1//===- Decl.cpp - Declaration AST Node Implementation ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Decl.h"
14#include "Linkage.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTDiagnostic.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/CanonicalType.h"
21#include "clang/AST/DeclBase.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclTemplate.h"
25#include "clang/AST/DeclarationName.h"
26#include "clang/AST/Expr.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/ExternalASTSource.h"
29#include "clang/AST/ODRHash.h"
30#include "clang/AST/PrettyDeclStackTrace.h"
31#include "clang/AST/PrettyPrinter.h"
32#include "clang/AST/Randstruct.h"
33#include "clang/AST/RecordLayout.h"
34#include "clang/AST/Redeclarable.h"
35#include "clang/AST/Stmt.h"
36#include "clang/AST/TemplateBase.h"
37#include "clang/AST/Type.h"
38#include "clang/AST/TypeLoc.h"
39#include "clang/Basic/Builtins.h"
40#include "clang/Basic/IdentifierTable.h"
41#include "clang/Basic/LLVM.h"
42#include "clang/Basic/LangOptions.h"
43#include "clang/Basic/Linkage.h"
44#include "clang/Basic/Module.h"
45#include "clang/Basic/NoSanitizeList.h"
46#include "clang/Basic/PartialDiagnostic.h"
47#include "clang/Basic/Sanitizers.h"
48#include "clang/Basic/SourceLocation.h"
49#include "clang/Basic/SourceManager.h"
50#include "clang/Basic/Specifiers.h"
51#include "clang/Basic/TargetCXXABI.h"
52#include "clang/Basic/TargetInfo.h"
53#include "clang/Basic/Visibility.h"
54#include "llvm/ADT/APSInt.h"
55#include "llvm/ADT/ArrayRef.h"
56#include "llvm/ADT/STLExtras.h"
57#include "llvm/ADT/SmallVector.h"
58#include "llvm/ADT/StringRef.h"
59#include "llvm/ADT/StringSwitch.h"
60#include "llvm/ADT/iterator_range.h"
61#include "llvm/Support/Casting.h"
62#include "llvm/Support/ErrorHandling.h"
63#include "llvm/Support/raw_ostream.h"
64#include "llvm/TargetParser/Triple.h"
65#include <algorithm>
66#include <cassert>
67#include <cstddef>
68#include <cstring>
69#include <optional>
70#include <string>
71#include <tuple>
72#include <type_traits>
73
74using namespace clang;
75
76Decl *clang::getPrimaryMergedDecl(Decl *D) {
77 return D->getASTContext().getPrimaryMergedDecl(D);
78}
79
80void PrettyDeclStackTraceEntry::print(raw_ostream &OS) const {
81 SourceLocation Loc = this->Loc;
82 if (!Loc.isValid() && TheDecl) Loc = TheDecl->getLocation();
83 if (Loc.isValid()) {
84 Loc.print(OS, SM: Context.getSourceManager());
85 OS << ": ";
86 }
87 OS << Message;
88
89 if (auto *ND = dyn_cast_if_present<NamedDecl>(Val: TheDecl)) {
90 OS << " '";
91 ND->getNameForDiagnostic(OS, Policy: Context.getPrintingPolicy(), Qualified: true);
92 OS << "'";
93 }
94
95 OS << '\n';
96}
97
98// Defined here so that it can be inlined into its direct callers.
99bool Decl::isOutOfLine() const {
100 return !getLexicalDeclContext()->Equals(DC: getDeclContext());
101}
102
103TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
104 : Decl(TranslationUnit, nullptr, SourceLocation()),
105 DeclContext(TranslationUnit), redeclarable_base(ctx), Ctx(ctx) {}
106
107//===----------------------------------------------------------------------===//
108// NamedDecl Implementation
109//===----------------------------------------------------------------------===//
110
111// Visibility rules aren't rigorously externally specified, but here
112// are the basic principles behind what we implement:
113//
114// 1. An explicit visibility attribute is generally a direct expression
115// of the user's intent and should be honored. Only the innermost
116// visibility attribute applies. If no visibility attribute applies,
117// global visibility settings are considered.
118//
119// 2. There is one caveat to the above: on or in a template pattern,
120// an explicit visibility attribute is just a default rule, and
121// visibility can be decreased by the visibility of template
122// arguments. But this, too, has an exception: an attribute on an
123// explicit specialization or instantiation causes all the visibility
124// restrictions of the template arguments to be ignored.
125//
126// 3. A variable that does not otherwise have explicit visibility can
127// be restricted by the visibility of its type.
128//
129// 4. A visibility restriction is explicit if it comes from an
130// attribute (or something like it), not a global visibility setting.
131// When emitting a reference to an external symbol, visibility
132// restrictions are ignored unless they are explicit.
133//
134// 5. When computing the visibility of a non-type, including a
135// non-type member of a class, only non-type visibility restrictions
136// are considered: the 'visibility' attribute, global value-visibility
137// settings, and a few special cases like __private_extern.
138//
139// 6. When computing the visibility of a type, including a type member
140// of a class, only type visibility restrictions are considered:
141// the 'type_visibility' attribute and global type-visibility settings.
142// However, a 'visibility' attribute counts as a 'type_visibility'
143// attribute on any declaration that only has the former.
144//
145// The visibility of a "secondary" entity, like a template argument,
146// is computed using the kind of that entity, not the kind of the
147// primary entity for which we are computing visibility. For example,
148// the visibility of a specialization of either of these templates:
149// template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
150// template <class T, bool (&compare)(T, X)> class matcher;
151// is restricted according to the type visibility of the argument 'T',
152// the type visibility of 'bool(&)(T,X)', and the value visibility of
153// the argument function 'compare'. That 'has_match' is a value
154// and 'matcher' is a type only matters when looking for attributes
155// and settings from the immediate context.
156
157/// Does this computation kind permit us to consider additional
158/// visibility settings from attributes and the like?
159static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
160 return computation.IgnoreExplicitVisibility;
161}
162
163/// Given an LVComputationKind, return one of the same type/value sort
164/// that records that it already has explicit visibility.
165static LVComputationKind
166withExplicitVisibilityAlready(LVComputationKind Kind) {
167 Kind.IgnoreExplicitVisibility = true;
168 return Kind;
169}
170
171static std::optional<Visibility> getExplicitVisibility(const NamedDecl *D,
172 LVComputationKind kind) {
173 assert(!kind.IgnoreExplicitVisibility &&
174 "asking for explicit visibility when we shouldn't be");
175 return D->getExplicitVisibility(kind: kind.getExplicitVisibilityKind());
176}
177
178/// Is the given declaration a "type" or a "value" for the purposes of
179/// visibility computation?
180static bool usesTypeVisibility(const NamedDecl *D) {
181 return isa<TypeDecl>(Val: D) ||
182 isa<ClassTemplateDecl>(Val: D) ||
183 isa<ObjCInterfaceDecl>(Val: D);
184}
185
186/// Does the given declaration have member specialization information,
187/// and if so, is it an explicit specialization?
188template <class T>
189static std::enable_if_t<!std::is_base_of_v<RedeclarableTemplateDecl, T>, bool>
190isExplicitMemberSpecialization(const T *D) {
191 if (const MemberSpecializationInfo *member =
192 D->getMemberSpecializationInfo()) {
193 return member->isExplicitSpecialization();
194 }
195 return false;
196}
197
198/// For templates, this question is easier: a member template can't be
199/// explicitly instantiated, so there's a single bit indicating whether
200/// or not this is an explicit member specialization.
201static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
202 return D->isMemberSpecialization();
203}
204
205/// Given a visibility attribute, return the explicit visibility
206/// associated with it.
207template <class T>
208static Visibility getVisibilityFromAttr(const T *attr) {
209 switch (attr->getVisibility()) {
210 case T::Default:
211 return DefaultVisibility;
212 case T::Hidden:
213 return HiddenVisibility;
214 case T::Protected:
215 return ProtectedVisibility;
216 }
217 llvm_unreachable("bad visibility kind");
218}
219
220/// Return the explicit visibility of the given declaration.
221static std::optional<Visibility>
222getVisibilityOf(const NamedDecl *D, NamedDecl::ExplicitVisibilityKind kind) {
223 // If we're ultimately computing the visibility of a type, look for
224 // a 'type_visibility' attribute before looking for 'visibility'.
225 if (kind == NamedDecl::VisibilityForType) {
226 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
227 return getVisibilityFromAttr(attr: A);
228 }
229 }
230
231 // If this declaration has an explicit visibility attribute, use it.
232 if (const auto *A = D->getAttr<VisibilityAttr>()) {
233 return getVisibilityFromAttr(attr: A);
234 }
235
236 return std::nullopt;
237}
238
239LinkageInfo LinkageComputer::getLVForType(const Type &T,
240 LVComputationKind computation) {
241 if (computation.IgnoreAllVisibility)
242 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
243 return getTypeLinkageAndVisibility(T: &T);
244}
245
246/// Get the most restrictive linkage for the types in the given
247/// template parameter list. For visibility purposes, template
248/// parameters are part of the signature of a template.
249LinkageInfo LinkageComputer::getLVForTemplateParameterList(
250 const TemplateParameterList *Params, LVComputationKind computation) {
251 LinkageInfo LV;
252 for (const NamedDecl *P : *Params) {
253 // Template type parameters are the most common and never
254 // contribute to visibility, pack or not.
255 if (isa<TemplateTypeParmDecl>(Val: P))
256 continue;
257
258 // Non-type template parameters can be restricted by the value type, e.g.
259 // template <enum X> class A { ... };
260 // We have to be careful here, though, because we can be dealing with
261 // dependent types.
262 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: P)) {
263 // Handle the non-pack case first.
264 if (!NTTP->isExpandedParameterPack()) {
265 if (!NTTP->getType()->isDependentType()) {
266 LV.merge(other: getLVForType(T: *NTTP->getType(), computation));
267 }
268 continue;
269 }
270
271 // Look at all the types in an expanded pack.
272 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
273 QualType type = NTTP->getExpansionType(I: i);
274 if (!type->isDependentType())
275 LV.merge(other: getTypeLinkageAndVisibility(T: type));
276 }
277 continue;
278 }
279
280 // Template template parameters can be restricted by their
281 // template parameters, recursively.
282 const auto *TTP = cast<TemplateTemplateParmDecl>(Val: P);
283
284 // Handle the non-pack case first.
285 if (!TTP->isExpandedParameterPack()) {
286 LV.merge(other: getLVForTemplateParameterList(Params: TTP->getTemplateParameters(),
287 computation));
288 continue;
289 }
290
291 // Look at all expansions in an expanded pack.
292 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
293 i != n; ++i) {
294 LV.merge(other: getLVForTemplateParameterList(
295 Params: TTP->getExpansionTemplateParameters(I: i), computation));
296 }
297 }
298
299 return LV;
300}
301
302static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
303 const Decl *Ret = nullptr;
304 const DeclContext *DC = D->getDeclContext();
305 while (DC->getDeclKind() != Decl::TranslationUnit) {
306 if (isa<FunctionDecl>(Val: DC) || isa<BlockDecl>(Val: DC))
307 Ret = cast<Decl>(Val: DC);
308 DC = DC->getParent();
309 }
310 return Ret;
311}
312
313/// Get the most restrictive linkage for the types and
314/// declarations in the given template argument list.
315///
316/// Note that we don't take an LVComputationKind because we always
317/// want to honor the visibility of template arguments in the same way.
318LinkageInfo
319LinkageComputer::getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
320 LVComputationKind computation) {
321 LinkageInfo LV;
322
323 for (const TemplateArgument &Arg : Args) {
324 switch (Arg.getKind()) {
325 case TemplateArgument::Null:
326 case TemplateArgument::Integral:
327 case TemplateArgument::Expression:
328 continue;
329
330 case TemplateArgument::Type:
331 LV.merge(other: getLVForType(T: *Arg.getAsType(), computation));
332 continue;
333
334 case TemplateArgument::Declaration: {
335 const NamedDecl *ND = Arg.getAsDecl();
336 assert(!usesTypeVisibility(ND));
337 LV.merge(other: getLVForDecl(D: ND, computation));
338 continue;
339 }
340
341 case TemplateArgument::NullPtr:
342 LV.merge(other: getTypeLinkageAndVisibility(T: Arg.getNullPtrType()));
343 continue;
344
345 case TemplateArgument::StructuralValue:
346 LV.merge(other: getLVForValue(V: Arg.getAsStructuralValue(), computation));
347 continue;
348
349 case TemplateArgument::Template:
350 case TemplateArgument::TemplateExpansion:
351 if (TemplateDecl *Template =
352 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl(
353 /*IgnoreDeduced=*/true))
354 LV.merge(other: getLVForDecl(D: Template, computation));
355 continue;
356
357 case TemplateArgument::Pack:
358 LV.merge(other: getLVForTemplateArgumentList(Args: Arg.getPackAsArray(), computation));
359 continue;
360 }
361 llvm_unreachable("bad template argument kind");
362 }
363
364 return LV;
365}
366
367LinkageInfo
368LinkageComputer::getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
369 LVComputationKind computation) {
370 return getLVForTemplateArgumentList(Args: TArgs.asArray(), computation);
371}
372
373static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
374 const FunctionTemplateSpecializationInfo *specInfo) {
375 // Include visibility from the template parameters and arguments
376 // only if this is not an explicit instantiation or specialization
377 // with direct explicit visibility. (Implicit instantiations won't
378 // have a direct attribute.)
379 if (!specInfo->isExplicitInstantiationOrSpecialization())
380 return true;
381
382 return !fn->hasAttr<VisibilityAttr>();
383}
384
385/// Merge in template-related linkage and visibility for the given
386/// function template specialization.
387///
388/// We don't need a computation kind here because we can assume
389/// LVForValue.
390///
391/// \param[out] LV the computation to use for the parent
392void LinkageComputer::mergeTemplateLV(
393 LinkageInfo &LV, const FunctionDecl *fn,
394 const FunctionTemplateSpecializationInfo *specInfo,
395 LVComputationKind computation) {
396 bool considerVisibility =
397 shouldConsiderTemplateVisibility(fn, specInfo);
398
399 FunctionTemplateDecl *temp = specInfo->getTemplate();
400 // Merge information from the template declaration.
401 LinkageInfo tempLV = getLVForDecl(D: temp, computation);
402 // The linkage and visibility of the specialization should be
403 // consistent with the template declaration.
404 LV.mergeMaybeWithVisibility(other: tempLV, withVis: considerVisibility);
405
406 // Merge information from the template parameters.
407 LinkageInfo paramsLV =
408 getLVForTemplateParameterList(Params: temp->getTemplateParameters(), computation);
409 LV.mergeMaybeWithVisibility(other: paramsLV, withVis: considerVisibility);
410
411 // Merge information from the template arguments.
412 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
413 LinkageInfo argsLV = getLVForTemplateArgumentList(TArgs: templateArgs, computation);
414 LV.mergeMaybeWithVisibility(other: argsLV, withVis: considerVisibility);
415}
416
417/// Does the given declaration have a direct visibility attribute
418/// that would match the given rules?
419static bool hasDirectVisibilityAttribute(const NamedDecl *D,
420 LVComputationKind computation) {
421 if (computation.IgnoreAllVisibility)
422 return false;
423
424 return (computation.isTypeVisibility() && D->hasAttr<TypeVisibilityAttr>()) ||
425 D->hasAttr<VisibilityAttr>();
426}
427
428/// Should we consider visibility associated with the template
429/// arguments and parameters of the given class template specialization?
430static bool shouldConsiderTemplateVisibility(
431 const ClassTemplateSpecializationDecl *spec,
432 LVComputationKind computation) {
433 // Include visibility from the template parameters and arguments
434 // only if this is not an explicit instantiation or specialization
435 // with direct explicit visibility (and note that implicit
436 // instantiations won't have a direct attribute).
437 //
438 // Furthermore, we want to ignore template parameters and arguments
439 // for an explicit specialization when computing the visibility of a
440 // member thereof with explicit visibility.
441 //
442 // This is a bit complex; let's unpack it.
443 //
444 // An explicit class specialization is an independent, top-level
445 // declaration. As such, if it or any of its members has an
446 // explicit visibility attribute, that must directly express the
447 // user's intent, and we should honor it. The same logic applies to
448 // an explicit instantiation of a member of such a thing.
449
450 // Fast path: if this is not an explicit instantiation or
451 // specialization, we always want to consider template-related
452 // visibility restrictions.
453 if (!spec->isExplicitInstantiationOrSpecialization())
454 return true;
455
456 // This is the 'member thereof' check.
457 if (spec->isExplicitSpecialization() &&
458 hasExplicitVisibilityAlready(computation))
459 return false;
460
461 return !hasDirectVisibilityAttribute(D: spec, computation);
462}
463
464/// Merge in template-related linkage and visibility for the given
465/// class template specialization.
466void LinkageComputer::mergeTemplateLV(
467 LinkageInfo &LV, const ClassTemplateSpecializationDecl *spec,
468 LVComputationKind computation) {
469 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
470
471 // Merge information from the template parameters, but ignore
472 // visibility if we're only considering template arguments.
473 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
474 // Merge information from the template declaration.
475 LinkageInfo tempLV = getLVForDecl(D: temp, computation);
476 // The linkage of the specialization should be consistent with the
477 // template declaration.
478 LV.setLinkage(tempLV.getLinkage());
479
480 LinkageInfo paramsLV =
481 getLVForTemplateParameterList(Params: temp->getTemplateParameters(), computation);
482 LV.mergeMaybeWithVisibility(other: paramsLV,
483 withVis: considerVisibility && !hasExplicitVisibilityAlready(computation));
484
485 // Merge information from the template arguments. We ignore
486 // template-argument visibility if we've got an explicit
487 // instantiation with a visibility attribute.
488 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
489 LinkageInfo argsLV = getLVForTemplateArgumentList(TArgs: templateArgs, computation);
490 if (considerVisibility)
491 LV.mergeVisibility(other: argsLV);
492 LV.mergeExternalVisibility(Other: argsLV);
493}
494
495/// Should we consider visibility associated with the template
496/// arguments and parameters of the given variable template
497/// specialization? As usual, follow class template specialization
498/// logic up to initialization.
499static bool shouldConsiderTemplateVisibility(
500 const VarTemplateSpecializationDecl *spec,
501 LVComputationKind computation) {
502 // Include visibility from the template parameters and arguments
503 // only if this is not an explicit instantiation or specialization
504 // with direct explicit visibility (and note that implicit
505 // instantiations won't have a direct attribute).
506 if (!spec->isExplicitInstantiationOrSpecialization())
507 return true;
508
509 // An explicit variable specialization is an independent, top-level
510 // declaration. As such, if it has an explicit visibility attribute,
511 // that must directly express the user's intent, and we should honor
512 // it.
513 if (spec->isExplicitSpecialization() &&
514 hasExplicitVisibilityAlready(computation))
515 return false;
516
517 return !hasDirectVisibilityAttribute(D: spec, computation);
518}
519
520/// Merge in template-related linkage and visibility for the given
521/// variable template specialization. As usual, follow class template
522/// specialization logic up to initialization.
523void LinkageComputer::mergeTemplateLV(LinkageInfo &LV,
524 const VarTemplateSpecializationDecl *spec,
525 LVComputationKind computation) {
526 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
527
528 // Merge information from the template parameters, but ignore
529 // visibility if we're only considering template arguments.
530 VarTemplateDecl *temp = spec->getSpecializedTemplate();
531 LinkageInfo tempLV =
532 getLVForTemplateParameterList(Params: temp->getTemplateParameters(), computation);
533 LV.mergeMaybeWithVisibility(other: tempLV,
534 withVis: considerVisibility && !hasExplicitVisibilityAlready(computation));
535
536 // Merge information from the template arguments. We ignore
537 // template-argument visibility if we've got an explicit
538 // instantiation with a visibility attribute.
539 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
540 LinkageInfo argsLV = getLVForTemplateArgumentList(TArgs: templateArgs, computation);
541 if (considerVisibility)
542 LV.mergeVisibility(other: argsLV);
543 LV.mergeExternalVisibility(Other: argsLV);
544}
545
546static bool useInlineVisibilityHidden(const NamedDecl *D) {
547 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
548 const LangOptions &Opts = D->getASTContext().getLangOpts();
549 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
550 return false;
551
552 const auto *FD = dyn_cast<FunctionDecl>(Val: D);
553 if (!FD)
554 return false;
555
556 TemplateSpecializationKind TSK = TSK_Undeclared;
557 if (FunctionTemplateSpecializationInfo *spec
558 = FD->getTemplateSpecializationInfo()) {
559 TSK = spec->getTemplateSpecializationKind();
560 } else if (MemberSpecializationInfo *MSI =
561 FD->getMemberSpecializationInfo()) {
562 TSK = MSI->getTemplateSpecializationKind();
563 }
564
565 const FunctionDecl *Def = nullptr;
566 // InlineVisibilityHidden only applies to definitions, and
567 // isInlined() only gives meaningful answers on definitions
568 // anyway.
569 return TSK != TSK_ExplicitInstantiationDeclaration &&
570 TSK != TSK_ExplicitInstantiationDefinition &&
571 FD->hasBody(Definition&: Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
572}
573
574template <typename T> static bool isFirstInExternCContext(T *D) {
575 const T *First = D->getFirstDecl();
576 return First->isInExternCContext();
577}
578
579static bool isSingleLineLanguageLinkage(const Decl &D) {
580 if (const auto *SD = dyn_cast<LinkageSpecDecl>(Val: D.getDeclContext()))
581 if (!SD->hasBraces())
582 return true;
583 return false;
584}
585
586static LinkageInfo getExternalLinkageFor(const NamedDecl *D) {
587 return LinkageInfo::external();
588}
589
590static StorageClass getStorageClass(const Decl *D) {
591 if (auto *TD = dyn_cast<TemplateDecl>(Val: D))
592 D = TD->getTemplatedDecl();
593 if (D) {
594 if (auto *VD = dyn_cast<VarDecl>(Val: D))
595 return VD->getStorageClass();
596 if (auto *FD = dyn_cast<FunctionDecl>(Val: D))
597 return FD->getStorageClass();
598 }
599 return SC_None;
600}
601
602LinkageInfo
603LinkageComputer::getLVForNamespaceScopeDecl(const NamedDecl *D,
604 LVComputationKind computation,
605 bool IgnoreVarTypeLinkage) {
606 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
607 "Not a name having namespace scope");
608 ASTContext &Context = D->getASTContext();
609 const auto *Var = dyn_cast<VarDecl>(Val: D);
610
611 // C++ [basic.link]p3:
612 // A name having namespace scope (3.3.6) has internal linkage if it
613 // is the name of
614
615 if ((getStorageClass(D: D->getCanonicalDecl()) == SC_Static) ||
616 (Context.getLangOpts().C23 && Var && Var->isConstexpr())) {
617 // - a variable, variable template, function, or function template
618 // that is explicitly declared static; or
619 // (This bullet corresponds to C99 6.2.2p3.)
620
621 // C23 6.2.2p3
622 // If the declaration of a file scope identifier for
623 // an object contains any of the storage-class specifiers static or
624 // constexpr then the identifier has internal linkage.
625 return LinkageInfo::internal();
626 }
627
628 if (Var) {
629 // - a non-template variable of non-volatile const-qualified type, unless
630 // - it is explicitly declared extern, or
631 // - it is declared in the purview of a module interface unit
632 // (outside the private-module-fragment, if any) or module partition, or
633 // - it is inline, or
634 // - it was previously declared and the prior declaration did not have
635 // internal linkage
636 // (There is no equivalent in C99.)
637 if (Context.getLangOpts().CPlusPlus && Var->getType().isConstQualified() &&
638 !Var->getType().isVolatileQualified() && !Var->isInline() &&
639 ![Var]() {
640 // Check if it is module purview except private module fragment
641 // and implementation unit.
642 if (auto *M = Var->getOwningModule())
643 return M->isInterfaceOrPartition() || M->isImplicitGlobalModule();
644 return false;
645 }() &&
646 !isa<VarTemplateSpecializationDecl>(Val: Var) &&
647 !Var->getDescribedVarTemplate()) {
648 const VarDecl *PrevVar = Var->getPreviousDecl();
649 if (PrevVar)
650 return getLVForDecl(D: PrevVar, computation);
651
652 if (Var->getStorageClass() != SC_Extern &&
653 Var->getStorageClass() != SC_PrivateExtern &&
654 !isSingleLineLanguageLinkage(D: *Var))
655 return LinkageInfo::internal();
656 }
657
658 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
659 PrevVar = PrevVar->getPreviousDecl()) {
660 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
661 Var->getStorageClass() == SC_None)
662 return getDeclLinkageAndVisibility(D: PrevVar);
663 // Explicitly declared static.
664 if (PrevVar->getStorageClass() == SC_Static)
665 return LinkageInfo::internal();
666 }
667 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(Val: D)) {
668 // - a data member of an anonymous union.
669 const VarDecl *VD = IFD->getVarDecl();
670 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
671 return getLVForNamespaceScopeDecl(D: VD, computation, IgnoreVarTypeLinkage);
672 }
673 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
674
675 // FIXME: This gives internal linkage to names that should have no linkage
676 // (those not covered by [basic.link]p6).
677 if (D->isInAnonymousNamespace()) {
678 const auto *Var = dyn_cast<VarDecl>(Val: D);
679 const auto *Func = dyn_cast<FunctionDecl>(Val: D);
680 // FIXME: The check for extern "C" here is not justified by the standard
681 // wording, but we retain it from the pre-DR1113 model to avoid breaking
682 // code.
683 //
684 // C++11 [basic.link]p4:
685 // An unnamed namespace or a namespace declared directly or indirectly
686 // within an unnamed namespace has internal linkage.
687 if ((!Var || !isFirstInExternCContext(D: Var)) &&
688 (!Func || !isFirstInExternCContext(D: Func)))
689 return LinkageInfo::internal();
690 }
691
692 // Set up the defaults.
693
694 // C99 6.2.2p5:
695 // If the declaration of an identifier for an object has file
696 // scope and no storage-class specifier, its linkage is
697 // external.
698 LinkageInfo LV = getExternalLinkageFor(D);
699
700 if (!hasExplicitVisibilityAlready(computation)) {
701 if (std::optional<Visibility> Vis = getExplicitVisibility(D, kind: computation)) {
702 LV.mergeVisibility(newVis: *Vis, newExplicit: true);
703 } else {
704 // If we're declared in a namespace with a visibility attribute,
705 // use that namespace's visibility, and it still counts as explicit.
706 for (const DeclContext *DC = D->getDeclContext();
707 !isa<TranslationUnitDecl>(Val: DC);
708 DC = DC->getParent()) {
709 const auto *ND = dyn_cast<NamespaceDecl>(Val: DC);
710 if (!ND) continue;
711 if (std::optional<Visibility> Vis =
712 getExplicitVisibility(D: ND, kind: computation)) {
713 LV.mergeVisibility(newVis: *Vis, newExplicit: true);
714 break;
715 }
716 }
717 }
718
719 // Add in global settings if the above didn't give us direct visibility.
720 if (!LV.isVisibilityExplicit()) {
721 // Use global type/value visibility as appropriate.
722 Visibility globalVisibility =
723 computation.isValueVisibility()
724 ? Context.getLangOpts().getValueVisibilityMode()
725 : Context.getLangOpts().getTypeVisibilityMode();
726 LV.mergeVisibility(newVis: globalVisibility, /*explicit*/ newExplicit: false);
727
728 // If we're paying attention to global visibility, apply
729 // -finline-visibility-hidden if this is an inline method.
730 if (useInlineVisibilityHidden(D))
731 LV.mergeVisibility(newVis: HiddenVisibility, /*visibilityExplicit=*/newExplicit: false);
732 }
733 }
734
735 // C++ [basic.link]p4:
736
737 // A name having namespace scope that has not been given internal linkage
738 // above and that is the name of
739 // [...bullets...]
740 // has its linkage determined as follows:
741 // - if the enclosing namespace has internal linkage, the name has
742 // internal linkage; [handled above]
743 // - otherwise, if the declaration of the name is attached to a named
744 // module and is not exported, the name has module linkage;
745 // - otherwise, the name has external linkage.
746 // LV is currently set up to handle the last two bullets.
747 //
748 // The bullets are:
749
750 // - a variable; or
751 if (const auto *Var = dyn_cast<VarDecl>(Val: D)) {
752 // GCC applies the following optimization to variables and static
753 // data members, but not to functions:
754 //
755 // Modify the variable's LV by the LV of its type unless this is
756 // C or extern "C". This follows from [basic.link]p9:
757 // A type without linkage shall not be used as the type of a
758 // variable or function with external linkage unless
759 // - the entity has C language linkage, or
760 // - the entity is declared within an unnamed namespace, or
761 // - the entity is not used or is defined in the same
762 // translation unit.
763 // and [basic.link]p10:
764 // ...the types specified by all declarations referring to a
765 // given variable or function shall be identical...
766 // C does not have an equivalent rule.
767 //
768 // Ignore this if we've got an explicit attribute; the user
769 // probably knows what they're doing.
770 //
771 // Note that we don't want to make the variable non-external
772 // because of this, but unique-external linkage suits us.
773
774 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(D: Var) &&
775 !IgnoreVarTypeLinkage) {
776 LinkageInfo TypeLV = getLVForType(T: *Var->getType(), computation);
777 if (!isExternallyVisible(L: TypeLV.getLinkage()))
778 return LinkageInfo::uniqueExternal();
779 if (!LV.isVisibilityExplicit())
780 LV.mergeVisibility(other: TypeLV);
781 }
782
783 if (Var->getStorageClass() == SC_PrivateExtern)
784 LV.mergeVisibility(newVis: HiddenVisibility, newExplicit: true);
785
786 // Note that Sema::MergeVarDecl already takes care of implementing
787 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
788 // to do it here.
