| 1 | //===- ASTStructuralEquivalence.cpp ---------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implement StructuralEquivalenceContext class and helper functions |
| 10 | // for layout matching. |
| 11 | // |
| 12 | // The structural equivalence check could have been implemented as a parallel |
| 13 | // BFS on a pair of graphs. That must have been the original approach at the |
| 14 | // beginning. |
| 15 | // Let's consider this simple BFS algorithm from the `s` source: |
| 16 | // ``` |
| 17 | // void bfs(Graph G, int s) |
| 18 | // { |
| 19 | // Queue<Integer> queue = new Queue<Integer>(); |
| 20 | // marked[s] = true; // Mark the source |
| 21 | // queue.enqueue(s); // and put it on the queue. |
| 22 | // while (!q.isEmpty()) { |
| 23 | // int v = queue.dequeue(); // Remove next vertex from the queue. |
| 24 | // for (int w : G.adj(v)) |
| 25 | // if (!marked[w]) // For every unmarked adjacent vertex, |
| 26 | // { |
| 27 | // marked[w] = true; |
| 28 | // queue.enqueue(w); |
| 29 | // } |
| 30 | // } |
| 31 | // } |
| 32 | // ``` |
| 33 | // Indeed, it has it's queue, which holds pairs of nodes, one from each graph, |
| 34 | // this is the `DeclsToCheck` member. `VisitedDecls` plays the role of the |
| 35 | // marking (`marked`) functionality above, we use it to check whether we've |
| 36 | // already seen a pair of nodes. |
| 37 | // |
| 38 | // We put in the elements into the queue only in the toplevel decl check |
| 39 | // function: |
| 40 | // ``` |
| 41 | // static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 42 | // Decl *D1, Decl *D2); |
| 43 | // ``` |
| 44 | // The `while` loop where we iterate over the children is implemented in |
| 45 | // `Finish()`. And `Finish` is called only from the two **member** functions |
| 46 | // which check the equivalency of two Decls or two Types. ASTImporter (and |
| 47 | // other clients) call only these functions. |
| 48 | // |
| 49 | // The `static` implementation functions are called from `Finish`, these push |
| 50 | // the children nodes to the queue via `static bool |
| 51 | // IsStructurallyEquivalent(StructuralEquivalenceContext &Context, Decl *D1, |
| 52 | // Decl *D2)`. So far so good, this is almost like the BFS. However, if we |
| 53 | // let a static implementation function to call `Finish` via another **member** |
| 54 | // function that means we end up with two nested while loops each of them |
| 55 | // working on the same queue. This is wrong and nobody can reason about it's |
| 56 | // doing. Thus, static implementation functions must not call the **member** |
| 57 | // functions. |
| 58 | // |
| 59 | //===----------------------------------------------------------------------===// |
| 60 | |
| 61 | #include "clang/AST/ASTStructuralEquivalence.h" |
| 62 | #include "clang/AST/ASTContext.h" |
| 63 | #include "clang/AST/ASTDiagnostic.h" |
| 64 | #include "clang/AST/Attr.h" |
| 65 | #include "clang/AST/Decl.h" |
| 66 | #include "clang/AST/DeclBase.h" |
| 67 | #include "clang/AST/DeclCXX.h" |
| 68 | #include "clang/AST/DeclFriend.h" |
| 69 | #include "clang/AST/DeclObjC.h" |
| 70 | #include "clang/AST/DeclOpenACC.h" |
| 71 | #include "clang/AST/DeclOpenMP.h" |
| 72 | #include "clang/AST/DeclTemplate.h" |
| 73 | #include "clang/AST/ExprCXX.h" |
| 74 | #include "clang/AST/ExprConcepts.h" |
| 75 | #include "clang/AST/ExprObjC.h" |
| 76 | #include "clang/AST/ExprOpenMP.h" |
| 77 | #include "clang/AST/NestedNameSpecifier.h" |
| 78 | #include "clang/AST/StmtObjC.h" |
| 79 | #include "clang/AST/StmtOpenACC.h" |
| 80 | #include "clang/AST/StmtOpenMP.h" |
| 81 | #include "clang/AST/StmtSYCL.h" |
| 82 | #include "clang/AST/TemplateBase.h" |
| 83 | #include "clang/AST/TemplateName.h" |
| 84 | #include "clang/AST/Type.h" |
| 85 | #include "clang/Basic/ExceptionSpecificationType.h" |
| 86 | #include "clang/Basic/IdentifierTable.h" |
| 87 | #include "clang/Basic/LLVM.h" |
| 88 | #include "clang/Basic/SourceLocation.h" |
| 89 | #include "llvm/ADT/APInt.h" |
| 90 | #include "llvm/ADT/APSInt.h" |
| 91 | #include "llvm/ADT/StringExtras.h" |
| 92 | #include "llvm/Support/Compiler.h" |
| 93 | #include "llvm/Support/ErrorHandling.h" |
| 94 | #include <cassert> |
| 95 | #include <optional> |
| 96 | #include <utility> |
| 97 | |
| 98 | using namespace clang; |
| 99 | |
| 100 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 101 | QualType T1, QualType T2); |
| 102 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 103 | Decl *D1, Decl *D2); |
| 104 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 105 | const Stmt *S1, const Stmt *S2); |
| 106 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 107 | const TemplateArgument &Arg1, |
| 108 | const TemplateArgument &Arg2); |
| 109 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 110 | const TemplateArgumentLoc &Arg1, |
| 111 | const TemplateArgumentLoc &Arg2); |
| 112 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 113 | NestedNameSpecifier *NNS1, |
| 114 | NestedNameSpecifier *NNS2); |
| 115 | static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, |
| 116 | const IdentifierInfo *Name2); |
| 117 | |
| 118 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 119 | const DeclarationName Name1, |
| 120 | const DeclarationName Name2) { |
| 121 | if (Name1.getNameKind() != Name2.getNameKind()) |
| 122 | return false; |
| 123 | |
| 124 | switch (Name1.getNameKind()) { |
| 125 | |
| 126 | case DeclarationName::Identifier: |
| 127 | return IsStructurallyEquivalent(Name1: Name1.getAsIdentifierInfo(), |
| 128 | Name2: Name2.getAsIdentifierInfo()); |
| 129 | |
| 130 | case DeclarationName::CXXConstructorName: |
| 131 | case DeclarationName::CXXDestructorName: |
| 132 | case DeclarationName::CXXConversionFunctionName: |
| 133 | return IsStructurallyEquivalent(Context, T1: Name1.getCXXNameType(), |
| 134 | T2: Name2.getCXXNameType()); |
| 135 | |
| 136 | case DeclarationName::CXXDeductionGuideName: { |
| 137 | if (!IsStructurallyEquivalent( |
| 138 | Context, Name1: Name1.getCXXDeductionGuideTemplate()->getDeclName(), |
| 139 | Name2: Name2.getCXXDeductionGuideTemplate()->getDeclName())) |
| 140 | return false; |
| 141 | return IsStructurallyEquivalent(Context, |
| 142 | D1: Name1.getCXXDeductionGuideTemplate(), |
| 143 | D2: Name2.getCXXDeductionGuideTemplate()); |
| 144 | } |
| 145 | |
| 146 | case DeclarationName::CXXOperatorName: |
| 147 | return Name1.getCXXOverloadedOperator() == Name2.getCXXOverloadedOperator(); |
| 148 | |
| 149 | case DeclarationName::CXXLiteralOperatorName: |
| 150 | return IsStructurallyEquivalent(Name1: Name1.getCXXLiteralIdentifier(), |
| 151 | Name2: Name2.getCXXLiteralIdentifier()); |
| 152 | |
| 153 | case DeclarationName::CXXUsingDirective: |
| 154 | return true; // FIXME When do we consider two using directives equal? |
| 155 | |
| 156 | case DeclarationName::ObjCZeroArgSelector: |
| 157 | case DeclarationName::ObjCOneArgSelector: |
| 158 | case DeclarationName::ObjCMultiArgSelector: |
| 159 | return true; // FIXME |
| 160 | } |
| 161 | |
| 162 | llvm_unreachable("Unhandled kind of DeclarationName" ); |
| 163 | return true; |
| 164 | } |
| 165 | |
| 166 | namespace { |
| 167 | /// Encapsulates Stmt comparison logic. |
| 168 | class StmtComparer { |
| 169 | StructuralEquivalenceContext &Context; |
| 170 | |
| 171 | // IsStmtEquivalent overloads. Each overload compares a specific statement |
| 172 | // and only has to compare the data that is specific to the specific statement |
| 173 | // class. Should only be called from TraverseStmt. |
| 174 | |
| 175 | bool IsStmtEquivalent(const AddrLabelExpr *E1, const AddrLabelExpr *E2) { |
| 176 | return IsStructurallyEquivalent(Context, D1: E1->getLabel(), D2: E2->getLabel()); |
| 177 | } |
| 178 | |
| 179 | bool IsStmtEquivalent(const AtomicExpr *E1, const AtomicExpr *E2) { |
| 180 | return E1->getOp() == E2->getOp(); |
| 181 | } |
| 182 | |
| 183 | bool IsStmtEquivalent(const BinaryOperator *E1, const BinaryOperator *E2) { |
| 184 | return E1->getOpcode() == E2->getOpcode(); |
| 185 | } |
| 186 | |
| 187 | bool IsStmtEquivalent(const CallExpr *E1, const CallExpr *E2) { |
| 188 | // FIXME: IsStructurallyEquivalent requires non-const Decls. |
| 189 | Decl *Callee1 = const_cast<Decl *>(E1->getCalleeDecl()); |
| 190 | Decl *Callee2 = const_cast<Decl *>(E2->getCalleeDecl()); |
| 191 | |
| 192 | // Compare whether both calls know their callee. |
| 193 | if (static_cast<bool>(Callee1) != static_cast<bool>(Callee2)) |
| 194 | return false; |
| 195 | |
| 196 | // Both calls have no callee, so nothing to do. |
| 197 | if (!static_cast<bool>(Callee1)) |
| 198 | return true; |
| 199 | |
| 200 | assert(Callee2); |
| 201 | return IsStructurallyEquivalent(Context, D1: Callee1, D2: Callee2); |
| 202 | } |
| 203 | |
| 204 | bool IsStmtEquivalent(const CharacterLiteral *E1, |
| 205 | const CharacterLiteral *E2) { |
| 206 | return E1->getValue() == E2->getValue() && E1->getKind() == E2->getKind(); |
| 207 | } |
| 208 | |
| 209 | bool IsStmtEquivalent(const ChooseExpr *E1, const ChooseExpr *E2) { |
| 210 | return true; // Semantics only depend on children. |
| 211 | } |
| 212 | |
| 213 | bool IsStmtEquivalent(const CompoundStmt *E1, const CompoundStmt *E2) { |
| 214 | // Number of children is actually checked by the generic children comparison |
| 215 | // code, but a CompoundStmt is one of the few statements where the number of |
| 216 | // children frequently differs and the number of statements is also always |
| 217 | // precomputed. Directly comparing the number of children here is thus |
| 218 | // just an optimization. |
| 219 | return E1->size() == E2->size(); |
| 220 | } |
| 221 | |
| 222 | bool IsStmtEquivalent(const DeclRefExpr *DRE1, const DeclRefExpr *DRE2) { |
| 223 | const ValueDecl *Decl1 = DRE1->getDecl(); |
| 224 | const ValueDecl *Decl2 = DRE2->getDecl(); |
| 225 | if (!Decl1 || !Decl2) |
| 226 | return false; |
| 227 | return IsStructurallyEquivalent(Context, D1: const_cast<ValueDecl *>(Decl1), |
| 228 | D2: const_cast<ValueDecl *>(Decl2)); |
| 229 | } |
| 230 | |
| 231 | bool IsStmtEquivalent(const DependentScopeDeclRefExpr *DE1, |
| 232 | const DependentScopeDeclRefExpr *DE2) { |
| 233 | if (!IsStructurallyEquivalent(Context, Name1: DE1->getDeclName(), |
| 234 | Name2: DE2->getDeclName())) |
| 235 | return false; |
| 236 | return IsStructurallyEquivalent(Context, NNS1: DE1->getQualifier(), |
| 237 | NNS2: DE2->getQualifier()); |
| 238 | } |
| 239 | |
| 240 | bool IsStmtEquivalent(const Expr *E1, const Expr *E2) { |
| 241 | return IsStructurallyEquivalent(Context, T1: E1->getType(), T2: E2->getType()); |
| 242 | } |
| 243 | |
| 244 | bool IsStmtEquivalent(const ExpressionTraitExpr *E1, |
| 245 | const ExpressionTraitExpr *E2) { |
| 246 | return E1->getTrait() == E2->getTrait() && E1->getValue() == E2->getValue(); |
| 247 | } |
| 248 | |
| 249 | bool IsStmtEquivalent(const FloatingLiteral *E1, const FloatingLiteral *E2) { |
| 250 | return E1->isExact() == E2->isExact() && E1->getValue() == E2->getValue(); |
| 251 | } |
| 252 | |
| 253 | bool IsStmtEquivalent(const GenericSelectionExpr *E1, |
| 254 | const GenericSelectionExpr *E2) { |
| 255 | for (auto Pair : zip_longest(t: E1->getAssocTypeSourceInfos(), |
| 256 | u: E2->getAssocTypeSourceInfos())) { |
| 257 | std::optional<TypeSourceInfo *> Child1 = std::get<0>(t&: Pair); |
| 258 | std::optional<TypeSourceInfo *> Child2 = std::get<1>(t&: Pair); |
| 259 | // Skip this case if there are a different number of associated types. |
| 260 | if (!Child1 || !Child2) |
| 261 | return false; |
| 262 | |
| 263 | if (!IsStructurallyEquivalent(Context, T1: (*Child1)->getType(), |
| 264 | T2: (*Child2)->getType())) |
| 265 | return false; |
| 266 | } |
| 267 | |
| 268 | return true; |
| 269 | } |
| 270 | |
| 271 | bool IsStmtEquivalent(const ImplicitCastExpr *CastE1, |
| 272 | const ImplicitCastExpr *CastE2) { |
| 273 | return IsStructurallyEquivalent(Context, T1: CastE1->getType(), |
| 274 | T2: CastE2->getType()); |
| 275 | } |
| 276 | |
| 277 | bool IsStmtEquivalent(const IntegerLiteral *E1, const IntegerLiteral *E2) { |
| 278 | return E1->getValue() == E2->getValue(); |
| 279 | } |
| 280 | |
| 281 | bool IsStmtEquivalent(const MemberExpr *E1, const MemberExpr *E2) { |
| 282 | return IsStructurallyEquivalent(Context, D1: E1->getFoundDecl(), |
| 283 | D2: E2->getFoundDecl()); |
| 284 | } |
| 285 | |
| 286 | bool IsStmtEquivalent(const ObjCStringLiteral *E1, |
| 287 | const ObjCStringLiteral *E2) { |
| 288 | // Just wraps a StringLiteral child. |
| 289 | return true; |
| 290 | } |
| 291 | |
| 292 | bool IsStmtEquivalent(const Stmt *S1, const Stmt *S2) { return true; } |
| 293 | |
| 294 | bool IsStmtEquivalent(const GotoStmt *S1, const GotoStmt *S2) { |
| 295 | LabelDecl *L1 = S1->getLabel(); |
| 296 | LabelDecl *L2 = S2->getLabel(); |
| 297 | if (!L1 || !L2) |
| 298 | return L1 == L2; |
| 299 | |
| 300 | IdentifierInfo *Name1 = L1->getIdentifier(); |
| 301 | IdentifierInfo *Name2 = L2->getIdentifier(); |
| 302 | return ::IsStructurallyEquivalent(Name1, Name2); |
| 303 | } |
| 304 | |
| 305 | bool IsStmtEquivalent(const SourceLocExpr *E1, const SourceLocExpr *E2) { |
| 306 | return E1->getIdentKind() == E2->getIdentKind(); |
| 307 | } |
| 308 | |
| 309 | bool IsStmtEquivalent(const StmtExpr *E1, const StmtExpr *E2) { |
| 310 | return E1->getTemplateDepth() == E2->getTemplateDepth(); |
| 311 | } |
| 312 | |
| 313 | bool IsStmtEquivalent(const StringLiteral *E1, const StringLiteral *E2) { |
| 314 | return E1->getBytes() == E2->getBytes(); |
| 315 | } |
| 316 | |
| 317 | bool IsStmtEquivalent(const SubstNonTypeTemplateParmExpr *E1, |
| 318 | const SubstNonTypeTemplateParmExpr *E2) { |
| 319 | if (!IsStructurallyEquivalent(Context, D1: E1->getAssociatedDecl(), |
| 320 | D2: E2->getAssociatedDecl())) |
| 321 | return false; |
| 322 | if (E1->getIndex() != E2->getIndex()) |
| 323 | return false; |
| 324 | if (E1->getPackIndex() != E2->getPackIndex()) |
| 325 | return false; |
| 326 | return true; |
| 327 | } |
| 328 | |
| 329 | bool IsStmtEquivalent(const SubstNonTypeTemplateParmPackExpr *E1, |
| 330 | const SubstNonTypeTemplateParmPackExpr *E2) { |
| 331 | return IsStructurallyEquivalent(Context, Arg1: E1->getArgumentPack(), |
| 332 | Arg2: E2->getArgumentPack()); |
| 333 | } |
| 334 | |
| 335 | bool IsStmtEquivalent(const TypeTraitExpr *E1, const TypeTraitExpr *E2) { |
| 336 | if (E1->getTrait() != E2->getTrait()) |
| 337 | return false; |
| 338 | |
| 339 | for (auto Pair : zip_longest(t: E1->getArgs(), u: E2->getArgs())) { |
| 340 | std::optional<TypeSourceInfo *> Child1 = std::get<0>(t&: Pair); |
| 341 | std::optional<TypeSourceInfo *> Child2 = std::get<1>(t&: Pair); |
| 342 | // Different number of args. |
| 343 | if (!Child1 || !Child2) |
| 344 | return false; |
| 345 | |
| 346 | if (!IsStructurallyEquivalent(Context, T1: (*Child1)->getType(), |
