| 1 | //===--- Expr.cpp - Expression AST Node Implementation --------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the Expr class and subclasses. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/AST/Expr.h" |
| 14 | #include "clang/AST/APValue.h" |
| 15 | #include "clang/AST/ASTContext.h" |
| 16 | #include "clang/AST/ASTLambda.h" |
| 17 | #include "clang/AST/Attr.h" |
| 18 | #include "clang/AST/ComputeDependence.h" |
| 19 | #include "clang/AST/DeclCXX.h" |
| 20 | #include "clang/AST/DeclObjC.h" |
| 21 | #include "clang/AST/DeclTemplate.h" |
| 22 | #include "clang/AST/DependenceFlags.h" |
| 23 | #include "clang/AST/EvaluatedExprVisitor.h" |
| 24 | #include "clang/AST/ExprCXX.h" |
| 25 | #include "clang/AST/IgnoreExpr.h" |
| 26 | #include "clang/AST/Mangle.h" |
| 27 | #include "clang/AST/RecordLayout.h" |
| 28 | #include "clang/Basic/Builtins.h" |
| 29 | #include "clang/Basic/CharInfo.h" |
| 30 | #include "clang/Basic/SourceManager.h" |
| 31 | #include "clang/Basic/TargetInfo.h" |
| 32 | #include "clang/Lex/Lexer.h" |
| 33 | #include "clang/Lex/LiteralSupport.h" |
| 34 | #include "clang/Lex/Preprocessor.h" |
| 35 | #include "llvm/Support/ErrorHandling.h" |
| 36 | #include "llvm/Support/Format.h" |
| 37 | #include "llvm/Support/raw_ostream.h" |
| 38 | #include <algorithm> |
| 39 | #include <cstring> |
| 40 | #include <optional> |
| 41 | using namespace clang; |
| 42 | |
| 43 | const Expr *Expr::getBestDynamicClassTypeExpr() const { |
| 44 | const Expr *E = this; |
| 45 | while (true) { |
| 46 | E = E->IgnoreParenBaseCasts(); |
| 47 | |
| 48 | // Follow the RHS of a comma operator. |
| 49 | if (auto *BO = dyn_cast<BinaryOperator>(Val: E)) { |
| 50 | if (BO->getOpcode() == BO_Comma) { |
| 51 | E = BO->getRHS(); |
| 52 | continue; |
| 53 | } |
| 54 | } |
| 55 | |
| 56 | // Step into initializer for materialized temporaries. |
| 57 | if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: E)) { |
| 58 | E = MTE->getSubExpr(); |
| 59 | continue; |
| 60 | } |
| 61 | |
| 62 | break; |
| 63 | } |
| 64 | |
| 65 | return E; |
| 66 | } |
| 67 | |
| 68 | const CXXRecordDecl *Expr::getBestDynamicClassType() const { |
| 69 | const Expr *E = getBestDynamicClassTypeExpr(); |
| 70 | QualType DerivedType = E->getType(); |
| 71 | if (const PointerType *PTy = DerivedType->getAs<PointerType>()) |
| 72 | DerivedType = PTy->getPointeeType(); |
| 73 | |
| 74 | if (DerivedType->isDependentType()) |
| 75 | return nullptr; |
| 76 | |
| 77 | const RecordType *Ty = DerivedType->castAs<RecordType>(); |
| 78 | Decl *D = Ty->getDecl(); |
| 79 | return cast<CXXRecordDecl>(Val: D); |
| 80 | } |
| 81 | |
| 82 | const Expr *Expr::skipRValueSubobjectAdjustments( |
| 83 | SmallVectorImpl<const Expr *> &CommaLHSs, |
| 84 | SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { |
| 85 | const Expr *E = this; |
| 86 | while (true) { |
| 87 | E = E->IgnoreParens(); |
| 88 | |
| 89 | if (const auto *CE = dyn_cast<CastExpr>(Val: E)) { |
| 90 | if ((CE->getCastKind() == CK_DerivedToBase || |
| 91 | CE->getCastKind() == CK_UncheckedDerivedToBase) && |
| 92 | E->getType()->isRecordType()) { |
| 93 | E = CE->getSubExpr(); |
| 94 | const auto *Derived = |
| 95 | cast<CXXRecordDecl>(Val: E->getType()->castAs<RecordType>()->getDecl()); |
| 96 | Adjustments.push_back(Elt: SubobjectAdjustment(CE, Derived)); |
| 97 | continue; |
| 98 | } |
| 99 | |
| 100 | if (CE->getCastKind() == CK_NoOp) { |
| 101 | E = CE->getSubExpr(); |
| 102 | continue; |
| 103 | } |
| 104 | } else if (const auto *ME = dyn_cast<MemberExpr>(Val: E)) { |
| 105 | if (!ME->isArrow()) { |
| 106 | assert(ME->getBase()->getType()->getAsRecordDecl()); |
| 107 | if (const auto *Field = dyn_cast<FieldDecl>(Val: ME->getMemberDecl())) { |
| 108 | if (!Field->isBitField() && !Field->getType()->isReferenceType()) { |
| 109 | E = ME->getBase(); |
| 110 | Adjustments.push_back(Elt: SubobjectAdjustment(Field)); |
| 111 | continue; |
| 112 | } |
| 113 | } |
| 114 | } |
| 115 | } else if (const auto *BO = dyn_cast<BinaryOperator>(Val: E)) { |
| 116 | if (BO->getOpcode() == BO_PtrMemD) { |
| 117 | assert(BO->getRHS()->isPRValue()); |
| 118 | E = BO->getLHS(); |
| 119 | const auto *MPT = BO->getRHS()->getType()->getAs<MemberPointerType>(); |
| 120 | Adjustments.push_back(Elt: SubobjectAdjustment(MPT, BO->getRHS())); |
| 121 | continue; |
| 122 | } |
| 123 | if (BO->getOpcode() == BO_Comma) { |
| 124 | CommaLHSs.push_back(Elt: BO->getLHS()); |
| 125 | E = BO->getRHS(); |
| 126 | continue; |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | // Nothing changed. |
| 131 | break; |
| 132 | } |
| 133 | return E; |
| 134 | } |
| 135 | |
| 136 | bool Expr::isKnownToHaveBooleanValue(bool Semantic) const { |
| 137 | const Expr *E = IgnoreParens(); |
| 138 | |
| 139 | // If this value has _Bool type, it is obvious 0/1. |
| 140 | if (E->getType()->isBooleanType()) return true; |
| 141 | // If this is a non-scalar-integer type, we don't care enough to try. |
| 142 | if (!E->getType()->isIntegralOrEnumerationType()) return false; |
| 143 | |
| 144 | if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: E)) { |
| 145 | switch (UO->getOpcode()) { |
| 146 | case UO_Plus: |
| 147 | return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic); |
| 148 | case UO_LNot: |
| 149 | return true; |
| 150 | default: |
| 151 | return false; |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | // Only look through implicit casts. If the user writes |
| 156 | // '(int) (a && b)' treat it as an arbitrary int. |
| 157 | // FIXME: Should we look through any cast expression in !Semantic mode? |
| 158 | if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Val: E)) |
| 159 | return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic); |
| 160 | |
| 161 | if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) { |
| 162 | switch (BO->getOpcode()) { |
| 163 | default: return false; |
| 164 | case BO_LT: // Relational operators. |
| 165 | case BO_GT: |
| 166 | case BO_LE: |
| 167 | case BO_GE: |
| 168 | case BO_EQ: // Equality operators. |
| 169 | case BO_NE: |
| 170 | case BO_LAnd: // AND operator. |
| 171 | case BO_LOr: // Logical OR operator. |
| 172 | return true; |
| 173 | |
| 174 | case BO_And: // Bitwise AND operator. |
| 175 | case BO_Xor: // Bitwise XOR operator. |
| 176 | case BO_Or: // Bitwise OR operator. |
| 177 | // Handle things like (x==2)|(y==12). |
| 178 | return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) && |
| 179 | BO->getRHS()->isKnownToHaveBooleanValue(Semantic); |
| 180 | |
| 181 | case BO_Comma: |
| 182 | case BO_Assign: |
| 183 | return BO->getRHS()->isKnownToHaveBooleanValue(Semantic); |
| 184 | } |
| 185 | } |
| 186 | |
| 187 | if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(Val: E)) |
| 188 | return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) && |
| 189 | CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic); |
| 190 | |
| 191 | if (isa<ObjCBoolLiteralExpr>(Val: E)) |
| 192 | return true; |
| 193 | |
| 194 | if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Val: E)) |
| 195 | return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic); |
| 196 | |
| 197 | if (const FieldDecl *FD = E->getSourceBitField()) |
| 198 | if (!Semantic && FD->getType()->isUnsignedIntegerType() && |
| 199 | !FD->getBitWidth()->isValueDependent() && FD->getBitWidthValue() == 1) |
| 200 | return true; |
| 201 | |
| 202 | return false; |
| 203 | } |
| 204 | |
| 205 | bool Expr::isFlexibleArrayMemberLike( |
| 206 | const ASTContext &Ctx, |
| 207 | LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel, |
| 208 | bool IgnoreTemplateOrMacroSubstitution) const { |
| 209 | const Expr *E = IgnoreParens(); |
| 210 | const Decl *D = nullptr; |
| 211 | |
| 212 | if (const auto *ME = dyn_cast<MemberExpr>(Val: E)) |
| 213 | D = ME->getMemberDecl(); |
| 214 | else if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
| 215 | D = DRE->getDecl(); |
| 216 | else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(Val: E)) |
| 217 | D = IRE->getDecl(); |
| 218 | |
| 219 | return Decl::isFlexibleArrayMemberLike(Context: Ctx, D, Ty: E->getType(), |
| 220 | StrictFlexArraysLevel, |
| 221 | IgnoreTemplateOrMacroSubstitution); |
| 222 | } |
| 223 | |
| 224 | const ValueDecl * |
| 225 | Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const { |
| 226 | Expr::EvalResult Eval; |
| 227 | |
| 228 | if (EvaluateAsConstantExpr(Result&: Eval, Ctx: Context)) { |
| 229 | APValue &Value = Eval.Val; |
| 230 | |
| 231 | if (Value.isMemberPointer()) |
| 232 | return Value.getMemberPointerDecl(); |
| 233 | |
| 234 | if (Value.isLValue() && Value.getLValueOffset().isZero()) |
| 235 | return Value.getLValueBase().dyn_cast<const ValueDecl *>(); |
| 236 | } |
| 237 | |
| 238 | return nullptr; |
| 239 | } |
| 240 | |
| 241 | // Amusing macro metaprogramming hack: check whether a class provides |
| 242 | // a more specific implementation of getExprLoc(). |
| 243 | // |
| 244 | // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. |
| 245 | namespace { |
| 246 | /// This implementation is used when a class provides a custom |
| 247 | /// implementation of getExprLoc. |
| 248 | template <class E, class T> |
| 249 | SourceLocation getExprLocImpl(const Expr *expr, |
| 250 | SourceLocation (T::*v)() const) { |
| 251 | return static_cast<const E*>(expr)->getExprLoc(); |
| 252 | } |
| 253 | |
| 254 | /// This implementation is used when a class doesn't provide |
| 255 | /// a custom implementation of getExprLoc. Overload resolution |
| 256 | /// should pick it over the implementation above because it's |
| 257 | /// more specialized according to function template partial ordering. |
| 258 | template <class E> |
| 259 | SourceLocation getExprLocImpl(const Expr *expr, |
| 260 | SourceLocation (Expr::*v)() const) { |
| 261 | return static_cast<const E *>(expr)->getBeginLoc(); |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | QualType Expr::getEnumCoercedType(const ASTContext &Ctx) const { |
| 266 | if (isa<EnumType>(Val: getType())) |
| 267 | return getType(); |
| 268 | if (const auto *ECD = getEnumConstantDecl()) { |
| 269 | const auto *ED = cast<EnumDecl>(Val: ECD->getDeclContext()); |
| 270 | if (ED->isCompleteDefinition()) |
| 271 | return Ctx.getTypeDeclType(Decl: ED); |
| 272 | } |
| 273 | return getType(); |
| 274 | } |
| 275 | |
| 276 | SourceLocation Expr::getExprLoc() const { |
| 277 | switch (getStmtClass()) { |
| 278 | case Stmt::NoStmtClass: llvm_unreachable("statement without class" ); |
| 279 | #define ABSTRACT_STMT(type) |
| 280 | #define STMT(type, base) \ |
| 281 | case Stmt::type##Class: break; |
| 282 | #define EXPR(type, base) \ |
| 283 | case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); |
| 284 | #include "clang/AST/StmtNodes.inc" |
| 285 | } |
| 286 | llvm_unreachable("unknown expression kind" ); |
| 287 | } |
| 288 | |
| 289 | //===----------------------------------------------------------------------===// |
| 290 | // Primary Expressions. |
| 291 | //===----------------------------------------------------------------------===// |
| 292 | |
| 293 | static void AssertResultStorageKind(ConstantResultStorageKind Kind) { |
| 294 | assert((Kind == ConstantResultStorageKind::APValue || |
| 295 | Kind == ConstantResultStorageKind::Int64 || |
| 296 | Kind == ConstantResultStorageKind::None) && |
| 297 | "Invalid StorageKind Value" ); |
| 298 | (void)Kind; |
| 299 | } |
| 300 | |
| 301 | ConstantResultStorageKind ConstantExpr::getStorageKind(const APValue &Value) { |
| 302 | switch (Value.getKind()) { |
| 303 | case APValue::None: |
| 304 | case APValue::Indeterminate: |
| 305 | return ConstantResultStorageKind::None; |
| 306 | case APValue::Int: |
| 307 | if (!Value.getInt().needsCleanup()) |
| 308 | return ConstantResultStorageKind::Int64; |
| 309 | [[fallthrough]]; |
| 310 | default: |
| 311 | return ConstantResultStorageKind::APValue; |
| 312 | } |
| 313 | } |
| 314 | |
| 315 | ConstantResultStorageKind |
| 316 | ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { |
| 317 | if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) |
| 318 | return ConstantResultStorageKind::Int64; |
| 319 | return ConstantResultStorageKind::APValue; |
| 320 | } |
| 321 | |
| 322 | ConstantExpr::ConstantExpr(Expr *SubExpr, ConstantResultStorageKind StorageKind, |
| 323 | bool IsImmediateInvocation) |
| 324 | : FullExpr(ConstantExprClass, SubExpr) { |
| 325 | ConstantExprBits.ResultKind = llvm::to_underlying(E: StorageKind); |
| 326 | ConstantExprBits.APValueKind = APValue::None; |
| 327 | ConstantExprBits.IsUnsigned = false; |
| 328 | ConstantExprBits.BitWidth = 0; |
| 329 | ConstantExprBits.HasCleanup = false; |
| 330 | ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation; |
| 331 | |
| 332 | if (StorageKind == ConstantResultStorageKind::APValue) |
| 333 | ::new (getTrailingObjects<APValue>()) APValue(); |
| 334 | } |
| 335 | |
| 336 | ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, |
| 337 | ConstantResultStorageKind StorageKind, |
| 338 | bool IsImmediateInvocation) { |
| 339 | assert(!isa<ConstantExpr>(E)); |
| 340 | AssertResultStorageKind(Kind: StorageKind); |
| 341 | |
| 342 | unsigned Size = totalSizeToAlloc<APValue, uint64_t>( |
| 343 | Counts: StorageKind == ConstantResultStorageKind::APValue, |
| 344 | Counts: StorageKind == ConstantResultStorageKind::Int64); |
| 345 | void *Mem = Context.Allocate(Size, Align: alignof(ConstantExpr)); |
| 346 | return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation); |
| 347 | } |
| 348 | |
| 349 | ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, |
| 350 | const APValue &Result) { |
| 351 | ConstantResultStorageKind StorageKind = getStorageKind(Value: Result); |
| 352 | ConstantExpr *Self = Create(Context, E, StorageKind); |
| 353 | Self->SetResult(Value: Result, Context); |
| 354 | return Self; |
| 355 | } |
| 356 | |
| 357 | ConstantExpr::ConstantExpr(EmptyShell Empty, |
| 358 | ConstantResultStorageKind StorageKind) |
| 359 | : FullExpr(ConstantExprClass, Empty) { |
| 360 | ConstantExprBits.ResultKind = llvm::to_underlying(E: StorageKind); |
| 361 | |
| 362 | if (StorageKind == ConstantResultStorageKind::APValue) |
| 363 | ::new (getTrailingObjects<APValue>()) APValue(); |
| 364 | } |
| 365 | |
| 366 | ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, |
| 367 | ConstantResultStorageKind StorageKind) { |
| 368 | AssertResultStorageKind(Kind: StorageKind); |
| 369 | |
| 370 | unsigned Size = totalSizeToAlloc<APValue, uint64_t>( |
| 371 | Counts: StorageKind == ConstantResultStorageKind::APValue, |
| 372 | Counts: StorageKind == ConstantResultStorageKind::Int64); |
| 373 | void *Mem = Context.Allocate(Size, Align: alignof(ConstantExpr)); |
| 374 | return new (Mem) ConstantExpr(EmptyShell(), StorageKind); |
| 375 | } |
| 376 | |
| 377 | void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { |
| 378 | assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && |
| 379 | "Invalid storage for this value kind" ); |
| 380 | ConstantExprBits.APValueKind = Value.getKind(); |
| 381 | switch (getResultStorageKind()) { |
| 382 | case ConstantResultStorageKind::None: |
| 383 | return; |
| 384 | case ConstantResultStorageKind::Int64: |
| 385 | Int64Result() = *Value.getInt().getRawData(); |
| 386 | ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); |
| 387 | ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); |
| 388 | return; |
| 389 | case ConstantResultStorageKind::APValue: |
| 390 | if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { |
| 391 | ConstantExprBits.HasCleanup = true; |
| 392 | Context.addDestruction(Ptr: &APValueResult()); |
| 393 | } |
| 394 | APValueResult() = std::move(Value); |
| 395 | return; |
| 396 | } |
| 397 | llvm_unreachable("Invalid ResultKind Bits" ); |
| 398 | } |
| 399 | |
| 400 | llvm::APSInt ConstantExpr::getResultAsAPSInt() const { |
| 401 | switch (getResultStorageKind()) { |
| 402 | case ConstantResultStorageKind::APValue: |
| 403 | return APValueResult().getInt(); |
| 404 | case ConstantResultStorageKind::Int64: |
| 405 | return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), |
| 406 | ConstantExprBits.IsUnsigned); |
| 407 | default: |
| 408 | llvm_unreachable("invalid Accessor" ); |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | APValue ConstantExpr::getAPValueResult() const { |
| 413 | |
| 414 | switch (getResultStorageKind()) { |
| 415 | case ConstantResultStorageKind::APValue: |
| 416 | return APValueResult(); |
| 417 | case ConstantResultStorageKind::Int64: |
| 418 | return APValue( |
| 419 | llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), |
| 420 | ConstantExprBits.IsUnsigned)); |
| 421 | case ConstantResultStorageKind::None: |
| 422 | if (ConstantExprBits.APValueKind == APValue::Indeterminate) |
| 423 | return APValue::IndeterminateValue(); |
| 424 | return APValue(); |
| 425 | } |
| 426 | llvm_unreachable("invalid ResultKind" ); |
| 427 | } |
| 428 | |
| 429 | DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, |
| 430 | bool RefersToEnclosingVariableOrCapture, QualType T, |
| 431 | ExprValueKind VK, SourceLocation L, |
| 432 | const DeclarationNameLoc &LocInfo, |
| 433 | NonOdrUseReason NOUR) |
| 434 | : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) { |
| 435 | DeclRefExprBits.HasQualifier = false; |
| 436 | DeclRefExprBits.HasTemplateKWAndArgsInfo = false; |
| 437 | DeclRefExprBits.HasFoundDecl = false; |
| 438 | DeclRefExprBits.HadMultipleCandidates = false; |
| 439 | DeclRefExprBits.RefersToEnclosingVariableOrCapture = |
| 440 | RefersToEnclosingVariableOrCapture; |
| 441 | DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false; |
| 442 | DeclRefExprBits.NonOdrUseReason = NOUR; |
| 443 | DeclRefExprBits.IsImmediateEscalating = false; |
| 444 | DeclRefExprBits.Loc = L; |
| 445 | setDependence(computeDependence(E: this, Ctx)); |
| 446 | } |
| 447 | |
| 448 | DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, |
| 449 | NestedNameSpecifierLoc QualifierLoc, |
| 450 | SourceLocation TemplateKWLoc, ValueDecl *D, |
| 451 | bool RefersToEnclosingVariableOrCapture, |
| 452 | const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, |
| 453 | const TemplateArgumentListInfo *TemplateArgs, |
| 454 | QualType T, ExprValueKind VK, NonOdrUseReason NOUR) |
| 455 | : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), |
| 456 | DNLoc(NameInfo.getInfo()) { |
| 457 | DeclRefExprBits.Loc = NameInfo.getLoc(); |
| 458 | DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; |
| 459 | if (QualifierLoc) |
| 460 | new (getTrailingObjects<NestedNameSpecifierLoc>()) |
| 461 | NestedNameSpecifierLoc(QualifierLoc); |
| 462 | DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; |
| 463 | if (FoundD) |
| 464 | *getTrailingObjects<NamedDecl *>() = FoundD; |
| 465 | DeclRefExprBits.HasTemplateKWAndArgsInfo |
| 466 | = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; |
| 467 | DeclRefExprBits.RefersToEnclosingVariableOrCapture = |
| 468 | RefersToEnclosingVariableOrCapture; |
| 469 | DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false; |
| 470 | DeclRefExprBits.NonOdrUseReason = NOUR; |
| 471 | if (TemplateArgs) { |
| 472 | auto Deps = TemplateArgumentDependence::None; |
| 473 | getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( |
| 474 | TemplateKWLoc, List: *TemplateArgs, OutArgArray: getTrailingObjects<TemplateArgumentLoc>(), |
| 475 | Deps); |
| 476 | assert(!(Deps & TemplateArgumentDependence::Dependent) && |
| 477 | "built a DeclRefExpr with dependent template args" ); |
| 478 | } else if (TemplateKWLoc.isValid()) { |
| 479 | getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( |
| 480 | TemplateKWLoc); |
| 481 | } |
| 482 | DeclRefExprBits.IsImmediateEscalating = false; |
| 483 | DeclRefExprBits.HadMultipleCandidates = 0; |
| 484 | setDependence(computeDependence(E: this, Ctx)); |
| 485 | } |
| 486 | |
| 487 | DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, |
| 488 | NestedNameSpecifierLoc QualifierLoc, |
| 489 | SourceLocation TemplateKWLoc, ValueDecl *D, |
| 490 | bool RefersToEnclosingVariableOrCapture, |
| 491 | SourceLocation NameLoc, QualType T, |
| 492 | ExprValueKind VK, NamedDecl *FoundD, |
| 493 | const TemplateArgumentListInfo *TemplateArgs, |
| 494 | NonOdrUseReason NOUR) { |
| 495 | return Create(Context, QualifierLoc, TemplateKWLoc, D, |
| 496 | RefersToEnclosingVariableOrCapture, |
| 497 | NameInfo: DeclarationNameInfo(D->getDeclName(), NameLoc), |
| 498 | T, VK, FoundD, TemplateArgs, NOUR); |
| 499 | } |
| 500 | |
| 501 | DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, |
| 502 | NestedNameSpecifierLoc QualifierLoc, |
| 503 | SourceLocation TemplateKWLoc, ValueDecl *D, |
| 504 | bool RefersToEnclosingVariableOrCapture, |
| 505 | const DeclarationNameInfo &NameInfo, |
| 506 | QualType T, ExprValueKind VK, |
| 507 | NamedDecl *FoundD, |
| 508 | const TemplateArgumentListInfo *TemplateArgs, |
| 509 | NonOdrUseReason NOUR) { |
| 510 | // Filter out cases where the found Decl is the same as the value refenenced. |
| 511 | if (D == FoundD) |
| 512 | FoundD = nullptr; |
| 513 | |
| 514 | bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); |
| 515 | std::size_t Size = |
| 516 | totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, |
| 517 | ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( |
| 518 | Counts: QualifierLoc ? 1 : 0, Counts: FoundD ? 1 : 0, |
| 519 | Counts: HasTemplateKWAndArgsInfo ? 1 : 0, |
| 520 | Counts: TemplateArgs ? TemplateArgs->size() : 0); |
| 521 | |
| 522 | void *Mem = Context.Allocate(Size, Align: alignof(DeclRefExpr)); |
| 523 | return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, |
| 524 | RefersToEnclosingVariableOrCapture, NameInfo, |
| 525 | FoundD, TemplateArgs, T, VK, NOUR); |
| 526 | } |
| 527 | |
| 528 | DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, |
| 529 | bool HasQualifier, |
| 530 | bool HasFoundDecl, |
| 531 | bool HasTemplateKWAndArgsInfo, |
| 532 | unsigned NumTemplateArgs) { |
| 533 | assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); |
| 534 | std::size_t Size = |
| 535 | totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, |
| 536 | ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( |
| 537 | Counts: HasQualifier ? 1 : 0, Counts: HasFoundDecl ? 1 : 0, Counts: HasTemplateKWAndArgsInfo, |
| 538 | Counts: NumTemplateArgs); |
| 539 | void *Mem = Context.Allocate(Size, Align: alignof(DeclRefExpr)); |
| 540 | return new (Mem) DeclRefExpr(EmptyShell()); |
| 541 | } |
| 542 | |
| 543 | void DeclRefExpr::setDecl(ValueDecl *NewD) { |
| 544 | D = NewD; |
| 545 | if (getType()->isUndeducedType()) |
| 546 | setType(NewD->getType()); |
| 547 | setDependence(computeDependence(E: this, Ctx: NewD->getASTContext())); |
| 548 | } |
| 549 | |
| 550 | SourceLocation DeclRefExpr::getEndLoc() const { |
| 551 | if (hasExplicitTemplateArgs()) |
| 552 | return getRAngleLoc(); |
| 553 | return getNameInfo().getEndLoc(); |
| 554 | } |
| 555 | |
| 556 | SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc, |
| 557 | SourceLocation LParen, |
| 558 | SourceLocation RParen, |
| 559 | QualType ResultTy, |
| 560 | TypeSourceInfo *TSI) |
| 561 | : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary), |
| 562 | OpLoc(OpLoc), LParen(LParen), RParen(RParen) { |
| 563 | setTypeSourceInfo(TSI); |
| 564 | setDependence(computeDependence(E: this)); |
| 565 | } |
| 566 | |
| 567 | SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty, |
| 568 | QualType ResultTy) |
| 569 | : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {} |
| 570 | |
| 571 | SYCLUniqueStableNameExpr * |
| 572 | SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc, |
| 573 | SourceLocation LParen, SourceLocation RParen, |
| 574 | TypeSourceInfo *TSI) { |
| 575 | QualType ResultTy = Ctx.getPointerType(T: Ctx.CharTy.withConst()); |
| 576 | return new (Ctx) |
| 577 | SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI); |
| 578 | } |
| 579 | |
| 580 | SYCLUniqueStableNameExpr * |
| 581 | SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) { |
| 582 | QualType ResultTy = Ctx.getPointerType(T: Ctx.CharTy.withConst()); |
| 583 | return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy); |
| 584 | } |
| 585 | |
| 586 | std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const { |
| 587 | return SYCLUniqueStableNameExpr::ComputeName(Context, |
| 588 | Ty: getTypeSourceInfo()->getType()); |
| 589 | } |
| 590 | |
| 591 | std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context, |
| 592 | QualType Ty) { |
| 593 | auto MangleCallback = [](ASTContext &Ctx, |
| 594 | const NamedDecl *ND) -> UnsignedOrNone { |
| 595 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) |
| 596 | return RD->getDeviceLambdaManglingNumber(); |
| 597 | return std::nullopt; |
| 598 | }; |
| 599 | |
| 600 | std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create( |
| 601 | Context, Diags&: Context.getDiagnostics(), Discriminator: MangleCallback)}; |
| 602 | |
| 603 | std::string Buffer; |
| 604 | Buffer.reserve(res_arg: 128); |
| 605 | llvm::raw_string_ostream Out(Buffer); |
| 606 | Ctx->mangleCanonicalTypeName(T: Ty, Out); |
| 607 | |
| 608 | return Buffer; |
| 609 | } |
| 610 | |
| 611 | PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, |
| 612 | PredefinedIdentKind IK, bool IsTransparent, |
| 613 | StringLiteral *SL) |
| 614 | : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) { |
| 615 | PredefinedExprBits.Kind = llvm::to_underlying(E: IK); |
| 616 | assert((getIdentKind() == IK) && |
| 617 | "IdentKind do not fit in PredefinedExprBitfields!" ); |
| 618 | bool HasFunctionName = SL != nullptr; |
| 619 | PredefinedExprBits.HasFunctionName = HasFunctionName; |
| 620 | PredefinedExprBits.IsTransparent = IsTransparent; |
| 621 | PredefinedExprBits.Loc = L; |
| 622 | if (HasFunctionName) |
| 623 | setFunctionName(SL); |
| 624 | setDependence(computeDependence(E: this)); |
| 625 | } |
| 626 | |
| 627 | PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) |
| 628 | : Expr(PredefinedExprClass, Empty) { |
| 629 | PredefinedExprBits.HasFunctionName = HasFunctionName; |
| 630 | } |
| 631 | |
| 632 | PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, |
| 633 | QualType FNTy, PredefinedIdentKind IK, |
| 634 | bool IsTransparent, StringLiteral *SL) { |
| 635 | bool HasFunctionName = SL != nullptr; |
| 636 | void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: HasFunctionName), |
| 637 | Align: alignof(PredefinedExpr)); |
| 638 | return new (Mem) PredefinedExpr(L, FNTy, IK, IsTransparent, SL); |
| 639 | } |
| 640 | |
| 641 | PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, |
| 642 | bool HasFunctionName) { |
| 643 | void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: HasFunctionName), |
| 644 | Align: alignof(PredefinedExpr)); |
| 645 | return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); |
| 646 | } |
| 647 | |
| 648 | StringRef PredefinedExpr::getIdentKindName(PredefinedIdentKind IK) { |
| 649 | switch (IK) { |
| 650 | case PredefinedIdentKind::Func: |
| 651 | return "__func__" ; |
| 652 | case PredefinedIdentKind::Function: |
| 653 | return "__FUNCTION__" ; |
| 654 | case PredefinedIdentKind::FuncDName: |
| 655 | return "__FUNCDNAME__" ; |
| 656 | case PredefinedIdentKind::LFunction: |
| 657 | return "L__FUNCTION__" ; |
| 658 | case PredefinedIdentKind::PrettyFunction: |
| 659 | return "__PRETTY_FUNCTION__" ; |
| 660 | case PredefinedIdentKind::FuncSig: |
| 661 | return "__FUNCSIG__" ; |
| 662 | case PredefinedIdentKind::LFuncSig: |
| 663 | return "L__FUNCSIG__" ; |
| 664 | case PredefinedIdentKind::PrettyFunctionNoVirtual: |
| 665 | break; |
| 666 | } |
| 667 | llvm_unreachable("Unknown ident kind for PredefinedExpr" ); |
| 668 | } |
| 669 | |
| 670 | // FIXME: Maybe this should use DeclPrinter with a special "print predefined |
| 671 | // expr" policy instead. |
| 672 | std::string PredefinedExpr::ComputeName(PredefinedIdentKind IK, |
| 673 | const Decl *CurrentDecl, |
| 674 | bool ForceElaboratedPrinting) { |
| 675 | ASTContext &Context = CurrentDecl->getASTContext(); |
| 676 | |
| 677 | if (IK == PredefinedIdentKind::FuncDName) { |
| 678 | if (const NamedDecl *ND = dyn_cast<NamedDecl>(Val: CurrentDecl)) { |
| 679 | std::unique_ptr<MangleContext> MC; |
| 680 | MC.reset(p: Context.createMangleContext()); |
| 681 | |
| 682 | if (MC->shouldMangleDeclName(D: ND)) { |
| 683 | SmallString<256> Buffer; |
| 684 | llvm::raw_svector_ostream Out(Buffer); |
| 685 | GlobalDecl GD; |
| 686 | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Val: ND)) |
| 687 | GD = GlobalDecl(CD, Ctor_Base); |
| 688 | else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: ND)) |
| 689 | GD = GlobalDecl(DD, Dtor_Base); |
| 690 | else if (auto FD = dyn_cast<FunctionDecl>(Val: ND)) { |
| 691 | GD = FD->isReferenceableKernel() ? GlobalDecl(FD) : GlobalDecl(ND); |
| 692 | } else |
| 693 | GD = GlobalDecl(ND); |
| 694 | MC->mangleName(GD, Out); |
| 695 | |
| 696 | if (!Buffer.empty() && Buffer.front() == '\01') |
| 697 | return std::string(Buffer.substr(Start: 1)); |
| 698 | return std::string(Buffer); |
| 699 | } |
| 700 | return std::string(ND->getIdentifier()->getName()); |
