()); |
| 1965 | B.SetInsertPoint(&I); |
| 1966 | SmallVector<Value *> Args(I.op_begin(), I.op_end()); |
| 1967 | auto *NewI = B.CreateIntrinsic(ID: Intrinsic::spv_insertelt, Types: {Types}, Args: {Args}); |
| 1968 | replaceAllUsesWithAndErase(B, Src: &I, Dest: NewI); |
| 1969 | return NewI; |
| 1970 | } |
| 1971 | |
| 1972 | Instruction * |
| 1973 | SPIRVEmitIntrinsics::(ExtractElementInst &I) { |
| 1974 | // If it's a <1 x Type> vector type, don't modify it. It's not a legal vector |
| 1975 | // type in LLT and IRTranslator will replace it by the scalar. |
| 1976 | if (isVector1(Ty: I.getVectorOperandType())) |
| 1977 | return &I; |
| 1978 | |
| 1979 | IRBuilder<> B(I.getParent()); |
| 1980 | B.SetInsertPoint(&I); |
| 1981 | SmallVector<Type *, 3> Types = {I.getType(), I.getVectorOperandType(), |
| 1982 | I.getIndexOperand()->getType()}; |
| 1983 | SmallVector<Value *, 2> Args = {I.getVectorOperand(), I.getIndexOperand()}; |
| 1984 | auto *NewI = B.CreateIntrinsic(ID: Intrinsic::spv_extractelt, Types: {Types}, Args: {Args}); |
| 1985 | replaceAllUsesWithAndErase(B, Src: &I, Dest: NewI); |
| 1986 | return NewI; |
| 1987 | } |
| 1988 | |
| 1989 | Instruction *SPIRVEmitIntrinsics::visitInsertValueInst(InsertValueInst &I) { |
| 1990 | IRBuilder<> B(I.getParent()); |
| 1991 | B.SetInsertPoint(&I); |
| 1992 | SmallVector<Type *, 1> Types = {I.getInsertedValueOperand()->getType()}; |
| 1993 | SmallVector<Value *> Args; |
| 1994 | Value *AggregateOp = I.getAggregateOperand(); |
| 1995 | if (isa<UndefValue>(Val: AggregateOp)) |
| 1996 | Args.push_back(Elt: UndefValue::get(T: B.getInt32Ty())); |
| 1997 | else |
| 1998 | Args.push_back(Elt: AggregateOp); |
| 1999 | Args.push_back(Elt: I.getInsertedValueOperand()); |
| 2000 | for (auto &Op : I.indices()) |
| 2001 | Args.push_back(Elt: B.getInt32(C: Op)); |
| 2002 | Instruction *NewI = |
| 2003 | B.CreateIntrinsic(ID: Intrinsic::spv_insertv, Types: {Types}, Args: {Args}); |
| 2004 | replaceMemInstrUses(Old: &I, New: NewI, B); |
| 2005 | return NewI; |
| 2006 | } |
| 2007 | |
| 2008 | Instruction *SPIRVEmitIntrinsics::(ExtractValueInst &I) { |
| 2009 | if (I.getAggregateOperand()->getType()->isAggregateType()) |
| 2010 | return &I; |
| 2011 | IRBuilder<> B(I.getParent()); |
| 2012 | B.SetInsertPoint(&I); |
| 2013 | SmallVector<Value *> Args(I.operands()); |
| 2014 | for (auto &Op : I.indices()) |
| 2015 | Args.push_back(Elt: B.getInt32(C: Op)); |
| 2016 | auto *NewI = |
| 2017 | B.CreateIntrinsic(ID: Intrinsic::spv_extractv, Types: {I.getType()}, Args: {Args}); |
| 2018 | replaceAllUsesWithAndErase(B, Src: &I, Dest: NewI); |
| 2019 | return NewI; |
| 2020 | } |
| 2021 | |
| 2022 | Instruction *SPIRVEmitIntrinsics::visitLoadInst(LoadInst &I) { |
| 2023 | if (!I.getType()->isAggregateType()) |
| 2024 | return &I; |
| 2025 | IRBuilder<> B(I.getParent()); |
| 2026 | B.SetInsertPoint(&I); |
| 2027 | TrackConstants = false; |
| 2028 | const auto *TLI = TM->getSubtargetImpl()->getTargetLowering(); |
| 2029 | MachineMemOperand::Flags Flags = |
| 2030 | TLI->getLoadMemOperandFlags(LI: I, DL: CurrF->getDataLayout()); |
| 2031 | auto *NewI = |
| 2032 | B.CreateIntrinsic(ID: Intrinsic::spv_load, Types: {I.getOperand(i_nocapture: 0)->getType()}, |
| 2033 | Args: {I.getPointerOperand(), B.getInt16(C: Flags), |
| 2034 | B.getInt8(C: I.getAlign().value())}); |
| 2035 | replaceMemInstrUses(Old: &I, New: NewI, B); |
| 2036 | return NewI; |
| 2037 | } |
| 2038 | |
| 2039 | Instruction *SPIRVEmitIntrinsics::visitStoreInst(StoreInst &I) { |
| 2040 | if (!AggrStores.contains(V: &I)) |
| 2041 | return &I; |
| 2042 | IRBuilder<> B(I.getParent()); |
| 2043 | B.SetInsertPoint(&I); |
| 2044 | TrackConstants = false; |
| 2045 | const auto *TLI = TM->getSubtargetImpl()->getTargetLowering(); |
| 2046 | MachineMemOperand::Flags Flags = |
| 2047 | TLI->getStoreMemOperandFlags(SI: I, DL: CurrF->getDataLayout()); |
| 2048 | auto *PtrOp = I.getPointerOperand(); |
| 2049 | |
| 2050 | if (I.getValueOperand()->getType()->isAggregateType()) { |
| 2051 | // It is possible that what used to be an ExtractValueInst has been replaced |
| 2052 | // with a call to the spv_extractv intrinsic, and that said call hasn't |
| 2053 | // had its return type replaced with i32 during the dedicated pass (because |
| 2054 | // it was emitted later); we have to handle this here, because IRTranslator |
| 2055 | // cannot deal with multi-register types at the moment. |
| 2056 | CallBase *CB = dyn_cast<CallBase>(Val: I.getValueOperand()); |
| 2057 | assert(CB && CB->getIntrinsicID() == Intrinsic::spv_extractv && |
| 2058 | "Unexpected argument of aggregate type, should be spv_extractv!" ); |
| 2059 | CB->mutateType(Ty: B.getInt32Ty()); |
| 2060 | } |
| 2061 | |
| 2062 | auto *NewI = B.CreateIntrinsic( |
| 2063 | ID: Intrinsic::spv_store, Types: {I.getValueOperand()->getType(), PtrOp->getType()}, |
| 2064 | Args: {I.getValueOperand(), PtrOp, B.getInt16(C: Flags), |
| 2065 | B.getInt8(C: I.getAlign().value())}); |
| 2066 | NewI->copyMetadata(SrcInst: I); |
| 2067 | I.eraseFromParent(); |
| 2068 | return NewI; |
| 2069 | } |
| 2070 | |
| 2071 | Instruction *SPIRVEmitIntrinsics::visitAllocaInst(AllocaInst &I) { |
| 2072 | Value *ArraySize = nullptr; |
| 2073 | if (I.isArrayAllocation()) { |
| 2074 | const SPIRVSubtarget *STI = TM->getSubtargetImpl(*I.getFunction()); |
| 2075 | if (!STI->canUseExtension( |
| 2076 | E: SPIRV::Extension::SPV_INTEL_variable_length_array)) |
| 2077 | report_fatal_error( |
| 2078 | reason: "array allocation: this instruction requires the following " |
| 2079 | "SPIR-V extension: SPV_INTEL_variable_length_array" , |
| 2080 | gen_crash_diag: false); |
| 2081 | ArraySize = I.getArraySize(); |
| 2082 | } |
| 2083 | IRBuilder<> B(I.getParent()); |
| 2084 | B.SetInsertPoint(&I); |
| 2085 | TrackConstants = false; |
| 2086 | Type *PtrTy = I.getType(); |
| 2087 | auto *NewI = |
| 2088 | ArraySize |
| 2089 | ? B.CreateIntrinsic(ID: Intrinsic::spv_alloca_array, |
| 2090 | Types: {PtrTy, ArraySize->getType()}, |
| 2091 | Args: {ArraySize, B.getInt8(C: I.getAlign().value())}) |
| 2092 | : B.CreateIntrinsic(ID: Intrinsic::spv_alloca, Types: {PtrTy}, |
| 2093 | Args: {B.getInt8(C: I.getAlign().value())}); |
| 2094 | replaceAllUsesWithAndErase(B, Src: &I, Dest: NewI); |
| 2095 | return NewI; |
| 2096 | } |
| 2097 | |
| 2098 | Instruction *SPIRVEmitIntrinsics::visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { |
| 2099 | assert(I.getType()->isAggregateType() && "Aggregate result is expected" ); |
| 2100 | IRBuilder<> B(I.getParent()); |
| 2101 | B.SetInsertPoint(&I); |
| 2102 | SmallVector<Value *> Args(I.operands()); |
| 2103 | Args.push_back(Elt: B.getInt32( |
| 2104 | C: static_cast<uint32_t>(getMemScope(Ctx&: I.getContext(), Id: I.getSyncScopeID())))); |
