1 | //===--- Expr.cpp - Expression AST Node Implementation --------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the Expr class and subclasses. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/Expr.h" |
14 | #include "clang/AST/APValue.h" |
15 | #include "clang/AST/ASTContext.h" |
16 | #include "clang/AST/ASTLambda.h" |
17 | #include "clang/AST/Attr.h" |
18 | #include "clang/AST/ComputeDependence.h" |
19 | #include "clang/AST/DeclCXX.h" |
20 | #include "clang/AST/DeclObjC.h" |
21 | #include "clang/AST/DeclTemplate.h" |
22 | #include "clang/AST/DependenceFlags.h" |
23 | #include "clang/AST/EvaluatedExprVisitor.h" |
24 | #include "clang/AST/ExprCXX.h" |
25 | #include "clang/AST/IgnoreExpr.h" |
26 | #include "clang/AST/Mangle.h" |
27 | #include "clang/AST/RecordLayout.h" |
28 | #include "clang/Basic/Builtins.h" |
29 | #include "clang/Basic/CharInfo.h" |
30 | #include "clang/Basic/SourceManager.h" |
31 | #include "clang/Basic/TargetInfo.h" |
32 | #include "clang/Lex/Lexer.h" |
33 | #include "clang/Lex/LiteralSupport.h" |
34 | #include "clang/Lex/Preprocessor.h" |
35 | #include "llvm/Support/ErrorHandling.h" |
36 | #include "llvm/Support/Format.h" |
37 | #include "llvm/Support/raw_ostream.h" |
38 | #include <algorithm> |
39 | #include <cstring> |
40 | #include <optional> |
41 | using namespace clang; |
42 | |
43 | const Expr *Expr::getBestDynamicClassTypeExpr() const { |
44 | const Expr *E = this; |
45 | while (true) { |
46 | E = E->IgnoreParenBaseCasts(); |
47 | |
48 | // Follow the RHS of a comma operator. |
49 | if (auto *BO = dyn_cast<BinaryOperator>(Val: E)) { |
50 | if (BO->getOpcode() == BO_Comma) { |
51 | E = BO->getRHS(); |
52 | continue; |
53 | } |
54 | } |
55 | |
56 | // Step into initializer for materialized temporaries. |
57 | if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: E)) { |
58 | E = MTE->getSubExpr(); |
59 | continue; |
60 | } |
61 | |
62 | break; |
63 | } |
64 | |
65 | return E; |
66 | } |
67 | |
68 | const CXXRecordDecl *Expr::getBestDynamicClassType() const { |
69 | const Expr *E = getBestDynamicClassTypeExpr(); |
70 | QualType DerivedType = E->getType(); |
71 | if (const PointerType *PTy = DerivedType->getAs<PointerType>()) |
72 | DerivedType = PTy->getPointeeType(); |
73 | |
74 | if (DerivedType->isDependentType()) |
75 | return nullptr; |
76 | |
77 | const RecordType *Ty = DerivedType->castAs<RecordType>(); |
78 | Decl *D = Ty->getDecl(); |
79 | return cast<CXXRecordDecl>(Val: D); |
80 | } |
81 | |
82 | const Expr *Expr::skipRValueSubobjectAdjustments( |
83 | SmallVectorImpl<const Expr *> &CommaLHSs, |
84 | SmallVectorImpl<SubobjectAdjustment> &Adjustments) const { |
85 | const Expr *E = this; |
86 | while (true) { |
87 | E = E->IgnoreParens(); |
88 | |
89 | if (const auto *CE = dyn_cast<CastExpr>(Val: E)) { |
90 | if ((CE->getCastKind() == CK_DerivedToBase || |
91 | CE->getCastKind() == CK_UncheckedDerivedToBase) && |
92 | E->getType()->isRecordType()) { |
93 | E = CE->getSubExpr(); |
94 | const auto *Derived = |
95 | cast<CXXRecordDecl>(Val: E->getType()->castAs<RecordType>()->getDecl()); |
96 | Adjustments.push_back(Elt: SubobjectAdjustment(CE, Derived)); |
97 | continue; |
98 | } |
99 | |
100 | if (CE->getCastKind() == CK_NoOp) { |
101 | E = CE->getSubExpr(); |
102 | continue; |
103 | } |
104 | } else if (const auto *ME = dyn_cast<MemberExpr>(Val: E)) { |
105 | if (!ME->isArrow()) { |
106 | assert(ME->getBase()->getType()->getAsRecordDecl()); |
107 | if (const auto *Field = dyn_cast<FieldDecl>(Val: ME->getMemberDecl())) { |
108 | if (!Field->isBitField() && !Field->getType()->isReferenceType()) { |
109 | E = ME->getBase(); |
110 | Adjustments.push_back(Elt: SubobjectAdjustment(Field)); |
111 | continue; |
112 | } |
113 | } |
114 | } |
115 | } else if (const auto *BO = dyn_cast<BinaryOperator>(Val: E)) { |
116 | if (BO->getOpcode() == BO_PtrMemD) { |
117 | assert(BO->getRHS()->isPRValue()); |
118 | E = BO->getLHS(); |
119 | const auto *MPT = BO->getRHS()->getType()->getAs<MemberPointerType>(); |
120 | Adjustments.push_back(Elt: SubobjectAdjustment(MPT, BO->getRHS())); |
121 | continue; |
122 | } |
123 | if (BO->getOpcode() == BO_Comma) { |
124 | CommaLHSs.push_back(Elt: BO->getLHS()); |
125 | E = BO->getRHS(); |
126 | continue; |
127 | } |
128 | } |
129 | |
130 | // Nothing changed. |
131 | break; |
132 | } |
133 | return E; |
134 | } |
135 | |
136 | bool Expr::isKnownToHaveBooleanValue(bool Semantic) const { |
137 | const Expr *E = IgnoreParens(); |
138 | |