789
790 // As per function and class template specializations (below),
791 // consider LV for the template and template arguments. We're at file
792 // scope, so we do not need to worry about nested specializations.
793 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Val: Var)) {
794 mergeTemplateLV(LV, spec, computation);
795 }
796
797 // - a function; or
798 } else if (const auto *Function = dyn_cast<FunctionDecl>(Val: D)) {
799 // In theory, we can modify the function's LV by the LV of its
800 // type unless it has C linkage (see comment above about variables
801 // for justification). In practice, GCC doesn't do this, so it's
802 // just too painful to make work.
803
804 if (Function->getStorageClass() == SC_PrivateExtern)
805 LV.mergeVisibility(newVis: HiddenVisibility, newExplicit: true);
806
807 // OpenMP target declare device functions are not callable from the host so
808 // they should not be exported from the device image. This applies to all
809 // functions as the host-callable kernel functions are emitted at codegen.
810 if (Context.getLangOpts().OpenMP &&
811 Context.getLangOpts().OpenMPIsTargetDevice &&
812 (Context.getTargetInfo().getTriple().isGPU() ||
813 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD: Function)))
814 LV.mergeVisibility(newVis: HiddenVisibility, /*newExplicit=*/false);
815
816 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
817 // merging storage classes and visibility attributes, so we don't have to
818 // look at previous decls in here.
819
820 // In C++, then if the type of the function uses a type with
821 // unique-external linkage, it's not legally usable from outside
822 // this translation unit. However, we should use the C linkage
823 // rules instead for extern "C" declarations.
824 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(D: Function)) {
825 // Only look at the type-as-written. Otherwise, deducing the return type
826 // of a function could change its linkage.
827 QualType TypeAsWritten = Function->getType();
828 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
829 TypeAsWritten = TSI->getType();
830 if (!isExternallyVisible(L: TypeAsWritten->getLinkage()))
831 return LinkageInfo::uniqueExternal();
832 }
833
834 // Consider LV from the template and the template arguments.
835 // We're at file scope, so we do not need to worry about nested
836 // specializations.
837 if (FunctionTemplateSpecializationInfo *specInfo
838 = Function->getTemplateSpecializationInfo()) {
839 mergeTemplateLV(LV, fn: Function, specInfo, computation);
840 }
841
842 // - a named class (Clause 9), or an unnamed class defined in a
843 // typedef declaration in which the class has the typedef name
844 // for linkage purposes (7.1.3); or
845 // - a named enumeration (7.2), or an unnamed enumeration
846 // defined in a typedef declaration in which the enumeration
847 // has the typedef name for linkage purposes (7.1.3); or
848 } else if (const auto *Tag = dyn_cast<TagDecl>(Val: D)) {
849 // Unnamed tags have no linkage.
850 if (!Tag->hasNameForLinkage())
851 return LinkageInfo::none();
852
853 // If this is a class template specialization, consider the
854 // linkage of the template and template arguments. We're at file
855 // scope, so we do not need to worry about nested specializations.
856 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: Tag)) {
857 mergeTemplateLV(LV, spec, computation);
858 }
859
860 // FIXME: This is not part of the C++ standard any more.
861 // - an enumerator belonging to an enumeration with external linkage; or
862 } else if (isa<EnumConstantDecl>(Val: D)) {
863 LinkageInfo EnumLV = getLVForDecl(D: cast<NamedDecl>(Val: D->getDeclContext()),
864 computation);
865 if (!isExternalFormalLinkage(L: EnumLV.getLinkage()))
866 return LinkageInfo::none();
867 LV.merge(other: EnumLV);
868
869 // - a template
870 } else if (const auto *temp = dyn_cast<TemplateDecl>(Val: D)) {
871 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
872 LinkageInfo tempLV =
873 getLVForTemplateParameterList(Params: temp->getTemplateParameters(), computation);
874 LV.mergeMaybeWithVisibility(other: tempLV, withVis: considerVisibility);
875
876 // An unnamed namespace or a namespace declared directly or indirectly
877 // within an unnamed namespace has internal linkage. All other namespaces
878 // have external linkage.
879 //
880 // We handled names in anonymous namespaces above.
881 } else if (isa<NamespaceDecl>(Val: D)) {
882 return LV;
883
884 // By extension, we assign external linkage to Objective-C
885 // interfaces.
886 } else if (isa<ObjCInterfaceDecl>(Val: D)) {
887 // fallout
888
889 } else if (auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) {
890 // A typedef declaration has linkage if it gives a type a name for
891 // linkage purposes.
892 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
893 return LinkageInfo::none();
894
895 } else if (isa<MSGuidDecl>(Val: D)) {
896 // A GUID behaves like an inline variable with external linkage. Fall
897 // through.
898
899 // Everything not covered here has no linkage.
900 } else {
901 return LinkageInfo::none();
902 }
903
904 // If we ended up with non-externally-visible linkage, visibility should
905 // always be default.
906 if (!isExternallyVisible(L: LV.getLinkage()))
907 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
908
909 return LV;
910}
911
912LinkageInfo
913LinkageComputer::getLVForClassMember(const NamedDecl *D,
914 LVComputationKind computation,
915 bool IgnoreVarTypeLinkage) {
916 // Only certain class members have linkage. Note that fields don't
917 // really have linkage, but it's convenient to say they do for the
918 // purposes of calculating linkage of pointer-to-data-member
919 // template arguments.
920 //
921 // Templates also don't officially have linkage, but since we ignore
922 // the C++ standard and look at template arguments when determining
923 // linkage and visibility of a template specialization, we might hit
924 // a template template argument that way. If we do, we need to
925 // consider its linkage.
926 if (!(isa<CXXMethodDecl>(Val: D) ||
927 isa<VarDecl>(Val: D) ||
928 isa<FieldDecl>(Val: D) ||
929 isa<IndirectFieldDecl>(Val: D) ||
930 isa<TagDecl>(Val: D) ||
931 isa<TemplateDecl>(Val: D)))
932 return LinkageInfo::none();
933
934 LinkageInfo LV;
935
936 // If we have an explicit visibility attribute, merge that in.
937 if (!hasExplicitVisibilityAlready(computation)) {
938 if (std::optional<Visibility> Vis = getExplicitVisibility(D, kind: computation))
939 LV.mergeVisibility(newVis: *Vis, newExplicit: true);
940 // If we're paying attention to global visibility, apply
941 // -finline-visibility-hidden if this is an inline method.
942 //
943 // Note that we do this before merging information about
944 // the class visibility.
945 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
946 LV.mergeVisibility(newVis: HiddenVisibility, /*visibilityExplicit=*/newExplicit: false);
947 }
948
949 // If this class member has an explicit visibility attribute, the only
950 // thing that can change its visibility is the template arguments, so
951 // only look for them when processing the class.
952 LVComputationKind classComputation = computation;
953 if (LV.isVisibilityExplicit())
954 classComputation = withExplicitVisibilityAlready(Kind: computation);
955
956 LinkageInfo classLV =
957 getLVForDecl(D: cast<RecordDecl>(Val: D->getDeclContext()), computation: classComputation);
958 // The member has the same linkage as the class. If that's not externally
959 // visible, we don't need to compute anything about the linkage.
960 // FIXME: If we're only computing linkage, can we bail out here?
961 if (!isExternallyVisible(L: classLV.getLinkage()))
962 return classLV;
963
964
965 // Otherwise, don't merge in classLV yet, because in certain cases
966 // we need to completely ignore the visibility from it.
967
968 // Specifically, if this decl exists and has an explicit attribute.
969 const NamedDecl *explicitSpecSuppressor = nullptr;
970
971 if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: D)) {
972 // Only look at the type-as-written. Otherwise, deducing the return type
973 // of a function could change its linkage.
974 QualType TypeAsWritten = MD->getType();
975 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
976 TypeAsWritten = TSI->getType();
977 if (!isExternallyVisible(L: TypeAsWritten->getLinkage()))
978 return LinkageInfo::uniqueExternal();
979
980 // If this is a method template specialization, use the linkage for
981 // the template parameters and arguments.
982 if (FunctionTemplateSpecializationInfo *spec
983 = MD->getTemplateSpecializationInfo()) {
984 mergeTemplateLV(LV, fn: MD, specInfo: spec, computation);
985 if (spec->isExplicitSpecialization()) {
986 explicitSpecSuppressor = MD;
987 } else if (isExplicitMemberSpecialization(D: spec->getTemplate())) {
988 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
989 }
990 } else if (isExplicitMemberSpecialization(D: MD)) {
991 explicitSpecSuppressor = MD;
992 }
993
994 // OpenMP target declare device functions are not callable from the host so
995 // they should not be exported from the device image. This applies to all
996 // functions as the host-callable kernel functions are emitted at codegen.
997 ASTContext &Context = D->getASTContext();
998 if (Context.getLangOpts().OpenMP &&
999 Context.getLangOpts().OpenMPIsTargetDevice &&
1000 ((Context.getTargetInfo().getTriple().isAMDGPU() ||
1001 Context.getTargetInfo().getTriple().isNVPTX()) ||
1002 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD: MD)))
1003 LV.mergeVisibility(newVis: HiddenVisibility, /*newExplicit=*/false);
1004
1005 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) {
1006 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: RD)) {
1007 mergeTemplateLV(LV, spec, computation);
1008 if (spec->isExplicitSpecialization()) {
1009 explicitSpecSuppressor = spec;
1010 } else {
1011 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
1012 if (isExplicitMemberSpecialization(D: temp)) {
1013 explicitSpecSuppressor = temp->getTemplatedDecl();
1014 }
1015 }
1016 } else if (isExplicitMemberSpecialization(D: RD)) {
1017 explicitSpecSuppressor = RD;
1018 }
1019
1020 // Static data members.
1021 } else if (const auto *VD = dyn_cast<VarDecl>(Val: D)) {
1022 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Val: VD))
1023 mergeTemplateLV(LV, spec, computation);
1024
1025 // Modify the variable's linkage by its type, but ignore the
1026 // type's visibility unless it's a definition.
1027 if (!IgnoreVarTypeLinkage) {
1028 LinkageInfo typeLV = getLVForType(T: *VD->getType(), computation);
1029 // FIXME: If the type's linkage is not externally visible, we can
1030 // give this static data member UniqueExternalLinkage.
1031 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
1032 LV.mergeVisibility(other: typeLV);
1033 LV.mergeExternalVisibility(Other: typeLV);
1034 }
1035
1036 if (isExplicitMemberSpecialization(D: VD)) {
1037 explicitSpecSuppressor = VD;
1038 }
1039
1040 // Template members.
1041 } else if (const auto *temp = dyn_cast<TemplateDecl>(Val: D)) {
1042 bool considerVisibility =
1043 (!LV.isVisibilityExplicit() &&
1044 !classLV.isVisibilityExplicit() &&
1045 !hasExplicitVisibilityAlready(computation));
1046 LinkageInfo tempLV =
1047 getLVForTemplateParameterList(Params: temp->getTemplateParameters(), computation);
1048 LV.mergeMaybeWithVisibility(other: tempLV, withVis: considerVisibility);
1049
1050 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(Val: temp)) {
1051 if (isExplicitMemberSpecialization(D: redeclTemp)) {
1052 explicitSpecSuppressor = temp->getTemplatedDecl();
1053 } else if (const RedeclarableTemplateDecl *from =
1054 redeclTemp->getInstantiatedFromMemberTemplate()) {
1055 // If no explicit visibility is specified yet, and this is an
1056 // instantiated member of a template, look up visibility there
1057 // as well.
1058 LinkageInfo fromLV = from->getLinkageAndVisibility();
1059 LV.mergeMaybeWithVisibility(other: fromLV, withVis: considerVisibility);
1060 }
1061 }
1062 }
1063
1064 // We should never be looking for an attribute directly on a template.
1065 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
1066
1067 // If this member is an explicit member specialization, and it has
1068 // an explicit attribute, ignore visibility from the parent.
1069 bool considerClassVisibility = true;
1070 if (explicitSpecSuppressor &&
1071 // optimization: hasDVA() is true only with explicit visibility.
1072 LV.isVisibilityExplicit() &&
1073 classLV.getVisibility() != DefaultVisibility &&
1074 hasDirectVisibilityAttribute(D: explicitSpecSuppressor, computation)) {
1075 considerClassVisibility = false;
1076 }
1077
1078 // Finally, merge in information from the class.
1079 LV.mergeMaybeWithVisibility(other: classLV, withVis: considerClassVisibility);
1080 return LV;
1081}
1082
1083void NamedDecl::anchor() {}
1084
1085bool NamedDecl::isLinkageValid() const {
1086 if (!hasCachedLinkage())
1087 return true;
1088
1089 Linkage L = LinkageComputer{}
1090 .computeLVForDecl(D: this, computation: LVComputationKind::forLinkageOnly())
1091 .getLinkage();
1092 return L == getCachedLinkage();
1093}
1094
1095bool NamedDecl::isPlaceholderVar(const LangOptions &LangOpts) const {
1096 // [C++2c] [basic.scope.scope]/p5
1097 // A declaration is name-independent if its name is _ and it declares
1098 // - a variable with automatic storage duration,
1099 // - a structured binding not inhabiting a namespace scope,
1100 // - the variable introduced by an init-capture
1101 // - or a non-static data member.
1102
1103 if (!LangOpts.CPlusPlus || !getIdentifier() ||
1104 !getIdentifier()->isPlaceholder())
1105 return false;
1106 if (isa<FieldDecl>(Val: this))
1107 return true;
1108 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(Val: this)) {
1109 if (!getDeclContext()->isFunctionOrMethod() &&
1110 !getDeclContext()->isRecord())
1111 return false;
1112 const VarDecl *VD = IFD->getVarDecl();
1113 return !VD || VD->getStorageDuration() == SD_Automatic;
1114 }
1115 // and it declares a variable with automatic storage duration
1116 if (const auto *VD = dyn_cast<VarDecl>(Val: this)) {
1117 if (isa<ParmVarDecl>(Val: VD))
1118 return false;
1119 if (VD->isInitCapture())
1120 return true;
1121 return VD->getStorageDuration() == StorageDuration::SD_Automatic;
1122 }
1123 if (const auto *BD = dyn_cast<BindingDecl>(Val: this);
1124 BD && getDeclContext()->isFunctionOrMethod()) {
1125 const VarDecl *VD = BD->getHoldingVar();
1126 return !VD || VD->getStorageDuration() == StorageDuration::SD_Automatic;
1127 }
1128 return false;
1129}
1130
1131ReservedIdentifierStatus
1132NamedDecl::isReserved(const LangOptions &LangOpts) const {
1133 const IdentifierInfo *II = getIdentifier();
1134
1135 // This triggers at least for CXXLiteralIdentifiers, which we already checked
1136 // at lexing time.
1137 if (!II)
1138 return ReservedIdentifierStatus::NotReserved;
1139
1140 ReservedIdentifierStatus Status = II->isReserved(LangOpts);
1141 if (isReservedAtGlobalScope(Status) && !isReservedInAllContexts(Status)) {
1142 // This name is only reserved at global scope. Check if this declaration
1143 // conflicts with a global scope declaration.
1144 if (isa<ParmVarDecl>(Val: this) || isTemplateParameter())
1145 return ReservedIdentifierStatus::NotReserved;
1146
1147 // C++ [dcl.link]/7:
1148 // Two declarations [conflict] if [...] one declares a function or
1149 // variable with C language linkage, and the other declares [...] a
1150 // variable that belongs to the global scope.
1151 //
1152 // Therefore names that are reserved at global scope are also reserved as
1153 // names of variables and functions with C language linkage.
1154 const DeclContext *DC = getDeclContext()->getRedeclContext();
1155 if (DC->isTranslationUnit())
1156 return Status;
1157 if (auto *VD = dyn_cast<VarDecl>(Val: this))
1158 if (VD->isExternC())
1159 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1160 if (auto *FD = dyn_cast<FunctionDecl>(Val: this))
1161 if (FD->isExternC())
1162 return ReservedIdentifierStatus::StartsWithUnderscoreAndIsExternC;
1163 return ReservedIdentifierStatus::NotReserved;
1164 }
1165
1166 return Status;
1167}
1168
1169ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1170 StringRef name = getName();
1171 if (name.empty()) return SFF_None;
1172
1173 if (name.front() == 'C')
1174 if (name == "CFStringCreateWithFormat" ||
1175 name == "CFStringCreateWithFormatAndArguments" ||
1176 name == "CFStringAppendFormat" ||
1177 name == "CFStringAppendFormatAndArguments")
1178 return SFF_CFString;
1179 return SFF_None;
1180}
1181
1182Linkage NamedDecl::getLinkageInternal() const {
1183 // We don't care about visibility here, so ask for the cheapest
1184 // possible visibility analysis.
1185 return LinkageComputer{}
1186 .getLVForDecl(D: this, computation: LVComputationKind::forLinkageOnly())
1187 .getLinkage();
1188}
1189
1190static bool isExportedFromModuleInterfaceUnit(const NamedDecl *D) {
1191 // FIXME: Handle isModulePrivate.
1192 switch (D->getModuleOwnershipKind()) {
1193 case Decl::ModuleOwnershipKind::Unowned:
1194 case Decl::ModuleOwnershipKind::ReachableWhenImported:
1195 case Decl::ModuleOwnershipKind::ModulePrivate:
1196 return false;
1197 case Decl::ModuleOwnershipKind::Visible:
1198 case Decl::ModuleOwnershipKind::VisibleWhenImported:
1199 return D->isInNamedModule();
1200 }
1201 llvm_unreachable("unexpected module ownership kind");
1202}
1203
1204/// Get the linkage from a semantic point of view. Entities in
1205/// anonymous namespaces are external (in c++98).
1206Linkage NamedDecl::getFormalLinkage() const {
1207 Linkage InternalLinkage = getLinkageInternal();
1208
1209 // C++ [basic.link]p4.8:
1210 // - if the declaration of the name is attached to a named module and is not
1211 // exported
1212 // the name has module linkage;
1213 //
1214 // [basic.namespace.general]/p2
1215 // A namespace is never attached to a named module and never has a name with
1216 // module linkage.
1217 if (isInNamedModule() && InternalLinkage == Linkage::External &&
1218 !isExportedFromModuleInterfaceUnit(
1219 D: cast<NamedDecl>(Val: this->getCanonicalDecl())) &&
1220 !isa<NamespaceDecl>(Val: this))
1221 InternalLinkage = Linkage::Module;
1222
1223 return clang::getFormalLinkage(L: InternalLinkage);
1224}
1225
1226LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1227 return LinkageComputer{}.getDeclLinkageAndVisibility(D: this);
1228}
1229
1230static std::optional<Visibility>
1231getExplicitVisibilityAux(const NamedDecl *ND,
1232 NamedDecl::ExplicitVisibilityKind kind,
1233 bool IsMostRecent) {
1234 assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1235
1236 // Check the declaration itself first.
1237 if (std::optional<Visibility> V = getVisibilityOf(D: ND, kind))
1238 return V;
1239
1240 // If this is a member class of a specialization of a class template
1241 // and the corresponding decl has explicit visibility, use that.
1242 if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) {
1243 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1244 if (InstantiatedFrom)
1245 return getVisibilityOf(D: InstantiatedFrom, kind);
1246 }
1247
1248 // If there wasn't explicit visibility there, and this is a
1249 // specialization of a class template, check for visibility
1250 // on the pattern.
1251 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: ND)) {
1252 // Walk all the template decl till this point to see if there are
1253 // explicit visibility attributes.
1254 const auto *TD = spec->getSpecializedTemplate()->getTemplatedDecl();
1255 while (TD != nullptr) {
1256 auto Vis = getVisibilityOf(D: TD, kind);
1257 if (Vis != std::nullopt)
1258 return Vis;
1259 TD = TD->getPreviousDecl();
1260 }
1261 return std::nullopt;
1262 }
1263
1264 // Use the most recent declaration.
1265 if (!IsMostRecent && !isa<NamespaceDecl>(Val: ND)) {
1266 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1267 if (MostRecent != ND)
1268 return getExplicitVisibilityAux(ND: MostRecent, kind, IsMostRecent: true);
1269 }
1270
1271 if (const auto *Var = dyn_cast<VarDecl>(Val: ND)) {
1272 if (Var->isStaticDataMember()) {
1273 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1274 if (InstantiatedFrom)
1275 return getVisibilityOf(D: InstantiatedFrom, kind);
1276 }
1277
1278 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Val: Var))
1279 return getVisibilityOf(D: VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1280 kind);
1281
1282 return std::nullopt;
1283 }
1284 // Also handle function template specializations.
1285 if (const auto *fn = dyn_cast<FunctionDecl>(Val: ND)) {
1286 // If the function is a specialization of a template with an
1287 // explicit visibility attribute, use that.
1288 if (FunctionTemplateSpecializationInfo *templateInfo
1289 = fn->getTemplateSpecializationInfo())
1290 return getVisibilityOf(D: templateInfo->getTemplate()->getTemplatedDecl(),
1291 kind);
1292
1293 // If the function is a member of a specialization of a class template
1294 // and the corresponding decl has explicit visibility, use that.
1295 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1296 if (InstantiatedFrom)
1297 return getVisibilityOf(D: InstantiatedFrom, kind);
1298
1299 return std::nullopt;
1300 }
1301
1302 // The visibility of a template is stored in the templated decl.
1303 if (const auto *TD = dyn_cast<TemplateDecl>(Val: ND))
1304 return getVisibilityOf(D: TD->getTemplatedDecl(), kind);
1305
1306 return std::nullopt;
1307}
1308
1309std::optional<Visibility>
1310NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1311 return getExplicitVisibilityAux(ND: this, kind, IsMostRecent: false);
1312}
1313
1314LinkageInfo LinkageComputer::getLVForClosure(const DeclContext *DC,
1315 Decl *ContextDecl,
1316 LVComputationKind computation) {
1317 // This lambda has its linkage/visibility determined by its owner.
1318 const NamedDecl *Owner;
1319 if (!ContextDecl)
1320 Owner = dyn_cast<NamedDecl>(Val: DC);
1321 else if (isa<ParmVarDecl>(Val: ContextDecl))
1322 Owner =
1323 dyn_cast<NamedDecl>(Val: ContextDecl->getDeclContext()->getRedeclContext());
1324 else if (isa<ImplicitConceptSpecializationDecl>(Val: ContextDecl)) {
1325 // Replace with the concept's owning decl, which is either a namespace or a
1326 // TU, so this needs a dyn_cast.
1327 Owner = dyn_cast<NamedDecl>(Val: ContextDecl->getDeclContext());
1328 } else {
1329 Owner = cast<NamedDecl>(Val: ContextDecl);
1330 }
1331
1332 if (!Owner)
1333 return LinkageInfo::none();
1334
1335 // If the owner has a deduced type, we need to skip querying the linkage and
1336 // visibility of that type, because it might involve this closure type. The
1337 // only effect of this is that we might give a lambda VisibleNoLinkage rather
1338 // than NoLinkage when we don't strictly need to, which is benign.
1339 auto *VD = dyn_cast<VarDecl>(Val: Owner);
1340 LinkageInfo OwnerLV =
1341 VD && VD->getType()->getContainedDeducedType()
1342 ? computeLVForDecl(D: Owner, computation, /*IgnoreVarTypeLinkage*/true)
1343 : getLVForDecl(D: Owner, computation);
1344
1345 // A lambda never formally has linkage. But if the owner is externally
1346 // visible, then the lambda is too. We apply the same rules to blocks.
1347 if (!isExternallyVisible(L: OwnerLV.getLinkage()))
1348 return LinkageInfo::none();
1349 return LinkageInfo(Linkage::VisibleNone, OwnerLV.getVisibility(),
1350 OwnerLV.isVisibilityExplicit());
1351}
1352
1353LinkageInfo LinkageComputer::getLVForLocalDecl(const NamedDecl *D,
1354 LVComputationKind computation) {
1355 if (const auto *Function = dyn_cast<FunctionDecl>(Val: D)) {
1356 if (Function->isInAnonymousNamespace() &&
1357 !isFirstInExternCContext(D: Function))
1358 return LinkageInfo::internal();
1359
1360 // This is a "void f();" which got merged with a file static.
1361 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1362 return LinkageInfo::internal();
1363
1364 LinkageInfo LV;
1365 if (!hasExplicitVisibilityAlready(computation)) {
1366 if (std::optional<Visibility> Vis =
1367 getExplicitVisibility(D: Function, kind: computation))
1368 LV.mergeVisibility(newVis: *Vis, newExplicit: true);
1369 }
1370
1371 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1372 // merging storage classes and visibility attributes, so we don't have to
1373 // look at previous decls in here.
1374
1375 return LV;
1376 }
1377
1378 if (const auto *Var = dyn_cast<VarDecl>(Val: D)) {
1379 if (Var->hasExternalStorage()) {
1380 if (Var->isInAnonymousNamespace() && !isFirstInExternCContext(D: Var))
1381 return LinkageInfo::internal();
1382
1383 LinkageInfo LV;
1384 if (Var->getStorageClass() == SC_PrivateExtern)
1385 LV.mergeVisibility(newVis: HiddenVisibility, newExplicit: true);
1386 else if (!hasExplicitVisibilityAlready(computation)) {
1387 if (std::optional<Visibility> Vis =
1388 getExplicitVisibility(D: Var, kind: computation))
1389 LV.mergeVisibility(newVis: *Vis, newExplicit: true);
1390 }
1391
1392 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1393 LinkageInfo PrevLV = getLVForDecl(D: Prev, computation);
1394 if (PrevLV.getLinkage() != Linkage::Invalid)
1395 LV.setLinkage(PrevLV.getLinkage());
1396 LV.mergeVisibility(other: PrevLV);
1397 }
1398
1399 return LV;
1400 }
1401
1402 if (!Var->isStaticLocal())
1403 return LinkageInfo::none();
1404 }
1405
1406 ASTContext &Context = D->getASTContext();
1407 if (!Context.getLangOpts().CPlusPlus)
1408 return LinkageInfo::none();
1409
1410 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1411 if (!OuterD || OuterD->isInvalidDecl())
1412 return LinkageInfo::none();
1413
1414 LinkageInfo LV;
1415 if (const auto *BD = dyn_cast<BlockDecl>(Val: OuterD)) {
1416 if (!BD->getBlockManglingNumber())
1417 return LinkageInfo::none();
1418
1419 LV = getLVForClosure(DC: BD->getDeclContext()->getRedeclContext(),
1420 ContextDecl: BD->getBlockManglingContextDecl(), computation);
1421 } else {
1422 const auto *FD = cast<FunctionDecl>(Val: OuterD);
1423 if (!FD->isInlined() &&
1424 !isTemplateInstantiation(Kind: FD->getTemplateSpecializationKind()))
1425 return LinkageInfo::none();
1426
1427 // If a function is hidden by -fvisibility-inlines-hidden option and
1428 // is not explicitly attributed as a hidden function,
1429 // we should not make static local variables in the function hidden.
1430 LV = getLVForDecl(D: FD, computation);
1431 if (isa<VarDecl>(Val: D) && useInlineVisibilityHidden(D: FD) &&
1432 !LV.isVisibilityExplicit() &&
1433 !Context.getLangOpts().VisibilityInlinesHiddenStaticLocalVar) {
1434 assert(cast<VarDecl>(D)->isStaticLocal());
1435 // If this was an implicitly hidden inline method, check again for
1436 // explicit visibility on the parent class, and use that for static locals
1437 // if present.
1438 if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD))
1439 LV = getLVForDecl(D: MD->getParent(), computation);
1440 if (!LV.isVisibilityExplicit()) {
1441 Visibility globalVisibility =
1442 computation.isValueVisibility()
1443 ? Context.getLangOpts().getValueVisibilityMode()
1444 : Context.getLangOpts().getTypeVisibilityMode();
1445 return LinkageInfo(Linkage::VisibleNone, globalVisibility,
1446 /*visibilityExplicit=*/false);
1447 }
1448 }
1449 }
1450 if (!isExternallyVisible(L: LV.getLinkage()))
1451 return LinkageInfo::none();
1452 return LinkageInfo(Linkage::VisibleNone, LV.getVisibility(),
1453 LV.isVisibilityExplicit());
1454}
1455
1456LinkageInfo LinkageComputer::computeLVForDecl(const NamedDecl *D,
1457 LVComputationKind computation,
1458 bool IgnoreVarTypeLinkage) {
1459 // Internal_linkage attribute overrides other considerations.
1460 if (D->hasAttr<InternalLinkageAttr>())
1461 return LinkageInfo::internal();
1462
1463 // Objective-C: treat all Objective-C declarations as having external
1464 // linkage.
1465 switch (D->getKind()) {
1466 default:
1467 break;
1468
1469 // Per C++ [basic.link]p2, only the names of objects, references,
1470 // functions, types, templates, namespaces, and values ever have linkage.
1471 //
1472 // Note that the name of a typedef, namespace alias, using declaration,
1473 // and so on are not the name of the corresponding type, namespace, or
1474 // declaration, so they do *not* have linkage.