| 2105 | Args.push_back(Elt: B.getInt32( |
| 2106 | C: static_cast<uint32_t>(getMemSemantics(Ord: I.getSuccessOrdering())))); |
| 2107 | Args.push_back(Elt: B.getInt32( |
| 2108 | C: static_cast<uint32_t>(getMemSemantics(Ord: I.getFailureOrdering())))); |
| 2109 | auto *NewI = B.CreateIntrinsic(ID: Intrinsic::spv_cmpxchg, |
| 2110 | Types: {I.getPointerOperand()->getType()}, Args: {Args}); |
| 2111 | replaceMemInstrUses(Old: &I, New: NewI, B); |
| 2112 | return NewI; |
| 2113 | } |
| 2114 | |
| 2115 | Instruction *SPIRVEmitIntrinsics::visitUnreachableInst(UnreachableInst &I) { |
| 2116 | IRBuilder<> B(I.getParent()); |
| 2117 | B.SetInsertPoint(&I); |
| 2118 | B.CreateIntrinsic(ID: Intrinsic::spv_unreachable, Args: {}); |
| 2119 | return &I; |
| 2120 | } |
| 2121 | |
| 2122 | void SPIRVEmitIntrinsics::processGlobalValue(GlobalVariable &GV, |
| 2123 | IRBuilder<> &B) { |
| 2124 | // Skip special artificial variables. |
| 2125 | static const StringSet<> ArtificialGlobals{"llvm.global.annotations" , |
| 2126 | "llvm.compiler.used" }; |
| 2127 | |
| 2128 | if (ArtificialGlobals.contains(key: GV.getName())) |
| 2129 | return; |
| 2130 | |
| 2131 | Constant *Init = nullptr; |
| 2132 | if (hasInitializer(GV: &GV)) { |
| 2133 | // Deduce element type and store results in Global Registry. |
| 2134 | // Result is ignored, because TypedPointerType is not supported |
| 2135 | // by llvm IR general logic. |
| 2136 | deduceElementTypeHelper(I: &GV, UnknownElemTypeI8: false); |
| 2137 | Init = GV.getInitializer(); |
| 2138 | Type *Ty = isAggrConstForceInt32(V: Init) ? B.getInt32Ty() : Init->getType(); |
| 2139 | Constant *Const = isAggrConstForceInt32(V: Init) ? B.getInt32(C: 1) : Init; |
| 2140 | auto *InitInst = B.CreateIntrinsic(ID: Intrinsic::spv_init_global, |
| 2141 | Types: {GV.getType(), Ty}, Args: {&GV, Const}); |
| 2142 | InitInst->setArgOperand(i: 1, v: Init); |
| 2143 | } |
| 2144 | if (!Init && GV.use_empty()) |
| 2145 | B.CreateIntrinsic(ID: Intrinsic::spv_unref_global, Types: GV.getType(), Args: &GV); |
| 2146 | } |
| 2147 | |
| 2148 | // Return true, if we can't decide what is the pointee type now and will get |
| 2149 | // back to the question later. Return false is spv_assign_ptr_type is not needed |
| 2150 | // or can be inserted immediately. |
| 2151 | bool SPIRVEmitIntrinsics::insertAssignPtrTypeIntrs(Instruction *I, |
| 2152 | IRBuilder<> &B, |
| 2153 | bool UnknownElemTypeI8) { |
| 2154 | reportFatalOnTokenType(I); |
| 2155 | if (!isPointerTy(T: I->getType()) || !requireAssignType(I)) |
| 2156 | return false; |
| 2157 | |
| 2158 | setInsertPointAfterDef(B, I); |
| 2159 | if (Type *ElemTy = deduceElementType(I, UnknownElemTypeI8)) { |
| 2160 | GR->buildAssignPtr(B, ElemTy, Arg: I); |
| 2161 | return false; |
| 2162 | } |
| 2163 | return true; |
| 2164 | } |
| 2165 | |
| 2166 | void SPIRVEmitIntrinsics::insertAssignTypeIntrs(Instruction *I, |
| 2167 | IRBuilder<> &B) { |
| 2168 | // TODO: extend the list of functions with known result types |
| 2169 | static StringMap<unsigned> ResTypeWellKnown = { |
| 2170 | {"async_work_group_copy" , WellKnownTypes::Event}, |
| 2171 | {"async_work_group_strided_copy" , WellKnownTypes::Event}, |
| 2172 | {"__spirv_GroupAsyncCopy" , WellKnownTypes::Event}}; |
| 2173 | |
| 2174 | reportFatalOnTokenType(I); |
| 2175 | |
| 2176 | bool IsKnown = false; |
| 2177 | if (auto *CI = dyn_cast<CallInst>(Val: I)) { |
| 2178 | if (!CI->isIndirectCall() && !CI->isInlineAsm() && |
| 2179 | CI->getCalledFunction() && !CI->getCalledFunction()->isIntrinsic()) { |
| 2180 | Function *CalledF = CI->getCalledFunction(); |
| 2181 | std::string DemangledName = |
| 2182 | getOclOrSpirvBuiltinDemangledName(Name: CalledF->getName()); |
| 2183 | FPDecorationId DecorationId = FPDecorationId::NONE; |
| 2184 | if (DemangledName.length() > 0) |
| 2185 | DemangledName = |
| 2186 | SPIRV::lookupBuiltinNameHelper(DemangledCall: DemangledName, DecorationId: &DecorationId); |
| 2187 | auto ResIt = ResTypeWellKnown.find(Key: DemangledName); |
| 2188 | if (ResIt != ResTypeWellKnown.end()) { |
| 2189 | IsKnown = true; |
| 2190 | setInsertPointAfterDef(B, I); |
| 2191 | switch (ResIt->second) { |
| 2192 | case WellKnownTypes::Event: |
| 2193 | GR->buildAssignType( |
| 2194 | B, Ty: TargetExtType::get(Context&: I->getContext(), Name: "spirv.Event" ), Arg: I); |
| 2195 | break; |
| 2196 | } |
| 2197 | } |
| 2198 | // check if a floating rounding mode or saturation info is present |
| 2199 | switch (DecorationId) { |
| 2200 | default: |
| 2201 | break; |
| 2202 | case FPDecorationId::SAT: |
| 2203 | createSaturatedConversionDecoration(I: CI, B); |
| 2204 | break; |
| 2205 | case FPDecorationId::RTE: |
| 2206 | createRoundingModeDecoration( |
| 2207 | I: CI, RoundingModeDeco: SPIRV::FPRoundingMode::FPRoundingMode::RTE, B); |
| 2208 | break; |
| 2209 | case FPDecorationId::RTZ: |
| 2210 | createRoundingModeDecoration( |
| 2211 | I: CI, RoundingModeDeco: SPIRV::FPRoundingMode::FPRoundingMode::RTZ, B); |
| 2212 | break; |
| 2213 | case FPDecorationId::RTP: |
| 2214 | createRoundingModeDecoration( |
| 2215 | I: CI, RoundingModeDeco: SPIRV::FPRoundingMode::FPRoundingMode::RTP, B); |
| 2216 | break; |
| 2217 | case FPDecorationId::RTN: |
| 2218 | createRoundingModeDecoration( |
| 2219 | I: CI, RoundingModeDeco: SPIRV::FPRoundingMode::FPRoundingMode::RTN, B); |
| 2220 | break; |
| 2221 | } |
| 2222 | } |
| 2223 | } |
| 2224 | |
| 2225 | Type *Ty = I->getType(); |
| 2226 | if (!IsKnown && !Ty->isVoidTy() && !isPointerTy(T: Ty) && requireAssignType(I)) { |
| 2227 | setInsertPointAfterDef(B, I); |
| 2228 | Type *TypeToAssign = Ty; |
| 2229 | if (auto *II = dyn_cast<IntrinsicInst>(Val: I)) { |
| 2230 | if (II->getIntrinsicID() == Intrinsic::spv_const_composite || |
| 2231 | II->getIntrinsicID() == Intrinsic::spv_undef) { |
| 2232 | auto It = AggrConstTypes.find(Val: II); |
| 2233 | if (It == AggrConstTypes.end()) |
| 2234 | report_fatal_error(reason: "Unknown composite intrinsic type" ); |
| 2235 | TypeToAssign = It->second; |
| 2236 | } |
| 2237 | } |
| 2238 | TypeToAssign = restoreMutatedType(GR, I, Ty: TypeToAssign); |
| 2239 | GR->buildAssignType(B, Ty: TypeToAssign, Arg: I); |
| 2240 | } |
| 2241 | for (const auto &Op : I->operands()) { |
| 2242 | if (isa<ConstantPointerNull>(Val: Op) || isa<UndefValue>(Val: Op) || |
| 2243 | // Check GetElementPtrConstantExpr case. |
| 2244 | (isa<ConstantExpr>(Val: Op) && |
| 2245 | (isa<GEPOperator>(Val: Op) || |
| 2246 | (cast<ConstantExpr>(Val: Op)->getOpcode() == CastInst::IntToPtr)))) { |
| 2247 | setInsertPointSkippingPhis(B, I); |
| 2248 | Type *OpTy = Op->getType(); |
| 2249 | if (isa<UndefValue>(Val: Op) && OpTy->isAggregateType()) { |
| 2250 | CallInst *AssignCI = |
| 2251 | buildIntrWithMD(IntrID: Intrinsic::spv_assign_type, Types: {B.getInt32Ty()}, Arg: Op, |