| 701 | } |
| 702 | return "" ; |
| 703 | } |
| 704 | if (isa<BlockDecl>(Val: CurrentDecl)) { |
| 705 | // For blocks we only emit something if it is enclosed in a function |
| 706 | // For top-level block we'd like to include the name of variable, but we |
| 707 | // don't have it at this point. |
| 708 | auto DC = CurrentDecl->getDeclContext(); |
| 709 | if (DC->isFileContext()) |
| 710 | return "" ; |
| 711 | |
| 712 | SmallString<256> Buffer; |
| 713 | llvm::raw_svector_ostream Out(Buffer); |
| 714 | if (auto *DCBlock = dyn_cast<BlockDecl>(Val: DC)) |
| 715 | // For nested blocks, propagate up to the parent. |
| 716 | Out << ComputeName(IK, CurrentDecl: DCBlock); |
| 717 | else if (auto *DCDecl = dyn_cast<Decl>(Val: DC)) |
| 718 | Out << ComputeName(IK, CurrentDecl: DCDecl) << "_block_invoke" ; |
| 719 | return std::string(Out.str()); |
| 720 | } |
| 721 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: CurrentDecl)) { |
| 722 | const auto &LO = Context.getLangOpts(); |
| 723 | bool IsFuncOrFunctionInNonMSVCCompatEnv = |
| 724 | ((IK == PredefinedIdentKind::Func || |
| 725 | IK == PredefinedIdentKind ::Function) && |
| 726 | !LO.MSVCCompat); |
| 727 | bool IsLFunctionInMSVCCommpatEnv = |
| 728 | IK == PredefinedIdentKind::LFunction && LO.MSVCCompat; |
| 729 | bool IsFuncOrFunctionOrLFunctionOrFuncDName = |
| 730 | IK != PredefinedIdentKind::PrettyFunction && |
| 731 | IK != PredefinedIdentKind::PrettyFunctionNoVirtual && |
| 732 | IK != PredefinedIdentKind::FuncSig && |
| 733 | IK != PredefinedIdentKind::LFuncSig; |
| 734 | if ((ForceElaboratedPrinting && |
| 735 | (IsFuncOrFunctionInNonMSVCCompatEnv || IsLFunctionInMSVCCommpatEnv)) || |
| 736 | (!ForceElaboratedPrinting && IsFuncOrFunctionOrLFunctionOrFuncDName)) |
| 737 | return FD->getNameAsString(); |
| 738 | |
| 739 | SmallString<256> Name; |
| 740 | llvm::raw_svector_ostream Out(Name); |
| 741 | |
| 742 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
| 743 | if (MD->isVirtual() && IK != PredefinedIdentKind::PrettyFunctionNoVirtual) |
| 744 | Out << "virtual " ; |
| 745 | if (MD->isStatic() && !ForceElaboratedPrinting) |
| 746 | Out << "static " ; |
| 747 | } |
| 748 | |
| 749 | class PrettyCallbacks final : public PrintingCallbacks { |
| 750 | public: |
| 751 | PrettyCallbacks(const LangOptions &LO) : LO(LO) {} |
| 752 | std::string remapPath(StringRef Path) const override { |
| 753 | SmallString<128> p(Path); |
| 754 | LO.remapPathPrefix(Path&: p); |
| 755 | return std::string(p); |
| 756 | } |
| 757 | |
| 758 | private: |
| 759 | const LangOptions &LO; |
| 760 | }; |
| 761 | PrintingPolicy Policy(Context.getLangOpts()); |
| 762 | PrettyCallbacks PrettyCB(Context.getLangOpts()); |
| 763 | Policy.Callbacks = &PrettyCB; |
| 764 | if (IK == PredefinedIdentKind::Function && ForceElaboratedPrinting) |
| 765 | Policy.SuppressTagKeyword = !LO.MSVCCompat; |
| 766 | std::string Proto; |
| 767 | llvm::raw_string_ostream POut(Proto); |
| 768 | |
| 769 | const FunctionDecl *Decl = FD; |
| 770 | if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) |
| 771 | Decl = Pattern; |
| 772 | |
| 773 | // Bail out if the type of the function has not been set yet. |
| 774 | // This can notably happen in the trailing return type of a lambda |
| 775 | // expression. |
| 776 | const Type *Ty = Decl->getType().getTypePtrOrNull(); |
| 777 | if (!Ty) |
| 778 | return "" ; |
| 779 | |
| 780 | const FunctionType *AFT = Ty->getAs<FunctionType>(); |
| 781 | const FunctionProtoType *FT = nullptr; |
| 782 | if (FD->hasWrittenPrototype()) |
| 783 | FT = dyn_cast<FunctionProtoType>(Val: AFT); |
| 784 | |
| 785 | if (IK == PredefinedIdentKind::FuncSig || |
| 786 | IK == PredefinedIdentKind::LFuncSig) { |
| 787 | switch (AFT->getCallConv()) { |
| 788 | case CC_C: POut << "__cdecl " ; break; |
| 789 | case CC_X86StdCall: POut << "__stdcall " ; break; |
| 790 | case CC_X86FastCall: POut << "__fastcall " ; break; |
| 791 | case CC_X86ThisCall: POut << "__thiscall " ; break; |
| 792 | case CC_X86VectorCall: POut << "__vectorcall " ; break; |
| 793 | case CC_X86RegCall: POut << "__regcall " ; break; |
| 794 | // Only bother printing the conventions that MSVC knows about. |
| 795 | default: break; |
| 796 | } |
| 797 | } |
| 798 | |
| 799 | FD->printQualifiedName(OS&: POut, Policy); |
| 800 | |
| 801 | if (IK == PredefinedIdentKind::Function) { |
| 802 | Out << Proto; |
| 803 | return std::string(Name); |
| 804 | } |
| 805 | |
| 806 | POut << "(" ; |
| 807 | if (FT) { |
| 808 | for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { |
| 809 | if (i) POut << ", " ; |
| 810 | POut << Decl->getParamDecl(i)->getType().stream(Policy); |
| 811 | } |
| 812 | |
| 813 | if (FT->isVariadic()) { |
| 814 | if (FD->getNumParams()) POut << ", " ; |
| 815 | POut << "..." ; |
| 816 | } else if ((IK == PredefinedIdentKind::FuncSig || |
| 817 | IK == PredefinedIdentKind::LFuncSig || |
| 818 | !Context.getLangOpts().CPlusPlus) && |
| 819 | !Decl->getNumParams()) { |
| 820 | POut << "void" ; |
| 821 | } |
| 822 | } |
| 823 | POut << ")" ; |
| 824 | |
| 825 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
| 826 | assert(FT && "We must have a written prototype in this case." ); |
| 827 | if (FT->isConst()) |
| 828 | POut << " const" ; |
| 829 | if (FT->isVolatile()) |
| 830 | POut << " volatile" ; |
| 831 | RefQualifierKind Ref = MD->getRefQualifier(); |
| 832 | if (Ref == RQ_LValue) |
| 833 | POut << " &" ; |
| 834 | else if (Ref == RQ_RValue) |
| 835 | POut << " &&" ; |
| 836 | } |
| 837 | |
| 838 | typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; |
| 839 | SpecsTy Specs; |
| 840 | const DeclContext *Ctx = FD->getDeclContext(); |
| 841 | while (isa_and_nonnull<NamedDecl>(Val: Ctx)) { |
| 842 | const ClassTemplateSpecializationDecl *Spec |
| 843 | = dyn_cast<ClassTemplateSpecializationDecl>(Val: Ctx); |
| 844 | if (Spec && !Spec->isExplicitSpecialization()) |
| 845 | Specs.push_back(Elt: Spec); |
| 846 | Ctx = Ctx->getParent(); |
| 847 | } |
| 848 | |
| 849 | std::string TemplateParams; |
| 850 | llvm::raw_string_ostream TOut(TemplateParams); |
| 851 | for (const ClassTemplateSpecializationDecl *D : llvm::reverse(C&: Specs)) { |
| 852 | const TemplateParameterList *Params = |
| 853 | D->getSpecializedTemplate()->getTemplateParameters(); |
| 854 | const TemplateArgumentList &Args = D->getTemplateArgs(); |
| 855 | assert(Params->size() == Args.size()); |
| 856 | for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { |
| 857 | StringRef Param = Params->getParam(Idx: i)->getName(); |
| 858 | if (Param.empty()) continue; |
| 859 | TOut << Param << " = " ; |
| 860 | Args.get(Idx: i).print(Policy, Out&: TOut, |
| 861 | IncludeType: TemplateParameterList::shouldIncludeTypeForArgument( |
| 862 | Policy, TPL: Params, Idx: i)); |
| 863 | TOut << ", " ; |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | FunctionTemplateSpecializationInfo *FSI |
| 868 | = FD->getTemplateSpecializationInfo(); |
| 869 | if (FSI && !FSI->isExplicitSpecialization()) { |
| 870 | const TemplateParameterList* Params |
| 871 | = FSI->getTemplate()->getTemplateParameters(); |
| 872 | const TemplateArgumentList* Args = FSI->TemplateArguments; |
| 873 | assert(Params->size() == Args->size()); |
| 874 | for (unsigned i = 0, e = Params->size(); i != e; ++i) { |
| 875 | StringRef Param = Params->getParam(Idx: i)->getName(); |
| 876 | if (Param.empty()) continue; |
| 877 | TOut << Param << " = " ; |
| 878 | Args->get(Idx: i).print(Policy, Out&: TOut, /*IncludeType*/ true); |
| 879 | TOut << ", " ; |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | if (!TemplateParams.empty()) { |
| 884 | // remove the trailing comma and space |
| 885 | TemplateParams.resize(n: TemplateParams.size() - 2); |
| 886 | POut << " [" << TemplateParams << "]" ; |
| 887 | } |
| 888 | |
| 889 | // Print "auto" for all deduced return types. This includes C++1y return |
| 890 | // type deduction and lambdas. For trailing return types resolve the |
| 891 | // decltype expression. Otherwise print the real type when this is |
| 892 | // not a constructor or destructor. |
| 893 | if (isLambdaMethod(DC: FD)) |
| 894 | Proto = "auto " + Proto; |
| 895 | else if (FT && FT->getReturnType()->getAs<DecltypeType>()) |
| 896 | FT->getReturnType() |
| 897 | ->getAs<DecltypeType>() |
| 898 | ->getUnderlyingType() |
| 899 | .getAsStringInternal(Str&: Proto, Policy); |
| 900 | else if (!isa<CXXConstructorDecl>(Val: FD) && !isa<CXXDestructorDecl>(Val: FD)) |
| 901 | AFT->getReturnType().getAsStringInternal(Str&: Proto, Policy); |
| 902 | |
| 903 | Out << Proto; |
| 904 | |
| 905 | return std::string(Name); |
| 906 | } |
| 907 | if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(Val: CurrentDecl)) { |
| 908 | for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) |
| 909 | // Skip to its enclosing function or method, but not its enclosing |
| 910 | // CapturedDecl. |
| 911 | if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { |
| 912 | const Decl *D = Decl::castFromDeclContext(DC); |
| 913 | return ComputeName(IK, CurrentDecl: D); |
| 914 | } |
| 915 | llvm_unreachable("CapturedDecl not inside a function or method" ); |
| 916 | } |
| 917 | if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Val: CurrentDecl)) { |
| 918 | SmallString<256> Name; |
| 919 | llvm::raw_svector_ostream Out(Name); |
| 920 | Out << (MD->isInstanceMethod() ? '-' : '+'); |
| 921 | Out << '['; |
| 922 | |
| 923 | // For incorrect code, there might not be an ObjCInterfaceDecl. Do |
| 924 | // a null check to avoid a crash. |
| 925 | if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) |
| 926 | Out << *ID; |
| 927 | |
| 928 | if (const ObjCCategoryImplDecl *CID = |
| 929 | dyn_cast<ObjCCategoryImplDecl>(Val: MD->getDeclContext())) |
| 930 | Out << '(' << *CID << ')'; |
| 931 | |
| 932 | Out << ' '; |
| 933 | MD->getSelector().print(OS&: Out); |
| 934 | Out << ']'; |
| 935 | |
| 936 | return std::string(Name); |
| 937 | } |
| 938 | if (isa<TranslationUnitDecl>(Val: CurrentDecl) && |
| 939 | IK == PredefinedIdentKind::PrettyFunction) { |
| 940 | // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. |
| 941 | return "top level" ; |
| 942 | } |
| 943 | return "" ; |
| 944 | } |
| 945 | |
| 946 | void APNumericStorage::setIntValue(const ASTContext &C, |
| 947 | const llvm::APInt &Val) { |
| 948 | if (hasAllocation()) |
| 949 | C.Deallocate(Ptr: pVal); |
| 950 | |
| 951 | BitWidth = Val.getBitWidth(); |
| 952 | unsigned NumWords = Val.getNumWords(); |
| 953 | const uint64_t* Words = Val.getRawData(); |
| 954 | if (NumWords > 1) { |
| 955 | pVal = new (C) uint64_t[NumWords]; |
| 956 | std::copy(first: Words, last: Words + NumWords, result: pVal); |
| 957 | } else if (NumWords == 1) |
| 958 | VAL = Words[0]; |
| 959 | else |
| 960 | VAL = 0; |
| 961 | } |
| 962 | |
| 963 | IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, |
| 964 | QualType type, SourceLocation l) |
| 965 | : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) { |
| 966 | assert(type->isIntegerType() && "Illegal type in IntegerLiteral" ); |
| 967 | assert(V.getBitWidth() == C.getIntWidth(type) && |
| 968 | "Integer type is not the correct size for constant." ); |
| 969 | setValue(C, Val: V); |
| 970 | setDependence(ExprDependence::None); |
| 971 | } |
| 972 | |
| 973 | IntegerLiteral * |
| 974 | IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, |
| 975 | QualType type, SourceLocation l) { |
| 976 | return new (C) IntegerLiteral(C, V, type, l); |
| 977 | } |
| 978 | |
| 979 | IntegerLiteral * |
| 980 | IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { |
| 981 | return new (C) IntegerLiteral(Empty); |
| 982 | } |
| 983 | |
| 984 | FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, |
| 985 | QualType type, SourceLocation l, |
| 986 | unsigned Scale) |
| 987 | : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l), |
| 988 | Scale(Scale) { |
| 989 | assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral" ); |
| 990 | assert(V.getBitWidth() == C.getTypeInfo(type).Width && |
| 991 | "Fixed point type is not the correct size for constant." ); |
| 992 | setValue(C, Val: V); |
| 993 | setDependence(ExprDependence::None); |
| 994 | } |
| 995 | |
| 996 | FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, |
| 997 | const llvm::APInt &V, |
| 998 | QualType type, |
| 999 | SourceLocation l, |
| 1000 | unsigned Scale) { |
| 1001 | return new (C) FixedPointLiteral(C, V, type, l, Scale); |
| 1002 | } |
| 1003 | |
| 1004 | FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C, |
| 1005 | EmptyShell Empty) { |
| 1006 | return new (C) FixedPointLiteral(Empty); |
| 1007 | } |
| 1008 | |
| 1009 | std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { |
| 1010 | // Currently the longest decimal number that can be printed is the max for an |
| 1011 | // unsigned long _Accum: 4294967295.99999999976716935634613037109375 |
| 1012 | // which is 43 characters. |
| 1013 | SmallString<64> S; |
| 1014 | FixedPointValueToString( |
| 1015 | Str&: S, Val: llvm::APSInt::getUnsigned(X: getValue().getZExtValue()), Scale); |
| 1016 | return std::string(S); |
| 1017 | } |
| 1018 | |
| 1019 | void CharacterLiteral::print(unsigned Val, CharacterLiteralKind Kind, |
| 1020 | raw_ostream &OS) { |
| 1021 | switch (Kind) { |
| 1022 | case CharacterLiteralKind::Ascii: |
| 1023 | break; // no prefix. |
| 1024 | case CharacterLiteralKind::Wide: |
| 1025 | OS << 'L'; |
| 1026 | break; |
| 1027 | case CharacterLiteralKind::UTF8: |
| 1028 | OS << "u8" ; |
| 1029 | break; |
| 1030 | case CharacterLiteralKind::UTF16: |
| 1031 | OS << 'u'; |
| 1032 | break; |
| 1033 | case CharacterLiteralKind::UTF32: |
| 1034 | OS << 'U'; |
| 1035 | break; |
| 1036 | } |
| 1037 | |
| 1038 | StringRef Escaped = escapeCStyle<EscapeChar::Single>(Ch: Val); |
| 1039 | if (!Escaped.empty()) { |
| 1040 | OS << "'" << Escaped << "'" ; |
| 1041 | } else { |
| 1042 | // A character literal might be sign-extended, which |
| 1043 | // would result in an invalid \U escape sequence. |
| 1044 | // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF' |
| 1045 | // are not correctly handled. |
| 1046 | if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteralKind::Ascii) |
| 1047 | Val &= 0xFFu; |
| 1048 | if (Val < 256 && isPrintable(c: (unsigned char)Val)) |
| 1049 | OS << "'" << (char)Val << "'" ; |
| 1050 | else if (Val < 256) |
| 1051 | OS << "'\\x" << llvm::format(Fmt: "%02x" , Vals: Val) << "'" ; |
| 1052 | else if (Val <= 0xFFFF) |
| 1053 | OS << "'\\u" << llvm::format(Fmt: "%04x" , Vals: Val) << "'" ; |
| 1054 | else |
| 1055 | OS << "'\\U" << llvm::format(Fmt: "%08x" , Vals: Val) << "'" ; |
| 1056 | } |
| 1057 | } |
| 1058 | |
| 1059 | FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, |
| 1060 | bool isexact, QualType Type, SourceLocation L) |
| 1061 | : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) { |
| 1062 | setSemantics(V.getSemantics()); |
| 1063 | FloatingLiteralBits.IsExact = isexact; |
| 1064 | setValue(C, Val: V); |
| 1065 | setDependence(ExprDependence::None); |
| 1066 | } |
| 1067 | |
| 1068 | FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) |
| 1069 | : Expr(FloatingLiteralClass, Empty) { |
| 1070 | setRawSemantics(llvm::APFloatBase::S_IEEEhalf); |
| 1071 | FloatingLiteralBits.IsExact = false; |
| 1072 | } |
| 1073 | |
| 1074 | FloatingLiteral * |
| 1075 | FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, |
| 1076 | bool isexact, QualType Type, SourceLocation L) { |
| 1077 | return new (C) FloatingLiteral(C, V, isexact, Type, L); |
| 1078 | } |
| 1079 | |
| 1080 | FloatingLiteral * |
| 1081 | FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { |
| 1082 | return new (C) FloatingLiteral(C, Empty); |
| 1083 | } |
| 1084 | |
| 1085 | /// getValueAsApproximateDouble - This returns the value as an inaccurate |
| 1086 | /// double. Note that this may cause loss of precision, but is useful for |
| 1087 | /// debugging dumps, etc. |
| 1088 | double FloatingLiteral::getValueAsApproximateDouble() const { |
| 1089 | llvm::APFloat V = getValue(); |
| 1090 | bool ignored; |
| 1091 | V.convert(ToSemantics: llvm::APFloat::IEEEdouble(), RM: llvm::APFloat::rmNearestTiesToEven, |
| 1092 | losesInfo: &ignored); |
| 1093 | return V.convertToDouble(); |
| 1094 | } |
| 1095 | |
| 1096 | unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, |
| 1097 | StringLiteralKind SK) { |
| 1098 | unsigned CharByteWidth = 0; |
| 1099 | switch (SK) { |
| 1100 | case StringLiteralKind::Ordinary: |
| 1101 | case StringLiteralKind::UTF8: |
| 1102 | case StringLiteralKind::Binary: |
| 1103 | CharByteWidth = Target.getCharWidth(); |
| 1104 | break; |
| 1105 | case StringLiteralKind::Wide: |
| 1106 | CharByteWidth = Target.getWCharWidth(); |
| 1107 | break; |
| 1108 | case StringLiteralKind::UTF16: |
| 1109 | CharByteWidth = Target.getChar16Width(); |
| 1110 | break; |
| 1111 | case StringLiteralKind::UTF32: |
| 1112 | CharByteWidth = Target.getChar32Width(); |
| 1113 | break; |
| 1114 | case StringLiteralKind::Unevaluated: |
| 1115 | return sizeof(char); // Host; |
| 1116 | } |
| 1117 | assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple" ); |
| 1118 | CharByteWidth /= 8; |
| 1119 | assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && |
| 1120 | "The only supported character byte widths are 1,2 and 4!" ); |
| 1121 | return CharByteWidth; |
| 1122 | } |
| 1123 | |
| 1124 | StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, |
| 1125 | StringLiteralKind Kind, bool Pascal, QualType Ty, |
| 1126 | ArrayRef<SourceLocation> Locs) |
| 1127 | : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) { |
| 1128 | |
| 1129 | unsigned Length = Str.size(); |
| 1130 | |
| 1131 | StringLiteralBits.Kind = llvm::to_underlying(E: Kind); |
| 1132 | StringLiteralBits.NumConcatenated = Locs.size(); |
| 1133 | |
| 1134 | if (Kind != StringLiteralKind::Unevaluated) { |
| 1135 | assert(Ctx.getAsConstantArrayType(Ty) && |
| 1136 | "StringLiteral must be of constant array type!" ); |
| 1137 | unsigned CharByteWidth = mapCharByteWidth(Target: Ctx.getTargetInfo(), SK: Kind); |
| 1138 | unsigned ByteLength = Str.size(); |
| 1139 | assert((ByteLength % CharByteWidth == 0) && |
| 1140 | "The size of the data must be a multiple of CharByteWidth!" ); |
| 1141 | |
| 1142 | // Avoid the expensive division. The compiler should be able to figure it |
| 1143 | // out by itself. However as of clang 7, even with the appropriate |
| 1144 | // llvm_unreachable added just here, it is not able to do so. |
| 1145 | switch (CharByteWidth) { |
| 1146 | case 1: |
| 1147 | Length = ByteLength; |
| 1148 | break; |
| 1149 | case 2: |
| 1150 | Length = ByteLength / 2; |
| 1151 | break; |
| 1152 | case 4: |
| 1153 | Length = ByteLength / 4; |
| 1154 | break; |
| 1155 | default: |
| 1156 | llvm_unreachable("Unsupported character width!" ); |
| 1157 | } |
| 1158 | |
| 1159 | StringLiteralBits.CharByteWidth = CharByteWidth; |
| 1160 | StringLiteralBits.IsPascal = Pascal; |
| 1161 | } else { |
| 1162 | assert(!Pascal && "Can't make an unevaluated Pascal string" ); |
| 1163 | StringLiteralBits.CharByteWidth = 1; |
| 1164 | StringLiteralBits.IsPascal = false; |
| 1165 | } |
| 1166 | |
| 1167 | *getTrailingObjects<unsigned>() = Length; |
| 1168 | |
| 1169 | // Initialize the trailing array of SourceLocation. |
| 1170 | // This is safe since SourceLocation is POD-like. |
| 1171 | llvm::copy(Range&: Locs, Out: getTrailingObjects<SourceLocation>()); |
| 1172 | |
| 1173 | // Initialize the trailing array of char holding the string data. |
| 1174 | llvm::copy(Range&: Str, Out: getTrailingObjects<char>()); |
| 1175 | |
| 1176 | setDependence(ExprDependence::None); |
| 1177 | } |
| 1178 | |
| 1179 | StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, |
| 1180 | unsigned Length, unsigned CharByteWidth) |
| 1181 | : Expr(StringLiteralClass, Empty) { |
| 1182 | StringLiteralBits.CharByteWidth = CharByteWidth; |
| 1183 | StringLiteralBits.NumConcatenated = NumConcatenated; |
| 1184 | *getTrailingObjects<unsigned>() = Length; |
| 1185 | } |
| 1186 | |
| 1187 | StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, |
| 1188 | StringLiteralKind Kind, bool Pascal, |
| 1189 | QualType Ty, |
| 1190 | ArrayRef<SourceLocation> Locs) { |
| 1191 | void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<unsigned, SourceLocation, char>( |
| 1192 | Counts: 1, Counts: Locs.size(), Counts: Str.size()), |
| 1193 | Align: alignof(StringLiteral)); |
| 1194 | return new (Mem) StringLiteral(Ctx, Str, Kind, Pascal, Ty, Locs); |
| 1195 | } |
| 1196 | |
| 1197 | StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, |
| 1198 | unsigned NumConcatenated, |
| 1199 | unsigned Length, |
| 1200 | unsigned CharByteWidth) { |
| 1201 | void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<unsigned, SourceLocation, char>( |
| 1202 | Counts: 1, Counts: NumConcatenated, Counts: Length * CharByteWidth), |
| 1203 | Align: alignof(StringLiteral)); |
| 1204 | return new (Mem) |
| 1205 | StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); |
| 1206 | } |
| 1207 | |
| 1208 | void StringLiteral::outputString(raw_ostream &OS) const { |
| 1209 | switch (getKind()) { |
| 1210 | case StringLiteralKind::Unevaluated: |
| 1211 | case StringLiteralKind::Ordinary: |
| 1212 | case StringLiteralKind::Binary: |
| 1213 | break; // no prefix. |
| 1214 | case StringLiteralKind::Wide: |
| 1215 | OS << 'L'; |
| 1216 | break; |
| 1217 | case StringLiteralKind::UTF8: |
| 1218 | OS << "u8" ; |
| 1219 | break; |
| 1220 | case StringLiteralKind::UTF16: |
| 1221 | OS << 'u'; |
| 1222 | break; |
| 1223 | case StringLiteralKind::UTF32: |
| 1224 | OS << 'U'; |
| 1225 | break; |
| 1226 | } |
| 1227 | OS << '"'; |
| 1228 | static const char Hex[] = "0123456789ABCDEF" ; |
| 1229 | |
| 1230 | unsigned LastSlashX = getLength(); |
| 1231 | for (unsigned I = 0, N = getLength(); I != N; ++I) { |
| 1232 | uint32_t Char = getCodeUnit(i: I); |
| 1233 | StringRef Escaped = escapeCStyle<EscapeChar::Double>(Ch: Char); |
| 1234 | if (Escaped.empty()) { |
| 1235 | // FIXME: Convert UTF-8 back to codepoints before rendering. |
| 1236 | |
| 1237 | // Convert UTF-16 surrogate pairs back to codepoints before rendering. |
| 1238 | // Leave invalid surrogates alone; we'll use \x for those. |
| 1239 | if (getKind() == StringLiteralKind::UTF16 && I != N - 1 && |
| 1240 | Char >= 0xd800 && Char <= 0xdbff) { |
| 1241 | uint32_t Trail = getCodeUnit(i: I + 1); |
| 1242 | if (Trail >= 0xdc00 && Trail <= 0xdfff) { |
| 1243 | Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); |
| 1244 | ++I; |
| 1245 | } |
| 1246 | } |
| 1247 | |
| 1248 | if (Char > 0xff) { |
| 1249 | // If this is a wide string, output characters over 0xff using \x |
| 1250 | // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a |
| 1251 | // codepoint: use \x escapes for invalid codepoints. |
| 1252 | if (getKind() == StringLiteralKind::Wide || |
| 1253 | (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { |
| 1254 | // FIXME: Is this the best way to print wchar_t? |
| 1255 | OS << "\\x" ; |
| 1256 | int Shift = 28; |
| 1257 | while ((Char >> Shift) == 0) |
| 1258 | Shift -= 4; |
| 1259 | for (/**/; Shift >= 0; Shift -= 4) |
| 1260 | OS << Hex[(Char >> Shift) & 15]; |
| 1261 | LastSlashX = I; |
| 1262 | continue; |
| 1263 | } |
| 1264 | |
| 1265 | if (Char > 0xffff) |
| 1266 | OS << "\\U00" |
| 1267 | << Hex[(Char >> 20) & 15] |
| 1268 | << Hex[(Char >> 16) & 15]; |
| 1269 | else |
| 1270 | OS << "\\u" ; |
| 1271 | OS << Hex[(Char >> 12) & 15] |
| 1272 | << Hex[(Char >> 8) & 15] |
| 1273 | << Hex[(Char >> 4) & 15] |
| 1274 | << Hex[(Char >> 0) & 15]; |
| 1275 | continue; |
| 1276 | } |
| 1277 | |
| 1278 | // If we used \x... for the previous character, and this character is a |
| 1279 | // hexadecimal digit, prevent it being slurped as part of the \x. |
| 1280 | if (LastSlashX + 1 == I) { |
| 1281 | switch (Char) { |
| 1282 | case '0': case '1': case '2': case '3': case '4': |
| 1283 | case '5': case '6': case '7': case '8': case '9': |
| 1284 | case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': |
| 1285 | case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': |
| 1286 | OS << "\"\"" ; |
| 1287 | } |
| 1288 | } |
| 1289 | |
| 1290 | assert(Char <= 0xff && |
| 1291 | "Characters above 0xff should already have been handled." ); |
| 1292 | |
| 1293 | if (isPrintable(c: Char)) |
| 1294 | OS << (char)Char; |
| 1295 | else // Output anything hard as an octal escape. |
| 1296 | OS << '\\' |
| 1297 | << (char)('0' + ((Char >> 6) & 7)) |
| 1298 | << (char)('0' + ((Char >> 3) & 7)) |
| 1299 | << (char)('0' + ((Char >> 0) & 7)); |
| 1300 | } else { |
| 1301 | // Handle some common non-printable cases to make dumps prettier. |
| 1302 | OS << Escaped; |
| 1303 | } |
| 1304 | } |
| 1305 | OS << '"'; |
| 1306 | } |
| 1307 | |
| 1308 | /// getLocationOfByte - Return a source location that points to the specified |
| 1309 | /// byte of this string literal. |
| 1310 | /// |
| 1311 | /// Strings are amazingly complex. They can be formed from multiple tokens and |
| 1312 | /// can have escape sequences in them in addition to the usual trigraph and |
| 1313 | /// escaped newline business. This routine handles this complexity. |
| 1314 | /// |
| 1315 | /// The *StartToken sets the first token to be searched in this function and |
| 1316 | /// the *StartTokenByteOffset is the byte offset of the first token. Before |
| 1317 | /// returning, it updates the *StartToken to the TokNo of the token being found |
| 1318 | /// and sets *StartTokenByteOffset to the byte offset of the token in the |
| 1319 | /// string. |
| 1320 | /// Using these two parameters can reduce the time complexity from O(n^2) to |
| 1321 | /// O(n) if one wants to get the location of byte for all the tokens in a |
| 1322 | /// string. |
| 1323 | /// |
| 1324 | SourceLocation |
| 1325 | StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, |
| 1326 | const LangOptions &Features, |
| 1327 | const TargetInfo &Target, unsigned *StartToken, |
| 1328 | unsigned *StartTokenByteOffset) const { |
| 1329 | // No source location of bytes for binary literals since they don't come from |
| 1330 | // source. |
| 1331 | if (getKind() == StringLiteralKind::Binary) |
| 1332 | return getStrTokenLoc(TokNum: 0); |
| 1333 | |
| 1334 | assert((getKind() == StringLiteralKind::Ordinary || |
| 1335 | getKind() == StringLiteralKind::UTF8 || |
| 1336 | getKind() == StringLiteralKind::Unevaluated) && |
| 1337 | "Only narrow string literals are currently supported" ); |
| 1338 | |
| 1339 | // Loop over all of the tokens in this string until we find the one that |
| 1340 | // contains the byte we're looking for. |
| 1341 | unsigned TokNo = 0; |
| 1342 | unsigned StringOffset = 0; |
| 1343 | if (StartToken) |
| 1344 | TokNo = *StartToken; |
| 1345 | if (StartTokenByteOffset) { |
| 1346 | StringOffset = *StartTokenByteOffset; |
| 1347 | ByteNo -= StringOffset; |
| 1348 | } |
| 1349 | while (true) { |
| 1350 | assert(TokNo < getNumConcatenated() && "Invalid byte number!" ); |
| 1351 | SourceLocation StrTokLoc = getStrTokenLoc(TokNum: TokNo); |
| 1352 | |
| 1353 | // Get the spelling of the string so that we can get the data that makes up |
| 1354 | // the string literal, not the identifier for the macro it is potentially |
| 1355 | // expanded through. |
| 1356 | SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(Loc: StrTokLoc); |
| 1357 | |
| 1358 | // Re-lex the token to get its length and original spelling. |
| 1359 | FileIDAndOffset LocInfo = SM.getDecomposedLoc(Loc: StrTokSpellingLoc); |
| 1360 | bool Invalid = false; |
| 1361 | StringRef Buffer = SM.getBufferData(FID: LocInfo.first, Invalid: &Invalid); |
| 1362 | if (Invalid) { |
| 1363 | if (StartTokenByteOffset != nullptr) |
| 1364 | *StartTokenByteOffset = StringOffset; |
| 1365 | if (StartToken != nullptr) |
| 1366 | *StartToken = TokNo; |
| 1367 | return StrTokSpellingLoc; |
| 1368 | } |
| 1369 | |
| 1370 | const char *StrData = Buffer.data()+LocInfo.second; |
| 1371 | |
| 1372 | // Create a lexer starting at the beginning of this token. |
| 1373 | Lexer TheLexer(SM.getLocForStartOfFile(FID: LocInfo.first), Features, |
| 1374 | Buffer.begin(), StrData, Buffer.end()); |
| 1375 | Token TheTok; |
| 1376 | TheLexer.LexFromRawLexer(Result&: TheTok); |
| 1377 | |
| 1378 | // Use the StringLiteralParser to compute the length of the string in bytes. |
| 1379 | StringLiteralParser SLP(TheTok, SM, Features, Target); |
| 1380 | unsigned TokNumBytes = SLP.GetStringLength(); |
| 1381 | |
| 1382 | // If the byte is in this token, return the location of the byte. |
| 1383 | if (ByteNo < TokNumBytes || |
| 1384 | (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { |
| 1385 | unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); |
| 1386 | |
| 1387 | // Now that we know the offset of the token in the spelling, use the |
| 1388 | // preprocessor to get the offset in the original source. |
| 1389 | if (StartTokenByteOffset != nullptr) |
| 1390 | *StartTokenByteOffset = StringOffset; |
| 1391 | if (StartToken != nullptr) |
| 1392 | *StartToken = TokNo; |
| 1393 | return Lexer::AdvanceToTokenCharacter(TokStart: StrTokLoc, Characters: Offset, SM, LangOpts: Features); |