1475 case Decl::ImplicitParam:
1476 case Decl::Label:
1477 case Decl::NamespaceAlias:
1478 case Decl::ParmVar:
1479 case Decl::Using:
1480 case Decl::UsingEnum:
1481 case Decl::UsingShadow:
1482 case Decl::UsingDirective:
1483 return LinkageInfo::none();
1484
1485 case Decl::EnumConstant:
1486 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1487 if (D->getASTContext().getLangOpts().CPlusPlus)
1488 return getLVForDecl(D: cast<EnumDecl>(Val: D->getDeclContext()), computation);
1489 return LinkageInfo::visible_none();
1490
1491 case Decl::Typedef:
1492 case Decl::TypeAlias:
1493 // A typedef declaration has linkage if it gives a type a name for
1494 // linkage purposes.
1495 if (!cast<TypedefNameDecl>(Val: D)
1496 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1497 return LinkageInfo::none();
1498 break;
1499
1500 case Decl::TemplateTemplateParm: // count these as external
1501 case Decl::NonTypeTemplateParm:
1502 case Decl::ObjCAtDefsField:
1503 case Decl::ObjCCategory:
1504 case Decl::ObjCCategoryImpl:
1505 case Decl::ObjCCompatibleAlias:
1506 case Decl::ObjCImplementation:
1507 case Decl::ObjCMethod:
1508 case Decl::ObjCProperty:
1509 case Decl::ObjCPropertyImpl:
1510 case Decl::ObjCProtocol:
1511 return getExternalLinkageFor(D);
1512
1513 case Decl::CXXRecord: {
1514 const auto *Record = cast<CXXRecordDecl>(Val: D);
1515 if (Record->isLambda()) {
1516 if (Record->hasKnownLambdaInternalLinkage() ||
1517 !Record->getLambdaManglingNumber()) {
1518 // This lambda has no mangling number, so it's internal.
1519 return LinkageInfo::internal();
1520 }
1521
1522 return getLVForClosure(
1523 DC: Record->getDeclContext()->getRedeclContext(),
1524 ContextDecl: Record->getLambdaContextDecl(), computation);
1525 }
1526
1527 break;
1528 }
1529
1530 case Decl::TemplateParamObject: {
1531 // The template parameter object can be referenced from anywhere its type
1532 // and value can be referenced.
1533 auto *TPO = cast<TemplateParamObjectDecl>(Val: D);
1534 LinkageInfo LV = getLVForType(T: *TPO->getType(), computation);
1535 LV.merge(other: getLVForValue(V: TPO->getValue(), computation));
1536 return LV;
1537 }
1538 }
1539
1540 // Handle linkage for namespace-scope names.
1541 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1542 return getLVForNamespaceScopeDecl(D, computation, IgnoreVarTypeLinkage);
1543
1544 // C++ [basic.link]p5:
1545 // In addition, a member function, static data member, a named
1546 // class or enumeration of class scope, or an unnamed class or
1547 // enumeration defined in a class-scope typedef declaration such
1548 // that the class or enumeration has the typedef name for linkage
1549 // purposes (7.1.3), has external linkage if the name of the class
1550 // has external linkage.
1551 if (D->getDeclContext()->isRecord())
1552 return getLVForClassMember(D, computation, IgnoreVarTypeLinkage);
1553
1554 // C++ [basic.link]p6:
1555 // The name of a function declared in block scope and the name of
1556 // an object declared by a block scope extern declaration have
1557 // linkage. If there is a visible declaration of an entity with
1558 // linkage having the same name and type, ignoring entities
1559 // declared outside the innermost enclosing namespace scope, the
1560 // block scope declaration declares that same entity and receives
1561 // the linkage of the previous declaration. If there is more than
1562 // one such matching entity, the program is ill-formed. Otherwise,
1563 // if no matching entity is found, the block scope entity receives
1564 // external linkage.
1565 if (D->getDeclContext()->isFunctionOrMethod())
1566 return getLVForLocalDecl(D, computation);
1567
1568 // C++ [basic.link]p6:
1569 // Names not covered by these rules have no linkage.
1570 return LinkageInfo::none();
1571}
1572
1573/// getLVForDecl - Get the linkage and visibility for the given declaration.
1574LinkageInfo LinkageComputer::getLVForDecl(const NamedDecl *D,
1575 LVComputationKind computation) {
1576 // Internal_linkage attribute overrides other considerations.
1577 if (D->hasAttr<InternalLinkageAttr>())
1578 return LinkageInfo::internal();
1579
1580 if (computation.IgnoreAllVisibility && D->hasCachedLinkage())
1581 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1582
1583 if (std::optional<LinkageInfo> LI = lookup(ND: D, Kind: computation))
1584 return *LI;
1585
1586 LinkageInfo LV = computeLVForDecl(D, computation);
1587 if (D->hasCachedLinkage())
1588 assert(D->getCachedLinkage() == LV.getLinkage());
1589
1590 D->setCachedLinkage(LV.getLinkage());
1591 cache(ND: D, Kind: computation, Info: LV);
1592
1593#ifndef NDEBUG
1594 // In C (because of gnu inline) and in c++ with microsoft extensions an
1595 // static can follow an extern, so we can have two decls with different
1596 // linkages.
1597 const LangOptions &Opts = D->getASTContext().getLangOpts();
1598 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1599 return LV;
1600
1601 // We have just computed the linkage for this decl. By induction we know
1602 // that all other computed linkages match, check that the one we just
1603 // computed also does.
1604 NamedDecl *Old = nullptr;
1605 for (auto *I : D->redecls()) {
1606 auto *T = cast<NamedDecl>(I);
1607 if (T == D)
1608 continue;
1609 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1610 Old = T;
1611 break;
1612 }
1613 }
1614 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1615#endif
1616
1617 return LV;
1618}
1619
1620LinkageInfo LinkageComputer::getDeclLinkageAndVisibility(const NamedDecl *D) {
1621 NamedDecl::ExplicitVisibilityKind EK = usesTypeVisibility(D)
1622 ? NamedDecl::VisibilityForType
1623 : NamedDecl::VisibilityForValue;
1624 LVComputationKind CK(EK);
1625 return getLVForDecl(D, computation: D->getASTContext().getLangOpts().IgnoreXCOFFVisibility
1626 ? CK.forLinkageOnly()
1627 : CK);
1628}
1629
1630Module *Decl::getOwningModuleForLinkage() const {
1631 if (isa<NamespaceDecl>(Val: this))
1632 // Namespaces never have module linkage. It is the entities within them
1633 // that [may] do.
1634 return nullptr;
1635
1636 Module *M = getOwningModule();
1637 if (!M)
1638 return nullptr;
1639
1640 switch (M->Kind) {
1641 case Module::ModuleMapModule:
1642 // Module map modules have no special linkage semantics.
1643 return nullptr;
1644
1645 case Module::ModuleInterfaceUnit:
1646 case Module::ModuleImplementationUnit:
1647 case Module::ModulePartitionInterface:
1648 case Module::ModulePartitionImplementation:
1649 return M;
1650
1651 case Module::ModuleHeaderUnit:
1652 case Module::ExplicitGlobalModuleFragment:
1653 case Module::ImplicitGlobalModuleFragment:
1654 // The global module shouldn't change the linkage.
1655 return nullptr;
1656
1657 case Module::PrivateModuleFragment:
1658 // The private module fragment is part of its containing module for linkage
1659 // purposes.
1660 return M->Parent;
1661 }
1662
1663 llvm_unreachable("unknown module kind");
1664}
1665
1666void NamedDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
1667 Name.print(OS, Policy);
1668}
1669
1670void NamedDecl::printName(raw_ostream &OS) const {
1671 printName(OS, Policy: getASTContext().getPrintingPolicy());
1672}
1673
1674std::string NamedDecl::getQualifiedNameAsString() const {
1675 std::string QualName;
1676 llvm::raw_string_ostream OS(QualName);
1677 printQualifiedName(OS, Policy: getASTContext().getPrintingPolicy());
1678 return QualName;
1679}
1680
1681void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1682 printQualifiedName(OS, Policy: getASTContext().getPrintingPolicy());
1683}
1684
1685void NamedDecl::printQualifiedName(raw_ostream &OS,
1686 const PrintingPolicy &P) const {
1687 if (getDeclContext()->isFunctionOrMethod()) {
1688 // We do not print '(anonymous)' for function parameters without name.
1689 printName(OS, Policy: P);
1690 return;
1691 }
1692 printNestedNameSpecifier(OS, Policy: P);
1693 if (getDeclName())
1694 OS << *this;
1695 else {
1696 // Give the printName override a chance to pick a different name before we
1697 // fall back to "(anonymous)".
1698 SmallString<64> NameBuffer;
1699 llvm::raw_svector_ostream NameOS(NameBuffer);
1700 printName(OS&: NameOS, Policy: P);
1701 if (NameBuffer.empty())
1702 OS << "(anonymous)";
1703 else
1704 OS << NameBuffer;
1705 }
1706}
1707
1708void NamedDecl::printNestedNameSpecifier(raw_ostream &OS) const {
1709 printNestedNameSpecifier(OS, Policy: getASTContext().getPrintingPolicy());
1710}
1711
1712void NamedDecl::printNestedNameSpecifier(raw_ostream &OS,
1713 const PrintingPolicy &P) const {
1714 const DeclContext *Ctx = getDeclContext();
1715
1716 // For ObjC methods and properties, look through categories and use the
1717 // interface as context.
1718 if (auto *MD = dyn_cast<ObjCMethodDecl>(Val: this)) {
1719 if (auto *ID = MD->getClassInterface())
1720 Ctx = ID;
1721 } else if (auto *PD = dyn_cast<ObjCPropertyDecl>(Val: this)) {
1722 if (auto *MD = PD->getGetterMethodDecl())
1723 if (auto *ID = MD->getClassInterface())
1724 Ctx = ID;
1725 } else if (auto *ID = dyn_cast<ObjCIvarDecl>(Val: this)) {
1726 if (auto *CI = ID->getContainingInterface())
1727 Ctx = CI;
1728 }
1729
1730 if (Ctx->isFunctionOrMethod())
1731 return;
1732
1733 using ContextsTy = SmallVector<const DeclContext *, 8>;
1734 ContextsTy Contexts;
1735
1736 // Collect named contexts.
1737 DeclarationName NameInScope = getDeclName();
1738 for (; Ctx; Ctx = Ctx->getParent()) {
1739 // Suppress anonymous namespace if requested.
1740 if (P.SuppressUnwrittenScope && isa<NamespaceDecl>(Val: Ctx) &&
1741 cast<NamespaceDecl>(Val: Ctx)->isAnonymousNamespace())
1742 continue;
1743
1744 // Suppress inline namespace if it doesn't make the result ambiguous.
1745 if (Ctx->isInlineNamespace() && NameInScope) {
1746 if (P.SuppressInlineNamespace ==
1747 PrintingPolicy::SuppressInlineNamespaceMode::All ||
1748 (P.SuppressInlineNamespace ==
1749 PrintingPolicy::SuppressInlineNamespaceMode::Redundant &&
1750 cast<NamespaceDecl>(Val: Ctx)->isRedundantInlineQualifierFor(
1751 Name: NameInScope))) {
1752 continue;
1753 }
1754 }
1755
1756 // Suppress transparent contexts like export or HLSLBufferDecl context
1757 if (Ctx->isTransparentContext())
1758 continue;
1759
1760 // Skip non-named contexts such as linkage specifications and ExportDecls.
1761 const NamedDecl *ND = dyn_cast<NamedDecl>(Val: Ctx);
1762 if (!ND)
1763 continue;
1764
1765 Contexts.push_back(Elt: Ctx);
1766 NameInScope = ND->getDeclName();
1767 }
1768
1769 for (const DeclContext *DC : llvm::reverse(C&: Contexts)) {
1770 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: DC)) {
1771 OS << Spec->getName();
1772 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1773 printTemplateArgumentList(
1774 OS, Args: TemplateArgs.asArray(), Policy: P,
1775 TPL: Spec->getSpecializedTemplate()->getTemplateParameters());
1776 } else if (const auto *ND = dyn_cast<NamespaceDecl>(Val: DC)) {
1777 if (ND->isAnonymousNamespace()) {
1778 OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1779 : "(anonymous namespace)");
1780 }
1781 else
1782 OS << *ND;
1783 } else if (const auto *RD = dyn_cast<RecordDecl>(Val: DC)) {
1784 if (!RD->getIdentifier())
1785 OS << "(anonymous " << RD->getKindName() << ')';
1786 else
1787 OS << *RD;
1788 } else if (const auto *FD = dyn_cast<FunctionDecl>(Val: DC)) {
1789 const FunctionProtoType *FT = nullptr;
1790 if (FD->hasWrittenPrototype())
1791 FT = dyn_cast<FunctionProtoType>(Val: FD->getType()->castAs<FunctionType>());
1792
1793 OS << *FD << '(';
1794 if (FT) {
1795 unsigned NumParams = FD->getNumParams();
1796 for (unsigned i = 0; i < NumParams; ++i) {
1797 if (i)
1798 OS << ", ";
1799 OS << FD->getParamDecl(i)->getType().stream(Policy: P);
1800 }
1801
1802 if (FT->isVariadic()) {
1803 if (NumParams > 0)
1804 OS << ", ";
1805 OS << "...";
1806 }
1807 }
1808 OS << ')';
1809 } else if (const auto *ED = dyn_cast<EnumDecl>(Val: DC)) {
1810 // C++ [dcl.enum]p10: Each enum-name and each unscoped
1811 // enumerator is declared in the scope that immediately contains
1812 // the enum-specifier. Each scoped enumerator is declared in the
1813 // scope of the enumeration.
1814 // For the case of unscoped enumerator, do not include in the qualified
1815 // name any information about its enum enclosing scope, as its visibility
1816 // is global.
1817 if (ED->isScoped())
1818 OS << *ED;
1819 else
1820 continue;
1821 } else {
1822 OS << *cast<NamedDecl>(Val: DC);
1823 }
1824 OS << "::";
1825 }
1826}
1827
1828void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1829 const PrintingPolicy &Policy,
1830 bool Qualified) const {
1831 if (Qualified)
1832 printQualifiedName(OS, P: Policy);
1833 else
1834 printName(OS, Policy);
1835}
1836
1837template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1838 return true;
1839}
1840static bool isRedeclarableImpl(...) { return false; }
1841static bool isRedeclarable(Decl::Kind K) {
1842 switch (K) {
1843#define DECL(Type, Base) \
1844 case Decl::Type: \
1845 return isRedeclarableImpl((Type##Decl *)nullptr);
1846#define ABSTRACT_DECL(DECL)
1847#include "clang/AST/DeclNodes.inc"
1848 }
1849 llvm_unreachable("unknown decl kind");
1850}
1851
1852bool NamedDecl::declarationReplaces(const NamedDecl *OldD,
1853 bool IsKnownNewer) const {
1854 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1855
1856 // Never replace one imported declaration with another; we need both results
1857 // when re-exporting.
1858 if (OldD->isFromASTFile() && isFromASTFile())
1859 return false;
1860
1861 // A kind mismatch implies that the declaration is not replaced.
1862 if (OldD->getKind() != getKind())
1863 return false;
1864
1865 // For method declarations, we never replace. (Why?)
1866 if (isa<ObjCMethodDecl>(Val: this))
1867 return false;
1868
1869 // For parameters, pick the newer one. This is either an error or (in
1870 // Objective-C) permitted as an extension.
1871 if (isa<ParmVarDecl>(Val: this))
1872 return true;
1873
1874 // Inline namespaces can give us two declarations with the same
1875 // name and kind in the same scope but different contexts; we should
1876 // keep both declarations in this case.
1877 if (!this->getDeclContext()->getRedeclContext()->Equals(
1878 DC: OldD->getDeclContext()->getRedeclContext()))
1879 return false;
1880
1881 // Using declarations can be replaced if they import the same name from the
1882 // same context.
1883 if (const auto *UD = dyn_cast<UsingDecl>(Val: this)) {
1884 ASTContext &Context = getASTContext();
1885 return Context.getCanonicalNestedNameSpecifier(NNS: UD->getQualifier()) ==
1886 Context.getCanonicalNestedNameSpecifier(
1887 NNS: cast<UsingDecl>(Val: OldD)->getQualifier());
1888 }
1889 if (const auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(Val: this)) {
1890 ASTContext &Context = getASTContext();
1891 return Context.getCanonicalNestedNameSpecifier(NNS: UUVD->getQualifier()) ==
1892 Context.getCanonicalNestedNameSpecifier(
1893 NNS: cast<UnresolvedUsingValueDecl>(Val: OldD)->getQualifier());
1894 }
1895
1896 if (isRedeclarable(K: getKind())) {
1897 if (getCanonicalDecl() != OldD->getCanonicalDecl())
1898 return false;
1899
1900 if (IsKnownNewer)
1901 return true;
1902
1903 // Check whether this is actually newer than OldD. We want to keep the
1904 // newer declaration. This loop will usually only iterate once, because
1905 // OldD is usually the previous declaration.
1906 for (const auto *D : redecls()) {
1907 if (D == OldD)
1908 break;
1909
1910 // If we reach the canonical declaration, then OldD is not actually older
1911 // than this one.
1912 //
1913 // FIXME: In this case, we should not add this decl to the lookup table.
1914 if (D->isCanonicalDecl())
1915 return false;
1916 }
1917
1918 // It's a newer declaration of the same kind of declaration in the same
1919 // scope: we want this decl instead of the existing one.
1920 return true;
1921 }
1922
1923 // In all other cases, we need to keep both declarations in case they have
1924 // different visibility. Any attempt to use the name will result in an
1925 // ambiguity if more than one is visible.
1926 return false;
1927}
1928
1929bool NamedDecl::hasLinkage() const {
1930 switch (getFormalLinkage()) {
1931 case Linkage::Invalid:
1932 llvm_unreachable("Linkage hasn't been computed!");
1933 case Linkage::None:
1934 return false;
1935 case Linkage::Internal:
1936 return true;
1937 case Linkage::UniqueExternal:
1938 case Linkage::VisibleNone:
1939 llvm_unreachable("Non-formal linkage is not allowed here!");
1940 case Linkage::Module:
1941 case Linkage::External:
1942 return true;
1943 }
1944 llvm_unreachable("Unhandled Linkage enum");
1945}
1946
1947NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1948 NamedDecl *ND = this;
1949 if (auto *UD = dyn_cast<UsingShadowDecl>(Val: ND))
1950 ND = UD->getTargetDecl();
1951
1952 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(Val: ND))
1953 return AD->getClassInterface();
1954
1955 if (auto *AD = dyn_cast<NamespaceAliasDecl>(Val: ND))
1956 return AD->getNamespace();
1957
1958 return ND;
1959}
1960
1961bool NamedDecl::isCXXInstanceMember() const {
1962 if (!isCXXClassMember())
1963 return false;
1964
1965 const NamedDecl *D = this;
1966 if (isa<UsingShadowDecl>(Val: D))
1967 D = cast<UsingShadowDecl>(Val: D)->getTargetDecl();
1968
1969 if (isa<FieldDecl>(Val: D) || isa<IndirectFieldDecl>(Val: D) || isa<MSPropertyDecl>(Val: D))
1970 return true;
1971 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(Val: D->getAsFunction()))
1972 return MD->isInstance();
1973 return false;
1974}
1975
1976//===----------------------------------------------------------------------===//
1977// DeclaratorDecl Implementation
1978//===----------------------------------------------------------------------===//
1979
1980template <typename DeclT>
1981static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1982 if (decl->getNumTemplateParameterLists() > 0)
1983 return decl->getTemplateParameterList(0)->getTemplateLoc();
1984 return decl->getInnerLocStart();
1985}
1986
1987SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1988 TypeSourceInfo *TSI = getTypeSourceInfo();
1989 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1990 return SourceLocation();
1991}
1992
1993SourceLocation DeclaratorDecl::getTypeSpecEndLoc() const {
1994 TypeSourceInfo *TSI = getTypeSourceInfo();
1995 if (TSI) return TSI->getTypeLoc().getEndLoc();
1996 return SourceLocation();
1997}
1998
1999void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
2000 if (QualifierLoc) {
2001 // Make sure the extended decl info is allocated.
2002 if (!hasExtInfo()) {
2003 // Save (non-extended) type source info pointer.
2004 auto *savedTInfo = cast<TypeSourceInfo *>(Val&: DeclInfo);
2005 // Allocate external info struct.
2006 DeclInfo = new (getASTContext()) ExtInfo;
2007 // Restore savedTInfo into (extended) decl info.
2008 getExtInfo()->TInfo = savedTInfo;
2009 }
2010 // Set qualifier info.
2011 getExtInfo()->QualifierLoc = QualifierLoc;
2012 } else if (hasExtInfo()) {
2013 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
2014 getExtInfo()->QualifierLoc = QualifierLoc;
2015 }
2016}
2017
2018void DeclaratorDecl::setTrailingRequiresClause(const AssociatedConstraint &AC) {
2019 assert(AC);
2020 // Make sure the extended decl info is allocated.
2021 if (!hasExtInfo()) {
2022 // Save (non-extended) type source info pointer.
2023 auto *savedTInfo = cast<TypeSourceInfo *>(Val&: DeclInfo);
2024 // Allocate external info struct.
2025 DeclInfo = new (getASTContext()) ExtInfo;
2026 // Restore savedTInfo into (extended) decl info.
2027 getExtInfo()->TInfo = savedTInfo;
2028 }
2029 // Set requires clause info.
2030 getExtInfo()->TrailingRequiresClause = AC;
2031}
2032
2033void DeclaratorDecl::setTemplateParameterListsInfo(
2034 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
2035 assert(!TPLists.empty());
2036 // Make sure the extended decl info is allocated.
2037 if (!hasExtInfo()) {
2038 // Save (non-extended) type source info pointer.
2039 auto *savedTInfo = cast<TypeSourceInfo *>(Val&: DeclInfo);
2040 // Allocate external info struct.
2041 DeclInfo = new (getASTContext()) ExtInfo;
2042 // Restore savedTInfo into (extended) decl info.
2043 getExtInfo()->TInfo = savedTInfo;
2044 }
2045 // Set the template parameter lists info.
2046 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
2047}
2048
2049SourceLocation DeclaratorDecl::getOuterLocStart() const {
2050 return getTemplateOrInnerLocStart(decl: this);
2051}
2052
2053// Helper function: returns true if QT is or contains a type
2054// having a postfix component.
2055static bool typeIsPostfix(QualType QT) {
2056 while (true) {
2057 const Type* T = QT.getTypePtr();
2058 switch (T->getTypeClass()) {
2059 default:
2060 return false;
2061 case Type::Pointer:
2062 QT = cast<PointerType>(Val: T)->getPointeeType();
2063 break;
2064 case Type::BlockPointer:
2065 QT = cast<BlockPointerType>(Val: T)->getPointeeType();
2066 break;
2067 case Type::MemberPointer:
2068 QT = cast<MemberPointerType>(Val: T)->getPointeeType();
2069 break;
2070 case Type::LValueReference:
2071 case Type::RValueReference:
2072 QT = cast<ReferenceType>(Val: T)->getPointeeType();
2073 break;
2074 case Type::PackExpansion:
2075 QT = cast<PackExpansionType>(Val: T)->getPattern();
2076 break;
2077 case Type::Paren:
2078 case Type::ConstantArray:
2079 case Type::DependentSizedArray:
2080 case Type::IncompleteArray:
2081 case Type::VariableArray:
2082 case Type::FunctionProto:
2083 case Type::FunctionNoProto:
2084 return true;
2085 }
2086 }
2087}
2088
2089SourceRange DeclaratorDecl::getSourceRange() const {
2090 SourceLocation RangeEnd = getLocation();
2091 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
2092 // If the declaration has no name or the type extends past the name take the
2093 // end location of the type.
2094 if (!getDeclName() || typeIsPostfix(QT: TInfo->getType()))
2095 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
2096 }
2097 return SourceRange(getOuterLocStart(), RangeEnd);
2098}
2099
2100void QualifierInfo::setTemplateParameterListsInfo(
2101 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
2102 // Free previous template parameters (if any).
2103 if (NumTemplParamLists > 0) {
2104 Context.Deallocate(Ptr: TemplParamLists);
2105 TemplParamLists = nullptr;
2106 NumTemplParamLists = 0;
2107 }
2108 // Set info on matched template parameter lists (if any).
2109 if (!TPLists.empty()) {
2110 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
2111 NumTemplParamLists = TPLists.size();
2112 llvm::copy(Range&: TPLists, Out: TemplParamLists);
2113 }
2114}
2115
2116//===----------------------------------------------------------------------===//
2117// VarDecl Implementation
2118//===----------------------------------------------------------------------===//
2119
2120const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
2121 switch (SC) {
2122 case SC_None: break;
2123 case SC_Auto: return "auto";
2124 case SC_Extern: return "extern";
2125 case SC_PrivateExtern: return "__private_extern__";
2126 case SC_Register: return "register";
2127 case SC_Static: return "static";
2128 }
2129
2130 llvm_unreachable("Invalid storage class");
2131}
2132
2133VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
2134 SourceLocation StartLoc, SourceLocation IdLoc,
2135 const IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
2136 StorageClass SC)
2137 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2138 redeclarable_base(C) {
2139 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
2140 "VarDeclBitfields too large!");
2141 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
2142 "ParmVarDeclBitfields too large!");
2143 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
2144 "NonParmVarDeclBitfields too large!");
2145 AllBits = 0;
2146 VarDeclBits.SClass = SC;
2147 // Everything else is implicitly initialized to false.
2148}
2149
2150VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartL,
2151 SourceLocation IdL, const IdentifierInfo *Id,
2152 QualType T, TypeSourceInfo *TInfo, StorageClass S) {
2153 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
2154}
2155
2156VarDecl *VarDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
2157 return new (C, ID)
2158 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
2159 QualType(), nullptr, SC_None);
2160}
2161
2162void VarDecl::setStorageClass(StorageClass SC) {
2163 assert(isLegalForVariable(SC));
2164 VarDeclBits.SClass = SC;
2165}
2166
2167VarDecl::TLSKind VarDecl::getTLSKind() const {
2168 switch (VarDeclBits.TSCSpec) {
2169 case TSCS_unspecified:
2170 if (!hasAttr<ThreadAttr>() &&
2171 !(getASTContext().getLangOpts().OpenMPUseTLS &&
2172 getASTContext().getTargetInfo().isTLSSupported() &&
2173 hasAttr<OMPThreadPrivateDeclAttr>()))
2174 return TLS_None;
2175 return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
2176 MajorVersion: LangOptions::MSVC2015)) ||
2177 hasAttr<OMPThreadPrivateDeclAttr>())
2178 ? TLS_Dynamic
2179 : TLS_Static;
2180 case TSCS___thread: // Fall through.
2181 case TSCS__Thread_local:
2182 return TLS_Static;
2183 case TSCS_thread_local:
2184 return TLS_Dynamic;
2185 }
2186 llvm_unreachable("Unknown thread storage class specifier!");
2187}
2188
2189SourceRange VarDecl::getSourceRange() const {
2190 if (const Expr *Init = getInit()) {
2191 SourceLocation InitEnd = Init->getEndLoc();
2192 // If Init is implicit, ignore its source range and fallback on
2193 // DeclaratorDecl::getSourceRange() to handle postfix elements.
2194 if (InitEnd.isValid() && InitEnd != getLocation())
2195 return SourceRange(getOuterLocStart(), InitEnd);
2196 }
2197 return DeclaratorDecl::getSourceRange();
2198}
2199
2200template<typename T>
2201static LanguageLinkage getDeclLanguageLinkage(const T &D) {
2202 // C++ [dcl.link]p1: All function types, function names with external linkage,
2203 // and variable names with external linkage have a language linkage.
2204 if (!D.hasExternalFormalLinkage())
2205 return NoLanguageLinkage;
2206
2207 // Language linkage is a C++ concept, but saying that everything else in C has
2208 // C language linkage fits the implementation nicely.
2209 if (!D.getASTContext().getLangOpts().CPlusPlus)
2210 return CLanguageLinkage;
2211
2212 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
2213 // language linkage of the names of class members and the function type of
2214 // class member functions.
2215 const DeclContext *DC = D.getDeclContext();
2216 if (DC->isRecord())
2217 return CXXLanguageLinkage;
2218
2219 // If the first decl is in an extern "C" context, any other redeclaration
2220 // will have C language linkage. If the first one is not in an extern "C"
2221 // context, we would have reported an error for any other decl being in one.
2222 if (isFirstInExternCContext(&D))
2223 return CLanguageLinkage;
2224 return CXXLanguageLinkage;
2225}
2226
2227template<typename T>
2228static bool isDeclExternC(const T &D) {
2229 // Since the context is ignored for class members, they can only have C++
2230 // language linkage or no language linkage.
2231 const DeclContext *DC = D.getDeclContext();
2232 if (DC->isRecord()) {
2233 assert(D.getASTContext().getLangOpts().CPlusPlus);
2234 return false;
2235 }
2236
2237 return D.getLanguageLinkage() == CLanguageLinkage;
2238}
2239
2240LanguageLinkage VarDecl::getLanguageLinkage() const {
2241 return getDeclLanguageLinkage(D: *this);
2242}
2243
2244bool VarDecl::isExternC() const {
2245 return isDeclExternC(D: *this);
2246}
2247
2248bool VarDecl::isInExternCContext() const {
2249 return getLexicalDeclContext()->isExternCContext();
2250}
2251
2252bool VarDecl::isInExternCXXContext() const {
2253 return getLexicalDeclContext()->isExternCXXContext();
2254}
2255
2256VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
2257
2258VarDecl::DefinitionKind
2259VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
2260 if (isThisDeclarationADemotedDefinition())
2261 return DeclarationOnly;
2262
2263 // C++ [basic.def]p2:
2264 // A declaration is a definition unless [...] it contains the 'extern'
2265 // specifier or a linkage-specification and neither an initializer [...],
2266 // it declares a non-inline static data member in a class declaration [...],
2267 // it declares a static data member outside a class definition and the variable
2268 // was defined within the class with the constexpr specifier [...],
2269 // C++1y [temp.expl.spec]p15:
2270 // An explicit specialization of a static data member or an explicit
2271 // specialization of a static data member template is a definition if the
2272 // declaration includes an initializer; otherwise, it is a declaration.