| 2252 | Arg2: UndefValue::get(T: B.getInt32Ty()), Imms: {}, B); |
| 2253 | GR->addAssignPtrTypeInstr(Val: Op, AssignPtrTyCI: AssignCI); |
| 2254 | } else if (!isa<Instruction>(Val: Op)) { |
| 2255 | Type *OpTy = Op->getType(); |
| 2256 | Type *OpTyElem = getPointeeType(Ty: OpTy); |
| 2257 | if (OpTyElem) { |
| 2258 | GR->buildAssignPtr(B, ElemTy: OpTyElem, Arg: Op); |
| 2259 | } else if (isPointerTy(T: OpTy)) { |
| 2260 | Type *ElemTy = GR->findDeducedElementType(Val: Op); |
| 2261 | GR->buildAssignPtr(B, ElemTy: ElemTy ? ElemTy : deduceElementType(I: Op, UnknownElemTypeI8: true), |
| 2262 | Arg: Op); |
| 2263 | } else { |
| 2264 | Value *OpTyVal = Op; |
| 2265 | if (OpTy->isTargetExtTy()) { |
| 2266 | // We need to do this in order to be consistent with how target ext |
| 2267 | // types are handled in `processInstrAfterVisit` |
| 2268 | OpTyVal = getNormalizedPoisonValue(Ty: OpTy); |
| 2269 | } |
| 2270 | CallInst *AssignCI = |
| 2271 | buildIntrWithMD(IntrID: Intrinsic::spv_assign_type, Types: {OpTy}, |
| 2272 | Arg: getNormalizedPoisonValue(Ty: OpTy), Arg2: OpTyVal, Imms: {}, B); |
| 2273 | GR->addAssignPtrTypeInstr(Val: OpTyVal, AssignPtrTyCI: AssignCI); |
| 2274 | } |
| 2275 | } |
| 2276 | } |
| 2277 | } |
| 2278 | } |
| 2279 | |
| 2280 | bool SPIRVEmitIntrinsics::shouldTryToAddMemAliasingDecoration( |
| 2281 | Instruction *Inst) { |
| 2282 | const SPIRVSubtarget *STI = TM->getSubtargetImpl(*Inst->getFunction()); |
| 2283 | if (!STI->canUseExtension(E: SPIRV::Extension::SPV_INTEL_memory_access_aliasing)) |
| 2284 | return false; |
| 2285 | // Add aliasing decorations to internal load and store intrinsics |
| 2286 | // and atomic instructions, skipping atomic store as it won't have ID to |
| 2287 | // attach the decoration. |
| 2288 | CallInst *CI = dyn_cast<CallInst>(Val: Inst); |
| 2289 | if (!CI) |
| 2290 | return false; |
| 2291 | if (Function *Fun = CI->getCalledFunction()) { |
| 2292 | if (Fun->isIntrinsic()) { |
| 2293 | switch (Fun->getIntrinsicID()) { |
| 2294 | case Intrinsic::spv_load: |
| 2295 | case Intrinsic::spv_store: |
| 2296 | return true; |
| 2297 | default: |
| 2298 | return false; |
| 2299 | } |
| 2300 | } |
| 2301 | std::string Name = getOclOrSpirvBuiltinDemangledName(Name: Fun->getName()); |
| 2302 | const std::string Prefix = "__spirv_Atomic" ; |
| 2303 | const bool IsAtomic = Name.find(str: Prefix) == 0; |
| 2304 | |
| 2305 | if (!Fun->getReturnType()->isVoidTy() && IsAtomic) |
| 2306 | return true; |
| 2307 | } |
| 2308 | return false; |
| 2309 | } |
| 2310 | |
| 2311 | void SPIRVEmitIntrinsics::insertSpirvDecorations(Instruction *I, |
| 2312 | IRBuilder<> &B) { |
| 2313 | if (MDNode *MD = I->getMetadata(Kind: "spirv.Decorations" )) { |
| 2314 | setInsertPointAfterDef(B, I); |
| 2315 | B.CreateIntrinsic(ID: Intrinsic::spv_assign_decoration, Types: {I->getType()}, |
| 2316 | Args: {I, MetadataAsValue::get(Context&: I->getContext(), MD)}); |
| 2317 | } |
| 2318 | // Lower alias.scope/noalias metadata |
| 2319 | { |
| 2320 | auto processMemAliasingDecoration = [&](unsigned Kind) { |
| 2321 | if (MDNode *AliasListMD = I->getMetadata(KindID: Kind)) { |
| 2322 | if (shouldTryToAddMemAliasingDecoration(Inst: I)) { |
| 2323 | uint32_t Dec = Kind == LLVMContext::MD_alias_scope |
| 2324 | ? SPIRV::Decoration::AliasScopeINTEL |
| 2325 | : SPIRV::Decoration::NoAliasINTEL; |
| 2326 | SmallVector<Value *, 3> Args = { |
| 2327 | I, ConstantInt::get(Ty: B.getInt32Ty(), V: Dec), |
| 2328 | MetadataAsValue::get(Context&: I->getContext(), MD: AliasListMD)}; |
| 2329 | setInsertPointAfterDef(B, I); |
| 2330 | B.CreateIntrinsic(ID: Intrinsic::spv_assign_aliasing_decoration, |
| 2331 | Types: {I->getType()}, Args: {Args}); |
| 2332 | } |
| 2333 | } |
| 2334 | }; |
| 2335 | processMemAliasingDecoration(LLVMContext::MD_alias_scope); |
| 2336 | processMemAliasingDecoration(LLVMContext::MD_noalias); |
| 2337 | } |
| 2338 | // MD_fpmath |
| 2339 | if (MDNode *MD = I->getMetadata(KindID: LLVMContext::MD_fpmath)) { |
| 2340 | const SPIRVSubtarget *STI = TM->getSubtargetImpl(*I->getFunction()); |
| 2341 | bool AllowFPMaxError = |
| 2342 | STI->canUseExtension(E: SPIRV::Extension::SPV_INTEL_fp_max_error); |
| 2343 | if (!AllowFPMaxError) |
| 2344 | return; |
| 2345 | |
| 2346 | setInsertPointAfterDef(B, I); |
| 2347 | B.CreateIntrinsic(ID: Intrinsic::spv_assign_fpmaxerror_decoration, |
| 2348 | Types: {I->getType()}, |
| 2349 | Args: {I, MetadataAsValue::get(Context&: I->getContext(), MD)}); |
| 2350 | } |
| 2351 | } |
| 2352 | |
| 2353 | static SPIRV::FPFastMathDefaultInfoVector &getOrCreateFPFastMathDefaultInfoVec( |
| 2354 | const Module &M, |
| 2355 | DenseMap<Function *, SPIRV::FPFastMathDefaultInfoVector> |
| 2356 | &FPFastMathDefaultInfoMap, |
| 2357 | Function *F) { |
| 2358 | auto it = FPFastMathDefaultInfoMap.find(Val: F); |
| 2359 | if (it != FPFastMathDefaultInfoMap.end()) |
| 2360 | return it->second; |
| 2361 | |
| 2362 | // If the map does not contain the entry, create a new one. Initialize it to |
| 2363 | // contain all 3 elements sorted by bit width of target type: {half, float, |
| 2364 | // double}. |
| 2365 | SPIRV::FPFastMathDefaultInfoVector FPFastMathDefaultInfoVec; |
| 2366 | FPFastMathDefaultInfoVec.emplace_back(Args: Type::getHalfTy(C&: M.getContext()), |
| 2367 | Args: SPIRV::FPFastMathMode::None); |
| 2368 | FPFastMathDefaultInfoVec.emplace_back(Args: Type::getFloatTy(C&: M.getContext()), |
| 2369 | Args: SPIRV::FPFastMathMode::None); |
| 2370 | FPFastMathDefaultInfoVec.emplace_back(Args: Type::getDoubleTy(C&: M.getContext()), |
| 2371 | Args: SPIRV::FPFastMathMode::None); |
| 2372 | return FPFastMathDefaultInfoMap[F] = std::move(FPFastMathDefaultInfoVec); |
| 2373 | } |
| 2374 | |
| 2375 | static SPIRV::FPFastMathDefaultInfo &getFPFastMathDefaultInfo( |
| 2376 | SPIRV::FPFastMathDefaultInfoVector &FPFastMathDefaultInfoVec, |
| 2377 | const Type *Ty) { |
| 2378 | size_t BitWidth = Ty->getScalarSizeInBits(); |
| 2379 | int Index = |
| 2380 | SPIRV::FPFastMathDefaultInfoVector::computeFPFastMathDefaultInfoVecIndex( |
| 2381 | BitWidth); |
| 2382 | assert(Index >= 0 && Index < 3 && |
| 2383 | "Expected FPFastMathDefaultInfo for half, float, or double" ); |
| 2384 | assert(FPFastMathDefaultInfoVec.size() == 3 && |
| 2385 | "Expected FPFastMathDefaultInfoVec to have exactly 3 elements" ); |
| 2386 | return FPFastMathDefaultInfoVec[Index]; |
| 2387 | } |
| 2388 | |
| 2389 | void SPIRVEmitIntrinsics::insertConstantsForFPFastMathDefault(Module &M) { |
| 2390 | const SPIRVSubtarget *ST = TM->getSubtargetImpl(); |
| 2391 | if (!ST->canUseExtension(E: SPIRV::Extension::SPV_KHR_float_controls2)) |
| 2392 | return; |
| 2393 | |
| 2394 | // Store the FPFastMathDefaultInfo in the FPFastMathDefaultInfoMap. |