139 | // If this value has _Bool type, it is obvious 0/1. |
140 | if (E->getType()->isBooleanType()) return true; |
141 | // If this is a non-scalar-integer type, we don't care enough to try. |
142 | if (!E->getType()->isIntegralOrEnumerationType()) return false; |
143 | |
144 | if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: E)) { |
145 | switch (UO->getOpcode()) { |
146 | case UO_Plus: |
147 | return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic); |
148 | case UO_LNot: |
149 | return true; |
150 | default: |
151 | return false; |
152 | } |
153 | } |
154 | |
155 | // Only look through implicit casts. If the user writes |
156 | // '(int) (a && b)' treat it as an arbitrary int. |
157 | // FIXME: Should we look through any cast expression in !Semantic mode? |
158 | if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Val: E)) |
159 | return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic); |
160 | |
161 | if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) { |
162 | switch (BO->getOpcode()) { |
163 | default: return false; |
164 | case BO_LT: // Relational operators. |
165 | case BO_GT: |
166 | case BO_LE: |
167 | case BO_GE: |
168 | case BO_EQ: // Equality operators. |
169 | case BO_NE: |
170 | case BO_LAnd: // AND operator. |
171 | case BO_LOr: // Logical OR operator. |
172 | return true; |
173 | |
174 | case BO_And: // Bitwise AND operator. |
175 | case BO_Xor: // Bitwise XOR operator. |
176 | case BO_Or: // Bitwise OR operator. |
177 | // Handle things like (x==2)|(y==12). |
178 | return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) && |
179 | BO->getRHS()->isKnownToHaveBooleanValue(Semantic); |
180 | |
181 | case BO_Comma: |
182 | case BO_Assign: |
183 | return BO->getRHS()->isKnownToHaveBooleanValue(Semantic); |
184 | } |
185 | } |
186 | |
187 | if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(Val: E)) |
188 | return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) && |
189 | CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic); |
190 | |
191 | if (isa<ObjCBoolLiteralExpr>(Val: E)) |
192 | return true; |
193 | |
194 | if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Val: E)) |
195 | return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic); |
196 | |
197 | if (const FieldDecl *FD = E->getSourceBitField()) |
198 | if (!Semantic && FD->getType()->isUnsignedIntegerType() && |
199 | !FD->getBitWidth()->isValueDependent() && FD->getBitWidthValue() == 1) |
200 | return true; |
201 | |
202 | return false; |
203 | } |
204 | |
205 | bool Expr::isFlexibleArrayMemberLike( |
206 | const ASTContext &Ctx, |
207 | LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel, |
208 | bool IgnoreTemplateOrMacroSubstitution) const { |
209 | const Expr *E = IgnoreParens(); |
210 | const Decl *D = nullptr; |
211 | |
212 | if (const auto *ME = dyn_cast<MemberExpr>(Val: E)) |
213 | D = ME->getMemberDecl(); |
214 | else if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
215 | D = DRE->getDecl(); |
216 | else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(Val: E)) |
217 | D = IRE->getDecl(); |
218 | |
219 | return Decl::isFlexibleArrayMemberLike(Context: Ctx, D, Ty: E->getType(), |
220 | StrictFlexArraysLevel, |
221 | IgnoreTemplateOrMacroSubstitution); |
222 | } |
223 | |
224 | const ValueDecl * |
225 | Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const { |
226 | Expr::EvalResult Eval; |
227 | |
228 | if (EvaluateAsConstantExpr(Result&: Eval, Ctx: Context)) { |
229 | APValue &Value = Eval.Val; |
230 | |
231 | if (Value.isMemberPointer()) |
232 | return Value.getMemberPointerDecl(); |
233 | |
234 | if (Value.isLValue() && Value.getLValueOffset().isZero()) |
235 | return Value.getLValueBase().dyn_cast<const ValueDecl *>(); |
236 | } |
237 | |
238 | return nullptr; |
239 | } |
240 | |
241 | // Amusing macro metaprogramming hack: check whether a class provides |
242 | // a more specific implementation of getExprLoc(). |
243 | // |
244 | // See also Stmt.cpp:{getBeginLoc(),getEndLoc()}. |
245 | namespace { |
246 | /// This implementation is used when a class provides a custom |
247 | /// implementation of getExprLoc. |
248 | template <class E, class T> |
249 | SourceLocation getExprLocImpl(const Expr *expr, |
250 | SourceLocation (T::*v)() const) { |
251 | return static_cast<const E*>(expr)->getExprLoc(); |
252 | } |
253 | |
254 | /// This implementation is used when a class doesn't provide |
255 | /// a custom implementation of getExprLoc. Overload resolution |