| 1394 | } |
| 1395 | |
| 1396 | // Move to the next string token. |
| 1397 | StringOffset += TokNumBytes; |
| 1398 | ++TokNo; |
| 1399 | ByteNo -= TokNumBytes; |
| 1400 | } |
| 1401 | } |
| 1402 | |
| 1403 | /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it |
| 1404 | /// corresponds to, e.g. "sizeof" or "[pre]++". |
| 1405 | StringRef UnaryOperator::getOpcodeStr(Opcode Op) { |
| 1406 | switch (Op) { |
| 1407 | #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; |
| 1408 | #include "clang/AST/OperationKinds.def" |
| 1409 | } |
| 1410 | llvm_unreachable("Unknown unary operator" ); |
| 1411 | } |
| 1412 | |
| 1413 | UnaryOperatorKind |
| 1414 | UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { |
| 1415 | switch (OO) { |
| 1416 | default: llvm_unreachable("No unary operator for overloaded function" ); |
| 1417 | case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; |
| 1418 | case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; |
| 1419 | case OO_Amp: return UO_AddrOf; |
| 1420 | case OO_Star: return UO_Deref; |
| 1421 | case OO_Plus: return UO_Plus; |
| 1422 | case OO_Minus: return UO_Minus; |
| 1423 | case OO_Tilde: return UO_Not; |
| 1424 | case OO_Exclaim: return UO_LNot; |
| 1425 | case OO_Coawait: return UO_Coawait; |
| 1426 | } |
| 1427 | } |
| 1428 | |
| 1429 | OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { |
| 1430 | switch (Opc) { |
| 1431 | case UO_PostInc: case UO_PreInc: return OO_PlusPlus; |
| 1432 | case UO_PostDec: case UO_PreDec: return OO_MinusMinus; |
| 1433 | case UO_AddrOf: return OO_Amp; |
| 1434 | case UO_Deref: return OO_Star; |
| 1435 | case UO_Plus: return OO_Plus; |
| 1436 | case UO_Minus: return OO_Minus; |
| 1437 | case UO_Not: return OO_Tilde; |
| 1438 | case UO_LNot: return OO_Exclaim; |
| 1439 | case UO_Coawait: return OO_Coawait; |
| 1440 | default: return OO_None; |
| 1441 | } |
| 1442 | } |
| 1443 | |
| 1444 | |
| 1445 | //===----------------------------------------------------------------------===// |
| 1446 | // Postfix Operators. |
| 1447 | //===----------------------------------------------------------------------===// |
| 1448 | #ifndef NDEBUG |
| 1449 | static unsigned SizeOfCallExprInstance(Expr::StmtClass SC) { |
| 1450 | switch (SC) { |
| 1451 | case Expr::CallExprClass: |
| 1452 | return sizeof(CallExpr); |
| 1453 | case Expr::CXXOperatorCallExprClass: |
| 1454 | return sizeof(CXXOperatorCallExpr); |
| 1455 | case Expr::CXXMemberCallExprClass: |
| 1456 | return sizeof(CXXMemberCallExpr); |
| 1457 | case Expr::UserDefinedLiteralClass: |
| 1458 | return sizeof(UserDefinedLiteral); |
| 1459 | case Expr::CUDAKernelCallExprClass: |
| 1460 | return sizeof(CUDAKernelCallExpr); |
| 1461 | default: |
| 1462 | llvm_unreachable("unexpected class deriving from CallExpr!" ); |
| 1463 | } |
| 1464 | } |
| 1465 | #endif |
| 1466 | |
| 1467 | // changing the size of SourceLocation, CallExpr, and |
| 1468 | // subclasses requires careful considerations |
| 1469 | static_assert(sizeof(SourceLocation) == 4 && sizeof(CXXOperatorCallExpr) <= 32, |
| 1470 | "we assume CXXOperatorCallExpr is at most 32 bytes" ); |
| 1471 | |
| 1472 | CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, |
| 1473 | ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, |
| 1474 | SourceLocation RParenLoc, FPOptionsOverride FPFeatures, |
| 1475 | unsigned MinNumArgs, ADLCallKind UsesADL) |
| 1476 | : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) { |
| 1477 | NumArgs = std::max<unsigned>(a: Args.size(), b: MinNumArgs); |
| 1478 | unsigned NumPreArgs = PreArgs.size(); |
| 1479 | CallExprBits.NumPreArgs = NumPreArgs; |
| 1480 | assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!" ); |
| 1481 | assert(SizeOfCallExprInstance(SC) <= OffsetToTrailingObjects && |
| 1482 | "This CallExpr subclass is too big or unsupported" ); |
| 1483 | |
| 1484 | CallExprBits.UsesADL = static_cast<bool>(UsesADL); |
| 1485 | |
| 1486 | setCallee(Fn); |
| 1487 | for (unsigned I = 0; I != NumPreArgs; ++I) |
| 1488 | setPreArg(I, PreArg: PreArgs[I]); |
| 1489 | for (unsigned I = 0; I != Args.size(); ++I) |
| 1490 | setArg(Arg: I, ArgExpr: Args[I]); |
| 1491 | for (unsigned I = Args.size(); I != NumArgs; ++I) |
| 1492 | setArg(Arg: I, ArgExpr: nullptr); |
| 1493 | |
| 1494 | this->computeDependence(); |
| 1495 | |
| 1496 | CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); |
| 1497 | CallExprBits.IsCoroElideSafe = false; |
| 1498 | CallExprBits.ExplicitObjectMemFunUsingMemberSyntax = false; |
| 1499 | CallExprBits.HasTrailingSourceLoc = false; |
| 1500 | |
| 1501 | if (hasStoredFPFeatures()) |
| 1502 | setStoredFPFeatures(FPFeatures); |
| 1503 | } |
| 1504 | |
| 1505 | CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, |
| 1506 | bool HasFPFeatures, EmptyShell Empty) |
| 1507 | : Expr(SC, Empty), NumArgs(NumArgs) { |
| 1508 | CallExprBits.NumPreArgs = NumPreArgs; |
| 1509 | assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!" ); |
| 1510 | CallExprBits.HasFPFeatures = HasFPFeatures; |
| 1511 | CallExprBits.IsCoroElideSafe = false; |
| 1512 | CallExprBits.ExplicitObjectMemFunUsingMemberSyntax = false; |
| 1513 | CallExprBits.HasTrailingSourceLoc = false; |
| 1514 | } |
| 1515 | |
| 1516 | CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, |
| 1517 | ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, |
| 1518 | SourceLocation RParenLoc, |
| 1519 | FPOptionsOverride FPFeatures, unsigned MinNumArgs, |
| 1520 | ADLCallKind UsesADL) { |
| 1521 | unsigned NumArgs = std::max<unsigned>(a: Args.size(), b: MinNumArgs); |
| 1522 | unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( |
| 1523 | /*NumPreArgs=*/0, NumArgs, HasFPFeatures: FPFeatures.requiresTrailingStorage()); |
| 1524 | void *Mem = Ctx.Allocate( |
| 1525 | Size: sizeToAllocateForCallExprSubclass<CallExpr>(SizeOfTrailingObjects), |
| 1526 | Align: alignof(CallExpr)); |
| 1527 | CallExpr *E = |
| 1528 | new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, |
| 1529 | RParenLoc, FPFeatures, MinNumArgs, UsesADL); |
| 1530 | E->updateTrailingSourceLoc(); |
| 1531 | return E; |
| 1532 | } |
| 1533 | |
| 1534 | CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, |
| 1535 | bool HasFPFeatures, EmptyShell Empty) { |
| 1536 | unsigned SizeOfTrailingObjects = |
| 1537 | CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures); |
| 1538 | void *Mem = Ctx.Allocate( |
| 1539 | Size: sizeToAllocateForCallExprSubclass<CallExpr>(SizeOfTrailingObjects), |
| 1540 | Align: alignof(CallExpr)); |
| 1541 | return new (Mem) |
| 1542 | CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty); |
| 1543 | } |
| 1544 | |
| 1545 | Decl *Expr::getReferencedDeclOfCallee() { |
| 1546 | |
| 1547 | // Optimize for the common case first |
| 1548 | // (simple function or member function call) |
| 1549 | // then try more exotic possibilities. |
| 1550 | Expr *CEE = IgnoreImpCasts(); |
| 1551 | |
| 1552 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: CEE)) |
| 1553 | return DRE->getDecl(); |
| 1554 | |
| 1555 | if (auto *ME = dyn_cast<MemberExpr>(Val: CEE)) |
| 1556 | return ME->getMemberDecl(); |
| 1557 | |
| 1558 | CEE = CEE->IgnoreParens(); |
| 1559 | |
| 1560 | while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(Val: CEE)) |
| 1561 | CEE = NTTP->getReplacement()->IgnoreParenImpCasts(); |
| 1562 | |
| 1563 | // If we're calling a dereference, look at the pointer instead. |
| 1564 | while (true) { |
| 1565 | if (auto *BO = dyn_cast<BinaryOperator>(Val: CEE)) { |
| 1566 | if (BO->isPtrMemOp()) { |
| 1567 | CEE = BO->getRHS()->IgnoreParenImpCasts(); |
| 1568 | continue; |
| 1569 | } |
| 1570 | } else if (auto *UO = dyn_cast<UnaryOperator>(Val: CEE)) { |
| 1571 | if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf || |
| 1572 | UO->getOpcode() == UO_Plus) { |
| 1573 | CEE = UO->getSubExpr()->IgnoreParenImpCasts(); |
| 1574 | continue; |
| 1575 | } |
| 1576 | } |
| 1577 | break; |
| 1578 | } |
| 1579 | |
| 1580 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: CEE)) |
| 1581 | return DRE->getDecl(); |
| 1582 | if (auto *ME = dyn_cast<MemberExpr>(Val: CEE)) |
| 1583 | return ME->getMemberDecl(); |
| 1584 | if (auto *BE = dyn_cast<BlockExpr>(Val: CEE)) |
| 1585 | return BE->getBlockDecl(); |
| 1586 | |
| 1587 | return nullptr; |
| 1588 | } |
| 1589 | |
| 1590 | /// If this is a call to a builtin, return the builtin ID. If not, return 0. |
| 1591 | unsigned CallExpr::getBuiltinCallee() const { |
| 1592 | const auto *FDecl = getDirectCallee(); |
| 1593 | return FDecl ? FDecl->getBuiltinID() : 0; |
| 1594 | } |
| 1595 | |
| 1596 | bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { |
| 1597 | if (unsigned BI = getBuiltinCallee()) |
| 1598 | return Ctx.BuiltinInfo.isUnevaluated(ID: BI); |
| 1599 | return false; |
| 1600 | } |
| 1601 | |
| 1602 | QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { |
| 1603 | const Expr *Callee = getCallee(); |
| 1604 | QualType CalleeType = Callee->getType(); |
| 1605 | if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { |
| 1606 | CalleeType = FnTypePtr->getPointeeType(); |
| 1607 | } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { |
| 1608 | CalleeType = BPT->getPointeeType(); |
| 1609 | } else if (CalleeType->isSpecificPlaceholderType(K: BuiltinType::BoundMember)) { |
| 1610 | if (isa<CXXPseudoDestructorExpr>(Val: Callee->IgnoreParens())) |
| 1611 | return Ctx.VoidTy; |
| 1612 | |
| 1613 | if (isa<UnresolvedMemberExpr>(Val: Callee->IgnoreParens())) |
| 1614 | return Ctx.DependentTy; |
| 1615 | |
| 1616 | // This should never be overloaded and so should never return null. |
| 1617 | CalleeType = Expr::findBoundMemberType(expr: Callee); |
| 1618 | assert(!CalleeType.isNull()); |
| 1619 | } else if (CalleeType->isRecordType()) { |
| 1620 | // If the Callee is a record type, then it is a not-yet-resolved |
| 1621 | // dependent call to the call operator of that type. |
| 1622 | return Ctx.DependentTy; |
| 1623 | } else if (CalleeType->isDependentType() || |
| 1624 | CalleeType->isSpecificPlaceholderType(K: BuiltinType::Overload)) { |
| 1625 | return Ctx.DependentTy; |
| 1626 | } |
| 1627 | |
| 1628 | const FunctionType *FnType = CalleeType->castAs<FunctionType>(); |
| 1629 | return FnType->getReturnType(); |
| 1630 | } |
| 1631 | |
| 1632 | std::pair<const NamedDecl *, const Attr *> |
| 1633 | CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { |
| 1634 | // If the callee is marked nodiscard, return that attribute |
| 1635 | if (const Decl *D = getCalleeDecl()) |
| 1636 | if (const auto *A = D->getAttr<WarnUnusedResultAttr>()) |
| 1637 | return {nullptr, A}; |
| 1638 | |
| 1639 | // If the return type is a struct, union, or enum that is marked nodiscard, |
| 1640 | // then return the return type attribute. |
| 1641 | if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) |
| 1642 | if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) |
| 1643 | return {TD, A}; |
| 1644 | |
| 1645 | for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD; |
| 1646 | TD = TD->desugar()->getAs<TypedefType>()) |
| 1647 | if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>()) |
| 1648 | return {TD->getDecl(), A}; |
| 1649 | return {nullptr, nullptr}; |
| 1650 | } |
| 1651 | |
| 1652 | OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, |
| 1653 | SourceLocation OperatorLoc, |
| 1654 | TypeSourceInfo *tsi, |
| 1655 | ArrayRef<OffsetOfNode> comps, |
| 1656 | ArrayRef<Expr*> exprs, |
| 1657 | SourceLocation RParenLoc) { |
| 1658 | void *Mem = C.Allocate( |
| 1659 | Size: totalSizeToAlloc<OffsetOfNode, Expr *>(Counts: comps.size(), Counts: exprs.size())); |
| 1660 | |
| 1661 | return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, |
| 1662 | RParenLoc); |
| 1663 | } |
| 1664 | |
| 1665 | OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, |
| 1666 | unsigned numComps, unsigned numExprs) { |
| 1667 | void *Mem = |
| 1668 | C.Allocate(Size: totalSizeToAlloc<OffsetOfNode, Expr *>(Counts: numComps, Counts: numExprs)); |
| 1669 | return new (Mem) OffsetOfExpr(numComps, numExprs); |
| 1670 | } |
| 1671 | |
| 1672 | OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, |
| 1673 | SourceLocation OperatorLoc, TypeSourceInfo *tsi, |
| 1674 | ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs, |
| 1675 | SourceLocation RParenLoc) |
| 1676 | : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary), |
| 1677 | OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), |
| 1678 | NumComps(comps.size()), NumExprs(exprs.size()) { |
| 1679 | for (unsigned i = 0; i != comps.size(); ++i) |
| 1680 | setComponent(Idx: i, ON: comps[i]); |
| 1681 | for (unsigned i = 0; i != exprs.size(); ++i) |
| 1682 | setIndexExpr(Idx: i, E: exprs[i]); |
| 1683 | |
| 1684 | setDependence(computeDependence(E: this)); |
| 1685 | } |
| 1686 | |
| 1687 | IdentifierInfo *OffsetOfNode::getFieldName() const { |
| 1688 | assert(getKind() == Field || getKind() == Identifier); |
| 1689 | if (getKind() == Field) |
| 1690 | return getField()->getIdentifier(); |
| 1691 | |
| 1692 | return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); |
| 1693 | } |
| 1694 | |
| 1695 | UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( |
| 1696 | UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, |
| 1697 | SourceLocation op, SourceLocation rp) |
| 1698 | : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary), |
| 1699 | OpLoc(op), RParenLoc(rp) { |
| 1700 | assert(ExprKind <= UETT_Last && "invalid enum value!" ); |
| 1701 | UnaryExprOrTypeTraitExprBits.Kind = ExprKind; |
| 1702 | assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && |
| 1703 | "UnaryExprOrTypeTraitExprBits.Kind overflow!" ); |
| 1704 | UnaryExprOrTypeTraitExprBits.IsType = false; |
| 1705 | Argument.Ex = E; |
| 1706 | setDependence(computeDependence(E: this)); |
| 1707 | } |
| 1708 | |
| 1709 | MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, |
| 1710 | NestedNameSpecifierLoc QualifierLoc, |
| 1711 | SourceLocation TemplateKWLoc, ValueDecl *MemberDecl, |
| 1712 | DeclAccessPair FoundDecl, |
| 1713 | const DeclarationNameInfo &NameInfo, |
| 1714 | const TemplateArgumentListInfo *TemplateArgs, QualType T, |
| 1715 | ExprValueKind VK, ExprObjectKind OK, |
| 1716 | NonOdrUseReason NOUR) |
| 1717 | : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl), |
| 1718 | MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) { |
| 1719 | assert(!NameInfo.getName() || |
| 1720 | MemberDecl->getDeclName() == NameInfo.getName()); |
| 1721 | MemberExprBits.IsArrow = IsArrow; |
| 1722 | MemberExprBits.HasQualifier = QualifierLoc.hasQualifier(); |
| 1723 | MemberExprBits.HasFoundDecl = |
| 1724 | FoundDecl.getDecl() != MemberDecl || |
| 1725 | FoundDecl.getAccess() != MemberDecl->getAccess(); |
| 1726 | MemberExprBits.HasTemplateKWAndArgsInfo = |
| 1727 | TemplateArgs || TemplateKWLoc.isValid(); |
| 1728 | MemberExprBits.HadMultipleCandidates = false; |
| 1729 | MemberExprBits.NonOdrUseReason = NOUR; |
| 1730 | MemberExprBits.OperatorLoc = OperatorLoc; |
| 1731 | |
| 1732 | if (hasQualifier()) |
| 1733 | new (getTrailingObjects<NestedNameSpecifierLoc>()) |
| 1734 | NestedNameSpecifierLoc(QualifierLoc); |
| 1735 | if (hasFoundDecl()) |
| 1736 | *getTrailingObjects<DeclAccessPair>() = FoundDecl; |
| 1737 | if (TemplateArgs) { |
| 1738 | auto Deps = TemplateArgumentDependence::None; |
| 1739 | getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( |
| 1740 | TemplateKWLoc, List: *TemplateArgs, OutArgArray: getTrailingObjects<TemplateArgumentLoc>(), |
| 1741 | Deps); |
| 1742 | } else if (TemplateKWLoc.isValid()) { |
| 1743 | getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( |
| 1744 | TemplateKWLoc); |
| 1745 | } |
| 1746 | setDependence(computeDependence(E: this)); |
| 1747 | } |
| 1748 | |
| 1749 | MemberExpr *MemberExpr::Create( |
| 1750 | const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, |
| 1751 | NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, |
| 1752 | ValueDecl *MemberDecl, DeclAccessPair FoundDecl, |
| 1753 | DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, |
| 1754 | QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { |
| 1755 | bool HasQualifier = QualifierLoc.hasQualifier(); |
| 1756 | bool HasFoundDecl = FoundDecl.getDecl() != MemberDecl || |
| 1757 | FoundDecl.getAccess() != MemberDecl->getAccess(); |
| 1758 | bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); |
| 1759 | std::size_t Size = |
| 1760 | totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair, |
| 1761 | ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( |
| 1762 | Counts: HasQualifier, Counts: HasFoundDecl, Counts: HasTemplateKWAndArgsInfo, |
| 1763 | Counts: TemplateArgs ? TemplateArgs->size() : 0); |
| 1764 | |
| 1765 | void *Mem = C.Allocate(Size, Align: alignof(MemberExpr)); |
| 1766 | return new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, QualifierLoc, |
| 1767 | TemplateKWLoc, MemberDecl, FoundDecl, NameInfo, |
| 1768 | TemplateArgs, T, VK, OK, NOUR); |
| 1769 | } |
| 1770 | |
| 1771 | MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, |
| 1772 | bool HasQualifier, bool HasFoundDecl, |
| 1773 | bool HasTemplateKWAndArgsInfo, |
| 1774 | unsigned NumTemplateArgs) { |
| 1775 | assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && |
| 1776 | "template args but no template arg info?" ); |
| 1777 | std::size_t Size = |
| 1778 | totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair, |
| 1779 | ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( |
| 1780 | Counts: HasQualifier, Counts: HasFoundDecl, Counts: HasTemplateKWAndArgsInfo, |
| 1781 | Counts: NumTemplateArgs); |
| 1782 | void *Mem = Context.Allocate(Size, Align: alignof(MemberExpr)); |
| 1783 | return new (Mem) MemberExpr(EmptyShell()); |
| 1784 | } |
| 1785 | |
| 1786 | void MemberExpr::setMemberDecl(ValueDecl *NewD) { |
| 1787 | MemberDecl = NewD; |
| 1788 | if (getType()->isUndeducedType()) |
| 1789 | setType(NewD->getType()); |
| 1790 | setDependence(computeDependence(E: this)); |
| 1791 | } |
| 1792 | |
| 1793 | SourceLocation MemberExpr::getBeginLoc() const { |
| 1794 | if (isImplicitAccess()) { |
| 1795 | if (hasQualifier()) |
| 1796 | return getQualifierLoc().getBeginLoc(); |
| 1797 | return MemberLoc; |
| 1798 | } |
| 1799 | |
| 1800 | // FIXME: We don't want this to happen. Rather, we should be able to |
| 1801 | // detect all kinds of implicit accesses more cleanly. |
| 1802 | SourceLocation BaseStartLoc = getBase()->getBeginLoc(); |
| 1803 | if (BaseStartLoc.isValid()) |
| 1804 | return BaseStartLoc; |
| 1805 | return MemberLoc; |
| 1806 | } |
| 1807 | SourceLocation MemberExpr::getEndLoc() const { |
| 1808 | SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); |
| 1809 | if (hasExplicitTemplateArgs()) |
| 1810 | EndLoc = getRAngleLoc(); |
| 1811 | else if (EndLoc.isInvalid()) |
| 1812 | EndLoc = getBase()->getEndLoc(); |
| 1813 | return EndLoc; |
| 1814 | } |
| 1815 | |
| 1816 | bool CastExpr::CastConsistency() const { |
| 1817 | switch (getCastKind()) { |
| 1818 | case CK_DerivedToBase: |
| 1819 | case CK_UncheckedDerivedToBase: |
| 1820 | case CK_DerivedToBaseMemberPointer: |
| 1821 | case CK_BaseToDerived: |
| 1822 | case CK_BaseToDerivedMemberPointer: |
| 1823 | assert(!path_empty() && "Cast kind should have a base path!" ); |
| 1824 | break; |
| 1825 | |
| 1826 | case CK_CPointerToObjCPointerCast: |
| 1827 | assert(getType()->isObjCObjectPointerType()); |
| 1828 | assert(getSubExpr()->getType()->isPointerType()); |
| 1829 | goto CheckNoBasePath; |
| 1830 | |
| 1831 | case CK_BlockPointerToObjCPointerCast: |
| 1832 | assert(getType()->isObjCObjectPointerType()); |
| 1833 | assert(getSubExpr()->getType()->isBlockPointerType()); |
| 1834 | goto CheckNoBasePath; |
| 1835 | |
| 1836 | case CK_ReinterpretMemberPointer: |
| 1837 | assert(getType()->isMemberPointerType()); |
| 1838 | assert(getSubExpr()->getType()->isMemberPointerType()); |
| 1839 | goto CheckNoBasePath; |
| 1840 | |
| 1841 | case CK_BitCast: |
| 1842 | // Arbitrary casts to C pointer types count as bitcasts. |
| 1843 | // Otherwise, we should only have block and ObjC pointer casts |
| 1844 | // here if they stay within the type kind. |
| 1845 | if (!getType()->isPointerType()) { |
| 1846 | assert(getType()->isObjCObjectPointerType() == |
| 1847 | getSubExpr()->getType()->isObjCObjectPointerType()); |
| 1848 | assert(getType()->isBlockPointerType() == |
| 1849 | getSubExpr()->getType()->isBlockPointerType()); |
| 1850 | } |
| 1851 | goto CheckNoBasePath; |
| 1852 | |
| 1853 | case CK_AnyPointerToBlockPointerCast: |
| 1854 | assert(getType()->isBlockPointerType()); |
| 1855 | assert(getSubExpr()->getType()->isAnyPointerType() && |
| 1856 | !getSubExpr()->getType()->isBlockPointerType()); |
| 1857 | goto CheckNoBasePath; |
| 1858 | |
| 1859 | case CK_CopyAndAutoreleaseBlockObject: |
| 1860 | assert(getType()->isBlockPointerType()); |
| 1861 | assert(getSubExpr()->getType()->isBlockPointerType()); |
| 1862 | goto CheckNoBasePath; |
| 1863 | |
| 1864 | case CK_FunctionToPointerDecay: |
| 1865 | assert(getType()->isPointerType()); |
| 1866 | assert(getSubExpr()->getType()->isFunctionType()); |
| 1867 | goto CheckNoBasePath; |
| 1868 | |
| 1869 | case CK_AddressSpaceConversion: { |
| 1870 | auto Ty = getType(); |
| 1871 | auto SETy = getSubExpr()->getType(); |
| 1872 | assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); |
| 1873 | if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) { |
| 1874 | Ty = Ty->getPointeeType(); |
| 1875 | SETy = SETy->getPointeeType(); |
| 1876 | } |
| 1877 | assert((Ty->isDependentType() || SETy->isDependentType()) || |
| 1878 | (!Ty.isNull() && !SETy.isNull() && |
| 1879 | Ty.getAddressSpace() != SETy.getAddressSpace())); |
| 1880 | goto CheckNoBasePath; |
| 1881 | } |
| 1882 | // These should not have an inheritance path. |
| 1883 | case CK_Dynamic: |
| 1884 | case CK_ToUnion: |
| 1885 | case CK_ArrayToPointerDecay: |
| 1886 | case CK_NullToMemberPointer: |
| 1887 | case CK_NullToPointer: |
| 1888 | case CK_ConstructorConversion: |
| 1889 | case CK_IntegralToPointer: |
| 1890 | case CK_PointerToIntegral: |
| 1891 | case CK_ToVoid: |
| 1892 | case CK_VectorSplat: |
| 1893 | case CK_IntegralCast: |
| 1894 | case CK_BooleanToSignedIntegral: |
| 1895 | case CK_IntegralToFloating: |
| 1896 | case CK_FloatingToIntegral: |
| 1897 | case CK_FloatingCast: |
| 1898 | case CK_ObjCObjectLValueCast: |
| 1899 | case CK_FloatingRealToComplex: |
| 1900 | case CK_FloatingComplexToReal: |
| 1901 | case CK_FloatingComplexCast: |
| 1902 | case CK_FloatingComplexToIntegralComplex: |
| 1903 | case CK_IntegralRealToComplex: |
| 1904 | case CK_IntegralComplexToReal: |
| 1905 | case CK_IntegralComplexCast: |
| 1906 | case CK_IntegralComplexToFloatingComplex: |
| 1907 | case CK_ARCProduceObject: |
| 1908 | case CK_ARCConsumeObject: |
| 1909 | case CK_ARCReclaimReturnedObject: |
| 1910 | case CK_ARCExtendBlockObject: |
| 1911 | case CK_ZeroToOCLOpaqueType: |
| 1912 | case CK_IntToOCLSampler: |
| 1913 | case CK_FloatingToFixedPoint: |
| 1914 | case CK_FixedPointToFloating: |
| 1915 | case CK_FixedPointCast: |
| 1916 | case CK_FixedPointToIntegral: |
| 1917 | case CK_IntegralToFixedPoint: |
| 1918 | case CK_MatrixCast: |
| 1919 | assert(!getType()->isBooleanType() && "unheralded conversion to bool" ); |
| 1920 | goto CheckNoBasePath; |
| 1921 | |
| 1922 | case CK_Dependent: |
| 1923 | case CK_LValueToRValue: |
| 1924 | case CK_NoOp: |
| 1925 | case CK_AtomicToNonAtomic: |
| 1926 | case CK_NonAtomicToAtomic: |
| 1927 | case CK_PointerToBoolean: |
| 1928 | case CK_IntegralToBoolean: |
| 1929 | case CK_FloatingToBoolean: |
| 1930 | case CK_MemberPointerToBoolean: |
| 1931 | case CK_FloatingComplexToBoolean: |
| 1932 | case CK_IntegralComplexToBoolean: |
| 1933 | case CK_LValueBitCast: // -> bool& |
| 1934 | case CK_LValueToRValueBitCast: |
| 1935 | case CK_UserDefinedConversion: // operator bool() |
| 1936 | case CK_BuiltinFnToFnPtr: |
| 1937 | case CK_FixedPointToBoolean: |
| 1938 | case CK_HLSLArrayRValue: |
| 1939 | case CK_HLSLVectorTruncation: |
| 1940 | case CK_HLSLElementwiseCast: |
| 1941 | case CK_HLSLAggregateSplatCast: |
| 1942 | CheckNoBasePath: |
| 1943 | assert(path_empty() && "Cast kind should not have a base path!" ); |
| 1944 | break; |
| 1945 | } |
| 1946 | return true; |
| 1947 | } |
| 1948 | |
| 1949 | const char *CastExpr::getCastKindName(CastKind CK) { |
| 1950 | switch (CK) { |
| 1951 | #define CAST_OPERATION(Name) case CK_##Name: return #Name; |
| 1952 | #include "clang/AST/OperationKinds.def" |
| 1953 | } |
| 1954 | llvm_unreachable("Unhandled cast kind!" ); |
| 1955 | } |
| 1956 | |
| 1957 | namespace { |
| 1958 | // Skip over implicit nodes produced as part of semantic analysis. |
| 1959 | // Designed for use with IgnoreExprNodes. |
| 1960 | static Expr *ignoreImplicitSemaNodes(Expr *E) { |
| 1961 | if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(Val: E)) |
| 1962 | return Materialize->getSubExpr(); |
| 1963 | |
| 1964 | if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(Val: E)) |
| 1965 | return Binder->getSubExpr(); |
| 1966 | |
| 1967 | if (auto *Full = dyn_cast<FullExpr>(Val: E)) |
| 1968 | return Full->getSubExpr(); |
| 1969 | |
| 1970 | if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(Val: E); |
| 1971 | CPLIE && CPLIE->getInitExprs().size() == 1) |
| 1972 | return CPLIE->getInitExprs()[0]; |
| 1973 | |
| 1974 | return E; |
| 1975 | } |
| 1976 | } // namespace |
| 1977 | |
| 1978 | Expr *CastExpr::getSubExprAsWritten() { |
| 1979 | const Expr *SubExpr = nullptr; |
| 1980 | |
| 1981 | for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(Val: SubExpr)) { |
| 1982 | SubExpr = IgnoreExprNodes(E: E->getSubExpr(), Fns&: ignoreImplicitSemaNodes); |
| 1983 | |
| 1984 | // Conversions by constructor and conversion functions have a |
| 1985 | // subexpression describing the call; strip it off. |
| 1986 | if (E->getCastKind() == CK_ConstructorConversion) { |
| 1987 | SubExpr = IgnoreExprNodes(E: cast<CXXConstructExpr>(Val: SubExpr)->getArg(Arg: 0), |
| 1988 | Fns&: ignoreImplicitSemaNodes); |
| 1989 | } else if (E->getCastKind() == CK_UserDefinedConversion) { |
| 1990 | assert((isa<CallExpr, BlockExpr>(SubExpr)) && |
| 1991 | "Unexpected SubExpr for CK_UserDefinedConversion." ); |
| 1992 | if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: SubExpr)) |
| 1993 | SubExpr = MCE->getImplicitObjectArgument(); |
| 1994 | } |
| 1995 | } |
| 1996 | |
| 1997 | return const_cast<Expr *>(SubExpr); |
| 1998 | } |
| 1999 | |
| 2000 | NamedDecl *CastExpr::getConversionFunction() const { |
| 2001 | const Expr *SubExpr = nullptr; |
| 2002 | |
| 2003 | for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(Val: SubExpr)) { |
| 2004 | SubExpr = IgnoreExprNodes(E: E->getSubExpr(), Fns&: ignoreImplicitSemaNodes); |
| 2005 | |
| 2006 | if (E->getCastKind() == CK_ConstructorConversion) |
| 2007 | return cast<CXXConstructExpr>(Val: SubExpr)->getConstructor(); |
| 2008 | |
| 2009 | if (E->getCastKind() == CK_UserDefinedConversion) { |
| 2010 | if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: SubExpr)) |
| 2011 | return MCE->getMethodDecl(); |
| 2012 | } |
| 2013 | } |
| 2014 | |
| 2015 | return nullptr; |
| 2016 | } |
| 2017 | |
| 2018 | CXXBaseSpecifier **CastExpr::path_buffer() { |
| 2019 | switch (getStmtClass()) { |
| 2020 | #define ABSTRACT_STMT(x) |
| 2021 | #define CASTEXPR(Type, Base) \ |
| 2022 | case Stmt::Type##Class: \ |
| 2023 | return static_cast<Type *>(this) \ |
| 2024 | ->getTrailingObjectsNonStrict<CXXBaseSpecifier *>(); |
| 2025 | #define STMT(Type, Base) |
| 2026 | #include "clang/AST/StmtNodes.inc" |
| 2027 | default: |
| 2028 | llvm_unreachable("non-cast expressions not possible here" ); |
| 2029 | } |
| 2030 | } |
| 2031 | |
| 2032 | const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, |
| 2033 | QualType opType) { |
| 2034 | auto RD = unionType->castAs<RecordType>()->getDecl(); |
| 2035 | return getTargetFieldForToUnionCast(RD, opType); |
| 2036 | } |
| 2037 | |
| 2038 | const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, |
| 2039 | QualType OpType) { |
| 2040 | auto &Ctx = RD->getASTContext(); |
| 2041 | RecordDecl::field_iterator Field, FieldEnd; |
| 2042 | for (Field = RD->field_begin(), FieldEnd = RD->field_end(); |
| 2043 | Field != FieldEnd; ++Field) { |
| 2044 | if (Ctx.hasSameUnqualifiedType(T1: Field->getType(), T2: OpType) && |
| 2045 | !Field->isUnnamedBitField()) { |
| 2046 | return *Field; |
| 2047 | } |
| 2048 | } |
| 2049 | return nullptr; |
| 2050 | } |
| 2051 | |
| 2052 | FPOptionsOverride *CastExpr::getTrailingFPFeatures() { |
| 2053 | assert(hasStoredFPFeatures()); |
| 2054 | switch (getStmtClass()) { |
| 2055 | case ImplicitCastExprClass: |
| 2056 | return static_cast<ImplicitCastExpr *>(this) |
| 2057 | ->getTrailingObjects<FPOptionsOverride>(); |
| 2058 | case CStyleCastExprClass: |
| 2059 | return static_cast<CStyleCastExpr *>(this) |
| 2060 | ->getTrailingObjects<FPOptionsOverride>(); |
| 2061 | case CXXFunctionalCastExprClass: |
| 2062 | return static_cast<CXXFunctionalCastExpr *>(this) |