| 2395 | // We need the entry point (function) as the key, and the target |
| 2396 | // type and flags as the value. |
| 2397 | // We also need to check ContractionOff and SignedZeroInfNanPreserve |
| 2398 | // execution modes, as they are now deprecated and must be replaced |
| 2399 | // with FPFastMathDefaultInfo. |
| 2400 | auto Node = M.getNamedMetadata(Name: "spirv.ExecutionMode" ); |
| 2401 | if (!Node) { |
| 2402 | if (!M.getNamedMetadata(Name: "opencl.enable.FP_CONTRACT" )) { |
| 2403 | // This requires emitting ContractionOff. However, because |
| 2404 | // ContractionOff is now deprecated, we need to replace it with |
| 2405 | // FPFastMathDefaultInfo with FP Fast Math Mode bitmask set to all 0. |
| 2406 | // We need to create the constant for that. |
| 2407 | |
| 2408 | // Create constant instruction with the bitmask flags. |
| 2409 | Constant *InitValue = |
| 2410 | ConstantInt::get(Ty: Type::getInt32Ty(C&: M.getContext()), V: 0); |
| 2411 | // TODO: Reuse constant if there is one already with the required |
| 2412 | // value. |
| 2413 | [[maybe_unused]] GlobalVariable *GV = |
| 2414 | new GlobalVariable(M, // Module |
| 2415 | Type::getInt32Ty(C&: M.getContext()), // Type |
| 2416 | true, // isConstant |
| 2417 | GlobalValue::InternalLinkage, // Linkage |
| 2418 | InitValue // Initializer |
| 2419 | ); |
| 2420 | } |
| 2421 | return; |
| 2422 | } |
| 2423 | |
| 2424 | // The table maps function pointers to their default FP fast math info. It |
| 2425 | // can be assumed that the SmallVector is sorted by the bit width of the |
| 2426 | // type. The first element is the smallest bit width, and the last element |
| 2427 | // is the largest bit width, therefore, we will have {half, float, double} |
| 2428 | // in the order of their bit widths. |
| 2429 | DenseMap<Function *, SPIRV::FPFastMathDefaultInfoVector> |
| 2430 | FPFastMathDefaultInfoMap; |
| 2431 | |
| 2432 | for (unsigned i = 0; i < Node->getNumOperands(); i++) { |
| 2433 | MDNode *MDN = cast<MDNode>(Val: Node->getOperand(i)); |
| 2434 | assert(MDN->getNumOperands() >= 2 && "Expected at least 2 operands" ); |
| 2435 | Function *F = cast<Function>( |
| 2436 | Val: cast<ConstantAsMetadata>(Val: MDN->getOperand(I: 0))->getValue()); |
| 2437 | const auto EM = |
| 2438 | cast<ConstantInt>( |
| 2439 | Val: cast<ConstantAsMetadata>(Val: MDN->getOperand(I: 1))->getValue()) |
| 2440 | ->getZExtValue(); |
| 2441 | if (EM == SPIRV::ExecutionMode::FPFastMathDefault) { |
| 2442 | assert(MDN->getNumOperands() == 4 && |
| 2443 | "Expected 4 operands for FPFastMathDefault" ); |
| 2444 | const Type *T = cast<ValueAsMetadata>(Val: MDN->getOperand(I: 2))->getType(); |
| 2445 | unsigned Flags = |
| 2446 | cast<ConstantInt>( |
| 2447 | Val: cast<ConstantAsMetadata>(Val: MDN->getOperand(I: 3))->getValue()) |
| 2448 | ->getZExtValue(); |
| 2449 | SPIRV::FPFastMathDefaultInfoVector &FPFastMathDefaultInfoVec = |
| 2450 | getOrCreateFPFastMathDefaultInfoVec(M, FPFastMathDefaultInfoMap, F); |
| 2451 | SPIRV::FPFastMathDefaultInfo &Info = |
| 2452 | getFPFastMathDefaultInfo(FPFastMathDefaultInfoVec, Ty: T); |
| 2453 | Info.FastMathFlags = Flags; |
| 2454 | Info.FPFastMathDefault = true; |
| 2455 | } else if (EM == SPIRV::ExecutionMode::ContractionOff) { |
| 2456 | assert(MDN->getNumOperands() == 2 && |
| 2457 | "Expected no operands for ContractionOff" ); |
| 2458 | |
| 2459 | // We need to save this info for every possible FP type, i.e. {half, |
| 2460 | // float, double, fp128}. |
| 2461 | SPIRV::FPFastMathDefaultInfoVector &FPFastMathDefaultInfoVec = |
| 2462 | getOrCreateFPFastMathDefaultInfoVec(M, FPFastMathDefaultInfoMap, F); |
| 2463 | for (SPIRV::FPFastMathDefaultInfo &Info : FPFastMathDefaultInfoVec) { |
| 2464 | Info.ContractionOff = true; |
| 2465 | } |
| 2466 | } else if (EM == SPIRV::ExecutionMode::SignedZeroInfNanPreserve) { |
| 2467 | assert(MDN->getNumOperands() == 3 && |
| 2468 | "Expected 1 operand for SignedZeroInfNanPreserve" ); |
| 2469 | unsigned TargetWidth = |
| 2470 | cast<ConstantInt>( |
| 2471 | Val: cast<ConstantAsMetadata>(Val: MDN->getOperand(I: 2))->getValue()) |
| 2472 | ->getZExtValue(); |
| 2473 | // We need to save this info only for the FP type with TargetWidth. |
| 2474 | SPIRV::FPFastMathDefaultInfoVector &FPFastMathDefaultInfoVec = |
| 2475 | getOrCreateFPFastMathDefaultInfoVec(M, FPFastMathDefaultInfoMap, F); |
| 2476 | int Index = SPIRV::FPFastMathDefaultInfoVector:: |
| 2477 | computeFPFastMathDefaultInfoVecIndex(BitWidth: TargetWidth); |
| 2478 | assert(Index >= 0 && Index < 3 && |
| 2479 | "Expected FPFastMathDefaultInfo for half, float, or double" ); |
| 2480 | assert(FPFastMathDefaultInfoVec.size() == 3 && |
| 2481 | "Expected FPFastMathDefaultInfoVec to have exactly 3 elements" ); |
| 2482 | FPFastMathDefaultInfoVec[Index].SignedZeroInfNanPreserve = true; |
| 2483 | } |
| 2484 | } |
| 2485 | |
| 2486 | std::unordered_map<unsigned, GlobalVariable *> GlobalVars; |
| 2487 | for (auto &[Func, FPFastMathDefaultInfoVec] : FPFastMathDefaultInfoMap) { |
| 2488 | if (FPFastMathDefaultInfoVec.empty()) |
| 2489 | continue; |
| 2490 | |
| 2491 | for (const SPIRV::FPFastMathDefaultInfo &Info : FPFastMathDefaultInfoVec) { |
| 2492 | assert(Info.Ty && "Expected target type for FPFastMathDefaultInfo" ); |
| 2493 | // Skip if none of the execution modes was used. |
| 2494 | unsigned Flags = Info.FastMathFlags; |
| 2495 | if (Flags == SPIRV::FPFastMathMode::None && !Info.ContractionOff && |
| 2496 | !Info.SignedZeroInfNanPreserve && !Info.FPFastMathDefault) |
| 2497 | continue; |
| 2498 | |
| 2499 | // Check if flags are compatible. |
| 2500 | if (Info.ContractionOff && (Flags & SPIRV::FPFastMathMode::AllowContract)) |
| 2501 | report_fatal_error(reason: "Conflicting FPFastMathFlags: ContractionOff " |
| 2502 | "and AllowContract" ); |
| 2503 | |
| 2504 | if (Info.SignedZeroInfNanPreserve && |
| 2505 | !(Flags & |
| 2506 | (SPIRV::FPFastMathMode::NotNaN | SPIRV::FPFastMathMode::NotInf | |
| 2507 | SPIRV::FPFastMathMode::NSZ))) { |
| 2508 | if (Info.FPFastMathDefault) |
| 2509 | report_fatal_error(reason: "Conflicting FPFastMathFlags: " |
| 2510 | "SignedZeroInfNanPreserve but at least one of " |
| 2511 | "NotNaN/NotInf/NSZ is enabled." ); |
| 2512 | } |
| 2513 | |
| 2514 | if ((Flags & SPIRV::FPFastMathMode::AllowTransform) && |
| 2515 | !((Flags & SPIRV::FPFastMathMode::AllowReassoc) && |
| 2516 | (Flags & SPIRV::FPFastMathMode::AllowContract))) { |
| 2517 | report_fatal_error(reason: "Conflicting FPFastMathFlags: " |
| 2518 | "AllowTransform requires AllowReassoc and " |
| 2519 | "AllowContract to be set." ); |
| 2520 | } |
| 2521 | |
| 2522 | auto it = GlobalVars.find(x: Flags); |
| 2523 | GlobalVariable *GV = nullptr; |
| 2524 | if (it != GlobalVars.end()) { |
| 2525 | // Reuse existing global variable. |
| 2526 | GV = it->second; |