256 | /// should pick it over the implementation above because it's |
257 | /// more specialized according to function template partial ordering. |
258 | template <class E> |
259 | SourceLocation getExprLocImpl(const Expr *expr, |
260 | SourceLocation (Expr::*v)() const) { |
261 | return static_cast<const E *>(expr)->getBeginLoc(); |
262 | } |
263 | } |
264 | |
265 | QualType Expr::getEnumCoercedType(const ASTContext &Ctx) const { |
266 | if (isa<EnumType>(Val: getType())) |
267 | return getType(); |
268 | if (const auto *ECD = getEnumConstantDecl()) { |
269 | const auto *ED = cast<EnumDecl>(Val: ECD->getDeclContext()); |
270 | if (ED->isCompleteDefinition()) |
271 | return Ctx.getTypeDeclType(Decl: ED); |
272 | } |
273 | return getType(); |
274 | } |
275 | |
276 | SourceLocation Expr::getExprLoc() const { |
277 | switch (getStmtClass()) { |
278 | case Stmt::NoStmtClass: llvm_unreachable("statement without class" ); |
279 | #define ABSTRACT_STMT(type) |
280 | #define STMT(type, base) \ |
281 | case Stmt::type##Class: break; |
282 | #define EXPR(type, base) \ |
283 | case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc); |
284 | #include "clang/AST/StmtNodes.inc" |
285 | } |
286 | llvm_unreachable("unknown expression kind" ); |
287 | } |
288 | |
289 | //===----------------------------------------------------------------------===// |
290 | // Primary Expressions. |
291 | //===----------------------------------------------------------------------===// |
292 | |
293 | static void AssertResultStorageKind(ConstantResultStorageKind Kind) { |
294 | assert((Kind == ConstantResultStorageKind::APValue || |
295 | Kind == ConstantResultStorageKind::Int64 || |
296 | Kind == ConstantResultStorageKind::None) && |
297 | "Invalid StorageKind Value" ); |
298 | (void)Kind; |
299 | } |
300 | |
301 | ConstantResultStorageKind ConstantExpr::getStorageKind(const APValue &Value) { |
302 | switch (Value.getKind()) { |
303 | case APValue::None: |
304 | case APValue::Indeterminate: |
305 | return ConstantResultStorageKind::None; |
306 | case APValue::Int: |
307 | if (!Value.getInt().needsCleanup()) |
308 | return ConstantResultStorageKind::Int64; |
309 | [[fallthrough]]; |
310 | default: |
311 | return ConstantResultStorageKind::APValue; |
312 | } |
313 | } |
314 | |
315 | ConstantResultStorageKind |
316 | ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) { |
317 | if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64) |
318 | return ConstantResultStorageKind::Int64; |
319 | return ConstantResultStorageKind::APValue; |
320 | } |
321 | |
322 | ConstantExpr::ConstantExpr(Expr *SubExpr, ConstantResultStorageKind StorageKind, |
323 | bool IsImmediateInvocation) |
324 | : FullExpr(ConstantExprClass, SubExpr) { |
325 | ConstantExprBits.ResultKind = llvm::to_underlying(E: StorageKind); |
326 | ConstantExprBits.APValueKind = APValue::None; |
327 | ConstantExprBits.IsUnsigned = false; |
328 | ConstantExprBits.BitWidth = 0; |
329 | ConstantExprBits.HasCleanup = false; |
330 | ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation; |
331 | |
332 | if (StorageKind == ConstantResultStorageKind::APValue) |
333 | ::new (getTrailingObjects<APValue>()) APValue(); |
334 | } |
335 | |
336 | ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, |
337 | ConstantResultStorageKind StorageKind, |
338 | bool IsImmediateInvocation) { |
339 | assert(!isa<ConstantExpr>(E)); |
340 | AssertResultStorageKind(Kind: StorageKind); |
341 | |
342 | unsigned Size = totalSizeToAlloc<APValue, uint64_t>( |
343 | Counts: StorageKind == ConstantResultStorageKind::APValue, |
344 | Counts: StorageKind == ConstantResultStorageKind::Int64); |
345 | void *Mem = Context.Allocate(Size, Align: alignof(ConstantExpr)); |
346 | return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation); |
347 | } |
348 | |
349 | ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E, |
350 | const APValue &Result) { |
351 | ConstantResultStorageKind StorageKind = getStorageKind(Value: Result); |
352 | ConstantExpr *Self = Create(Context, E, StorageKind); |
353 | Self->SetResult(Value: Result, Context); |
354 | return Self; |
355 | } |
356 | |
357 | ConstantExpr::ConstantExpr(EmptyShell Empty, |
358 | ConstantResultStorageKind StorageKind) |
359 | : FullExpr(ConstantExprClass, Empty) { |
360 | ConstantExprBits.ResultKind = llvm::to_underlying(E: StorageKind); |
361 | |
362 | if (StorageKind == ConstantResultStorageKind::APValue) |
363 | ::new (getTrailingObjects<APValue>()) APValue(); |