| 347 | T2: (*Child2)->getType())) |
| 348 | return false; |
| 349 | } |
| 350 | return true; |
| 351 | } |
| 352 | |
| 353 | bool IsStmtEquivalent(const CXXDependentScopeMemberExpr *E1, |
| 354 | const CXXDependentScopeMemberExpr *E2) { |
| 355 | if (!IsStructurallyEquivalent(Context, Name1: E1->getMember(), Name2: E2->getMember())) { |
| 356 | return false; |
| 357 | } |
| 358 | return IsStructurallyEquivalent(Context, T1: E1->getBaseType(), |
| 359 | T2: E2->getBaseType()); |
| 360 | } |
| 361 | |
| 362 | bool IsStmtEquivalent(const UnaryExprOrTypeTraitExpr *E1, |
| 363 | const UnaryExprOrTypeTraitExpr *E2) { |
| 364 | if (E1->getKind() != E2->getKind()) |
| 365 | return false; |
| 366 | return IsStructurallyEquivalent(Context, T1: E1->getTypeOfArgument(), |
| 367 | T2: E2->getTypeOfArgument()); |
| 368 | } |
| 369 | |
| 370 | bool IsStmtEquivalent(const UnaryOperator *E1, const UnaryOperator *E2) { |
| 371 | return E1->getOpcode() == E2->getOpcode(); |
| 372 | } |
| 373 | |
| 374 | bool IsStmtEquivalent(const VAArgExpr *E1, const VAArgExpr *E2) { |
| 375 | // Semantics only depend on children. |
| 376 | return true; |
| 377 | } |
| 378 | |
| 379 | bool IsStmtEquivalent(const OverloadExpr *E1, const OverloadExpr *E2) { |
| 380 | if (!IsStructurallyEquivalent(Context, Name1: E1->getName(), Name2: E2->getName())) |
| 381 | return false; |
| 382 | |
| 383 | if (static_cast<bool>(E1->getQualifier()) != |
| 384 | static_cast<bool>(E2->getQualifier())) |
| 385 | return false; |
| 386 | if (E1->getQualifier() && |
| 387 | !IsStructurallyEquivalent(Context, NNS1: E1->getQualifier(), |
| 388 | NNS2: E2->getQualifier())) |
| 389 | return false; |
| 390 | |
| 391 | if (E1->getNumTemplateArgs() != E2->getNumTemplateArgs()) |
| 392 | return false; |
| 393 | const TemplateArgumentLoc *Args1 = E1->getTemplateArgs(); |
| 394 | const TemplateArgumentLoc *Args2 = E2->getTemplateArgs(); |
| 395 | for (unsigned int ArgI = 0, ArgN = E1->getNumTemplateArgs(); ArgI < ArgN; |
| 396 | ++ArgI) |
| 397 | if (!IsStructurallyEquivalent(Context, Arg1: Args1[ArgI], Arg2: Args2[ArgI])) |
| 398 | return false; |
| 399 | |
| 400 | return true; |
| 401 | } |
| 402 | |
| 403 | bool IsStmtEquivalent(const CXXBoolLiteralExpr *E1, const CXXBoolLiteralExpr *E2) { |
| 404 | return E1->getValue() == E2->getValue(); |
| 405 | } |
| 406 | |
| 407 | /// End point of the traversal chain. |
| 408 | bool TraverseStmt(const Stmt *S1, const Stmt *S2) { return true; } |
| 409 | |
| 410 | // Create traversal methods that traverse the class hierarchy and return |
| 411 | // the accumulated result of the comparison. Each TraverseStmt overload |
| 412 | // calls the TraverseStmt overload of the parent class. For example, |
| 413 | // the TraverseStmt overload for 'BinaryOperator' calls the TraverseStmt |
| 414 | // overload of 'Expr' which then calls the overload for 'Stmt'. |
| 415 | #define STMT(CLASS, PARENT) \ |
| 416 | bool TraverseStmt(const CLASS *S1, const CLASS *S2) { \ |
| 417 | if (!TraverseStmt(static_cast<const PARENT *>(S1), \ |
| 418 | static_cast<const PARENT *>(S2))) \ |
| 419 | return false; \ |
| 420 | return IsStmtEquivalent(S1, S2); \ |
| 421 | } |
| 422 | #include "clang/AST/StmtNodes.inc" |
| 423 | |
| 424 | public: |
| 425 | StmtComparer(StructuralEquivalenceContext &C) : Context(C) {} |
| 426 | |
| 427 | /// Determine whether two statements are equivalent. The statements have to |
| 428 | /// be of the same kind. The children of the statements and their properties |
| 429 | /// are not compared by this function. |
| 430 | bool IsEquivalent(const Stmt *S1, const Stmt *S2) { |
| 431 | if (S1->getStmtClass() != S2->getStmtClass()) |
| 432 | return false; |
| 433 | |
| 434 | // Each TraverseStmt walks the class hierarchy from the leaf class to |
| 435 | // the root class 'Stmt' (e.g. 'BinaryOperator' -> 'Expr' -> 'Stmt'). Cast |
| 436 | // the Stmt we have here to its specific subclass so that we call the |
| 437 | // overload that walks the whole class hierarchy from leaf to root (e.g., |
| 438 | // cast to 'BinaryOperator' so that 'Expr' and 'Stmt' is traversed). |
| 439 | switch (S1->getStmtClass()) { |
| 440 | case Stmt::NoStmtClass: |
| 441 | llvm_unreachable("Can't traverse NoStmtClass" ); |
| 442 | #define STMT(CLASS, PARENT) \ |
| 443 | case Stmt::StmtClass::CLASS##Class: \ |
| 444 | return TraverseStmt(static_cast<const CLASS *>(S1), \ |
| 445 | static_cast<const CLASS *>(S2)); |
| 446 | #define ABSTRACT_STMT(S) |
| 447 | #include "clang/AST/StmtNodes.inc" |
| 448 | } |
| 449 | llvm_unreachable("Invalid statement kind" ); |
| 450 | } |
| 451 | }; |
| 452 | } // namespace |
| 453 | |
| 454 | static bool |
| 455 | CheckStructurallyEquivalentAttributes(StructuralEquivalenceContext &Context, |
| 456 | const Decl *D1, const Decl *D2, |
| 457 | const Decl *PrimaryDecl = nullptr) { |
| 458 | // If either declaration has an attribute on it, we treat the declarations |
| 459 | // as not being structurally equivalent. |
| 460 | // FIXME: this should be handled on a case-by-case basis via tablegen in |
| 461 | // Attr.td. There are multiple cases to consider: one declaration with the |
| 462 | // attribute, another without it; different attribute syntax|spellings for |
| 463 | // the same semantic attribute, differences in attribute arguments, order |
| 464 | // in which attributes are applied, how to merge attributes if the types are |
| 465 | // structurally equivalent, etc. |
| 466 | const Attr *D1Attr = nullptr, *D2Attr = nullptr; |
| 467 | if (D1->hasAttrs()) |
| 468 | D1Attr = *D1->getAttrs().begin(); |
| 469 | if (D2->hasAttrs()) |
| 470 | D2Attr = *D2->getAttrs().begin(); |
| 471 | if (D1Attr || D2Attr) { |
| 472 | const auto *DiagnoseDecl = cast<TypeDecl>(Val: PrimaryDecl ? PrimaryDecl : D2); |
| 473 | Context.Diag2(Loc: DiagnoseDecl->getLocation(), |
| 474 | DiagID: diag::warn_odr_tag_type_with_attributes) |
| 475 | << Context.ToCtx.getTypeDeclType(Decl: DiagnoseDecl) |
| 476 | << (PrimaryDecl != nullptr); |
| 477 | if (D1Attr) |
| 478 | Context.Diag1(Loc: D1Attr->getLoc(), DiagID: diag::note_odr_attr_here) << D1Attr; |
| 479 | if (D2Attr) |
| 480 | Context.Diag1(Loc: D2Attr->getLoc(), DiagID: diag::note_odr_attr_here) << D2Attr; |
| 481 | } |
| 482 | |
| 483 | // The above diagnostic is a warning which defaults to an error. If treated |
| 484 | // as a warning, we'll go ahead and allow any attribute differences to be |
| 485 | // undefined behavior and the user gets what they get in terms of behavior. |
| 486 | return true; |
| 487 | } |
| 488 | |
| 489 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 490 | const UnaryOperator *E1, |
| 491 | const CXXOperatorCallExpr *E2) { |
| 492 | return UnaryOperator::getOverloadedOperator(Opc: E1->getOpcode()) == |
| 493 | E2->getOperator() && |
| 494 | IsStructurallyEquivalent(Context, S1: E1->getSubExpr(), S2: E2->getArg(Arg: 0)); |
| 495 | } |
| 496 | |
| 497 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 498 | const CXXOperatorCallExpr *E1, |
| 499 | const UnaryOperator *E2) { |
| 500 | return E1->getOperator() == |
| 501 | UnaryOperator::getOverloadedOperator(Opc: E2->getOpcode()) && |
| 502 | IsStructurallyEquivalent(Context, S1: E1->getArg(Arg: 0), S2: E2->getSubExpr()); |
| 503 | } |
| 504 | |
| 505 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 506 | const BinaryOperator *E1, |
| 507 | const CXXOperatorCallExpr *E2) { |
| 508 | return BinaryOperator::getOverloadedOperator(Opc: E1->getOpcode()) == |
| 509 | E2->getOperator() && |
| 510 | IsStructurallyEquivalent(Context, S1: E1->getLHS(), S2: E2->getArg(Arg: 0)) && |
| 511 | IsStructurallyEquivalent(Context, S1: E1->getRHS(), S2: E2->getArg(Arg: 1)); |
| 512 | } |
| 513 | |
| 514 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 515 | const CXXOperatorCallExpr *E1, |
| 516 | const BinaryOperator *E2) { |
| 517 | return E1->getOperator() == |
| 518 | BinaryOperator::getOverloadedOperator(Opc: E2->getOpcode()) && |
| 519 | IsStructurallyEquivalent(Context, S1: E1->getArg(Arg: 0), S2: E2->getLHS()) && |
| 520 | IsStructurallyEquivalent(Context, S1: E1->getArg(Arg: 1), S2: E2->getRHS()); |
| 521 | } |
| 522 | |
| 523 | /// Determine structural equivalence of two statements. |
| 524 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 525 | const Stmt *S1, const Stmt *S2) { |
| 526 | if (!S1 || !S2) |
| 527 | return S1 == S2; |
| 528 | |
| 529 | // Check for statements with similar syntax but different AST. |
| 530 | // A UnaryOperator node is more lightweight than a CXXOperatorCallExpr node. |
| 531 | // The more heavyweight node is only created if the definition-time name |
| 532 | // lookup had any results. The lookup results are stored CXXOperatorCallExpr |
| 533 | // only. The lookup results can be different in a "From" and "To" AST even if |
| 534 | // the compared structure is otherwise equivalent. For this reason we must |
| 535 | // treat a similar unary/binary operator node and CXXOperatorCall node as |
| 536 | // equivalent. |
| 537 | if (const auto *E2CXXOperatorCall = dyn_cast<CXXOperatorCallExpr>(Val: S2)) { |
| 538 | if (const auto *E1Unary = dyn_cast<UnaryOperator>(Val: S1)) |
| 539 | return IsStructurallyEquivalent(Context, E1: E1Unary, E2: E2CXXOperatorCall); |
| 540 | if (const auto *E1Binary = dyn_cast<BinaryOperator>(Val: S1)) |
| 541 | return IsStructurallyEquivalent(Context, E1: E1Binary, E2: E2CXXOperatorCall); |
| 542 | } |
| 543 | if (const auto *E1CXXOperatorCall = dyn_cast<CXXOperatorCallExpr>(Val: S1)) { |
| 544 | if (const auto *E2Unary = dyn_cast<UnaryOperator>(Val: S2)) |
| 545 | return IsStructurallyEquivalent(Context, E1: E1CXXOperatorCall, E2: E2Unary); |
| 546 | if (const auto *E2Binary = dyn_cast<BinaryOperator>(Val: S2)) |
| 547 | return IsStructurallyEquivalent(Context, E1: E1CXXOperatorCall, E2: E2Binary); |
| 548 | } |
| 549 | |
| 550 | // Compare the statements itself. |
| 551 | StmtComparer Comparer(Context); |
| 552 | if (!Comparer.IsEquivalent(S1, S2)) |
| 553 | return false; |
| 554 | |
| 555 | // Iterate over the children of both statements and also compare them. |
| 556 | for (auto Pair : zip_longest(t: S1->children(), u: S2->children())) { |
| 557 | std::optional<const Stmt *> Child1 = std::get<0>(t&: Pair); |
| 558 | std::optional<const Stmt *> Child2 = std::get<1>(t&: Pair); |
| 559 | // One of the statements has a different amount of children than the other, |
| 560 | // so the statements can't be equivalent. |
| 561 | if (!Child1 || !Child2) |
| 562 | return false; |
| 563 | if (!IsStructurallyEquivalent(Context, S1: *Child1, S2: *Child2)) |
| 564 | return false; |
| 565 | } |
| 566 | return true; |
| 567 | } |
| 568 | |
| 569 | /// Determine whether two identifiers are equivalent. |
| 570 | static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, |
| 571 | const IdentifierInfo *Name2) { |
| 572 | if (!Name1 || !Name2) |
| 573 | return Name1 == Name2; |
| 574 | |
| 575 | return Name1->getName() == Name2->getName(); |
| 576 | } |
| 577 | |
| 578 | /// Determine whether two nested-name-specifiers are equivalent. |
| 579 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 580 | NestedNameSpecifier *NNS1, |
| 581 | NestedNameSpecifier *NNS2) { |
| 582 | if (NNS1->getKind() != NNS2->getKind()) |
| 583 | return false; |
| 584 | |
| 585 | NestedNameSpecifier *Prefix1 = NNS1->getPrefix(), |
| 586 | *Prefix2 = NNS2->getPrefix(); |
| 587 | if ((bool)Prefix1 != (bool)Prefix2) |
| 588 | return false; |
| 589 | |
| 590 | if (Prefix1) |
| 591 | if (!IsStructurallyEquivalent(Context, NNS1: Prefix1, NNS2: Prefix2)) |
| 592 | return false; |
| 593 | |
| 594 | switch (NNS1->getKind()) { |
| 595 | case NestedNameSpecifier::Identifier: |
| 596 | return IsStructurallyEquivalent(Name1: NNS1->getAsIdentifier(), |
| 597 | Name2: NNS2->getAsIdentifier()); |
| 598 | case NestedNameSpecifier::Namespace: |
| 599 | return IsStructurallyEquivalent(Context, D1: NNS1->getAsNamespace(), |
| 600 | D2: NNS2->getAsNamespace()); |
| 601 | case NestedNameSpecifier::NamespaceAlias: |
| 602 | return IsStructurallyEquivalent(Context, D1: NNS1->getAsNamespaceAlias(), |
| 603 | D2: NNS2->getAsNamespaceAlias()); |
| 604 | case NestedNameSpecifier::TypeSpec: |
| 605 | return IsStructurallyEquivalent(Context, T1: QualType(NNS1->getAsType(), 0), |
| 606 | T2: QualType(NNS2->getAsType(), 0)); |
| 607 | case NestedNameSpecifier::Global: |
| 608 | return true; |
| 609 | case NestedNameSpecifier::Super: |
| 610 | return IsStructurallyEquivalent(Context, D1: NNS1->getAsRecordDecl(), |
| 611 | D2: NNS2->getAsRecordDecl()); |
| 612 | } |
| 613 | return false; |
| 614 | } |
| 615 | |
| 616 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 617 | const DependentTemplateStorage &S1, |
| 618 | const DependentTemplateStorage &S2) { |
| 619 | if (NestedNameSpecifier *NNS1 = S1.getQualifier(), *NNS2 = S2.getQualifier(); |
| 620 | !NNS1 != !NNS2 || |
| 621 | (NNS1 && !IsStructurallyEquivalent(Context, NNS1, NNS2))) |
| 622 | return false; |
| 623 | |
| 624 | IdentifierOrOverloadedOperator IO1 = S1.getName(), IO2 = S2.getName(); |
| 625 | const IdentifierInfo *II1 = IO1.getIdentifier(), *II2 = IO2.getIdentifier(); |
| 626 | if (!II1 || !II2) |
| 627 | return IO1.getOperator() == IO2.getOperator(); |
| 628 | return IsStructurallyEquivalent(Name1: II1, Name2: II2); |
| 629 | } |
| 630 | |
| 631 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 632 | const TemplateName &N1, |
| 633 | const TemplateName &N2) { |
| 634 | TemplateDecl *TemplateDeclN1 = N1.getAsTemplateDecl(); |
| 635 | TemplateDecl *TemplateDeclN2 = N2.getAsTemplateDecl(); |
| 636 | if (TemplateDeclN1 && TemplateDeclN2) { |
| 637 | if (!IsStructurallyEquivalent(Context, D1: TemplateDeclN1, D2: TemplateDeclN2)) |
| 638 | return false; |
| 639 | // If the kind is different we compare only the template decl. |
| 640 | if (N1.getKind() != N2.getKind()) |
| 641 | return true; |
| 642 | } else if (TemplateDeclN1 || TemplateDeclN2) |
| 643 | return false; |
| 644 | else if (N1.getKind() != N2.getKind()) |
| 645 | return false; |
| 646 | |
| 647 | // Check for special case incompatibilities. |
| 648 | switch (N1.getKind()) { |
| 649 | |
| 650 | case TemplateName::OverloadedTemplate: { |
| 651 | OverloadedTemplateStorage *OS1 = N1.getAsOverloadedTemplate(), |
| 652 | *OS2 = N2.getAsOverloadedTemplate(); |
| 653 | OverloadedTemplateStorage::iterator I1 = OS1->begin(), I2 = OS2->begin(), |
| 654 | E1 = OS1->end(), E2 = OS2->end(); |
| 655 | for (; I1 != E1 && I2 != E2; ++I1, ++I2) |
| 656 | if (!IsStructurallyEquivalent(Context, D1: *I1, D2: *I2)) |
| 657 | return false; |
| 658 | return I1 == E1 && I2 == E2; |
| 659 | } |
| 660 | |
| 661 | case TemplateName::AssumedTemplate: { |
| 662 | AssumedTemplateStorage *TN1 = N1.getAsAssumedTemplateName(), |
| 663 | *TN2 = N1.getAsAssumedTemplateName(); |
| 664 | return TN1->getDeclName() == TN2->getDeclName(); |
| 665 | } |