2273 //
2274 // FIXME: How do you declare (but not define) a partial specialization of
2275 // a static data member template outside the containing class?
2276 if (isStaticDataMember()) {
2277 if (isOutOfLine() &&
2278 !(getCanonicalDecl()->isInline() &&
2279 getCanonicalDecl()->isConstexpr()) &&
2280 (hasInit() ||
2281 // If the first declaration is out-of-line, this may be an
2282 // instantiation of an out-of-line partial specialization of a variable
2283 // template for which we have not yet instantiated the initializer.
2284 (getFirstDecl()->isOutOfLine()
2285 ? getTemplateSpecializationKind() == TSK_Undeclared
2286 : getTemplateSpecializationKind() !=
2287 TSK_ExplicitSpecialization) ||
2288 isa<VarTemplatePartialSpecializationDecl>(Val: this)))
2289 return Definition;
2290 if (!isOutOfLine() && isInline())
2291 return Definition;
2292 return DeclarationOnly;
2293 }
2294 // C99 6.7p5:
2295 // A definition of an identifier is a declaration for that identifier that
2296 // [...] causes storage to be reserved for that object.
2297 // Note: that applies for all non-file-scope objects.
2298 // C99 6.9.2p1:
2299 // If the declaration of an identifier for an object has file scope and an
2300 // initializer, the declaration is an external definition for the identifier
2301 if (hasInit())
2302 return Definition;
2303
2304 if (hasDefiningAttr())
2305 return Definition;
2306
2307 if (const auto *SAA = getAttr<SelectAnyAttr>())
2308 if (!SAA->isInherited())
2309 return Definition;
2310
2311 // A variable template specialization (other than a static data member
2312 // template or an explicit specialization) is a declaration until we
2313 // instantiate its initializer.
2314 if (auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Val: this)) {
2315 if (VTSD->getTemplateSpecializationKind() != TSK_ExplicitSpecialization &&
2316 !isa<VarTemplatePartialSpecializationDecl>(Val: VTSD) &&
2317 !VTSD->IsCompleteDefinition)
2318 return DeclarationOnly;
2319 }
2320
2321 if (hasExternalStorage())
2322 return DeclarationOnly;
2323
2324 // [dcl.link] p7:
2325 // A declaration directly contained in a linkage-specification is treated
2326 // as if it contains the extern specifier for the purpose of determining
2327 // the linkage of the declared name and whether it is a definition.
2328 if (isSingleLineLanguageLinkage(D: *this))
2329 return DeclarationOnly;
2330
2331 // C99 6.9.2p2:
2332 // A declaration of an object that has file scope without an initializer,
2333 // and without a storage class specifier or the scs 'static', constitutes
2334 // a tentative definition.
2335 // No such thing in C++.
2336 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
2337 return TentativeDefinition;
2338
2339 // What's left is (in C, block-scope) declarations without initializers or
2340 // external storage. These are definitions.
2341 return Definition;
2342}
2343
2344VarDecl *VarDecl::getActingDefinition() {
2345 DefinitionKind Kind = isThisDeclarationADefinition();
2346 if (Kind != TentativeDefinition)
2347 return nullptr;
2348
2349 VarDecl *LastTentative = nullptr;
2350
2351 // Loop through the declaration chain, starting with the most recent.
2352 for (VarDecl *Decl = getMostRecentDecl(); Decl;
2353 Decl = Decl->getPreviousDecl()) {
2354 Kind = Decl->isThisDeclarationADefinition();
2355 if (Kind == Definition)
2356 return nullptr;
2357 // Record the first (most recent) TentativeDefinition that is encountered.
2358 if (Kind == TentativeDefinition && !LastTentative)
2359 LastTentative = Decl;
2360 }
2361
2362 return LastTentative;
2363}
2364
2365VarDecl *VarDecl::getDefinition(ASTContext &C) {
2366 VarDecl *First = getFirstDecl();
2367 for (auto *I : First->redecls()) {
2368 if (I->isThisDeclarationADefinition(C) == Definition)
2369 return I;
2370 }
2371 return nullptr;
2372}
2373
2374VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2375 DefinitionKind Kind = DeclarationOnly;
2376
2377 const VarDecl *First = getFirstDecl();
2378 for (auto *I : First->redecls()) {
2379 Kind = std::max(a: Kind, b: I->isThisDeclarationADefinition(C));
2380 if (Kind == Definition)
2381 break;
2382 }
2383
2384 return Kind;
2385}
2386
2387const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2388 for (auto *I : redecls()) {
2389 if (auto Expr = I->getInit()) {
2390 D = I;
2391 return Expr;
2392 }
2393 }
2394 return nullptr;
2395}
2396
2397bool VarDecl::hasInit() const {
2398 if (auto *P = dyn_cast<ParmVarDecl>(Val: this))
2399 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2400 return false;
2401
2402 if (auto *Eval = getEvaluatedStmt())
2403 return Eval->Value.isValid();
2404
2405 return !Init.isNull();
2406}
2407
2408Expr *VarDecl::getInit() {
2409 if (!hasInit())
2410 return nullptr;
2411
2412 if (auto *S = dyn_cast<Stmt *>(Val&: Init))
2413 return cast<Expr>(Val: S);
2414
2415 auto *Eval = getEvaluatedStmt();
2416
2417 return cast<Expr>(Val: Eval->Value.get(
2418 Source: Eval->Value.isOffset() ? getASTContext().getExternalSource() : nullptr));
2419}
2420
2421Stmt **VarDecl::getInitAddress() {
2422 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2423 return ES->Value.getAddressOfPointer(Source: getASTContext().getExternalSource());
2424
2425 return Init.getAddrOfPtr1();
2426}
2427
2428VarDecl *VarDecl::getInitializingDeclaration() {
2429 VarDecl *Def = nullptr;
2430 for (auto *I : redecls()) {
2431 if (I->hasInit())
2432 return I;
2433
2434 if (I->isThisDeclarationADefinition()) {
2435 if (isStaticDataMember())
2436 return I;
2437 Def = I;
2438 }
2439 }
2440 return Def;
2441}
2442
2443bool VarDecl::hasInitWithSideEffects() const {
2444 if (!hasInit())
2445 return false;
2446
2447 EvaluatedStmt *ES = ensureEvaluatedStmt();
2448 if (!ES->CheckedForSideEffects) {
2449 const Expr *E = getInit();
2450 ES->HasSideEffects =
2451 E->HasSideEffects(Ctx: getASTContext()) &&
2452 // We can get a value-dependent initializer during error recovery.
2453 (E->isValueDependent() || !evaluateValue());
2454 ES->CheckedForSideEffects = true;
2455 }
2456 return ES->HasSideEffects;
2457}
2458
2459bool VarDecl::isOutOfLine() const {
2460 if (Decl::isOutOfLine())
2461 return true;
2462
2463 if (!isStaticDataMember())
2464 return false;
2465
2466 // If this static data member was instantiated from a static data member of
2467 // a class template, check whether that static data member was defined
2468 // out-of-line.
2469 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2470 return VD->isOutOfLine();
2471
2472 return false;
2473}
2474
2475void VarDecl::setInit(Expr *I) {
2476 if (auto *Eval = dyn_cast_if_present<EvaluatedStmt *>(Val&: Init)) {
2477 Eval->~EvaluatedStmt();
2478 getASTContext().Deallocate(Ptr: Eval);
2479 }
2480
2481 Init = I;
2482}
2483
2484bool VarDecl::mightBeUsableInConstantExpressions(const ASTContext &C) const {
2485 const LangOptions &Lang = C.getLangOpts();
2486
2487 // OpenCL permits const integral variables to be used in constant
2488 // expressions, like in C++98.
2489 if (!Lang.CPlusPlus && !Lang.OpenCL && !Lang.C23)
2490 return false;
2491
2492 // Function parameters are never usable in constant expressions.
2493 if (isa<ParmVarDecl>(Val: this))
2494 return false;
2495
2496 // The values of weak variables are never usable in constant expressions.
2497 if (isWeak())
2498 return false;
2499
2500 // In C++11, any variable of reference type can be used in a constant
2501 // expression if it is initialized by a constant expression.
2502 if (Lang.CPlusPlus11 && getType()->isReferenceType())
2503 return true;
2504
2505 // Only const objects can be used in constant expressions in C++. C++98 does
2506 // not require the variable to be non-volatile, but we consider this to be a
2507 // defect.
2508 if (!getType().isConstant(Ctx: C) || getType().isVolatileQualified())
2509 return false;
2510
2511 // In C++, but not in C, const, non-volatile variables of integral or
2512 // enumeration types can be used in constant expressions.
2513 if (getType()->isIntegralOrEnumerationType() && !Lang.C23)
2514 return true;
2515
2516 // C23 6.6p7: An identifier that is:
2517 // ...
2518 // - declared with storage-class specifier constexpr and has an object type,
2519 // is a named constant, ... such a named constant is a constant expression
2520 // with the type and value of the declared object.
2521 // Additionally, in C++11, non-volatile constexpr variables can be used in
2522 // constant expressions.
2523 return (Lang.CPlusPlus11 || Lang.C23) && isConstexpr();
2524}
2525
2526bool VarDecl::isUsableInConstantExpressions(const ASTContext &Context) const {
2527 // C++2a [expr.const]p3:
2528 // A variable is usable in constant expressions after its initializing
2529 // declaration is encountered...
2530 const VarDecl *DefVD = nullptr;
2531 const Expr *Init = getAnyInitializer(D&: DefVD);
2532 if (!Init || Init->isValueDependent() || getType()->isDependentType())
2533 return false;
2534 // ... if it is a constexpr variable, or it is of reference type or of
2535 // const-qualified integral or enumeration type, ...
2536 if (!DefVD->mightBeUsableInConstantExpressions(C: Context))
2537 return false;
2538 // ... and its initializer is a constant initializer.
2539 if ((Context.getLangOpts().CPlusPlus || getLangOpts().C23) &&
2540 !DefVD->hasConstantInitialization())
2541 return false;
2542 // C++98 [expr.const]p1:
2543 // An integral constant-expression can involve only [...] const variables
2544 // or static data members of integral or enumeration types initialized with
2545 // [integer] constant expressions (dcl.init)
2546 if ((Context.getLangOpts().CPlusPlus || Context.getLangOpts().OpenCL) &&
2547 !Context.getLangOpts().CPlusPlus11 && !DefVD->hasICEInitializer(Context))
2548 return false;
2549 return true;
2550}
2551
2552/// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2553/// form, which contains extra information on the evaluated value of the
2554/// initializer.
2555EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2556 auto *Eval = dyn_cast_if_present<EvaluatedStmt *>(Val&: Init);
2557 if (!Eval) {
2558 // Note: EvaluatedStmt contains an APValue, which usually holds
2559 // resources not allocated from the ASTContext. We need to do some
2560 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2561 // where we can detect whether there's anything to clean up or not.
2562 Eval = new (getASTContext()) EvaluatedStmt;
2563 Eval->Value = cast<Stmt *>(Val&: Init);
2564 Init = Eval;
2565 }
2566 return Eval;
2567}
2568
2569EvaluatedStmt *VarDecl::getEvaluatedStmt() const {
2570 return dyn_cast_if_present<EvaluatedStmt *>(Val&: Init);
2571}
2572
2573APValue *VarDecl::evaluateValue() const {
2574 SmallVector<PartialDiagnosticAt, 8> Notes;
2575 return evaluateValueImpl(Notes, IsConstantInitialization: hasConstantInitialization());
2576}
2577
2578APValue *VarDecl::evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
2579 bool IsConstantInitialization) const {
2580 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2581
2582 const auto *Init = getInit();
2583 assert(!Init->isValueDependent());
2584
2585 // We only produce notes indicating why an initializer is non-constant the
2586 // first time it is evaluated. FIXME: The notes won't always be emitted the
2587 // first time we try evaluation, so might not be produced at all.
2588 if (Eval->WasEvaluated)
2589 return Eval->Evaluated.isAbsent() ? nullptr : &Eval->Evaluated;
2590
2591 if (Eval->IsEvaluating) {
2592 // FIXME: Produce a diagnostic for self-initialization.
2593 return nullptr;
2594 }
2595
2596 Eval->IsEvaluating = true;
2597
2598 ASTContext &Ctx = getASTContext();
2599 bool Result = Init->EvaluateAsInitializer(Result&: Eval->Evaluated, Ctx, VD: this, Notes,
2600 IsConstantInitializer: IsConstantInitialization);
2601
2602 // In C++, or in C23 if we're initialising a 'constexpr' variable, this isn't
2603 // a constant initializer if we produced notes. In that case, we can't keep
2604 // the result, because it may only be correct under the assumption that the
2605 // initializer is a constant context.
2606 if (IsConstantInitialization &&
2607 (Ctx.getLangOpts().CPlusPlus ||
2608 (isConstexpr() && Ctx.getLangOpts().C23)) &&
2609 !Notes.empty())
2610 Result = false;
2611
2612 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2613 // or that it's empty (so that there's nothing to clean up) if evaluation
2614 // failed.
2615 if (!Result)
2616 Eval->Evaluated = APValue();
2617 else if (Eval->Evaluated.needsCleanup())
2618 Ctx.addDestruction(Ptr: &Eval->Evaluated);
2619
2620 Eval->IsEvaluating = false;
2621 Eval->WasEvaluated = true;
2622
2623 return Result ? &Eval->Evaluated : nullptr;
2624}
2625
2626APValue *VarDecl::getEvaluatedValue() const {
2627 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2628 if (Eval->WasEvaluated)
2629 return &Eval->Evaluated;
2630
2631 return nullptr;
2632}
2633
2634bool VarDecl::hasICEInitializer(const ASTContext &Context) const {
2635 const Expr *Init = getInit();
2636 assert(Init && "no initializer");
2637
2638 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2639 if (!Eval->CheckedForICEInit) {
2640 Eval->CheckedForICEInit = true;
2641 Eval->HasICEInit = Init->isIntegerConstantExpr(Ctx: Context);
2642 }
2643 return Eval->HasICEInit;
2644}
2645
2646bool VarDecl::hasConstantInitialization() const {
2647 // In C, all globals and constexpr variables should have constant
2648 // initialization. For constexpr variables in C check that initializer is a
2649 // constant initializer because they can be used in constant expressions.
2650 if (hasGlobalStorage() && !getASTContext().getLangOpts().CPlusPlus &&
2651 !isConstexpr())
2652 return true;
2653
2654 // In C++, it depends on whether the evaluation at the point of definition
2655 // was evaluatable as a constant initializer.
2656 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2657 return Eval->HasConstantInitialization;
2658
2659 return false;
2660}
2661
2662bool VarDecl::checkForConstantInitialization(
2663 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2664 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2665 // If we ask for the value before we know whether we have a constant
2666 // initializer, we can compute the wrong value (for example, due to
2667 // std::is_constant_evaluated()).
2668 assert(!Eval->WasEvaluated &&
2669 "already evaluated var value before checking for constant init");
2670 assert((getASTContext().getLangOpts().CPlusPlus ||
2671 getASTContext().getLangOpts().C23) &&
2672 "only meaningful in C++/C23");
2673
2674 assert(!getInit()->isValueDependent());
2675
2676 // Evaluate the initializer to check whether it's a constant expression.
2677 Eval->HasConstantInitialization =
2678 evaluateValueImpl(Notes, IsConstantInitialization: true) && Notes.empty();
2679
2680 // If evaluation as a constant initializer failed, allow re-evaluation as a
2681 // non-constant initializer if we later find we want the value.
2682 if (!Eval->HasConstantInitialization)
2683 Eval->WasEvaluated = false;
2684
2685 return Eval->HasConstantInitialization;
2686}
2687
2688template<typename DeclT>
2689static DeclT *getDefinitionOrSelf(DeclT *D) {
2690 assert(D);
2691 if (auto *Def = D->getDefinition())
2692 return Def;
2693 return D;
2694}
2695
2696bool VarDecl::isEscapingByref() const {
2697 return hasAttr<BlocksAttr>() && NonParmVarDeclBits.EscapingByref;
2698}
2699
2700bool VarDecl::isNonEscapingByref() const {
2701 return hasAttr<BlocksAttr>() && !NonParmVarDeclBits.EscapingByref;
2702}
2703
2704bool VarDecl::hasDependentAlignment() const {
2705 QualType T = getType();
2706 return T->isDependentType() || T->isUndeducedType() ||
2707 llvm::any_of(Range: specific_attrs<AlignedAttr>(), P: [](const AlignedAttr *AA) {
2708 return AA->isAlignmentDependent();
2709 });
2710}
2711
2712VarDecl *VarDecl::getTemplateInstantiationPattern() const {
2713 const VarDecl *VD = this;
2714
2715 // If this is an instantiated member, walk back to the template from which
2716 // it was instantiated.
2717 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo()) {
2718 if (isTemplateInstantiation(Kind: MSInfo->getTemplateSpecializationKind())) {
2719 VD = VD->getInstantiatedFromStaticDataMember();
2720 while (auto *NewVD = VD->getInstantiatedFromStaticDataMember())
2721 VD = NewVD;
2722 }
2723 }
2724
2725 // If it's an instantiated variable template specialization, find the
2726 // template or partial specialization from which it was instantiated.
2727 if (auto *VDTemplSpec = dyn_cast<VarTemplateSpecializationDecl>(Val: VD)) {
2728 if (isTemplateInstantiation(Kind: VDTemplSpec->getTemplateSpecializationKind())) {
2729 auto From = VDTemplSpec->getInstantiatedFrom();
2730 if (auto *VTD = From.dyn_cast<VarTemplateDecl *>()) {
2731 while (!VTD->isMemberSpecialization()) {
2732 auto *NewVTD = VTD->getInstantiatedFromMemberTemplate();
2733 if (!NewVTD)
2734 break;
2735 VTD = NewVTD;
2736 }
2737 return getDefinitionOrSelf(D: VTD->getTemplatedDecl());
2738 }
2739 if (auto *VTPSD =
2740 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
2741 while (!VTPSD->isMemberSpecialization()) {
2742 auto *NewVTPSD = VTPSD->getInstantiatedFromMember();
2743 if (!NewVTPSD)
2744 break;
2745 VTPSD = NewVTPSD;
2746 }
2747 return getDefinitionOrSelf<VarDecl>(D: VTPSD);
2748 }
2749 }
2750 }
2751
2752 // If this is the pattern of a variable template, find where it was
2753 // instantiated from. FIXME: Is this necessary?
2754 if (VarTemplateDecl *VarTemplate = VD->getDescribedVarTemplate()) {
2755 while (!VarTemplate->isMemberSpecialization()) {
2756 auto *NewVT = VarTemplate->getInstantiatedFromMemberTemplate();
2757 if (!NewVT)
2758 break;
2759 VarTemplate = NewVT;
2760 }
2761
2762 return getDefinitionOrSelf(D: VarTemplate->getTemplatedDecl());
2763 }
2764
2765 if (VD == this)
2766 return nullptr;
2767 return getDefinitionOrSelf(D: const_cast<VarDecl*>(VD));
2768}
2769
2770VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2771 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2772 return cast<VarDecl>(Val: MSI->getInstantiatedFrom());
2773
2774 return nullptr;
2775}
2776
2777TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2778 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(Val: this))
2779 return Spec->getSpecializationKind();
2780
2781 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2782 return MSI->getTemplateSpecializationKind();
2783
2784 return TSK_Undeclared;
2785}
2786
2787TemplateSpecializationKind
2788VarDecl::getTemplateSpecializationKindForInstantiation() const {
2789 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2790 return MSI->getTemplateSpecializationKind();
2791
2792 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(Val: this))
2793 return Spec->getSpecializationKind();
2794
2795 return TSK_Undeclared;
2796}
2797
2798SourceLocation VarDecl::getPointOfInstantiation() const {
2799 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(Val: this))
2800 return Spec->getPointOfInstantiation();
2801
2802 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2803 return MSI->getPointOfInstantiation();
2804
2805 return SourceLocation();
2806}
2807
2808VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2809 return dyn_cast_if_present<VarTemplateDecl *>(
2810 Val: getASTContext().getTemplateOrSpecializationInfo(Var: this));
2811}
2812
2813void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2814 getASTContext().setTemplateOrSpecializationInfo(Inst: this, TSI: Template);
2815}
2816
2817bool VarDecl::isKnownToBeDefined() const {
2818 const auto &LangOpts = getASTContext().getLangOpts();
2819 // In CUDA mode without relocatable device code, variables of form 'extern
2820 // __shared__ Foo foo[]' are pointers to the base of the GPU core's shared
2821 // memory pool. These are never undefined variables, even if they appear
2822 // inside of an anon namespace or static function.
2823 //
2824 // With CUDA relocatable device code enabled, these variables don't get
2825 // special handling; they're treated like regular extern variables.
2826 if (LangOpts.CUDA && !LangOpts.GPURelocatableDeviceCode &&
2827 hasExternalStorage() && hasAttr<CUDASharedAttr>() &&
2828 isa<IncompleteArrayType>(Val: getType()))
2829 return true;
2830
2831 return hasDefinition();
2832}
2833
2834bool VarDecl::isNoDestroy(const ASTContext &Ctx) const {
2835 if (!hasGlobalStorage())
2836 return false;
2837 if (hasAttr<NoDestroyAttr>())
2838 return true;
2839 if (hasAttr<AlwaysDestroyAttr>())
2840 return false;
2841
2842 using RSDKind = LangOptions::RegisterStaticDestructorsKind;
2843 RSDKind K = Ctx.getLangOpts().getRegisterStaticDestructors();
2844 return K == RSDKind::None ||
2845 (K == RSDKind::ThreadLocal && getTLSKind() == TLS_None);
2846}
2847
2848QualType::DestructionKind
2849VarDecl::needsDestruction(const ASTContext &Ctx) const {
2850 if (EvaluatedStmt *Eval = getEvaluatedStmt())
2851 if (Eval->HasConstantDestruction)
2852 return QualType::DK_none;
2853
2854 if (isNoDestroy(Ctx))
2855 return QualType::DK_none;
2856
2857 return getType().isDestructedType();
2858}
2859
2860bool VarDecl::hasFlexibleArrayInit(const ASTContext &Ctx) const {
2861 assert(hasInit() && "Expect initializer to check for flexible array init");
2862 auto *Ty = getType()->getAs<RecordType>();
2863 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2864 return false;
2865 auto *List = dyn_cast<InitListExpr>(Val: getInit()->IgnoreParens());
2866 if (!List)
2867 return false;
2868 const Expr *FlexibleInit = List->getInit(Init: List->getNumInits() - 1);
2869 auto InitTy = Ctx.getAsConstantArrayType(T: FlexibleInit->getType());
2870 if (!InitTy)
2871 return false;
2872 return !InitTy->isZeroSize();
2873}
2874
2875CharUnits VarDecl::getFlexibleArrayInitChars(const ASTContext &Ctx) const {
2876 assert(hasInit() && "Expect initializer to check for flexible array init");
2877 auto *Ty = getType()->getAs<RecordType>();
2878 if (!Ty || !Ty->getDecl()->hasFlexibleArrayMember())
2879 return CharUnits::Zero();
2880 auto *List = dyn_cast<InitListExpr>(Val: getInit()->IgnoreParens());
2881 if (!List || List->getNumInits() == 0)
2882 return CharUnits::Zero();
2883 const Expr *FlexibleInit = List->getInit(Init: List->getNumInits() - 1);
2884 auto InitTy = Ctx.getAsConstantArrayType(T: FlexibleInit->getType());
2885 if (!InitTy)
2886 return CharUnits::Zero();
2887 CharUnits FlexibleArraySize = Ctx.getTypeSizeInChars(T: InitTy);
2888 const ASTRecordLayout &RL = Ctx.getASTRecordLayout(D: Ty->getDecl());
2889 CharUnits FlexibleArrayOffset =
2890 Ctx.toCharUnitsFromBits(BitSize: RL.getFieldOffset(FieldNo: RL.getFieldCount() - 1));
2891 if (FlexibleArrayOffset + FlexibleArraySize < RL.getSize())
2892 return CharUnits::Zero();
2893 return FlexibleArrayOffset + FlexibleArraySize - RL.getSize();
2894}
2895
2896MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2897 if (isStaticDataMember())
2898 // FIXME: Remove ?
2899 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2900 return dyn_cast_if_present<MemberSpecializationInfo *>(
2901 Val: getASTContext().getTemplateOrSpecializationInfo(Var: this));
2902 return nullptr;
2903}
2904
2905void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2906 SourceLocation PointOfInstantiation) {
2907 assert((isa<VarTemplateSpecializationDecl>(this) ||
2908 getMemberSpecializationInfo()) &&
2909 "not a variable or static data member template specialization");
2910
2911 if (VarTemplateSpecializationDecl *Spec =
2912 dyn_cast<VarTemplateSpecializationDecl>(Val: this)) {
2913 Spec->setSpecializationKind(TSK);
2914 if (TSK != TSK_ExplicitSpecialization &&
2915 PointOfInstantiation.isValid() &&
2916 Spec->getPointOfInstantiation().isInvalid()) {
2917 Spec->setPointOfInstantiation(PointOfInstantiation);
2918 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2919 L->InstantiationRequested(D: this);
2920 }
2921 } else if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2922 MSI->setTemplateSpecializationKind(TSK);
2923 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2924 MSI->getPointOfInstantiation().isInvalid()) {
2925 MSI->setPointOfInstantiation(PointOfInstantiation);
2926 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
2927 L->InstantiationRequested(D: this);
2928 }
2929 }
2930}
2931
2932void
2933VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2934 TemplateSpecializationKind TSK) {
2935 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2936 "Previous template or instantiation?");
2937 getASTContext().setInstantiatedFromStaticDataMember(Inst: this, Tmpl: VD, TSK);
2938}
2939
2940//===----------------------------------------------------------------------===//
2941// ParmVarDecl Implementation
2942//===----------------------------------------------------------------------===//
2943
2944ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2945 SourceLocation StartLoc, SourceLocation IdLoc,
2946 const IdentifierInfo *Id, QualType T,
2947 TypeSourceInfo *TInfo, StorageClass S,
2948 Expr *DefArg) {
2949 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2950 S, DefArg);
2951}
2952
2953QualType ParmVarDecl::getOriginalType() const {
2954 TypeSourceInfo *TSI = getTypeSourceInfo();
2955 QualType T = TSI ? TSI->getType() : getType();
2956 if (const auto *DT = dyn_cast<DecayedType>(Val&: T))
2957 return DT->getOriginalType();
2958 return T;
2959}
2960
2961ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
2962 return new (C, ID)
2963 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2964 nullptr, QualType(), nullptr, SC_None, nullptr);
2965}
2966
2967SourceRange ParmVarDecl::getSourceRange() const {
2968 if (!hasInheritedDefaultArg()) {
2969 SourceRange ArgRange = getDefaultArgRange();
2970 if (ArgRange.isValid())
2971 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2972 }
2973
2974 // DeclaratorDecl considers the range of postfix types as overlapping with the
2975 // declaration name, but this is not the case with parameters in ObjC methods.
2976 if (isa<ObjCMethodDecl>(Val: getDeclContext()))
2977 return SourceRange(DeclaratorDecl::getBeginLoc(), getLocation());
2978
2979 return DeclaratorDecl::getSourceRange();
2980}
2981
2982bool ParmVarDecl::isDestroyedInCallee() const {
2983 // ns_consumed only affects code generation in ARC
2984 if (hasAttr<NSConsumedAttr>())
2985 return getASTContext().getLangOpts().ObjCAutoRefCount;
2986
2987 // FIXME: isParamDestroyedInCallee() should probably imply
2988 // isDestructedType()
2989 const auto *RT = getType()->getAs<RecordType>();
2990 if (RT && RT->getDecl()->isParamDestroyedInCallee() &&
2991 getType().isDestructedType())
2992 return true;
2993
2994 return false;
2995}
2996
2997Expr *ParmVarDecl::getDefaultArg() {
2998 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2999 assert(!hasUninstantiatedDefaultArg() &&
3000 "Default argument is not yet instantiated!");
3001
3002 Expr *Arg = getInit();
3003 if (auto *E = dyn_cast_if_present<FullExpr>(Val: Arg))
3004 return E->getSubExpr();
3005
3006 return Arg;
3007}
3008
3009void ParmVarDecl::setDefaultArg(Expr *defarg) {
3010 ParmVarDeclBits.DefaultArgKind = DAK_Normal;
3011 Init = defarg;
3012}
3013
3014SourceRange ParmVarDecl::getDefaultArgRange() const {
3015 switch (ParmVarDeclBits.DefaultArgKind) {
3016 case DAK_None:
3017 case DAK_Unparsed:
3018 // Nothing we can do here.
3019 return SourceRange();
3020
3021 case DAK_Uninstantiated:
3022 return getUninstantiatedDefaultArg()->getSourceRange();
3023
3024 case DAK_Normal:
3025 if (const Expr *E = getInit())
3026 return E->getSourceRange();
3027
3028 // Missing an actual expression, may be invalid.