364 | } |
365 | |
366 | ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context, |
367 | ConstantResultStorageKind StorageKind) { |
368 | AssertResultStorageKind(Kind: StorageKind); |
369 | |
370 | unsigned Size = totalSizeToAlloc<APValue, uint64_t>( |
371 | Counts: StorageKind == ConstantResultStorageKind::APValue, |
372 | Counts: StorageKind == ConstantResultStorageKind::Int64); |
373 | void *Mem = Context.Allocate(Size, Align: alignof(ConstantExpr)); |
374 | return new (Mem) ConstantExpr(EmptyShell(), StorageKind); |
375 | } |
376 | |
377 | void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) { |
378 | assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind && |
379 | "Invalid storage for this value kind" ); |
380 | ConstantExprBits.APValueKind = Value.getKind(); |
381 | switch (getResultStorageKind()) { |
382 | case ConstantResultStorageKind::None: |
383 | return; |
384 | case ConstantResultStorageKind::Int64: |
385 | Int64Result() = *Value.getInt().getRawData(); |
386 | ConstantExprBits.BitWidth = Value.getInt().getBitWidth(); |
387 | ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned(); |
388 | return; |
389 | case ConstantResultStorageKind::APValue: |
390 | if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) { |
391 | ConstantExprBits.HasCleanup = true; |
392 | Context.addDestruction(Ptr: &APValueResult()); |
393 | } |
394 | APValueResult() = std::move(Value); |
395 | return; |
396 | } |
397 | llvm_unreachable("Invalid ResultKind Bits" ); |
398 | } |
399 | |
400 | llvm::APSInt ConstantExpr::getResultAsAPSInt() const { |
401 | switch (getResultStorageKind()) { |
402 | case ConstantResultStorageKind::APValue: |
403 | return APValueResult().getInt(); |
404 | case ConstantResultStorageKind::Int64: |
405 | return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), |
406 | ConstantExprBits.IsUnsigned); |
407 | default: |
408 | llvm_unreachable("invalid Accessor" ); |
409 | } |
410 | } |
411 | |
412 | APValue ConstantExpr::getAPValueResult() const { |
413 | |
414 | switch (getResultStorageKind()) { |
415 | case ConstantResultStorageKind::APValue: |
416 | return APValueResult(); |
417 | case ConstantResultStorageKind::Int64: |
418 | return APValue( |
419 | llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()), |
420 | ConstantExprBits.IsUnsigned)); |
421 | case ConstantResultStorageKind::None: |
422 | if (ConstantExprBits.APValueKind == APValue::Indeterminate) |
423 | return APValue::IndeterminateValue(); |
424 | return APValue(); |
425 | } |
426 | llvm_unreachable("invalid ResultKind" ); |
427 | } |
428 | |
429 | DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D, |
430 | bool RefersToEnclosingVariableOrCapture, QualType T, |
431 | ExprValueKind VK, SourceLocation L, |
432 | const DeclarationNameLoc &LocInfo, |
433 | NonOdrUseReason NOUR) |
434 | : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) { |
435 | DeclRefExprBits.HasQualifier = false; |
436 | DeclRefExprBits.HasTemplateKWAndArgsInfo = false; |
437 | DeclRefExprBits.HasFoundDecl = false; |
438 | DeclRefExprBits.HadMultipleCandidates = false; |
439 | DeclRefExprBits.RefersToEnclosingVariableOrCapture = |
440 | RefersToEnclosingVariableOrCapture; |
441 | DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false; |
442 | DeclRefExprBits.NonOdrUseReason = NOUR; |
443 | DeclRefExprBits.IsImmediateEscalating = false; |
444 | DeclRefExprBits.Loc = L; |
445 | setDependence(computeDependence(E: this, Ctx)); |
446 | } |
447 | |
448 | DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, |
449 | NestedNameSpecifierLoc QualifierLoc, |
450 | SourceLocation TemplateKWLoc, ValueDecl *D, |
451 | bool RefersToEnclosingVariableOrCapture, |
452 | const DeclarationNameInfo &NameInfo, NamedDecl *FoundD, |
453 | const TemplateArgumentListInfo *TemplateArgs, |
454 | QualType T, ExprValueKind VK, NonOdrUseReason NOUR) |
455 | : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), |
456 | DNLoc(NameInfo.getInfo()) { |
457 | DeclRefExprBits.Loc = NameInfo.getLoc(); |
458 | DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0; |
459 | if (QualifierLoc) |
460 | new (getTrailingObjects<NestedNameSpecifierLoc>()) |
461 | NestedNameSpecifierLoc(QualifierLoc); |
462 | DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0; |
463 | if (FoundD) |
464 | *getTrailingObjects<NamedDecl *>() = FoundD; |
465 | DeclRefExprBits.HasTemplateKWAndArgsInfo |
466 | = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0; |