| 2527 | } else { |
| 2528 | // Create constant instruction with the bitmask flags. |
| 2529 | Constant *InitValue = |
| 2530 | ConstantInt::get(Ty: Type::getInt32Ty(C&: M.getContext()), V: Flags); |
| 2531 | // TODO: Reuse constant if there is one already with the required |
| 2532 | // value. |
| 2533 | GV = new GlobalVariable(M, // Module |
| 2534 | Type::getInt32Ty(C&: M.getContext()), // Type |
| 2535 | true, // isConstant |
| 2536 | GlobalValue::InternalLinkage, // Linkage |
| 2537 | InitValue // Initializer |
| 2538 | ); |
| 2539 | GlobalVars[Flags] = GV; |
| 2540 | } |
| 2541 | } |
| 2542 | } |
| 2543 | } |
| 2544 | |
| 2545 | void SPIRVEmitIntrinsics::processInstrAfterVisit(Instruction *I, |
| 2546 | IRBuilder<> &B) { |
| 2547 | auto *II = dyn_cast<IntrinsicInst>(Val: I); |
| 2548 | bool IsConstComposite = |
| 2549 | II && II->getIntrinsicID() == Intrinsic::spv_const_composite; |
| 2550 | if (IsConstComposite && TrackConstants) { |
| 2551 | setInsertPointAfterDef(B, I); |
| 2552 | auto t = AggrConsts.find(Val: I); |
| 2553 | assert(t != AggrConsts.end()); |
| 2554 | auto *NewOp = |
| 2555 | buildIntrWithMD(IntrID: Intrinsic::spv_track_constant, |
| 2556 | Types: {II->getType(), II->getType()}, Arg: t->second, Arg2: I, Imms: {}, B); |
| 2557 | replaceAllUsesWith(Src: I, Dest: NewOp, DeleteOld: false); |
| 2558 | NewOp->setArgOperand(i: 0, v: I); |
| 2559 | } |
| 2560 | bool IsPhi = isa<PHINode>(Val: I), BPrepared = false; |
| 2561 | for (const auto &Op : I->operands()) { |
| 2562 | if (isa<PHINode>(Val: I) || isa<SwitchInst>(Val: I) || |
| 2563 | !(isa<ConstantData>(Val: Op) || isa<ConstantExpr>(Val: Op))) |
| 2564 | continue; |
| 2565 | unsigned OpNo = Op.getOperandNo(); |
| 2566 | if (II && ((II->getIntrinsicID() == Intrinsic::spv_gep && OpNo == 0) || |
| 2567 | (II->paramHasAttr(ArgNo: OpNo, Kind: Attribute::ImmArg)))) |
| 2568 | continue; |
| 2569 | |
| 2570 | if (!BPrepared) { |
| 2571 | IsPhi ? B.SetInsertPointPastAllocas(I->getParent()->getParent()) |
| 2572 | : B.SetInsertPoint(I); |
| 2573 | BPrepared = true; |
| 2574 | } |
| 2575 | Type *OpTy = Op->getType(); |
| 2576 | Type *OpElemTy = GR->findDeducedElementType(Val: Op); |
| 2577 | Value *NewOp = Op; |
| 2578 | if (OpTy->isTargetExtTy()) { |
| 2579 | // Since this value is replaced by poison, we need to do the same in |
| 2580 | // `insertAssignTypeIntrs`. |
| 2581 | Value *OpTyVal = getNormalizedPoisonValue(Ty: OpTy); |
| 2582 | NewOp = buildIntrWithMD(IntrID: Intrinsic::spv_track_constant, |
| 2583 | Types: {OpTy, OpTyVal->getType()}, Arg: Op, Arg2: OpTyVal, Imms: {}, B); |
| 2584 | } |
| 2585 | if (!IsConstComposite && isPointerTy(T: OpTy) && OpElemTy != nullptr && |
| 2586 | OpElemTy != IntegerType::getInt8Ty(C&: I->getContext())) { |
| 2587 | SmallVector<Type *, 2> Types = {OpTy, OpTy}; |
| 2588 | SmallVector<Value *, 2> Args = { |
| 2589 | NewOp, buildMD(Arg: getNormalizedPoisonValue(Ty: OpElemTy)), |
| 2590 | B.getInt32(C: getPointerAddressSpace(T: OpTy))}; |
| 2591 | CallInst *PtrCasted = |
| 2592 | B.CreateIntrinsic(ID: Intrinsic::spv_ptrcast, Types: {Types}, Args); |
| 2593 | GR->buildAssignPtr(B, ElemTy: OpElemTy, Arg: PtrCasted); |
| 2594 | NewOp = PtrCasted; |
| 2595 | } |
| 2596 | if (NewOp != Op) |
| 2597 | I->setOperand(i: OpNo, Val: NewOp); |
| 2598 | } |
| 2599 | if (Named.insert(x: I).second) |
| 2600 | emitAssignName(I, B); |
| 2601 | } |
| 2602 | |
| 2603 | Type *SPIRVEmitIntrinsics::deduceFunParamElementType(Function *F, |
| 2604 | unsigned OpIdx) { |
| 2605 | std::unordered_set<Function *> FVisited; |
| 2606 | return deduceFunParamElementType(F, OpIdx, FVisited); |
| 2607 | } |
| 2608 | |
| 2609 | Type *SPIRVEmitIntrinsics::deduceFunParamElementType( |
| 2610 | Function *F, unsigned OpIdx, std::unordered_set<Function *> &FVisited) { |
| 2611 | // maybe a cycle |
| 2612 | if (!FVisited.insert(x: F).second) |
| 2613 | return nullptr; |
| 2614 | |
| 2615 | std::unordered_set<Value *> Visited; |
| 2616 | SmallVector<std::pair<Function *, unsigned>> Lookup; |
| 2617 | // search in function's call sites |
| 2618 | for (User *U : F->users()) { |
| 2619 | CallInst *CI = dyn_cast<CallInst>(Val: U); |
| 2620 | if (!CI || OpIdx >= CI->arg_size()) |
| 2621 | continue; |
| 2622 | Value *OpArg = CI->getArgOperand(i: OpIdx); |
| 2623 | if (!isPointerTy(T: OpArg->getType())) |
| 2624 | continue; |
| 2625 | // maybe we already know operand's element type |
| 2626 | if (Type *KnownTy = GR->findDeducedElementType(Val: OpArg)) |
| 2627 | return KnownTy; |
| 2628 | // try to deduce from the operand itself |
| 2629 | Visited.clear(); |
| 2630 | if (Type *Ty = deduceElementTypeHelper(I: OpArg, Visited, UnknownElemTypeI8: false)) |
| 2631 | return Ty; |
| 2632 | // search in actual parameter's users |
| 2633 | for (User *OpU : OpArg->users()) { |
| 2634 | Instruction *Inst = dyn_cast<Instruction>(Val: OpU); |
| 2635 | if (!Inst || Inst == CI) |
| 2636 | continue; |
| 2637 | Visited.clear(); |
| 2638 | if (Type *Ty = deduceElementTypeHelper(I: Inst, Visited, UnknownElemTypeI8: false)) |
| 2639 | return Ty; |
| 2640 | } |
| 2641 | // check if it's a formal parameter of the outer function |
| 2642 | if (!CI->getParent() || !CI->getParent()->getParent()) |
| 2643 | continue; |
| 2644 | Function *OuterF = CI->getParent()->getParent(); |
| 2645 | if (FVisited.find(x: OuterF) != FVisited.end()) |
| 2646 | continue; |
| 2647 | for (unsigned i = 0; i < OuterF->arg_size(); ++i) { |
| 2648 | if (OuterF->getArg(i) == OpArg) { |
| 2649 | Lookup.push_back(Elt: std::make_pair(x&: OuterF, y&: i)); |
| 2650 | break; |
| 2651 | } |
| 2652 | } |
| 2653 | } |
| 2654 | |
| 2655 | // search in function parameters |
| 2656 | for (auto &Pair : Lookup) { |
| 2657 | if (Type *Ty = deduceFunParamElementType(F: Pair.first, OpIdx: Pair.second, FVisited)) |
| 2658 | return Ty; |
| 2659 | } |
| 2660 | |
| 2661 | return nullptr; |
| 2662 | } |
| 2663 | |
| 2664 | void SPIRVEmitIntrinsics::(Function *F, |
| 2665 | IRBuilder<> &B) { |
| 2666 | B.SetInsertPointPastAllocas(F); |
| 2667 | for (unsigned OpIdx = 0; OpIdx < F->arg_size(); ++OpIdx) { |
| 2668 | Argument *Arg = F->getArg(i: OpIdx); |
| 2669 | if (!isUntypedPointerTy(T: Arg->getType())) |
| 2670 | continue; |
| 2671 | Type *ElemTy = GR->findDeducedElementType(Val: Arg); |
| 2672 | if (ElemTy) |
| 2673 | continue; |
| 2674 | if (hasPointeeTypeAttr(Arg) && |
| 2675 | (ElemTy = getPointeeTypeByAttr(Arg)) != nullptr) { |
| 2676 | GR->buildAssignPtr(B, ElemTy, Arg); |
| 2677 | continue; |
| 2678 | } |
| 2679 | // search in function's call sites |
| 2680 | for (User *U : F->users()) { |
| 2681 | CallInst *CI = dyn_cast<CallInst>(Val: U); |
| 2682 | if (!CI || OpIdx >= CI->arg_size()) |
| 2683 | continue; |
| 2684 | Value *OpArg = CI->getArgOperand(i: OpIdx); |