| 2063 | ->getTrailingObjects<FPOptionsOverride>(); |
| 2064 | case CXXStaticCastExprClass: |
| 2065 | return static_cast<CXXStaticCastExpr *>(this) |
| 2066 | ->getTrailingObjects<FPOptionsOverride>(); |
| 2067 | default: |
| 2068 | llvm_unreachable("Cast does not have FPFeatures" ); |
| 2069 | } |
| 2070 | } |
| 2071 | |
| 2072 | ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, |
| 2073 | CastKind Kind, Expr *Operand, |
| 2074 | const CXXCastPath *BasePath, |
| 2075 | ExprValueKind VK, |
| 2076 | FPOptionsOverride FPO) { |
| 2077 | unsigned PathSize = (BasePath ? BasePath->size() : 0); |
| 2078 | void *Buffer = |
| 2079 | C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( |
| 2080 | Counts: PathSize, Counts: FPO.requiresTrailingStorage())); |
| 2081 | // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and |
| 2082 | // std::nullptr_t have special semantics not captured by CK_LValueToRValue. |
| 2083 | assert((Kind != CK_LValueToRValue || |
| 2084 | !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && |
| 2085 | "invalid type for lvalue-to-rvalue conversion" ); |
| 2086 | ImplicitCastExpr *E = |
| 2087 | new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK); |
| 2088 | if (PathSize) |
| 2089 | llvm::uninitialized_copy(Src: *BasePath, |
| 2090 | Dst: E->getTrailingObjects<CXXBaseSpecifier *>()); |
| 2091 | return E; |
| 2092 | } |
| 2093 | |
| 2094 | ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, |
| 2095 | unsigned PathSize, |
| 2096 | bool HasFPFeatures) { |
| 2097 | void *Buffer = |
| 2098 | C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( |
| 2099 | Counts: PathSize, Counts: HasFPFeatures)); |
| 2100 | return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures); |
| 2101 | } |
| 2102 | |
| 2103 | CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, |
| 2104 | ExprValueKind VK, CastKind K, Expr *Op, |
| 2105 | const CXXCastPath *BasePath, |
| 2106 | FPOptionsOverride FPO, |
| 2107 | TypeSourceInfo *WrittenTy, |
| 2108 | SourceLocation L, SourceLocation R) { |
| 2109 | unsigned PathSize = (BasePath ? BasePath->size() : 0); |
| 2110 | void *Buffer = |
| 2111 | C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( |
| 2112 | Counts: PathSize, Counts: FPO.requiresTrailingStorage())); |
| 2113 | CStyleCastExpr *E = |
| 2114 | new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R); |
| 2115 | if (PathSize) |
| 2116 | llvm::uninitialized_copy(Src: *BasePath, |
| 2117 | Dst: E->getTrailingObjects<CXXBaseSpecifier *>()); |
| 2118 | return E; |
| 2119 | } |
| 2120 | |
| 2121 | CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, |
| 2122 | unsigned PathSize, |
| 2123 | bool HasFPFeatures) { |
| 2124 | void *Buffer = |
| 2125 | C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( |
| 2126 | Counts: PathSize, Counts: HasFPFeatures)); |
| 2127 | return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures); |
| 2128 | } |
| 2129 | |
| 2130 | /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it |
| 2131 | /// corresponds to, e.g. "<<=". |
| 2132 | StringRef BinaryOperator::getOpcodeStr(Opcode Op) { |
| 2133 | switch (Op) { |
| 2134 | #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; |
| 2135 | #include "clang/AST/OperationKinds.def" |
| 2136 | } |
| 2137 | llvm_unreachable("Invalid OpCode!" ); |
| 2138 | } |
| 2139 | |
| 2140 | BinaryOperatorKind |
| 2141 | BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { |
| 2142 | switch (OO) { |
| 2143 | default: llvm_unreachable("Not an overloadable binary operator" ); |
| 2144 | case OO_Plus: return BO_Add; |
| 2145 | case OO_Minus: return BO_Sub; |
| 2146 | case OO_Star: return BO_Mul; |
| 2147 | case OO_Slash: return BO_Div; |
| 2148 | case OO_Percent: return BO_Rem; |
| 2149 | case OO_Caret: return BO_Xor; |
| 2150 | case OO_Amp: return BO_And; |
| 2151 | case OO_Pipe: return BO_Or; |
| 2152 | case OO_Equal: return BO_Assign; |
| 2153 | case OO_Spaceship: return BO_Cmp; |
| 2154 | case OO_Less: return BO_LT; |
| 2155 | case OO_Greater: return BO_GT; |
| 2156 | case OO_PlusEqual: return BO_AddAssign; |
| 2157 | case OO_MinusEqual: return BO_SubAssign; |
| 2158 | case OO_StarEqual: return BO_MulAssign; |
| 2159 | case OO_SlashEqual: return BO_DivAssign; |
| 2160 | case OO_PercentEqual: return BO_RemAssign; |
| 2161 | case OO_CaretEqual: return BO_XorAssign; |
| 2162 | case OO_AmpEqual: return BO_AndAssign; |
| 2163 | case OO_PipeEqual: return BO_OrAssign; |
| 2164 | case OO_LessLess: return BO_Shl; |
| 2165 | case OO_GreaterGreater: return BO_Shr; |
| 2166 | case OO_LessLessEqual: return BO_ShlAssign; |
| 2167 | case OO_GreaterGreaterEqual: return BO_ShrAssign; |
| 2168 | case OO_EqualEqual: return BO_EQ; |
| 2169 | case OO_ExclaimEqual: return BO_NE; |
| 2170 | case OO_LessEqual: return BO_LE; |
| 2171 | case OO_GreaterEqual: return BO_GE; |
| 2172 | case OO_AmpAmp: return BO_LAnd; |
| 2173 | case OO_PipePipe: return BO_LOr; |
| 2174 | case OO_Comma: return BO_Comma; |
| 2175 | case OO_ArrowStar: return BO_PtrMemI; |
| 2176 | } |
| 2177 | } |
| 2178 | |
| 2179 | OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { |
| 2180 | static const OverloadedOperatorKind OverOps[] = { |
| 2181 | /* .* Cannot be overloaded */OO_None, OO_ArrowStar, |
| 2182 | OO_Star, OO_Slash, OO_Percent, |
| 2183 | OO_Plus, OO_Minus, |
| 2184 | OO_LessLess, OO_GreaterGreater, |
| 2185 | OO_Spaceship, |
| 2186 | OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, |
| 2187 | OO_EqualEqual, OO_ExclaimEqual, |
| 2188 | OO_Amp, |
| 2189 | OO_Caret, |
| 2190 | OO_Pipe, |
| 2191 | OO_AmpAmp, |
| 2192 | OO_PipePipe, |
| 2193 | OO_Equal, OO_StarEqual, |
| 2194 | OO_SlashEqual, OO_PercentEqual, |
| 2195 | OO_PlusEqual, OO_MinusEqual, |
| 2196 | OO_LessLessEqual, OO_GreaterGreaterEqual, |
| 2197 | OO_AmpEqual, OO_CaretEqual, |
| 2198 | OO_PipeEqual, |
| 2199 | OO_Comma |
| 2200 | }; |
| 2201 | return OverOps[Opc]; |
| 2202 | } |
| 2203 | |
| 2204 | bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, |
| 2205 | Opcode Opc, |
| 2206 | const Expr *LHS, |
| 2207 | const Expr *RHS) { |
| 2208 | if (Opc != BO_Add) |
| 2209 | return false; |
| 2210 | |
| 2211 | // Check that we have one pointer and one integer operand. |
| 2212 | const Expr *PExp; |
| 2213 | if (LHS->getType()->isPointerType()) { |
| 2214 | if (!RHS->getType()->isIntegerType()) |
| 2215 | return false; |
| 2216 | PExp = LHS; |
| 2217 | } else if (RHS->getType()->isPointerType()) { |
| 2218 | if (!LHS->getType()->isIntegerType()) |
| 2219 | return false; |
| 2220 | PExp = RHS; |
| 2221 | } else { |
| 2222 | return false; |
| 2223 | } |
| 2224 | |
| 2225 | // Workaround for old glibc's __PTR_ALIGN macro |
| 2226 | if (auto *Select = |
| 2227 | dyn_cast<ConditionalOperator>(Val: PExp->IgnoreParenNoopCasts(Ctx))) { |
| 2228 | // If the condition can be constant evaluated, we check the selected arm. |
| 2229 | bool EvalResult; |
| 2230 | if (!Select->getCond()->EvaluateAsBooleanCondition(Result&: EvalResult, Ctx)) |
| 2231 | return false; |
| 2232 | PExp = EvalResult ? Select->getTrueExpr() : Select->getFalseExpr(); |
| 2233 | } |
| 2234 | |
| 2235 | // Check that the pointer is a nullptr. |
| 2236 | if (!PExp->IgnoreParenCasts() |
| 2237 | ->isNullPointerConstant(Ctx, NPC: Expr::NPC_ValueDependentIsNotNull)) |
| 2238 | return false; |
| 2239 | |
| 2240 | // Check that the pointee type is char-sized. |
| 2241 | const PointerType *PTy = PExp->getType()->getAs<PointerType>(); |
| 2242 | if (!PTy || !PTy->getPointeeType()->isCharType()) |
| 2243 | return false; |
| 2244 | |
| 2245 | return true; |
| 2246 | } |
| 2247 | |
| 2248 | SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, SourceLocIdentKind Kind, |
| 2249 | QualType ResultTy, SourceLocation BLoc, |
| 2250 | SourceLocation RParenLoc, |
| 2251 | DeclContext *ParentContext) |
| 2252 | : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary), |
| 2253 | BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { |
| 2254 | SourceLocExprBits.Kind = llvm::to_underlying(E: Kind); |
| 2255 | // In dependent contexts, function names may change. |
| 2256 | setDependence(MayBeDependent(Kind) && ParentContext->isDependentContext() |
| 2257 | ? ExprDependence::Value |
| 2258 | : ExprDependence::None); |
| 2259 | } |
| 2260 | |
| 2261 | StringRef SourceLocExpr::getBuiltinStr() const { |
| 2262 | switch (getIdentKind()) { |
| 2263 | case SourceLocIdentKind::File: |
| 2264 | return "__builtin_FILE" ; |
| 2265 | case SourceLocIdentKind::FileName: |
| 2266 | return "__builtin_FILE_NAME" ; |
| 2267 | case SourceLocIdentKind::Function: |
| 2268 | return "__builtin_FUNCTION" ; |
| 2269 | case SourceLocIdentKind::FuncSig: |
| 2270 | return "__builtin_FUNCSIG" ; |
| 2271 | case SourceLocIdentKind::Line: |
| 2272 | return "__builtin_LINE" ; |
| 2273 | case SourceLocIdentKind::Column: |
| 2274 | return "__builtin_COLUMN" ; |
| 2275 | case SourceLocIdentKind::SourceLocStruct: |
| 2276 | return "__builtin_source_location" ; |
| 2277 | } |
| 2278 | llvm_unreachable("unexpected IdentKind!" ); |
| 2279 | } |
| 2280 | |
| 2281 | APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, |
| 2282 | const Expr *DefaultExpr) const { |
| 2283 | SourceLocation Loc; |
| 2284 | const DeclContext *Context; |
| 2285 | |
| 2286 | if (const auto *DIE = dyn_cast_if_present<CXXDefaultInitExpr>(Val: DefaultExpr)) { |
| 2287 | Loc = DIE->getUsedLocation(); |
| 2288 | Context = DIE->getUsedContext(); |
| 2289 | } else if (const auto *DAE = |
| 2290 | dyn_cast_if_present<CXXDefaultArgExpr>(Val: DefaultExpr)) { |
| 2291 | Loc = DAE->getUsedLocation(); |
| 2292 | Context = DAE->getUsedContext(); |
| 2293 | } else { |
| 2294 | Loc = getLocation(); |
| 2295 | Context = getParentContext(); |
| 2296 | } |
| 2297 | |
| 2298 | // If we are currently parsing a lambda declarator, we might not have a fully |
| 2299 | // formed call operator declaration yet, and we could not form a function name |
| 2300 | // for it. Because we do not have access to Sema/function scopes here, we |
| 2301 | // detect this case by relying on the fact such method doesn't yet have a |
| 2302 | // type. |
| 2303 | if (const auto *D = dyn_cast<CXXMethodDecl>(Val: Context); |
| 2304 | D && D->getFunctionTypeLoc().isNull() && isLambdaCallOperator(MD: D)) |
| 2305 | Context = D->getParent()->getParent(); |
| 2306 | |
| 2307 | PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( |
| 2308 | Loc: Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); |
| 2309 | |
| 2310 | auto MakeStringLiteral = [&](StringRef Tmp) { |
| 2311 | using LValuePathEntry = APValue::LValuePathEntry; |
| 2312 | StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Key: Tmp); |
| 2313 | // Decay the string to a pointer to the first character. |
| 2314 | LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(Index: 0)}; |
| 2315 | return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); |
| 2316 | }; |
| 2317 | |
| 2318 | switch (getIdentKind()) { |
| 2319 | case SourceLocIdentKind::FileName: { |
| 2320 | // __builtin_FILE_NAME() is a Clang-specific extension that expands to the |
| 2321 | // the last part of __builtin_FILE(). |
| 2322 | SmallString<256> FileName; |
| 2323 | clang::Preprocessor::processPathToFileName( |
| 2324 | FileName, PLoc, LangOpts: Ctx.getLangOpts(), TI: Ctx.getTargetInfo()); |
| 2325 | return MakeStringLiteral(FileName); |
| 2326 | } |
| 2327 | case SourceLocIdentKind::File: { |
| 2328 | SmallString<256> Path(PLoc.getFilename()); |
| 2329 | clang::Preprocessor::processPathForFileMacro(Path, LangOpts: Ctx.getLangOpts(), |
| 2330 | TI: Ctx.getTargetInfo()); |
| 2331 | return MakeStringLiteral(Path); |
| 2332 | } |
| 2333 | case SourceLocIdentKind::Function: |
| 2334 | case SourceLocIdentKind::FuncSig: { |
| 2335 | const auto *CurDecl = dyn_cast<Decl>(Val: Context); |
| 2336 | const auto Kind = getIdentKind() == SourceLocIdentKind::Function |
| 2337 | ? PredefinedIdentKind::Function |
| 2338 | : PredefinedIdentKind::FuncSig; |
| 2339 | return MakeStringLiteral( |
| 2340 | CurDecl ? PredefinedExpr::ComputeName(IK: Kind, CurrentDecl: CurDecl) : std::string("" )); |
| 2341 | } |
| 2342 | case SourceLocIdentKind::Line: |
| 2343 | return APValue(Ctx.MakeIntValue(Value: PLoc.getLine(), Type: Ctx.UnsignedIntTy)); |
| 2344 | case SourceLocIdentKind::Column: |
| 2345 | return APValue(Ctx.MakeIntValue(Value: PLoc.getColumn(), Type: Ctx.UnsignedIntTy)); |
| 2346 | case SourceLocIdentKind::SourceLocStruct: { |
| 2347 | // Fill in a std::source_location::__impl structure, by creating an |
| 2348 | // artificial file-scoped CompoundLiteralExpr, and returning a pointer to |
| 2349 | // that. |
| 2350 | const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl(); |
| 2351 | assert(ImplDecl); |
| 2352 | |
| 2353 | // Construct an APValue for the __impl struct, and get or create a Decl |
| 2354 | // corresponding to that. Note that we've already verified that the shape of |
| 2355 | // the ImplDecl type is as expected. |
| 2356 | |
| 2357 | APValue Value(APValue::UninitStruct(), 0, 4); |
| 2358 | for (const FieldDecl *F : ImplDecl->fields()) { |
| 2359 | StringRef Name = F->getName(); |
| 2360 | if (Name == "_M_file_name" ) { |
| 2361 | SmallString<256> Path(PLoc.getFilename()); |
| 2362 | clang::Preprocessor::processPathForFileMacro(Path, LangOpts: Ctx.getLangOpts(), |
| 2363 | TI: Ctx.getTargetInfo()); |
| 2364 | Value.getStructField(i: F->getFieldIndex()) = MakeStringLiteral(Path); |
| 2365 | } else if (Name == "_M_function_name" ) { |
| 2366 | // Note: this emits the PrettyFunction name -- different than what |
| 2367 | // __builtin_FUNCTION() above returns! |
| 2368 | const auto *CurDecl = dyn_cast<Decl>(Val: Context); |
| 2369 | Value.getStructField(i: F->getFieldIndex()) = MakeStringLiteral( |
| 2370 | CurDecl && !isa<TranslationUnitDecl>(Val: CurDecl) |
| 2371 | ? StringRef(PredefinedExpr::ComputeName( |
| 2372 | IK: PredefinedIdentKind::PrettyFunction, CurrentDecl: CurDecl)) |
| 2373 | : "" ); |
| 2374 | } else if (Name == "_M_line" ) { |
| 2375 | llvm::APSInt IntVal = Ctx.MakeIntValue(Value: PLoc.getLine(), Type: F->getType()); |
| 2376 | Value.getStructField(i: F->getFieldIndex()) = APValue(IntVal); |
| 2377 | } else if (Name == "_M_column" ) { |
| 2378 | llvm::APSInt IntVal = Ctx.MakeIntValue(Value: PLoc.getColumn(), Type: F->getType()); |
| 2379 | Value.getStructField(i: F->getFieldIndex()) = APValue(IntVal); |
| 2380 | } |
| 2381 | } |
| 2382 | |
| 2383 | UnnamedGlobalConstantDecl *GV = |
| 2384 | Ctx.getUnnamedGlobalConstantDecl(Ty: getType()->getPointeeType(), Value); |
| 2385 | |
| 2386 | return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{}, |
| 2387 | false); |
| 2388 | } |
| 2389 | } |
| 2390 | llvm_unreachable("unhandled case" ); |
| 2391 | } |
| 2392 | |
| 2393 | EmbedExpr::EmbedExpr(const ASTContext &Ctx, SourceLocation Loc, |
| 2394 | EmbedDataStorage *Data, unsigned Begin, |
| 2395 | unsigned NumOfElements) |
| 2396 | : Expr(EmbedExprClass, Ctx.IntTy, VK_PRValue, OK_Ordinary), |
| 2397 | EmbedKeywordLoc(Loc), Ctx(&Ctx), Data(Data), Begin(Begin), |
| 2398 | NumOfElements(NumOfElements) { |
| 2399 | setDependence(ExprDependence::None); |
| 2400 | FakeChildNode = IntegerLiteral::Create( |
| 2401 | C: Ctx, V: llvm::APInt::getZero(numBits: Ctx.getTypeSize(T: getType())), type: getType(), l: Loc); |
| 2402 | } |
| 2403 | |
| 2404 | InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, |
| 2405 | ArrayRef<Expr *> initExprs, SourceLocation rbraceloc) |
| 2406 | : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary), |
| 2407 | InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc), |
| 2408 | RBraceLoc(rbraceloc), AltForm(nullptr, true) { |
| 2409 | sawArrayRangeDesignator(ARD: false); |
| 2410 | InitExprs.insert(C, I: InitExprs.end(), From: initExprs.begin(), To: initExprs.end()); |
| 2411 | |
| 2412 | setDependence(computeDependence(E: this)); |
| 2413 | } |
| 2414 | |
| 2415 | void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { |
| 2416 | if (NumInits > InitExprs.size()) |
| 2417 | InitExprs.reserve(C, N: NumInits); |
| 2418 | } |
| 2419 | |
| 2420 | void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { |
| 2421 | InitExprs.resize(C, N: NumInits, NV: nullptr); |
| 2422 | } |
| 2423 | |
| 2424 | Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { |
| 2425 | if (Init >= InitExprs.size()) { |
| 2426 | InitExprs.insert(C, I: InitExprs.end(), NumToInsert: Init - InitExprs.size() + 1, Elt: nullptr); |
| 2427 | setInit(Init, expr); |
| 2428 | return nullptr; |
| 2429 | } |
| 2430 | |
| 2431 | Expr *Result = cast_or_null<Expr>(Val: InitExprs[Init]); |
| 2432 | setInit(Init, expr); |
| 2433 | return Result; |
| 2434 | } |
| 2435 | |
| 2436 | void InitListExpr::setArrayFiller(Expr *filler) { |
| 2437 | assert(!hasArrayFiller() && "Filler already set!" ); |
| 2438 | ArrayFillerOrUnionFieldInit = filler; |
| 2439 | // Fill out any "holes" in the array due to designated initializers. |
| 2440 | Expr **inits = getInits(); |
| 2441 | for (unsigned i = 0, e = getNumInits(); i != e; ++i) |
| 2442 | if (inits[i] == nullptr) |
| 2443 | inits[i] = filler; |
| 2444 | } |
| 2445 | |
| 2446 | bool InitListExpr::isStringLiteralInit() const { |
| 2447 | if (getNumInits() != 1) |
| 2448 | return false; |
| 2449 | const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); |
| 2450 | if (!AT || !AT->getElementType()->isIntegerType()) |
| 2451 | return false; |
| 2452 | // It is possible for getInit() to return null. |
| 2453 | const Expr *Init = getInit(Init: 0); |
| 2454 | if (!Init) |
| 2455 | return false; |
| 2456 | Init = Init->IgnoreParenImpCasts(); |
| 2457 | return isa<StringLiteral>(Val: Init) || isa<ObjCEncodeExpr>(Val: Init); |
| 2458 | } |
| 2459 | |
| 2460 | bool InitListExpr::isTransparent() const { |
| 2461 | assert(isSemanticForm() && "syntactic form never semantically transparent" ); |
| 2462 | |
| 2463 | // A glvalue InitListExpr is always just sugar. |
| 2464 | if (isGLValue()) { |
| 2465 | assert(getNumInits() == 1 && "multiple inits in glvalue init list" ); |
| 2466 | return true; |
| 2467 | } |
| 2468 | |
| 2469 | // Otherwise, we're sugar if and only if we have exactly one initializer that |
| 2470 | // is of the same type. |
| 2471 | if (getNumInits() != 1 || !getInit(Init: 0)) |
| 2472 | return false; |
| 2473 | |
| 2474 | // Don't confuse aggregate initialization of a struct X { X &x; }; with a |
| 2475 | // transparent struct copy. |
| 2476 | if (!getInit(Init: 0)->isPRValue() && getType()->isRecordType()) |
| 2477 | return false; |
| 2478 | |
| 2479 | return getType().getCanonicalType() == |
| 2480 | getInit(Init: 0)->getType().getCanonicalType(); |
| 2481 | } |
| 2482 | |
| 2483 | bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { |
| 2484 | assert(isSyntacticForm() && "only test syntactic form as zero initializer" ); |
| 2485 | |
| 2486 | if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(Init: 0)) { |
| 2487 | return false; |
| 2488 | } |
| 2489 | |
| 2490 | const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(Val: getInit(Init: 0)->IgnoreImplicit()); |
| 2491 | return Lit && Lit->getValue() == 0; |
| 2492 | } |
| 2493 | |
| 2494 | SourceLocation InitListExpr::getBeginLoc() const { |
| 2495 | if (InitListExpr *SyntacticForm = getSyntacticForm()) |
| 2496 | return SyntacticForm->getBeginLoc(); |
| 2497 | SourceLocation Beg = LBraceLoc; |
| 2498 | if (Beg.isInvalid()) { |
| 2499 | // Find the first non-null initializer. |
| 2500 | for (InitExprsTy::const_iterator I = InitExprs.begin(), |
| 2501 | E = InitExprs.end(); |
| 2502 | I != E; ++I) { |
| 2503 | if (Stmt *S = *I) { |
| 2504 | Beg = S->getBeginLoc(); |
| 2505 | break; |
| 2506 | } |
| 2507 | } |
| 2508 | } |
| 2509 | return Beg; |
| 2510 | } |
| 2511 | |
| 2512 | SourceLocation InitListExpr::getEndLoc() const { |
| 2513 | if (InitListExpr *SyntacticForm = getSyntacticForm()) |
| 2514 | return SyntacticForm->getEndLoc(); |
| 2515 | SourceLocation End = RBraceLoc; |
| 2516 | if (End.isInvalid()) { |
| 2517 | // Find the first non-null initializer from the end. |
| 2518 | for (Stmt *S : llvm::reverse(C: InitExprs)) { |
| 2519 | if (S) { |
| 2520 | End = S->getEndLoc(); |
| 2521 | break; |
| 2522 | } |
| 2523 | } |
| 2524 | } |
| 2525 | return End; |
| 2526 | } |
| 2527 | |
| 2528 | /// getFunctionType - Return the underlying function type for this block. |
| 2529 | /// |
| 2530 | const FunctionProtoType *BlockExpr::getFunctionType() const { |
| 2531 | // The block pointer is never sugared, but the function type might be. |
| 2532 | return cast<BlockPointerType>(Val: getType()) |
| 2533 | ->getPointeeType()->castAs<FunctionProtoType>(); |
| 2534 | } |
| 2535 | |
| 2536 | SourceLocation BlockExpr::getCaretLocation() const { |
| 2537 | return TheBlock->getCaretLocation(); |
| 2538 | } |
| 2539 | const Stmt *BlockExpr::getBody() const { |
| 2540 | return TheBlock->getBody(); |
| 2541 | } |
| 2542 | Stmt *BlockExpr::getBody() { |
| 2543 | return TheBlock->getBody(); |
| 2544 | } |
| 2545 | |
| 2546 | |
| 2547 | //===----------------------------------------------------------------------===// |
| 2548 | // Generic Expression Routines |
| 2549 | //===----------------------------------------------------------------------===// |
| 2550 | |
| 2551 | bool Expr::isReadIfDiscardedInCPlusPlus11() const { |
| 2552 | // In C++11, discarded-value expressions of a certain form are special, |
| 2553 | // according to [expr]p10: |
| 2554 | // The lvalue-to-rvalue conversion (4.1) is applied only if the |
| 2555 | // expression is a glvalue of volatile-qualified type and it has |
| 2556 | // one of the following forms: |
| 2557 | if (!isGLValue() || !getType().isVolatileQualified()) |
| 2558 | return false; |
| 2559 | |
| 2560 | const Expr *E = IgnoreParens(); |
| 2561 | |
| 2562 | // - id-expression (5.1.1), |
| 2563 | if (isa<DeclRefExpr>(Val: E)) |
| 2564 | return true; |
| 2565 | |
| 2566 | // - subscripting (5.2.1), |
| 2567 | if (isa<ArraySubscriptExpr>(Val: E)) |
| 2568 | return true; |
| 2569 | |
| 2570 | // - class member access (5.2.5), |
| 2571 | if (isa<MemberExpr>(Val: E)) |
| 2572 | return true; |
| 2573 | |
| 2574 | // - indirection (5.3.1), |
| 2575 | if (auto *UO = dyn_cast<UnaryOperator>(Val: E)) |
| 2576 | if (UO->getOpcode() == UO_Deref) |
| 2577 | return true; |
| 2578 | |
| 2579 | if (auto *BO = dyn_cast<BinaryOperator>(Val: E)) { |
| 2580 | // - pointer-to-member operation (5.5), |
| 2581 | if (BO->isPtrMemOp()) |
| 2582 | return true; |
| 2583 | |
| 2584 | // - comma expression (5.18) where the right operand is one of the above. |
| 2585 | if (BO->getOpcode() == BO_Comma) |
| 2586 | return BO->getRHS()->isReadIfDiscardedInCPlusPlus11(); |
| 2587 | } |
| 2588 | |
| 2589 | // - conditional expression (5.16) where both the second and the third |
| 2590 | // operands are one of the above, or |
| 2591 | if (auto *CO = dyn_cast<ConditionalOperator>(Val: E)) |
| 2592 | return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() && |
| 2593 | CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); |
| 2594 | // The related edge case of "*x ?: *x". |
| 2595 | if (auto *BCO = |
| 2596 | dyn_cast<BinaryConditionalOperator>(Val: E)) { |
| 2597 | if (auto *OVE = dyn_cast<OpaqueValueExpr>(Val: BCO->getTrueExpr())) |
| 2598 | return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() && |
| 2599 | BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); |
| 2600 | } |
| 2601 | |
| 2602 | // Objective-C++ extensions to the rule. |
| 2603 | if (isa<ObjCIvarRefExpr>(Val: E)) |
| 2604 | return true; |
| 2605 | if (const auto *POE = dyn_cast<PseudoObjectExpr>(Val: E)) { |
| 2606 | if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(Val: POE->getSyntacticForm())) |
| 2607 | return true; |
| 2608 | } |
| 2609 | |
| 2610 | return false; |
| 2611 | } |
| 2612 | |
| 2613 | /// isUnusedResultAWarning - Return true if this immediate expression should |
| 2614 | /// be warned about if the result is unused. If so, fill in Loc and Ranges |
| 2615 | /// with location to warn on and the source range[s] to report with the |
| 2616 | /// warning. |
| 2617 | bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, |
| 2618 | SourceRange &R1, SourceRange &R2, |
| 2619 | ASTContext &Ctx) const { |
| 2620 | // Don't warn if the expr is type dependent. The type could end up |
| 2621 | // instantiating to void. |
| 2622 | if (isTypeDependent()) |
| 2623 | return false; |
| 2624 | |
| 2625 | switch (getStmtClass()) { |
| 2626 | default: |
| 2627 | if (getType()->isVoidType()) |
| 2628 | return false; |
| 2629 | WarnE = this; |
| 2630 | Loc = getExprLoc(); |
| 2631 | R1 = getSourceRange(); |
| 2632 | return true; |
| 2633 | case ParenExprClass: |
| 2634 | return cast<ParenExpr>(Val: this)->getSubExpr()-> |
| 2635 | isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| 2636 | case GenericSelectionExprClass: |
| 2637 | return cast<GenericSelectionExpr>(Val: this)->getResultExpr()-> |
| 2638 | isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| 2639 | case CoawaitExprClass: |
| 2640 | case CoyieldExprClass: |
| 2641 | return cast<CoroutineSuspendExpr>(Val: this)->getResumeExpr()-> |
| 2642 | isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| 2643 | case ChooseExprClass: |
| 2644 | return cast<ChooseExpr>(Val: this)->getChosenSubExpr()-> |
| 2645 | isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| 2646 | case UnaryOperatorClass: { |
| 2647 | const UnaryOperator *UO = cast<UnaryOperator>(Val: this); |
| 2648 | |
| 2649 | switch (UO->getOpcode()) { |
| 2650 | case UO_Plus: |
| 2651 | case UO_Minus: |
| 2652 | case UO_AddrOf: |
| 2653 | case UO_Not: |
| 2654 | case UO_LNot: |
| 2655 | case UO_Deref: |
| 2656 | break; |
| 2657 | case UO_Coawait: |
| 2658 | // This is just the 'operator co_await' call inside the guts of a |
| 2659 | // dependent co_await call. |
| 2660 | case UO_PostInc: |
| 2661 | case UO_PostDec: |
| 2662 | case UO_PreInc: |
| 2663 | case UO_PreDec: // ++/-- |
| 2664 | return false; // Not a warning. |
| 2665 | case UO_Real: |
| 2666 | case UO_Imag: |
| 2667 | // accessing a piece of a volatile complex is a side-effect. |
| 2668 | if (Ctx.getCanonicalType(T: UO->getSubExpr()->getType()) |
| 2669 | .isVolatileQualified()) |
| 2670 | return false; |
| 2671 | break; |
| 2672 | case UO_Extension: |
| 2673 | return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| 2674 | } |
| 2675 | WarnE = this; |
| 2676 | Loc = UO->getOperatorLoc(); |
| 2677 | R1 = UO->getSubExpr()->getSourceRange(); |
| 2678 | return true; |
| 2679 | } |
| 2680 | case BinaryOperatorClass: { |
| 2681 | const BinaryOperator *BO = cast<BinaryOperator>(Val: this); |
| 2682 | switch (BO->getOpcode()) { |
| 2683 | default: |
| 2684 | break; |
| 2685 | // Consider the RHS of comma for side effects. LHS was checked by |
| 2686 | // Sema::CheckCommaOperands. |
| 2687 | case BO_Comma: |
| 2688 | // ((foo = <blah>), 0) is an idiom for hiding the result (and |
| 2689 | // lvalue-ness) of an assignment written in a macro. |
| 2690 | if (IntegerLiteral *IE = |
| 2691 | dyn_cast<IntegerLiteral>(Val: BO->getRHS()->IgnoreParens())) |
| 2692 | if (IE->getValue() == 0) |
| 2693 | return false; |
| 2694 | return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| 2695 | // Consider '||', '&&' to have side effects if the LHS or RHS does. |
| 2696 | case BO_LAnd: |
| 2697 | case BO_LOr: |
| 2698 | if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || |
| 2699 | !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) |
| 2700 | return false; |
| 2701 | break; |
| 2702 | } |
| 2703 | if (BO->isAssignmentOp()) |
| 2704 | return false; |
| 2705 | WarnE = this; |
| 2706 | Loc = BO->getOperatorLoc(); |
| 2707 | R1 = BO->getLHS()->getSourceRange(); |
| 2708 | R2 = BO->getRHS()->getSourceRange(); |
| 2709 | return true; |
| 2710 | } |
| 2711 | case CompoundAssignOperatorClass: |
| 2712 | case VAArgExprClass: |
| 2713 | case AtomicExprClass: |
| 2714 | return false; |
| 2715 | |
| 2716 | case ConditionalOperatorClass: { |
| 2717 | // If only one of the LHS or RHS is a warning, the operator might |
| 2718 | // be being used for control flow. Only warn if both the LHS and |
| 2719 | // RHS are warnings. |
| 2720 | const auto *Exp = cast<ConditionalOperator>(Val: this); |
| 2721 | return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && |
| 2722 | Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| 2723 | } |
| 2724 | case BinaryConditionalOperatorClass: { |
| 2725 | const auto *Exp = cast<BinaryConditionalOperator>(Val: this); |
| 2726 | return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| 2727 | } |
| 2728 | |
| 2729 | case MemberExprClass: |
| 2730 | WarnE = this; |
| 2731 | Loc = cast<MemberExpr>(Val: this)->getMemberLoc(); |
| 2732 | R1 = SourceRange(Loc, Loc); |
| 2733 | R2 = cast<MemberExpr>(Val: this)->getBase()->getSourceRange(); |
| 2734 | return true; |
| 2735 | |
| 2736 | case ArraySubscriptExprClass: |
| 2737 | WarnE = this; |
| 2738 | Loc = cast<ArraySubscriptExpr>(Val: this)->getRBracketLoc(); |
| 2739 | R1 = cast<ArraySubscriptExpr>(Val: this)->getLHS()->getSourceRange(); |
| 2740 | R2 = cast<ArraySubscriptExpr>(Val: this)->getRHS()->getSourceRange(); |