| 666 | |
| 667 | case TemplateName::DependentTemplate: |
| 668 | return IsStructurallyEquivalent(Context, S1: *N1.getAsDependentTemplateName(), |
| 669 | S2: *N2.getAsDependentTemplateName()); |
| 670 | |
| 671 | case TemplateName::SubstTemplateTemplateParmPack: { |
| 672 | SubstTemplateTemplateParmPackStorage |
| 673 | *P1 = N1.getAsSubstTemplateTemplateParmPack(), |
| 674 | *P2 = N2.getAsSubstTemplateTemplateParmPack(); |
| 675 | return IsStructurallyEquivalent(Context, Arg1: P1->getArgumentPack(), |
| 676 | Arg2: P2->getArgumentPack()) && |
| 677 | IsStructurallyEquivalent(Context, D1: P1->getAssociatedDecl(), |
| 678 | D2: P2->getAssociatedDecl()) && |
| 679 | P1->getIndex() == P2->getIndex(); |
| 680 | } |
| 681 | |
| 682 | case TemplateName::Template: |
| 683 | case TemplateName::QualifiedTemplate: |
| 684 | case TemplateName::SubstTemplateTemplateParm: |
| 685 | case TemplateName::UsingTemplate: |
| 686 | // It is sufficient to check value of getAsTemplateDecl. |
| 687 | break; |
| 688 | |
| 689 | case TemplateName::DeducedTemplate: |
| 690 | // FIXME: We can't reach here. |
| 691 | llvm_unreachable("unimplemented" ); |
| 692 | } |
| 693 | |
| 694 | return true; |
| 695 | } |
| 696 | |
| 697 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 698 | ArrayRef<TemplateArgument> Args1, |
| 699 | ArrayRef<TemplateArgument> Args2); |
| 700 | |
| 701 | /// Determine whether two template arguments are equivalent. |
| 702 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 703 | const TemplateArgument &Arg1, |
| 704 | const TemplateArgument &Arg2) { |
| 705 | if (Arg1.getKind() != Arg2.getKind()) |
| 706 | return false; |
| 707 | |
| 708 | switch (Arg1.getKind()) { |
| 709 | case TemplateArgument::Null: |
| 710 | return true; |
| 711 | |
| 712 | case TemplateArgument::Type: |
| 713 | return IsStructurallyEquivalent(Context, T1: Arg1.getAsType(), T2: Arg2.getAsType()); |
| 714 | |
| 715 | case TemplateArgument::Integral: |
| 716 | if (!IsStructurallyEquivalent(Context, T1: Arg1.getIntegralType(), |
| 717 | T2: Arg2.getIntegralType())) |
| 718 | return false; |
| 719 | |
| 720 | return llvm::APSInt::isSameValue(I1: Arg1.getAsIntegral(), |
| 721 | I2: Arg2.getAsIntegral()); |
| 722 | |
| 723 | case TemplateArgument::Declaration: |
| 724 | return IsStructurallyEquivalent(Context, D1: Arg1.getAsDecl(), D2: Arg2.getAsDecl()); |
| 725 | |
| 726 | case TemplateArgument::NullPtr: |
| 727 | return true; // FIXME: Is this correct? |
| 728 | |
| 729 | case TemplateArgument::Template: |
| 730 | return IsStructurallyEquivalent(Context, N1: Arg1.getAsTemplate(), |
| 731 | N2: Arg2.getAsTemplate()); |
| 732 | |
| 733 | case TemplateArgument::TemplateExpansion: |
| 734 | return IsStructurallyEquivalent(Context, |
| 735 | N1: Arg1.getAsTemplateOrTemplatePattern(), |
| 736 | N2: Arg2.getAsTemplateOrTemplatePattern()); |
| 737 | |
| 738 | case TemplateArgument::Expression: |
| 739 | return IsStructurallyEquivalent(Context, S1: Arg1.getAsExpr(), |
| 740 | S2: Arg2.getAsExpr()); |
| 741 | |
| 742 | case TemplateArgument::StructuralValue: |
| 743 | return Arg1.structurallyEquals(Other: Arg2); |
| 744 | |
| 745 | case TemplateArgument::Pack: |
| 746 | return IsStructurallyEquivalent(Context, Args1: Arg1.pack_elements(), |
| 747 | Args2: Arg2.pack_elements()); |
| 748 | } |
| 749 | |
| 750 | llvm_unreachable("Invalid template argument kind" ); |
| 751 | } |
| 752 | |
| 753 | /// Determine structural equivalence of two template argument lists. |
| 754 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 755 | ArrayRef<TemplateArgument> Args1, |
| 756 | ArrayRef<TemplateArgument> Args2) { |
| 757 | if (Args1.size() != Args2.size()) |
| 758 | return false; |
| 759 | for (unsigned I = 0, N = Args1.size(); I != N; ++I) { |
| 760 | if (!IsStructurallyEquivalent(Context, Arg1: Args1[I], Arg2: Args2[I])) |
| 761 | return false; |
| 762 | } |
| 763 | return true; |
| 764 | } |
| 765 | |
| 766 | /// Determine whether two template argument locations are equivalent. |
| 767 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 768 | const TemplateArgumentLoc &Arg1, |
| 769 | const TemplateArgumentLoc &Arg2) { |
| 770 | return IsStructurallyEquivalent(Context, Arg1: Arg1.getArgument(), |
| 771 | Arg2: Arg2.getArgument()); |
| 772 | } |
| 773 | |
| 774 | /// Determine structural equivalence for the common part of array |
| 775 | /// types. |
| 776 | static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 777 | const ArrayType *Array1, |
| 778 | const ArrayType *Array2) { |
| 779 | if (!IsStructurallyEquivalent(Context, T1: Array1->getElementType(), |
| 780 | T2: Array2->getElementType())) |
| 781 | return false; |
| 782 | if (Array1->getSizeModifier() != Array2->getSizeModifier()) |
| 783 | return false; |
| 784 | if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers()) |
| 785 | return false; |
| 786 | |
| 787 | return true; |
| 788 | } |
| 789 | |
| 790 | /// Determine structural equivalence based on the ExtInfo of functions. This |
| 791 | /// is inspired by ASTContext::mergeFunctionTypes(), we compare calling |
| 792 | /// conventions bits but must not compare some other bits. |
| 793 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 794 | FunctionType::ExtInfo EI1, |
| 795 | FunctionType::ExtInfo EI2) { |
| 796 | // Compatible functions must have compatible calling conventions. |
| 797 | if (EI1.getCC() != EI2.getCC()) |
| 798 | return false; |
| 799 | |
| 800 | // Regparm is part of the calling convention. |
| 801 | if (EI1.getHasRegParm() != EI2.getHasRegParm()) |
| 802 | return false; |
| 803 | if (EI1.getRegParm() != EI2.getRegParm()) |
| 804 | return false; |
| 805 | |
| 806 | if (EI1.getProducesResult() != EI2.getProducesResult()) |
| 807 | return false; |
| 808 | if (EI1.getNoCallerSavedRegs() != EI2.getNoCallerSavedRegs()) |
| 809 | return false; |
| 810 | if (EI1.getNoCfCheck() != EI2.getNoCfCheck()) |
| 811 | return false; |
| 812 | |
| 813 | return true; |
| 814 | } |
| 815 | |
| 816 | /// Check the equivalence of exception specifications. |
| 817 | static bool IsEquivalentExceptionSpec(StructuralEquivalenceContext &Context, |
| 818 | const FunctionProtoType *Proto1, |
| 819 | const FunctionProtoType *Proto2) { |
| 820 | |
| 821 | auto Spec1 = Proto1->getExceptionSpecType(); |
| 822 | auto Spec2 = Proto2->getExceptionSpecType(); |
| 823 | |
| 824 | if (isUnresolvedExceptionSpec(ESpecType: Spec1) || isUnresolvedExceptionSpec(ESpecType: Spec2)) |
| 825 | return true; |
| 826 | |
| 827 | if (Spec1 != Spec2) |
| 828 | return false; |
| 829 | if (Spec1 == EST_Dynamic) { |
| 830 | if (Proto1->getNumExceptions() != Proto2->getNumExceptions()) |
| 831 | return false; |
| 832 | for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) { |
| 833 | if (!IsStructurallyEquivalent(Context, T1: Proto1->getExceptionType(i: I), |
| 834 | T2: Proto2->getExceptionType(i: I))) |
| 835 | return false; |
| 836 | } |
| 837 | } else if (isComputedNoexcept(ESpecType: Spec1)) { |
| 838 | if (!IsStructurallyEquivalent(Context, S1: Proto1->getNoexceptExpr(), |
| 839 | S2: Proto2->getNoexceptExpr())) |
| 840 | return false; |
| 841 | } |
| 842 | |
| 843 | return true; |
| 844 | } |
| 845 | |
| 846 | /// Determine structural equivalence of two types. |
| 847 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 848 | QualType T1, QualType T2) { |
| 849 | if (T1.isNull() || T2.isNull()) |
| 850 | return T1.isNull() && T2.isNull(); |
| 851 | |
| 852 | QualType OrigT1 = T1; |
| 853 | QualType OrigT2 = T2; |
| 854 | |
| 855 | if (!Context.StrictTypeSpelling) { |
| 856 | // We aren't being strict about token-to-token equivalence of types, |
| 857 | // so map down to the canonical type. |
| 858 | T1 = Context.FromCtx.getCanonicalType(T: T1); |
| 859 | T2 = Context.ToCtx.getCanonicalType(T: T2); |
| 860 | } |
| 861 | |
| 862 | if (T1.getQualifiers() != T2.getQualifiers()) |
| 863 | return false; |
| 864 | |
| 865 | Type::TypeClass TC = T1->getTypeClass(); |
| 866 | |
| 867 | if (T1->getTypeClass() != T2->getTypeClass()) { |
| 868 | // Compare function types with prototypes vs. without prototypes as if |
| 869 | // both did not have prototypes. |
| 870 | if (T1->getTypeClass() == Type::FunctionProto && |
| 871 | T2->getTypeClass() == Type::FunctionNoProto) |
| 872 | TC = Type::FunctionNoProto; |
| 873 | else if (T1->getTypeClass() == Type::FunctionNoProto && |
| 874 | T2->getTypeClass() == Type::FunctionProto) |
| 875 | TC = Type::FunctionNoProto; |
| 876 | else |
| 877 | return false; |
| 878 | } |
| 879 | |
| 880 | switch (TC) { |
| 881 | case Type::Builtin: |
| 882 | // FIXME: Deal with Char_S/Char_U. |
| 883 | if (cast<BuiltinType>(Val&: T1)->getKind() != cast<BuiltinType>(Val&: T2)->getKind()) |
| 884 | return false; |
| 885 | break; |
| 886 | |
| 887 | case Type::Complex: |
| 888 | if (!IsStructurallyEquivalent(Context, |
| 889 | T1: cast<ComplexType>(Val&: T1)->getElementType(), |
| 890 | T2: cast<ComplexType>(Val&: T2)->getElementType())) |
| 891 | return false; |
| 892 | break; |
| 893 | |
| 894 | case Type::Adjusted: |
| 895 | case Type::Decayed: |
| 896 | case Type::ArrayParameter: |
| 897 | if (!IsStructurallyEquivalent(Context, |
| 898 | T1: cast<AdjustedType>(Val&: T1)->getOriginalType(), |
| 899 | T2: cast<AdjustedType>(Val&: T2)->getOriginalType())) |
| 900 | return false; |
| 901 | break; |
| 902 | |
| 903 | case Type::Pointer: |
| 904 | if (!IsStructurallyEquivalent(Context, |
| 905 | T1: cast<PointerType>(Val&: T1)->getPointeeType(), |
| 906 | T2: cast<PointerType>(Val&: T2)->getPointeeType())) |
| 907 | return false; |
| 908 | break; |
| 909 | |
| 910 | case Type::BlockPointer: |
| 911 | if (!IsStructurallyEquivalent(Context, |
| 912 | T1: cast<BlockPointerType>(Val&: T1)->getPointeeType(), |
| 913 | T2: cast<BlockPointerType>(Val&: T2)->getPointeeType())) |
| 914 | return false; |
| 915 | break; |
| 916 | |
| 917 | case Type::LValueReference: |
| 918 | case Type::RValueReference: { |
| 919 | const auto *Ref1 = cast<ReferenceType>(Val&: T1); |
| 920 | const auto *Ref2 = cast<ReferenceType>(Val&: T2); |
| 921 | if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue()) |
| 922 | return false; |
| 923 | if (Ref1->isInnerRef() != Ref2->isInnerRef()) |
| 924 | return false; |
| 925 | if (!IsStructurallyEquivalent(Context, T1: Ref1->getPointeeTypeAsWritten(), |
| 926 | T2: Ref2->getPointeeTypeAsWritten())) |
| 927 | return false; |
| 928 | break; |
| 929 | } |
| 930 | |
| 931 | case Type::MemberPointer: { |
| 932 | const auto *MemPtr1 = cast<MemberPointerType>(Val&: T1); |
| 933 | const auto *MemPtr2 = cast<MemberPointerType>(Val&: T2); |
| 934 | if (!IsStructurallyEquivalent(Context, T1: MemPtr1->getPointeeType(), |
| 935 | T2: MemPtr2->getPointeeType())) |
| 936 | return false; |
| 937 | if (!IsStructurallyEquivalent(Context, NNS1: MemPtr1->getQualifier(), |
| 938 | NNS2: MemPtr2->getQualifier())) |
| 939 | return false; |
| 940 | CXXRecordDecl *D1 = MemPtr1->getMostRecentCXXRecordDecl(), |
| 941 | *D2 = MemPtr2->getMostRecentCXXRecordDecl(); |
| 942 | if (D1 == D2) |
| 943 | break; |
| 944 | if (!D1 || !D2 || !IsStructurallyEquivalent(Context, D1, D2)) |
| 945 | return false; |
| 946 | break; |
| 947 | } |
| 948 | |
| 949 | case Type::ConstantArray: { |
| 950 | const auto *Array1 = cast<ConstantArrayType>(Val&: T1); |
| 951 | const auto *Array2 = cast<ConstantArrayType>(Val&: T2); |
| 952 | if (!llvm::APInt::isSameValue(I1: Array1->getSize(), I2: Array2->getSize())) |
| 953 | return false; |
| 954 | |
| 955 | if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) |
| 956 | return false; |
| 957 | break; |
| 958 | } |
| 959 | |
| 960 | case Type::IncompleteArray: |
| 961 | if (!IsArrayStructurallyEquivalent(Context, Array1: cast<ArrayType>(Val&: T1), |
| 962 | Array2: cast<ArrayType>(Val&: T2))) |
| 963 | return false; |
| 964 | break; |
| 965 | |
| 966 | case Type::VariableArray: { |
| 967 | const auto *Array1 = cast<VariableArrayType>(Val&: T1); |
| 968 | const auto *Array2 = cast<VariableArrayType>(Val&: T2); |
| 969 | if (!IsStructurallyEquivalent(Context, S1: Array1->getSizeExpr(), |
| 970 | S2: Array2->getSizeExpr())) |
| 971 | return false; |
| 972 | |
| 973 | if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) |
| 974 | return false; |
| 975 | |
| 976 | break; |
| 977 | } |
| 978 | |
| 979 | case Type::DependentSizedArray: { |
| 980 | const auto *Array1 = cast<DependentSizedArrayType>(Val&: T1); |
| 981 | const auto *Array2 = cast<DependentSizedArrayType>(Val&: T2); |
| 982 | if (!IsStructurallyEquivalent(Context, S1: Array1->getSizeExpr(), |
| 983 | S2: Array2->getSizeExpr())) |
| 984 | return false; |
| 985 | |
| 986 | if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) |
| 987 | return false; |
| 988 | |
| 989 | break; |
| 990 | } |
| 991 | |
| 992 | case Type::DependentAddressSpace: { |
| 993 | const auto *DepAddressSpace1 = cast<DependentAddressSpaceType>(Val&: T1); |
| 994 | const auto *DepAddressSpace2 = cast<DependentAddressSpaceType>(Val&: T2); |
| 995 | if (!IsStructurallyEquivalent(Context, S1: DepAddressSpace1->getAddrSpaceExpr(), |
| 996 | S2: DepAddressSpace2->getAddrSpaceExpr())) |
| 997 | return false; |
| 998 | if (!IsStructurallyEquivalent(Context, T1: DepAddressSpace1->getPointeeType(), |
| 999 | T2: DepAddressSpace2->getPointeeType())) |
| 1000 | return false; |
| 1001 | |
| 1002 | break; |
| 1003 | } |
| 1004 | |
| 1005 | case Type::DependentSizedExtVector: { |
| 1006 | const auto *Vec1 = cast<DependentSizedExtVectorType>(Val&: T1); |
| 1007 | const auto *Vec2 = cast<DependentSizedExtVectorType>(Val&: T2); |
| 1008 | if (!IsStructurallyEquivalent(Context, S1: Vec1->getSizeExpr(), |
| 1009 | S2: Vec2->getSizeExpr())) |
| 1010 | return false; |
| 1011 | if (!IsStructurallyEquivalent(Context, T1: Vec1->getElementType(), |
| 1012 | T2: Vec2->getElementType())) |
| 1013 | return false; |
| 1014 | break; |
| 1015 | } |
| 1016 | |
| 1017 | case Type::DependentVector: { |
| 1018 | const auto *Vec1 = cast<DependentVectorType>(Val&: T1); |
| 1019 | const auto *Vec2 = cast<DependentVectorType>(Val&: T2); |
| 1020 | if (Vec1->getVectorKind() != Vec2->getVectorKind()) |
| 1021 | return false; |
| 1022 | if (!IsStructurallyEquivalent(Context, S1: Vec1->getSizeExpr(), |
| 1023 | S2: Vec2->getSizeExpr())) |
| 1024 | return false; |
| 1025 | if (!IsStructurallyEquivalent(Context, T1: Vec1->getElementType(), |
| 1026 | T2: Vec2->getElementType())) |
| 1027 | return false; |
| 1028 | break; |
| 1029 | } |
| 1030 | |
| 1031 | case Type::Vector: |
| 1032 | case Type::ExtVector: { |
| 1033 | const auto *Vec1 = cast<VectorType>(Val&: T1); |
| 1034 | const auto *Vec2 = cast<VectorType>(Val&: T2); |
| 1035 | if (!IsStructurallyEquivalent(Context, T1: Vec1->getElementType(), |
| 1036 | T2: Vec2->getElementType())) |
| 1037 | return false; |
| 1038 | if (Vec1->getNumElements() != Vec2->getNumElements()) |