| 2685 | if (!isPointerTy(T: OpArg->getType())) |
| 2686 | continue; |
| 2687 | // maybe we already know operand's element type |
| 2688 | if ((ElemTy = GR->findDeducedElementType(Val: OpArg)) != nullptr) |
| 2689 | break; |
| 2690 | } |
| 2691 | if (ElemTy) { |
| 2692 | GR->buildAssignPtr(B, ElemTy, Arg); |
| 2693 | continue; |
| 2694 | } |
| 2695 | if (HaveFunPtrs) { |
| 2696 | for (User *U : Arg->users()) { |
| 2697 | CallInst *CI = dyn_cast<CallInst>(Val: U); |
| 2698 | if (CI && !isa<IntrinsicInst>(Val: CI) && CI->isIndirectCall() && |
| 2699 | CI->getCalledOperand() == Arg && |
| 2700 | CI->getParent()->getParent() == CurrF) { |
| 2701 | SmallVector<std::pair<Value *, unsigned>> Ops; |
| 2702 | deduceOperandElementTypeFunctionPointer(CI, Ops, KnownElemTy&: ElemTy, IsPostprocessing: false); |
| 2703 | if (ElemTy) { |
| 2704 | GR->buildAssignPtr(B, ElemTy, Arg); |
| 2705 | break; |
| 2706 | } |
| 2707 | } |
| 2708 | } |
| 2709 | } |
| 2710 | } |
| 2711 | } |
| 2712 | |
| 2713 | void SPIRVEmitIntrinsics::processParamTypes(Function *F, IRBuilder<> &B) { |
| 2714 | B.SetInsertPointPastAllocas(F); |
| 2715 | for (unsigned OpIdx = 0; OpIdx < F->arg_size(); ++OpIdx) { |
| 2716 | Argument *Arg = F->getArg(i: OpIdx); |
| 2717 | if (!isUntypedPointerTy(T: Arg->getType())) |
| 2718 | continue; |
| 2719 | Type *ElemTy = GR->findDeducedElementType(Val: Arg); |
| 2720 | if (!ElemTy && (ElemTy = deduceFunParamElementType(F, OpIdx)) != nullptr) { |
| 2721 | if (CallInst *AssignCI = GR->findAssignPtrTypeInstr(Val: Arg)) { |
| 2722 | DenseSet<std::pair<Value *, Value *>> VisitedSubst; |
| 2723 | GR->updateAssignType(AssignCI, Arg, OfType: getNormalizedPoisonValue(Ty: ElemTy)); |
| 2724 | propagateElemType(Op: Arg, ElemTy: IntegerType::getInt8Ty(C&: F->getContext()), |
| 2725 | VisitedSubst); |
| 2726 | } else { |
| 2727 | GR->buildAssignPtr(B, ElemTy, Arg); |
| 2728 | } |
| 2729 | } |
| 2730 | } |
| 2731 | } |
| 2732 | |
| 2733 | static FunctionType *getFunctionPointerElemType(Function *F, |
| 2734 | SPIRVGlobalRegistry *GR) { |
| 2735 | FunctionType *FTy = F->getFunctionType(); |
| 2736 | bool IsNewFTy = false; |
| 2737 | SmallVector<Type *, 4> ArgTys; |
| 2738 | for (Argument &Arg : F->args()) { |
| 2739 | Type *ArgTy = Arg.getType(); |
| 2740 | if (ArgTy->isPointerTy()) |
| 2741 | if (Type *ElemTy = GR->findDeducedElementType(Val: &Arg)) { |
| 2742 | IsNewFTy = true; |
| 2743 | ArgTy = getTypedPointerWrapper(ElemTy, AS: getPointerAddressSpace(T: ArgTy)); |
| 2744 | } |
| 2745 | ArgTys.push_back(Elt: ArgTy); |
| 2746 | } |
| 2747 | return IsNewFTy |
| 2748 | ? FunctionType::get(Result: FTy->getReturnType(), Params: ArgTys, isVarArg: FTy->isVarArg()) |
| 2749 | : FTy; |
| 2750 | } |
| 2751 | |
| 2752 | bool SPIRVEmitIntrinsics::processFunctionPointers(Module &M) { |
| 2753 | SmallVector<Function *> Worklist; |
| 2754 | for (auto &F : M) { |
| 2755 | if (F.isIntrinsic()) |
| 2756 | continue; |
| 2757 | if (F.isDeclaration()) { |
| 2758 | for (User *U : F.users()) { |
| 2759 | CallInst *CI = dyn_cast<CallInst>(Val: U); |
| 2760 | if (!CI || CI->getCalledFunction() != &F) { |
| 2761 | Worklist.push_back(Elt: &F); |
| 2762 | break; |
| 2763 | } |
| 2764 | } |
| 2765 | } else { |
| 2766 | if (F.user_empty()) |
| 2767 | continue; |
| 2768 | Type *FPElemTy = GR->findDeducedElementType(Val: &F); |
| 2769 | if (!FPElemTy) |
| 2770 | FPElemTy = getFunctionPointerElemType(F: &F, GR); |
| 2771 | for (User *U : F.users()) { |
| 2772 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: U); |
| 2773 | if (!II || II->arg_size() != 3 || II->getOperand(i_nocapture: 0) != &F) |
| 2774 | continue; |
| 2775 | if (II->getIntrinsicID() == Intrinsic::spv_assign_ptr_type || |
| 2776 | II->getIntrinsicID() == Intrinsic::spv_ptrcast) { |
| 2777 | GR->updateAssignType(AssignCI: II, Arg: &F, OfType: getNormalizedPoisonValue(Ty: FPElemTy)); |
| 2778 | break; |
| 2779 | } |
| 2780 | } |
| 2781 | } |
| 2782 | } |
| 2783 | if (Worklist.empty()) |
| 2784 | return false; |
| 2785 | |
| 2786 | std::string ServiceFunName = SPIRV_BACKEND_SERVICE_FUN_NAME; |
| 2787 | if (!getVacantFunctionName(M, Name&: ServiceFunName)) |
| 2788 | report_fatal_error( |
| 2789 | reason: "cannot allocate a name for the internal service function" ); |
| 2790 | LLVMContext &Ctx = M.getContext(); |
| 2791 | Function *SF = |
| 2792 | Function::Create(Ty: FunctionType::get(Result: Type::getVoidTy(C&: Ctx), Params: {}, isVarArg: false), |
| 2793 | Linkage: GlobalValue::PrivateLinkage, N: ServiceFunName, M); |
| 2794 | SF->addFnAttr(SPIRV_BACKEND_SERVICE_FUN_NAME, Val: "" ); |
| 2795 | BasicBlock *BB = BasicBlock::Create(Context&: Ctx, Name: "entry" , Parent: SF); |
| 2796 | IRBuilder<> IRB(BB); |
| 2797 | |
| 2798 | for (Function *F : Worklist) { |
| 2799 | SmallVector<Value *> Args; |
| 2800 | for (const auto &Arg : F->args()) |
| 2801 | Args.push_back(Elt: getNormalizedPoisonValue(Ty: Arg.getType())); |
| 2802 | IRB.CreateCall(Callee: F, Args); |
| 2803 | } |
| 2804 | IRB.CreateRetVoid(); |
| 2805 | |
| 2806 | return true; |
| 2807 | } |
| 2808 | |
| 2809 | // Apply types parsed from demangled function declarations. |
| 2810 | void SPIRVEmitIntrinsics::applyDemangledPtrArgTypes(IRBuilder<> &B) { |
| 2811 | DenseMap<Function *, CallInst *> Ptrcasts; |
| 2812 | for (auto It : FDeclPtrTys) { |
| 2813 | Function *F = It.first; |
| 2814 | for (auto *U : F->users()) { |
| 2815 | CallInst *CI = dyn_cast<CallInst>(Val: U); |
| 2816 | if (!CI || CI->getCalledFunction() != F) |
| 2817 | continue; |
| 2818 | unsigned Sz = CI->arg_size(); |
| 2819 | for (auto [Idx, ElemTy] : It.second) { |
| 2820 | if (Idx >= Sz) |
| 2821 | continue; |
| 2822 | Value *Param = CI->getArgOperand(i: Idx); |
| 2823 | if (GR->findDeducedElementType(Val: Param) || isa<GlobalValue>(Val: Param)) |
| 2824 | continue; |
| 2825 | if (Argument *Arg = dyn_cast<Argument>(Val: Param)) { |
| 2826 | if (!hasPointeeTypeAttr(Arg)) { |
| 2827 | B.SetInsertPointPastAllocas(Arg->getParent()); |
| 2828 | B.SetCurrentDebugLocation(DebugLoc()); |
| 2829 | GR->buildAssignPtr(B, ElemTy, Arg); |
| 2830 | } |
| 2831 | } else if (isa<GetElementPtrInst>(Val: Param)) { |
| 2832 | replaceUsesOfWithSpvPtrcast(Op: Param, ElemTy: normalizeType(Ty: ElemTy), I: CI, |
| 2833 | Ptrcasts); |
| 2834 | } else if (isa<Instruction>(Val: Param)) { |
| 2835 | GR->addDeducedElementType(Val: Param, Ty: normalizeType(Ty: ElemTy)); |
| 2836 | // insertAssignTypeIntrs() will complete buildAssignPtr() |
| 2837 | } else { |
| 2838 | B.SetInsertPoint(CI->getParent() |
| 2839 | ->getParent() |
| 2840 | ->getEntryBlock() |
| 2841 | .getFirstNonPHIOrDbgOrAlloca()); |
| 2842 | GR->buildAssignPtr(B, ElemTy, Arg: Param); |
| 2843 | } |
| 2844 | CallInst *Ref = dyn_cast<CallInst>(Val: Param); |
| 2845 | if (!Ref) |
| 2846 | continue; |