| 2741 | return true; |
| 2742 | |
| 2743 | case CXXOperatorCallExprClass: { |
| 2744 | // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator |
| 2745 | // overloads as there is no reasonable way to define these such that they |
| 2746 | // have non-trivial, desirable side-effects. See the -Wunused-comparison |
| 2747 | // warning: operators == and != are commonly typo'ed, and so warning on them |
| 2748 | // provides additional value as well. If this list is updated, |
| 2749 | // DiagnoseUnusedComparison should be as well. |
| 2750 | const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(Val: this); |
| 2751 | switch (Op->getOperator()) { |
| 2752 | default: |
| 2753 | break; |
| 2754 | case OO_EqualEqual: |
| 2755 | case OO_ExclaimEqual: |
| 2756 | case OO_Less: |
| 2757 | case OO_Greater: |
| 2758 | case OO_GreaterEqual: |
| 2759 | case OO_LessEqual: |
| 2760 | if (Op->getCallReturnType(Ctx)->isReferenceType() || |
| 2761 | Op->getCallReturnType(Ctx)->isVoidType()) |
| 2762 | break; |
| 2763 | WarnE = this; |
| 2764 | Loc = Op->getOperatorLoc(); |
| 2765 | R1 = Op->getSourceRange(); |
| 2766 | return true; |
| 2767 | } |
| 2768 | |
| 2769 | // Fallthrough for generic call handling. |
| 2770 | [[fallthrough]]; |
| 2771 | } |
| 2772 | case CallExprClass: |
| 2773 | case CXXMemberCallExprClass: |
| 2774 | case UserDefinedLiteralClass: { |
| 2775 | // If this is a direct call, get the callee. |
| 2776 | const CallExpr *CE = cast<CallExpr>(Val: this); |
| 2777 | if (const Decl *FD = CE->getCalleeDecl()) { |
| 2778 | // If the callee has attribute pure, const, or warn_unused_result, warn |
| 2779 | // about it. void foo() { strlen("bar"); } should warn. |
| 2780 | // |
| 2781 | // Note: If new cases are added here, DiagnoseUnusedExprResult should be |
| 2782 | // updated to match for QoI. |
| 2783 | if (CE->hasUnusedResultAttr(Ctx) || |
| 2784 | FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { |
| 2785 | WarnE = this; |
| 2786 | Loc = CE->getCallee()->getBeginLoc(); |
| 2787 | R1 = CE->getCallee()->getSourceRange(); |
| 2788 | |
| 2789 | if (unsigned NumArgs = CE->getNumArgs()) |
| 2790 | R2 = SourceRange(CE->getArg(Arg: 0)->getBeginLoc(), |
| 2791 | CE->getArg(Arg: NumArgs - 1)->getEndLoc()); |
| 2792 | return true; |
| 2793 | } |
| 2794 | } |
| 2795 | return false; |
| 2796 | } |
| 2797 | |
| 2798 | // If we don't know precisely what we're looking at, let's not warn. |
| 2799 | case UnresolvedLookupExprClass: |
| 2800 | case CXXUnresolvedConstructExprClass: |
| 2801 | case RecoveryExprClass: |
| 2802 | return false; |
| 2803 | |
| 2804 | case CXXTemporaryObjectExprClass: |
| 2805 | case CXXConstructExprClass: { |
| 2806 | if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { |
| 2807 | const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); |
| 2808 | if (Type->hasAttr<WarnUnusedAttr>() || |
| 2809 | (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { |
| 2810 | WarnE = this; |
| 2811 | Loc = getBeginLoc(); |
| 2812 | R1 = getSourceRange(); |
| 2813 | return true; |
| 2814 | } |
| 2815 | } |
| 2816 | |
| 2817 | const auto *CE = cast<CXXConstructExpr>(Val: this); |
| 2818 | if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { |
| 2819 | const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); |
| 2820 | if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { |
| 2821 | WarnE = this; |
| 2822 | Loc = getBeginLoc(); |
| 2823 | R1 = getSourceRange(); |
| 2824 | |
| 2825 | if (unsigned NumArgs = CE->getNumArgs()) |
| 2826 | R2 = SourceRange(CE->getArg(Arg: 0)->getBeginLoc(), |
| 2827 | CE->getArg(Arg: NumArgs - 1)->getEndLoc()); |
| 2828 | return true; |
| 2829 | } |
| 2830 | } |
| 2831 | |
| 2832 | return false; |
| 2833 | } |
| 2834 | |
| 2835 | case ObjCMessageExprClass: { |
| 2836 | const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(Val: this); |
| 2837 | if (Ctx.getLangOpts().ObjCAutoRefCount && |
| 2838 | ME->isInstanceMessage() && |
| 2839 | !ME->getType()->isVoidType() && |
| 2840 | ME->getMethodFamily() == OMF_init) { |
| 2841 | WarnE = this; |
| 2842 | Loc = getExprLoc(); |
| 2843 | R1 = ME->getSourceRange(); |
| 2844 | return true; |
| 2845 | } |
| 2846 | |
| 2847 | if (const ObjCMethodDecl *MD = ME->getMethodDecl()) |
| 2848 | if (MD->hasAttr<WarnUnusedResultAttr>()) { |
| 2849 | WarnE = this; |
| 2850 | Loc = getExprLoc(); |
| 2851 | return true; |
| 2852 | } |
| 2853 | |
| 2854 | return false; |
| 2855 | } |
| 2856 | |
| 2857 | case ObjCPropertyRefExprClass: |
| 2858 | case ObjCSubscriptRefExprClass: |
| 2859 | WarnE = this; |
| 2860 | Loc = getExprLoc(); |
| 2861 | R1 = getSourceRange(); |
| 2862 | return true; |
| 2863 | |
| 2864 | case PseudoObjectExprClass: { |
| 2865 | const auto *POE = cast<PseudoObjectExpr>(Val: this); |
| 2866 | |
| 2867 | // For some syntactic forms, we should always warn. |
| 2868 | if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>( |
| 2869 | Val: POE->getSyntacticForm())) { |
| 2870 | WarnE = this; |
| 2871 | Loc = getExprLoc(); |
| 2872 | R1 = getSourceRange(); |
| 2873 | return true; |
| 2874 | } |
| 2875 | |
| 2876 | // For others, we should never warn. |
| 2877 | if (auto *BO = dyn_cast<BinaryOperator>(Val: POE->getSyntacticForm())) |
| 2878 | if (BO->isAssignmentOp()) |
| 2879 | return false; |
| 2880 | if (auto *UO = dyn_cast<UnaryOperator>(Val: POE->getSyntacticForm())) |
| 2881 | if (UO->isIncrementDecrementOp()) |
| 2882 | return false; |
| 2883 | |
| 2884 | // Otherwise, warn if the result expression would warn. |
| 2885 | const Expr *Result = POE->getResultExpr(); |
| 2886 | return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| 2887 | } |
| 2888 | |
| 2889 | case StmtExprClass: { |
| 2890 | // Statement exprs don't logically have side effects themselves, but are |
| 2891 | // sometimes used in macros in ways that give them a type that is unused. |
| 2892 | // For example ({ blah; foo(); }) will end up with a type if foo has a type. |
| 2893 | // however, if the result of the stmt expr is dead, we don't want to emit a |
| 2894 | // warning. |
| 2895 | const CompoundStmt *CS = cast<StmtExpr>(Val: this)->getSubStmt(); |
| 2896 | if (!CS->body_empty()) { |
| 2897 | if (const Expr *E = dyn_cast<Expr>(Val: CS->body_back())) |
| 2898 | return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| 2899 | if (const LabelStmt *Label = dyn_cast<LabelStmt>(Val: CS->body_back())) |
| 2900 | if (const Expr *E = dyn_cast<Expr>(Val: Label->getSubStmt())) |
| 2901 | return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| 2902 | } |
| 2903 | |
| 2904 | if (getType()->isVoidType()) |
| 2905 | return false; |
| 2906 | WarnE = this; |
| 2907 | Loc = cast<StmtExpr>(Val: this)->getLParenLoc(); |
| 2908 | R1 = getSourceRange(); |
| 2909 | return true; |
| 2910 | } |
| 2911 | case CXXFunctionalCastExprClass: |
| 2912 | case CStyleCastExprClass: { |
| 2913 | // Ignore an explicit cast to void, except in C++98 if the operand is a |
| 2914 | // volatile glvalue for which we would trigger an implicit read in any |
| 2915 | // other language mode. (Such an implicit read always happens as part of |
| 2916 | // the lvalue conversion in C, and happens in C++ for expressions of all |
| 2917 | // forms where it seems likely the user intended to trigger a volatile |
| 2918 | // load.) |
| 2919 | const CastExpr *CE = cast<CastExpr>(Val: this); |
| 2920 | const Expr *SubE = CE->getSubExpr()->IgnoreParens(); |
| 2921 | if (CE->getCastKind() == CK_ToVoid) { |
| 2922 | if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 && |
| 2923 | SubE->isReadIfDiscardedInCPlusPlus11()) { |
| 2924 | // Suppress the "unused value" warning for idiomatic usage of |
| 2925 | // '(void)var;' used to suppress "unused variable" warnings. |
| 2926 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: SubE)) |
| 2927 | if (auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl())) |
| 2928 | if (!VD->isExternallyVisible()) |
| 2929 | return false; |
| 2930 | |
| 2931 | // The lvalue-to-rvalue conversion would have no effect for an array. |
| 2932 | // It's implausible that the programmer expected this to result in a |
| 2933 | // volatile array load, so don't warn. |
| 2934 | if (SubE->getType()->isArrayType()) |
| 2935 | return false; |
| 2936 | |
| 2937 | return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| 2938 | } |
| 2939 | return false; |
| 2940 | } |
| 2941 | |
| 2942 | // If this is a cast to a constructor conversion, check the operand. |
| 2943 | // Otherwise, the result of the cast is unused. |
| 2944 | if (CE->getCastKind() == CK_ConstructorConversion) |
| 2945 | return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| 2946 | if (CE->getCastKind() == CK_Dependent) |
| 2947 | return false; |
| 2948 | |
| 2949 | WarnE = this; |
| 2950 | if (const CXXFunctionalCastExpr *CXXCE = |
| 2951 | dyn_cast<CXXFunctionalCastExpr>(Val: this)) { |
| 2952 | Loc = CXXCE->getBeginLoc(); |
| 2953 | R1 = CXXCE->getSubExpr()->getSourceRange(); |
| 2954 | } else { |
| 2955 | const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(Val: this); |
| 2956 | Loc = CStyleCE->getLParenLoc(); |
| 2957 | R1 = CStyleCE->getSubExpr()->getSourceRange(); |
| 2958 | } |
| 2959 | return true; |
| 2960 | } |
| 2961 | case ImplicitCastExprClass: { |
| 2962 | const CastExpr *ICE = cast<ImplicitCastExpr>(Val: this); |
| 2963 | |
| 2964 | // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. |
| 2965 | if (ICE->getCastKind() == CK_LValueToRValue && |
| 2966 | ICE->getSubExpr()->getType().isVolatileQualified()) |
| 2967 | return false; |
| 2968 | |
| 2969 | return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| 2970 | } |
| 2971 | case CXXDefaultArgExprClass: |
| 2972 | return (cast<CXXDefaultArgExpr>(Val: this) |
| 2973 | ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); |
| 2974 | case CXXDefaultInitExprClass: |
| 2975 | return (cast<CXXDefaultInitExpr>(Val: this) |
| 2976 | ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); |
| 2977 | |
| 2978 | case CXXNewExprClass: |
| 2979 | // FIXME: In theory, there might be new expressions that don't have side |
| 2980 | // effects (e.g. a placement new with an uninitialized POD). |
| 2981 | case CXXDeleteExprClass: |
| 2982 | return false; |
| 2983 | case MaterializeTemporaryExprClass: |
| 2984 | return cast<MaterializeTemporaryExpr>(Val: this) |
| 2985 | ->getSubExpr() |
| 2986 | ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| 2987 | case CXXBindTemporaryExprClass: |
| 2988 | return cast<CXXBindTemporaryExpr>(Val: this)->getSubExpr() |
| 2989 | ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| 2990 | case ExprWithCleanupsClass: |
| 2991 | return cast<ExprWithCleanups>(Val: this)->getSubExpr() |
| 2992 | ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
| 2993 | case OpaqueValueExprClass: |
| 2994 | return cast<OpaqueValueExpr>(Val: this)->getSourceExpr()->isUnusedResultAWarning( |
| 2995 | WarnE, Loc, R1, R2, Ctx); |
| 2996 | } |
| 2997 | } |
| 2998 | |
| 2999 | /// isOBJCGCCandidate - Check if an expression is objc gc'able. |
| 3000 | /// returns true, if it is; false otherwise. |
| 3001 | bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { |
| 3002 | const Expr *E = IgnoreParens(); |
| 3003 | switch (E->getStmtClass()) { |
| 3004 | default: |
| 3005 | return false; |
| 3006 | case ObjCIvarRefExprClass: |
| 3007 | return true; |
| 3008 | case Expr::UnaryOperatorClass: |
| 3009 | return cast<UnaryOperator>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx); |
| 3010 | case ImplicitCastExprClass: |
| 3011 | return cast<ImplicitCastExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx); |
| 3012 | case MaterializeTemporaryExprClass: |
| 3013 | return cast<MaterializeTemporaryExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate( |
| 3014 | Ctx); |
| 3015 | case CStyleCastExprClass: |
| 3016 | return cast<CStyleCastExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx); |
| 3017 | case DeclRefExprClass: { |
| 3018 | const Decl *D = cast<DeclRefExpr>(Val: E)->getDecl(); |
| 3019 | |
| 3020 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) { |
| 3021 | if (VD->hasGlobalStorage()) |
| 3022 | return true; |
| 3023 | QualType T = VD->getType(); |
| 3024 | // dereferencing to a pointer is always a gc'able candidate, |
| 3025 | // unless it is __weak. |
| 3026 | return T->isPointerType() && |
| 3027 | (Ctx.getObjCGCAttrKind(Ty: T) != Qualifiers::Weak); |
| 3028 | } |
| 3029 | return false; |
| 3030 | } |
| 3031 | case MemberExprClass: { |
| 3032 | const MemberExpr *M = cast<MemberExpr>(Val: E); |
| 3033 | return M->getBase()->isOBJCGCCandidate(Ctx); |
| 3034 | } |
| 3035 | case ArraySubscriptExprClass: |
| 3036 | return cast<ArraySubscriptExpr>(Val: E)->getBase()->isOBJCGCCandidate(Ctx); |
| 3037 | } |
| 3038 | } |
| 3039 | |
| 3040 | bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { |
| 3041 | if (isTypeDependent()) |
| 3042 | return false; |
| 3043 | return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; |
| 3044 | } |
| 3045 | |
| 3046 | QualType Expr::findBoundMemberType(const Expr *expr) { |
| 3047 | assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); |
| 3048 | |
| 3049 | // Bound member expressions are always one of these possibilities: |
| 3050 | // x->m x.m x->*y x.*y |
| 3051 | // (possibly parenthesized) |
| 3052 | |
| 3053 | expr = expr->IgnoreParens(); |
| 3054 | if (const MemberExpr *mem = dyn_cast<MemberExpr>(Val: expr)) { |
| 3055 | assert(isa<CXXMethodDecl>(mem->getMemberDecl())); |
| 3056 | return mem->getMemberDecl()->getType(); |
| 3057 | } |
| 3058 | |
| 3059 | if (const BinaryOperator *op = dyn_cast<BinaryOperator>(Val: expr)) { |
| 3060 | QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() |
| 3061 | ->getPointeeType(); |
| 3062 | assert(type->isFunctionType()); |
| 3063 | return type; |
| 3064 | } |
| 3065 | |
| 3066 | assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); |
| 3067 | return QualType(); |
| 3068 | } |
| 3069 | |
| 3070 | Expr *Expr::IgnoreImpCasts() { |
| 3071 | return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitCastsSingleStep); |
| 3072 | } |
| 3073 | |
| 3074 | Expr *Expr::IgnoreCasts() { |
| 3075 | return IgnoreExprNodes(E: this, Fns&: IgnoreCastsSingleStep); |
| 3076 | } |
| 3077 | |
| 3078 | Expr *Expr::IgnoreImplicit() { |
| 3079 | return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitSingleStep); |
| 3080 | } |
| 3081 | |
| 3082 | Expr *Expr::IgnoreImplicitAsWritten() { |
| 3083 | return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitAsWrittenSingleStep); |
| 3084 | } |
| 3085 | |
| 3086 | Expr *Expr::IgnoreParens() { |
| 3087 | return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep); |
| 3088 | } |
| 3089 | |
| 3090 | Expr *Expr::IgnoreParenImpCasts() { |
| 3091 | return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep, |
| 3092 | Fns&: IgnoreImplicitCastsExtraSingleStep); |
| 3093 | } |
| 3094 | |
| 3095 | Expr *Expr::IgnoreParenCasts() { |
| 3096 | return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep, Fns&: IgnoreCastsSingleStep); |
| 3097 | } |
| 3098 | |
| 3099 | Expr *Expr::IgnoreConversionOperatorSingleStep() { |
| 3100 | if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: this)) { |
| 3101 | if (isa_and_nonnull<CXXConversionDecl>(Val: MCE->getMethodDecl())) |
| 3102 | return MCE->getImplicitObjectArgument(); |
| 3103 | } |
| 3104 | return this; |
| 3105 | } |
| 3106 | |
| 3107 | Expr *Expr::IgnoreParenLValueCasts() { |
| 3108 | return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep, |
| 3109 | Fns&: IgnoreLValueCastsSingleStep); |
| 3110 | } |
| 3111 | |
| 3112 | Expr *Expr::IgnoreParenBaseCasts() { |
| 3113 | return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep, |
| 3114 | Fns&: IgnoreBaseCastsSingleStep); |
| 3115 | } |
| 3116 | |
| 3117 | Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { |
| 3118 | auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) { |
| 3119 | if (auto *CE = dyn_cast<CastExpr>(Val: E)) { |
| 3120 | // We ignore integer <-> casts that are of the same width, ptr<->ptr and |
| 3121 | // ptr<->int casts of the same width. We also ignore all identity casts. |
| 3122 | Expr *SubExpr = CE->getSubExpr(); |
| 3123 | bool IsIdentityCast = |
| 3124 | Ctx.hasSameUnqualifiedType(T1: E->getType(), T2: SubExpr->getType()); |
| 3125 | bool IsSameWidthCast = (E->getType()->isPointerType() || |
| 3126 | E->getType()->isIntegralType(Ctx)) && |
| 3127 | (SubExpr->getType()->isPointerType() || |
| 3128 | SubExpr->getType()->isIntegralType(Ctx)) && |
| 3129 | (Ctx.getTypeSize(T: E->getType()) == |
| 3130 | Ctx.getTypeSize(T: SubExpr->getType())); |
| 3131 | |
| 3132 | if (IsIdentityCast || IsSameWidthCast) |
| 3133 | return SubExpr; |
| 3134 | } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(Val: E)) |
| 3135 | return NTTP->getReplacement(); |
| 3136 | |
| 3137 | return E; |
| 3138 | }; |
| 3139 | return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep, |
| 3140 | Fns&: IgnoreNoopCastsSingleStep); |
| 3141 | } |
| 3142 | |
| 3143 | Expr *Expr::IgnoreUnlessSpelledInSource() { |
| 3144 | auto IgnoreImplicitConstructorSingleStep = [](Expr *E) { |
| 3145 | if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(Val: E)) { |
| 3146 | auto *SE = Cast->getSubExpr(); |
| 3147 | if (SE->getSourceRange() == E->getSourceRange()) |
| 3148 | return SE; |
| 3149 | } |
| 3150 | |
| 3151 | if (auto *C = dyn_cast<CXXConstructExpr>(Val: E)) { |
| 3152 | auto NumArgs = C->getNumArgs(); |
| 3153 | if (NumArgs == 1 || |
| 3154 | (NumArgs > 1 && isa<CXXDefaultArgExpr>(Val: C->getArg(Arg: 1)))) { |
| 3155 | Expr *A = C->getArg(Arg: 0); |
| 3156 | if (A->getSourceRange() == E->getSourceRange() || C->isElidable()) |
| 3157 | return A; |
| 3158 | } |
| 3159 | } |
| 3160 | return E; |
| 3161 | }; |
| 3162 | auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) { |
| 3163 | if (auto *C = dyn_cast<CXXMemberCallExpr>(Val: E)) { |
| 3164 | Expr *ExprNode = C->getImplicitObjectArgument(); |
| 3165 | if (ExprNode->getSourceRange() == E->getSourceRange()) { |
| 3166 | return ExprNode; |
| 3167 | } |
| 3168 | if (auto *PE = dyn_cast<ParenExpr>(Val: ExprNode)) { |
| 3169 | if (PE->getSourceRange() == C->getSourceRange()) { |
| 3170 | return cast<Expr>(Val: PE); |
| 3171 | } |
| 3172 | } |
| 3173 | ExprNode = ExprNode->IgnoreParenImpCasts(); |
| 3174 | if (ExprNode->getSourceRange() == E->getSourceRange()) |
| 3175 | return ExprNode; |
| 3176 | } |
| 3177 | return E; |
| 3178 | }; |
| 3179 | return IgnoreExprNodes( |
| 3180 | E: this, Fns&: IgnoreImplicitSingleStep, Fns&: IgnoreImplicitCastsExtraSingleStep, |
| 3181 | Fns&: IgnoreParensOnlySingleStep, Fns&: IgnoreImplicitConstructorSingleStep, |
| 3182 | Fns&: IgnoreImplicitMemberCallSingleStep); |
| 3183 | } |
| 3184 | |
| 3185 | bool Expr::isDefaultArgument() const { |
| 3186 | const Expr *E = this; |
| 3187 | if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(Val: E)) |
| 3188 | E = M->getSubExpr(); |
| 3189 | |
| 3190 | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) |
| 3191 | E = ICE->getSubExprAsWritten(); |
| 3192 | |
| 3193 | return isa<CXXDefaultArgExpr>(Val: E); |
| 3194 | } |
| 3195 | |
| 3196 | /// Skip over any no-op casts and any temporary-binding |
| 3197 | /// expressions. |
| 3198 | static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { |
| 3199 | if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(Val: E)) |
| 3200 | E = M->getSubExpr(); |
| 3201 | |
| 3202 | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
| 3203 | if (ICE->getCastKind() == CK_NoOp) |
| 3204 | E = ICE->getSubExpr(); |
| 3205 | else |
| 3206 | break; |
| 3207 | } |
| 3208 | |
| 3209 | while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(Val: E)) |
| 3210 | E = BE->getSubExpr(); |
| 3211 | |
| 3212 | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
| 3213 | if (ICE->getCastKind() == CK_NoOp) |
| 3214 | E = ICE->getSubExpr(); |
| 3215 | else |
| 3216 | break; |
| 3217 | } |
| 3218 | |
| 3219 | return E->IgnoreParens(); |
| 3220 | } |
| 3221 | |
| 3222 | /// isTemporaryObject - Determines if this expression produces a |
| 3223 | /// temporary of the given class type. |
| 3224 | bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { |
| 3225 | if (!C.hasSameUnqualifiedType(T1: getType(), T2: C.getTypeDeclType(Decl: TempTy))) |
| 3226 | return false; |
| 3227 | |
| 3228 | const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(E: this); |
| 3229 | |
| 3230 | // Temporaries are by definition pr-values of class type. |
| 3231 | if (!E->Classify(Ctx&: C).isPRValue()) { |
| 3232 | // In this context, property reference is a message call and is pr-value. |
| 3233 | if (!isa<ObjCPropertyRefExpr>(Val: E)) |
| 3234 | return false; |
| 3235 | } |
| 3236 | |
| 3237 | // Black-list a few cases which yield pr-values of class type that don't |
| 3238 | // refer to temporaries of that type: |
| 3239 | |
| 3240 | // - implicit derived-to-base conversions |
| 3241 | if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
| 3242 | switch (ICE->getCastKind()) { |
| 3243 | case CK_DerivedToBase: |
| 3244 | case CK_UncheckedDerivedToBase: |
| 3245 | return false; |
| 3246 | default: |
| 3247 | break; |
| 3248 | } |
| 3249 | } |
| 3250 | |
| 3251 | // - member expressions (all) |
| 3252 | if (isa<MemberExpr>(Val: E)) |
| 3253 | return false; |
| 3254 | |
| 3255 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: E)) |
| 3256 | if (BO->isPtrMemOp()) |
| 3257 | return false; |
| 3258 | |
| 3259 | // - opaque values (all) |
| 3260 | if (isa<OpaqueValueExpr>(Val: E)) |
| 3261 | return false; |
| 3262 | |
| 3263 | return true; |
| 3264 | } |
| 3265 | |
| 3266 | bool Expr::isImplicitCXXThis() const { |
| 3267 | const Expr *E = this; |
| 3268 | |
| 3269 | // Strip away parentheses and casts we don't care about. |
| 3270 | while (true) { |
| 3271 | if (const ParenExpr *Paren = dyn_cast<ParenExpr>(Val: E)) { |
| 3272 | E = Paren->getSubExpr(); |
| 3273 | continue; |
| 3274 | } |
| 3275 | |
| 3276 | if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
| 3277 | if (ICE->getCastKind() == CK_NoOp || |
| 3278 | ICE->getCastKind() == CK_LValueToRValue || |
| 3279 | ICE->getCastKind() == CK_DerivedToBase || |
| 3280 | ICE->getCastKind() == CK_UncheckedDerivedToBase) { |
| 3281 | E = ICE->getSubExpr(); |
| 3282 | continue; |
| 3283 | } |
| 3284 | } |
| 3285 | |
| 3286 | if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(Val: E)) { |
| 3287 | if (UnOp->getOpcode() == UO_Extension) { |
| 3288 | E = UnOp->getSubExpr(); |
| 3289 | continue; |
| 3290 | } |
| 3291 | } |
| 3292 | |
| 3293 | if (const MaterializeTemporaryExpr *M |
| 3294 | = dyn_cast<MaterializeTemporaryExpr>(Val: E)) { |
| 3295 | E = M->getSubExpr(); |
| 3296 | continue; |
| 3297 | } |
| 3298 | |
| 3299 | break; |
| 3300 | } |
| 3301 | |
| 3302 | if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(Val: E)) |
| 3303 | return This->isImplicit(); |
| 3304 | |
| 3305 | return false; |
| 3306 | } |
| 3307 | |
| 3308 | /// hasAnyTypeDependentArguments - Determines if any of the expressions |
| 3309 | /// in Exprs is type-dependent. |
| 3310 | bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { |
| 3311 | for (unsigned I = 0; I < Exprs.size(); ++I) |
| 3312 | if (Exprs[I]->isTypeDependent()) |
| 3313 | return true; |
| 3314 | |
| 3315 | return false; |
| 3316 | } |
| 3317 | |
| 3318 | bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, |
| 3319 | const Expr **Culprit) const { |
| 3320 | assert(!isValueDependent() && |
| 3321 | "Expression evaluator can't be called on a dependent expression." ); |
| 3322 | |
| 3323 | // This function is attempting whether an expression is an initializer |
| 3324 | // which can be evaluated at compile-time. It very closely parallels |
| 3325 | // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it |
| 3326 | // will lead to unexpected results. Like ConstExprEmitter, it falls back |
| 3327 | // to isEvaluatable most of the time. |
| 3328 | // |
| 3329 | // If we ever capture reference-binding directly in the AST, we can |
| 3330 | // kill the second parameter. |
| 3331 | |
| 3332 | if (IsForRef) { |
| 3333 | if (auto *EWC = dyn_cast<ExprWithCleanups>(Val: this)) |
| 3334 | return EWC->getSubExpr()->isConstantInitializer(Ctx, IsForRef: true, Culprit); |
| 3335 | if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: this)) |
| 3336 | return MTE->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
| 3337 | EvalResult Result; |
| 3338 | if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) |
| 3339 | return true; |
| 3340 | if (Culprit) |
| 3341 | *Culprit = this; |
| 3342 | return false; |
| 3343 | } |
| 3344 | |
| 3345 | switch (getStmtClass()) { |
| 3346 | default: break; |
| 3347 | case Stmt::ExprWithCleanupsClass: |
| 3348 | return cast<ExprWithCleanups>(Val: this)->getSubExpr()->isConstantInitializer( |
| 3349 | Ctx, IsForRef, Culprit); |
| 3350 | case StringLiteralClass: |
| 3351 | case ObjCEncodeExprClass: |
| 3352 | return true; |
| 3353 | case CXXTemporaryObjectExprClass: |
| 3354 | case CXXConstructExprClass: { |
| 3355 | const CXXConstructExpr *CE = cast<CXXConstructExpr>(Val: this); |
| 3356 | |
| 3357 | if (CE->getConstructor()->isTrivial() && |
| 3358 | CE->getConstructor()->getParent()->hasTrivialDestructor()) { |
| 3359 | // Trivial default constructor |
| 3360 | if (!CE->getNumArgs()) return true; |
| 3361 | |
| 3362 | // Trivial copy constructor |
| 3363 | assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument" ); |
| 3364 | return CE->getArg(Arg: 0)->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
| 3365 | } |
| 3366 | |
| 3367 | break; |
| 3368 | } |
| 3369 | case ConstantExprClass: { |
| 3370 | // FIXME: We should be able to return "true" here, but it can lead to extra |
| 3371 | // error messages. E.g. in Sema/array-init.c. |
| 3372 | const Expr *Exp = cast<ConstantExpr>(Val: this)->getSubExpr(); |
| 3373 | return Exp->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
| 3374 | } |
| 3375 | case CompoundLiteralExprClass: { |
| 3376 | // This handles gcc's extension that allows global initializers like |
| 3377 | // "struct x {int x;} x = (struct x) {};". |
| 3378 | // FIXME: This accepts other cases it shouldn't! |
| 3379 | const Expr *Exp = cast<CompoundLiteralExpr>(Val: this)->getInitializer(); |
| 3380 | return Exp->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
| 3381 | } |
| 3382 | case DesignatedInitUpdateExprClass: { |
| 3383 | const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(Val: this); |
| 3384 | return DIUE->getBase()->isConstantInitializer(Ctx, IsForRef: false, Culprit) && |
| 3385 | DIUE->getUpdater()->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
| 3386 | } |
| 3387 | case InitListExprClass: { |
| 3388 | // C++ [dcl.init.aggr]p2: |
| 3389 | // The elements of an aggregate are: |
| 3390 | // - for an array, the array elements in increasing subscript order, or |
| 3391 | // - for a class, the direct base classes in declaration order, followed |
| 3392 | // by the direct non-static data members (11.4) that are not members of |
| 3393 | // an anonymous union, in declaration order. |
| 3394 | const InitListExpr *ILE = cast<InitListExpr>(Val: this); |
| 3395 | assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form" ); |
| 3396 | if (ILE->getType()->isArrayType()) { |
| 3397 | unsigned numInits = ILE->getNumInits(); |
| 3398 | for (unsigned i = 0; i < numInits; i++) { |
| 3399 | if (!ILE->getInit(Init: i)->isConstantInitializer(Ctx, IsForRef: false, Culprit)) |
| 3400 | return false; |
| 3401 | } |
| 3402 | return true; |
| 3403 | } |
| 3404 | |
| 3405 | if (ILE->getType()->isRecordType()) { |
| 3406 | unsigned ElementNo = 0; |
| 3407 | RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); |
| 3408 | |
| 3409 | // In C++17, bases were added to the list of members used by aggregate |
| 3410 | // initialization. |
| 3411 | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
| 3412 | for (unsigned i = 0, e = CXXRD->getNumBases(); i < e; i++) { |
| 3413 | if (ElementNo < ILE->getNumInits()) { |
| 3414 | const Expr *Elt = ILE->getInit(Init: ElementNo++); |
| 3415 | if (!Elt->isConstantInitializer(Ctx, IsForRef: false, Culprit)) |
| 3416 | return false; |
| 3417 | } |
| 3418 | } |
| 3419 | } |
| 3420 | |
| 3421 | for (const auto *Field : RD->fields()) { |
| 3422 | // If this is a union, skip all the fields that aren't being initialized. |
| 3423 | if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) |
| 3424 | continue; |
| 3425 | |
| 3426 | // Don't emit anonymous bitfields, they just affect layout. |
| 3427 | if (Field->isUnnamedBitField()) |
| 3428 | continue; |
| 3429 | |
| 3430 | if (ElementNo < ILE->getNumInits()) { |
| 3431 | const Expr *Elt = ILE->getInit(Init: ElementNo++); |
| 3432 | if (Field->isBitField()) { |
| 3433 | // Bitfields have to evaluate to an integer. |
| 3434 | EvalResult Result; |
| 3435 | if (!Elt->EvaluateAsInt(Result, Ctx)) { |
| 3436 | if (Culprit) |
| 3437 | *Culprit = Elt; |
| 3438 | return false; |
| 3439 | } |
| 3440 | } else { |
| 3441 | bool RefType = Field->getType()->isReferenceType(); |