| 1039 | return false; |
| 1040 | if (Vec1->getVectorKind() != Vec2->getVectorKind()) |
| 1041 | return false; |
| 1042 | break; |
| 1043 | } |
| 1044 | |
| 1045 | case Type::DependentSizedMatrix: { |
| 1046 | const DependentSizedMatrixType *Mat1 = cast<DependentSizedMatrixType>(Val&: T1); |
| 1047 | const DependentSizedMatrixType *Mat2 = cast<DependentSizedMatrixType>(Val&: T2); |
| 1048 | // The element types, row and column expressions must be structurally |
| 1049 | // equivalent. |
| 1050 | if (!IsStructurallyEquivalent(Context, S1: Mat1->getRowExpr(), |
| 1051 | S2: Mat2->getRowExpr()) || |
| 1052 | !IsStructurallyEquivalent(Context, S1: Mat1->getColumnExpr(), |
| 1053 | S2: Mat2->getColumnExpr()) || |
| 1054 | !IsStructurallyEquivalent(Context, T1: Mat1->getElementType(), |
| 1055 | T2: Mat2->getElementType())) |
| 1056 | return false; |
| 1057 | break; |
| 1058 | } |
| 1059 | |
| 1060 | case Type::ConstantMatrix: { |
| 1061 | const ConstantMatrixType *Mat1 = cast<ConstantMatrixType>(Val&: T1); |
| 1062 | const ConstantMatrixType *Mat2 = cast<ConstantMatrixType>(Val&: T2); |
| 1063 | // The element types must be structurally equivalent and the number of rows |
| 1064 | // and columns must match. |
| 1065 | if (!IsStructurallyEquivalent(Context, T1: Mat1->getElementType(), |
| 1066 | T2: Mat2->getElementType()) || |
| 1067 | Mat1->getNumRows() != Mat2->getNumRows() || |
| 1068 | Mat1->getNumColumns() != Mat2->getNumColumns()) |
| 1069 | return false; |
| 1070 | break; |
| 1071 | } |
| 1072 | |
| 1073 | case Type::FunctionProto: { |
| 1074 | const auto *Proto1 = cast<FunctionProtoType>(Val&: T1); |
| 1075 | const auto *Proto2 = cast<FunctionProtoType>(Val&: T2); |
| 1076 | |
| 1077 | if (Proto1->getNumParams() != Proto2->getNumParams()) |
| 1078 | return false; |
| 1079 | for (unsigned I = 0, N = Proto1->getNumParams(); I != N; ++I) { |
| 1080 | if (!IsStructurallyEquivalent(Context, T1: Proto1->getParamType(i: I), |
| 1081 | T2: Proto2->getParamType(i: I))) |
| 1082 | return false; |
| 1083 | } |
| 1084 | if (Proto1->isVariadic() != Proto2->isVariadic()) |
| 1085 | return false; |
| 1086 | |
| 1087 | if (Proto1->getMethodQuals() != Proto2->getMethodQuals()) |
| 1088 | return false; |
| 1089 | |
| 1090 | // Check exceptions, this information is lost in canonical type. |
| 1091 | const auto *OrigProto1 = |
| 1092 | cast<FunctionProtoType>(Val: OrigT1.getDesugaredType(Context: Context.FromCtx)); |
| 1093 | const auto *OrigProto2 = |
| 1094 | cast<FunctionProtoType>(Val: OrigT2.getDesugaredType(Context: Context.ToCtx)); |
| 1095 | if (!IsEquivalentExceptionSpec(Context, Proto1: OrigProto1, Proto2: OrigProto2)) |
| 1096 | return false; |
| 1097 | |
| 1098 | // Fall through to check the bits common with FunctionNoProtoType. |
| 1099 | [[fallthrough]]; |
| 1100 | } |
| 1101 | |
| 1102 | case Type::FunctionNoProto: { |
| 1103 | const auto *Function1 = cast<FunctionType>(Val&: T1); |
| 1104 | const auto *Function2 = cast<FunctionType>(Val&: T2); |
| 1105 | if (!IsStructurallyEquivalent(Context, T1: Function1->getReturnType(), |
| 1106 | T2: Function2->getReturnType())) |
| 1107 | return false; |
| 1108 | if (!IsStructurallyEquivalent(Context, EI1: Function1->getExtInfo(), |
| 1109 | EI2: Function2->getExtInfo())) |
| 1110 | return false; |
| 1111 | break; |
| 1112 | } |
| 1113 | |
| 1114 | case Type::UnresolvedUsing: |
| 1115 | if (!IsStructurallyEquivalent(Context, |
| 1116 | D1: cast<UnresolvedUsingType>(Val&: T1)->getDecl(), |
| 1117 | D2: cast<UnresolvedUsingType>(Val&: T2)->getDecl())) |
| 1118 | return false; |
| 1119 | break; |
| 1120 | |
| 1121 | case Type::Attributed: |
| 1122 | if (!IsStructurallyEquivalent(Context, |
| 1123 | T1: cast<AttributedType>(Val&: T1)->getModifiedType(), |
| 1124 | T2: cast<AttributedType>(Val&: T2)->getModifiedType())) |
| 1125 | return false; |
| 1126 | if (!IsStructurallyEquivalent( |
| 1127 | Context, T1: cast<AttributedType>(Val&: T1)->getEquivalentType(), |
| 1128 | T2: cast<AttributedType>(Val&: T2)->getEquivalentType())) |
| 1129 | return false; |
| 1130 | break; |
| 1131 | |
| 1132 | case Type::CountAttributed: |
| 1133 | if (!IsStructurallyEquivalent(Context, |
| 1134 | T1: cast<CountAttributedType>(Val&: T1)->desugar(), |
| 1135 | T2: cast<CountAttributedType>(Val&: T2)->desugar())) |
| 1136 | return false; |
| 1137 | break; |
| 1138 | |
| 1139 | case Type::BTFTagAttributed: |
| 1140 | if (!IsStructurallyEquivalent( |
| 1141 | Context, T1: cast<BTFTagAttributedType>(Val&: T1)->getWrappedType(), |
| 1142 | T2: cast<BTFTagAttributedType>(Val&: T2)->getWrappedType())) |
| 1143 | return false; |
| 1144 | break; |
| 1145 | |
| 1146 | case Type::HLSLAttributedResource: |
| 1147 | if (!IsStructurallyEquivalent( |
| 1148 | Context, T1: cast<HLSLAttributedResourceType>(Val&: T1)->getWrappedType(), |
| 1149 | T2: cast<HLSLAttributedResourceType>(Val&: T2)->getWrappedType())) |
| 1150 | return false; |
| 1151 | if (!IsStructurallyEquivalent( |
| 1152 | Context, T1: cast<HLSLAttributedResourceType>(Val&: T1)->getContainedType(), |
| 1153 | T2: cast<HLSLAttributedResourceType>(Val&: T2)->getContainedType())) |
| 1154 | return false; |
| 1155 | if (cast<HLSLAttributedResourceType>(Val&: T1)->getAttrs() != |
| 1156 | cast<HLSLAttributedResourceType>(Val&: T2)->getAttrs()) |
| 1157 | return false; |
| 1158 | break; |
| 1159 | |
| 1160 | case Type::HLSLInlineSpirv: |
| 1161 | if (cast<HLSLInlineSpirvType>(Val&: T1)->getOpcode() != |
| 1162 | cast<HLSLInlineSpirvType>(Val&: T2)->getOpcode() || |
| 1163 | cast<HLSLInlineSpirvType>(Val&: T1)->getSize() != |
| 1164 | cast<HLSLInlineSpirvType>(Val&: T2)->getSize() || |
| 1165 | cast<HLSLInlineSpirvType>(Val&: T1)->getAlignment() != |
| 1166 | cast<HLSLInlineSpirvType>(Val&: T2)->getAlignment()) |
| 1167 | return false; |
| 1168 | for (size_t I = 0; I < cast<HLSLInlineSpirvType>(Val&: T1)->getOperands().size(); |
| 1169 | I++) { |
| 1170 | if (cast<HLSLInlineSpirvType>(Val&: T1)->getOperands()[I] != |
| 1171 | cast<HLSLInlineSpirvType>(Val&: T2)->getOperands()[I]) { |
| 1172 | return false; |
| 1173 | } |
| 1174 | } |
| 1175 | break; |
| 1176 | |
| 1177 | case Type::Paren: |
| 1178 | if (!IsStructurallyEquivalent(Context, T1: cast<ParenType>(Val&: T1)->getInnerType(), |
| 1179 | T2: cast<ParenType>(Val&: T2)->getInnerType())) |
| 1180 | return false; |
| 1181 | break; |
| 1182 | |
| 1183 | case Type::MacroQualified: |
| 1184 | if (!IsStructurallyEquivalent( |
| 1185 | Context, T1: cast<MacroQualifiedType>(Val&: T1)->getUnderlyingType(), |
| 1186 | T2: cast<MacroQualifiedType>(Val&: T2)->getUnderlyingType())) |
| 1187 | return false; |
| 1188 | break; |
| 1189 | |
| 1190 | case Type::Using: |
| 1191 | if (!IsStructurallyEquivalent(Context, D1: cast<UsingType>(Val&: T1)->getFoundDecl(), |
| 1192 | D2: cast<UsingType>(Val&: T2)->getFoundDecl())) |
| 1193 | return false; |
| 1194 | if (!IsStructurallyEquivalent(Context, |
| 1195 | T1: cast<UsingType>(Val&: T1)->getUnderlyingType(), |
| 1196 | T2: cast<UsingType>(Val&: T2)->getUnderlyingType())) |
| 1197 | return false; |
| 1198 | break; |
| 1199 | |
| 1200 | case Type::Typedef: |
| 1201 | if (!IsStructurallyEquivalent(Context, D1: cast<TypedefType>(Val&: T1)->getDecl(), |
| 1202 | D2: cast<TypedefType>(Val&: T2)->getDecl()) || |
| 1203 | !IsStructurallyEquivalent(Context, T1: cast<TypedefType>(Val&: T1)->desugar(), |
| 1204 | T2: cast<TypedefType>(Val&: T2)->desugar())) |
| 1205 | return false; |
| 1206 | break; |
| 1207 | |
| 1208 | case Type::TypeOfExpr: |
| 1209 | if (!IsStructurallyEquivalent( |
| 1210 | Context, S1: cast<TypeOfExprType>(Val&: T1)->getUnderlyingExpr(), |
| 1211 | S2: cast<TypeOfExprType>(Val&: T2)->getUnderlyingExpr())) |
| 1212 | return false; |
| 1213 | break; |
| 1214 | |
| 1215 | case Type::TypeOf: |
| 1216 | if (!IsStructurallyEquivalent(Context, |
| 1217 | T1: cast<TypeOfType>(Val&: T1)->getUnmodifiedType(), |
| 1218 | T2: cast<TypeOfType>(Val&: T2)->getUnmodifiedType())) |
| 1219 | return false; |
| 1220 | break; |
| 1221 | |
| 1222 | case Type::UnaryTransform: |
| 1223 | if (!IsStructurallyEquivalent( |
| 1224 | Context, T1: cast<UnaryTransformType>(Val&: T1)->getUnderlyingType(), |
| 1225 | T2: cast<UnaryTransformType>(Val&: T2)->getUnderlyingType())) |
| 1226 | return false; |
| 1227 | break; |
| 1228 | |
| 1229 | case Type::Decltype: |
| 1230 | if (!IsStructurallyEquivalent(Context, |
| 1231 | S1: cast<DecltypeType>(Val&: T1)->getUnderlyingExpr(), |
| 1232 | S2: cast<DecltypeType>(Val&: T2)->getUnderlyingExpr())) |
| 1233 | return false; |
| 1234 | break; |
| 1235 | |
| 1236 | case Type::Auto: { |
| 1237 | auto *Auto1 = cast<AutoType>(Val&: T1); |
| 1238 | auto *Auto2 = cast<AutoType>(Val&: T2); |
| 1239 | if (!IsStructurallyEquivalent(Context, T1: Auto1->getDeducedType(), |
| 1240 | T2: Auto2->getDeducedType())) |
| 1241 | return false; |
| 1242 | if (Auto1->isConstrained() != Auto2->isConstrained()) |
| 1243 | return false; |
| 1244 | if (Auto1->isConstrained()) { |
| 1245 | if (Auto1->getTypeConstraintConcept() != |
| 1246 | Auto2->getTypeConstraintConcept()) |
| 1247 | return false; |
| 1248 | if (!IsStructurallyEquivalent(Context, |
| 1249 | Args1: Auto1->getTypeConstraintArguments(), |
| 1250 | Args2: Auto2->getTypeConstraintArguments())) |
| 1251 | return false; |
| 1252 | } |
| 1253 | break; |
| 1254 | } |
| 1255 | |
| 1256 | case Type::DeducedTemplateSpecialization: { |
| 1257 | const auto *DT1 = cast<DeducedTemplateSpecializationType>(Val&: T1); |
| 1258 | const auto *DT2 = cast<DeducedTemplateSpecializationType>(Val&: T2); |
| 1259 | if (!IsStructurallyEquivalent(Context, N1: DT1->getTemplateName(), |
| 1260 | N2: DT2->getTemplateName())) |
| 1261 | return false; |
| 1262 | if (!IsStructurallyEquivalent(Context, T1: DT1->getDeducedType(), |
| 1263 | T2: DT2->getDeducedType())) |
| 1264 | return false; |
| 1265 | break; |
| 1266 | } |
| 1267 | |
| 1268 | case Type::Record: |
| 1269 | case Type::Enum: |
| 1270 | if (!IsStructurallyEquivalent(Context, D1: cast<TagType>(Val&: T1)->getDecl(), |
| 1271 | D2: cast<TagType>(Val&: T2)->getDecl())) |
| 1272 | return false; |
| 1273 | break; |
| 1274 | |
| 1275 | case Type::TemplateTypeParm: { |
| 1276 | const auto *Parm1 = cast<TemplateTypeParmType>(Val&: T1); |
| 1277 | const auto *Parm2 = cast<TemplateTypeParmType>(Val&: T2); |
| 1278 | if (!Context.IgnoreTemplateParmDepth && |
| 1279 | Parm1->getDepth() != Parm2->getDepth()) |
| 1280 | return false; |
| 1281 | if (Parm1->getIndex() != Parm2->getIndex()) |
| 1282 | return false; |
| 1283 | if (Parm1->isParameterPack() != Parm2->isParameterPack()) |
| 1284 | return false; |
| 1285 | |
| 1286 | // Names of template type parameters are never significant. |
| 1287 | break; |
| 1288 | } |
| 1289 | |
| 1290 | case Type::SubstTemplateTypeParm: { |
| 1291 | const auto *Subst1 = cast<SubstTemplateTypeParmType>(Val&: T1); |
| 1292 | const auto *Subst2 = cast<SubstTemplateTypeParmType>(Val&: T2); |
| 1293 | if (!IsStructurallyEquivalent(Context, T1: Subst1->getReplacementType(), |
| 1294 | T2: Subst2->getReplacementType())) |
| 1295 | return false; |
| 1296 | if (!IsStructurallyEquivalent(Context, D1: Subst1->getAssociatedDecl(), |
| 1297 | D2: Subst2->getAssociatedDecl())) |
| 1298 | return false; |
| 1299 | if (Subst1->getIndex() != Subst2->getIndex()) |
| 1300 | return false; |
| 1301 | if (Subst1->getPackIndex() != Subst2->getPackIndex()) |
| 1302 | return false; |
| 1303 | break; |
| 1304 | } |
| 1305 | |
| 1306 | case Type::SubstTemplateTypeParmPack: { |
| 1307 | const auto *Subst1 = cast<SubstTemplateTypeParmPackType>(Val&: T1); |
| 1308 | const auto *Subst2 = cast<SubstTemplateTypeParmPackType>(Val&: T2); |
| 1309 | if (!IsStructurallyEquivalent(Context, D1: Subst1->getAssociatedDecl(), |
| 1310 | D2: Subst2->getAssociatedDecl())) |
| 1311 | return false; |
| 1312 | if (Subst1->getIndex() != Subst2->getIndex()) |
| 1313 | return false; |
| 1314 | if (!IsStructurallyEquivalent(Context, Arg1: Subst1->getArgumentPack(), |
| 1315 | Arg2: Subst2->getArgumentPack())) |
| 1316 | return false; |
| 1317 | break; |
| 1318 | } |
| 1319 | |
| 1320 | case Type::TemplateSpecialization: { |
| 1321 | const auto *Spec1 = cast<TemplateSpecializationType>(Val&: T1); |
| 1322 | const auto *Spec2 = cast<TemplateSpecializationType>(Val&: T2); |
| 1323 | if (!IsStructurallyEquivalent(Context, N1: Spec1->getTemplateName(), |
| 1324 | N2: Spec2->getTemplateName())) |
| 1325 | return false; |
| 1326 | if (!IsStructurallyEquivalent(Context, Args1: Spec1->template_arguments(), |
| 1327 | Args2: Spec2->template_arguments())) |
| 1328 | return false; |
| 1329 | break; |
| 1330 | } |
| 1331 | |
| 1332 | case Type::Elaborated: { |
| 1333 | const auto *Elab1 = cast<ElaboratedType>(Val&: T1); |
| 1334 | const auto *Elab2 = cast<ElaboratedType>(Val&: T2); |
| 1335 | // CHECKME: what if a keyword is ElaboratedTypeKeyword::None or |
| 1336 | // ElaboratedTypeKeyword::Typename |
| 1337 | // ? |
| 1338 | if (Elab1->getKeyword() != Elab2->getKeyword()) |
| 1339 | return false; |
| 1340 | if (!IsStructurallyEquivalent(Context, NNS1: Elab1->getQualifier(), |
| 1341 | NNS2: Elab2->getQualifier())) |
| 1342 | return false; |
| 1343 | if (!IsStructurallyEquivalent(Context, T1: Elab1->getNamedType(), |
| 1344 | T2: Elab2->getNamedType())) |
| 1345 | return false; |
| 1346 | break; |
| 1347 | } |
| 1348 | |
| 1349 | case Type::InjectedClassName: { |
| 1350 | const auto *Inj1 = cast<InjectedClassNameType>(Val&: T1); |
| 1351 | const auto *Inj2 = cast<InjectedClassNameType>(Val&: T2); |
| 1352 | if (!IsStructurallyEquivalent(Context, |
| 1353 | T1: Inj1->getInjectedSpecializationType(), |
| 1354 | T2: Inj2->getInjectedSpecializationType())) |
| 1355 | return false; |
| 1356 | break; |
| 1357 | } |
| 1358 | |
| 1359 | case Type::DependentName: { |
| 1360 | const auto *Typename1 = cast<DependentNameType>(Val&: T1); |
| 1361 | const auto *Typename2 = cast<DependentNameType>(Val&: T2); |
| 1362 | if (!IsStructurallyEquivalent(Context, NNS1: Typename1->getQualifier(), |
| 1363 | NNS2: Typename2->getQualifier())) |
| 1364 | return false; |
| 1365 | if (!IsStructurallyEquivalent(Name1: Typename1->getIdentifier(), |
| 1366 | Name2: Typename2->getIdentifier())) |
| 1367 | return false; |
| 1368 | |
| 1369 | break; |
| 1370 | } |
| 1371 | |
| 1372 | case Type::DependentTemplateSpecialization: { |
| 1373 | const auto *Spec1 = cast<DependentTemplateSpecializationType>(Val&: T1); |
| 1374 | const auto *Spec2 = cast<DependentTemplateSpecializationType>(Val&: T2); |
| 1375 | if (Spec1->getKeyword() != Spec2->getKeyword()) |
| 1376 | return false; |
| 1377 | if (!IsStructurallyEquivalent(Context, S1: Spec1->getDependentTemplateName(), |
| 1378 | S2: Spec2->getDependentTemplateName())) |
| 1379 | return false; |
| 1380 | if (!IsStructurallyEquivalent(Context, Args1: Spec1->template_arguments(), |