| 2847 | Function *RefF = Ref->getCalledFunction(); |
| 2848 | if (!RefF || !isPointerTy(T: RefF->getReturnType()) || |
| 2849 | GR->findDeducedElementType(Val: RefF)) |
| 2850 | continue; |
| 2851 | ElemTy = normalizeType(Ty: ElemTy); |
| 2852 | GR->addDeducedElementType(Val: RefF, Ty: ElemTy); |
| 2853 | GR->addReturnType( |
| 2854 | ArgF: RefF, DerivedTy: TypedPointerType::get( |
| 2855 | ElementType: ElemTy, AddressSpace: getPointerAddressSpace(T: RefF->getReturnType()))); |
| 2856 | } |
| 2857 | } |
| 2858 | } |
| 2859 | } |
| 2860 | |
| 2861 | GetElementPtrInst * |
| 2862 | SPIRVEmitIntrinsics::simplifyZeroLengthArrayGepInst(GetElementPtrInst *GEP) { |
| 2863 | // getelementptr [0 x T], P, 0 (zero), I -> getelementptr T, P, I. |
| 2864 | // If type is 0-length array and first index is 0 (zero), drop both the |
| 2865 | // 0-length array type and the first index. This is a common pattern in |
| 2866 | // the IR, e.g. when using a zero-length array as a placeholder for a |
| 2867 | // flexible array such as unbound arrays. |
| 2868 | assert(GEP && "GEP is null" ); |
| 2869 | Type *SrcTy = GEP->getSourceElementType(); |
| 2870 | SmallVector<Value *, 8> Indices(GEP->indices()); |
| 2871 | ArrayType *ArrTy = dyn_cast<ArrayType>(Val: SrcTy); |
| 2872 | if (ArrTy && ArrTy->getNumElements() == 0 && |
| 2873 | PatternMatch::match(V: Indices[0], P: PatternMatch::m_Zero())) { |
| 2874 | Indices.erase(CI: Indices.begin()); |
| 2875 | SrcTy = ArrTy->getElementType(); |
| 2876 | return GetElementPtrInst::Create(PointeeType: SrcTy, Ptr: GEP->getPointerOperand(), IdxList: Indices, |
| 2877 | NW: GEP->getNoWrapFlags(), NameStr: "" , |
| 2878 | InsertBefore: GEP->getIterator()); |
| 2879 | } |
| 2880 | return nullptr; |
| 2881 | } |
| 2882 | |
| 2883 | void SPIRVEmitIntrinsics::emitUnstructuredLoopControls(Function &F, |
| 2884 | IRBuilder<> &B) { |
| 2885 | const SPIRVSubtarget *ST = TM->getSubtargetImpl(F); |
| 2886 | // Shaders use SPIRVStructurizer which emits OpLoopMerge via spv_loop_merge. |
| 2887 | if (ST->isShader()) |
| 2888 | return; |
| 2889 | if (!ST->canUseExtension( |
| 2890 | E: SPIRV::Extension::SPV_INTEL_unstructured_loop_controls)) |
| 2891 | return; |
| 2892 | |
| 2893 | for (BasicBlock &BB : F) { |
| 2894 | Instruction *Term = BB.getTerminator(); |
| 2895 | MDNode *LoopMD = Term->getMetadata(KindID: LLVMContext::MD_loop); |
| 2896 | if (!LoopMD) |
| 2897 | continue; |
| 2898 | |
| 2899 | SmallVector<unsigned, 1> Ops = |
| 2900 | getSpirvLoopControlOperandsFromLoopMetadata(LoopMD); |
| 2901 | unsigned LC = Ops[0]; |
| 2902 | if (LC == SPIRV::LoopControl::None) |
| 2903 | continue; |
| 2904 | |
| 2905 | // Emit intrinsic: loop control mask + optional parameters. |
| 2906 | B.SetInsertPoint(Term); |
| 2907 | SmallVector<Value *, 4> IntrArgs; |
| 2908 | IntrArgs.push_back(Elt: B.getInt32(C: LC)); |
| 2909 | for (unsigned I = 1; I < Ops.size(); ++I) |
| 2910 | IntrArgs.push_back(Elt: B.getInt32(C: Ops[I])); |
| 2911 | B.CreateIntrinsic(ID: Intrinsic::spv_loop_control_intel, Args: IntrArgs); |
| 2912 | } |
| 2913 | } |
| 2914 | |
| 2915 | bool SPIRVEmitIntrinsics::runOnFunction(Function &Func) { |
| 2916 | if (Func.isDeclaration()) |
| 2917 | return false; |
| 2918 | |
| 2919 | const SPIRVSubtarget &ST = TM->getSubtarget<SPIRVSubtarget>(F: Func); |
| 2920 | GR = ST.getSPIRVGlobalRegistry(); |
| 2921 | |
| 2922 | if (!CurrF) |
| 2923 | HaveFunPtrs = |
| 2924 | ST.canUseExtension(E: SPIRV::Extension::SPV_INTEL_function_pointers); |
| 2925 | |
| 2926 | CurrF = &Func; |
| 2927 | IRBuilder<> B(Func.getContext()); |
| 2928 | AggrConsts.clear(); |
| 2929 | AggrConstTypes.clear(); |
| 2930 | AggrStores.clear(); |
| 2931 | |
| 2932 | // Fix GEP result types ahead of inference, and simplify if possible. |
| 2933 | // Data structure for dead instructions that were simplified and replaced. |
| 2934 | SmallPtrSet<Instruction *, 4> DeadInsts; |
| 2935 | for (auto &I : instructions(F&: Func)) { |
| 2936 | auto *Ref = dyn_cast<GetElementPtrInst>(Val: &I); |
| 2937 | if (!Ref || GR->findDeducedElementType(Val: Ref)) |
| 2938 | continue; |
| 2939 | |
| 2940 | GetElementPtrInst *NewGEP = simplifyZeroLengthArrayGepInst(GEP: Ref); |
| 2941 | if (NewGEP) { |
| 2942 | Ref->replaceAllUsesWith(V: NewGEP); |
| 2943 | DeadInsts.insert(Ptr: Ref); |
| 2944 | Ref = NewGEP; |
| 2945 | } |
| 2946 | if (Type *GepTy = getGEPType(Ref)) |
| 2947 | GR->addDeducedElementType(Val: Ref, Ty: normalizeType(Ty: GepTy)); |
| 2948 | } |
| 2949 | // Remove dead instructions that were simplified and replaced. |
| 2950 | for (auto *I : DeadInsts) { |
| 2951 | assert(I->use_empty() && "Dead instruction should not have any uses left" ); |
| 2952 | I->eraseFromParent(); |
| 2953 | } |
| 2954 | |
| 2955 | processParamTypesByFunHeader(F: CurrF, B); |
| 2956 | |
| 2957 | // StoreInst's operand type can be changed during the next |
| 2958 | // transformations, so we need to store it in the set. Also store already |
| 2959 | // transformed types. |
| 2960 | for (auto &I : instructions(F&: Func)) { |
| 2961 | StoreInst *SI = dyn_cast<StoreInst>(Val: &I); |
| 2962 | if (!SI) |
| 2963 | continue; |
| 2964 | Type *ElTy = SI->getValueOperand()->getType(); |
| 2965 | if (ElTy->isAggregateType() || ElTy->isVectorTy()) |
| 2966 | AggrStores.insert(V: &I); |
| 2967 | } |
| 2968 | |
| 2969 | B.SetInsertPoint(TheBB: &Func.getEntryBlock(), IP: Func.getEntryBlock().begin()); |
| 2970 | for (auto &GV : Func.getParent()->globals()) |
| 2971 | processGlobalValue(GV, B); |
| 2972 | |
| 2973 | preprocessUndefs(B); |
| 2974 | preprocessCompositeConstants(B); |
| 2975 | SmallVector<Instruction *> Worklist( |
| 2976 | llvm::make_pointer_range(Range: instructions(F&: Func))); |
| 2977 | |
| 2978 | applyDemangledPtrArgTypes(B); |
| 2979 | |
| 2980 | // Pass forward: use operand to deduce instructions result. |
| 2981 | for (auto &I : Worklist) { |
| 2982 | // Don't emit intrinsincs for convergence intrinsics. |
| 2983 | if (isConvergenceIntrinsic(I)) |
| 2984 | continue; |
| 2985 | |
| 2986 | bool Postpone = insertAssignPtrTypeIntrs(I, B, UnknownElemTypeI8: false); |
| 2987 | // if Postpone is true, we can't decide on pointee type yet |
| 2988 | insertAssignTypeIntrs(I, B); |
| 2989 | insertPtrCastOrAssignTypeInstr(I, B); |
| 2990 | insertSpirvDecorations(I, B); |
| 2991 | // if instruction requires a pointee type set, let's check if we know it |
| 2992 | // already, and force it to be i8 if not |
| 2993 | if (Postpone && !GR->findAssignPtrTypeInstr(Val: I)) |
| 2994 | insertAssignPtrTypeIntrs(I, B, UnknownElemTypeI8: true); |
| 2995 | |
| 2996 | if (auto *FPI = dyn_cast<ConstrainedFPIntrinsic>(Val: I)) |
| 2997 | useRoundingMode(FPI, B); |
| 2998 | } |
| 2999 | |
| 3000 | // Pass backward: use instructions results to specify/update/cast operands |