3029 return SourceRange();
3030 }
3031 llvm_unreachable("Invalid default argument kind.");
3032}
3033
3034void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
3035 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
3036 Init = arg;
3037}
3038
3039Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
3040 assert(hasUninstantiatedDefaultArg() &&
3041 "Wrong kind of initialization expression!");
3042 return cast_if_present<Expr>(Val: cast<Stmt *>(Val&: Init));
3043}
3044
3045bool ParmVarDecl::hasDefaultArg() const {
3046 // FIXME: We should just return false for DAK_None here once callers are
3047 // prepared for the case that we encountered an invalid default argument and
3048 // were unable to even build an invalid expression.
3049 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
3050 !Init.isNull();
3051}
3052
3053void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
3054 getASTContext().setParameterIndex(D: this, index: parameterIndex);
3055 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
3056}
3057
3058unsigned ParmVarDecl::getParameterIndexLarge() const {
3059 return getASTContext().getParameterIndex(D: this);
3060}
3061
3062//===----------------------------------------------------------------------===//
3063// FunctionDecl Implementation
3064//===----------------------------------------------------------------------===//
3065
3066FunctionDecl::FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC,
3067 SourceLocation StartLoc,
3068 const DeclarationNameInfo &NameInfo, QualType T,
3069 TypeSourceInfo *TInfo, StorageClass S,
3070 bool UsesFPIntrin, bool isInlineSpecified,
3071 ConstexprSpecKind ConstexprKind,
3072 const AssociatedConstraint &TrailingRequiresClause)
3073 : DeclaratorDecl(DK, DC, NameInfo.getLoc(), NameInfo.getName(), T, TInfo,
3074 StartLoc),
3075 DeclContext(DK), redeclarable_base(C), Body(), ODRHash(0),
3076 EndRangeLoc(NameInfo.getEndLoc()), DNLoc(NameInfo.getInfo()) {
3077 assert(T.isNull() || T->isFunctionType());
3078 FunctionDeclBits.SClass = S;
3079 FunctionDeclBits.IsInline = isInlineSpecified;
3080 FunctionDeclBits.IsInlineSpecified = isInlineSpecified;
3081 FunctionDeclBits.IsVirtualAsWritten = false;
3082 FunctionDeclBits.IsPureVirtual = false;
3083 FunctionDeclBits.HasInheritedPrototype = false;
3084 FunctionDeclBits.HasWrittenPrototype = true;
3085 FunctionDeclBits.IsDeleted = false;
3086 FunctionDeclBits.IsTrivial = false;
3087 FunctionDeclBits.IsTrivialForCall = false;
3088 FunctionDeclBits.IsDefaulted = false;
3089 FunctionDeclBits.IsExplicitlyDefaulted = false;
3090 FunctionDeclBits.HasDefaultedOrDeletedInfo = false;
3091 FunctionDeclBits.IsIneligibleOrNotSelected = false;
3092 FunctionDeclBits.HasImplicitReturnZero = false;
3093 FunctionDeclBits.IsLateTemplateParsed = false;
3094 FunctionDeclBits.IsInstantiatedFromMemberTemplate = false;
3095 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(ConstexprKind);
3096 FunctionDeclBits.BodyContainsImmediateEscalatingExpression = false;
3097 FunctionDeclBits.InstantiationIsPending = false;
3098 FunctionDeclBits.UsesSEHTry = false;
3099 FunctionDeclBits.UsesFPIntrin = UsesFPIntrin;
3100 FunctionDeclBits.HasSkippedBody = false;
3101 FunctionDeclBits.WillHaveBody = false;
3102 FunctionDeclBits.IsMultiVersion = false;
3103 FunctionDeclBits.DeductionCandidateKind =
3104 static_cast<unsigned char>(DeductionCandidate::Normal);
3105 FunctionDeclBits.HasODRHash = false;
3106 FunctionDeclBits.FriendConstraintRefersToEnclosingTemplate = false;
3107
3108 if (TrailingRequiresClause)
3109 setTrailingRequiresClause(TrailingRequiresClause);
3110}
3111
3112void FunctionDecl::getNameForDiagnostic(
3113 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
3114 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
3115 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
3116 if (TemplateArgs)
3117 printTemplateArgumentList(OS, Args: TemplateArgs->asArray(), Policy);
3118}
3119
3120bool FunctionDecl::isVariadic() const {
3121 if (const auto *FT = getType()->getAs<FunctionProtoType>())
3122 return FT->isVariadic();
3123 return false;
3124}
3125
3126FunctionDecl::DefaultedOrDeletedFunctionInfo *
3127FunctionDecl::DefaultedOrDeletedFunctionInfo::Create(
3128 ASTContext &Context, ArrayRef<DeclAccessPair> Lookups,
3129 StringLiteral *DeletedMessage) {
3130 static constexpr size_t Alignment =
3131 std::max(l: {alignof(DefaultedOrDeletedFunctionInfo),
3132 alignof(DeclAccessPair), alignof(StringLiteral *)});
3133 size_t Size = totalSizeToAlloc<DeclAccessPair, StringLiteral *>(
3134 Counts: Lookups.size(), Counts: DeletedMessage != nullptr);
3135
3136 DefaultedOrDeletedFunctionInfo *Info =
3137 new (Context.Allocate(Size, Align: Alignment)) DefaultedOrDeletedFunctionInfo;
3138 Info->NumLookups = Lookups.size();
3139 Info->HasDeletedMessage = DeletedMessage != nullptr;
3140
3141 llvm::uninitialized_copy(Src&: Lookups, Dst: Info->getTrailingObjects<DeclAccessPair>());
3142 if (DeletedMessage)
3143 *Info->getTrailingObjects<StringLiteral *>() = DeletedMessage;
3144 return Info;
3145}
3146
3147void FunctionDecl::setDefaultedOrDeletedInfo(
3148 DefaultedOrDeletedFunctionInfo *Info) {
3149 assert(!FunctionDeclBits.HasDefaultedOrDeletedInfo && "already have this");
3150 assert(!Body && "can't replace function body with defaulted function info");
3151
3152 FunctionDeclBits.HasDefaultedOrDeletedInfo = true;
3153 DefaultedOrDeletedInfo = Info;
3154}
3155
3156void FunctionDecl::setDeletedAsWritten(bool D, StringLiteral *Message) {
3157 FunctionDeclBits.IsDeleted = D;
3158
3159 if (Message) {
3160 assert(isDeletedAsWritten() && "Function must be deleted");
3161 if (FunctionDeclBits.HasDefaultedOrDeletedInfo)
3162 DefaultedOrDeletedInfo->setDeletedMessage(Message);
3163 else
3164 setDefaultedOrDeletedInfo(DefaultedOrDeletedFunctionInfo::Create(
3165 Context&: getASTContext(), /*Lookups=*/{}, DeletedMessage: Message));
3166 }
3167}
3168
3169void FunctionDecl::DefaultedOrDeletedFunctionInfo::setDeletedMessage(
3170 StringLiteral *Message) {
3171 // We should never get here with the DefaultedOrDeletedInfo populated, but
3172 // no space allocated for the deleted message, since that would require
3173 // recreating this, but setDefaultedOrDeletedInfo() disallows overwriting
3174 // an already existing DefaultedOrDeletedFunctionInfo.
3175 assert(HasDeletedMessage &&
3176 "No space to store a delete message in this DefaultedOrDeletedInfo");
3177 *getTrailingObjects<StringLiteral *>() = Message;
3178}
3179
3180FunctionDecl::DefaultedOrDeletedFunctionInfo *
3181FunctionDecl::getDefalutedOrDeletedInfo() const {
3182 return FunctionDeclBits.HasDefaultedOrDeletedInfo ? DefaultedOrDeletedInfo
3183 : nullptr;
3184}
3185
3186bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
3187 for (const auto *I : redecls()) {
3188 if (I->doesThisDeclarationHaveABody()) {
3189 Definition = I;
3190 return true;
3191 }
3192 }
3193
3194 return false;
3195}
3196
3197bool FunctionDecl::hasTrivialBody() const {
3198 const Stmt *S = getBody();
3199 if (!S) {
3200 // Since we don't have a body for this function, we don't know if it's
3201 // trivial or not.
3202 return false;
3203 }
3204
3205 if (isa<CompoundStmt>(Val: S) && cast<CompoundStmt>(Val: S)->body_empty())
3206 return true;
3207 return false;
3208}
3209
3210bool FunctionDecl::isThisDeclarationInstantiatedFromAFriendDefinition() const {
3211 if (!getFriendObjectKind())
3212 return false;
3213
3214 // Check for a friend function instantiated from a friend function
3215 // definition in a templated class.
3216 if (const FunctionDecl *InstantiatedFrom =
3217 getInstantiatedFromMemberFunction())
3218 return InstantiatedFrom->getFriendObjectKind() &&
3219 InstantiatedFrom->isThisDeclarationADefinition();
3220
3221 // Check for a friend function template instantiated from a friend
3222 // function template definition in a templated class.
3223 if (const FunctionTemplateDecl *Template = getDescribedFunctionTemplate()) {
3224 if (const FunctionTemplateDecl *InstantiatedFrom =
3225 Template->getInstantiatedFromMemberTemplate())
3226 return InstantiatedFrom->getFriendObjectKind() &&
3227 InstantiatedFrom->isThisDeclarationADefinition();
3228 }
3229
3230 return false;
3231}
3232
3233bool FunctionDecl::isDefined(const FunctionDecl *&Definition,
3234 bool CheckForPendingFriendDefinition) const {
3235 for (const FunctionDecl *FD : redecls()) {
3236 if (FD->isThisDeclarationADefinition()) {
3237 Definition = FD;
3238 return true;
3239 }
3240
3241 // If this is a friend function defined in a class template, it does not
3242 // have a body until it is used, nevertheless it is a definition, see
3243 // [temp.inst]p2:
3244 //
3245 // ... for the purpose of determining whether an instantiated redeclaration
3246 // is valid according to [basic.def.odr] and [class.mem], a declaration that
3247 // corresponds to a definition in the template is considered to be a
3248 // definition.
3249 //
3250 // The following code must produce redefinition error:
3251 //
3252 // template<typename T> struct C20 { friend void func_20() {} };
3253 // C20<int> c20i;
3254 // void func_20() {}
3255 //
3256 if (CheckForPendingFriendDefinition &&
3257 FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
3258 Definition = FD;
3259 return true;
3260 }
3261 }
3262
3263 return false;
3264}
3265
3266Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
3267 if (!hasBody(Definition))
3268 return nullptr;
3269
3270 assert(!Definition->FunctionDeclBits.HasDefaultedOrDeletedInfo &&
3271 "definition should not have a body");
3272 if (Definition->Body)
3273 return Definition->Body.get(Source: getASTContext().getExternalSource());
3274
3275 return nullptr;
3276}
3277
3278void FunctionDecl::setBody(Stmt *B) {
3279 FunctionDeclBits.HasDefaultedOrDeletedInfo = false;
3280 Body = LazyDeclStmtPtr(B);
3281 if (B)
3282 EndRangeLoc = B->getEndLoc();
3283}
3284
3285void FunctionDecl::setIsPureVirtual(bool P) {
3286 FunctionDeclBits.IsPureVirtual = P;
3287 if (P)
3288 if (auto *Parent = dyn_cast<CXXRecordDecl>(Val: getDeclContext()))
3289 Parent->markedVirtualFunctionPure();
3290}
3291
3292template<std::size_t Len>
3293static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
3294 const IdentifierInfo *II = ND->getIdentifier();
3295 return II && II->isStr(Str);
3296}
3297
3298bool FunctionDecl::isImmediateEscalating() const {
3299 // C++23 [expr.const]/p17
3300 // An immediate-escalating function is
3301 // - the call operator of a lambda that is not declared with the consteval
3302 // specifier,
3303 if (isLambdaCallOperator(DC: this) && !isConsteval())
3304 return true;
3305 // - a defaulted special member function that is not declared with the
3306 // consteval specifier,
3307 if (isDefaulted() && !isConsteval())
3308 return true;
3309
3310 if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: this);
3311 CD && CD->isInheritingConstructor())
3312 return CD->getInheritedConstructor().getConstructor();
3313
3314 // - a function that results from the instantiation of a templated entity
3315 // defined with the constexpr specifier.
3316 TemplatedKind TK = getTemplatedKind();
3317 if (TK != TK_NonTemplate && TK != TK_DependentNonTemplate &&
3318 isConstexprSpecified())
3319 return true;
3320 return false;
3321}
3322
3323bool FunctionDecl::isImmediateFunction() const {
3324 // C++23 [expr.const]/p18
3325 // An immediate function is a function or constructor that is
3326 // - declared with the consteval specifier
3327 if (isConsteval())
3328 return true;
3329 // - an immediate-escalating function F whose function body contains an
3330 // immediate-escalating expression
3331 if (isImmediateEscalating() && BodyContainsImmediateEscalatingExpressions())
3332 return true;
3333
3334 if (auto *CD = dyn_cast<CXXConstructorDecl>(Val: this);
3335 CD && CD->isInheritingConstructor())
3336 return CD->getInheritedConstructor()
3337 .getConstructor()
3338 ->isImmediateFunction();
3339
3340 if (FunctionDecl *P = getTemplateInstantiationPattern();
3341 P && P->isImmediateFunction())
3342 return true;
3343
3344 if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: this);
3345 MD && MD->isLambdaStaticInvoker())
3346 return MD->getParent()->getLambdaCallOperator()->isImmediateFunction();
3347
3348 return false;
3349}
3350
3351bool FunctionDecl::isMain() const {
3352 return isNamed(ND: this, Str: "main") && !getLangOpts().Freestanding &&
3353 !getLangOpts().HLSL &&
3354 (getDeclContext()->getRedeclContext()->isTranslationUnit() ||
3355 isExternC());
3356}
3357
3358bool FunctionDecl::isMSVCRTEntryPoint() const {
3359 const TranslationUnitDecl *TUnit =
3360 dyn_cast<TranslationUnitDecl>(Val: getDeclContext()->getRedeclContext());
3361 if (!TUnit)
3362 return false;
3363
3364 // Even though we aren't really targeting MSVCRT if we are freestanding,
3365 // semantic analysis for these functions remains the same.
3366
3367 // MSVCRT entry points only exist on MSVCRT targets.
3368 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT() &&
3369 !TUnit->getASTContext().getTargetInfo().getTriple().isUEFI())
3370 return false;
3371
3372 // Nameless functions like constructors cannot be entry points.
3373 if (!getIdentifier())
3374 return false;
3375
3376 return llvm::StringSwitch<bool>(getName())
3377 .Cases(S0: "main", // an ANSI console app
3378 S1: "wmain", // a Unicode console App
3379 S2: "WinMain", // an ANSI GUI app
3380 S3: "wWinMain", // a Unicode GUI app
3381 S4: "DllMain", // a DLL
3382 Value: true)
3383 .Default(Value: false);
3384}
3385
3386bool FunctionDecl::isReservedGlobalPlacementOperator() const {
3387 if (!getDeclName().isAnyOperatorNewOrDelete())
3388 return false;
3389
3390 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3391 return false;
3392
3393 if (isTypeAwareOperatorNewOrDelete())
3394 return false;
3395
3396 const auto *proto = getType()->castAs<FunctionProtoType>();
3397 if (proto->getNumParams() != 2 || proto->isVariadic())
3398 return false;
3399
3400 const ASTContext &Context =
3401 cast<TranslationUnitDecl>(Val: getDeclContext()->getRedeclContext())
3402 ->getASTContext();
3403
3404 // The result type and first argument type are constant across all
3405 // these operators. The second argument must be exactly void*.
3406 return (proto->getParamType(i: 1).getCanonicalType() == Context.VoidPtrTy);
3407}
3408
3409bool FunctionDecl::isUsableAsGlobalAllocationFunctionInConstantEvaluation(
3410 UnsignedOrNone *AlignmentParam, bool *IsNothrow) const {
3411 if (!getDeclName().isAnyOperatorNewOrDelete())
3412 return false;
3413
3414 if (isa<CXXRecordDecl>(Val: getDeclContext()))
3415 return false;
3416
3417 // This can only fail for an invalid 'operator new' declaration.
3418 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
3419 return false;
3420
3421 if (isVariadic())
3422 return false;
3423
3424 if (isTypeAwareOperatorNewOrDelete()) {
3425 bool IsDelete = getDeclName().isAnyOperatorDelete();
3426 unsigned RequiredParameterCount =
3427 IsDelete ? FunctionDecl::RequiredTypeAwareDeleteParameterCount
3428 : FunctionDecl::RequiredTypeAwareNewParameterCount;
3429 if (AlignmentParam)
3430 *AlignmentParam =
3431 /* type identity */ 1U + /* address */ IsDelete + /* size */ 1U;
3432 if (RequiredParameterCount == getNumParams())
3433 return true;
3434 if (getNumParams() > RequiredParameterCount + 1)
3435 return false;
3436 if (!getParamDecl(i: RequiredParameterCount)->getType()->isNothrowT())
3437 return false;
3438
3439 if (IsNothrow)
3440 *IsNothrow = true;
3441 return true;
3442 }
3443
3444 const auto *FPT = getType()->castAs<FunctionProtoType>();
3445 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 4)
3446 return false;
3447
3448 // If this is a single-parameter function, it must be a replaceable global
3449 // allocation or deallocation function.
3450 if (FPT->getNumParams() == 1)
3451 return true;
3452
3453 unsigned Params = 1;
3454 QualType Ty = FPT->getParamType(i: Params);
3455 const ASTContext &Ctx = getASTContext();
3456
3457 auto Consume = [&] {
3458 ++Params;
3459 Ty = Params < FPT->getNumParams() ? FPT->getParamType(i: Params) : QualType();
3460 };
3461
3462 // In C++14, the next parameter can be a 'std::size_t' for sized delete.
3463 bool IsSizedDelete = false;
3464 if (Ctx.getLangOpts().SizedDeallocation &&
3465 getDeclName().isAnyOperatorDelete() &&
3466 Ctx.hasSameType(T1: Ty, T2: Ctx.getSizeType())) {
3467 IsSizedDelete = true;
3468 Consume();
3469 }
3470
3471 // In C++17, the next parameter can be a 'std::align_val_t' for aligned
3472 // new/delete.
3473 if (Ctx.getLangOpts().AlignedAllocation && !Ty.isNull() && Ty->isAlignValT()) {
3474 Consume();
3475 if (AlignmentParam)
3476 *AlignmentParam = Params;
3477 }
3478
3479 // If this is not a sized delete, the next parameter can be a
3480 // 'const std::nothrow_t&'.
3481 if (!IsSizedDelete && !Ty.isNull() && Ty->isReferenceType()) {
3482 Ty = Ty->getPointeeType();
3483 if (Ty.getCVRQualifiers() != Qualifiers::Const)
3484 return false;
3485 if (Ty->isNothrowT()) {
3486 if (IsNothrow)
3487 *IsNothrow = true;
3488 Consume();
3489 }
3490 }
3491
3492 // Finally, recognize the not yet standard versions of new that take a
3493 // hot/cold allocation hint (__hot_cold_t). These are currently supported by
3494 // tcmalloc (see
3495 // https://github.com/google/tcmalloc/blob/220043886d4e2efff7a5702d5172cb8065253664/tcmalloc/malloc_extension.h#L53).
3496 if (!IsSizedDelete && !Ty.isNull() && Ty->isEnumeralType()) {
3497 QualType T = Ty;
3498 while (const auto *TD = T->getAs<TypedefType>())
3499 T = TD->getDecl()->getUnderlyingType();
3500 const IdentifierInfo *II =
3501 T->castAs<EnumType>()->getDecl()->getIdentifier();
3502 if (II && II->isStr(Str: "__hot_cold_t"))
3503 Consume();
3504 }
3505
3506 return Params == FPT->getNumParams();
3507}
3508
3509bool FunctionDecl::isInlineBuiltinDeclaration() const {
3510 if (!getBuiltinID())
3511 return false;
3512
3513 const FunctionDecl *Definition;
3514 if (!hasBody(Definition))
3515 return false;
3516
3517 if (!Definition->isInlineSpecified() ||
3518 !Definition->hasAttr<AlwaysInlineAttr>())
3519 return false;
3520
3521 ASTContext &Context = getASTContext();
3522 switch (Context.GetGVALinkageForFunction(FD: Definition)) {
3523 case GVA_Internal:
3524 case GVA_DiscardableODR:
3525 case GVA_StrongODR:
3526 return false;
3527 case GVA_AvailableExternally:
3528 case GVA_StrongExternal:
3529 return true;
3530 }
3531 llvm_unreachable("Unknown GVALinkage");
3532}
3533
3534bool FunctionDecl::isDestroyingOperatorDelete() const {
3535 return getASTContext().isDestroyingOperatorDelete(FD: this);
3536}
3537
3538void FunctionDecl::setIsDestroyingOperatorDelete(bool IsDestroyingDelete) {
3539 getASTContext().setIsDestroyingOperatorDelete(FD: this, IsDestroying: IsDestroyingDelete);
3540}
3541
3542bool FunctionDecl::isTypeAwareOperatorNewOrDelete() const {
3543 return getASTContext().isTypeAwareOperatorNewOrDelete(FD: this);
3544}
3545
3546void FunctionDecl::setIsTypeAwareOperatorNewOrDelete(bool IsTypeAware) {
3547 getASTContext().setIsTypeAwareOperatorNewOrDelete(FD: this, IsTypeAware);
3548}
3549
3550LanguageLinkage FunctionDecl::getLanguageLinkage() const {
3551 return getDeclLanguageLinkage(D: *this);
3552}
3553
3554bool FunctionDecl::isExternC() const {
3555 return isDeclExternC(D: *this);
3556}
3557
3558bool FunctionDecl::isInExternCContext() const {
3559 if (DeviceKernelAttr::isOpenCLSpelling(A: getAttr<DeviceKernelAttr>()))
3560 return true;
3561 return getLexicalDeclContext()->isExternCContext();
3562}
3563
3564bool FunctionDecl::isInExternCXXContext() const {
3565 return getLexicalDeclContext()->isExternCXXContext();
3566}
3567
3568bool FunctionDecl::isGlobal() const {
3569 if (const auto *Method = dyn_cast<CXXMethodDecl>(Val: this))
3570 return Method->isStatic();
3571
3572 if (getCanonicalDecl()->getStorageClass() == SC_Static)
3573 return false;
3574
3575 for (const DeclContext *DC = getDeclContext();
3576 DC->isNamespace();
3577 DC = DC->getParent()) {
3578 if (const auto *Namespace = cast<NamespaceDecl>(Val: DC)) {
3579 if (!Namespace->getDeclName())
3580 return false;
3581 }
3582 }
3583
3584 return true;
3585}
3586
3587bool FunctionDecl::isNoReturn() const {
3588 if (hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
3589 hasAttr<C11NoReturnAttr>())
3590 return true;
3591
3592 if (auto *FnTy = getType()->getAs<FunctionType>())
3593 return FnTy->getNoReturnAttr();
3594
3595 return false;
3596}
3597
3598bool FunctionDecl::isMemberLikeConstrainedFriend() const {
3599 // C++20 [temp.friend]p9:
3600 // A non-template friend declaration with a requires-clause [or]
3601 // a friend function template with a constraint that depends on a template
3602 // parameter from an enclosing template [...] does not declare the same
3603 // function or function template as a declaration in any other scope.
3604
3605 // If this isn't a friend then it's not a member-like constrained friend.
3606 if (!getFriendObjectKind()) {
3607 return false;
3608 }
3609
3610 if (!getDescribedFunctionTemplate()) {
3611 // If these friends don't have constraints, they aren't constrained, and
3612 // thus don't fall under temp.friend p9. Else the simple presence of a
3613 // constraint makes them unique.
3614 return !getTrailingRequiresClause().isNull();
3615 }
3616
3617 return FriendConstraintRefersToEnclosingTemplate();
3618}
3619
3620MultiVersionKind FunctionDecl::getMultiVersionKind() const {
3621 if (hasAttr<TargetAttr>())
3622 return MultiVersionKind::Target;
3623 if (hasAttr<TargetVersionAttr>())
3624 return MultiVersionKind::TargetVersion;
3625 if (hasAttr<CPUDispatchAttr>())
3626 return MultiVersionKind::CPUDispatch;
3627 if (hasAttr<CPUSpecificAttr>())
3628 return MultiVersionKind::CPUSpecific;
3629 if (hasAttr<TargetClonesAttr>())
3630 return MultiVersionKind::TargetClones;
3631 return MultiVersionKind::None;
3632}
3633
3634bool FunctionDecl::isCPUDispatchMultiVersion() const {
3635 return isMultiVersion() && hasAttr<CPUDispatchAttr>();
3636}
3637
3638bool FunctionDecl::isCPUSpecificMultiVersion() const {
3639 return isMultiVersion() && hasAttr<CPUSpecificAttr>();
3640}
3641
3642bool FunctionDecl::isTargetMultiVersion() const {
3643 return isMultiVersion() &&
3644 (hasAttr<TargetAttr>() || hasAttr<TargetVersionAttr>());
3645}
3646
3647bool FunctionDecl::isTargetMultiVersionDefault() const {
3648 if (!isMultiVersion())
3649 return false;
3650 if (hasAttr<TargetAttr>())
3651 return getAttr<TargetAttr>()->isDefaultVersion();
3652 return hasAttr<TargetVersionAttr>() &&
3653 getAttr<TargetVersionAttr>()->isDefaultVersion();
3654}
3655
3656bool FunctionDecl::isTargetClonesMultiVersion() const {
3657 return isMultiVersion() && hasAttr<TargetClonesAttr>();
3658}
3659
3660bool FunctionDecl::isTargetVersionMultiVersion() const {
3661 return isMultiVersion() && hasAttr<TargetVersionAttr>();
3662}
3663
3664void
3665FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
3666 redeclarable_base::setPreviousDecl(PrevDecl);
3667
3668 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
3669 FunctionTemplateDecl *PrevFunTmpl
3670 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
3671 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
3672 FunTmpl->setPreviousDecl(PrevFunTmpl);
3673 }
3674
3675 if (PrevDecl && PrevDecl->isInlined())
3676 setImplicitlyInline(true);
3677}
3678
3679FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
3680
3681/// Returns a value indicating whether this function corresponds to a builtin
3682/// function.
3683///
3684/// The function corresponds to a built-in function if it is declared at
3685/// translation scope or within an extern "C" block and its name matches with
3686/// the name of a builtin. The returned value will be 0 for functions that do
3687/// not correspond to a builtin, a value of type \c Builtin::ID if in the
3688/// target-independent range \c [1,Builtin::First), or a target-specific builtin
3689/// value.
3690///
3691/// \param ConsiderWrapperFunctions If true, we should consider wrapper
3692/// functions as their wrapped builtins. This shouldn't be done in general, but
3693/// it's useful in Sema to diagnose calls to wrappers based on their semantics.
3694unsigned FunctionDecl::getBuiltinID(bool ConsiderWrapperFunctions) const {
3695 unsigned BuiltinID = 0;
3696
3697 if (const auto *ABAA = getAttr<ArmBuiltinAliasAttr>()) {
3698 BuiltinID = ABAA->getBuiltinName()->getBuiltinID();
3699 } else if (const auto *BAA = getAttr<BuiltinAliasAttr>()) {
3700 BuiltinID = BAA->getBuiltinName()->getBuiltinID();
3701 } else if (const auto *A = getAttr<BuiltinAttr>()) {
3702 BuiltinID = A->getID();
3703 }
3704
3705 if (!BuiltinID)
3706 return 0;
3707
3708 // If the function is marked "overloadable", it has a different mangled name
3709 // and is not the C library function.
3710 if (!ConsiderWrapperFunctions && hasAttr<OverloadableAttr>() &&
3711 (!hasAttr<ArmBuiltinAliasAttr>() && !hasAttr<BuiltinAliasAttr>()))
3712 return 0;
3713
3714 if (getASTContext().getLangOpts().CPlusPlus &&
3715 BuiltinID == Builtin::BI__builtin_counted_by_ref)
3716 return 0;
3717
3718 const ASTContext &Context = getASTContext();
3719 if (!Context.BuiltinInfo.isPredefinedLibFunction(ID: BuiltinID))
3720 return BuiltinID;
3721
3722 // This function has the name of a known C library
3723 // function. Determine whether it actually refers to the C library
3724 // function or whether it just has the same name.
3725
3726 // If this is a static function, it's not a builtin.
3727 if (!ConsiderWrapperFunctions && getStorageClass() == SC_Static)
3728 return 0;
3729
3730 // OpenCL v1.2 s6.9.f - The library functions defined in
3731 // the C99 standard headers are not available.
3732 if (Context.getLangOpts().OpenCL &&
3733 Context.BuiltinInfo.isPredefinedLibFunction(ID: BuiltinID))
3734 return 0;
3735
3736 // CUDA does not have device-side standard library. printf and malloc are the
3737 // only special cases that are supported by device-side runtime.
3738 if (Context.getLangOpts().CUDA && hasAttr<CUDADeviceAttr>() &&
3739 !hasAttr<CUDAHostAttr>() &&
3740 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3741 return 0;
3742
3743 // As AMDGCN implementation of OpenMP does not have a device-side standard
3744 // library, none of the predefined library functions except printf and malloc
3745 // should be treated as a builtin i.e. 0 should be returned for them.