| 1381 | Args2: Spec2->template_arguments())) |
| 1382 | return false; |
| 1383 | break; |
| 1384 | } |
| 1385 | |
| 1386 | case Type::PackExpansion: |
| 1387 | if (!IsStructurallyEquivalent(Context, |
| 1388 | T1: cast<PackExpansionType>(Val&: T1)->getPattern(), |
| 1389 | T2: cast<PackExpansionType>(Val&: T2)->getPattern())) |
| 1390 | return false; |
| 1391 | break; |
| 1392 | |
| 1393 | case Type::PackIndexing: |
| 1394 | if (!IsStructurallyEquivalent(Context, |
| 1395 | T1: cast<PackIndexingType>(Val&: T1)->getPattern(), |
| 1396 | T2: cast<PackIndexingType>(Val&: T2)->getPattern())) |
| 1397 | if (!IsStructurallyEquivalent(Context, |
| 1398 | S1: cast<PackIndexingType>(Val&: T1)->getIndexExpr(), |
| 1399 | S2: cast<PackIndexingType>(Val&: T2)->getIndexExpr())) |
| 1400 | return false; |
| 1401 | break; |
| 1402 | |
| 1403 | case Type::ObjCInterface: { |
| 1404 | const auto *Iface1 = cast<ObjCInterfaceType>(Val&: T1); |
| 1405 | const auto *Iface2 = cast<ObjCInterfaceType>(Val&: T2); |
| 1406 | if (!IsStructurallyEquivalent(Context, D1: Iface1->getDecl(), |
| 1407 | D2: Iface2->getDecl())) |
| 1408 | return false; |
| 1409 | break; |
| 1410 | } |
| 1411 | |
| 1412 | case Type::ObjCTypeParam: { |
| 1413 | const auto *Obj1 = cast<ObjCTypeParamType>(Val&: T1); |
| 1414 | const auto *Obj2 = cast<ObjCTypeParamType>(Val&: T2); |
| 1415 | if (!IsStructurallyEquivalent(Context, D1: Obj1->getDecl(), D2: Obj2->getDecl())) |
| 1416 | return false; |
| 1417 | |
| 1418 | if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) |
| 1419 | return false; |
| 1420 | for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { |
| 1421 | if (!IsStructurallyEquivalent(Context, D1: Obj1->getProtocol(I), |
| 1422 | D2: Obj2->getProtocol(I))) |
| 1423 | return false; |
| 1424 | } |
| 1425 | break; |
| 1426 | } |
| 1427 | |
| 1428 | case Type::ObjCObject: { |
| 1429 | const auto *Obj1 = cast<ObjCObjectType>(Val&: T1); |
| 1430 | const auto *Obj2 = cast<ObjCObjectType>(Val&: T2); |
| 1431 | if (!IsStructurallyEquivalent(Context, T1: Obj1->getBaseType(), |
| 1432 | T2: Obj2->getBaseType())) |
| 1433 | return false; |
| 1434 | if (Obj1->getNumProtocols() != Obj2->getNumProtocols()) |
| 1435 | return false; |
| 1436 | for (unsigned I = 0, N = Obj1->getNumProtocols(); I != N; ++I) { |
| 1437 | if (!IsStructurallyEquivalent(Context, D1: Obj1->getProtocol(I), |
| 1438 | D2: Obj2->getProtocol(I))) |
| 1439 | return false; |
| 1440 | } |
| 1441 | break; |
| 1442 | } |
| 1443 | |
| 1444 | case Type::ObjCObjectPointer: { |
| 1445 | const auto *Ptr1 = cast<ObjCObjectPointerType>(Val&: T1); |
| 1446 | const auto *Ptr2 = cast<ObjCObjectPointerType>(Val&: T2); |
| 1447 | if (!IsStructurallyEquivalent(Context, T1: Ptr1->getPointeeType(), |
| 1448 | T2: Ptr2->getPointeeType())) |
| 1449 | return false; |
| 1450 | break; |
| 1451 | } |
| 1452 | |
| 1453 | case Type::Atomic: |
| 1454 | if (!IsStructurallyEquivalent(Context, T1: cast<AtomicType>(Val&: T1)->getValueType(), |
| 1455 | T2: cast<AtomicType>(Val&: T2)->getValueType())) |
| 1456 | return false; |
| 1457 | break; |
| 1458 | |
| 1459 | case Type::Pipe: |
| 1460 | if (!IsStructurallyEquivalent(Context, T1: cast<PipeType>(Val&: T1)->getElementType(), |
| 1461 | T2: cast<PipeType>(Val&: T2)->getElementType())) |
| 1462 | return false; |
| 1463 | break; |
| 1464 | case Type::BitInt: { |
| 1465 | const auto *Int1 = cast<BitIntType>(Val&: T1); |
| 1466 | const auto *Int2 = cast<BitIntType>(Val&: T2); |
| 1467 | |
| 1468 | if (Int1->isUnsigned() != Int2->isUnsigned() || |
| 1469 | Int1->getNumBits() != Int2->getNumBits()) |
| 1470 | return false; |
| 1471 | break; |
| 1472 | } |
| 1473 | case Type::DependentBitInt: { |
| 1474 | const auto *Int1 = cast<DependentBitIntType>(Val&: T1); |
| 1475 | const auto *Int2 = cast<DependentBitIntType>(Val&: T2); |
| 1476 | |
| 1477 | if (Int1->isUnsigned() != Int2->isUnsigned() || |
| 1478 | !IsStructurallyEquivalent(Context, S1: Int1->getNumBitsExpr(), |
| 1479 | S2: Int2->getNumBitsExpr())) |
| 1480 | return false; |
| 1481 | break; |
| 1482 | } |
| 1483 | } // end switch |
| 1484 | |
| 1485 | return true; |
| 1486 | } |
| 1487 | |
| 1488 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 1489 | VarDecl *D1, VarDecl *D2) { |
| 1490 | IdentifierInfo *Name1 = D1->getIdentifier(); |
| 1491 | IdentifierInfo *Name2 = D2->getIdentifier(); |
| 1492 | if (!::IsStructurallyEquivalent(Name1, Name2)) |
| 1493 | return false; |
| 1494 | |
| 1495 | if (!IsStructurallyEquivalent(Context, T1: D1->getType(), T2: D2->getType())) |
| 1496 | return false; |
| 1497 | |
| 1498 | // Compare storage class and initializer only if none or both are a |
| 1499 | // definition. Like a forward-declaration matches a class definition, variable |
| 1500 | // declarations that are not definitions should match with the definitions. |
| 1501 | if (D1->isThisDeclarationADefinition() != D2->isThisDeclarationADefinition()) |
| 1502 | return true; |
| 1503 | |
| 1504 | if (D1->getStorageClass() != D2->getStorageClass()) |
| 1505 | return false; |
| 1506 | |
| 1507 | return IsStructurallyEquivalent(Context, S1: D1->getInit(), S2: D2->getInit()); |
| 1508 | } |
| 1509 | |
| 1510 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 1511 | FieldDecl *Field1, FieldDecl *Field2, |
| 1512 | QualType Owner2Type) { |
| 1513 | const auto *Owner2 = cast<Decl>(Val: Field2->getDeclContext()); |
| 1514 | |
| 1515 | // In C23 mode, check for structural equivalence of attributes on the fields. |
| 1516 | // FIXME: Should this happen in C++ as well? |
| 1517 | if (Context.LangOpts.C23 && |
| 1518 | !CheckStructurallyEquivalentAttributes(Context, D1: Field1, D2: Field2, PrimaryDecl: Owner2)) |
| 1519 | return false; |
| 1520 | |
| 1521 | // For anonymous structs/unions, match up the anonymous struct/union type |
| 1522 | // declarations directly, so that we don't go off searching for anonymous |
| 1523 | // types |
| 1524 | if (Field1->isAnonymousStructOrUnion() && |
| 1525 | Field2->isAnonymousStructOrUnion()) { |
| 1526 | RecordDecl *D1 = Field1->getType()->castAs<RecordType>()->getDecl(); |
| 1527 | RecordDecl *D2 = Field2->getType()->castAs<RecordType>()->getDecl(); |
| 1528 | return IsStructurallyEquivalent(Context, D1, D2); |
| 1529 | } |
| 1530 | |
| 1531 | // Check for equivalent field names. |
| 1532 | IdentifierInfo *Name1 = Field1->getIdentifier(); |
| 1533 | IdentifierInfo *Name2 = Field2->getIdentifier(); |
| 1534 | if (!::IsStructurallyEquivalent(Name1, Name2)) { |
| 1535 | if (Context.Complain) { |
| 1536 | Context.Diag2( |
| 1537 | Loc: Owner2->getLocation(), |
| 1538 | DiagID: Context.getApplicableDiagnostic(ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
| 1539 | << Owner2Type << (&Context.FromCtx != &Context.ToCtx); |
| 1540 | Context.Diag2(Loc: Field2->getLocation(), DiagID: diag::note_odr_field_name) |
| 1541 | << Field2->getDeclName(); |
| 1542 | Context.Diag1(Loc: Field1->getLocation(), DiagID: diag::note_odr_field_name) |
| 1543 | << Field1->getDeclName(); |
| 1544 | } |
| 1545 | return false; |
| 1546 | } |
| 1547 | |
| 1548 | if (!IsStructurallyEquivalent(Context, T1: Field1->getType(), |
| 1549 | T2: Field2->getType())) { |
| 1550 | if (Context.Complain) { |
| 1551 | Context.Diag2( |
| 1552 | Loc: Owner2->getLocation(), |
| 1553 | DiagID: Context.getApplicableDiagnostic(ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
| 1554 | << Owner2Type << (&Context.FromCtx != &Context.ToCtx); |
| 1555 | Context.Diag2(Loc: Field2->getLocation(), DiagID: diag::note_odr_field) |
| 1556 | << Field2->getDeclName() << Field2->getType(); |
| 1557 | Context.Diag1(Loc: Field1->getLocation(), DiagID: diag::note_odr_field) |
| 1558 | << Field1->getDeclName() << Field1->getType(); |
| 1559 | } |
| 1560 | return false; |
| 1561 | } |
| 1562 | |
| 1563 | if ((Field1->isBitField() || Field2->isBitField()) && |
| 1564 | !IsStructurallyEquivalent(Context, S1: Field1->getBitWidth(), |
| 1565 | S2: Field2->getBitWidth())) { |
| 1566 | // Two bit-fields can be structurally unequivalent but still be okay for |
| 1567 | // the purposes of C where they simply need to have the same values, not |
| 1568 | // the same token sequences. |
| 1569 | bool Diagnose = true; |
| 1570 | if (Context.LangOpts.C23 && Field1->isBitField() && Field2->isBitField()) |
| 1571 | Diagnose = Field1->getBitWidthValue() != Field2->getBitWidthValue(); |
| 1572 | |
| 1573 | if (Diagnose && Context.Complain) { |
| 1574 | auto DiagNote = [&](const FieldDecl *FD, |
| 1575 | DiagnosticBuilder ( |
| 1576 | StructuralEquivalenceContext::*Diag)( |
| 1577 | SourceLocation, unsigned)) { |
| 1578 | if (FD->isBitField()) { |
| 1579 | (Context.*Diag)(FD->getLocation(), diag::note_odr_field_bit_width) |
| 1580 | << FD->getDeclName() << FD->getBitWidthValue(); |
| 1581 | } else { |
| 1582 | (Context.*Diag)(FD->getLocation(), diag::note_odr_field_not_bit_field) |
| 1583 | << FD->getDeclName(); |
| 1584 | } |
| 1585 | }; |
| 1586 | |
| 1587 | Context.Diag2( |
| 1588 | Loc: Owner2->getLocation(), |
| 1589 | DiagID: Context.getApplicableDiagnostic(ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
| 1590 | << Owner2Type << (&Context.FromCtx != &Context.ToCtx); |
| 1591 | DiagNote(Field2, &StructuralEquivalenceContext::Diag2); |
| 1592 | DiagNote(Field1, &StructuralEquivalenceContext::Diag1); |
| 1593 | } |
| 1594 | return false; |
| 1595 | } |
| 1596 | |
| 1597 | return true; |
| 1598 | } |
| 1599 | |
| 1600 | /// Determine structural equivalence of two fields. |
| 1601 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 1602 | FieldDecl *Field1, FieldDecl *Field2) { |
| 1603 | const auto *Owner2 = cast<RecordDecl>(Val: Field2->getDeclContext()); |
| 1604 | return IsStructurallyEquivalent(Context, Field1, Field2, |
| 1605 | Owner2Type: Context.ToCtx.getTypeDeclType(Decl: Owner2)); |
| 1606 | } |
| 1607 | |
| 1608 | /// Determine structural equivalence of two methods. |
| 1609 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 1610 | CXXMethodDecl *Method1, |
| 1611 | CXXMethodDecl *Method2) { |
| 1612 | bool PropertiesEqual = |
| 1613 | Method1->getDeclKind() == Method2->getDeclKind() && |
| 1614 | Method1->getRefQualifier() == Method2->getRefQualifier() && |
| 1615 | Method1->getAccess() == Method2->getAccess() && |
| 1616 | Method1->getOverloadedOperator() == Method2->getOverloadedOperator() && |
| 1617 | Method1->isStatic() == Method2->isStatic() && |
| 1618 | Method1->isImplicitObjectMemberFunction() == |
| 1619 | Method2->isImplicitObjectMemberFunction() && |
| 1620 | Method1->isConst() == Method2->isConst() && |
| 1621 | Method1->isVolatile() == Method2->isVolatile() && |
| 1622 | Method1->isVirtual() == Method2->isVirtual() && |
| 1623 | Method1->isPureVirtual() == Method2->isPureVirtual() && |
| 1624 | Method1->isDefaulted() == Method2->isDefaulted() && |
| 1625 | Method1->isDeleted() == Method2->isDeleted(); |
| 1626 | if (!PropertiesEqual) |
| 1627 | return false; |
| 1628 | // FIXME: Check for 'final'. |
| 1629 | |
| 1630 | if (auto *Constructor1 = dyn_cast<CXXConstructorDecl>(Val: Method1)) { |
| 1631 | auto *Constructor2 = cast<CXXConstructorDecl>(Val: Method2); |
| 1632 | if (!Constructor1->getExplicitSpecifier().isEquivalent( |
| 1633 | Other: Constructor2->getExplicitSpecifier())) |
| 1634 | return false; |
| 1635 | } |
| 1636 | |
| 1637 | if (auto *Conversion1 = dyn_cast<CXXConversionDecl>(Val: Method1)) { |
| 1638 | auto *Conversion2 = cast<CXXConversionDecl>(Val: Method2); |
| 1639 | if (!Conversion1->getExplicitSpecifier().isEquivalent( |
| 1640 | Other: Conversion2->getExplicitSpecifier())) |
| 1641 | return false; |
| 1642 | if (!IsStructurallyEquivalent(Context, T1: Conversion1->getConversionType(), |
| 1643 | T2: Conversion2->getConversionType())) |
| 1644 | return false; |
| 1645 | } |
| 1646 | |
| 1647 | const IdentifierInfo *Name1 = Method1->getIdentifier(); |
| 1648 | const IdentifierInfo *Name2 = Method2->getIdentifier(); |
| 1649 | if (!::IsStructurallyEquivalent(Name1, Name2)) { |
| 1650 | return false; |
| 1651 | // TODO: Names do not match, add warning like at check for FieldDecl. |
| 1652 | } |
| 1653 | |
| 1654 | // Check the prototypes. |
| 1655 | if (!::IsStructurallyEquivalent(Context, |
| 1656 | T1: Method1->getType(), T2: Method2->getType())) |
| 1657 | return false; |
| 1658 | |
| 1659 | return true; |
| 1660 | } |
| 1661 | |
| 1662 | /// Determine structural equivalence of two lambda classes. |
| 1663 | static bool |
| 1664 | IsStructurallyEquivalentLambdas(StructuralEquivalenceContext &Context, |
| 1665 | CXXRecordDecl *D1, CXXRecordDecl *D2) { |
| 1666 | assert(D1->isLambda() && D2->isLambda() && |
| 1667 | "Must be called on lambda classes" ); |
| 1668 | if (!IsStructurallyEquivalent(Context, Method1: D1->getLambdaCallOperator(), |
| 1669 | Method2: D2->getLambdaCallOperator())) |
| 1670 | return false; |
| 1671 | |
| 1672 | return true; |
| 1673 | } |
| 1674 | |
| 1675 | /// Determine if context of a class is equivalent. |
| 1676 | static bool |
| 1677 | IsRecordContextStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 1678 | RecordDecl *D1, RecordDecl *D2) { |
| 1679 | // The context should be completely equal, including anonymous and inline |
| 1680 | // namespaces. |
| 1681 | // We compare objects as part of full translation units, not subtrees of |
| 1682 | // translation units. |
| 1683 | DeclContext *DC1 = D1->getDeclContext()->getNonTransparentContext(); |
| 1684 | DeclContext *DC2 = D2->getDeclContext()->getNonTransparentContext(); |
| 1685 | while (true) { |
| 1686 | // Special case: We allow a struct defined in a function to be equivalent |
| 1687 | // with a similar struct defined outside of a function. |
| 1688 | if ((DC1->isFunctionOrMethod() && DC2->isTranslationUnit()) || |
| 1689 | (DC2->isFunctionOrMethod() && DC1->isTranslationUnit())) |
| 1690 | return true; |
| 1691 | |
| 1692 | if (DC1->getDeclKind() != DC2->getDeclKind()) |
| 1693 | return false; |
| 1694 | if (DC1->isTranslationUnit()) |
| 1695 | break; |
| 1696 | if (DC1->isInlineNamespace() != DC2->isInlineNamespace()) |
| 1697 | return false; |
| 1698 | if (const auto *ND1 = dyn_cast<NamedDecl>(Val: DC1)) { |
| 1699 | const auto *ND2 = cast<NamedDecl>(Val: DC2); |
| 1700 | if (!DC1->isInlineNamespace() && |
| 1701 | !IsStructurallyEquivalent(Name1: ND1->getIdentifier(), Name2: ND2->getIdentifier())) |
| 1702 | return false; |
| 1703 | } |
| 1704 | |
| 1705 | if (auto *D1Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: DC1)) { |
| 1706 | auto *D2Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: DC2); |
| 1707 | if (!IsStructurallyEquivalent(Context, D1: D1Spec, D2: D2Spec)) |
| 1708 | return false; |
| 1709 | } |
| 1710 | |
| 1711 | DC1 = DC1->getParent()->getNonTransparentContext(); |
| 1712 | DC2 = DC2->getParent()->getNonTransparentContext(); |
| 1713 | } |
| 1714 | |
| 1715 | return true; |