| 3442 | if (!Elt->isConstantInitializer(Ctx, IsForRef: RefType, Culprit)) |
| 3443 | return false; |
| 3444 | } |
| 3445 | } |
| 3446 | } |
| 3447 | return true; |
| 3448 | } |
| 3449 | |
| 3450 | break; |
| 3451 | } |
| 3452 | case ImplicitValueInitExprClass: |
| 3453 | case NoInitExprClass: |
| 3454 | return true; |
| 3455 | case ParenExprClass: |
| 3456 | return cast<ParenExpr>(Val: this)->getSubExpr() |
| 3457 | ->isConstantInitializer(Ctx, IsForRef, Culprit); |
| 3458 | case GenericSelectionExprClass: |
| 3459 | return cast<GenericSelectionExpr>(Val: this)->getResultExpr() |
| 3460 | ->isConstantInitializer(Ctx, IsForRef, Culprit); |
| 3461 | case ChooseExprClass: |
| 3462 | if (cast<ChooseExpr>(Val: this)->isConditionDependent()) { |
| 3463 | if (Culprit) |
| 3464 | *Culprit = this; |
| 3465 | return false; |
| 3466 | } |
| 3467 | return cast<ChooseExpr>(Val: this)->getChosenSubExpr() |
| 3468 | ->isConstantInitializer(Ctx, IsForRef, Culprit); |
| 3469 | case UnaryOperatorClass: { |
| 3470 | const UnaryOperator* Exp = cast<UnaryOperator>(Val: this); |
| 3471 | if (Exp->getOpcode() == UO_Extension) |
| 3472 | return Exp->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
| 3473 | break; |
| 3474 | } |
| 3475 | case PackIndexingExprClass: { |
| 3476 | return cast<PackIndexingExpr>(Val: this) |
| 3477 | ->getSelectedExpr() |
| 3478 | ->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
| 3479 | } |
| 3480 | case CXXFunctionalCastExprClass: |
| 3481 | case CXXStaticCastExprClass: |
| 3482 | case ImplicitCastExprClass: |
| 3483 | case CStyleCastExprClass: |
| 3484 | case ObjCBridgedCastExprClass: |
| 3485 | case CXXDynamicCastExprClass: |
| 3486 | case CXXReinterpretCastExprClass: |
| 3487 | case CXXAddrspaceCastExprClass: |
| 3488 | case CXXConstCastExprClass: { |
| 3489 | const CastExpr *CE = cast<CastExpr>(Val: this); |
| 3490 | |
| 3491 | // Handle misc casts we want to ignore. |
| 3492 | if (CE->getCastKind() == CK_NoOp || |
| 3493 | CE->getCastKind() == CK_LValueToRValue || |
| 3494 | CE->getCastKind() == CK_ToUnion || |
| 3495 | CE->getCastKind() == CK_ConstructorConversion || |
| 3496 | CE->getCastKind() == CK_NonAtomicToAtomic || |
| 3497 | CE->getCastKind() == CK_AtomicToNonAtomic || |
| 3498 | CE->getCastKind() == CK_NullToPointer || |
| 3499 | CE->getCastKind() == CK_IntToOCLSampler) |
| 3500 | return CE->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
| 3501 | |
| 3502 | break; |
| 3503 | } |
| 3504 | case MaterializeTemporaryExprClass: |
| 3505 | return cast<MaterializeTemporaryExpr>(Val: this) |
| 3506 | ->getSubExpr() |
| 3507 | ->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
| 3508 | |
| 3509 | case SubstNonTypeTemplateParmExprClass: |
| 3510 | return cast<SubstNonTypeTemplateParmExpr>(Val: this)->getReplacement() |
| 3511 | ->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
| 3512 | case CXXDefaultArgExprClass: |
| 3513 | return cast<CXXDefaultArgExpr>(Val: this)->getExpr() |
| 3514 | ->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
| 3515 | case CXXDefaultInitExprClass: |
| 3516 | return cast<CXXDefaultInitExpr>(Val: this)->getExpr() |
| 3517 | ->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
| 3518 | } |
| 3519 | // Allow certain forms of UB in constant initializers: signed integer |
| 3520 | // overflow and floating-point division by zero. We'll give a warning on |
| 3521 | // these, but they're common enough that we have to accept them. |
| 3522 | if (isEvaluatable(Ctx, AllowSideEffects: SE_AllowUndefinedBehavior)) |
| 3523 | return true; |
| 3524 | if (Culprit) |
| 3525 | *Culprit = this; |
| 3526 | return false; |
| 3527 | } |
| 3528 | |
| 3529 | bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { |
| 3530 | unsigned BuiltinID = getBuiltinCallee(); |
| 3531 | if (BuiltinID != Builtin::BI__assume && |
| 3532 | BuiltinID != Builtin::BI__builtin_assume) |
| 3533 | return false; |
| 3534 | |
| 3535 | const Expr* Arg = getArg(Arg: 0); |
| 3536 | bool ArgVal; |
| 3537 | return !Arg->isValueDependent() && |
| 3538 | Arg->EvaluateAsBooleanCondition(Result&: ArgVal, Ctx) && !ArgVal; |
| 3539 | } |
| 3540 | |
| 3541 | bool CallExpr::isCallToStdMove() const { |
| 3542 | return getBuiltinCallee() == Builtin::BImove; |
| 3543 | } |
| 3544 | |
| 3545 | namespace { |
| 3546 | /// Look for any side effects within a Stmt. |
| 3547 | class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { |
| 3548 | typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; |
| 3549 | const bool IncludePossibleEffects; |
| 3550 | bool HasSideEffects; |
| 3551 | |
| 3552 | public: |
| 3553 | explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) |
| 3554 | : Inherited(Context), |
| 3555 | IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } |
| 3556 | |
| 3557 | bool hasSideEffects() const { return HasSideEffects; } |
| 3558 | |
| 3559 | void VisitDecl(const Decl *D) { |
| 3560 | if (!D) |
| 3561 | return; |
| 3562 | |
| 3563 | // We assume the caller checks subexpressions (eg, the initializer, VLA |
| 3564 | // bounds) for side-effects on our behalf. |
| 3565 | if (auto *VD = dyn_cast<VarDecl>(Val: D)) { |
| 3566 | // Registering a destructor is a side-effect. |
| 3567 | if (IncludePossibleEffects && VD->isThisDeclarationADefinition() && |
| 3568 | VD->needsDestruction(Ctx: Context)) |
| 3569 | HasSideEffects = true; |
| 3570 | } |
| 3571 | } |
| 3572 | |
| 3573 | void VisitDeclStmt(const DeclStmt *DS) { |
| 3574 | for (auto *D : DS->decls()) |
| 3575 | VisitDecl(D); |
| 3576 | Inherited::VisitDeclStmt(S: DS); |
| 3577 | } |
| 3578 | |
| 3579 | void VisitExpr(const Expr *E) { |
| 3580 | if (!HasSideEffects && |
| 3581 | E->HasSideEffects(Ctx: Context, IncludePossibleEffects)) |
| 3582 | HasSideEffects = true; |
| 3583 | } |
| 3584 | }; |
| 3585 | } |
| 3586 | |
| 3587 | bool Expr::HasSideEffects(const ASTContext &Ctx, |
| 3588 | bool IncludePossibleEffects) const { |
| 3589 | // In circumstances where we care about definite side effects instead of |
| 3590 | // potential side effects, we want to ignore expressions that are part of a |
| 3591 | // macro expansion as a potential side effect. |
| 3592 | if (!IncludePossibleEffects && getExprLoc().isMacroID()) |
| 3593 | return false; |
| 3594 | |
| 3595 | switch (getStmtClass()) { |
| 3596 | case NoStmtClass: |
| 3597 | #define ABSTRACT_STMT(Type) |
| 3598 | #define STMT(Type, Base) case Type##Class: |
| 3599 | #define EXPR(Type, Base) |
| 3600 | #include "clang/AST/StmtNodes.inc" |
| 3601 | llvm_unreachable("unexpected Expr kind" ); |
| 3602 | |
| 3603 | case DependentScopeDeclRefExprClass: |
| 3604 | case CXXUnresolvedConstructExprClass: |
| 3605 | case CXXDependentScopeMemberExprClass: |
| 3606 | case UnresolvedLookupExprClass: |
| 3607 | case UnresolvedMemberExprClass: |
| 3608 | case PackExpansionExprClass: |
| 3609 | case SubstNonTypeTemplateParmPackExprClass: |
| 3610 | case FunctionParmPackExprClass: |
| 3611 | case RecoveryExprClass: |
| 3612 | case CXXFoldExprClass: |
| 3613 | // Make a conservative assumption for dependent nodes. |
| 3614 | return IncludePossibleEffects; |
| 3615 | |
| 3616 | case DeclRefExprClass: |
| 3617 | case ObjCIvarRefExprClass: |
| 3618 | case PredefinedExprClass: |
| 3619 | case IntegerLiteralClass: |
| 3620 | case FixedPointLiteralClass: |
| 3621 | case FloatingLiteralClass: |
| 3622 | case ImaginaryLiteralClass: |
| 3623 | case StringLiteralClass: |
| 3624 | case CharacterLiteralClass: |
| 3625 | case OffsetOfExprClass: |
| 3626 | case ImplicitValueInitExprClass: |
| 3627 | case UnaryExprOrTypeTraitExprClass: |
| 3628 | case AddrLabelExprClass: |
| 3629 | case GNUNullExprClass: |
| 3630 | case ArrayInitIndexExprClass: |
| 3631 | case NoInitExprClass: |
| 3632 | case CXXBoolLiteralExprClass: |
| 3633 | case CXXNullPtrLiteralExprClass: |
| 3634 | case CXXThisExprClass: |
| 3635 | case CXXScalarValueInitExprClass: |
| 3636 | case TypeTraitExprClass: |
| 3637 | case ArrayTypeTraitExprClass: |
| 3638 | case ExpressionTraitExprClass: |
| 3639 | case CXXNoexceptExprClass: |
| 3640 | case SizeOfPackExprClass: |
| 3641 | case ObjCStringLiteralClass: |
| 3642 | case ObjCEncodeExprClass: |
| 3643 | case ObjCBoolLiteralExprClass: |
| 3644 | case ObjCAvailabilityCheckExprClass: |
| 3645 | case CXXUuidofExprClass: |
| 3646 | case OpaqueValueExprClass: |
| 3647 | case SourceLocExprClass: |
| 3648 | case EmbedExprClass: |
| 3649 | case ConceptSpecializationExprClass: |
| 3650 | case RequiresExprClass: |
| 3651 | case SYCLUniqueStableNameExprClass: |
| 3652 | case PackIndexingExprClass: |
| 3653 | case HLSLOutArgExprClass: |
| 3654 | case OpenACCAsteriskSizeExprClass: |
| 3655 | // These never have a side-effect. |
| 3656 | return false; |
| 3657 | |
| 3658 | case ConstantExprClass: |
| 3659 | // FIXME: Move this into the "return false;" block above. |
| 3660 | return cast<ConstantExpr>(Val: this)->getSubExpr()->HasSideEffects( |
| 3661 | Ctx, IncludePossibleEffects); |
| 3662 | |
| 3663 | case CallExprClass: |
| 3664 | case CXXOperatorCallExprClass: |
| 3665 | case CXXMemberCallExprClass: |
| 3666 | case CUDAKernelCallExprClass: |
| 3667 | case UserDefinedLiteralClass: { |
| 3668 | // We don't know a call definitely has side effects, except for calls |
| 3669 | // to pure/const functions that definitely don't. |
| 3670 | // If the call itself is considered side-effect free, check the operands. |
| 3671 | const Decl *FD = cast<CallExpr>(Val: this)->getCalleeDecl(); |
| 3672 | bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); |
| 3673 | if (IsPure || !IncludePossibleEffects) |
| 3674 | break; |
| 3675 | return true; |
| 3676 | } |
| 3677 | |
| 3678 | case BlockExprClass: |
| 3679 | case CXXBindTemporaryExprClass: |
| 3680 | if (!IncludePossibleEffects) |
| 3681 | break; |
| 3682 | return true; |
| 3683 | |
| 3684 | case MSPropertyRefExprClass: |
| 3685 | case MSPropertySubscriptExprClass: |
| 3686 | case CompoundAssignOperatorClass: |
| 3687 | case VAArgExprClass: |
| 3688 | case AtomicExprClass: |
| 3689 | case CXXThrowExprClass: |
| 3690 | case CXXNewExprClass: |
| 3691 | case CXXDeleteExprClass: |
| 3692 | case CoawaitExprClass: |
| 3693 | case DependentCoawaitExprClass: |
| 3694 | case CoyieldExprClass: |
| 3695 | // These always have a side-effect. |
| 3696 | return true; |
| 3697 | |
| 3698 | case StmtExprClass: { |
| 3699 | // StmtExprs have a side-effect if any substatement does. |
| 3700 | SideEffectFinder Finder(Ctx, IncludePossibleEffects); |
| 3701 | Finder.Visit(S: cast<StmtExpr>(Val: this)->getSubStmt()); |
| 3702 | return Finder.hasSideEffects(); |
| 3703 | } |
| 3704 | |
| 3705 | case ExprWithCleanupsClass: |
| 3706 | if (IncludePossibleEffects) |
| 3707 | if (cast<ExprWithCleanups>(Val: this)->cleanupsHaveSideEffects()) |
| 3708 | return true; |
| 3709 | break; |
| 3710 | |
| 3711 | case ParenExprClass: |
| 3712 | case ArraySubscriptExprClass: |
| 3713 | case MatrixSubscriptExprClass: |
| 3714 | case ArraySectionExprClass: |
| 3715 | case OMPArrayShapingExprClass: |
| 3716 | case OMPIteratorExprClass: |
| 3717 | case MemberExprClass: |
| 3718 | case ConditionalOperatorClass: |
| 3719 | case BinaryConditionalOperatorClass: |
| 3720 | case CompoundLiteralExprClass: |
| 3721 | case ExtVectorElementExprClass: |
| 3722 | case DesignatedInitExprClass: |
| 3723 | case DesignatedInitUpdateExprClass: |
| 3724 | case ArrayInitLoopExprClass: |
| 3725 | case ParenListExprClass: |
| 3726 | case CXXPseudoDestructorExprClass: |
| 3727 | case CXXRewrittenBinaryOperatorClass: |
| 3728 | case CXXStdInitializerListExprClass: |
| 3729 | case SubstNonTypeTemplateParmExprClass: |
| 3730 | case MaterializeTemporaryExprClass: |
| 3731 | case ShuffleVectorExprClass: |
| 3732 | case ConvertVectorExprClass: |
| 3733 | case AsTypeExprClass: |
| 3734 | case CXXParenListInitExprClass: |
| 3735 | // These have a side-effect if any subexpression does. |
| 3736 | break; |
| 3737 | |
| 3738 | case UnaryOperatorClass: |
| 3739 | if (cast<UnaryOperator>(Val: this)->isIncrementDecrementOp()) |
| 3740 | return true; |
| 3741 | break; |
| 3742 | |
| 3743 | case BinaryOperatorClass: |
| 3744 | if (cast<BinaryOperator>(Val: this)->isAssignmentOp()) |
| 3745 | return true; |
| 3746 | break; |
| 3747 | |
| 3748 | case InitListExprClass: |
| 3749 | // FIXME: The children for an InitListExpr doesn't include the array filler. |
| 3750 | if (const Expr *E = cast<InitListExpr>(Val: this)->getArrayFiller()) |
| 3751 | if (E->HasSideEffects(Ctx, IncludePossibleEffects)) |
| 3752 | return true; |
| 3753 | break; |
| 3754 | |
| 3755 | case GenericSelectionExprClass: |
| 3756 | return cast<GenericSelectionExpr>(Val: this)->getResultExpr()-> |
| 3757 | HasSideEffects(Ctx, IncludePossibleEffects); |
| 3758 | |
| 3759 | case ChooseExprClass: |
| 3760 | return cast<ChooseExpr>(Val: this)->getChosenSubExpr()->HasSideEffects( |
| 3761 | Ctx, IncludePossibleEffects); |
| 3762 | |
| 3763 | case CXXDefaultArgExprClass: |
| 3764 | return cast<CXXDefaultArgExpr>(Val: this)->getExpr()->HasSideEffects( |
| 3765 | Ctx, IncludePossibleEffects); |
| 3766 | |
| 3767 | case CXXDefaultInitExprClass: { |
| 3768 | const FieldDecl *FD = cast<CXXDefaultInitExpr>(Val: this)->getField(); |
| 3769 | if (const Expr *E = FD->getInClassInitializer()) |
| 3770 | return E->HasSideEffects(Ctx, IncludePossibleEffects); |
| 3771 | // If we've not yet parsed the initializer, assume it has side-effects. |
| 3772 | return true; |
| 3773 | } |
| 3774 | |
| 3775 | case CXXDynamicCastExprClass: { |
| 3776 | // A dynamic_cast expression has side-effects if it can throw. |
| 3777 | const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(Val: this); |
| 3778 | if (DCE->getTypeAsWritten()->isReferenceType() && |
| 3779 | DCE->getCastKind() == CK_Dynamic) |
| 3780 | return true; |
| 3781 | } |
| 3782 | [[fallthrough]]; |
| 3783 | case ImplicitCastExprClass: |
| 3784 | case CStyleCastExprClass: |
| 3785 | case CXXStaticCastExprClass: |
| 3786 | case CXXReinterpretCastExprClass: |
| 3787 | case CXXConstCastExprClass: |
| 3788 | case CXXAddrspaceCastExprClass: |
| 3789 | case CXXFunctionalCastExprClass: |
| 3790 | case BuiltinBitCastExprClass: { |
| 3791 | // While volatile reads are side-effecting in both C and C++, we treat them |
| 3792 | // as having possible (not definite) side-effects. This allows idiomatic |
| 3793 | // code to behave without warning, such as sizeof(*v) for a volatile- |
| 3794 | // qualified pointer. |
| 3795 | if (!IncludePossibleEffects) |
| 3796 | break; |
| 3797 | |
| 3798 | const CastExpr *CE = cast<CastExpr>(Val: this); |
| 3799 | if (CE->getCastKind() == CK_LValueToRValue && |
| 3800 | CE->getSubExpr()->getType().isVolatileQualified()) |
| 3801 | return true; |
| 3802 | break; |
| 3803 | } |
| 3804 | |
| 3805 | case CXXTypeidExprClass: { |
| 3806 | const auto *TE = cast<CXXTypeidExpr>(Val: this); |
| 3807 | if (!TE->isPotentiallyEvaluated()) |
| 3808 | return false; |
| 3809 | |
| 3810 | // If this type id expression can throw because of a null pointer, that is a |
| 3811 | // side-effect independent of if the operand has a side-effect |
| 3812 | if (IncludePossibleEffects && TE->hasNullCheck()) |
| 3813 | return true; |
| 3814 | |
| 3815 | break; |
| 3816 | } |
| 3817 | |
| 3818 | case CXXConstructExprClass: |
| 3819 | case CXXTemporaryObjectExprClass: { |
| 3820 | const CXXConstructExpr *CE = cast<CXXConstructExpr>(Val: this); |
| 3821 | if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) |
| 3822 | return true; |
| 3823 | // A trivial constructor does not add any side-effects of its own. Just look |
| 3824 | // at its arguments. |
| 3825 | break; |
| 3826 | } |
| 3827 | |
| 3828 | case CXXInheritedCtorInitExprClass: { |
| 3829 | const auto *ICIE = cast<CXXInheritedCtorInitExpr>(Val: this); |
| 3830 | if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) |
| 3831 | return true; |
| 3832 | break; |
| 3833 | } |
| 3834 | |
| 3835 | case LambdaExprClass: { |
| 3836 | const LambdaExpr *LE = cast<LambdaExpr>(Val: this); |
| 3837 | for (Expr *E : LE->capture_inits()) |
| 3838 | if (E && E->HasSideEffects(Ctx, IncludePossibleEffects)) |
| 3839 | return true; |
| 3840 | return false; |
| 3841 | } |
| 3842 | |
| 3843 | case PseudoObjectExprClass: { |
| 3844 | // Only look for side-effects in the semantic form, and look past |
| 3845 | // OpaqueValueExpr bindings in that form. |
| 3846 | const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(Val: this); |
| 3847 | for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), |
| 3848 | E = PO->semantics_end(); |
| 3849 | I != E; ++I) { |
| 3850 | const Expr *Subexpr = *I; |
| 3851 | if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Val: Subexpr)) |
| 3852 | Subexpr = OVE->getSourceExpr(); |
| 3853 | if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) |
| 3854 | return true; |
| 3855 | } |
| 3856 | return false; |
| 3857 | } |
| 3858 | |
| 3859 | case ObjCBoxedExprClass: |
| 3860 | case ObjCArrayLiteralClass: |
| 3861 | case ObjCDictionaryLiteralClass: |
| 3862 | case ObjCSelectorExprClass: |
| 3863 | case ObjCProtocolExprClass: |
| 3864 | case ObjCIsaExprClass: |
| 3865 | case ObjCIndirectCopyRestoreExprClass: |
| 3866 | case ObjCSubscriptRefExprClass: |
| 3867 | case ObjCBridgedCastExprClass: |
| 3868 | case ObjCMessageExprClass: |
| 3869 | case ObjCPropertyRefExprClass: |
| 3870 | // FIXME: Classify these cases better. |
| 3871 | if (IncludePossibleEffects) |
| 3872 | return true; |
| 3873 | break; |
| 3874 | } |
| 3875 | |
| 3876 | // Recurse to children. |
| 3877 | for (const Stmt *SubStmt : children()) |
| 3878 | if (SubStmt && |
| 3879 | cast<Expr>(Val: SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) |
| 3880 | return true; |
| 3881 | |
| 3882 | return false; |
| 3883 | } |
| 3884 | |
| 3885 | FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const { |
| 3886 | if (auto Call = dyn_cast<CallExpr>(Val: this)) |
| 3887 | return Call->getFPFeaturesInEffect(LO); |
| 3888 | if (auto UO = dyn_cast<UnaryOperator>(Val: this)) |
| 3889 | return UO->getFPFeaturesInEffect(LO); |
| 3890 | if (auto BO = dyn_cast<BinaryOperator>(Val: this)) |
| 3891 | return BO->getFPFeaturesInEffect(LO); |
| 3892 | if (auto Cast = dyn_cast<CastExpr>(Val: this)) |
| 3893 | return Cast->getFPFeaturesInEffect(LO); |
| 3894 | if (auto ConvertVector = dyn_cast<ConvertVectorExpr>(Val: this)) |
| 3895 | return ConvertVector->getFPFeaturesInEffect(LO); |
| 3896 | return FPOptions::defaultWithoutTrailingStorage(LO); |
| 3897 | } |
| 3898 | |
| 3899 | namespace { |
| 3900 | /// Look for a call to a non-trivial function within an expression. |
| 3901 | class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> |
| 3902 | { |
| 3903 | typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; |
| 3904 | |
| 3905 | bool NonTrivial; |
| 3906 | |
| 3907 | public: |
| 3908 | explicit NonTrivialCallFinder(const ASTContext &Context) |
| 3909 | : Inherited(Context), NonTrivial(false) { } |
| 3910 | |
| 3911 | bool hasNonTrivialCall() const { return NonTrivial; } |
| 3912 | |
| 3913 | void VisitCallExpr(const CallExpr *E) { |
| 3914 | if (const CXXMethodDecl *Method |
| 3915 | = dyn_cast_or_null<const CXXMethodDecl>(Val: E->getCalleeDecl())) { |
| 3916 | if (Method->isTrivial()) { |
| 3917 | // Recurse to children of the call. |
| 3918 | Inherited::VisitStmt(S: E); |
| 3919 | return; |
| 3920 | } |
| 3921 | } |
| 3922 | |
| 3923 | NonTrivial = true; |
| 3924 | } |
| 3925 | |
| 3926 | void VisitCXXConstructExpr(const CXXConstructExpr *E) { |
| 3927 | if (E->getConstructor()->isTrivial()) { |
| 3928 | // Recurse to children of the call. |
| 3929 | Inherited::VisitStmt(S: E); |
| 3930 | return; |
| 3931 | } |
| 3932 | |
| 3933 | NonTrivial = true; |
| 3934 | } |
| 3935 | |
| 3936 | void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { |
| 3937 | // Destructor of the temporary might be null if destructor declaration |
| 3938 | // is not valid. |
| 3939 | if (const CXXDestructorDecl *DtorDecl = |
| 3940 | E->getTemporary()->getDestructor()) { |
| 3941 | if (DtorDecl->isTrivial()) { |
| 3942 | Inherited::VisitStmt(S: E); |
| 3943 | return; |
| 3944 | } |
| 3945 | } |
| 3946 | |
| 3947 | NonTrivial = true; |
| 3948 | } |
| 3949 | }; |
| 3950 | } |
| 3951 | |
| 3952 | bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { |
| 3953 | NonTrivialCallFinder Finder(Ctx); |
| 3954 | Finder.Visit(S: this); |
| 3955 | return Finder.hasNonTrivialCall(); |
| 3956 | } |
| 3957 | |
| 3958 | /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null |
| 3959 | /// pointer constant or not, as well as the specific kind of constant detected. |
| 3960 | /// Null pointer constants can be integer constant expressions with the |
| 3961 | /// value zero, casts of zero to void*, nullptr (C++0X), or __null |
| 3962 | /// (a GNU extension). |
| 3963 | Expr::NullPointerConstantKind |
| 3964 | Expr::isNullPointerConstant(ASTContext &Ctx, |
| 3965 | NullPointerConstantValueDependence NPC) const { |
| 3966 | if (isValueDependent() && |
| 3967 | (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { |
| 3968 | // Error-dependent expr should never be a null pointer. |
| 3969 | if (containsErrors()) |
| 3970 | return NPCK_NotNull; |
| 3971 | switch (NPC) { |
| 3972 | case NPC_NeverValueDependent: |
| 3973 | llvm_unreachable("Unexpected value dependent expression!" ); |
| 3974 | case NPC_ValueDependentIsNull: |
| 3975 | if (isTypeDependent() || getType()->isIntegralType(Ctx)) |
| 3976 | return NPCK_ZeroExpression; |
| 3977 | else |
| 3978 | return NPCK_NotNull; |
| 3979 | |
| 3980 | case NPC_ValueDependentIsNotNull: |
| 3981 | return NPCK_NotNull; |
| 3982 | } |
| 3983 | } |
| 3984 | |
| 3985 | // Strip off a cast to void*, if it exists. Except in C++. |
| 3986 | if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(Val: this)) { |
| 3987 | if (!Ctx.getLangOpts().CPlusPlus) { |
| 3988 | // Check that it is a cast to void*. |
| 3989 | if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { |
| 3990 | QualType Pointee = PT->getPointeeType(); |
| 3991 | Qualifiers Qs = Pointee.getQualifiers(); |
| 3992 | // Only (void*)0 or equivalent are treated as nullptr. If pointee type |
| 3993 | // has non-default address space it is not treated as nullptr. |
| 3994 | // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr |
| 3995 | // since it cannot be assigned to a pointer to constant address space. |
| 3996 | if (Ctx.getLangOpts().OpenCL && |
| 3997 | Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace()) |
| 3998 | Qs.removeAddressSpace(); |
| 3999 | |
| 4000 | if (Pointee->isVoidType() && Qs.empty() && // to void* |
| 4001 | CE->getSubExpr()->getType()->isIntegerType()) // from int |
| 4002 | return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); |
| 4003 | } |
| 4004 | } |
| 4005 | } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: this)) { |
| 4006 | // Ignore the ImplicitCastExpr type entirely. |
| 4007 | return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); |
| 4008 | } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Val: this)) { |
| 4009 | // Accept ((void*)0) as a null pointer constant, as many other |
| 4010 | // implementations do. |
| 4011 | return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); |
| 4012 | } else if (const GenericSelectionExpr *GE = |
| 4013 | dyn_cast<GenericSelectionExpr>(Val: this)) { |
| 4014 | if (GE->isResultDependent()) |
| 4015 | return NPCK_NotNull; |
| 4016 | return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); |
| 4017 | } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(Val: this)) { |
| 4018 | if (CE->isConditionDependent()) |
| 4019 | return NPCK_NotNull; |
| 4020 | return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); |
| 4021 | } else if (const CXXDefaultArgExpr *DefaultArg |
| 4022 | = dyn_cast<CXXDefaultArgExpr>(Val: this)) { |
| 4023 | // See through default argument expressions. |
| 4024 | return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); |
| 4025 | } else if (const CXXDefaultInitExpr *DefaultInit |
| 4026 | = dyn_cast<CXXDefaultInitExpr>(Val: this)) { |
| 4027 | // See through default initializer expressions. |
| 4028 | return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); |
| 4029 | } else if (isa<GNUNullExpr>(Val: this)) { |
| 4030 | // The GNU __null extension is always a null pointer constant. |
| 4031 | return NPCK_GNUNull; |
| 4032 | } else if (const MaterializeTemporaryExpr *M |
| 4033 | = dyn_cast<MaterializeTemporaryExpr>(Val: this)) { |
| 4034 | return M->getSubExpr()->isNullPointerConstant(Ctx, NPC); |
| 4035 | } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Val: this)) { |
| 4036 | if (const Expr *Source = OVE->getSourceExpr()) |
| 4037 | return Source->isNullPointerConstant(Ctx, NPC); |
| 4038 | } |
| 4039 | |
| 4040 | // If the expression has no type information, it cannot be a null pointer |
| 4041 | // constant. |
| 4042 | if (getType().isNull()) |
| 4043 | return NPCK_NotNull; |
| 4044 | |
| 4045 | // C++11/C23 nullptr_t is always a null pointer constant. |
| 4046 | if (getType()->isNullPtrType()) |
| 4047 | return NPCK_CXX11_nullptr; |
| 4048 | |
| 4049 | if (const RecordType *UT = getType()->getAsUnionType()) |
| 4050 | if (!Ctx.getLangOpts().CPlusPlus11 && |
| 4051 | UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) |
| 4052 | if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Val: this)){ |
| 4053 | const Expr *InitExpr = CLE->getInitializer(); |
| 4054 | if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Val: InitExpr)) |
| 4055 | return ILE->getInit(Init: 0)->isNullPointerConstant(Ctx, NPC); |
| 4056 | } |
| 4057 | // This expression must be an integer type. |
| 4058 | if (!getType()->isIntegerType() || |
| 4059 | (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) |
| 4060 | return NPCK_NotNull; |
| 4061 | |
| 4062 | if (Ctx.getLangOpts().CPlusPlus11) { |
| 4063 | // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with |
| 4064 | // value zero or a prvalue of type std::nullptr_t. |
| 4065 | // Microsoft mode permits C++98 rules reflecting MSVC behavior. |
| 4066 | const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(Val: this); |
| 4067 | if (Lit && !Lit->getValue()) |
| 4068 | return NPCK_ZeroLiteral; |
| 4069 | if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) |
| 4070 | return NPCK_NotNull; |
| 4071 | } else { |
| 4072 | // If we have an integer constant expression, we need to *evaluate* it and |
| 4073 | // test for the value 0. |
| 4074 | if (!isIntegerConstantExpr(Ctx)) |
| 4075 | return NPCK_NotNull; |
| 4076 | } |
| 4077 | |
| 4078 | if (EvaluateKnownConstInt(Ctx) != 0) |
| 4079 | return NPCK_NotNull; |
| 4080 | |
| 4081 | if (isa<IntegerLiteral>(Val: this)) |
| 4082 | return NPCK_ZeroLiteral; |
| 4083 | return NPCK_ZeroExpression; |
| 4084 | } |
| 4085 | |
| 4086 | /// If this expression is an l-value for an Objective C |
| 4087 | /// property, find the underlying property reference expression. |
| 4088 | const ObjCPropertyRefExpr *Expr::getObjCProperty() const { |
| 4089 | const Expr *E = this; |
| 4090 | while (true) { |
| 4091 | assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) && |
| 4092 | "expression is not a property reference" ); |
| 4093 | E = E->IgnoreParenCasts(); |
| 4094 | if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) { |
| 4095 | if (BO->getOpcode() == BO_Comma) { |
| 4096 | E = BO->getRHS(); |
| 4097 | continue; |
| 4098 | } |
| 4099 | } |
| 4100 | |
| 4101 | break; |
| 4102 | } |
| 4103 | |
| 4104 | return cast<ObjCPropertyRefExpr>(Val: E); |
| 4105 | } |
| 4106 | |
| 4107 | bool Expr::isObjCSelfExpr() const { |
| 4108 | const Expr *E = IgnoreParenImpCasts(); |
| 4109 | |
| 4110 | const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E); |
| 4111 | if (!DRE) |
| 4112 | return false; |
| 4113 | |
| 4114 | const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(Val: DRE->getDecl()); |
| 4115 | if (!Param) |
| 4116 | return false; |
| 4117 | |
| 4118 | const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Val: Param->getDeclContext()); |
| 4119 | if (!M) |
| 4120 | return false; |
| 4121 | |
| 4122 | return M->getSelfDecl() == Param; |
| 4123 | } |
| 4124 | |
| 4125 | FieldDecl *Expr::getSourceBitField() { |
| 4126 | Expr *E = this->IgnoreParens(); |
| 4127 | |
| 4128 | while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
| 4129 | if (ICE->getCastKind() == CK_LValueToRValue || |
| 4130 | (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)) |
| 4131 | E = ICE->getSubExpr()->IgnoreParens(); |
| 4132 | else |
| 4133 | break; |
| 4134 | } |
| 4135 | |
| 4136 | if (MemberExpr *MemRef = dyn_cast<MemberExpr>(Val: E)) |
| 4137 | if (FieldDecl *Field = dyn_cast<FieldDecl>(Val: MemRef->getMemberDecl())) |
| 4138 | if (Field->isBitField()) |
| 4139 | return Field; |
| 4140 | |
| 4141 | if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(Val: E)) { |
| 4142 | FieldDecl *Ivar = IvarRef->getDecl(); |
| 4143 | if (Ivar->isBitField()) |
| 4144 | return Ivar; |
| 4145 | } |
| 4146 | |
| 4147 | if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(Val: E)) { |
| 4148 | if (FieldDecl *Field = dyn_cast<FieldDecl>(Val: DeclRef->getDecl())) |