3746 if (Context.getTargetInfo().getTriple().isAMDGCN() &&
3747 Context.getLangOpts().OpenMPIsTargetDevice &&
3748 Context.BuiltinInfo.isPredefinedLibFunction(ID: BuiltinID) &&
3749 !(BuiltinID == Builtin::BIprintf || BuiltinID == Builtin::BImalloc))
3750 return 0;
3751
3752 return BuiltinID;
3753}
3754
3755/// getNumParams - Return the number of parameters this function must have
3756/// based on its FunctionType. This is the length of the ParamInfo array
3757/// after it has been created.
3758unsigned FunctionDecl::getNumParams() const {
3759 const auto *FPT = getType()->getAs<FunctionProtoType>();
3760 return FPT ? FPT->getNumParams() : 0;
3761}
3762
3763void FunctionDecl::setParams(ASTContext &C,
3764 ArrayRef<ParmVarDecl *> NewParamInfo) {
3765 assert(!ParamInfo && "Already has param info!");
3766 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
3767
3768 // Zero params -> null pointer.
3769 if (!NewParamInfo.empty()) {
3770 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
3771 llvm::copy(Range&: NewParamInfo, Out: ParamInfo);
3772 }
3773}
3774
3775/// getMinRequiredArguments - Returns the minimum number of arguments
3776/// needed to call this function. This may be fewer than the number of
3777/// function parameters, if some of the parameters have default
3778/// arguments (in C++) or are parameter packs (C++11).
3779unsigned FunctionDecl::getMinRequiredArguments() const {
3780 if (!getASTContext().getLangOpts().CPlusPlus)
3781 return getNumParams();
3782
3783 // Note that it is possible for a parameter with no default argument to
3784 // follow a parameter with a default argument.
3785 unsigned NumRequiredArgs = 0;
3786 unsigned MinParamsSoFar = 0;
3787 for (auto *Param : parameters()) {
3788 if (!Param->isParameterPack()) {
3789 ++MinParamsSoFar;
3790 if (!Param->hasDefaultArg())
3791 NumRequiredArgs = MinParamsSoFar;
3792 }
3793 }
3794 return NumRequiredArgs;
3795}
3796
3797bool FunctionDecl::hasCXXExplicitFunctionObjectParameter() const {
3798 return getNumParams() != 0 && getParamDecl(i: 0)->isExplicitObjectParameter();
3799}
3800
3801unsigned FunctionDecl::getNumNonObjectParams() const {
3802 return getNumParams() -
3803 static_cast<unsigned>(hasCXXExplicitFunctionObjectParameter());
3804}
3805
3806unsigned FunctionDecl::getMinRequiredExplicitArguments() const {
3807 return getMinRequiredArguments() -
3808 static_cast<unsigned>(hasCXXExplicitFunctionObjectParameter());
3809}
3810
3811bool FunctionDecl::hasOneParamOrDefaultArgs() const {
3812 return getNumParams() == 1 ||
3813 (getNumParams() > 1 &&
3814 llvm::all_of(Range: llvm::drop_begin(RangeOrContainer: parameters()),
3815 P: [](ParmVarDecl *P) { return P->hasDefaultArg(); }));
3816}
3817
3818/// The combination of the extern and inline keywords under MSVC forces
3819/// the function to be required.
3820///
3821/// Note: This function assumes that we will only get called when isInlined()
3822/// would return true for this FunctionDecl.
3823bool FunctionDecl::isMSExternInline() const {
3824 assert(isInlined() && "expected to get called on an inlined function!");
3825
3826 const ASTContext &Context = getASTContext();
3827 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
3828 !hasAttr<DLLExportAttr>())
3829 return false;
3830
3831 for (const FunctionDecl *FD = getMostRecentDecl(); FD;
3832 FD = FD->getPreviousDecl())
3833 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3834 return true;
3835
3836 return false;
3837}
3838
3839static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
3840 if (Redecl->getStorageClass() != SC_Extern)
3841 return false;
3842
3843 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
3844 FD = FD->getPreviousDecl())
3845 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
3846 return false;
3847
3848 return true;
3849}
3850
3851static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
3852 // Only consider file-scope declarations in this test.
3853 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
3854 return false;
3855
3856 // Only consider explicit declarations; the presence of a builtin for a
3857 // libcall shouldn't affect whether a definition is externally visible.
3858 if (Redecl->isImplicit())
3859 return false;
3860
3861 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
3862 return true; // Not an inline definition
3863
3864 return false;
3865}
3866
3867/// For a function declaration in C or C++, determine whether this
3868/// declaration causes the definition to be externally visible.
3869///
3870/// For instance, this determines if adding the current declaration to the set
3871/// of redeclarations of the given functions causes
3872/// isInlineDefinitionExternallyVisible to change from false to true.
3873bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
3874 assert(!doesThisDeclarationHaveABody() &&
3875 "Must have a declaration without a body.");
3876
3877 const ASTContext &Context = getASTContext();
3878
3879 if (Context.getLangOpts().MSVCCompat) {
3880 const FunctionDecl *Definition;
3881 if (hasBody(Definition) && Definition->isInlined() &&
3882 redeclForcesDefMSVC(Redecl: this))
3883 return true;
3884 }
3885
3886 if (Context.getLangOpts().CPlusPlus)
3887 return false;
3888
3889 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
3890 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
3891 // an externally visible definition.
3892 //
3893 // FIXME: What happens if gnu_inline gets added on after the first
3894 // declaration?
3895 if (!isInlineSpecified() || getStorageClass() == SC_Extern)
3896 return false;
3897
3898 const FunctionDecl *Prev = this;
3899 bool FoundBody = false;
3900 while ((Prev = Prev->getPreviousDecl())) {
3901 FoundBody |= Prev->doesThisDeclarationHaveABody();
3902
3903 if (Prev->doesThisDeclarationHaveABody()) {
3904 // If it's not the case that both 'inline' and 'extern' are
3905 // specified on the definition, then it is always externally visible.
3906 if (!Prev->isInlineSpecified() ||
3907 Prev->getStorageClass() != SC_Extern)
3908 return false;
3909 } else if (Prev->isInlineSpecified() &&
3910 Prev->getStorageClass() != SC_Extern) {
3911 return false;
3912 }
3913 }
3914 return FoundBody;
3915 }
3916
3917 // C99 6.7.4p6:
3918 // [...] If all of the file scope declarations for a function in a
3919 // translation unit include the inline function specifier without extern,
3920 // then the definition in that translation unit is an inline definition.
3921 if (isInlineSpecified() && getStorageClass() != SC_Extern)
3922 return false;
3923 const FunctionDecl *Prev = this;
3924 bool FoundBody = false;
3925 while ((Prev = Prev->getPreviousDecl())) {
3926 FoundBody |= Prev->doesThisDeclarationHaveABody();
3927 if (RedeclForcesDefC99(Redecl: Prev))
3928 return false;
3929 }
3930 return FoundBody;
3931}
3932
3933FunctionTypeLoc FunctionDecl::getFunctionTypeLoc() const {
3934 const TypeSourceInfo *TSI = getTypeSourceInfo();
3935
3936 if (!TSI)
3937 return FunctionTypeLoc();
3938
3939 TypeLoc TL = TSI->getTypeLoc();
3940 FunctionTypeLoc FTL;
3941
3942 while (!(FTL = TL.getAs<FunctionTypeLoc>())) {
3943 if (const auto PTL = TL.getAs<ParenTypeLoc>())
3944 TL = PTL.getInnerLoc();
3945 else if (const auto ATL = TL.getAs<AttributedTypeLoc>())
3946 TL = ATL.getEquivalentTypeLoc();
3947 else if (const auto MQTL = TL.getAs<MacroQualifiedTypeLoc>())
3948 TL = MQTL.getInnerLoc();
3949 else
3950 break;
3951 }
3952
3953 return FTL;
3954}
3955
3956SourceRange FunctionDecl::getReturnTypeSourceRange() const {
3957 FunctionTypeLoc FTL = getFunctionTypeLoc();
3958 if (!FTL)
3959 return SourceRange();
3960
3961 // Skip self-referential return types.
3962 const SourceManager &SM = getASTContext().getSourceManager();
3963 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
3964 SourceLocation Boundary = getNameInfo().getBeginLoc();
3965 if (RTRange.isInvalid() || Boundary.isInvalid() ||
3966 !SM.isBeforeInTranslationUnit(LHS: RTRange.getEnd(), RHS: Boundary))
3967 return SourceRange();
3968
3969 return RTRange;
3970}
3971
3972SourceRange FunctionDecl::getParametersSourceRange() const {
3973 unsigned NP = getNumParams();
3974 SourceLocation EllipsisLoc = getEllipsisLoc();
3975
3976 if (NP == 0 && EllipsisLoc.isInvalid())
3977 return SourceRange();
3978
3979 SourceLocation Begin =
3980 NP > 0 ? ParamInfo[0]->getSourceRange().getBegin() : EllipsisLoc;
3981 SourceLocation End = EllipsisLoc.isValid()
3982 ? EllipsisLoc
3983 : ParamInfo[NP - 1]->getSourceRange().getEnd();
3984
3985 return SourceRange(Begin, End);
3986}
3987
3988SourceRange FunctionDecl::getExceptionSpecSourceRange() const {
3989 FunctionTypeLoc FTL = getFunctionTypeLoc();
3990 return FTL ? FTL.getExceptionSpecRange() : SourceRange();
3991}
3992
3993/// For an inline function definition in C, or for a gnu_inline function
3994/// in C++, determine whether the definition will be externally visible.
3995///
3996/// Inline function definitions are always available for inlining optimizations.
3997/// However, depending on the language dialect, declaration specifiers, and
3998/// attributes, the definition of an inline function may or may not be
3999/// "externally" visible to other translation units in the program.
4000///
4001/// In C99, inline definitions are not externally visible by default. However,
4002/// if even one of the global-scope declarations is marked "extern inline", the
4003/// inline definition becomes externally visible (C99 6.7.4p6).
4004///
4005/// In GNU89 mode, or if the gnu_inline attribute is attached to the function
4006/// definition, we use the GNU semantics for inline, which are nearly the
4007/// opposite of C99 semantics. In particular, "inline" by itself will create
4008/// an externally visible symbol, but "extern inline" will not create an
4009/// externally visible symbol.
4010bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
4011 assert((doesThisDeclarationHaveABody() || willHaveBody() ||
4012 hasAttr<AliasAttr>()) &&
4013 "Must be a function definition");
4014 assert(isInlined() && "Function must be inline");
4015 ASTContext &Context = getASTContext();
4016
4017 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
4018 // Note: If you change the logic here, please change
4019 // doesDeclarationForceExternallyVisibleDefinition as well.
4020 //
4021 // If it's not the case that both 'inline' and 'extern' are
4022 // specified on the definition, then this inline definition is
4023 // externally visible.
4024 if (Context.getLangOpts().CPlusPlus)
4025 return false;
4026 if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
4027 return true;
4028
4029 // If any declaration is 'inline' but not 'extern', then this definition
4030 // is externally visible.
4031 for (auto *Redecl : redecls()) {
4032 if (Redecl->isInlineSpecified() &&
4033 Redecl->getStorageClass() != SC_Extern)
4034 return true;
4035 }
4036
4037 return false;
4038 }
4039
4040 // The rest of this function is C-only.
4041 assert(!Context.getLangOpts().CPlusPlus &&
4042 "should not use C inline rules in C++");
4043
4044 // C99 6.7.4p6:
4045 // [...] If all of the file scope declarations for a function in a
4046 // translation unit include the inline function specifier without extern,
4047 // then the definition in that translation unit is an inline definition.
4048 for (auto *Redecl : redecls()) {
4049 if (RedeclForcesDefC99(Redecl))
4050 return true;
4051 }
4052
4053 // C99 6.7.4p6:
4054 // An inline definition does not provide an external definition for the
4055 // function, and does not forbid an external definition in another
4056 // translation unit.
4057 return false;
4058}
4059
4060/// getOverloadedOperator - Which C++ overloaded operator this
4061/// function represents, if any.
4062OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
4063 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
4064 return getDeclName().getCXXOverloadedOperator();
4065 return OO_None;
4066}
4067
4068/// getLiteralIdentifier - The literal suffix identifier this function
4069/// represents, if any.
4070const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
4071 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
4072 return getDeclName().getCXXLiteralIdentifier();
4073 return nullptr;
4074}
4075
4076FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
4077 if (TemplateOrSpecialization.isNull())
4078 return TK_NonTemplate;
4079 if (const auto *ND = dyn_cast<NamedDecl *>(Val: TemplateOrSpecialization)) {
4080 if (isa<FunctionDecl>(Val: ND))
4081 return TK_DependentNonTemplate;
4082 assert(isa<FunctionTemplateDecl>(ND) &&
4083 "No other valid types in NamedDecl");
4084 return TK_FunctionTemplate;
4085 }
4086 if (isa<MemberSpecializationInfo *>(Val: TemplateOrSpecialization))
4087 return TK_MemberSpecialization;
4088 if (isa<FunctionTemplateSpecializationInfo *>(Val: TemplateOrSpecialization))
4089 return TK_FunctionTemplateSpecialization;
4090 if (isa<DependentFunctionTemplateSpecializationInfo *>(
4091 Val: TemplateOrSpecialization))
4092 return TK_DependentFunctionTemplateSpecialization;
4093
4094 llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
4095}
4096
4097FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
4098 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
4099 return cast<FunctionDecl>(Val: Info->getInstantiatedFrom());
4100
4101 return nullptr;
4102}
4103
4104MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
4105 if (auto *MSI = dyn_cast_if_present<MemberSpecializationInfo *>(
4106 Val: TemplateOrSpecialization))
4107 return MSI;
4108 if (auto *FTSI = dyn_cast_if_present<FunctionTemplateSpecializationInfo *>(
4109 Val: TemplateOrSpecialization))
4110 return FTSI->getMemberSpecializationInfo();
4111 return nullptr;
4112}
4113
4114void
4115FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
4116 FunctionDecl *FD,
4117 TemplateSpecializationKind TSK) {
4118 assert(TemplateOrSpecialization.isNull() &&
4119 "Member function is already a specialization");
4120 MemberSpecializationInfo *Info
4121 = new (C) MemberSpecializationInfo(FD, TSK);
4122 TemplateOrSpecialization = Info;
4123}
4124
4125FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
4126 return dyn_cast_if_present<FunctionTemplateDecl>(
4127 Val: dyn_cast_if_present<NamedDecl *>(Val: TemplateOrSpecialization));
4128}
4129
4130void FunctionDecl::setDescribedFunctionTemplate(
4131 FunctionTemplateDecl *Template) {
4132 assert(TemplateOrSpecialization.isNull() &&
4133 "Member function is already a specialization");
4134 TemplateOrSpecialization = Template;
4135}
4136
4137bool FunctionDecl::isFunctionTemplateSpecialization() const {
4138 return isa<FunctionTemplateSpecializationInfo *>(Val: TemplateOrSpecialization) ||
4139 isa<DependentFunctionTemplateSpecializationInfo *>(
4140 Val: TemplateOrSpecialization);
4141}
4142
4143void FunctionDecl::setInstantiatedFromDecl(FunctionDecl *FD) {
4144 assert(TemplateOrSpecialization.isNull() &&
4145 "Function is already a specialization");
4146 TemplateOrSpecialization = FD;
4147}
4148
4149FunctionDecl *FunctionDecl::getInstantiatedFromDecl() const {
4150 return dyn_cast_if_present<FunctionDecl>(
4151 Val: TemplateOrSpecialization.dyn_cast<NamedDecl *>());
4152}
4153
4154bool FunctionDecl::isImplicitlyInstantiable() const {
4155 // If the function is invalid, it can't be implicitly instantiated.
4156 if (isInvalidDecl())
4157 return false;
4158
4159 switch (getTemplateSpecializationKindForInstantiation()) {
4160 case TSK_Undeclared:
4161 case TSK_ExplicitInstantiationDefinition:
4162 case TSK_ExplicitSpecialization:
4163 return false;
4164
4165 case TSK_ImplicitInstantiation:
4166 return true;
4167
4168 case TSK_ExplicitInstantiationDeclaration:
4169 // Handled below.
4170 break;
4171 }
4172
4173 // Find the actual template from which we will instantiate.
4174 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
4175 bool HasPattern = false;
4176 if (PatternDecl)
4177 HasPattern = PatternDecl->hasBody(Definition&: PatternDecl);
4178
4179 // C++0x [temp.explicit]p9:
4180 // Except for inline functions, other explicit instantiation declarations
4181 // have the effect of suppressing the implicit instantiation of the entity
4182 // to which they refer.
4183 if (!HasPattern || !PatternDecl)
4184 return true;
4185
4186 return PatternDecl->isInlined();
4187}
4188
4189bool FunctionDecl::isTemplateInstantiation() const {
4190 // FIXME: Remove this, it's not clear what it means. (Which template
4191 // specialization kind?)
4192 return clang::isTemplateInstantiation(Kind: getTemplateSpecializationKind());
4193}
4194
4195FunctionDecl *
4196FunctionDecl::getTemplateInstantiationPattern(bool ForDefinition) const {
4197 // If this is a generic lambda call operator specialization, its
4198 // instantiation pattern is always its primary template's pattern
4199 // even if its primary template was instantiated from another
4200 // member template (which happens with nested generic lambdas).
4201 // Since a lambda's call operator's body is transformed eagerly,
4202 // we don't have to go hunting for a prototype definition template
4203 // (i.e. instantiated-from-member-template) to use as an instantiation
4204 // pattern.
4205
4206 if (isGenericLambdaCallOperatorSpecialization(
4207 MD: dyn_cast<CXXMethodDecl>(Val: this))) {
4208 assert(getPrimaryTemplate() && "not a generic lambda call operator?");
4209 return getDefinitionOrSelf(D: getPrimaryTemplate()->getTemplatedDecl());
4210 }
4211
4212 // Check for a declaration of this function that was instantiated from a
4213 // friend definition.
4214 const FunctionDecl *FD = nullptr;
4215 if (!isDefined(Definition&: FD, /*CheckForPendingFriendDefinition=*/true))
4216 FD = this;
4217
4218 if (MemberSpecializationInfo *Info = FD->getMemberSpecializationInfo()) {
4219 if (ForDefinition &&
4220 !clang::isTemplateInstantiation(Kind: Info->getTemplateSpecializationKind()))
4221 return nullptr;
4222 return getDefinitionOrSelf(D: cast<FunctionDecl>(Val: Info->getInstantiatedFrom()));
4223 }
4224
4225 if (ForDefinition &&
4226 !clang::isTemplateInstantiation(Kind: getTemplateSpecializationKind()))
4227 return nullptr;
4228
4229 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
4230 // If we hit a point where the user provided a specialization of this
4231 // template, we're done looking.
4232 while (!ForDefinition || !Primary->isMemberSpecialization()) {
4233 auto *NewPrimary = Primary->getInstantiatedFromMemberTemplate();
4234 if (!NewPrimary)
4235 break;
4236 Primary = NewPrimary;
4237 }
4238
4239 return getDefinitionOrSelf(D: Primary->getTemplatedDecl());
4240 }
4241
4242 return nullptr;
4243}
4244
4245FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
4246 if (FunctionTemplateSpecializationInfo *Info =
4247 dyn_cast_if_present<FunctionTemplateSpecializationInfo *>(
4248 Val: TemplateOrSpecialization)) {
4249 return Info->getTemplate();
4250 }
4251 return nullptr;
4252}
4253
4254FunctionTemplateSpecializationInfo *
4255FunctionDecl::getTemplateSpecializationInfo() const {
4256 return dyn_cast_if_present<FunctionTemplateSpecializationInfo *>(
4257 Val: TemplateOrSpecialization);
4258}
4259
4260const TemplateArgumentList *
4261FunctionDecl::getTemplateSpecializationArgs() const {
4262 if (FunctionTemplateSpecializationInfo *Info =
4263 dyn_cast_if_present<FunctionTemplateSpecializationInfo *>(
4264 Val: TemplateOrSpecialization)) {
4265 return Info->TemplateArguments;
4266 }
4267 return nullptr;
4268}
4269
4270const ASTTemplateArgumentListInfo *
4271FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
4272 if (FunctionTemplateSpecializationInfo *Info =
4273 dyn_cast_if_present<FunctionTemplateSpecializationInfo *>(
4274 Val: TemplateOrSpecialization)) {
4275 return Info->TemplateArgumentsAsWritten;
4276 }
4277 if (DependentFunctionTemplateSpecializationInfo *Info =
4278 dyn_cast_if_present<DependentFunctionTemplateSpecializationInfo *>(
4279 Val: TemplateOrSpecialization)) {
4280 return Info->TemplateArgumentsAsWritten;
4281 }
4282 return nullptr;
4283}
4284
4285void FunctionDecl::setFunctionTemplateSpecialization(
4286 ASTContext &C, FunctionTemplateDecl *Template,
4287 TemplateArgumentList *TemplateArgs, void *InsertPos,
4288 TemplateSpecializationKind TSK,
4289 const TemplateArgumentListInfo *TemplateArgsAsWritten,
4290 SourceLocation PointOfInstantiation) {
4291 assert((TemplateOrSpecialization.isNull() ||
4292 isa<MemberSpecializationInfo *>(TemplateOrSpecialization)) &&
4293 "Member function is already a specialization");
4294 assert(TSK != TSK_Undeclared &&
4295 "Must specify the type of function template specialization");
4296 assert((TemplateOrSpecialization.isNull() ||
4297 getFriendObjectKind() != FOK_None ||
4298 TSK == TSK_ExplicitSpecialization) &&
4299 "Member specialization must be an explicit specialization");
4300 FunctionTemplateSpecializationInfo *Info =
4301 FunctionTemplateSpecializationInfo::Create(
4302 C, FD: this, Template, TSK, TemplateArgs, TemplateArgsAsWritten,
4303 POI: PointOfInstantiation,
4304 MSInfo: dyn_cast_if_present<MemberSpecializationInfo *>(
4305 Val&: TemplateOrSpecialization));
4306 TemplateOrSpecialization = Info;
4307 Template->addSpecialization(Info, InsertPos);
4308}
4309
4310void FunctionDecl::setDependentTemplateSpecialization(
4311 ASTContext &Context, const UnresolvedSetImpl &Templates,
4312 const TemplateArgumentListInfo *TemplateArgs) {
4313 assert(TemplateOrSpecialization.isNull());
4314 DependentFunctionTemplateSpecializationInfo *Info =
4315 DependentFunctionTemplateSpecializationInfo::Create(Context, Candidates: Templates,
4316 TemplateArgs);
4317 TemplateOrSpecialization = Info;
4318}
4319
4320DependentFunctionTemplateSpecializationInfo *
4321FunctionDecl::getDependentSpecializationInfo() const {
4322 return dyn_cast_if_present<DependentFunctionTemplateSpecializationInfo *>(
4323 Val: TemplateOrSpecialization);
4324}
4325
4326DependentFunctionTemplateSpecializationInfo *
4327DependentFunctionTemplateSpecializationInfo::Create(
4328 ASTContext &Context, const UnresolvedSetImpl &Candidates,
4329 const TemplateArgumentListInfo *TArgs) {
4330 const auto *TArgsWritten =
4331 TArgs ? ASTTemplateArgumentListInfo::Create(C: Context, List: *TArgs) : nullptr;
4332 return new (Context.Allocate(
4333 Size: totalSizeToAlloc<FunctionTemplateDecl *>(Counts: Candidates.size())))
4334 DependentFunctionTemplateSpecializationInfo(Candidates, TArgsWritten);
4335}
4336
4337DependentFunctionTemplateSpecializationInfo::
4338 DependentFunctionTemplateSpecializationInfo(
4339 const UnresolvedSetImpl &Candidates,
4340 const ASTTemplateArgumentListInfo *TemplateArgsWritten)
4341 : NumCandidates(Candidates.size()),
4342 TemplateArgumentsAsWritten(TemplateArgsWritten) {
4343 std::transform(first: Candidates.begin(), last: Candidates.end(), result: getTrailingObjects(),
4344 unary_op: [](NamedDecl *ND) {
4345 return cast<FunctionTemplateDecl>(Val: ND->getUnderlyingDecl());
4346 });
4347}
4348
4349TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
4350 // For a function template specialization, query the specialization
4351 // information object.
4352 if (FunctionTemplateSpecializationInfo *FTSInfo =
4353 dyn_cast_if_present<FunctionTemplateSpecializationInfo *>(
4354 Val: TemplateOrSpecialization))
4355 return FTSInfo->getTemplateSpecializationKind();
4356
4357 if (MemberSpecializationInfo *MSInfo =
4358 dyn_cast_if_present<MemberSpecializationInfo *>(
4359 Val: TemplateOrSpecialization))
4360 return MSInfo->getTemplateSpecializationKind();
4361
4362 // A dependent function template specialization is an explicit specialization,
4363 // except when it's a friend declaration.
4364 if (isa<DependentFunctionTemplateSpecializationInfo *>(
4365 Val: TemplateOrSpecialization) &&
4366 getFriendObjectKind() == FOK_None)
4367 return TSK_ExplicitSpecialization;
4368
4369 return TSK_Undeclared;
4370}
4371
4372TemplateSpecializationKind
4373FunctionDecl::getTemplateSpecializationKindForInstantiation() const {
4374 // This is the same as getTemplateSpecializationKind(), except that for a
4375 // function that is both a function template specialization and a member
4376 // specialization, we prefer the member specialization information. Eg:
4377 //
4378 // template<typename T> struct A {
4379 // template<typename U> void f() {}
4380 // template<> void f<int>() {}
4381 // };
4382 //
4383 // Within the templated CXXRecordDecl, A<T>::f<int> is a dependent function
4384 // template specialization; both getTemplateSpecializationKind() and
4385 // getTemplateSpecializationKindForInstantiation() will return
4386 // TSK_ExplicitSpecialization.
4387 //
4388 // For A<int>::f<int>():
4389 // * getTemplateSpecializationKind() will return TSK_ExplicitSpecialization
4390 // * getTemplateSpecializationKindForInstantiation() will return
4391 // TSK_ImplicitInstantiation
4392 //
4393 // This reflects the facts that A<int>::f<int> is an explicit specialization
4394 // of A<int>::f, and that A<int>::f<int> should be implicitly instantiated
4395 // from A::f<int> if a definition is needed.
4396 if (FunctionTemplateSpecializationInfo *FTSInfo =
4397 dyn_cast_if_present<FunctionTemplateSpecializationInfo *>(
4398 Val: TemplateOrSpecialization)) {
4399 if (auto *MSInfo = FTSInfo->getMemberSpecializationInfo())
4400 return MSInfo->getTemplateSpecializationKind();
4401 return FTSInfo->getTemplateSpecializationKind();
4402 }
4403
4404 if (MemberSpecializationInfo *MSInfo =
4405 dyn_cast_if_present<MemberSpecializationInfo *>(
4406 Val: TemplateOrSpecialization))
4407 return MSInfo->getTemplateSpecializationKind();
4408
4409 if (isa<DependentFunctionTemplateSpecializationInfo *>(
4410 Val: TemplateOrSpecialization) &&
4411 getFriendObjectKind() == FOK_None)
4412 return TSK_ExplicitSpecialization;
4413
4414 return TSK_Undeclared;
4415}
4416
4417void
4418FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
4419 SourceLocation PointOfInstantiation) {
4420 if (FunctionTemplateSpecializationInfo *FTSInfo =
4421 dyn_cast<FunctionTemplateSpecializationInfo *>(
4422 Val&: TemplateOrSpecialization)) {
4423 FTSInfo->setTemplateSpecializationKind(TSK);
4424 if (TSK != TSK_ExplicitSpecialization &&
4425 PointOfInstantiation.isValid() &&
4426 FTSInfo->getPointOfInstantiation().isInvalid()) {
4427 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
4428 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4429 L->InstantiationRequested(D: this);
4430 }
4431 } else if (MemberSpecializationInfo *MSInfo =
4432 dyn_cast<MemberSpecializationInfo *>(
4433 Val&: TemplateOrSpecialization)) {
4434 MSInfo->setTemplateSpecializationKind(TSK);
4435 if (TSK != TSK_ExplicitSpecialization &&
4436 PointOfInstantiation.isValid() &&
4437 MSInfo->getPointOfInstantiation().isInvalid()) {
4438 MSInfo->setPointOfInstantiation(PointOfInstantiation);
4439 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
4440 L->InstantiationRequested(D: this);
4441 }
4442 } else
4443 llvm_unreachable("Function cannot have a template specialization kind");
4444}
4445
4446SourceLocation FunctionDecl::getPointOfInstantiation() const {
4447 if (FunctionTemplateSpecializationInfo *FTSInfo
4448 = TemplateOrSpecialization.dyn_cast<
4449 FunctionTemplateSpecializationInfo*>())
4450 return FTSInfo->getPointOfInstantiation();
4451 if (MemberSpecializationInfo *MSInfo =
4452 TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>())
4453 return MSInfo->getPointOfInstantiation();
4454
4455 return SourceLocation();
4456}
4457
4458bool FunctionDecl::isOutOfLine() const {
4459 if (Decl::isOutOfLine())
4460 return true;
4461
4462 // If this function was instantiated from a member function of a
4463 // class template, check whether that member function was defined out-of-line.
4464 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
4465 const FunctionDecl *Definition;
4466 if (FD->hasBody(Definition))
4467 return Definition->isOutOfLine();
4468 }
4469
4470 // If this function was instantiated from a function template,
4471 // check whether that function template was defined out-of-line.