| 1716 | } |
| 1717 | |
| 1718 | static bool NameIsStructurallyEquivalent(const TagDecl &D1, const TagDecl &D2) { |
| 1719 | auto GetName = [](const TagDecl &D) -> const IdentifierInfo * { |
| 1720 | if (const IdentifierInfo *Name = D.getIdentifier()) |
| 1721 | return Name; |
| 1722 | if (const TypedefNameDecl *TypedefName = D.getTypedefNameForAnonDecl()) |
| 1723 | return TypedefName->getIdentifier(); |
| 1724 | return nullptr; |
| 1725 | }; |
| 1726 | return IsStructurallyEquivalent(Name1: GetName(D1), Name2: GetName(D2)); |
| 1727 | } |
| 1728 | |
| 1729 | /// Determine structural equivalence of two records. |
| 1730 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 1731 | RecordDecl *D1, RecordDecl *D2) { |
| 1732 | // C23 6.2.7p1: |
| 1733 | // ... Moreover, two complete structure, union, or enumerated types declared |
| 1734 | // with the same tag are compatible if members satisfy the following |
| 1735 | // requirements: |
| 1736 | // - there shall be a one-to-one correspondence between their members such |
| 1737 | // that each pair of corresponding members are declared with compatible |
| 1738 | // types; |
| 1739 | // - if one member of the pair is declared with an alignment specifier, the |
| 1740 | // other is declared with an equivalent alignment specifier; |
| 1741 | // - and, if one member of the pair is declared with a name, the other is |
| 1742 | // declared with the same name. |
| 1743 | // For two structures, corresponding members shall be declared in the same |
| 1744 | // order. For two unions declared in the same translation unit, corresponding |
| 1745 | // members shall be declared in the same order. For two structures or unions, |
| 1746 | // corresponding bit-fields shall have the same widths. ... For determining |
| 1747 | // type compatibility, anonymous structures and unions are considered a |
| 1748 | // regular member of the containing structure or union type, and the type of |
| 1749 | // an anonymous structure or union is considered compatible to the type of |
| 1750 | // another anonymous structure or union, respectively, if their members |
| 1751 | // fulfill the preceding requirements. ... Otherwise, the structure, union, |
| 1752 | // or enumerated types are incompatible. |
| 1753 | |
| 1754 | // Note: "the same tag" refers to the identifier for the structure; two |
| 1755 | // structures without names are not compatible within a TU. In C23, if either |
| 1756 | // declaration has no name, they're not equivalent. However, the paragraph |
| 1757 | // after the bulleted list goes on to talk about compatibility of anonymous |
| 1758 | // structure and union members, so this prohibition only applies to top-level |
| 1759 | // declarations; if either declaration is not a member, they cannot be |
| 1760 | // compatible. |
| 1761 | if (Context.LangOpts.C23 && (!D1->getIdentifier() || !D2->getIdentifier()) && |
| 1762 | (!D1->getDeclContext()->isRecord() || !D2->getDeclContext()->isRecord())) |
| 1763 | return false; |
| 1764 | |
| 1765 | // Otherwise, check the names for equivalence. |
| 1766 | if (!NameIsStructurallyEquivalent(D1: *D1, D2: *D2)) |
| 1767 | return false; |
| 1768 | |
| 1769 | if (D1->isUnion() != D2->isUnion()) { |
| 1770 | if (Context.Complain) { |
| 1771 | Context.Diag2(Loc: D2->getLocation(), DiagID: Context.getApplicableDiagnostic( |
| 1772 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
| 1773 | << Context.ToCtx.getTypeDeclType(Decl: D2) |
| 1774 | << (&Context.FromCtx != &Context.ToCtx); |
| 1775 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_tag_kind_here) |
| 1776 | << D1->getDeclName() << (unsigned)D1->getTagKind(); |
| 1777 | } |
| 1778 | return false; |
| 1779 | } |
| 1780 | |
| 1781 | if (!D1->getDeclName() && !D2->getDeclName()) { |
| 1782 | // If both anonymous structs/unions are in a record context, make sure |
| 1783 | // they occur in the same location in the context records. |
| 1784 | if (UnsignedOrNone Index1 = |
| 1785 | StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(Anon: D1)) { |
| 1786 | if (UnsignedOrNone Index2 = |
| 1787 | StructuralEquivalenceContext::findUntaggedStructOrUnionIndex( |
| 1788 | Anon: D2)) { |
| 1789 | if (*Index1 != *Index2) |
| 1790 | return false; |
| 1791 | } |
| 1792 | } |
| 1793 | } |
| 1794 | |
| 1795 | // In C23 mode, check for structural equivalence of attributes on the record |
| 1796 | // itself. FIXME: Should this happen in C++ as well? |
| 1797 | if (Context.LangOpts.C23 && |
| 1798 | !CheckStructurallyEquivalentAttributes(Context, D1, D2)) |
| 1799 | return false; |
| 1800 | |
| 1801 | // If the records occur in different context (namespace), these should be |
| 1802 | // different. This is specially important if the definition of one or both |
| 1803 | // records is missing. In C23, different contexts do not make for a different |
| 1804 | // structural type (a local struct definition can be a valid redefinition of |
| 1805 | // a file scope struct definition). |
| 1806 | if (!Context.LangOpts.C23 && |
| 1807 | !IsRecordContextStructurallyEquivalent(Context, D1, D2)) |
| 1808 | return false; |
| 1809 | |
| 1810 | // If both declarations are class template specializations, we know |
| 1811 | // the ODR applies, so check the template and template arguments. |
| 1812 | const auto *Spec1 = dyn_cast<ClassTemplateSpecializationDecl>(Val: D1); |
| 1813 | const auto *Spec2 = dyn_cast<ClassTemplateSpecializationDecl>(Val: D2); |
| 1814 | if (Spec1 && Spec2) { |
| 1815 | // Check that the specialized templates are the same. |
| 1816 | if (!IsStructurallyEquivalent(Context, D1: Spec1->getSpecializedTemplate(), |
| 1817 | D2: Spec2->getSpecializedTemplate())) |
| 1818 | return false; |
| 1819 | |
| 1820 | // Check that the template arguments are the same. |
| 1821 | if (Spec1->getTemplateArgs().size() != Spec2->getTemplateArgs().size()) |
| 1822 | return false; |
| 1823 | |
| 1824 | for (unsigned I = 0, N = Spec1->getTemplateArgs().size(); I != N; ++I) |
| 1825 | if (!IsStructurallyEquivalent(Context, Arg1: Spec1->getTemplateArgs().get(Idx: I), |
| 1826 | Arg2: Spec2->getTemplateArgs().get(Idx: I))) |
| 1827 | return false; |
| 1828 | } |
| 1829 | // If one is a class template specialization and the other is not, these |
| 1830 | // structures are different. |
| 1831 | else if (Spec1 || Spec2) |
| 1832 | return false; |
| 1833 | |
| 1834 | // Compare the definitions of these two records. If either or both are |
| 1835 | // incomplete (i.e. it is a forward decl), we assume that they are |
| 1836 | // equivalent. except in C23 mode. |
| 1837 | D1 = D1->getDefinition(); |
| 1838 | D2 = D2->getDefinition(); |
| 1839 | if (!D1 || !D2) |
| 1840 | return !Context.LangOpts.C23; |
| 1841 | |
| 1842 | // If any of the records has external storage and we do a minimal check (or |
| 1843 | // AST import) we assume they are equivalent. (If we didn't have this |
| 1844 | // assumption then `RecordDecl::LoadFieldsFromExternalStorage` could trigger |
| 1845 | // another AST import which in turn would call the structural equivalency |
| 1846 | // check again and finally we'd have an improper result.) |
| 1847 | if (Context.EqKind == StructuralEquivalenceKind::Minimal) |
| 1848 | if (D1->hasExternalLexicalStorage() || D2->hasExternalLexicalStorage()) |
| 1849 | return true; |
| 1850 | |
| 1851 | // If one definition is currently being defined, we do not compare for |
| 1852 | // equality and we assume that the decls are equal. |
| 1853 | if (D1->isBeingDefined() || D2->isBeingDefined()) |
| 1854 | return true; |
| 1855 | |
| 1856 | if (auto *D1CXX = dyn_cast<CXXRecordDecl>(Val: D1)) { |
| 1857 | if (auto *D2CXX = dyn_cast<CXXRecordDecl>(Val: D2)) { |
| 1858 | if (D1CXX->hasExternalLexicalStorage() && |
| 1859 | !D1CXX->isCompleteDefinition()) { |
| 1860 | D1CXX->getASTContext().getExternalSource()->CompleteType(Tag: D1CXX); |
| 1861 | } |
| 1862 | |
| 1863 | if (D1CXX->isLambda() != D2CXX->isLambda()) |
| 1864 | return false; |
| 1865 | if (D1CXX->isLambda()) { |
| 1866 | if (!IsStructurallyEquivalentLambdas(Context, D1: D1CXX, D2: D2CXX)) |
| 1867 | return false; |
| 1868 | } |
| 1869 | |
| 1870 | if (D1CXX->getNumBases() != D2CXX->getNumBases()) { |
| 1871 | if (Context.Complain) { |
| 1872 | Context.Diag2(Loc: D2->getLocation(), |
| 1873 | DiagID: Context.getApplicableDiagnostic( |
| 1874 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
| 1875 | << Context.ToCtx.getTypeDeclType(Decl: D2) |
| 1876 | << (&Context.FromCtx != &Context.ToCtx); |
| 1877 | Context.Diag2(Loc: D2->getLocation(), DiagID: diag::note_odr_number_of_bases) |
| 1878 | << D2CXX->getNumBases(); |
| 1879 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_number_of_bases) |
| 1880 | << D1CXX->getNumBases(); |
| 1881 | } |
| 1882 | return false; |
| 1883 | } |
| 1884 | |
| 1885 | // Check the base classes. |
| 1886 | for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(), |
| 1887 | BaseEnd1 = D1CXX->bases_end(), |
| 1888 | Base2 = D2CXX->bases_begin(); |
| 1889 | Base1 != BaseEnd1; ++Base1, ++Base2) { |
| 1890 | if (!IsStructurallyEquivalent(Context, T1: Base1->getType(), |
| 1891 | T2: Base2->getType())) { |
| 1892 | if (Context.Complain) { |
| 1893 | Context.Diag2(Loc: D2->getLocation(), |
| 1894 | DiagID: Context.getApplicableDiagnostic( |
| 1895 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
| 1896 | << Context.ToCtx.getTypeDeclType(Decl: D2) |
| 1897 | << (&Context.FromCtx != &Context.ToCtx); |
| 1898 | Context.Diag2(Loc: Base2->getBeginLoc(), DiagID: diag::note_odr_base) |
| 1899 | << Base2->getType() << Base2->getSourceRange(); |
| 1900 | Context.Diag1(Loc: Base1->getBeginLoc(), DiagID: diag::note_odr_base) |
| 1901 | << Base1->getType() << Base1->getSourceRange(); |
| 1902 | } |
| 1903 | return false; |
| 1904 | } |
| 1905 | |
| 1906 | // Check virtual vs. non-virtual inheritance mismatch. |
| 1907 | if (Base1->isVirtual() != Base2->isVirtual()) { |
| 1908 | if (Context.Complain) { |
| 1909 | Context.Diag2(Loc: D2->getLocation(), |
| 1910 | DiagID: Context.getApplicableDiagnostic( |
| 1911 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
| 1912 | << Context.ToCtx.getTypeDeclType(Decl: D2) |
| 1913 | << (&Context.FromCtx != &Context.ToCtx); |
| 1914 | Context.Diag2(Loc: Base2->getBeginLoc(), DiagID: diag::note_odr_virtual_base) |
| 1915 | << Base2->isVirtual() << Base2->getSourceRange(); |
| 1916 | Context.Diag1(Loc: Base1->getBeginLoc(), DiagID: diag::note_odr_base) |
| 1917 | << Base1->isVirtual() << Base1->getSourceRange(); |
| 1918 | } |
| 1919 | return false; |
| 1920 | } |
| 1921 | } |
| 1922 | |
| 1923 | // Check the friends for consistency. |
| 1924 | CXXRecordDecl::friend_iterator Friend2 = D2CXX->friend_begin(), |
| 1925 | Friend2End = D2CXX->friend_end(); |
| 1926 | for (CXXRecordDecl::friend_iterator Friend1 = D1CXX->friend_begin(), |
| 1927 | Friend1End = D1CXX->friend_end(); |
| 1928 | Friend1 != Friend1End; ++Friend1, ++Friend2) { |
| 1929 | if (Friend2 == Friend2End) { |
| 1930 | if (Context.Complain) { |
| 1931 | Context.Diag2(Loc: D2->getLocation(), |
| 1932 | DiagID: Context.getApplicableDiagnostic( |
| 1933 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
| 1934 | << Context.ToCtx.getTypeDeclType(Decl: D2CXX) |
| 1935 | << (&Context.FromCtx != &Context.ToCtx); |
| 1936 | Context.Diag1(Loc: (*Friend1)->getFriendLoc(), DiagID: diag::note_odr_friend); |
| 1937 | Context.Diag2(Loc: D2->getLocation(), DiagID: diag::note_odr_missing_friend); |
| 1938 | } |
| 1939 | return false; |
| 1940 | } |
| 1941 | |
| 1942 | if (!IsStructurallyEquivalent(Context, D1: *Friend1, D2: *Friend2)) { |
| 1943 | if (Context.Complain) { |
| 1944 | Context.Diag2(Loc: D2->getLocation(), |
| 1945 | DiagID: Context.getApplicableDiagnostic( |
| 1946 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
| 1947 | << Context.ToCtx.getTypeDeclType(Decl: D2CXX) |
| 1948 | << (&Context.FromCtx != &Context.ToCtx); |
| 1949 | Context.Diag1(Loc: (*Friend1)->getFriendLoc(), DiagID: diag::note_odr_friend); |
| 1950 | Context.Diag2(Loc: (*Friend2)->getFriendLoc(), DiagID: diag::note_odr_friend); |
| 1951 | } |
| 1952 | return false; |
| 1953 | } |
| 1954 | } |
| 1955 | |
| 1956 | if (Friend2 != Friend2End) { |
| 1957 | if (Context.Complain) { |
| 1958 | Context.Diag2(Loc: D2->getLocation(), |
| 1959 | DiagID: Context.getApplicableDiagnostic( |
| 1960 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
| 1961 | << Context.ToCtx.getTypeDeclType(Decl: D2) |
| 1962 | << (&Context.FromCtx != &Context.ToCtx); |
| 1963 | Context.Diag2(Loc: (*Friend2)->getFriendLoc(), DiagID: diag::note_odr_friend); |
| 1964 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_missing_friend); |
| 1965 | } |
| 1966 | return false; |
| 1967 | } |
| 1968 | } else if (D1CXX->getNumBases() > 0) { |
| 1969 | if (Context.Complain) { |
| 1970 | Context.Diag2(Loc: D2->getLocation(), |
| 1971 | DiagID: Context.getApplicableDiagnostic( |
| 1972 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
| 1973 | << Context.ToCtx.getTypeDeclType(Decl: D2) |
| 1974 | << (&Context.FromCtx != &Context.ToCtx); |
| 1975 | const CXXBaseSpecifier *Base1 = D1CXX->bases_begin(); |
| 1976 | Context.Diag1(Loc: Base1->getBeginLoc(), DiagID: diag::note_odr_base) |
| 1977 | << Base1->getType() << Base1->getSourceRange(); |
| 1978 | Context.Diag2(Loc: D2->getLocation(), DiagID: diag::note_odr_missing_base); |
| 1979 | } |
| 1980 | return false; |
| 1981 | } |
| 1982 | } |
| 1983 | |
| 1984 | // Check the fields for consistency. |
| 1985 | QualType D2Type = Context.ToCtx.getTypeDeclType(Decl: D2); |
| 1986 | RecordDecl::field_iterator Field2 = D2->field_begin(), |
| 1987 | Field2End = D2->field_end(); |
| 1988 | for (RecordDecl::field_iterator Field1 = D1->field_begin(), |
| 1989 | Field1End = D1->field_end(); |
| 1990 | Field1 != Field1End; ++Field1, ++Field2) { |
| 1991 | if (Field2 == Field2End) { |
| 1992 | if (Context.Complain) { |
| 1993 | Context.Diag2(Loc: D2->getLocation(), |
| 1994 | DiagID: Context.getApplicableDiagnostic( |
| 1995 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
| 1996 | << Context.ToCtx.getTypeDeclType(Decl: D2) |
| 1997 | << (&Context.FromCtx != &Context.ToCtx); |
| 1998 | Context.Diag1(Loc: Field1->getLocation(), DiagID: diag::note_odr_field) |
| 1999 | << Field1->getDeclName() << Field1->getType(); |
| 2000 | Context.Diag2(Loc: D2->getLocation(), DiagID: diag::note_odr_missing_field); |
| 2001 | } |
| 2002 | return false; |
| 2003 | } |
| 2004 | |
| 2005 | if (!IsStructurallyEquivalent(Context, Field1: *Field1, Field2: *Field2, Owner2Type: D2Type)) |
| 2006 | return false; |
| 2007 | } |
| 2008 | |
| 2009 | if (Field2 != Field2End) { |
| 2010 | if (Context.Complain) { |
| 2011 | Context.Diag2(Loc: D2->getLocation(), DiagID: Context.getApplicableDiagnostic( |
| 2012 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