467 | DeclRefExprBits.RefersToEnclosingVariableOrCapture = |
468 | RefersToEnclosingVariableOrCapture; |
469 | DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false; |
470 | DeclRefExprBits.NonOdrUseReason = NOUR; |
471 | if (TemplateArgs) { |
472 | auto Deps = TemplateArgumentDependence::None; |
473 | getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( |
474 | TemplateKWLoc, List: *TemplateArgs, OutArgArray: getTrailingObjects<TemplateArgumentLoc>(), |
475 | Deps); |
476 | assert(!(Deps & TemplateArgumentDependence::Dependent) && |
477 | "built a DeclRefExpr with dependent template args" ); |
478 | } else if (TemplateKWLoc.isValid()) { |
479 | getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( |
480 | TemplateKWLoc); |
481 | } |
482 | DeclRefExprBits.IsImmediateEscalating = false; |
483 | DeclRefExprBits.HadMultipleCandidates = 0; |
484 | setDependence(computeDependence(E: this, Ctx)); |
485 | } |
486 | |
487 | DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, |
488 | NestedNameSpecifierLoc QualifierLoc, |
489 | SourceLocation TemplateKWLoc, ValueDecl *D, |
490 | bool RefersToEnclosingVariableOrCapture, |
491 | SourceLocation NameLoc, QualType T, |
492 | ExprValueKind VK, NamedDecl *FoundD, |
493 | const TemplateArgumentListInfo *TemplateArgs, |
494 | NonOdrUseReason NOUR) { |
495 | return Create(Context, QualifierLoc, TemplateKWLoc, D, |
496 | RefersToEnclosingVariableOrCapture, |
497 | NameInfo: DeclarationNameInfo(D->getDeclName(), NameLoc), |
498 | T, VK, FoundD, TemplateArgs, NOUR); |
499 | } |
500 | |
501 | DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context, |
502 | NestedNameSpecifierLoc QualifierLoc, |
503 | SourceLocation TemplateKWLoc, ValueDecl *D, |
504 | bool RefersToEnclosingVariableOrCapture, |
505 | const DeclarationNameInfo &NameInfo, |
506 | QualType T, ExprValueKind VK, |
507 | NamedDecl *FoundD, |
508 | const TemplateArgumentListInfo *TemplateArgs, |
509 | NonOdrUseReason NOUR) { |
510 | // Filter out cases where the found Decl is the same as the value refenenced. |
511 | if (D == FoundD) |
512 | FoundD = nullptr; |
513 | |
514 | bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); |
515 | std::size_t Size = |
516 | totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, |
517 | ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( |
518 | Counts: QualifierLoc ? 1 : 0, Counts: FoundD ? 1 : 0, |
519 | Counts: HasTemplateKWAndArgsInfo ? 1 : 0, |
520 | Counts: TemplateArgs ? TemplateArgs->size() : 0); |
521 | |
522 | void *Mem = Context.Allocate(Size, Align: alignof(DeclRefExpr)); |
523 | return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D, |
524 | RefersToEnclosingVariableOrCapture, NameInfo, |
525 | FoundD, TemplateArgs, T, VK, NOUR); |
526 | } |
527 | |
528 | DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context, |
529 | bool HasQualifier, |
530 | bool HasFoundDecl, |
531 | bool HasTemplateKWAndArgsInfo, |
532 | unsigned NumTemplateArgs) { |
533 | assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo); |
534 | std::size_t Size = |
535 | totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *, |
536 | ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( |
537 | Counts: HasQualifier ? 1 : 0, Counts: HasFoundDecl ? 1 : 0, Counts: HasTemplateKWAndArgsInfo, |
538 | Counts: NumTemplateArgs); |
539 | void *Mem = Context.Allocate(Size, Align: alignof(DeclRefExpr)); |
540 | return new (Mem) DeclRefExpr(EmptyShell()); |
541 | } |
542 | |
543 | void DeclRefExpr::setDecl(ValueDecl *NewD) { |
544 | D = NewD; |
545 | if (getType()->isUndeducedType()) |
546 | setType(NewD->getType()); |
547 | setDependence(computeDependence(E: this, Ctx: NewD->getASTContext())); |
548 | } |
549 | |
550 | SourceLocation DeclRefExpr::getEndLoc() const { |
551 | if (hasExplicitTemplateArgs()) |
552 | return getRAngleLoc(); |
553 | return getNameInfo().getEndLoc(); |
554 | } |
555 | |
556 | SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc, |
557 | SourceLocation LParen, |
558 | SourceLocation RParen, |
559 | QualType ResultTy, |
560 | TypeSourceInfo *TSI) |
561 | : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary), |
562 | OpLoc(OpLoc), LParen(LParen), RParen(RParen) { |
563 | setTypeSourceInfo(TSI); |
564 | setDependence(computeDependence(E: this)); |
565 | } |
566 | |
567 | SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty, |
568 | QualType ResultTy) |
569 | : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {} |
570 | |