4472 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
4473 const FunctionDecl *Definition;
4474 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
4475 return Definition->isOutOfLine();
4476 }
4477
4478 return false;
4479}
4480
4481SourceRange FunctionDecl::getSourceRange() const {
4482 return SourceRange(getOuterLocStart(), EndRangeLoc);
4483}
4484
4485unsigned FunctionDecl::getMemoryFunctionKind() const {
4486 IdentifierInfo *FnInfo = getIdentifier();
4487
4488 if (!FnInfo)
4489 return 0;
4490
4491 // Builtin handling.
4492 switch (getBuiltinID()) {
4493 case Builtin::BI__builtin_memset:
4494 case Builtin::BI__builtin___memset_chk:
4495 case Builtin::BImemset:
4496 return Builtin::BImemset;
4497
4498 case Builtin::BI__builtin_memcpy:
4499 case Builtin::BI__builtin___memcpy_chk:
4500 case Builtin::BImemcpy:
4501 return Builtin::BImemcpy;
4502
4503 case Builtin::BI__builtin_mempcpy:
4504 case Builtin::BI__builtin___mempcpy_chk:
4505 case Builtin::BImempcpy:
4506 return Builtin::BImempcpy;
4507
4508 case Builtin::BI__builtin_trivially_relocate:
4509 case Builtin::BI__builtin_memmove:
4510 case Builtin::BI__builtin___memmove_chk:
4511 case Builtin::BImemmove:
4512 return Builtin::BImemmove;
4513
4514 case Builtin::BIstrlcpy:
4515 case Builtin::BI__builtin___strlcpy_chk:
4516 return Builtin::BIstrlcpy;
4517
4518 case Builtin::BIstrlcat:
4519 case Builtin::BI__builtin___strlcat_chk:
4520 return Builtin::BIstrlcat;
4521
4522 case Builtin::BI__builtin_memcmp:
4523 case Builtin::BImemcmp:
4524 return Builtin::BImemcmp;
4525
4526 case Builtin::BI__builtin_bcmp:
4527 case Builtin::BIbcmp:
4528 return Builtin::BIbcmp;
4529
4530 case Builtin::BI__builtin_strncpy:
4531 case Builtin::BI__builtin___strncpy_chk:
4532 case Builtin::BIstrncpy:
4533 return Builtin::BIstrncpy;
4534
4535 case Builtin::BI__builtin_strncmp:
4536 case Builtin::BIstrncmp:
4537 return Builtin::BIstrncmp;
4538
4539 case Builtin::BI__builtin_strncasecmp:
4540 case Builtin::BIstrncasecmp:
4541 return Builtin::BIstrncasecmp;
4542
4543 case Builtin::BI__builtin_strncat:
4544 case Builtin::BI__builtin___strncat_chk:
4545 case Builtin::BIstrncat:
4546 return Builtin::BIstrncat;
4547
4548 case Builtin::BI__builtin_strndup:
4549 case Builtin::BIstrndup:
4550 return Builtin::BIstrndup;
4551
4552 case Builtin::BI__builtin_strlen:
4553 case Builtin::BIstrlen:
4554 return Builtin::BIstrlen;
4555
4556 case Builtin::BI__builtin_bzero:
4557 case Builtin::BIbzero:
4558 return Builtin::BIbzero;
4559
4560 case Builtin::BI__builtin_bcopy:
4561 case Builtin::BIbcopy:
4562 return Builtin::BIbcopy;
4563
4564 case Builtin::BIfree:
4565 return Builtin::BIfree;
4566
4567 default:
4568 if (isExternC()) {
4569 if (FnInfo->isStr(Str: "memset"))
4570 return Builtin::BImemset;
4571 if (FnInfo->isStr(Str: "memcpy"))
4572 return Builtin::BImemcpy;
4573 if (FnInfo->isStr(Str: "mempcpy"))
4574 return Builtin::BImempcpy;
4575 if (FnInfo->isStr(Str: "memmove"))
4576 return Builtin::BImemmove;
4577 if (FnInfo->isStr(Str: "memcmp"))
4578 return Builtin::BImemcmp;
4579 if (FnInfo->isStr(Str: "bcmp"))
4580 return Builtin::BIbcmp;
4581 if (FnInfo->isStr(Str: "strncpy"))
4582 return Builtin::BIstrncpy;
4583 if (FnInfo->isStr(Str: "strncmp"))
4584 return Builtin::BIstrncmp;
4585 if (FnInfo->isStr(Str: "strncasecmp"))
4586 return Builtin::BIstrncasecmp;
4587 if (FnInfo->isStr(Str: "strncat"))
4588 return Builtin::BIstrncat;
4589 if (FnInfo->isStr(Str: "strndup"))
4590 return Builtin::BIstrndup;
4591 if (FnInfo->isStr(Str: "strlen"))
4592 return Builtin::BIstrlen;
4593 if (FnInfo->isStr(Str: "bzero"))
4594 return Builtin::BIbzero;
4595 if (FnInfo->isStr(Str: "bcopy"))
4596 return Builtin::BIbcopy;
4597 } else if (isInStdNamespace()) {
4598 if (FnInfo->isStr(Str: "free"))
4599 return Builtin::BIfree;
4600 }
4601 break;
4602 }
4603 return 0;
4604}
4605
4606unsigned FunctionDecl::getODRHash() const {
4607 assert(hasODRHash());
4608 return ODRHash;
4609}
4610
4611unsigned FunctionDecl::getODRHash() {
4612 if (hasODRHash())
4613 return ODRHash;
4614
4615 if (auto *FT = getInstantiatedFromMemberFunction()) {
4616 setHasODRHash(true);
4617 ODRHash = FT->getODRHash();
4618 return ODRHash;
4619 }
4620
4621 class ODRHash Hash;
4622 Hash.AddFunctionDecl(Function: this);
4623 setHasODRHash(true);
4624 ODRHash = Hash.CalculateHash();
4625 return ODRHash;
4626}
4627
4628//===----------------------------------------------------------------------===//
4629// FieldDecl Implementation
4630//===----------------------------------------------------------------------===//
4631
4632FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
4633 SourceLocation StartLoc, SourceLocation IdLoc,
4634 const IdentifierInfo *Id, QualType T,
4635 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
4636 InClassInitStyle InitStyle) {
4637 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
4638 BW, Mutable, InitStyle);
4639}
4640
4641FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
4642 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
4643 SourceLocation(), nullptr, QualType(), nullptr,
4644 nullptr, false, ICIS_NoInit);
4645}
4646
4647bool FieldDecl::isAnonymousStructOrUnion() const {
4648 if (!isImplicit() || getDeclName())
4649 return false;
4650
4651 if (const auto *Record = getType()->getAs<RecordType>())
4652 return Record->getDecl()->isAnonymousStructOrUnion();
4653
4654 return false;
4655}
4656
4657Expr *FieldDecl::getInClassInitializer() const {
4658 if (!hasInClassInitializer())
4659 return nullptr;
4660
4661 LazyDeclStmtPtr InitPtr = BitField ? InitAndBitWidth->Init : Init;
4662 return cast_if_present<Expr>(
4663 Val: InitPtr.isOffset() ? InitPtr.get(Source: getASTContext().getExternalSource())
4664 : InitPtr.get(Source: nullptr));
4665}
4666
4667void FieldDecl::setInClassInitializer(Expr *NewInit) {
4668 setLazyInClassInitializer(LazyDeclStmtPtr(NewInit));
4669}
4670
4671void FieldDecl::setLazyInClassInitializer(LazyDeclStmtPtr NewInit) {
4672 assert(hasInClassInitializer() && !getInClassInitializer());
4673 if (BitField)
4674 InitAndBitWidth->Init = NewInit;
4675 else
4676 Init = NewInit;
4677}
4678
4679unsigned FieldDecl::getBitWidthValue() const {
4680 assert(isBitField() && "not a bitfield");
4681 assert(isa<ConstantExpr>(getBitWidth()));
4682 assert(cast<ConstantExpr>(getBitWidth())->hasAPValueResult());
4683 assert(cast<ConstantExpr>(getBitWidth())->getAPValueResult().isInt());
4684 return cast<ConstantExpr>(Val: getBitWidth())
4685 ->getAPValueResult()
4686 .getInt()
4687 .getZExtValue();
4688}
4689
4690bool FieldDecl::isZeroLengthBitField() const {
4691 return isUnnamedBitField() && !getBitWidth()->isValueDependent() &&
4692 getBitWidthValue() == 0;
4693}
4694
4695bool FieldDecl::isZeroSize(const ASTContext &Ctx) const {
4696 if (isZeroLengthBitField())
4697 return true;
4698
4699 // C++2a [intro.object]p7:
4700 // An object has nonzero size if it
4701 // -- is not a potentially-overlapping subobject, or
4702 if (!hasAttr<NoUniqueAddressAttr>())
4703 return false;
4704
4705 // -- is not of class type, or
4706 const auto *RT = getType()->getAs<RecordType>();
4707 if (!RT)
4708 return false;
4709 const RecordDecl *RD = RT->getDecl()->getDefinition();
4710 if (!RD) {
4711 assert(isInvalidDecl() && "valid field has incomplete type");
4712 return false;
4713 }
4714
4715 // -- [has] virtual member functions or virtual base classes, or
4716 // -- has subobjects of nonzero size or bit-fields of nonzero length
4717 const auto *CXXRD = cast<CXXRecordDecl>(Val: RD);
4718 if (!CXXRD->isEmpty())
4719 return false;
4720
4721 // Otherwise, [...] the circumstances under which the object has zero size
4722 // are implementation-defined.
4723 if (!Ctx.getTargetInfo().getCXXABI().isMicrosoft())
4724 return true;
4725
4726 // MS ABI: has nonzero size if it is a class type with class type fields,
4727 // whether or not they have nonzero size
4728 return !llvm::any_of(Range: CXXRD->fields(), P: [](const FieldDecl *Field) {
4729 return Field->getType()->getAs<RecordType>();
4730 });
4731}
4732
4733bool FieldDecl::isPotentiallyOverlapping() const {
4734 return hasAttr<NoUniqueAddressAttr>() && getType()->getAsCXXRecordDecl();
4735}
4736
4737void FieldDecl::setCachedFieldIndex() const {
4738 assert(this == getCanonicalDecl() &&
4739 "should be called on the canonical decl");
4740
4741 unsigned Index = 0;
4742 const RecordDecl *RD = getParent()->getDefinition();
4743 assert(RD && "requested index for field of struct with no definition");
4744
4745 for (auto *Field : RD->fields()) {
4746 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
4747 assert(Field->getCanonicalDecl()->CachedFieldIndex == Index + 1 &&
4748 "overflow in field numbering");
4749 ++Index;
4750 }
4751
4752 assert(CachedFieldIndex && "failed to find field in parent");
4753}
4754
4755SourceRange FieldDecl::getSourceRange() const {
4756 const Expr *FinalExpr = getInClassInitializer();
4757 if (!FinalExpr)
4758 FinalExpr = getBitWidth();
4759 if (FinalExpr)
4760 return SourceRange(getInnerLocStart(), FinalExpr->getEndLoc());
4761 return DeclaratorDecl::getSourceRange();
4762}
4763
4764void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
4765 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
4766 "capturing type in non-lambda or captured record.");
4767 assert(StorageKind == ISK_NoInit && !BitField &&
4768 "bit-field or field with default member initializer cannot capture "
4769 "VLA type");
4770 StorageKind = ISK_CapturedVLAType;
4771 CapturedVLAType = VLAType;
4772}
4773
4774void FieldDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
4775 // Print unnamed members using name of their type.
4776 if (isAnonymousStructOrUnion()) {
4777 this->getType().print(OS, Policy);
4778 return;
4779 }
4780 // Otherwise, do the normal printing.
4781 DeclaratorDecl::printName(OS, Policy);
4782}
4783
4784const FieldDecl *FieldDecl::findCountedByField() const {
4785 const auto *CAT = getType()->getAs<CountAttributedType>();
4786 if (!CAT)
4787 return nullptr;
4788
4789 const auto *CountDRE = cast<DeclRefExpr>(Val: CAT->getCountExpr());
4790 const auto *CountDecl = CountDRE->getDecl();
4791 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(Val: CountDecl))
4792 CountDecl = IFD->getAnonField();
4793
4794 return dyn_cast<FieldDecl>(Val: CountDecl);
4795}
4796
4797//===----------------------------------------------------------------------===//
4798// TagDecl Implementation
4799//===----------------------------------------------------------------------===//
4800
4801TagDecl::TagDecl(Kind DK, TagKind TK, const ASTContext &C, DeclContext *DC,
4802 SourceLocation L, IdentifierInfo *Id, TagDecl *PrevDecl,
4803 SourceLocation StartL)
4804 : TypeDecl(DK, DC, L, Id, StartL), DeclContext(DK), redeclarable_base(C),
4805 TypedefNameDeclOrQualifier((TypedefNameDecl *)nullptr) {
4806 assert((DK != Enum || TK == TagTypeKind::Enum) &&
4807 "EnumDecl not matched with TagTypeKind::Enum");
4808 setPreviousDecl(PrevDecl);
4809 setTagKind(TK);
4810 setCompleteDefinition(false);
4811 setBeingDefined(false);
4812 setEmbeddedInDeclarator(false);
4813 setFreeStanding(false);
4814 setCompleteDefinitionRequired(false);
4815 TagDeclBits.IsThisDeclarationADemotedDefinition = false;
4816}
4817
4818SourceLocation TagDecl::getOuterLocStart() const {
4819 return getTemplateOrInnerLocStart(decl: this);
4820}
4821
4822SourceRange TagDecl::getSourceRange() const {
4823 SourceLocation RBraceLoc = BraceRange.getEnd();
4824 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
4825 return SourceRange(getOuterLocStart(), E);
4826}
4827
4828TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
4829
4830void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
4831 TypedefNameDeclOrQualifier = TDD;
4832 if (const Type *T = getTypeForDecl()) {
4833 (void)T;
4834 assert(T->isLinkageValid());
4835 }
4836 assert(isLinkageValid());
4837}
4838
4839void TagDecl::startDefinition() {
4840 setBeingDefined(true);
4841
4842 if (auto *D = dyn_cast<CXXRecordDecl>(Val: this)) {
4843 struct CXXRecordDecl::DefinitionData *Data =
4844 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
4845 for (auto *I : redecls())
4846 cast<CXXRecordDecl>(Val: I)->DefinitionData = Data;
4847 }
4848}
4849
4850void TagDecl::completeDefinition() {
4851 assert((!isa<CXXRecordDecl>(this) ||
4852 cast<CXXRecordDecl>(this)->hasDefinition()) &&
4853 "definition completed but not started");
4854
4855 setCompleteDefinition(true);
4856 setBeingDefined(false);
4857
4858 if (ASTMutationListener *L = getASTMutationListener())
4859 L->CompletedTagDefinition(D: this);
4860}
4861
4862TagDecl *TagDecl::getDefinition() const {
4863 if (isCompleteDefinition())
4864 return const_cast<TagDecl *>(this);
4865
4866 // If it's possible for us to have an out-of-date definition, check now.
4867 if (mayHaveOutOfDateDef()) {
4868 if (IdentifierInfo *II = getIdentifier()) {
4869 if (II->isOutOfDate()) {
4870 updateOutOfDate(II&: *II);
4871 }
4872 }
4873 }
4874
4875 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: this))
4876 return CXXRD->getDefinition();
4877
4878 for (auto *R : redecls())
4879 if (R->isCompleteDefinition())
4880 return R;
4881
4882 return nullptr;
4883}
4884
4885void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
4886 if (QualifierLoc) {
4887 // Make sure the extended qualifier info is allocated.
4888 if (!hasExtInfo())
4889 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4890 // Set qualifier info.
4891 getExtInfo()->QualifierLoc = QualifierLoc;
4892 } else {
4893 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
4894 if (hasExtInfo()) {
4895 if (getExtInfo()->NumTemplParamLists == 0) {
4896 getASTContext().Deallocate(Ptr: getExtInfo());
4897 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
4898 }
4899 else
4900 getExtInfo()->QualifierLoc = QualifierLoc;
4901 }
4902 }
4903}
4904
4905void TagDecl::printName(raw_ostream &OS, const PrintingPolicy &Policy) const {
4906 DeclarationName Name = getDeclName();
4907 // If the name is supposed to have an identifier but does not have one, then
4908 // the tag is anonymous and we should print it differently.
4909 if (Name.isIdentifier() && !Name.getAsIdentifierInfo()) {
4910 // If the caller wanted to print a qualified name, they've already printed
4911 // the scope. And if the caller doesn't want that, the scope information
4912 // is already printed as part of the type.
4913 PrintingPolicy Copy(Policy);
4914 Copy.SuppressScope = true;
4915 getASTContext().getTagDeclType(Decl: this).print(OS, Policy: Copy);
4916 return;
4917 }
4918 // Otherwise, do the normal printing.
4919 Name.print(OS, Policy);
4920}
4921
4922void TagDecl::setTemplateParameterListsInfo(
4923 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
4924 assert(!TPLists.empty());
4925 // Make sure the extended decl info is allocated.
4926 if (!hasExtInfo())
4927 // Allocate external info struct.
4928 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
4929 // Set the template parameter lists info.
4930 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
4931}
4932
4933//===----------------------------------------------------------------------===//
4934// EnumDecl Implementation
4935//===----------------------------------------------------------------------===//
4936
4937EnumDecl::EnumDecl(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
4938 SourceLocation IdLoc, IdentifierInfo *Id, EnumDecl *PrevDecl,
4939 bool Scoped, bool ScopedUsingClassTag, bool Fixed)
4940 : TagDecl(Enum, TagTypeKind::Enum, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
4941 assert(Scoped || !ScopedUsingClassTag);
4942 IntegerType = nullptr;
4943 setNumPositiveBits(0);
4944 setNumNegativeBits(0);
4945 setScoped(Scoped);
4946 setScopedUsingClassTag(ScopedUsingClassTag);
4947 setFixed(Fixed);
4948 setHasODRHash(false);
4949 ODRHash = 0;
4950}
4951
4952void EnumDecl::anchor() {}
4953
4954EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
4955 SourceLocation StartLoc, SourceLocation IdLoc,
4956 IdentifierInfo *Id,
4957 EnumDecl *PrevDecl, bool IsScoped,
4958 bool IsScopedUsingClassTag, bool IsFixed) {
4959 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
4960 IsScoped, IsScopedUsingClassTag, IsFixed);
4961 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4962 C.getTypeDeclType(Decl: Enum, PrevDecl);
4963 return Enum;
4964}
4965
4966EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
4967 EnumDecl *Enum =
4968 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
4969 nullptr, nullptr, false, false, false);
4970 Enum->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
4971 return Enum;
4972}
4973
4974SourceRange EnumDecl::getIntegerTypeRange() const {
4975 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
4976 return TI->getTypeLoc().getSourceRange();
4977 return SourceRange();
4978}
4979
4980void EnumDecl::completeDefinition(QualType NewType,
4981 QualType NewPromotionType,
4982 unsigned NumPositiveBits,
4983 unsigned NumNegativeBits) {
4984 assert(!isCompleteDefinition() && "Cannot redefine enums!");
4985 if (!IntegerType)
4986 IntegerType = NewType.getTypePtr();
4987 PromotionType = NewPromotionType;
4988 setNumPositiveBits(NumPositiveBits);
4989 setNumNegativeBits(NumNegativeBits);
4990 TagDecl::completeDefinition();
4991}
4992
4993bool EnumDecl::isClosed() const {
4994 if (const auto *A = getAttr<EnumExtensibilityAttr>())
4995 return A->getExtensibility() == EnumExtensibilityAttr::Closed;
4996 return true;
4997}
4998
4999bool EnumDecl::isClosedFlag() const {
5000 return isClosed() && hasAttr<FlagEnumAttr>();
5001}
5002
5003bool EnumDecl::isClosedNonFlag() const {
5004 return isClosed() && !hasAttr<FlagEnumAttr>();
5005}
5006
5007TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
5008 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
5009 return MSI->getTemplateSpecializationKind();
5010
5011 return TSK_Undeclared;
5012}
5013
5014void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
5015 SourceLocation PointOfInstantiation) {
5016 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
5017 assert(MSI && "Not an instantiated member enumeration?");
5018 MSI->setTemplateSpecializationKind(TSK);
5019 if (TSK != TSK_ExplicitSpecialization &&
5020 PointOfInstantiation.isValid() &&
5021 MSI->getPointOfInstantiation().isInvalid())
5022 MSI->setPointOfInstantiation(PointOfInstantiation);
5023}
5024
5025EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
5026 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
5027 if (isTemplateInstantiation(Kind: MSInfo->getTemplateSpecializationKind())) {
5028 EnumDecl *ED = getInstantiatedFromMemberEnum();
5029 while (auto *NewED = ED->getInstantiatedFromMemberEnum())
5030 ED = NewED;
5031 return getDefinitionOrSelf(D: ED);
5032 }
5033 }
5034
5035 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
5036 "couldn't find pattern for enum instantiation");
5037 return nullptr;
5038}
5039
5040EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
5041 if (SpecializationInfo)
5042 return cast<EnumDecl>(Val: SpecializationInfo->getInstantiatedFrom());
5043
5044 return nullptr;
5045}
5046
5047void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
5048 TemplateSpecializationKind TSK) {
5049 assert(!SpecializationInfo && "Member enum is already a specialization");
5050 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
5051}
5052
5053unsigned EnumDecl::getODRHash() {
5054 if (hasODRHash())
5055 return ODRHash;
5056
5057 class ODRHash Hash;
5058 Hash.AddEnumDecl(Enum: this);
5059 setHasODRHash(true);
5060 ODRHash = Hash.CalculateHash();
5061 return ODRHash;
5062}
5063
5064SourceRange EnumDecl::getSourceRange() const {
5065 auto Res = TagDecl::getSourceRange();
5066 // Set end-point to enum-base, e.g. enum foo : ^bar
5067 if (auto *TSI = getIntegerTypeSourceInfo()) {
5068 // TagDecl doesn't know about the enum base.
5069 if (!getBraceRange().getEnd().isValid())
5070 Res.setEnd(TSI->getTypeLoc().getEndLoc());
5071 }
5072 return Res;
5073}
5074
5075void EnumDecl::getValueRange(llvm::APInt &Max, llvm::APInt &Min) const {
5076 unsigned Bitwidth = getASTContext().getIntWidth(T: getIntegerType());
5077 unsigned NumNegativeBits = getNumNegativeBits();
5078 unsigned NumPositiveBits = getNumPositiveBits();
5079
5080 if (NumNegativeBits) {
5081 unsigned NumBits = std::max(a: NumNegativeBits, b: NumPositiveBits + 1);
5082 Max = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
5083 Min = -Max;
5084 } else {
5085 Max = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
5086 Min = llvm::APInt::getZero(numBits: Bitwidth);
5087 }
5088}
5089
5090//===----------------------------------------------------------------------===//
5091// RecordDecl Implementation
5092//===----------------------------------------------------------------------===//
5093
5094RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
5095 DeclContext *DC, SourceLocation StartLoc,
5096 SourceLocation IdLoc, IdentifierInfo *Id,
5097 RecordDecl *PrevDecl)
5098 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
5099 assert(classof(static_cast<Decl *>(this)) && "Invalid Kind!");
5100 setHasFlexibleArrayMember(false);
5101 setAnonymousStructOrUnion(false);
5102 setHasObjectMember(false);
5103 setHasVolatileMember(false);
5104 setHasLoadedFieldsFromExternalStorage(false);
5105 setNonTrivialToPrimitiveDefaultInitialize(false);
5106 setNonTrivialToPrimitiveCopy(false);
5107 setNonTrivialToPrimitiveDestroy(false);
5108 setHasNonTrivialToPrimitiveDefaultInitializeCUnion(false);
5109 setHasNonTrivialToPrimitiveDestructCUnion(false);
5110 setHasNonTrivialToPrimitiveCopyCUnion(false);
5111 setHasUninitializedExplicitInitFields(false);
5112 setParamDestroyedInCallee(false);
5113 setArgPassingRestrictions(RecordArgPassingKind::CanPassInRegs);
5114 setIsRandomized(false);
5115 setODRHash(0);
5116}
5117
5118RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
5119 SourceLocation StartLoc, SourceLocation IdLoc,
5120 IdentifierInfo *Id, RecordDecl* PrevDecl) {
5121 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
5122 StartLoc, IdLoc, Id, PrevDecl);
5123 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
5124
5125 C.getTypeDeclType(Decl: R, PrevDecl);
5126 return R;
5127}
5128
5129RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C,
5130 GlobalDeclID ID) {
5131 RecordDecl *R = new (C, ID)
5132 RecordDecl(Record, TagTypeKind::Struct, C, nullptr, SourceLocation(),
5133 SourceLocation(), nullptr, nullptr);
5134 R->setMayHaveOutOfDateDef(C.getLangOpts().Modules);
5135 return R;
5136}
5137
5138bool RecordDecl::isInjectedClassName() const {
5139 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
5140 cast<RecordDecl>(Val: getDeclContext())->getDeclName() == getDeclName();
5141}
5142
5143bool RecordDecl::isLambda() const {
5144 if (auto RD = dyn_cast<CXXRecordDecl>(Val: this))
5145 return RD->isLambda();
5146 return false;
5147}
5148
5149bool RecordDecl::isCapturedRecord() const {
5150 return hasAttr<CapturedRecordAttr>();
5151}
5152
5153void RecordDecl::setCapturedRecord() {
5154 addAttr(A: CapturedRecordAttr::CreateImplicit(Ctx&: getASTContext()));
5155}
5156
5157bool RecordDecl::isOrContainsUnion() const {
5158 if (isUnion())
5159 return true;
5160
5161 if (const RecordDecl *Def = getDefinition()) {
5162 for (const FieldDecl *FD : Def->fields()) {
5163 const RecordType *RT = FD->getType()->getAs<RecordType>();
5164 if (RT && RT->getDecl()->isOrContainsUnion())
5165 return true;
5166 }
5167 }
5168
5169 return false;
5170}
5171
5172RecordDecl::field_iterator RecordDecl::field_begin() const {
5173 if (hasExternalLexicalStorage() && !hasLoadedFieldsFromExternalStorage())
5174 LoadFieldsFromExternalStorage();
5175 // This is necessary for correctness for C++ with modules.
5176 // FIXME: Come up with a test case that breaks without definition.
5177 if (RecordDecl *D = getDefinition(); D && D != this)
5178 return D->field_begin();
5179 return field_iterator(decl_iterator(FirstDecl));
5180}
5181
5182/// completeDefinition - Notes that the definition of this type is now
5183/// complete.
5184void RecordDecl::completeDefinition() {
5185 assert(!isCompleteDefinition() && "Cannot redefine record!");
5186 TagDecl::completeDefinition();
5187
5188 ASTContext &Ctx = getASTContext();
5189
5190 // Layouts are dumped when computed, so if we are dumping for all complete
5191 // types, we need to force usage to get types that wouldn't be used elsewhere.
5192 //
5193 // If the type is dependent, then we can't compute its layout because there
5194 // is no way for us to know the size or alignment of a dependent type. Also
5195 // ignore declarations marked as invalid since 'getASTRecordLayout()' asserts
5196 // on that.
5197 if (Ctx.getLangOpts().DumpRecordLayoutsComplete && !isDependentType() &&
5198 !isInvalidDecl())
5199 (void)Ctx.getASTRecordLayout(D: this);
5200}
5201
5202/// isMsStruct - Get whether or not this record uses ms_struct layout.
5203/// This which can be turned on with an attribute, pragma, or the
5204/// -mms-bitfields command-line option.
5205bool RecordDecl::isMsStruct(const ASTContext &C) const {
5206 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
5207}
5208
5209void RecordDecl::reorderDecls(const SmallVectorImpl<Decl *> &Decls) {
5210 std::tie(args&: FirstDecl, args&: LastDecl) = DeclContext::BuildDeclChain(Decls, FieldsAlreadyLoaded: false);
5211 LastDecl->NextInContextAndBits.setPointer(nullptr);
5212 setIsRandomized(true);
5213}
5214
5215void RecordDecl::LoadFieldsFromExternalStorage() const {
5216 ExternalASTSource *Source = getASTContext().getExternalSource();
5217 assert(hasExternalLexicalStorage() && Source && "No external storage?");
5218
5219 // Notify that we have a RecordDecl doing some initialization.
5220 ExternalASTSource::Deserializing TheFields(Source);
5221
5222 SmallVector<Decl*, 64> Decls;
5223 setHasLoadedFieldsFromExternalStorage(true);
5224 Source->FindExternalLexicalDecls(DC: this, IsKindWeWant: [](Decl::Kind K) {
5225 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
5226 }, Result&: Decls);
5227
5228#ifndef NDEBUG
5229 // Check that all decls we got were FieldDecls.
5230 for (unsigned i=0, e=Decls.size(); i != e; ++i)
5231 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
5232#endif
5233
5234 if (Decls.empty())
5235 return;
5236
5237 auto [ExternalFirst, ExternalLast] =
5238 BuildDeclChain(Decls,
5239 /*FieldsAlreadyLoaded=*/false);
5240 ExternalLast->NextInContextAndBits.setPointer(FirstDecl);
5241 FirstDecl = ExternalFirst;
5242 if (!LastDecl)
5243 LastDecl = ExternalLast;
5244}
5245
5246bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
5247 ASTContext &Context = getASTContext();
5248 const SanitizerMask EnabledAsanMask = Context.getLangOpts().Sanitize.Mask &
5249 (SanitizerKind::Address | SanitizerKind::KernelAddress);
5250 if (!EnabledAsanMask || !Context.getLangOpts().SanitizeAddressFieldPadding)
5251 return false;
5252 const auto &NoSanitizeList = Context.getNoSanitizeList();
5253 const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: this);
5254 // We may be able to relax some of these requirements.