| 3001 | // where needed. |
| 3002 | SmallPtrSet<Instruction *, 4> IncompleteRets; |
| 3003 | for (auto &I : llvm::reverse(C: instructions(F&: Func))) |
| 3004 | deduceOperandElementType(I: &I, IncompleteRets: &IncompleteRets); |
| 3005 | |
| 3006 | // Pass forward for PHIs only, their operands are not preceed the |
| 3007 | // instruction in meaning of `instructions(Func)`. |
| 3008 | for (BasicBlock &BB : Func) |
| 3009 | for (PHINode &Phi : BB.phis()) |
| 3010 | if (isPointerTy(T: Phi.getType())) |
| 3011 | deduceOperandElementType(I: &Phi, IncompleteRets: nullptr); |
| 3012 | |
| 3013 | for (auto *I : Worklist) { |
| 3014 | TrackConstants = true; |
| 3015 | if (!I->getType()->isVoidTy() || isa<StoreInst>(Val: I)) |
| 3016 | setInsertPointAfterDef(B, I); |
| 3017 | // Visitors return either the original/newly created instruction for |
| 3018 | // further processing, nullptr otherwise. |
| 3019 | I = visit(I&: *I); |
| 3020 | if (!I) |
| 3021 | continue; |
| 3022 | |
| 3023 | // Don't emit intrinsics for convergence operations. |
| 3024 | if (isConvergenceIntrinsic(I)) |
| 3025 | continue; |
| 3026 | |
| 3027 | addSaturatedDecorationToIntrinsic(I, B); |
| 3028 | processInstrAfterVisit(I, B); |
| 3029 | } |
| 3030 | |
| 3031 | emitUnstructuredLoopControls(F&: Func, B); |
| 3032 | |
| 3033 | return true; |
| 3034 | } |
| 3035 | |
| 3036 | // Try to deduce a better type for pointers to untyped ptr. |
| 3037 | bool SPIRVEmitIntrinsics::postprocessTypes(Module &M) { |
| 3038 | if (!GR || TodoTypeSz == 0) |
| 3039 | return false; |
| 3040 | |
| 3041 | unsigned SzTodo = TodoTypeSz; |
| 3042 | DenseMap<Value *, SmallPtrSet<Value *, 4>> ToProcess; |
| 3043 | for (auto [Op, Enabled] : TodoType) { |
| 3044 | // TODO: add isa<CallInst>(Op) to continue |
| 3045 | if (!Enabled || isa<GetElementPtrInst>(Val: Op)) |
| 3046 | continue; |
| 3047 | CallInst *AssignCI = GR->findAssignPtrTypeInstr(Val: Op); |
| 3048 | Type *KnownTy = GR->findDeducedElementType(Val: Op); |
| 3049 | if (!KnownTy || !AssignCI) |
| 3050 | continue; |
| 3051 | assert(Op == AssignCI->getArgOperand(0)); |
| 3052 | // Try to improve the type deduced after all Functions are processed. |
| 3053 | if (auto *CI = dyn_cast<Instruction>(Val: Op)) { |
| 3054 | CurrF = CI->getParent()->getParent(); |
| 3055 | std::unordered_set<Value *> Visited; |
| 3056 | if (Type *ElemTy = deduceElementTypeHelper(I: Op, Visited, UnknownElemTypeI8: false, IgnoreKnownType: true)) { |
| 3057 | if (ElemTy != KnownTy) { |
| 3058 | DenseSet<std::pair<Value *, Value *>> VisitedSubst; |
| 3059 | propagateElemType(Op: CI, ElemTy, VisitedSubst); |
| 3060 | eraseTodoType(Op); |
| 3061 | continue; |
| 3062 | } |
| 3063 | } |
| 3064 | } |
| 3065 | |
| 3066 | if (Op->hasUseList()) { |
| 3067 | for (User *U : Op->users()) { |
| 3068 | Instruction *Inst = dyn_cast<Instruction>(Val: U); |
| 3069 | if (Inst && !isa<IntrinsicInst>(Val: Inst)) |
| 3070 | ToProcess[Inst].insert(Ptr: Op); |
| 3071 | } |
| 3072 | } |
| 3073 | } |
| 3074 | if (TodoTypeSz == 0) |
| 3075 | return true; |
| 3076 | |
| 3077 | for (auto &F : M) { |
| 3078 | CurrF = &F; |
| 3079 | SmallPtrSet<Instruction *, 4> IncompleteRets; |
| 3080 | for (auto &I : llvm::reverse(C: instructions(F))) { |
| 3081 | auto It = ToProcess.find(Val: &I); |
| 3082 | if (It == ToProcess.end()) |
| 3083 | continue; |
| 3084 | It->second.remove_if(P: [this](Value *V) { return !isTodoType(Op: V); }); |
| 3085 | if (It->second.size() == 0) |
| 3086 | continue; |
| 3087 | deduceOperandElementType(I: &I, IncompleteRets: &IncompleteRets, AskOps: &It->second, IsPostprocessing: true); |
| 3088 | if (TodoTypeSz == 0) |
| 3089 | return true; |
| 3090 | } |
| 3091 | } |
| 3092 | |
| 3093 | return SzTodo > TodoTypeSz; |
| 3094 | } |
| 3095 | |
| 3096 | // Parse and store argument types of function declarations where needed. |
| 3097 | void SPIRVEmitIntrinsics::parseFunDeclarations(Module &M) { |
| 3098 | for (auto &F : M) { |
| 3099 | if (!F.isDeclaration() || F.isIntrinsic()) |
| 3100 | continue; |
| 3101 | // get the demangled name |
| 3102 | std::string DemangledName = getOclOrSpirvBuiltinDemangledName(Name: F.getName()); |
| 3103 | if (DemangledName.empty()) |
| 3104 | continue; |
| 3105 | // allow only OpGroupAsyncCopy use case at the moment |
| 3106 | const SPIRVSubtarget &ST = TM->getSubtarget<SPIRVSubtarget>(F); |
| 3107 | auto [Grp, Opcode, ExtNo] = SPIRV::mapBuiltinToOpcode( |
| 3108 | DemangledCall: DemangledName, Set: ST.getPreferredInstructionSet()); |
| 3109 | if (Opcode != SPIRV::OpGroupAsyncCopy) |
| 3110 | continue; |
| 3111 | // find pointer arguments |
| 3112 | SmallVector<unsigned> Idxs; |
| 3113 | for (unsigned OpIdx = 0; OpIdx < F.arg_size(); ++OpIdx) { |
| 3114 | Argument *Arg = F.getArg(i: OpIdx); |
| 3115 | if (isPointerTy(T: Arg->getType()) && !hasPointeeTypeAttr(Arg)) |
| 3116 | Idxs.push_back(Elt: OpIdx); |
| 3117 | } |
| 3118 | if (!Idxs.size()) |
| 3119 | continue; |
| 3120 | // parse function arguments |
| 3121 | LLVMContext &Ctx = F.getContext(); |
| 3122 | SmallVector<StringRef, 10> TypeStrs; |
| 3123 | SPIRV::parseBuiltinTypeStr(BuiltinArgsTypeStrs&: TypeStrs, DemangledCall: DemangledName, Ctx); |
| 3124 | if (!TypeStrs.size()) |
| 3125 | continue; |
| 3126 | // find type info for pointer arguments |
| 3127 | for (unsigned Idx : Idxs) { |
| 3128 | if (Idx >= TypeStrs.size()) |
| 3129 | continue; |
| 3130 | if (Type *ElemTy = |
| 3131 | SPIRV::parseBuiltinCallArgumentType(TypeStr: TypeStrs[Idx].trim(), Ctx)) |
| 3132 | if (TypedPointerType::isValidElementType(ElemTy) && |
| 3133 | !ElemTy->isTargetExtTy()) |
| 3134 | FDeclPtrTys[&F].push_back(Elt: std::make_pair(x&: Idx, y&: ElemTy)); |
| 3135 | } |
| 3136 | } |
| 3137 | } |
| 3138 | |
| 3139 | bool SPIRVEmitIntrinsics::runOnModule(Module &M) { |
| 3140 | bool Changed = false; |
| 3141 | |
| 3142 | parseFunDeclarations(M); |
| 3143 | insertConstantsForFPFastMathDefault(M); |
| 3144 | |
| 3145 | TodoType.clear(); |
| 3146 | for (auto &F : M) |
| 3147 | Changed |= runOnFunction(Func&: F); |
| 3148 | |
| 3149 | // Specify function parameters after all functions were processed. |
| 3150 | for (auto &F : M) { |
| 3151 | // check if function parameter types are set |
| 3152 | CurrF = &F; |
| 3153 | if (!F.isDeclaration() && !F.isIntrinsic()) { |
| 3154 | IRBuilder<> B(F.getContext()); |
| 3155 | processParamTypes(F: &F, B); |
| 3156 | } |
| 3157 | } |
| 3158 | |
| 3159 | CanTodoType = false; |
| 3160 | Changed |= postprocessTypes(M); |
| 3161 | |
| 3162 | if (HaveFunPtrs) |
| 3163 | Changed |= processFunctionPointers(M); |
| 3164 | |
| 3165 | return Changed; |
| 3166 | } |
| 3167 | |
| 3168 | ModulePass *llvm::createSPIRVEmitIntrinsicsPass(SPIRVTargetMachine *TM) { |
| 3169 | return new SPIRVEmitIntrinsics(TM); |
| 3170 | } |
| 3171 | |