| 4149 | if (Field->isBitField()) |
| 4150 | return Field; |
| 4151 | |
| 4152 | if (BindingDecl *BD = dyn_cast<BindingDecl>(Val: DeclRef->getDecl())) |
| 4153 | if (Expr *E = BD->getBinding()) |
| 4154 | return E->getSourceBitField(); |
| 4155 | } |
| 4156 | |
| 4157 | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val: E)) { |
| 4158 | if (BinOp->isAssignmentOp() && BinOp->getLHS()) |
| 4159 | return BinOp->getLHS()->getSourceBitField(); |
| 4160 | |
| 4161 | if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) |
| 4162 | return BinOp->getRHS()->getSourceBitField(); |
| 4163 | } |
| 4164 | |
| 4165 | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: E)) |
| 4166 | if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) |
| 4167 | return UnOp->getSubExpr()->getSourceBitField(); |
| 4168 | |
| 4169 | return nullptr; |
| 4170 | } |
| 4171 | |
| 4172 | EnumConstantDecl *Expr::getEnumConstantDecl() { |
| 4173 | Expr *E = this->IgnoreParenImpCasts(); |
| 4174 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
| 4175 | return dyn_cast<EnumConstantDecl>(Val: DRE->getDecl()); |
| 4176 | return nullptr; |
| 4177 | } |
| 4178 | |
| 4179 | bool Expr::refersToVectorElement() const { |
| 4180 | // FIXME: Why do we not just look at the ObjectKind here? |
| 4181 | const Expr *E = this->IgnoreParens(); |
| 4182 | |
| 4183 | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
| 4184 | if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp) |
| 4185 | E = ICE->getSubExpr()->IgnoreParens(); |
| 4186 | else |
| 4187 | break; |
| 4188 | } |
| 4189 | |
| 4190 | if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Val: E)) |
| 4191 | return ASE->getBase()->getType()->isVectorType(); |
| 4192 | |
| 4193 | if (isa<ExtVectorElementExpr>(Val: E)) |
| 4194 | return true; |
| 4195 | |
| 4196 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
| 4197 | if (auto *BD = dyn_cast<BindingDecl>(Val: DRE->getDecl())) |
| 4198 | if (auto *E = BD->getBinding()) |
| 4199 | return E->refersToVectorElement(); |
| 4200 | |
| 4201 | return false; |
| 4202 | } |
| 4203 | |
| 4204 | bool Expr::refersToGlobalRegisterVar() const { |
| 4205 | const Expr *E = this->IgnoreParenImpCasts(); |
| 4206 | |
| 4207 | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
| 4208 | if (const auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl())) |
| 4209 | if (VD->getStorageClass() == SC_Register && |
| 4210 | VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) |
| 4211 | return true; |
| 4212 | |
| 4213 | return false; |
| 4214 | } |
| 4215 | |
| 4216 | bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { |
| 4217 | E1 = E1->IgnoreParens(); |
| 4218 | E2 = E2->IgnoreParens(); |
| 4219 | |
| 4220 | if (E1->getStmtClass() != E2->getStmtClass()) |
| 4221 | return false; |
| 4222 | |
| 4223 | switch (E1->getStmtClass()) { |
| 4224 | default: |
| 4225 | return false; |
| 4226 | case CXXThisExprClass: |
| 4227 | return true; |
| 4228 | case DeclRefExprClass: { |
| 4229 | // DeclRefExpr without an ImplicitCastExpr can happen for integral |
| 4230 | // template parameters. |
| 4231 | const auto *DRE1 = cast<DeclRefExpr>(Val: E1); |
| 4232 | const auto *DRE2 = cast<DeclRefExpr>(Val: E2); |
| 4233 | return DRE1->isPRValue() && DRE2->isPRValue() && |
| 4234 | DRE1->getDecl() == DRE2->getDecl(); |
| 4235 | } |
| 4236 | case ImplicitCastExprClass: { |
| 4237 | // Peel off implicit casts. |
| 4238 | while (true) { |
| 4239 | const auto *ICE1 = dyn_cast<ImplicitCastExpr>(Val: E1); |
| 4240 | const auto *ICE2 = dyn_cast<ImplicitCastExpr>(Val: E2); |
| 4241 | if (!ICE1 || !ICE2) |
| 4242 | return false; |
| 4243 | if (ICE1->getCastKind() != ICE2->getCastKind()) |
| 4244 | return false; |
| 4245 | E1 = ICE1->getSubExpr()->IgnoreParens(); |
| 4246 | E2 = ICE2->getSubExpr()->IgnoreParens(); |
| 4247 | // The final cast must be one of these types. |
| 4248 | if (ICE1->getCastKind() == CK_LValueToRValue || |
| 4249 | ICE1->getCastKind() == CK_ArrayToPointerDecay || |
| 4250 | ICE1->getCastKind() == CK_FunctionToPointerDecay) { |
| 4251 | break; |
| 4252 | } |
| 4253 | } |
| 4254 | |
| 4255 | const auto *DRE1 = dyn_cast<DeclRefExpr>(Val: E1); |
| 4256 | const auto *DRE2 = dyn_cast<DeclRefExpr>(Val: E2); |
| 4257 | if (DRE1 && DRE2) |
| 4258 | return declaresSameEntity(D1: DRE1->getDecl(), D2: DRE2->getDecl()); |
| 4259 | |
| 4260 | const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(Val: E1); |
| 4261 | const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(Val: E2); |
| 4262 | if (Ivar1 && Ivar2) { |
| 4263 | return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && |
| 4264 | declaresSameEntity(D1: Ivar1->getDecl(), D2: Ivar2->getDecl()); |
| 4265 | } |
| 4266 | |
| 4267 | const auto *Array1 = dyn_cast<ArraySubscriptExpr>(Val: E1); |
| 4268 | const auto *Array2 = dyn_cast<ArraySubscriptExpr>(Val: E2); |
| 4269 | if (Array1 && Array2) { |
| 4270 | if (!isSameComparisonOperand(E1: Array1->getBase(), E2: Array2->getBase())) |
| 4271 | return false; |
| 4272 | |
| 4273 | auto Idx1 = Array1->getIdx(); |
| 4274 | auto Idx2 = Array2->getIdx(); |
| 4275 | const auto Integer1 = dyn_cast<IntegerLiteral>(Val: Idx1); |
| 4276 | const auto Integer2 = dyn_cast<IntegerLiteral>(Val: Idx2); |
| 4277 | if (Integer1 && Integer2) { |
| 4278 | if (!llvm::APInt::isSameValue(I1: Integer1->getValue(), |
| 4279 | I2: Integer2->getValue())) |
| 4280 | return false; |
| 4281 | } else { |
| 4282 | if (!isSameComparisonOperand(E1: Idx1, E2: Idx2)) |
| 4283 | return false; |
| 4284 | } |
| 4285 | |
| 4286 | return true; |
| 4287 | } |
| 4288 | |
| 4289 | // Walk the MemberExpr chain. |
| 4290 | while (isa<MemberExpr>(Val: E1) && isa<MemberExpr>(Val: E2)) { |
| 4291 | const auto *ME1 = cast<MemberExpr>(Val: E1); |
| 4292 | const auto *ME2 = cast<MemberExpr>(Val: E2); |
| 4293 | if (!declaresSameEntity(D1: ME1->getMemberDecl(), D2: ME2->getMemberDecl())) |
| 4294 | return false; |
| 4295 | if (const auto *D = dyn_cast<VarDecl>(Val: ME1->getMemberDecl())) |
| 4296 | if (D->isStaticDataMember()) |
| 4297 | return true; |
| 4298 | E1 = ME1->getBase()->IgnoreParenImpCasts(); |
| 4299 | E2 = ME2->getBase()->IgnoreParenImpCasts(); |
| 4300 | } |
| 4301 | |
| 4302 | if (isa<CXXThisExpr>(Val: E1) && isa<CXXThisExpr>(Val: E2)) |
| 4303 | return true; |
| 4304 | |
| 4305 | // A static member variable can end the MemberExpr chain with either |
| 4306 | // a MemberExpr or a DeclRefExpr. |
| 4307 | auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { |
| 4308 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
| 4309 | return DRE->getDecl(); |
| 4310 | if (const auto *ME = dyn_cast<MemberExpr>(Val: E)) |
| 4311 | return ME->getMemberDecl(); |
| 4312 | return nullptr; |
| 4313 | }; |
| 4314 | |
| 4315 | const ValueDecl *VD1 = getAnyDecl(E1); |
| 4316 | const ValueDecl *VD2 = getAnyDecl(E2); |
| 4317 | return declaresSameEntity(D1: VD1, D2: VD2); |
| 4318 | } |
| 4319 | } |
| 4320 | } |
| 4321 | |
| 4322 | /// isArrow - Return true if the base expression is a pointer to vector, |
| 4323 | /// return false if the base expression is a vector. |
| 4324 | bool ExtVectorElementExpr::isArrow() const { |
| 4325 | return getBase()->getType()->isPointerType(); |
| 4326 | } |
| 4327 | |
| 4328 | unsigned ExtVectorElementExpr::getNumElements() const { |
| 4329 | if (const VectorType *VT = getType()->getAs<VectorType>()) |
| 4330 | return VT->getNumElements(); |
| 4331 | return 1; |
| 4332 | } |
| 4333 | |
| 4334 | /// containsDuplicateElements - Return true if any element access is repeated. |
| 4335 | bool ExtVectorElementExpr::containsDuplicateElements() const { |
| 4336 | // FIXME: Refactor this code to an accessor on the AST node which returns the |
| 4337 | // "type" of component access, and share with code below and in Sema. |
| 4338 | StringRef Comp = Accessor->getName(); |
| 4339 | |
| 4340 | // Halving swizzles do not contain duplicate elements. |
| 4341 | if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd" ) |
| 4342 | return false; |
| 4343 | |
| 4344 | // Advance past s-char prefix on hex swizzles. |
| 4345 | if (Comp[0] == 's' || Comp[0] == 'S') |
| 4346 | Comp = Comp.substr(Start: 1); |
| 4347 | |
| 4348 | for (unsigned i = 0, e = Comp.size(); i != e; ++i) |
| 4349 | if (Comp.substr(Start: i + 1).contains(C: Comp[i])) |
| 4350 | return true; |
| 4351 | |
| 4352 | return false; |
| 4353 | } |
| 4354 | |
| 4355 | /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. |
| 4356 | void ExtVectorElementExpr::getEncodedElementAccess( |
| 4357 | SmallVectorImpl<uint32_t> &Elts) const { |
| 4358 | StringRef Comp = Accessor->getName(); |
| 4359 | bool isNumericAccessor = false; |
| 4360 | if (Comp[0] == 's' || Comp[0] == 'S') { |
| 4361 | Comp = Comp.substr(Start: 1); |
| 4362 | isNumericAccessor = true; |
| 4363 | } |
| 4364 | |
| 4365 | bool isHi = Comp == "hi" ; |
| 4366 | bool isLo = Comp == "lo" ; |
| 4367 | bool isEven = Comp == "even" ; |
| 4368 | bool isOdd = Comp == "odd" ; |
| 4369 | |
| 4370 | for (unsigned i = 0, e = getNumElements(); i != e; ++i) { |
| 4371 | uint64_t Index; |
| 4372 | |
| 4373 | if (isHi) |
| 4374 | Index = e + i; |
| 4375 | else if (isLo) |
| 4376 | Index = i; |
| 4377 | else if (isEven) |
| 4378 | Index = 2 * i; |
| 4379 | else if (isOdd) |
| 4380 | Index = 2 * i + 1; |
| 4381 | else |
| 4382 | Index = ExtVectorType::getAccessorIdx(c: Comp[i], isNumericAccessor); |
| 4383 | |
| 4384 | Elts.push_back(Elt: Index); |
| 4385 | } |
| 4386 | } |
| 4387 | |
| 4388 | ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args, |
| 4389 | QualType Type, SourceLocation BLoc, |
| 4390 | SourceLocation RP) |
| 4391 | : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary), |
| 4392 | BuiltinLoc(BLoc), RParenLoc(RP) { |
| 4393 | ShuffleVectorExprBits.NumExprs = args.size(); |
| 4394 | SubExprs = new (C) Stmt*[args.size()]; |
| 4395 | for (unsigned i = 0; i != args.size(); i++) |
| 4396 | SubExprs[i] = args[i]; |
| 4397 | |
| 4398 | setDependence(computeDependence(E: this)); |
| 4399 | } |
| 4400 | |
| 4401 | void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { |
| 4402 | if (SubExprs) C.Deallocate(Ptr: SubExprs); |
| 4403 | |
| 4404 | this->ShuffleVectorExprBits.NumExprs = Exprs.size(); |
| 4405 | SubExprs = new (C) Stmt *[ShuffleVectorExprBits.NumExprs]; |
| 4406 | llvm::copy(Range&: Exprs, Out: SubExprs); |
| 4407 | } |
| 4408 | |
| 4409 | GenericSelectionExpr::GenericSelectionExpr( |
| 4410 | const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, |
| 4411 | ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, |
| 4412 | SourceLocation DefaultLoc, SourceLocation RParenLoc, |
| 4413 | bool ContainsUnexpandedParameterPack, unsigned ResultIndex) |
| 4414 | : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), |
| 4415 | AssocExprs[ResultIndex]->getValueKind(), |
| 4416 | AssocExprs[ResultIndex]->getObjectKind()), |
| 4417 | NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), |
| 4418 | IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { |
| 4419 | assert(AssocTypes.size() == AssocExprs.size() && |
| 4420 | "Must have the same number of association expressions" |
| 4421 | " and TypeSourceInfo!" ); |
| 4422 | assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!" ); |
| 4423 | |
| 4424 | GenericSelectionExprBits.GenericLoc = GenericLoc; |
| 4425 | getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] = |
| 4426 | ControllingExpr; |
| 4427 | llvm::copy(Range&: AssocExprs, |
| 4428 | Out: getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); |
| 4429 | llvm::copy(Range&: AssocTypes, Out: getTrailingObjects<TypeSourceInfo *>() + |
| 4430 | getIndexOfStartOfAssociatedTypes()); |
| 4431 | |
| 4432 | setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack)); |
| 4433 | } |
| 4434 | |
| 4435 | GenericSelectionExpr::GenericSelectionExpr( |
| 4436 | const ASTContext &, SourceLocation GenericLoc, |
| 4437 | TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, |
| 4438 | ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, |
| 4439 | SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, |
| 4440 | unsigned ResultIndex) |
| 4441 | : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), |
| 4442 | AssocExprs[ResultIndex]->getValueKind(), |
| 4443 | AssocExprs[ResultIndex]->getObjectKind()), |
| 4444 | NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), |
| 4445 | IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { |
| 4446 | assert(AssocTypes.size() == AssocExprs.size() && |
| 4447 | "Must have the same number of association expressions" |
| 4448 | " and TypeSourceInfo!" ); |
| 4449 | assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!" ); |
| 4450 | |
| 4451 | GenericSelectionExprBits.GenericLoc = GenericLoc; |
| 4452 | getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] = |
| 4453 | ControllingType; |
| 4454 | llvm::copy(Range&: AssocExprs, |
| 4455 | Out: getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); |
| 4456 | llvm::copy(Range&: AssocTypes, Out: getTrailingObjects<TypeSourceInfo *>() + |
| 4457 | getIndexOfStartOfAssociatedTypes()); |
| 4458 | |
| 4459 | setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack)); |
| 4460 | } |
| 4461 | |
| 4462 | GenericSelectionExpr::GenericSelectionExpr( |
| 4463 | const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, |
| 4464 | ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, |
| 4465 | SourceLocation DefaultLoc, SourceLocation RParenLoc, |
| 4466 | bool ContainsUnexpandedParameterPack) |
| 4467 | : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, |
| 4468 | OK_Ordinary), |
| 4469 | NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), |
| 4470 | IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { |
| 4471 | assert(AssocTypes.size() == AssocExprs.size() && |
| 4472 | "Must have the same number of association expressions" |
| 4473 | " and TypeSourceInfo!" ); |
| 4474 | |
| 4475 | GenericSelectionExprBits.GenericLoc = GenericLoc; |
| 4476 | getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] = |
| 4477 | ControllingExpr; |
| 4478 | llvm::copy(Range&: AssocExprs, |
| 4479 | Out: getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); |
| 4480 | llvm::copy(Range&: AssocTypes, Out: getTrailingObjects<TypeSourceInfo *>() + |
| 4481 | getIndexOfStartOfAssociatedTypes()); |
| 4482 | |
| 4483 | setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack)); |
| 4484 | } |
| 4485 | |
| 4486 | GenericSelectionExpr::GenericSelectionExpr( |
| 4487 | const ASTContext &Context, SourceLocation GenericLoc, |
| 4488 | TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, |
| 4489 | ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, |
| 4490 | SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) |
| 4491 | : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, |
| 4492 | OK_Ordinary), |
| 4493 | NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), |
| 4494 | IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { |
| 4495 | assert(AssocTypes.size() == AssocExprs.size() && |
| 4496 | "Must have the same number of association expressions" |
| 4497 | " and TypeSourceInfo!" ); |
| 4498 | |
| 4499 | GenericSelectionExprBits.GenericLoc = GenericLoc; |
| 4500 | getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] = |
| 4501 | ControllingType; |
| 4502 | llvm::copy(Range&: AssocExprs, |
| 4503 | Out: getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); |
| 4504 | llvm::copy(Range&: AssocTypes, Out: getTrailingObjects<TypeSourceInfo *>() + |
| 4505 | getIndexOfStartOfAssociatedTypes()); |
| 4506 | |
| 4507 | setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack)); |
| 4508 | } |
| 4509 | |
| 4510 | GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) |
| 4511 | : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} |
| 4512 | |
| 4513 | GenericSelectionExpr *GenericSelectionExpr::Create( |
| 4514 | const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, |
| 4515 | ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, |
| 4516 | SourceLocation DefaultLoc, SourceLocation RParenLoc, |
| 4517 | bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { |
| 4518 | unsigned NumAssocs = AssocExprs.size(); |
| 4519 | void *Mem = Context.Allocate( |
| 4520 | Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs), |
| 4521 | Align: alignof(GenericSelectionExpr)); |
| 4522 | return new (Mem) GenericSelectionExpr( |
| 4523 | Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, |
| 4524 | RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); |
| 4525 | } |
| 4526 | |
| 4527 | GenericSelectionExpr *GenericSelectionExpr::Create( |
| 4528 | const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, |
| 4529 | ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, |
| 4530 | SourceLocation DefaultLoc, SourceLocation RParenLoc, |
| 4531 | bool ContainsUnexpandedParameterPack) { |
| 4532 | unsigned NumAssocs = AssocExprs.size(); |
| 4533 | void *Mem = Context.Allocate( |
| 4534 | Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs), |
| 4535 | Align: alignof(GenericSelectionExpr)); |
| 4536 | return new (Mem) GenericSelectionExpr( |
| 4537 | Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, |
| 4538 | RParenLoc, ContainsUnexpandedParameterPack); |
| 4539 | } |
| 4540 | |
| 4541 | GenericSelectionExpr *GenericSelectionExpr::Create( |
| 4542 | const ASTContext &Context, SourceLocation GenericLoc, |
| 4543 | TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, |
| 4544 | ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, |
| 4545 | SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, |
| 4546 | unsigned ResultIndex) { |
| 4547 | unsigned NumAssocs = AssocExprs.size(); |
| 4548 | void *Mem = Context.Allocate( |
| 4549 | Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs), |
| 4550 | Align: alignof(GenericSelectionExpr)); |
| 4551 | return new (Mem) GenericSelectionExpr( |
| 4552 | Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc, |
| 4553 | RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); |
| 4554 | } |
| 4555 | |
| 4556 | GenericSelectionExpr *GenericSelectionExpr::Create( |
| 4557 | const ASTContext &Context, SourceLocation GenericLoc, |
| 4558 | TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, |
| 4559 | ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, |
| 4560 | SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) { |
| 4561 | unsigned NumAssocs = AssocExprs.size(); |
| 4562 | void *Mem = Context.Allocate( |
| 4563 | Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs), |
| 4564 | Align: alignof(GenericSelectionExpr)); |
| 4565 | return new (Mem) GenericSelectionExpr( |
| 4566 | Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc, |
| 4567 | RParenLoc, ContainsUnexpandedParameterPack); |
| 4568 | } |
| 4569 | |
| 4570 | GenericSelectionExpr * |
| 4571 | GenericSelectionExpr::CreateEmpty(const ASTContext &Context, |
| 4572 | unsigned NumAssocs) { |
| 4573 | void *Mem = Context.Allocate( |
| 4574 | Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs), |
| 4575 | Align: alignof(GenericSelectionExpr)); |
| 4576 | return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); |
| 4577 | } |
| 4578 | |
| 4579 | //===----------------------------------------------------------------------===// |
| 4580 | // DesignatedInitExpr |
| 4581 | //===----------------------------------------------------------------------===// |
| 4582 | |
| 4583 | const IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { |
| 4584 | assert(isFieldDesignator() && "Only valid on a field designator" ); |
| 4585 | if (FieldInfo.NameOrField & 0x01) |
| 4586 | return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01); |
| 4587 | return getFieldDecl()->getIdentifier(); |
| 4588 | } |
| 4589 | |
| 4590 | DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, |
| 4591 | ArrayRef<Designator> Designators, |
| 4592 | SourceLocation EqualOrColonLoc, |
| 4593 | bool GNUSyntax, |
| 4594 | ArrayRef<Expr *> IndexExprs, Expr *Init) |
| 4595 | : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(), |
| 4596 | Init->getObjectKind()), |
| 4597 | EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), |
| 4598 | NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { |
| 4599 | this->Designators = new (C) Designator[NumDesignators]; |
| 4600 | |
| 4601 | // Record the initializer itself. |
| 4602 | child_iterator Child = child_begin(); |
| 4603 | *Child++ = Init; |
| 4604 | |
| 4605 | // Copy the designators and their subexpressions, computing |
| 4606 | // value-dependence along the way. |
| 4607 | unsigned IndexIdx = 0; |
| 4608 | for (unsigned I = 0; I != NumDesignators; ++I) { |
| 4609 | this->Designators[I] = Designators[I]; |
| 4610 | if (this->Designators[I].isArrayDesignator()) { |
| 4611 | // Copy the index expressions into permanent storage. |
| 4612 | *Child++ = IndexExprs[IndexIdx++]; |
| 4613 | } else if (this->Designators[I].isArrayRangeDesignator()) { |
| 4614 | // Copy the start/end expressions into permanent storage. |
| 4615 | *Child++ = IndexExprs[IndexIdx++]; |
| 4616 | *Child++ = IndexExprs[IndexIdx++]; |
| 4617 | } |
| 4618 | } |
| 4619 | |
| 4620 | assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions" ); |
| 4621 | setDependence(computeDependence(E: this)); |
| 4622 | } |
| 4623 | |
| 4624 | DesignatedInitExpr *DesignatedInitExpr::Create(const ASTContext &C, |
| 4625 | ArrayRef<Designator> Designators, |
| 4626 | ArrayRef<Expr *> IndexExprs, |
| 4627 | SourceLocation ColonOrEqualLoc, |
| 4628 | bool UsesColonSyntax, |
| 4629 | Expr *Init) { |
| 4630 | void *Mem = C.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: IndexExprs.size() + 1), |
| 4631 | Align: alignof(DesignatedInitExpr)); |
| 4632 | return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, |
| 4633 | ColonOrEqualLoc, UsesColonSyntax, |
| 4634 | IndexExprs, Init); |
| 4635 | } |
| 4636 | |
| 4637 | DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, |
| 4638 | unsigned NumIndexExprs) { |
| 4639 | void *Mem = C.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: NumIndexExprs + 1), |
| 4640 | Align: alignof(DesignatedInitExpr)); |
| 4641 | return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); |
| 4642 | } |
| 4643 | |
| 4644 | void DesignatedInitExpr::setDesignators(const ASTContext &C, |
| 4645 | const Designator *Desigs, |
| 4646 | unsigned NumDesigs) { |
| 4647 | Designators = new (C) Designator[NumDesigs]; |
| 4648 | NumDesignators = NumDesigs; |
| 4649 | for (unsigned I = 0; I != NumDesigs; ++I) |
| 4650 | Designators[I] = Desigs[I]; |
| 4651 | } |
| 4652 | |
| 4653 | SourceRange DesignatedInitExpr::() const { |
| 4654 | DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); |
| 4655 | if (size() == 1) |
| 4656 | return DIE->getDesignator(Idx: 0)->getSourceRange(); |
| 4657 | return SourceRange(DIE->getDesignator(Idx: 0)->getBeginLoc(), |
| 4658 | DIE->getDesignator(Idx: size() - 1)->getEndLoc()); |
| 4659 | } |
| 4660 | |
| 4661 | SourceLocation DesignatedInitExpr::getBeginLoc() const { |
| 4662 | auto *DIE = const_cast<DesignatedInitExpr *>(this); |
| 4663 | Designator &First = *DIE->getDesignator(Idx: 0); |
| 4664 | if (First.isFieldDesignator()) { |
| 4665 | // Skip past implicit designators for anonymous structs/unions, since |
| 4666 | // these do not have valid source locations. |
| 4667 | for (unsigned int i = 0; i < DIE->size(); i++) { |
| 4668 | Designator &Des = *DIE->getDesignator(Idx: i); |
| 4669 | SourceLocation retval = GNUSyntax ? Des.getFieldLoc() : Des.getDotLoc(); |
| 4670 | if (!retval.isValid()) |
| 4671 | continue; |
| 4672 | return retval; |
| 4673 | } |
| 4674 | } |
| 4675 | return First.getLBracketLoc(); |
| 4676 | } |
| 4677 | |
| 4678 | SourceLocation DesignatedInitExpr::getEndLoc() const { |
| 4679 | return getInit()->getEndLoc(); |
| 4680 | } |
| 4681 | |
| 4682 | Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { |
| 4683 | assert(D.isArrayDesignator() && "Requires array designator" ); |
| 4684 | return getSubExpr(Idx: D.getArrayIndex() + 1); |
| 4685 | } |
| 4686 | |
| 4687 | Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { |
| 4688 | assert(D.isArrayRangeDesignator() && "Requires array range designator" ); |
| 4689 | return getSubExpr(Idx: D.getArrayIndex() + 1); |
| 4690 | } |
| 4691 | |
| 4692 | Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { |
| 4693 | assert(D.isArrayRangeDesignator() && "Requires array range designator" ); |
| 4694 | return getSubExpr(Idx: D.getArrayIndex() + 2); |
| 4695 | } |
| 4696 | |
| 4697 | /// Replaces the designator at index @p Idx with the series |
| 4698 | /// of designators in [First, Last). |
| 4699 | void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, |
| 4700 | const Designator *First, |
| 4701 | const Designator *Last) { |
| 4702 | unsigned NumNewDesignators = Last - First; |
| 4703 | if (NumNewDesignators == 0) { |
| 4704 | std::copy_backward(first: Designators + Idx + 1, |
| 4705 | last: Designators + NumDesignators, |
| 4706 | result: Designators + Idx); |
| 4707 | --NumNewDesignators; |
| 4708 | return; |
| 4709 | } |
| 4710 | if (NumNewDesignators == 1) { |
| 4711 | Designators[Idx] = *First; |
| 4712 | return; |
| 4713 | } |
| 4714 | |
| 4715 | Designator *NewDesignators |
| 4716 | = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; |
| 4717 | std::copy(first: Designators, last: Designators + Idx, result: NewDesignators); |
| 4718 | std::copy(first: First, last: Last, result: NewDesignators + Idx); |
| 4719 | std::copy(first: Designators + Idx + 1, last: Designators + NumDesignators, |
| 4720 | result: NewDesignators + Idx + NumNewDesignators); |
| 4721 | Designators = NewDesignators; |
| 4722 | NumDesignators = NumDesignators - 1 + NumNewDesignators; |
| 4723 | } |
| 4724 | |
| 4725 | DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, |
| 4726 | SourceLocation lBraceLoc, |
| 4727 | Expr *baseExpr, |
| 4728 | SourceLocation rBraceLoc) |
| 4729 | : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue, |
| 4730 | OK_Ordinary) { |
| 4731 | BaseAndUpdaterExprs[0] = baseExpr; |
| 4732 | |
| 4733 | InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, {}, rBraceLoc); |
| 4734 | ILE->setType(baseExpr->getType()); |
| 4735 | BaseAndUpdaterExprs[1] = ILE; |
| 4736 | |
| 4737 | // FIXME: this is wrong, set it correctly. |
| 4738 | setDependence(ExprDependence::None); |
| 4739 | } |
| 4740 | |
| 4741 | SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { |
| 4742 | return getBase()->getBeginLoc(); |
| 4743 | } |
| 4744 | |
| 4745 | SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { |
| 4746 | return getBase()->getEndLoc(); |
| 4747 | } |
| 4748 | |
| 4749 | ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, |
| 4750 | SourceLocation RParenLoc) |
| 4751 | : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary), |
| 4752 | LParenLoc(LParenLoc), RParenLoc(RParenLoc) { |
| 4753 | ParenListExprBits.NumExprs = Exprs.size(); |
| 4754 | llvm::copy(Range&: Exprs, Out: getTrailingObjects()); |
| 4755 | setDependence(computeDependence(E: this)); |
| 4756 | } |
| 4757 | |
| 4758 | ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) |
| 4759 | : Expr(ParenListExprClass, Empty) { |
| 4760 | ParenListExprBits.NumExprs = NumExprs; |
| 4761 | } |
| 4762 | |
| 4763 | ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, |
| 4764 | SourceLocation LParenLoc, |
| 4765 | ArrayRef<Expr *> Exprs, |
| 4766 | SourceLocation RParenLoc) { |
| 4767 | void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: Exprs.size()), |
| 4768 | Align: alignof(ParenListExpr)); |
| 4769 | return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); |
| 4770 | } |
| 4771 | |
| 4772 | ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, |
| 4773 | unsigned NumExprs) { |
| 4774 | void *Mem = |
| 4775 | Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: NumExprs), Align: alignof(ParenListExpr)); |
| 4776 | return new (Mem) ParenListExpr(EmptyShell(), NumExprs); |
| 4777 | } |
| 4778 | |
| 4779 | /// Certain overflow-dependent code patterns can have their integer overflow |
| 4780 | /// sanitization disabled. Check for the common pattern `if (a + b < a)` and |
| 4781 | /// return the resulting BinaryOperator responsible for the addition so we can |
| 4782 | /// elide overflow checks during codegen. |
| 4783 | static std::optional<BinaryOperator *> |
| 4784 | getOverflowPatternBinOp(const BinaryOperator *E) { |
| 4785 | Expr *Addition, *ComparedTo; |
| 4786 | if (E->getOpcode() == BO_LT) { |
| 4787 | Addition = E->getLHS(); |
| 4788 | ComparedTo = E->getRHS(); |
| 4789 | } else if (E->getOpcode() == BO_GT) { |
| 4790 | Addition = E->getRHS(); |
| 4791 | ComparedTo = E->getLHS(); |
| 4792 | } else { |
| 4793 | return {}; |
| 4794 | } |
| 4795 | |
| 4796 | const Expr *AddLHS = nullptr, *AddRHS = nullptr; |
| 4797 | BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: Addition); |
| 4798 | |
| 4799 | if (BO && BO->getOpcode() == clang::BO_Add) { |
| 4800 | // now store addends for lookup on other side of '>' |
| 4801 | AddLHS = BO->getLHS(); |
| 4802 | AddRHS = BO->getRHS(); |
| 4803 | } |
| 4804 | |
| 4805 | if (!AddLHS || !AddRHS) |