5255 int ReasonToReject = -1;
5256 if (!CXXRD || CXXRD->isExternCContext())
5257 ReasonToReject = 0; // is not C++.
5258 else if (CXXRD->hasAttr<PackedAttr>())
5259 ReasonToReject = 1; // is packed.
5260 else if (CXXRD->isUnion())
5261 ReasonToReject = 2; // is a union.
5262 else if (CXXRD->isTriviallyCopyable())
5263 ReasonToReject = 3; // is trivially copyable.
5264 else if (CXXRD->hasTrivialDestructor())
5265 ReasonToReject = 4; // has trivial destructor.
5266 else if (CXXRD->isStandardLayout())
5267 ReasonToReject = 5; // is standard layout.
5268 else if (NoSanitizeList.containsLocation(Mask: EnabledAsanMask, Loc: getLocation(),
5269 Category: "field-padding"))
5270 ReasonToReject = 6; // is in an excluded file.
5271 else if (NoSanitizeList.containsType(
5272 Mask: EnabledAsanMask, MangledTypeName: getQualifiedNameAsString(), Category: "field-padding"))
5273 ReasonToReject = 7; // The type is excluded.
5274
5275 if (EmitRemark) {
5276 if (ReasonToReject >= 0)
5277 Context.getDiagnostics().Report(
5278 Loc: getLocation(),
5279 DiagID: diag::remark_sanitize_address_insert_extra_padding_rejected)
5280 << getQualifiedNameAsString() << ReasonToReject;
5281 else
5282 Context.getDiagnostics().Report(
5283 Loc: getLocation(),
5284 DiagID: diag::remark_sanitize_address_insert_extra_padding_accepted)
5285 << getQualifiedNameAsString();
5286 }
5287 return ReasonToReject < 0;
5288}
5289
5290const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
5291 for (const auto *I : fields()) {
5292 if (I->getIdentifier())
5293 return I;
5294
5295 if (const auto *RT = I->getType()->getAs<RecordType>())
5296 if (const FieldDecl *NamedDataMember =
5297 RT->getDecl()->findFirstNamedDataMember())
5298 return NamedDataMember;
5299 }
5300
5301 // We didn't find a named data member.
5302 return nullptr;
5303}
5304
5305unsigned RecordDecl::getODRHash() {
5306 if (hasODRHash())
5307 return RecordDeclBits.ODRHash;
5308
5309 // Only calculate hash on first call of getODRHash per record.
5310 ODRHash Hash;
5311 Hash.AddRecordDecl(Record: this);
5312 // For RecordDecl the ODRHash is stored in the remaining
5313 // bits of RecordDeclBits, adjust the hash to accommodate.
5314 static_assert(sizeof(Hash.CalculateHash()) * CHAR_BIT == 32);
5315 setODRHash(Hash.CalculateHash() >> (32 - NumOdrHashBits));
5316 return RecordDeclBits.ODRHash;
5317}
5318
5319//===----------------------------------------------------------------------===//
5320// BlockDecl Implementation
5321//===----------------------------------------------------------------------===//
5322
5323BlockDecl::BlockDecl(DeclContext *DC, SourceLocation CaretLoc)
5324 : Decl(Block, DC, CaretLoc), DeclContext(Block) {
5325 setIsVariadic(false);
5326 setCapturesCXXThis(false);
5327 setBlockMissingReturnType(true);
5328 setIsConversionFromLambda(false);
5329 setDoesNotEscape(false);
5330 setCanAvoidCopyToHeap(false);
5331}
5332
5333void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
5334 assert(!ParamInfo && "Already has param info!");
5335
5336 // Zero params -> null pointer.
5337 if (!NewParamInfo.empty()) {
5338 NumParams = NewParamInfo.size();
5339 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
5340 llvm::copy(Range&: NewParamInfo, Out: ParamInfo);
5341 }
5342}
5343
5344void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
5345 bool CapturesCXXThis) {
5346 this->setCapturesCXXThis(CapturesCXXThis);
5347 this->NumCaptures = Captures.size();
5348
5349 if (Captures.empty()) {
5350 this->Captures = nullptr;
5351 return;
5352 }
5353
5354 this->Captures = Captures.copy(A&: Context).data();
5355}
5356
5357bool BlockDecl::capturesVariable(const VarDecl *variable) const {
5358 for (const auto &I : captures())
5359 // Only auto vars can be captured, so no redeclaration worries.
5360 if (I.getVariable() == variable)
5361 return true;
5362
5363 return false;
5364}
5365
5366SourceRange BlockDecl::getSourceRange() const {
5367 return SourceRange(getLocation(), Body ? Body->getEndLoc() : getLocation());
5368}
5369
5370//===----------------------------------------------------------------------===//
5371// Other Decl Allocation/Deallocation Method Implementations
5372//===----------------------------------------------------------------------===//
5373
5374void TranslationUnitDecl::anchor() {}
5375
5376TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
5377 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
5378}
5379
5380void TranslationUnitDecl::setAnonymousNamespace(NamespaceDecl *D) {
5381 AnonymousNamespace = D;
5382
5383 if (ASTMutationListener *Listener = Ctx.getASTMutationListener())
5384 Listener->AddedAnonymousNamespace(TU: this, AnonNamespace: D);
5385}
5386
5387void PragmaCommentDecl::anchor() {}
5388
5389PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
5390 TranslationUnitDecl *DC,
5391 SourceLocation CommentLoc,
5392 PragmaMSCommentKind CommentKind,
5393 StringRef Arg) {
5394 PragmaCommentDecl *PCD =
5395 new (C, DC, additionalSizeToAlloc<char>(Counts: Arg.size() + 1))
5396 PragmaCommentDecl(DC, CommentLoc, CommentKind);
5397 llvm::copy(Range&: Arg, Out: PCD->getTrailingObjects());
5398 PCD->getTrailingObjects()[Arg.size()] = '\0';
5399 return PCD;
5400}
5401
5402PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
5403 GlobalDeclID ID,
5404 unsigned ArgSize) {
5405 return new (C, ID, additionalSizeToAlloc<char>(Counts: ArgSize + 1))
5406 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
5407}
5408
5409void PragmaDetectMismatchDecl::anchor() {}
5410
5411PragmaDetectMismatchDecl *
5412PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
5413 SourceLocation Loc, StringRef Name,
5414 StringRef Value) {
5415 size_t ValueStart = Name.size() + 1;
5416 PragmaDetectMismatchDecl *PDMD =
5417 new (C, DC, additionalSizeToAlloc<char>(Counts: ValueStart + Value.size() + 1))
5418 PragmaDetectMismatchDecl(DC, Loc, ValueStart);
5419 llvm::copy(Range&: Name, Out: PDMD->getTrailingObjects());
5420 PDMD->getTrailingObjects()[Name.size()] = '\0';
5421 llvm::copy(Range&: Value, Out: PDMD->getTrailingObjects() + ValueStart);
5422 PDMD->getTrailingObjects()[ValueStart + Value.size()] = '\0';
5423 return PDMD;
5424}
5425
5426PragmaDetectMismatchDecl *
5427PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID,
5428 unsigned NameValueSize) {
5429 return new (C, ID, additionalSizeToAlloc<char>(Counts: NameValueSize + 1))
5430 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
5431}
5432
5433void ExternCContextDecl::anchor() {}
5434
5435ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
5436 TranslationUnitDecl *DC) {
5437 return new (C, DC) ExternCContextDecl(DC);
5438}
5439
5440void LabelDecl::anchor() {}
5441
5442LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
5443 SourceLocation IdentL, IdentifierInfo *II) {
5444 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
5445}
5446
5447LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
5448 SourceLocation IdentL, IdentifierInfo *II,
5449 SourceLocation GnuLabelL) {
5450 assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
5451 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
5452}
5453
5454LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5455 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
5456 SourceLocation());
5457}
5458
5459void LabelDecl::setMSAsmLabel(StringRef Name) {
5460char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
5461llvm::copy(Range&: Name, Out: Buffer);
5462Buffer[Name.size()] = '\0';
5463MSAsmName = Buffer;
5464}
5465
5466void ValueDecl::anchor() {}
5467
5468bool ValueDecl::isWeak() const {
5469 auto *MostRecent = getMostRecentDecl();
5470 return MostRecent->hasAttr<WeakAttr>() ||
5471 MostRecent->hasAttr<WeakRefAttr>() || isWeakImported();
5472}
5473
5474bool ValueDecl::isInitCapture() const {
5475 if (auto *Var = llvm::dyn_cast<VarDecl>(Val: this))
5476 return Var->isInitCapture();
5477 return false;
5478}
5479
5480bool ValueDecl::isParameterPack() const {
5481 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: this))
5482 return NTTP->isParameterPack();
5483
5484 return isa_and_nonnull<PackExpansionType>(Val: getType().getTypePtrOrNull());
5485}
5486
5487void ImplicitParamDecl::anchor() {}
5488
5489ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
5490 SourceLocation IdLoc,
5491 IdentifierInfo *Id, QualType Type,
5492 ImplicitParamKind ParamKind) {
5493 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type, ParamKind);
5494}
5495
5496ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, QualType Type,
5497 ImplicitParamKind ParamKind) {
5498 return new (C, nullptr) ImplicitParamDecl(C, Type, ParamKind);
5499}
5500
5501ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
5502 GlobalDeclID ID) {
5503 return new (C, ID) ImplicitParamDecl(C, QualType(), ImplicitParamKind::Other);
5504}
5505
5506FunctionDecl *
5507FunctionDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
5508 const DeclarationNameInfo &NameInfo, QualType T,
5509 TypeSourceInfo *TInfo, StorageClass SC, bool UsesFPIntrin,
5510 bool isInlineSpecified, bool hasWrittenPrototype,
5511 ConstexprSpecKind ConstexprKind,
5512 const AssociatedConstraint &TrailingRequiresClause) {
5513 FunctionDecl *New = new (C, DC) FunctionDecl(
5514 Function, C, DC, StartLoc, NameInfo, T, TInfo, SC, UsesFPIntrin,
5515 isInlineSpecified, ConstexprKind, TrailingRequiresClause);
5516 New->setHasWrittenPrototype(hasWrittenPrototype);
5517 return New;
5518}
5519
5520FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5521 return new (C, ID) FunctionDecl(
5522 Function, C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(),
5523 nullptr, SC_None, false, false, ConstexprSpecKind::Unspecified,
5524 /*TrailingRequiresClause=*/{});
5525}
5526
5527bool FunctionDecl::isReferenceableKernel() const {
5528 return hasAttr<CUDAGlobalAttr>() ||
5529 DeviceKernelAttr::isOpenCLSpelling(A: getAttr<DeviceKernelAttr>());
5530}
5531
5532BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5533 return new (C, DC) BlockDecl(DC, L);
5534}
5535
5536BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5537 return new (C, ID) BlockDecl(nullptr, SourceLocation());
5538}
5539
5540OutlinedFunctionDecl::OutlinedFunctionDecl(DeclContext *DC, unsigned NumParams)
5541 : Decl(OutlinedFunction, DC, SourceLocation()),
5542 DeclContext(OutlinedFunction), NumParams(NumParams),
5543 BodyAndNothrow(nullptr, false) {}
5544
5545OutlinedFunctionDecl *OutlinedFunctionDecl::Create(ASTContext &C,
5546 DeclContext *DC,
5547 unsigned NumParams) {
5548 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(Counts: NumParams))
5549 OutlinedFunctionDecl(DC, NumParams);
5550}
5551
5552OutlinedFunctionDecl *
5553OutlinedFunctionDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID,
5554 unsigned NumParams) {
5555 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(Counts: NumParams))
5556 OutlinedFunctionDecl(nullptr, NumParams);
5557}
5558
5559Stmt *OutlinedFunctionDecl::getBody() const {
5560 return BodyAndNothrow.getPointer();
5561}
5562void OutlinedFunctionDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
5563
5564bool OutlinedFunctionDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
5565void OutlinedFunctionDecl::setNothrow(bool Nothrow) {
5566 BodyAndNothrow.setInt(Nothrow);
5567}
5568
5569CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
5570 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
5571 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
5572
5573CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
5574 unsigned NumParams) {
5575 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(Counts: NumParams))
5576 CapturedDecl(DC, NumParams);
5577}
5578
5579CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID,
5580 unsigned NumParams) {
5581 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(Counts: NumParams))
5582 CapturedDecl(nullptr, NumParams);
5583}
5584
5585Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
5586void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
5587
5588bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
5589void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
5590
5591EnumConstantDecl::EnumConstantDecl(const ASTContext &C, DeclContext *DC,
5592 SourceLocation L, IdentifierInfo *Id,
5593 QualType T, Expr *E, const llvm::APSInt &V)
5594 : ValueDecl(EnumConstant, DC, L, Id, T), Init((Stmt *)E) {
5595 setInitVal(C, V);
5596}
5597
5598EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
5599 SourceLocation L,
5600 IdentifierInfo *Id, QualType T,
5601 Expr *E, const llvm::APSInt &V) {
5602 return new (C, CD) EnumConstantDecl(C, CD, L, Id, T, E, V);
5603}
5604
5605EnumConstantDecl *EnumConstantDecl::CreateDeserialized(ASTContext &C,
5606 GlobalDeclID ID) {
5607 return new (C, ID) EnumConstantDecl(C, nullptr, SourceLocation(), nullptr,
5608 QualType(), nullptr, llvm::APSInt());
5609}
5610
5611void IndirectFieldDecl::anchor() {}
5612
5613IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
5614 SourceLocation L, DeclarationName N,
5615 QualType T,
5616 MutableArrayRef<NamedDecl *> CH)
5617 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
5618 ChainingSize(CH.size()) {
5619 // In C++, indirect field declarations conflict with tag declarations in the
5620 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
5621 if (C.getLangOpts().CPlusPlus)
5622 IdentifierNamespace |= IDNS_Tag;
5623}
5624
5625IndirectFieldDecl *IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC,
5626 SourceLocation L,
5627 const IdentifierInfo *Id,
5628 QualType T,
5629 MutableArrayRef<NamedDecl *> CH) {
5630 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
5631}
5632
5633IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
5634 GlobalDeclID ID) {
5635 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
5636 DeclarationName(), QualType(), {});
5637}
5638
5639SourceRange EnumConstantDecl::getSourceRange() const {
5640 SourceLocation End = getLocation();
5641 if (Init)
5642 End = Init->getEndLoc();
5643 return SourceRange(getLocation(), End);
5644}
5645
5646void TypeDecl::anchor() {}
5647
5648TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
5649 SourceLocation StartLoc, SourceLocation IdLoc,
5650 const IdentifierInfo *Id,
5651 TypeSourceInfo *TInfo) {
5652 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5653}
5654
5655void TypedefNameDecl::anchor() {}
5656
5657TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
5658 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
5659 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
5660 auto *ThisTypedef = this;
5661 if (AnyRedecl && OwningTypedef) {
5662 OwningTypedef = OwningTypedef->getCanonicalDecl();
5663 ThisTypedef = ThisTypedef->getCanonicalDecl();
5664 }
5665 if (OwningTypedef == ThisTypedef)
5666 return TT->getDecl();
5667 }
5668
5669 return nullptr;
5670}
5671
5672bool TypedefNameDecl::isTransparentTagSlow() const {
5673 auto determineIsTransparent = [&]() {
5674 if (auto *TT = getUnderlyingType()->getAs<TagType>()) {
5675 if (auto *TD = TT->getDecl()) {
5676 if (TD->getName() != getName())
5677 return false;
5678 SourceLocation TTLoc = getLocation();
5679 SourceLocation TDLoc = TD->getLocation();
5680 if (!TTLoc.isMacroID() || !TDLoc.isMacroID())
5681 return false;
5682 SourceManager &SM = getASTContext().getSourceManager();
5683 return SM.getSpellingLoc(Loc: TTLoc) == SM.getSpellingLoc(Loc: TDLoc);
5684 }
5685 }
5686 return false;
5687 };
5688
5689 bool isTransparent = determineIsTransparent();
5690 MaybeModedTInfo.setInt((isTransparent << 1) | 1);
5691 return isTransparent;
5692}
5693
5694TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5695 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
5696 nullptr, nullptr);
5697}
5698
5699TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
5700 SourceLocation StartLoc,
5701 SourceLocation IdLoc,
5702 const IdentifierInfo *Id,
5703 TypeSourceInfo *TInfo) {
5704 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
5705}
5706
5707TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C,
5708 GlobalDeclID ID) {
5709 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
5710 SourceLocation(), nullptr, nullptr);
5711}
5712
5713SourceRange TypedefDecl::getSourceRange() const {
5714 SourceLocation RangeEnd = getLocation();
5715 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
5716 if (typeIsPostfix(QT: TInfo->getType()))
5717 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5718 }
5719 return SourceRange(getBeginLoc(), RangeEnd);
5720}
5721
5722SourceRange TypeAliasDecl::getSourceRange() const {
5723 SourceLocation RangeEnd = getBeginLoc();
5724 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
5725 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
5726 return SourceRange(getBeginLoc(), RangeEnd);
5727}
5728
5729void FileScopeAsmDecl::anchor() {}
5730
5731FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
5732 Expr *Str, SourceLocation AsmLoc,
5733 SourceLocation RParenLoc) {
5734 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
5735}
5736
5737FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
5738 GlobalDeclID ID) {
5739 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
5740 SourceLocation());
5741}
5742
5743std::string FileScopeAsmDecl::getAsmString() const {
5744 return GCCAsmStmt::ExtractStringFromGCCAsmStmtComponent(E: getAsmStringExpr());
5745}
5746
5747void TopLevelStmtDecl::anchor() {}
5748
5749TopLevelStmtDecl *TopLevelStmtDecl::Create(ASTContext &C, Stmt *Statement) {
5750 assert(C.getLangOpts().IncrementalExtensions &&
5751 "Must be used only in incremental mode");
5752
5753 SourceLocation Loc = Statement ? Statement->getBeginLoc() : SourceLocation();
5754 DeclContext *DC = C.getTranslationUnitDecl();
5755
5756 return new (C, DC) TopLevelStmtDecl(DC, Loc, Statement);
5757}
5758
5759TopLevelStmtDecl *TopLevelStmtDecl::CreateDeserialized(ASTContext &C,
5760 GlobalDeclID ID) {
5761 return new (C, ID)
5762 TopLevelStmtDecl(/*DC=*/nullptr, SourceLocation(), /*S=*/nullptr);
5763}
5764
5765SourceRange TopLevelStmtDecl::getSourceRange() const {
5766 return SourceRange(getLocation(), Statement->getEndLoc());
5767}
5768
5769void TopLevelStmtDecl::setStmt(Stmt *S) {
5770 assert(S);
5771 Statement = S;
5772 setLocation(Statement->getBeginLoc());
5773}
5774
5775void EmptyDecl::anchor() {}
5776
5777EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
5778 return new (C, DC) EmptyDecl(DC, L);
5779}
5780
5781EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5782 return new (C, ID) EmptyDecl(nullptr, SourceLocation());
5783}
5784
5785HLSLBufferDecl::HLSLBufferDecl(DeclContext *DC, bool CBuffer,
5786 SourceLocation KwLoc, IdentifierInfo *ID,
5787 SourceLocation IDLoc, SourceLocation LBrace)
5788 : NamedDecl(Decl::Kind::HLSLBuffer, DC, IDLoc, DeclarationName(ID)),
5789 DeclContext(Decl::Kind::HLSLBuffer), LBraceLoc(LBrace), KwLoc(KwLoc),
5790 IsCBuffer(CBuffer), HasValidPackoffset(false), LayoutStruct(nullptr) {}
5791
5792HLSLBufferDecl *HLSLBufferDecl::Create(ASTContext &C,
5793 DeclContext *LexicalParent, bool CBuffer,
5794 SourceLocation KwLoc, IdentifierInfo *ID,
5795 SourceLocation IDLoc,
5796 SourceLocation LBrace) {
5797 // For hlsl like this
5798 // cbuffer A {
5799 // cbuffer B {
5800 // }
5801 // }
5802 // compiler should treat it as
5803 // cbuffer A {
5804 // }
5805 // cbuffer B {
5806 // }
5807 // FIXME: support nested buffers if required for back-compat.
5808 DeclContext *DC = LexicalParent;
5809 HLSLBufferDecl *Result =
5810 new (C, DC) HLSLBufferDecl(DC, CBuffer, KwLoc, ID, IDLoc, LBrace);
5811 return Result;
5812}
5813
5814HLSLBufferDecl *
5815HLSLBufferDecl::CreateDefaultCBuffer(ASTContext &C, DeclContext *LexicalParent,
5816 ArrayRef<Decl *> DefaultCBufferDecls) {
5817 DeclContext *DC = LexicalParent;
5818 IdentifierInfo *II = &C.Idents.get(Name: "$Globals", TokenCode: tok::TokenKind::identifier);
5819 HLSLBufferDecl *Result = new (C, DC) HLSLBufferDecl(
5820 DC, true, SourceLocation(), II, SourceLocation(), SourceLocation());
5821 Result->setImplicit(true);
5822 Result->setDefaultBufferDecls(DefaultCBufferDecls);
5823 return Result;
5824}
5825
5826HLSLBufferDecl *HLSLBufferDecl::CreateDeserialized(ASTContext &C,
5827 GlobalDeclID ID) {
5828 return new (C, ID) HLSLBufferDecl(nullptr, false, SourceLocation(), nullptr,
5829 SourceLocation(), SourceLocation());
5830}
5831
5832void HLSLBufferDecl::addLayoutStruct(CXXRecordDecl *LS) {
5833 assert(LayoutStruct == nullptr && "layout struct has already been set");
5834 LayoutStruct = LS;
5835 addDecl(D: LS);
5836}
5837
5838void HLSLBufferDecl::setDefaultBufferDecls(ArrayRef<Decl *> Decls) {
5839 assert(!Decls.empty());
5840 assert(DefaultBufferDecls.empty() && "default decls are already set");
5841 assert(isImplicit() &&
5842 "default decls can only be added to the implicit/default constant "
5843 "buffer $Globals");
5844
5845 // allocate array for default decls with ASTContext allocator
5846 Decl **DeclsArray = new (getASTContext()) Decl *[Decls.size()];
5847 llvm::copy(Range&: Decls, Out: DeclsArray);
5848 DefaultBufferDecls = ArrayRef<Decl *>(DeclsArray, Decls.size());
5849}
5850
5851HLSLBufferDecl::buffer_decl_iterator
5852HLSLBufferDecl::buffer_decls_begin() const {
5853 return buffer_decl_iterator(llvm::iterator_range(DefaultBufferDecls.begin(),
5854 DefaultBufferDecls.end()),
5855 decl_range(decls_begin(), decls_end()));
5856}
5857
5858HLSLBufferDecl::buffer_decl_iterator HLSLBufferDecl::buffer_decls_end() const {
5859 return buffer_decl_iterator(
5860 llvm::iterator_range(DefaultBufferDecls.end(), DefaultBufferDecls.end()),
5861 decl_range(decls_end(), decls_end()));
5862}
5863
5864bool HLSLBufferDecl::buffer_decls_empty() {
5865 return DefaultBufferDecls.empty() && decls_empty();
5866}
5867
5868//===----------------------------------------------------------------------===//
5869// HLSLRootSignatureDecl Implementation
5870//===----------------------------------------------------------------------===//
5871
5872HLSLRootSignatureDecl::HLSLRootSignatureDecl(
5873 DeclContext *DC, SourceLocation Loc, IdentifierInfo *ID,
5874 llvm::dxbc::RootSignatureVersion Version, unsigned NumElems)
5875 : NamedDecl(Decl::Kind::HLSLRootSignature, DC, Loc, DeclarationName(ID)),
5876 Version(Version), NumElems(NumElems) {}
5877
5878HLSLRootSignatureDecl *HLSLRootSignatureDecl::Create(
5879 ASTContext &C, DeclContext *DC, SourceLocation Loc, IdentifierInfo *ID,
5880 llvm::dxbc::RootSignatureVersion Version,
5881 ArrayRef<llvm::hlsl::rootsig::RootElement> RootElements) {
5882 HLSLRootSignatureDecl *RSDecl =
5883 new (C, DC,
5884 additionalSizeToAlloc<llvm::hlsl::rootsig::RootElement>(
5885 Counts: RootElements.size()))
5886 HLSLRootSignatureDecl(DC, Loc, ID, Version, RootElements.size());
5887 auto *StoredElems = RSDecl->getElems();
5888 llvm::uninitialized_copy(Src&: RootElements, Dst: StoredElems);
5889 return RSDecl;
5890}
5891
5892HLSLRootSignatureDecl *
5893HLSLRootSignatureDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5894 HLSLRootSignatureDecl *Result = new (C, ID)
5895 HLSLRootSignatureDecl(nullptr, SourceLocation(), nullptr,
5896 /*Version*/ llvm::dxbc::RootSignatureVersion::V1_1,
5897 /*NumElems=*/0);
5898 return Result;
5899}
5900
5901//===----------------------------------------------------------------------===//
5902// ImportDecl Implementation
5903//===----------------------------------------------------------------------===//
5904
5905/// Retrieve the number of module identifiers needed to name the given
5906/// module.
5907static unsigned getNumModuleIdentifiers(Module *Mod) {
5908 unsigned Result = 1;
5909 while (Mod->Parent) {
5910 Mod = Mod->Parent;
5911 ++Result;
5912 }
5913 return Result;
5914}
5915
5916ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5917 Module *Imported,
5918 ArrayRef<SourceLocation> IdentifierLocs)
5919 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5920 NextLocalImportAndComplete(nullptr, true) {
5921 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
5922 auto *StoredLocs = getTrailingObjects();
5923 llvm::uninitialized_copy(Src&: IdentifierLocs, Dst: StoredLocs);
5924}
5925
5926ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
5927 Module *Imported, SourceLocation EndLoc)
5928 : Decl(Import, DC, StartLoc), ImportedModule(Imported),
5929 NextLocalImportAndComplete(nullptr, false) {
5930 *getTrailingObjects() = EndLoc;
5931}
5932
5933ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
5934 SourceLocation StartLoc, Module *Imported,
5935 ArrayRef<SourceLocation> IdentifierLocs) {
5936 return new (C, DC,
5937 additionalSizeToAlloc<SourceLocation>(Counts: IdentifierLocs.size()))
5938 ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
5939}
5940
5941ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
5942 SourceLocation StartLoc,
5943 Module *Imported,
5944 SourceLocation EndLoc) {
5945 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(Counts: 1))
5946 ImportDecl(DC, StartLoc, Imported, EndLoc);
5947 Import->setImplicit();
5948 return Import;
5949}
5950
5951ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID,
5952 unsigned NumLocations) {
5953 return new (C, ID, additionalSizeToAlloc<SourceLocation>(Counts: NumLocations))
5954 ImportDecl(EmptyShell());
5955}
5956
5957ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
5958 if (!isImportComplete())
5959 return {};
5960
5961 return getTrailingObjects(N: getNumModuleIdentifiers(Mod: getImportedModule()));
5962}
5963
5964SourceRange ImportDecl::getSourceRange() const {
5965 if (!isImportComplete())
5966 return SourceRange(getLocation(), *getTrailingObjects());
5967
5968 return SourceRange(getLocation(), getIdentifierLocs().back());
5969}
5970
5971//===----------------------------------------------------------------------===//
5972// ExportDecl Implementation
5973//===----------------------------------------------------------------------===//
5974
5975void ExportDecl::anchor() {}
5976
5977ExportDecl *ExportDecl::Create(ASTContext &C, DeclContext *DC,
5978 SourceLocation ExportLoc) {
5979 return new (C, DC) ExportDecl(DC, ExportLoc);
5980}
5981
5982ExportDecl *ExportDecl::CreateDeserialized(ASTContext &C, GlobalDeclID ID) {
5983 return new (C, ID) ExportDecl(nullptr, SourceLocation());
5984}
5985
5986bool clang::IsArmStreamingFunction(const FunctionDecl *FD,
5987 bool IncludeLocallyStreaming) {
5988 if (IncludeLocallyStreaming)
5989 if (FD->hasAttr<ArmLocallyStreamingAttr>())
5990 return true;
5991
5992 if (const Type *Ty = FD->getType().getTypePtrOrNull())
5993 if (const auto *FPT = Ty->getAs<FunctionProtoType>())
5994 if (FPT->getAArch64SMEAttributes() &
5995 FunctionType::SME_PStateSMEnabledMask)
5996 return true;
5997
5998 return false;
5999}
6000
6001bool clang::hasArmZAState(const FunctionDecl *FD) {
6002 const auto *T = FD->getType()->getAs<FunctionProtoType>();
6003 return (T && FunctionType::getArmZAState(AttrBits: T->getAArch64SMEAttributes()) !=
6004 FunctionType::ARM_None) ||
6005 (FD->hasAttr<ArmNewAttr>() && FD->getAttr<ArmNewAttr>()->isNewZA());
6006}
6007
6008bool clang::hasArmZT0State(const FunctionDecl *FD) {
6009 const auto *T = FD->getType()->getAs<FunctionProtoType>();
6010 return (T && FunctionType::getArmZT0State(AttrBits: T->getAArch64SMEAttributes()) !=
6011 FunctionType::ARM_None) ||
6012 (FD->hasAttr<ArmNewAttr>() && FD->getAttr<ArmNewAttr>()->isNewZT0());
6013}
6014