571 | SYCLUniqueStableNameExpr * |
572 | SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc, |
573 | SourceLocation LParen, SourceLocation RParen, |
574 | TypeSourceInfo *TSI) { |
575 | QualType ResultTy = Ctx.getPointerType(T: Ctx.CharTy.withConst()); |
576 | return new (Ctx) |
577 | SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI); |
578 | } |
579 | |
580 | SYCLUniqueStableNameExpr * |
581 | SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) { |
582 | QualType ResultTy = Ctx.getPointerType(T: Ctx.CharTy.withConst()); |
583 | return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy); |
584 | } |
585 | |
586 | std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const { |
587 | return SYCLUniqueStableNameExpr::ComputeName(Context, |
588 | Ty: getTypeSourceInfo()->getType()); |
589 | } |
590 | |
591 | std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context, |
592 | QualType Ty) { |
593 | auto MangleCallback = [](ASTContext &Ctx, |
594 | const NamedDecl *ND) -> UnsignedOrNone { |
595 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) |
596 | return RD->getDeviceLambdaManglingNumber(); |
597 | return std::nullopt; |
598 | }; |
599 | |
600 | std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create( |
601 | Context, Diags&: Context.getDiagnostics(), Discriminator: MangleCallback)}; |
602 | |
603 | std::string Buffer; |
604 | Buffer.reserve(res_arg: 128); |
605 | llvm::raw_string_ostream Out(Buffer); |
606 | Ctx->mangleCanonicalTypeName(T: Ty, Out); |
607 | |
608 | return Buffer; |
609 | } |
610 | |
611 | PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, |
612 | PredefinedIdentKind IK, bool IsTransparent, |
613 | StringLiteral *SL) |
614 | : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) { |
615 | PredefinedExprBits.Kind = llvm::to_underlying(E: IK); |
616 | assert((getIdentKind() == IK) && |
617 | "IdentKind do not fit in PredefinedExprBitfields!" ); |
618 | bool HasFunctionName = SL != nullptr; |
619 | PredefinedExprBits.HasFunctionName = HasFunctionName; |
620 | PredefinedExprBits.IsTransparent = IsTransparent; |
621 | PredefinedExprBits.Loc = L; |
622 | if (HasFunctionName) |
623 | setFunctionName(SL); |
624 | setDependence(computeDependence(E: this)); |
625 | } |
626 | |
627 | PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName) |
628 | : Expr(PredefinedExprClass, Empty) { |
629 | PredefinedExprBits.HasFunctionName = HasFunctionName; |
630 | } |
631 | |
632 | PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L, |
633 | QualType FNTy, PredefinedIdentKind IK, |
634 | bool IsTransparent, StringLiteral *SL) { |
635 | bool HasFunctionName = SL != nullptr; |
636 | void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: HasFunctionName), |
637 | Align: alignof(PredefinedExpr)); |
638 | return new (Mem) PredefinedExpr(L, FNTy, IK, IsTransparent, SL); |
639 | } |
640 | |
641 | PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx, |
642 | bool HasFunctionName) { |
643 | void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: HasFunctionName), |
644 | Align: alignof(PredefinedExpr)); |
645 | return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName); |
646 | } |
647 | |
648 | StringRef PredefinedExpr::getIdentKindName(PredefinedIdentKind IK) { |
649 | switch (IK) { |
650 | case PredefinedIdentKind::Func: |
651 | return "__func__" ; |
652 | case PredefinedIdentKind::Function: |
653 | return "__FUNCTION__" ; |
654 | case PredefinedIdentKind::FuncDName: |
655 | return "__FUNCDNAME__" ; |
656 | case PredefinedIdentKind::LFunction: |
657 | return "L__FUNCTION__" ; |
658 | case PredefinedIdentKind::PrettyFunction: |
659 | return "__PRETTY_FUNCTION__" ; |
660 | case PredefinedIdentKind::FuncSig: |
661 | return "__FUNCSIG__" ; |
662 | case PredefinedIdentKind::LFuncSig: |
663 | return "L__FUNCSIG__" ; |
664 | case PredefinedIdentKind::PrettyFunctionNoVirtual: |
665 | break; |
666 | } |
667 | llvm_unreachable("Unknown ident kind for PredefinedExpr" ); |
668 | } |
669 | |
670 | // FIXME: Maybe this should use DeclPrinter with a special "print predefined |
671 | // expr" policy instead. |
672 | std::string PredefinedExpr::ComputeName(PredefinedIdentKind IK, |
673 | const Decl *CurrentDecl, |
674 | bool ForceElaboratedPrinting) { |
675 | ASTContext &Context = CurrentDecl->getASTContext(); |
676 | |
677 | if (IK == PredefinedIdentKind::FuncDName) { |
678 | if (const NamedDecl *ND = dyn_cast<NamedDecl>(Val: CurrentDecl)) { |
679 | std::unique_ptr<MangleContext> MC; |