| 4806 | return {}; |
| 4807 | |
| 4808 | const Decl *LHSDecl, *RHSDecl, *OtherDecl; |
| 4809 | |
| 4810 | LHSDecl = AddLHS->IgnoreParenImpCasts()->getReferencedDeclOfCallee(); |
| 4811 | RHSDecl = AddRHS->IgnoreParenImpCasts()->getReferencedDeclOfCallee(); |
| 4812 | OtherDecl = ComparedTo->IgnoreParenImpCasts()->getReferencedDeclOfCallee(); |
| 4813 | |
| 4814 | if (!OtherDecl) |
| 4815 | return {}; |
| 4816 | |
| 4817 | if (!LHSDecl && !RHSDecl) |
| 4818 | return {}; |
| 4819 | |
| 4820 | if ((LHSDecl && LHSDecl == OtherDecl && LHSDecl != RHSDecl) || |
| 4821 | (RHSDecl && RHSDecl == OtherDecl && RHSDecl != LHSDecl)) |
| 4822 | return BO; |
| 4823 | return {}; |
| 4824 | } |
| 4825 | |
| 4826 | /// Compute and set the OverflowPatternExclusion bit based on whether the |
| 4827 | /// BinaryOperator expression matches an overflow pattern being ignored by |
| 4828 | /// -fsanitize-undefined-ignore-overflow-pattern=add-signed-overflow-test or |
| 4829 | /// -fsanitize-undefined-ignore-overflow-pattern=add-unsigned-overflow-test |
| 4830 | static void computeOverflowPatternExclusion(const ASTContext &Ctx, |
| 4831 | const BinaryOperator *E) { |
| 4832 | std::optional<BinaryOperator *> Result = getOverflowPatternBinOp(E); |
| 4833 | if (!Result.has_value()) |
| 4834 | return; |
| 4835 | QualType AdditionResultType = Result.value()->getType(); |
| 4836 | |
| 4837 | if ((AdditionResultType->isSignedIntegerType() && |
| 4838 | Ctx.getLangOpts().isOverflowPatternExcluded( |
| 4839 | Kind: LangOptions::OverflowPatternExclusionKind::AddSignedOverflowTest)) || |
| 4840 | (AdditionResultType->isUnsignedIntegerType() && |
| 4841 | Ctx.getLangOpts().isOverflowPatternExcluded( |
| 4842 | Kind: LangOptions::OverflowPatternExclusionKind::AddUnsignedOverflowTest))) |
| 4843 | Result.value()->setExcludedOverflowPattern(true); |
| 4844 | } |
| 4845 | |
| 4846 | BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, |
| 4847 | Opcode opc, QualType ResTy, ExprValueKind VK, |
| 4848 | ExprObjectKind OK, SourceLocation opLoc, |
| 4849 | FPOptionsOverride FPFeatures) |
| 4850 | : Expr(BinaryOperatorClass, ResTy, VK, OK) { |
| 4851 | BinaryOperatorBits.Opc = opc; |
| 4852 | assert(!isCompoundAssignmentOp() && |
| 4853 | "Use CompoundAssignOperator for compound assignments" ); |
| 4854 | BinaryOperatorBits.OpLoc = opLoc; |
| 4855 | BinaryOperatorBits.ExcludedOverflowPattern = false; |
| 4856 | SubExprs[LHS] = lhs; |
| 4857 | SubExprs[RHS] = rhs; |
| 4858 | computeOverflowPatternExclusion(Ctx, E: this); |
| 4859 | BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); |
| 4860 | if (hasStoredFPFeatures()) |
| 4861 | setStoredFPFeatures(FPFeatures); |
| 4862 | setDependence(computeDependence(E: this)); |
| 4863 | } |
| 4864 | |
| 4865 | BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, |
| 4866 | Opcode opc, QualType ResTy, ExprValueKind VK, |
| 4867 | ExprObjectKind OK, SourceLocation opLoc, |
| 4868 | FPOptionsOverride FPFeatures, bool dead2) |
| 4869 | : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) { |
| 4870 | BinaryOperatorBits.Opc = opc; |
| 4871 | BinaryOperatorBits.ExcludedOverflowPattern = false; |
| 4872 | assert(isCompoundAssignmentOp() && |
| 4873 | "Use CompoundAssignOperator for compound assignments" ); |
| 4874 | BinaryOperatorBits.OpLoc = opLoc; |
| 4875 | SubExprs[LHS] = lhs; |
| 4876 | SubExprs[RHS] = rhs; |
| 4877 | BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); |
| 4878 | if (hasStoredFPFeatures()) |
| 4879 | setStoredFPFeatures(FPFeatures); |
| 4880 | setDependence(computeDependence(E: this)); |
| 4881 | } |
| 4882 | |
| 4883 | BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C, |
| 4884 | bool HasFPFeatures) { |
| 4885 | unsigned = sizeOfTrailingObjects(HasFPFeatures); |
| 4886 | void *Mem = |
| 4887 | C.Allocate(Size: sizeof(BinaryOperator) + Extra, Align: alignof(BinaryOperator)); |
| 4888 | return new (Mem) BinaryOperator(EmptyShell()); |
| 4889 | } |
| 4890 | |
| 4891 | BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs, |
| 4892 | Expr *rhs, Opcode opc, QualType ResTy, |
| 4893 | ExprValueKind VK, ExprObjectKind OK, |
| 4894 | SourceLocation opLoc, |
| 4895 | FPOptionsOverride FPFeatures) { |
| 4896 | bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); |
| 4897 | unsigned = sizeOfTrailingObjects(HasFPFeatures); |
| 4898 | void *Mem = |
| 4899 | C.Allocate(Size: sizeof(BinaryOperator) + Extra, Align: alignof(BinaryOperator)); |
| 4900 | return new (Mem) |
| 4901 | BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures); |
| 4902 | } |
| 4903 | |
| 4904 | CompoundAssignOperator * |
| 4905 | CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) { |
| 4906 | unsigned = sizeOfTrailingObjects(HasFPFeatures); |
| 4907 | void *Mem = C.Allocate(Size: sizeof(CompoundAssignOperator) + Extra, |
| 4908 | Align: alignof(CompoundAssignOperator)); |
| 4909 | return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures); |
| 4910 | } |
| 4911 | |
| 4912 | CompoundAssignOperator * |
| 4913 | CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs, |
| 4914 | Opcode opc, QualType ResTy, ExprValueKind VK, |
| 4915 | ExprObjectKind OK, SourceLocation opLoc, |
| 4916 | FPOptionsOverride FPFeatures, |
| 4917 | QualType CompLHSType, QualType CompResultType) { |
| 4918 | bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); |
| 4919 | unsigned = sizeOfTrailingObjects(HasFPFeatures); |
| 4920 | void *Mem = C.Allocate(Size: sizeof(CompoundAssignOperator) + Extra, |
| 4921 | Align: alignof(CompoundAssignOperator)); |
| 4922 | return new (Mem) |
| 4923 | CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures, |
| 4924 | CompLHSType, CompResultType); |
| 4925 | } |
| 4926 | |
| 4927 | UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C, |
| 4928 | bool hasFPFeatures) { |
| 4929 | void *Mem = C.Allocate(Size: totalSizeToAlloc<FPOptionsOverride>(Counts: hasFPFeatures), |
| 4930 | Align: alignof(UnaryOperator)); |
| 4931 | return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell()); |
| 4932 | } |
| 4933 | |
| 4934 | UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, |
| 4935 | QualType type, ExprValueKind VK, ExprObjectKind OK, |
| 4936 | SourceLocation l, bool CanOverflow, |
| 4937 | FPOptionsOverride FPFeatures) |
| 4938 | : Expr(UnaryOperatorClass, type, VK, OK), Val(input) { |
| 4939 | UnaryOperatorBits.Opc = opc; |
| 4940 | UnaryOperatorBits.CanOverflow = CanOverflow; |
| 4941 | UnaryOperatorBits.Loc = l; |
| 4942 | UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); |
| 4943 | if (hasStoredFPFeatures()) |
| 4944 | setStoredFPFeatures(FPFeatures); |
| 4945 | setDependence(computeDependence(E: this, Ctx)); |
| 4946 | } |
| 4947 | |
| 4948 | UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input, |
| 4949 | Opcode opc, QualType type, |
| 4950 | ExprValueKind VK, ExprObjectKind OK, |
| 4951 | SourceLocation l, bool CanOverflow, |
| 4952 | FPOptionsOverride FPFeatures) { |
| 4953 | bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); |
| 4954 | unsigned Size = totalSizeToAlloc<FPOptionsOverride>(Counts: HasFPFeatures); |
| 4955 | void *Mem = C.Allocate(Size, Align: alignof(UnaryOperator)); |
| 4956 | return new (Mem) |
| 4957 | UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures); |
| 4958 | } |
| 4959 | |
| 4960 | const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { |
| 4961 | if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(Val: e)) |
| 4962 | e = ewc->getSubExpr(); |
| 4963 | if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(Val: e)) |
| 4964 | e = m->getSubExpr(); |
| 4965 | e = cast<CXXConstructExpr>(Val: e)->getArg(Arg: 0); |
| 4966 | while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(Val: e)) |
| 4967 | e = ice->getSubExpr(); |
| 4968 | return cast<OpaqueValueExpr>(Val: e); |
| 4969 | } |
| 4970 | |
| 4971 | PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, |
| 4972 | EmptyShell sh, |
| 4973 | unsigned numSemanticExprs) { |
| 4974 | void *buffer = |
| 4975 | Context.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: 1 + numSemanticExprs), |
| 4976 | Align: alignof(PseudoObjectExpr)); |
| 4977 | return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); |
| 4978 | } |
| 4979 | |
| 4980 | PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) |
| 4981 | : Expr(PseudoObjectExprClass, shell) { |
| 4982 | PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; |
| 4983 | } |
| 4984 | |
| 4985 | PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, |
| 4986 | ArrayRef<Expr*> semantics, |
| 4987 | unsigned resultIndex) { |
| 4988 | assert(syntax && "no syntactic expression!" ); |
| 4989 | assert(semantics.size() && "no semantic expressions!" ); |
| 4990 | |
| 4991 | QualType type; |
| 4992 | ExprValueKind VK; |
| 4993 | if (resultIndex == NoResult) { |
| 4994 | type = C.VoidTy; |
| 4995 | VK = VK_PRValue; |
| 4996 | } else { |
| 4997 | assert(resultIndex < semantics.size()); |
| 4998 | type = semantics[resultIndex]->getType(); |
| 4999 | VK = semantics[resultIndex]->getValueKind(); |
| 5000 | assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); |
| 5001 | } |
| 5002 | |
| 5003 | void *buffer = C.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: semantics.size() + 1), |
| 5004 | Align: alignof(PseudoObjectExpr)); |
| 5005 | return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, |
| 5006 | resultIndex); |
| 5007 | } |
| 5008 | |
| 5009 | PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, |
| 5010 | Expr *syntax, ArrayRef<Expr *> semantics, |
| 5011 | unsigned resultIndex) |
| 5012 | : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) { |
| 5013 | PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; |
| 5014 | PseudoObjectExprBits.ResultIndex = resultIndex + 1; |
| 5015 | MutableArrayRef<Expr *> Trail = getTrailingObjects(N: semantics.size() + 1); |
| 5016 | Trail[0] = syntax; |
| 5017 | |
| 5018 | assert(llvm::all_of(semantics, |
| 5019 | [](const Expr *E) { |
| 5020 | return !isa<OpaqueValueExpr>(E) || |
| 5021 | cast<OpaqueValueExpr>(E)->getSourceExpr() != |
| 5022 | nullptr; |
| 5023 | }) && |
| 5024 | "opaque-value semantic expressions for pseudo-object " |
| 5025 | "operations must have sources" ); |
| 5026 | |
| 5027 | llvm::copy(Range&: semantics, Out: Trail.drop_front().begin()); |
| 5028 | setDependence(computeDependence(E: this)); |
| 5029 | } |
| 5030 | |
| 5031 | //===----------------------------------------------------------------------===// |
| 5032 | // Child Iterators for iterating over subexpressions/substatements |
| 5033 | //===----------------------------------------------------------------------===// |
| 5034 | |
| 5035 | // UnaryExprOrTypeTraitExpr |
| 5036 | Stmt::child_range UnaryExprOrTypeTraitExpr::children() { |
| 5037 | const_child_range CCR = |
| 5038 | const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); |
| 5039 | return child_range(cast_away_const(RHS: CCR.begin()), cast_away_const(RHS: CCR.end())); |
| 5040 | } |
| 5041 | |
| 5042 | Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { |
| 5043 | // If this is of a type and the type is a VLA type (and not a typedef), the |
| 5044 | // size expression of the VLA needs to be treated as an executable expression. |
| 5045 | // Why isn't this weirdness documented better in StmtIterator? |
| 5046 | if (isArgumentType()) { |
| 5047 | if (const VariableArrayType *T = |
| 5048 | dyn_cast<VariableArrayType>(Val: getArgumentType().getTypePtr())) |
| 5049 | return const_child_range(const_child_iterator(T), const_child_iterator()); |
| 5050 | return const_child_range(const_child_iterator(), const_child_iterator()); |
| 5051 | } |
| 5052 | return const_child_range(&Argument.Ex, &Argument.Ex + 1); |
| 5053 | } |
| 5054 | |
| 5055 | AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t, |
| 5056 | AtomicOp op, SourceLocation RP) |
| 5057 | : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary), |
| 5058 | NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) { |
| 5059 | assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions" ); |
| 5060 | for (unsigned i = 0; i != args.size(); i++) |
| 5061 | SubExprs[i] = args[i]; |
| 5062 | setDependence(computeDependence(E: this)); |
| 5063 | } |
| 5064 | |
| 5065 | unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { |
| 5066 | switch (Op) { |
| 5067 | case AO__c11_atomic_init: |
| 5068 | case AO__opencl_atomic_init: |
| 5069 | case AO__c11_atomic_load: |
| 5070 | case AO__atomic_load_n: |
| 5071 | case AO__atomic_test_and_set: |
| 5072 | case AO__atomic_clear: |
| 5073 | return 2; |
| 5074 | |
| 5075 | case AO__scoped_atomic_load_n: |
| 5076 | case AO__opencl_atomic_load: |
| 5077 | case AO__hip_atomic_load: |
| 5078 | case AO__c11_atomic_store: |
| 5079 | case AO__c11_atomic_exchange: |
| 5080 | case AO__atomic_load: |
| 5081 | case AO__atomic_store: |
| 5082 | case AO__atomic_store_n: |
| 5083 | case AO__atomic_exchange_n: |
| 5084 | case AO__c11_atomic_fetch_add: |
| 5085 | case AO__c11_atomic_fetch_sub: |
| 5086 | case AO__c11_atomic_fetch_and: |
| 5087 | case AO__c11_atomic_fetch_or: |
| 5088 | case AO__c11_atomic_fetch_xor: |
| 5089 | case AO__c11_atomic_fetch_nand: |
| 5090 | case AO__c11_atomic_fetch_max: |
| 5091 | case AO__c11_atomic_fetch_min: |
| 5092 | case AO__atomic_fetch_add: |
| 5093 | case AO__atomic_fetch_sub: |
| 5094 | case AO__atomic_fetch_and: |
| 5095 | case AO__atomic_fetch_or: |
| 5096 | case AO__atomic_fetch_xor: |
| 5097 | case AO__atomic_fetch_nand: |
| 5098 | case AO__atomic_add_fetch: |
| 5099 | case AO__atomic_sub_fetch: |
| 5100 | case AO__atomic_and_fetch: |
| 5101 | case AO__atomic_or_fetch: |
| 5102 | case AO__atomic_xor_fetch: |
| 5103 | case AO__atomic_nand_fetch: |
| 5104 | case AO__atomic_min_fetch: |
| 5105 | case AO__atomic_max_fetch: |
| 5106 | case AO__atomic_fetch_min: |
| 5107 | case AO__atomic_fetch_max: |
| 5108 | return 3; |
| 5109 | |
| 5110 | case AO__scoped_atomic_load: |
| 5111 | case AO__scoped_atomic_store: |
| 5112 | case AO__scoped_atomic_store_n: |
| 5113 | case AO__scoped_atomic_fetch_add: |
| 5114 | case AO__scoped_atomic_fetch_sub: |
| 5115 | case AO__scoped_atomic_fetch_and: |
| 5116 | case AO__scoped_atomic_fetch_or: |
| 5117 | case AO__scoped_atomic_fetch_xor: |
| 5118 | case AO__scoped_atomic_fetch_nand: |
| 5119 | case AO__scoped_atomic_add_fetch: |
| 5120 | case AO__scoped_atomic_sub_fetch: |
| 5121 | case AO__scoped_atomic_and_fetch: |
| 5122 | case AO__scoped_atomic_or_fetch: |
| 5123 | case AO__scoped_atomic_xor_fetch: |
| 5124 | case AO__scoped_atomic_nand_fetch: |
| 5125 | case AO__scoped_atomic_min_fetch: |
| 5126 | case AO__scoped_atomic_max_fetch: |
| 5127 | case AO__scoped_atomic_fetch_min: |
| 5128 | case AO__scoped_atomic_fetch_max: |
| 5129 | case AO__scoped_atomic_exchange_n: |
| 5130 | case AO__hip_atomic_exchange: |
| 5131 | case AO__hip_atomic_fetch_add: |
| 5132 | case AO__hip_atomic_fetch_sub: |
| 5133 | case AO__hip_atomic_fetch_and: |
| 5134 | case AO__hip_atomic_fetch_or: |
| 5135 | case AO__hip_atomic_fetch_xor: |
| 5136 | case AO__hip_atomic_fetch_min: |
| 5137 | case AO__hip_atomic_fetch_max: |
| 5138 | case AO__opencl_atomic_store: |
| 5139 | case AO__hip_atomic_store: |
| 5140 | case AO__opencl_atomic_exchange: |
| 5141 | case AO__opencl_atomic_fetch_add: |
| 5142 | case AO__opencl_atomic_fetch_sub: |
| 5143 | case AO__opencl_atomic_fetch_and: |
| 5144 | case AO__opencl_atomic_fetch_or: |
| 5145 | case AO__opencl_atomic_fetch_xor: |
| 5146 | case AO__opencl_atomic_fetch_min: |
| 5147 | case AO__opencl_atomic_fetch_max: |
| 5148 | case AO__atomic_exchange: |
| 5149 | return 4; |
| 5150 | |
| 5151 | case AO__scoped_atomic_exchange: |
| 5152 | case AO__c11_atomic_compare_exchange_strong: |
| 5153 | case AO__c11_atomic_compare_exchange_weak: |
| 5154 | return 5; |
| 5155 | case AO__hip_atomic_compare_exchange_strong: |
| 5156 | case AO__opencl_atomic_compare_exchange_strong: |
| 5157 | case AO__opencl_atomic_compare_exchange_weak: |
| 5158 | case AO__hip_atomic_compare_exchange_weak: |
| 5159 | case AO__atomic_compare_exchange: |
| 5160 | case AO__atomic_compare_exchange_n: |
| 5161 | return 6; |
| 5162 | |
| 5163 | case AO__scoped_atomic_compare_exchange: |
| 5164 | case AO__scoped_atomic_compare_exchange_n: |
| 5165 | return 7; |
| 5166 | } |
| 5167 | llvm_unreachable("unknown atomic op" ); |
| 5168 | } |
| 5169 | |
| 5170 | QualType AtomicExpr::getValueType() const { |
| 5171 | auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); |
| 5172 | if (auto AT = T->getAs<AtomicType>()) |
| 5173 | return AT->getValueType(); |
| 5174 | return T; |
| 5175 | } |
| 5176 | |
| 5177 | QualType ArraySectionExpr::getBaseOriginalType(const Expr *Base) { |
| 5178 | unsigned ArraySectionCount = 0; |
| 5179 | while (auto *OASE = dyn_cast<ArraySectionExpr>(Val: Base->IgnoreParens())) { |
| 5180 | Base = OASE->getBase(); |
| 5181 | ++ArraySectionCount; |
| 5182 | } |
| 5183 | while (auto *ASE = |
| 5184 | dyn_cast<ArraySubscriptExpr>(Val: Base->IgnoreParenImpCasts())) { |
| 5185 | Base = ASE->getBase(); |
| 5186 | ++ArraySectionCount; |
| 5187 | } |
| 5188 | Base = Base->IgnoreParenImpCasts(); |
| 5189 | auto OriginalTy = Base->getType(); |
| 5190 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: Base)) |
| 5191 | if (auto *PVD = dyn_cast<ParmVarDecl>(Val: DRE->getDecl())) |
| 5192 | OriginalTy = PVD->getOriginalType().getNonReferenceType(); |
| 5193 | |
| 5194 | for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { |
| 5195 | if (OriginalTy->isAnyPointerType()) |
| 5196 | OriginalTy = OriginalTy->getPointeeType(); |
| 5197 | else if (OriginalTy->isArrayType()) |
| 5198 | OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); |
| 5199 | else |
| 5200 | return {}; |
| 5201 | } |
| 5202 | return OriginalTy; |
| 5203 | } |
| 5204 | |
| 5205 | RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, |
| 5206 | SourceLocation EndLoc, ArrayRef<Expr *> SubExprs) |
| 5207 | : Expr(RecoveryExprClass, T.getNonReferenceType(), |
| 5208 | T->isDependentType() ? VK_LValue : getValueKindForType(T), |
| 5209 | OK_Ordinary), |
| 5210 | BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) { |
| 5211 | assert(!T.isNull()); |
| 5212 | assert(!llvm::is_contained(SubExprs, nullptr)); |
| 5213 | |
| 5214 | llvm::copy(Range&: SubExprs, Out: getTrailingObjects()); |
| 5215 | setDependence(computeDependence(E: this)); |
| 5216 | } |
| 5217 | |
| 5218 | RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T, |
| 5219 | SourceLocation BeginLoc, |
| 5220 | SourceLocation EndLoc, |
| 5221 | ArrayRef<Expr *> SubExprs) { |
| 5222 | void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: SubExprs.size()), |
| 5223 | Align: alignof(RecoveryExpr)); |
| 5224 | return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs); |
| 5225 | } |
| 5226 | |
| 5227 | RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) { |
| 5228 | void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: NumSubExprs), |
| 5229 | Align: alignof(RecoveryExpr)); |
| 5230 | return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs); |
| 5231 | } |
| 5232 | |
| 5233 | void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) { |
| 5234 | assert( |
| 5235 | NumDims == Dims.size() && |
| 5236 | "Preallocated number of dimensions is different from the provided one." ); |
| 5237 | llvm::copy(Range&: Dims, Out: getTrailingObjects<Expr *>()); |
| 5238 | } |
| 5239 | |
| 5240 | void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) { |
| 5241 | assert( |
| 5242 | NumDims == BR.size() && |
| 5243 | "Preallocated number of dimensions is different from the provided one." ); |
| 5244 | llvm::copy(Range&: BR, Out: getTrailingObjects<SourceRange>()); |
| 5245 | } |
| 5246 | |
| 5247 | OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op, |
| 5248 | SourceLocation L, SourceLocation R, |
| 5249 | ArrayRef<Expr *> Dims) |
| 5250 | : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L), |
| 5251 | RPLoc(R), NumDims(Dims.size()) { |
| 5252 | setBase(Op); |
| 5253 | setDimensions(Dims); |
| 5254 | setDependence(computeDependence(E: this)); |
| 5255 | } |
| 5256 | |
| 5257 | OMPArrayShapingExpr * |
| 5258 | OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op, |
| 5259 | SourceLocation L, SourceLocation R, |
| 5260 | ArrayRef<Expr *> Dims, |
| 5261 | ArrayRef<SourceRange> BracketRanges) { |
| 5262 | assert(Dims.size() == BracketRanges.size() && |
| 5263 | "Different number of dimensions and brackets ranges." ); |
| 5264 | void *Mem = Context.Allocate( |
| 5265 | Size: totalSizeToAlloc<Expr *, SourceRange>(Counts: Dims.size() + 1, Counts: Dims.size()), |
| 5266 | Align: alignof(OMPArrayShapingExpr)); |
| 5267 | auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims); |
| 5268 | E->setBracketsRanges(BracketRanges); |
| 5269 | return E; |
| 5270 | } |
| 5271 | |
| 5272 | OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context, |
| 5273 | unsigned NumDims) { |
| 5274 | void *Mem = Context.Allocate( |
| 5275 | Size: totalSizeToAlloc<Expr *, SourceRange>(Counts: NumDims + 1, Counts: NumDims), |
| 5276 | Align: alignof(OMPArrayShapingExpr)); |
| 5277 | return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims); |
| 5278 | } |
| 5279 | |
| 5280 | void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) { |
| 5281 | getTrailingObjects<Decl *>(N: NumIterators)[I] = D; |
| 5282 | } |
| 5283 | |
| 5284 | void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) { |
| 5285 | assert(I < NumIterators && |
| 5286 | "Idx is greater or equal the number of iterators definitions." ); |
| 5287 | getTrailingObjects< |
| 5288 | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + |
| 5289 | static_cast<int>(RangeLocOffset::AssignLoc)] = Loc; |
| 5290 | } |
| 5291 | |
| 5292 | void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin, |
| 5293 | SourceLocation ColonLoc, Expr *End, |
| 5294 | SourceLocation SecondColonLoc, |
| 5295 | Expr *Step) { |
| 5296 | assert(I < NumIterators && |
| 5297 | "Idx is greater or equal the number of iterators definitions." ); |
| 5298 | getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + |
| 5299 | static_cast<int>(RangeExprOffset::Begin)] = |
| 5300 | Begin; |
| 5301 | getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + |
| 5302 | static_cast<int>(RangeExprOffset::End)] = End; |
| 5303 | getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + |
| 5304 | static_cast<int>(RangeExprOffset::Step)] = Step; |
| 5305 | getTrailingObjects< |
| 5306 | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + |
| 5307 | static_cast<int>(RangeLocOffset::FirstColonLoc)] = |
| 5308 | ColonLoc; |
| 5309 | getTrailingObjects< |
| 5310 | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + |
| 5311 | static_cast<int>(RangeLocOffset::SecondColonLoc)] = |
| 5312 | SecondColonLoc; |
| 5313 | } |
| 5314 | |
| 5315 | Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) { |
| 5316 | return getTrailingObjects<Decl *>()[I]; |
| 5317 | } |
| 5318 | |
| 5319 | OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) { |
| 5320 | IteratorRange Res; |
| 5321 | Res.Begin = |
| 5322 | getTrailingObjects<Expr *>()[I * static_cast<int>( |
| 5323 | RangeExprOffset::Total) + |
| 5324 | static_cast<int>(RangeExprOffset::Begin)]; |
| 5325 | Res.End = |
| 5326 | getTrailingObjects<Expr *>()[I * static_cast<int>( |
| 5327 | RangeExprOffset::Total) + |
| 5328 | static_cast<int>(RangeExprOffset::End)]; |
| 5329 | Res.Step = |
| 5330 | getTrailingObjects<Expr *>()[I * static_cast<int>( |
| 5331 | RangeExprOffset::Total) + |
| 5332 | static_cast<int>(RangeExprOffset::Step)]; |
| 5333 | return Res; |
| 5334 | } |
| 5335 | |
| 5336 | SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const { |
| 5337 | return getTrailingObjects< |
| 5338 | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + |
| 5339 | static_cast<int>(RangeLocOffset::AssignLoc)]; |
| 5340 | } |
| 5341 | |
| 5342 | SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const { |
| 5343 | return getTrailingObjects< |
| 5344 | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + |
| 5345 | static_cast<int>(RangeLocOffset::FirstColonLoc)]; |
| 5346 | } |
| 5347 | |
| 5348 | SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const { |
| 5349 | return getTrailingObjects< |
| 5350 | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + |
| 5351 | static_cast<int>(RangeLocOffset::SecondColonLoc)]; |
| 5352 | } |
| 5353 | |
| 5354 | void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) { |
| 5355 | getTrailingObjects<OMPIteratorHelperData>()[I] = D; |
| 5356 | } |
| 5357 | |
| 5358 | OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) { |
| 5359 | return getTrailingObjects<OMPIteratorHelperData>()[I]; |
| 5360 | } |
| 5361 | |
| 5362 | const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const { |
| 5363 | return getTrailingObjects<OMPIteratorHelperData>()[I]; |
| 5364 | } |
| 5365 | |
| 5366 | OMPIteratorExpr::OMPIteratorExpr( |
| 5367 | QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L, |
| 5368 | SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, |
| 5369 | ArrayRef<OMPIteratorHelperData> Helpers) |
| 5370 | : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary), |
| 5371 | IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R), |
| 5372 | NumIterators(Data.size()) { |
| 5373 | for (unsigned I = 0, E = Data.size(); I < E; ++I) { |
| 5374 | const IteratorDefinition &D = Data[I]; |
| 5375 | setIteratorDeclaration(I, D: D.IteratorDecl); |
| 5376 | setAssignmentLoc(I, Loc: D.AssignmentLoc); |
| 5377 | setIteratorRange(I, Begin: D.Range.Begin, ColonLoc: D.ColonLoc, End: D.Range.End, |
| 5378 | SecondColonLoc: D.SecondColonLoc, Step: D.Range.Step); |
| 5379 | setHelper(I, D: Helpers[I]); |
| 5380 | } |
| 5381 | setDependence(computeDependence(E: this)); |
| 5382 | } |
| 5383 | |
| 5384 | OMPIteratorExpr * |
| 5385 | OMPIteratorExpr::Create(const ASTContext &Context, QualType T, |
| 5386 | SourceLocation IteratorKwLoc, SourceLocation L, |
| 5387 | SourceLocation R, |
| 5388 | ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, |
| 5389 | ArrayRef<OMPIteratorHelperData> Helpers) { |
| 5390 | assert(Data.size() == Helpers.size() && |
| 5391 | "Data and helpers must have the same size." ); |
| 5392 | void *Mem = Context.Allocate( |
| 5393 | Size: totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( |
| 5394 | Counts: Data.size(), Counts: Data.size() * static_cast<int>(RangeExprOffset::Total), |
| 5395 | Counts: Data.size() * static_cast<int>(RangeLocOffset::Total), |
| 5396 | Counts: Helpers.size()), |
| 5397 | Align: alignof(OMPIteratorExpr)); |
| 5398 | return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers); |
| 5399 | } |
| 5400 | |
| 5401 | OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context, |
| 5402 | unsigned NumIterators) { |
| 5403 | void *Mem = Context.Allocate( |
| 5404 | Size: totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( |
| 5405 | Counts: NumIterators, Counts: NumIterators * static_cast<int>(RangeExprOffset::Total), |
| 5406 | Counts: NumIterators * static_cast<int>(RangeLocOffset::Total), Counts: NumIterators), |
| 5407 | Align: alignof(OMPIteratorExpr)); |
| 5408 | return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators); |
| 5409 | } |
| 5410 | |
| 5411 | HLSLOutArgExpr *HLSLOutArgExpr::Create(const ASTContext &C, QualType Ty, |
| 5412 | OpaqueValueExpr *Base, |
| 5413 | OpaqueValueExpr *OpV, Expr *WB, |
| 5414 | bool IsInOut) { |
| 5415 | return new (C) HLSLOutArgExpr(Ty, Base, OpV, WB, IsInOut); |
| 5416 | } |
| 5417 | |
| 5418 | HLSLOutArgExpr *HLSLOutArgExpr::CreateEmpty(const ASTContext &C) { |
| 5419 | return new (C) HLSLOutArgExpr(EmptyShell()); |
| 5420 | } |
| 5421 | |
| 5422 | OpenACCAsteriskSizeExpr *OpenACCAsteriskSizeExpr::Create(const ASTContext &C, |
| 5423 | SourceLocation Loc) { |
| 5424 | return new (C) OpenACCAsteriskSizeExpr(Loc, C.IntTy); |
| 5425 | } |
| 5426 | |
| 5427 | OpenACCAsteriskSizeExpr * |
| 5428 | OpenACCAsteriskSizeExpr::CreateEmpty(const ASTContext &C) { |
| 5429 | return new (C) OpenACCAsteriskSizeExpr({}, C.IntTy); |
| 5430 | } |
| 5431 | |
| 5432 | ConvertVectorExpr *ConvertVectorExpr::CreateEmpty(const ASTContext &C, |
| 5433 | bool hasFPFeatures) { |
| 5434 | void *Mem = C.Allocate(Size: totalSizeToAlloc<FPOptionsOverride>(Counts: hasFPFeatures), |
| 5435 | Align: alignof(ConvertVectorExpr)); |
| 5436 | return new (Mem) ConvertVectorExpr(hasFPFeatures, EmptyShell()); |
| 5437 | } |
| 5438 | |
| 5439 | ConvertVectorExpr *ConvertVectorExpr::Create( |
| 5440 | const ASTContext &C, Expr *SrcExpr, TypeSourceInfo *TI, QualType DstType, |
| 5441 | ExprValueKind VK, ExprObjectKind OK, SourceLocation BuiltinLoc, |
| 5442 | SourceLocation RParenLoc, FPOptionsOverride FPFeatures) { |
| 5443 | bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); |
| 5444 | unsigned Size = totalSizeToAlloc<FPOptionsOverride>(Counts: HasFPFeatures); |
| 5445 | void *Mem = C.Allocate(Size, Align: alignof(ConvertVectorExpr)); |
| 5446 | return new (Mem) ConvertVectorExpr(SrcExpr, TI, DstType, VK, OK, BuiltinLoc, |
| 5447 | RParenLoc, FPFeatures); |
| 5448 | } |
| 5449 | |