| 2013 | << Context.ToCtx.getTypeDeclType(Decl: D2) |
| 2014 | << (&Context.FromCtx != &Context.ToCtx); |
| 2015 | Context.Diag2(Loc: Field2->getLocation(), DiagID: diag::note_odr_field) |
| 2016 | << Field2->getDeclName() << Field2->getType(); |
| 2017 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_missing_field); |
| 2018 | } |
| 2019 | return false; |
| 2020 | } |
| 2021 | |
| 2022 | return true; |
| 2023 | } |
| 2024 | |
| 2025 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2026 | EnumConstantDecl *D1, |
| 2027 | EnumConstantDecl *D2) { |
| 2028 | const llvm::APSInt &FromVal = D1->getInitVal(); |
| 2029 | const llvm::APSInt &ToVal = D2->getInitVal(); |
| 2030 | if (FromVal.isSigned() != ToVal.isSigned()) |
| 2031 | return false; |
| 2032 | if (FromVal.getBitWidth() != ToVal.getBitWidth()) |
| 2033 | return false; |
| 2034 | if (FromVal != ToVal) |
| 2035 | return false; |
| 2036 | |
| 2037 | if (!IsStructurallyEquivalent(Name1: D1->getIdentifier(), Name2: D2->getIdentifier())) |
| 2038 | return false; |
| 2039 | |
| 2040 | // Init expressions are the most expensive check, so do them last. |
| 2041 | return IsStructurallyEquivalent(Context, S1: D1->getInitExpr(), |
| 2042 | S2: D2->getInitExpr()); |
| 2043 | } |
| 2044 | |
| 2045 | /// Determine structural equivalence of two enums. |
| 2046 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2047 | EnumDecl *D1, EnumDecl *D2) { |
| 2048 | if (!NameIsStructurallyEquivalent(D1: *D1, D2: *D2)) { |
| 2049 | return false; |
| 2050 | } |
| 2051 | |
| 2052 | // Compare the definitions of these two enums. If either or both are |
| 2053 | // incomplete (i.e. forward declared), we assume that they are equivalent. |
| 2054 | // In C23, the order of the enumerations does not matter, only the names and |
| 2055 | // values do. |
| 2056 | D1 = D1->getDefinition(); |
| 2057 | D2 = D2->getDefinition(); |
| 2058 | if (!D1 || !D2) |
| 2059 | return true; |
| 2060 | |
| 2061 | if (Context.LangOpts.C23 && |
| 2062 | !CheckStructurallyEquivalentAttributes(Context, D1, D2)) |
| 2063 | return false; |
| 2064 | |
| 2065 | llvm::SmallVector<const EnumConstantDecl *, 8> D1Enums, D2Enums; |
| 2066 | auto CopyEnumerators = |
| 2067 | [](auto &&Range, llvm::SmallVectorImpl<const EnumConstantDecl *> &Cont) { |
| 2068 | for (const EnumConstantDecl *ECD : Range) |
| 2069 | Cont.push_back(Elt: ECD); |
| 2070 | }; |
| 2071 | CopyEnumerators(D1->enumerators(), D1Enums); |
| 2072 | CopyEnumerators(D2->enumerators(), D2Enums); |
| 2073 | |
| 2074 | // In C23 mode, the order of the enumerations does not matter, so sort them |
| 2075 | // by name to get them both into a consistent ordering. |
| 2076 | if (Context.LangOpts.C23) { |
| 2077 | auto Sorter = [](const EnumConstantDecl *LHS, const EnumConstantDecl *RHS) { |
| 2078 | return LHS->getName() < RHS->getName(); |
| 2079 | }; |
| 2080 | llvm::sort(C&: D1Enums, Comp: Sorter); |
| 2081 | llvm::sort(C&: D2Enums, Comp: Sorter); |
| 2082 | } |
| 2083 | |
| 2084 | auto EC2 = D2Enums.begin(), EC2End = D2Enums.end(); |
| 2085 | for (auto EC1 = D1Enums.begin(), EC1End = D1Enums.end(); EC1 != EC1End; |
| 2086 | ++EC1, ++EC2) { |
| 2087 | if (EC2 == EC2End) { |
| 2088 | if (Context.Complain) { |
| 2089 | Context.Diag2(Loc: D2->getLocation(), |
| 2090 | DiagID: Context.getApplicableDiagnostic( |
| 2091 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
| 2092 | << Context.ToCtx.getTypeDeclType(Decl: D2) |
| 2093 | << (&Context.FromCtx != &Context.ToCtx); |
| 2094 | Context.Diag1(Loc: (*EC1)->getLocation(), DiagID: diag::note_odr_enumerator) |
| 2095 | << (*EC1)->getDeclName() << toString(I: (*EC1)->getInitVal(), Radix: 10); |
| 2096 | Context.Diag2(Loc: D2->getLocation(), DiagID: diag::note_odr_missing_enumerator); |
| 2097 | } |
| 2098 | return false; |
| 2099 | } |
| 2100 | |
| 2101 | llvm::APSInt Val1 = (*EC1)->getInitVal(); |
| 2102 | llvm::APSInt Val2 = (*EC2)->getInitVal(); |
| 2103 | if (!llvm::APSInt::isSameValue(I1: Val1, I2: Val2) || |
| 2104 | !IsStructurallyEquivalent(Name1: (*EC1)->getIdentifier(), |
| 2105 | Name2: (*EC2)->getIdentifier())) { |
| 2106 | if (Context.Complain) { |
| 2107 | Context.Diag2(Loc: D2->getLocation(), |
| 2108 | DiagID: Context.getApplicableDiagnostic( |
| 2109 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
| 2110 | << Context.ToCtx.getTypeDeclType(Decl: D2) |
| 2111 | << (&Context.FromCtx != &Context.ToCtx); |
| 2112 | Context.Diag2(Loc: (*EC2)->getLocation(), DiagID: diag::note_odr_enumerator) |
| 2113 | << (*EC2)->getDeclName() << toString(I: (*EC2)->getInitVal(), Radix: 10); |
| 2114 | Context.Diag1(Loc: (*EC1)->getLocation(), DiagID: diag::note_odr_enumerator) |
| 2115 | << (*EC1)->getDeclName() << toString(I: (*EC1)->getInitVal(), Radix: 10); |
| 2116 | } |
| 2117 | return false; |
| 2118 | } |
| 2119 | if (Context.LangOpts.C23 && |
| 2120 | !CheckStructurallyEquivalentAttributes(Context, D1: *EC1, D2: *EC2, PrimaryDecl: D2)) |
| 2121 | return false; |
| 2122 | } |
| 2123 | |
| 2124 | if (EC2 != EC2End) { |
| 2125 | if (Context.Complain) { |
| 2126 | Context.Diag2(Loc: D2->getLocation(), DiagID: Context.getApplicableDiagnostic( |
| 2127 | ErrorDiagnostic: diag::err_odr_tag_type_inconsistent)) |
| 2128 | << Context.ToCtx.getTypeDeclType(Decl: D2) |
| 2129 | << (&Context.FromCtx != &Context.ToCtx); |
| 2130 | Context.Diag2(Loc: (*EC2)->getLocation(), DiagID: diag::note_odr_enumerator) |
| 2131 | << (*EC2)->getDeclName() << toString(I: (*EC2)->getInitVal(), Radix: 10); |
| 2132 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_missing_enumerator); |
| 2133 | } |
| 2134 | return false; |
| 2135 | } |
| 2136 | |
| 2137 | return true; |
| 2138 | } |
| 2139 | |
| 2140 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2141 | TemplateParameterList *Params1, |
| 2142 | TemplateParameterList *Params2) { |
| 2143 | if (Params1->size() != Params2->size()) { |
| 2144 | if (Context.Complain) { |
| 2145 | Context.Diag2(Loc: Params2->getTemplateLoc(), |
| 2146 | DiagID: Context.getApplicableDiagnostic( |
| 2147 | ErrorDiagnostic: diag::err_odr_different_num_template_parameters)) |
| 2148 | << Params1->size() << Params2->size(); |
| 2149 | Context.Diag1(Loc: Params1->getTemplateLoc(), |
| 2150 | DiagID: diag::note_odr_template_parameter_list); |
| 2151 | } |
| 2152 | return false; |
| 2153 | } |
| 2154 | |
| 2155 | for (unsigned I = 0, N = Params1->size(); I != N; ++I) { |
| 2156 | if (Params1->getParam(Idx: I)->getKind() != Params2->getParam(Idx: I)->getKind()) { |
| 2157 | if (Context.Complain) { |
| 2158 | Context.Diag2(Loc: Params2->getParam(Idx: I)->getLocation(), |
| 2159 | DiagID: Context.getApplicableDiagnostic( |
| 2160 | ErrorDiagnostic: diag::err_odr_different_template_parameter_kind)); |
| 2161 | Context.Diag1(Loc: Params1->getParam(Idx: I)->getLocation(), |
| 2162 | DiagID: diag::note_odr_template_parameter_here); |
| 2163 | } |
| 2164 | return false; |
| 2165 | } |
| 2166 | |
| 2167 | if (!IsStructurallyEquivalent(Context, D1: Params1->getParam(Idx: I), |
| 2168 | D2: Params2->getParam(Idx: I))) |
| 2169 | return false; |
| 2170 | } |
| 2171 | |
| 2172 | return true; |
| 2173 | } |
| 2174 | |
| 2175 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2176 | TemplateTypeParmDecl *D1, |
| 2177 | TemplateTypeParmDecl *D2) { |
| 2178 | if (D1->isParameterPack() != D2->isParameterPack()) { |
| 2179 | if (Context.Complain) { |
| 2180 | Context.Diag2(Loc: D2->getLocation(), |
| 2181 | DiagID: Context.getApplicableDiagnostic( |
| 2182 | ErrorDiagnostic: diag::err_odr_parameter_pack_non_pack)) |
| 2183 | << D2->isParameterPack(); |
| 2184 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_parameter_pack_non_pack) |
| 2185 | << D1->isParameterPack(); |
| 2186 | } |
| 2187 | return false; |
| 2188 | } |
| 2189 | |
| 2190 | return true; |
| 2191 | } |
| 2192 | |
| 2193 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2194 | NonTypeTemplateParmDecl *D1, |
| 2195 | NonTypeTemplateParmDecl *D2) { |
| 2196 | if (D1->isParameterPack() != D2->isParameterPack()) { |
| 2197 | if (Context.Complain) { |
| 2198 | Context.Diag2(Loc: D2->getLocation(), |
| 2199 | DiagID: Context.getApplicableDiagnostic( |
| 2200 | ErrorDiagnostic: diag::err_odr_parameter_pack_non_pack)) |
| 2201 | << D2->isParameterPack(); |
| 2202 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_parameter_pack_non_pack) |
| 2203 | << D1->isParameterPack(); |
| 2204 | } |
| 2205 | return false; |
| 2206 | } |
| 2207 | if (!Context.IgnoreTemplateParmDepth && D1->getDepth() != D2->getDepth()) |
| 2208 | return false; |
| 2209 | if (D1->getIndex() != D2->getIndex()) |
| 2210 | return false; |
| 2211 | // Check types. |
| 2212 | if (!IsStructurallyEquivalent(Context, T1: D1->getType(), T2: D2->getType())) { |
| 2213 | if (Context.Complain) { |
| 2214 | Context.Diag2(Loc: D2->getLocation(), |
| 2215 | DiagID: Context.getApplicableDiagnostic( |
| 2216 | ErrorDiagnostic: diag::err_odr_non_type_parameter_type_inconsistent)) |
| 2217 | << D2->getType() << D1->getType(); |
| 2218 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_value_here) |
| 2219 | << D1->getType(); |
| 2220 | } |
| 2221 | return false; |
| 2222 | } |
| 2223 | |
| 2224 | return true; |
| 2225 | } |
| 2226 | |
| 2227 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2228 | TemplateTemplateParmDecl *D1, |
| 2229 | TemplateTemplateParmDecl *D2) { |
| 2230 | if (D1->isParameterPack() != D2->isParameterPack()) { |
| 2231 | if (Context.Complain) { |
| 2232 | Context.Diag2(Loc: D2->getLocation(), |
| 2233 | DiagID: Context.getApplicableDiagnostic( |
| 2234 | ErrorDiagnostic: diag::err_odr_parameter_pack_non_pack)) |
| 2235 | << D2->isParameterPack(); |
| 2236 | Context.Diag1(Loc: D1->getLocation(), DiagID: diag::note_odr_parameter_pack_non_pack) |
| 2237 | << D1->isParameterPack(); |
| 2238 | } |
| 2239 | return false; |
| 2240 | } |
| 2241 | |
| 2242 | // Check template parameter lists. |
| 2243 | return IsStructurallyEquivalent(Context, Params1: D1->getTemplateParameters(), |
| 2244 | Params2: D2->getTemplateParameters()); |
| 2245 | } |
| 2246 | |
| 2247 | static bool IsTemplateDeclCommonStructurallyEquivalent( |
| 2248 | StructuralEquivalenceContext &Ctx, TemplateDecl *D1, TemplateDecl *D2) { |
| 2249 | if (!IsStructurallyEquivalent(Name1: D1->getIdentifier(), Name2: D2->getIdentifier())) |
| 2250 | return false; |
| 2251 | if (!D1->getIdentifier()) // Special name |
| 2252 | if (D1->getNameAsString() != D2->getNameAsString()) |
| 2253 | return false; |
| 2254 | return IsStructurallyEquivalent(Context&: Ctx, Params1: D1->getTemplateParameters(), |
| 2255 | Params2: D2->getTemplateParameters()); |
| 2256 | } |
| 2257 | |
| 2258 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2259 | ClassTemplateDecl *D1, |
| 2260 | ClassTemplateDecl *D2) { |
| 2261 | // Check template parameters. |
| 2262 | if (!IsTemplateDeclCommonStructurallyEquivalent(Ctx&: Context, D1, D2)) |
| 2263 | return false; |
| 2264 | |
| 2265 | // Check the templated declaration. |
| 2266 | return IsStructurallyEquivalent(Context, D1: D1->getTemplatedDecl(), |
| 2267 | D2: D2->getTemplatedDecl()); |
| 2268 | } |
| 2269 | |
| 2270 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2271 | FunctionTemplateDecl *D1, |
| 2272 | FunctionTemplateDecl *D2) { |
| 2273 | // Check template parameters. |
| 2274 | if (!IsTemplateDeclCommonStructurallyEquivalent(Ctx&: Context, D1, D2)) |
| 2275 | return false; |
| 2276 | |
| 2277 | // Check the templated declaration. |
| 2278 | return IsStructurallyEquivalent(Context, T1: D1->getTemplatedDecl()->getType(), |
| 2279 | T2: D2->getTemplatedDecl()->getType()); |
| 2280 | } |
| 2281 | |
| 2282 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2283 | TypeAliasTemplateDecl *D1, |
| 2284 | TypeAliasTemplateDecl *D2) { |
| 2285 | // Check template parameters. |
| 2286 | if (!IsTemplateDeclCommonStructurallyEquivalent(Ctx&: Context, D1, D2)) |
| 2287 | return false; |
| 2288 | |
| 2289 | // Check the templated declaration. |
| 2290 | return IsStructurallyEquivalent(Context, D1: D1->getTemplatedDecl(), |
| 2291 | D2: D2->getTemplatedDecl()); |
| 2292 | } |
| 2293 | |
| 2294 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2295 | ConceptDecl *D1, |
| 2296 | ConceptDecl *D2) { |
| 2297 | // Check template parameters. |
| 2298 | if (!IsTemplateDeclCommonStructurallyEquivalent(Ctx&: Context, D1, D2)) |
| 2299 | return false; |
| 2300 | |
| 2301 | // Check the constraint expression. |
| 2302 | return IsStructurallyEquivalent(Context, S1: D1->getConstraintExpr(), |
| 2303 | S2: D2->getConstraintExpr()); |
| 2304 | } |
| 2305 | |
| 2306 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2307 | FriendDecl *D1, FriendDecl *D2) { |
| 2308 | if ((D1->getFriendType() && D2->getFriendDecl()) || |
| 2309 | (D1->getFriendDecl() && D2->getFriendType())) { |
| 2310 | return false; |
| 2311 | } |
| 2312 | if (D1->getFriendType() && D2->getFriendType()) |
| 2313 | return IsStructurallyEquivalent(Context, |
| 2314 | T1: D1->getFriendType()->getType(), |
| 2315 | T2: D2->getFriendType()->getType()); |
| 2316 | if (D1->getFriendDecl() && D2->getFriendDecl()) |
| 2317 | return IsStructurallyEquivalent(Context, D1: D1->getFriendDecl(), |
| 2318 | D2: D2->getFriendDecl()); |
| 2319 | return false; |
| 2320 | } |
| 2321 | |
| 2322 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2323 | TypedefNameDecl *D1, TypedefNameDecl *D2) { |
| 2324 | if (!IsStructurallyEquivalent(Name1: D1->getIdentifier(), Name2: D2->getIdentifier())) |
| 2325 | return false; |
| 2326 | |
| 2327 | return IsStructurallyEquivalent(Context, T1: D1->getUnderlyingType(), |
| 2328 | T2: D2->getUnderlyingType()); |
| 2329 | } |
| 2330 | |
| 2331 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2332 | FunctionDecl *D1, FunctionDecl *D2) { |
| 2333 | if (!IsStructurallyEquivalent(Name1: D1->getIdentifier(), Name2: D2->getIdentifier())) |
| 2334 | return false; |
| 2335 | |
| 2336 | if (D1->isOverloadedOperator()) { |
| 2337 | if (!D2->isOverloadedOperator()) |
| 2338 | return false; |
| 2339 | if (D1->getOverloadedOperator() != D2->getOverloadedOperator()) |
| 2340 | return false; |
| 2341 | } |
| 2342 | |
| 2343 | // FIXME: Consider checking for function attributes as well. |
| 2344 | if (!IsStructurallyEquivalent(Context, T1: D1->getType(), T2: D2->getType())) |
| 2345 | return false; |
| 2346 | |
| 2347 | return true; |
| 2348 | } |
| 2349 | |
| 2350 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2351 | ObjCIvarDecl *D1, ObjCIvarDecl *D2, |
| 2352 | QualType Owner2Type) { |
| 2353 | if (D1->getAccessControl() != D2->getAccessControl()) |
| 2354 | return false; |
| 2355 | |
| 2356 | return IsStructurallyEquivalent(Context, Field1: cast<FieldDecl>(Val: D1), |
| 2357 | Field2: cast<FieldDecl>(Val: D2), Owner2Type); |
| 2358 | } |
| 2359 | |
| 2360 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2361 | ObjCIvarDecl *D1, ObjCIvarDecl *D2) { |