680 | MC.reset(p: Context.createMangleContext()); |
681 | |
682 | if (MC->shouldMangleDeclName(D: ND)) { |
683 | SmallString<256> Buffer; |
684 | llvm::raw_svector_ostream Out(Buffer); |
685 | GlobalDecl GD; |
686 | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Val: ND)) |
687 | GD = GlobalDecl(CD, Ctor_Base); |
688 | else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: ND)) |
689 | GD = GlobalDecl(DD, Dtor_Base); |
690 | else if (auto FD = dyn_cast<FunctionDecl>(Val: ND)) { |
691 | GD = FD->isReferenceableKernel() ? GlobalDecl(FD) : GlobalDecl(ND); |
692 | } else |
693 | GD = GlobalDecl(ND); |
694 | MC->mangleName(GD, Out); |
695 | |
696 | if (!Buffer.empty() && Buffer.front() == '\01') |
697 | return std::string(Buffer.substr(Start: 1)); |
698 | return std::string(Buffer); |
699 | } |
700 | return std::string(ND->getIdentifier()->getName()); |
701 | } |
702 | return "" ; |
703 | } |
704 | if (isa<BlockDecl>(Val: CurrentDecl)) { |
705 | // For blocks we only emit something if it is enclosed in a function |
706 | // For top-level block we'd like to include the name of variable, but we |
707 | // don't have it at this point. |
708 | auto DC = CurrentDecl->getDeclContext(); |
709 | if (DC->isFileContext()) |
710 | return "" ; |
711 | |
712 | SmallString<256> Buffer; |
713 | llvm::raw_svector_ostream Out(Buffer); |
714 | if (auto *DCBlock = dyn_cast<BlockDecl>(Val: DC)) |
715 | // For nested blocks, propagate up to the parent. |
716 | Out << ComputeName(IK, CurrentDecl: DCBlock); |
717 | else if (auto *DCDecl = dyn_cast<Decl>(Val: DC)) |
718 | Out << ComputeName(IK, CurrentDecl: DCDecl) << "_block_invoke" ; |
719 | return std::string(Out.str()); |
720 | } |
721 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: CurrentDecl)) { |
722 | const auto &LO = Context.getLangOpts(); |
723 | bool IsFuncOrFunctionInNonMSVCCompatEnv = |
724 | ((IK == PredefinedIdentKind::Func || |
725 | IK == PredefinedIdentKind ::Function) && |
726 | !LO.MSVCCompat); |
727 | bool IsLFunctionInMSVCCommpatEnv = |
728 | IK == PredefinedIdentKind::LFunction && LO.MSVCCompat; |
729 | bool IsFuncOrFunctionOrLFunctionOrFuncDName = |
730 | IK != PredefinedIdentKind::PrettyFunction && |
731 | IK != PredefinedIdentKind::PrettyFunctionNoVirtual && |
732 | IK != PredefinedIdentKind::FuncSig && |
733 | IK != PredefinedIdentKind::LFuncSig; |
734 | if ((ForceElaboratedPrinting && |
735 | (IsFuncOrFunctionInNonMSVCCompatEnv || IsLFunctionInMSVCCommpatEnv)) || |
736 | (!ForceElaboratedPrinting && IsFuncOrFunctionOrLFunctionOrFuncDName)) |
737 | return FD->getNameAsString(); |
738 | |
739 | SmallString<256> Name; |
740 | llvm::raw_svector_ostream Out(Name); |
741 | |
742 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
743 | if (MD->isVirtual() && IK != PredefinedIdentKind::PrettyFunctionNoVirtual) |
744 | Out << "virtual " ; |
745 | if (MD->isStatic() && !ForceElaboratedPrinting) |
746 | Out << "static " ; |
747 | } |
748 | |
749 | class PrettyCallbacks final : public PrintingCallbacks { |
750 | public: |
751 | PrettyCallbacks(const LangOptions &LO) : LO(LO) {} |
752 | std::string remapPath(StringRef Path) const override { |
753 | SmallString<128> p(Path); |
754 | LO.remapPathPrefix(Path&: p); |
755 | return std::string(p); |
756 | } |
757 | |
758 | private: |
759 | const LangOptions &LO; |
760 | }; |
761 | PrintingPolicy Policy(Context.getLangOpts()); |
762 | PrettyCallbacks PrettyCB(Context.getLangOpts()); |
763 | Policy.Callbacks = &PrettyCB; |
764 | if (IK == PredefinedIdentKind::Function && ForceElaboratedPrinting) |
765 | Policy.SuppressTagKeyword = !LO.MSVCCompat; |
766 | std::string Proto; |
767 | llvm::raw_string_ostream POut(Proto); |
768 | |
769 | const FunctionDecl *Decl = FD; |
770 | if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern()) |
771 | Decl = Pattern; |
772 | |
773 | // Bail out if the type of the function has not been set yet. |
774 | // This can notably happen in the trailing return type of a lambda |
775 | // expression. |
776 | const Type *Ty = Decl->getType().getTypePtrOrNull(); |
777 | if (!Ty) |
778 | return "" ; |
779 | |
780 | const FunctionType *AFT = Ty->getAs<FunctionType>(); |
781 | const FunctionProtoType *FT = nullptr; |
782 | if (FD->hasWrittenPrototype()) |
783 | FT = dyn_cast<FunctionProtoType>(Val: AFT); |
784 | |
785 | if (IK == PredefinedIdentKind::FuncSig || |
786 | IK == PredefinedIdentKind::LFuncSig) { |
787 | switch (AFT->getCallConv()) { |
788 | case CC_C: POut << "__cdecl " ; break; |