| 2362 | QualType Owner2Type = |
| 2363 | Context.ToCtx.getObjCInterfaceType(Decl: D2->getContainingInterface()); |
| 2364 | return IsStructurallyEquivalent(Context, D1, D2, Owner2Type); |
| 2365 | } |
| 2366 | |
| 2367 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2368 | ObjCMethodDecl *Method1, |
| 2369 | ObjCMethodDecl *Method2) { |
| 2370 | bool PropertiesEqual = |
| 2371 | Method1->isInstanceMethod() == Method2->isInstanceMethod() && |
| 2372 | Method1->isVariadic() == Method2->isVariadic() && |
| 2373 | Method1->isDirectMethod() == Method2->isDirectMethod(); |
| 2374 | if (!PropertiesEqual) |
| 2375 | return false; |
| 2376 | |
| 2377 | // Compare selector slot names. |
| 2378 | Selector Selector1 = Method1->getSelector(), |
| 2379 | Selector2 = Method2->getSelector(); |
| 2380 | unsigned NumArgs = Selector1.getNumArgs(); |
| 2381 | if (NumArgs != Selector2.getNumArgs()) |
| 2382 | return false; |
| 2383 | // Compare all selector slots. For selectors with arguments it means all arg |
| 2384 | // slots. And if there are no arguments, compare the first-and-only slot. |
| 2385 | unsigned SlotsToCheck = NumArgs > 0 ? NumArgs : 1; |
| 2386 | for (unsigned I = 0; I < SlotsToCheck; ++I) { |
| 2387 | if (!IsStructurallyEquivalent(Name1: Selector1.getIdentifierInfoForSlot(argIndex: I), |
| 2388 | Name2: Selector2.getIdentifierInfoForSlot(argIndex: I))) |
| 2389 | return false; |
| 2390 | } |
| 2391 | |
| 2392 | // Compare types. |
| 2393 | if (!IsStructurallyEquivalent(Context, T1: Method1->getReturnType(), |
| 2394 | T2: Method2->getReturnType())) |
| 2395 | return false; |
| 2396 | assert( |
| 2397 | Method1->param_size() == Method2->param_size() && |
| 2398 | "Same number of arguments should be already enforced in Selector checks" ); |
| 2399 | for (ObjCMethodDecl::param_type_iterator |
| 2400 | ParamT1 = Method1->param_type_begin(), |
| 2401 | ParamT1End = Method1->param_type_end(), |
| 2402 | ParamT2 = Method2->param_type_begin(), |
| 2403 | ParamT2End = Method2->param_type_end(); |
| 2404 | (ParamT1 != ParamT1End) && (ParamT2 != ParamT2End); |
| 2405 | ++ParamT1, ++ParamT2) { |
| 2406 | if (!IsStructurallyEquivalent(Context, T1: *ParamT1, T2: *ParamT2)) |
| 2407 | return false; |
| 2408 | } |
| 2409 | |
| 2410 | return true; |
| 2411 | } |
| 2412 | |
| 2413 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2414 | ObjCCategoryDecl *D1, |
| 2415 | ObjCCategoryDecl *D2) { |
| 2416 | if (!IsStructurallyEquivalent(Name1: D1->getIdentifier(), Name2: D2->getIdentifier())) |
| 2417 | return false; |
| 2418 | |
| 2419 | const ObjCInterfaceDecl *Intf1 = D1->getClassInterface(), |
| 2420 | *Intf2 = D2->getClassInterface(); |
| 2421 | if ((!Intf1 || !Intf2) && (Intf1 != Intf2)) |
| 2422 | return false; |
| 2423 | |
| 2424 | if (Intf1 && |
| 2425 | !IsStructurallyEquivalent(Name1: Intf1->getIdentifier(), Name2: Intf2->getIdentifier())) |
| 2426 | return false; |
| 2427 | |
| 2428 | // Compare protocols. |
| 2429 | ObjCCategoryDecl::protocol_iterator Protocol2 = D2->protocol_begin(), |
| 2430 | Protocol2End = D2->protocol_end(); |
| 2431 | for (ObjCCategoryDecl::protocol_iterator Protocol1 = D1->protocol_begin(), |
| 2432 | Protocol1End = D1->protocol_end(); |
| 2433 | Protocol1 != Protocol1End; ++Protocol1, ++Protocol2) { |
| 2434 | if (Protocol2 == Protocol2End) |
| 2435 | return false; |
| 2436 | if (!IsStructurallyEquivalent(Name1: (*Protocol1)->getIdentifier(), |
| 2437 | Name2: (*Protocol2)->getIdentifier())) |
| 2438 | return false; |
| 2439 | } |
| 2440 | if (Protocol2 != Protocol2End) |
| 2441 | return false; |
| 2442 | |
| 2443 | // Compare ivars. |
| 2444 | QualType D2Type = |
| 2445 | Intf2 ? Context.ToCtx.getObjCInterfaceType(Decl: Intf2) : QualType(); |
| 2446 | ObjCCategoryDecl::ivar_iterator Ivar2 = D2->ivar_begin(), |
| 2447 | Ivar2End = D2->ivar_end(); |
| 2448 | for (ObjCCategoryDecl::ivar_iterator Ivar1 = D1->ivar_begin(), |
| 2449 | Ivar1End = D1->ivar_end(); |
| 2450 | Ivar1 != Ivar1End; ++Ivar1, ++Ivar2) { |
| 2451 | if (Ivar2 == Ivar2End) |
| 2452 | return false; |
| 2453 | if (!IsStructurallyEquivalent(Context, D1: *Ivar1, D2: *Ivar2, Owner2Type: D2Type)) |
| 2454 | return false; |
| 2455 | } |
| 2456 | if (Ivar2 != Ivar2End) |
| 2457 | return false; |
| 2458 | |
| 2459 | // Compare methods. |
| 2460 | ObjCCategoryDecl::method_iterator Method2 = D2->meth_begin(), |
| 2461 | Method2End = D2->meth_end(); |
| 2462 | for (ObjCCategoryDecl::method_iterator Method1 = D1->meth_begin(), |
| 2463 | Method1End = D1->meth_end(); |
| 2464 | Method1 != Method1End; ++Method1, ++Method2) { |
| 2465 | if (Method2 == Method2End) |
| 2466 | return false; |
| 2467 | if (!IsStructurallyEquivalent(Context, Method1: *Method1, Method2: *Method2)) |
| 2468 | return false; |
| 2469 | } |
| 2470 | if (Method2 != Method2End) |
| 2471 | return false; |
| 2472 | |
| 2473 | return true; |
| 2474 | } |
| 2475 | |
| 2476 | /// Determine structural equivalence of two declarations. |
| 2477 | static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| 2478 | Decl *D1, Decl *D2) { |
| 2479 | // FIXME: Check for known structural equivalences via a callback of some sort. |
| 2480 | |
| 2481 | D1 = D1->getCanonicalDecl(); |
| 2482 | D2 = D2->getCanonicalDecl(); |
| 2483 | std::pair<Decl *, Decl *> P{D1, D2}; |
| 2484 | |
| 2485 | // Check whether we already know that these two declarations are not |
| 2486 | // structurally equivalent. |
| 2487 | if (Context.NonEquivalentDecls.count( |
| 2488 | V: std::make_tuple(args&: D1, args&: D2, args&: Context.IgnoreTemplateParmDepth))) |
| 2489 | return false; |
| 2490 | |
| 2491 | // Check if a check for these declarations is already pending. |
| 2492 | // If yes D1 and D2 will be checked later (from DeclsToCheck), |
| 2493 | // or these are already checked (and equivalent). |
| 2494 | bool Inserted = Context.VisitedDecls.insert(V: P).second; |
| 2495 | if (!Inserted) |
| 2496 | return true; |
| 2497 | |
| 2498 | Context.DeclsToCheck.push(x: P); |
| 2499 | |
| 2500 | return true; |
| 2501 | } |
| 2502 | |
| 2503 | DiagnosticBuilder StructuralEquivalenceContext::Diag1(SourceLocation Loc, |
| 2504 | unsigned DiagID) { |
| 2505 | assert(Complain && "Not allowed to complain" ); |
| 2506 | if (LastDiagFromC2) |
| 2507 | FromCtx.getDiagnostics().notePriorDiagnosticFrom(Other: ToCtx.getDiagnostics()); |
| 2508 | LastDiagFromC2 = false; |
| 2509 | return FromCtx.getDiagnostics().Report(Loc, DiagID); |
| 2510 | } |
| 2511 | |
| 2512 | DiagnosticBuilder StructuralEquivalenceContext::Diag2(SourceLocation Loc, |
| 2513 | unsigned DiagID) { |
| 2514 | assert(Complain && "Not allowed to complain" ); |
| 2515 | if (!LastDiagFromC2) |
| 2516 | ToCtx.getDiagnostics().notePriorDiagnosticFrom(Other: FromCtx.getDiagnostics()); |
| 2517 | LastDiagFromC2 = true; |
| 2518 | return ToCtx.getDiagnostics().Report(Loc, DiagID); |
| 2519 | } |
| 2520 | |
| 2521 | UnsignedOrNone |
| 2522 | StructuralEquivalenceContext::findUntaggedStructOrUnionIndex(RecordDecl *Anon) { |
| 2523 | ASTContext &Context = Anon->getASTContext(); |
| 2524 | QualType AnonTy = Context.getRecordType(Decl: Anon); |
| 2525 | |
| 2526 | const auto *Owner = dyn_cast<RecordDecl>(Val: Anon->getDeclContext()); |
| 2527 | if (!Owner) |
| 2528 | return std::nullopt; |
| 2529 | |
| 2530 | unsigned Index = 0; |
| 2531 | for (const auto *D : Owner->noload_decls()) { |
| 2532 | const auto *F = dyn_cast<FieldDecl>(Val: D); |
| 2533 | if (!F) |
| 2534 | continue; |
| 2535 | |
| 2536 | if (F->isAnonymousStructOrUnion()) { |
| 2537 | if (Context.hasSameType(T1: F->getType(), T2: AnonTy)) |
| 2538 | break; |
| 2539 | ++Index; |
| 2540 | continue; |
| 2541 | } |
| 2542 | |
| 2543 | // If the field looks like this: |
| 2544 | // struct { ... } A; |
| 2545 | QualType FieldType = F->getType(); |
| 2546 | // In case of nested structs. |
| 2547 | while (const auto *ElabType = dyn_cast<ElaboratedType>(Val&: FieldType)) |
| 2548 | FieldType = ElabType->getNamedType(); |
| 2549 | |
| 2550 | if (const auto *RecType = dyn_cast<RecordType>(Val&: FieldType)) { |
| 2551 | const RecordDecl *RecDecl = RecType->getDecl(); |
| 2552 | if (RecDecl->getDeclContext() == Owner && !RecDecl->getIdentifier()) { |
| 2553 | if (Context.hasSameType(T1: FieldType, T2: AnonTy)) |
| 2554 | break; |
| 2555 | ++Index; |
| 2556 | continue; |
| 2557 | } |
| 2558 | } |
| 2559 | } |
| 2560 | |
| 2561 | return Index; |
| 2562 | } |
| 2563 | |
| 2564 | unsigned StructuralEquivalenceContext::getApplicableDiagnostic( |
| 2565 | unsigned ErrorDiagnostic) { |
| 2566 | if (ErrorOnTagTypeMismatch) |
| 2567 | return ErrorDiagnostic; |
| 2568 | |
| 2569 | switch (ErrorDiagnostic) { |
| 2570 | case diag::err_odr_variable_type_inconsistent: |
| 2571 | return diag::warn_odr_variable_type_inconsistent; |
| 2572 | case diag::err_odr_variable_multiple_def: |
| 2573 | return diag::warn_odr_variable_multiple_def; |
| 2574 | case diag::err_odr_function_type_inconsistent: |
| 2575 | return diag::warn_odr_function_type_inconsistent; |
| 2576 | case diag::err_odr_tag_type_inconsistent: |
| 2577 | return diag::warn_odr_tag_type_inconsistent; |
| 2578 | case diag::err_odr_field_type_inconsistent: |
| 2579 | return diag::warn_odr_field_type_inconsistent; |
| 2580 | case diag::err_odr_ivar_type_inconsistent: |
| 2581 | return diag::warn_odr_ivar_type_inconsistent; |
| 2582 | case diag::err_odr_objc_superclass_inconsistent: |
| 2583 | return diag::warn_odr_objc_superclass_inconsistent; |
| 2584 | case diag::err_odr_objc_method_result_type_inconsistent: |
| 2585 | return diag::warn_odr_objc_method_result_type_inconsistent; |
| 2586 | case diag::err_odr_objc_method_num_params_inconsistent: |
| 2587 | return diag::warn_odr_objc_method_num_params_inconsistent; |
| 2588 | case diag::err_odr_objc_method_param_type_inconsistent: |
| 2589 | return diag::warn_odr_objc_method_param_type_inconsistent; |
| 2590 | case diag::err_odr_objc_method_variadic_inconsistent: |
| 2591 | return diag::warn_odr_objc_method_variadic_inconsistent; |
| 2592 | case diag::err_odr_objc_property_type_inconsistent: |
| 2593 | return diag::warn_odr_objc_property_type_inconsistent; |
| 2594 | case diag::err_odr_objc_property_impl_kind_inconsistent: |
| 2595 | return diag::warn_odr_objc_property_impl_kind_inconsistent; |
| 2596 | case diag::err_odr_objc_synthesize_ivar_inconsistent: |
| 2597 | return diag::warn_odr_objc_synthesize_ivar_inconsistent; |
| 2598 | case diag::err_odr_different_num_template_parameters: |
| 2599 | return diag::warn_odr_different_num_template_parameters; |
| 2600 | case diag::err_odr_different_template_parameter_kind: |
| 2601 | return diag::warn_odr_different_template_parameter_kind; |
| 2602 | case diag::err_odr_parameter_pack_non_pack: |
| 2603 | return diag::warn_odr_parameter_pack_non_pack; |
| 2604 | case diag::err_odr_non_type_parameter_type_inconsistent: |
| 2605 | return diag::warn_odr_non_type_parameter_type_inconsistent; |
| 2606 | } |
| 2607 | llvm_unreachable("Diagnostic kind not handled in preceding switch" ); |
| 2608 | } |
| 2609 | |
| 2610 | bool StructuralEquivalenceContext::IsEquivalent(Decl *D1, Decl *D2) { |
| 2611 | |
| 2612 | // Ensure that the implementation functions (all static functions in this TU) |
| 2613 | // never call the public ASTStructuralEquivalence::IsEquivalent() functions, |
| 2614 | // because that will wreak havoc the internal state (DeclsToCheck and |
| 2615 | // VisitedDecls members) and can cause faulty behaviour. |
| 2616 | // In other words: Do not start a graph search from a new node with the |
| 2617 | // internal data of another search in progress. |
| 2618 | // FIXME: Better encapsulation and separation of internal and public |
| 2619 | // functionality. |
| 2620 | assert(DeclsToCheck.empty()); |
| 2621 | assert(VisitedDecls.empty()); |
| 2622 | |
| 2623 | if (!::IsStructurallyEquivalent(Context&: *this, D1, D2)) |
| 2624 | return false; |
| 2625 | |
| 2626 | return !Finish(); |
| 2627 | } |
| 2628 | |
| 2629 | bool StructuralEquivalenceContext::IsEquivalent(QualType T1, QualType T2) { |
| 2630 | assert(DeclsToCheck.empty()); |
| 2631 | assert(VisitedDecls.empty()); |
| 2632 | if (!::IsStructurallyEquivalent(Context&: *this, T1, T2)) |
| 2633 | return false; |
| 2634 | |
| 2635 | return !Finish(); |
| 2636 | } |
| 2637 | |
| 2638 | bool StructuralEquivalenceContext::IsEquivalent(Stmt *S1, Stmt *S2) { |
| 2639 | assert(DeclsToCheck.empty()); |
| 2640 | assert(VisitedDecls.empty()); |
| 2641 | if (!::IsStructurallyEquivalent(Context&: *this, S1, S2)) |
| 2642 | return false; |
| 2643 | |
| 2644 | return !Finish(); |
| 2645 | } |
| 2646 | |
| 2647 | bool StructuralEquivalenceContext::CheckCommonEquivalence(Decl *D1, Decl *D2) { |
| 2648 | // Check for equivalent described template. |
| 2649 | TemplateDecl *Template1 = D1->getDescribedTemplate(); |
| 2650 | TemplateDecl *Template2 = D2->getDescribedTemplate(); |
| 2651 | if ((Template1 != nullptr) != (Template2 != nullptr)) |
| 2652 | return false; |
| 2653 | if (Template1 && !IsStructurallyEquivalent(Context&: *this, D1: Template1, D2: Template2)) |
| 2654 | return false; |
| 2655 | |
| 2656 | // FIXME: Move check for identifier names into this function. |
| 2657 | |
| 2658 | return true; |
| 2659 | } |
| 2660 | |
| 2661 | bool StructuralEquivalenceContext::CheckKindSpecificEquivalence( |
| 2662 | Decl *D1, Decl *D2) { |
| 2663 | |
| 2664 | // Kind mismatch. |
| 2665 | if (D1->getKind() != D2->getKind()) |
| 2666 | return false; |
| 2667 | |
| 2668 | // Cast the Decls to their actual subclass so that the right overload of |
| 2669 | // IsStructurallyEquivalent is called. |
| 2670 | switch (D1->getKind()) { |
| 2671 | #define ABSTRACT_DECL(DECL) |
| 2672 | #define DECL(DERIVED, BASE) \ |
| 2673 | case Decl::Kind::DERIVED: \ |
| 2674 | return ::IsStructurallyEquivalent(*this, static_cast<DERIVED##Decl *>(D1), \ |
| 2675 | static_cast<DERIVED##Decl *>(D2)); |
| 2676 | #include "clang/AST/DeclNodes.inc" |
| 2677 | } |
| 2678 | return true; |
| 2679 | } |
| 2680 | |
| 2681 | bool StructuralEquivalenceContext::Finish() { |
| 2682 | while (!DeclsToCheck.empty()) { |
| 2683 | // Check the next declaration. |
| 2684 | std::pair<Decl *, Decl *> P = DeclsToCheck.front(); |
| 2685 | DeclsToCheck.pop(); |
| 2686 | |
| 2687 | Decl *D1 = P.first; |
| 2688 | Decl *D2 = P.second; |
| 2689 | |
| 2690 | bool Equivalent = |
| 2691 | CheckCommonEquivalence(D1, D2) && CheckKindSpecificEquivalence(D1, D2); |
| 2692 | |
| 2693 | if (!Equivalent) { |
| 2694 | // Note that these two declarations are not equivalent (and we already |
| 2695 | // know about it). |
| 2696 | NonEquivalentDecls.insert( |
| 2697 | V: std::make_tuple(args&: D1, args&: D2, args&: IgnoreTemplateParmDepth)); |
| 2698 | |
| 2699 | return true; |
| 2700 | } |
| 2701 | } |
| 2702 | |
| 2703 | return false; |
| 2704 | } |
| 2705 | |