789 | case CC_X86StdCall: POut << "__stdcall " ; break; |
790 | case CC_X86FastCall: POut << "__fastcall " ; break; |
791 | case CC_X86ThisCall: POut << "__thiscall " ; break; |
792 | case CC_X86VectorCall: POut << "__vectorcall " ; break; |
793 | case CC_X86RegCall: POut << "__regcall " ; break; |
794 | // Only bother printing the conventions that MSVC knows about. |
795 | default: break; |
796 | } |
797 | } |
798 | |
799 | FD->printQualifiedName(OS&: POut, Policy); |
800 | |
801 | if (IK == PredefinedIdentKind::Function) { |
802 | Out << Proto; |
803 | return std::string(Name); |
804 | } |
805 | |
806 | POut << "(" ; |
807 | if (FT) { |
808 | for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) { |
809 | if (i) POut << ", " ; |
810 | POut << Decl->getParamDecl(i)->getType().stream(Policy); |
811 | } |
812 | |
813 | if (FT->isVariadic()) { |
814 | if (FD->getNumParams()) POut << ", " ; |
815 | POut << "..." ; |
816 | } else if ((IK == PredefinedIdentKind::FuncSig || |
817 | IK == PredefinedIdentKind::LFuncSig || |
818 | !Context.getLangOpts().CPlusPlus) && |
819 | !Decl->getNumParams()) { |
820 | POut << "void" ; |
821 | } |
822 | } |
823 | POut << ")" ; |
824 | |
825 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
826 | assert(FT && "We must have a written prototype in this case." ); |
827 | if (FT->isConst()) |
828 | POut << " const" ; |
829 | if (FT->isVolatile()) |
830 | POut << " volatile" ; |
831 | RefQualifierKind Ref = MD->getRefQualifier(); |
832 | if (Ref == RQ_LValue) |
833 | POut << " &" ; |
834 | else if (Ref == RQ_RValue) |
835 | POut << " &&" ; |
836 | } |
837 | |
838 | typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy; |
839 | SpecsTy Specs; |
840 | const DeclContext *Ctx = FD->getDeclContext(); |
841 | while (isa_and_nonnull<NamedDecl>(Val: Ctx)) { |
842 | const ClassTemplateSpecializationDecl *Spec |
843 | = dyn_cast<ClassTemplateSpecializationDecl>(Val: Ctx); |
844 | if (Spec && !Spec->isExplicitSpecialization()) |
845 | Specs.push_back(Elt: Spec); |
846 | Ctx = Ctx->getParent(); |
847 | } |
848 | |
849 | std::string TemplateParams; |
850 | llvm::raw_string_ostream TOut(TemplateParams); |
851 | for (const ClassTemplateSpecializationDecl *D : llvm::reverse(C&: Specs)) { |
852 | const TemplateParameterList *Params = |
853 | D->getSpecializedTemplate()->getTemplateParameters(); |
854 | const TemplateArgumentList &Args = D->getTemplateArgs(); |
855 | assert(Params->size() == Args.size()); |
856 | for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) { |
857 | StringRef Param = Params->getParam(Idx: i)->getName(); |
858 | if (Param.empty()) continue; |
859 | TOut << Param << " = " ; |
860 | Args.get(Idx: i).print(Policy, Out&: TOut, |
861 | IncludeType: TemplateParameterList::shouldIncludeTypeForArgument( |
862 | Policy, TPL: Params, Idx: i)); |
863 | TOut << ", " ; |
864 | } |
865 | } |
866 | |
867 | FunctionTemplateSpecializationInfo *FSI |
868 | = FD->getTemplateSpecializationInfo(); |
869 | if (FSI && !FSI->isExplicitSpecialization()) { |
870 | const TemplateParameterList* Params |
871 | = FSI->getTemplate()->getTemplateParameters(); |
872 | const TemplateArgumentList* Args = FSI->TemplateArguments; |
873 | assert(Params->size() == Args->size()); |
874 | for (unsigned i = 0, e = Params->size(); i != e; ++i) { |
875 | StringRef Param = Params->getParam(Idx: i)->getName(); |
876 | if (Param.empty()) continue; |
877 | TOut << Param << " = " ; |
878 | Args->get(Idx: i).print(Policy, Out&: TOut, /*IncludeType*/ true); |
879 | TOut << ", " ; |
880 | } |
881 | } |
882 | |
883 | if (!TemplateParams.empty()) { |
884 | // remove the trailing comma and space |
885 | TemplateParams.resize(n: TemplateParams.size() - 2); |
886 | POut << " [" << TemplateParams << "]" ; |
887 | } |
888 | |
889 | // Print "auto" for all deduced return types. This includes C++1y return |
890 | // type deduction and lambdas. For trailing return types resolve the |
891 | // decltype expression. Otherwise print the real type when this is |
892 | // not a constructor or destructor. |
893 | if (isLambdaMethod(DC: FD)) |
894 | Proto = "auto " + Proto; |
895 | else if (FT && FT->getReturnType()->getAs<DecltypeType>()) |
896 | FT->getReturnType() |
897 | ->getAs<DecltypeType>() |
898 | ->getUnderlyingType() |
899 | .getAsStringInternal(Str&: Proto, Policy); |
900 | else if (!isa<CXXConstructorDecl>(Val: FD) && !isa<CXXDestructorDecl>(Val: FD)) |
901 | AFT->getReturnType().getAsStringInternal(Str&: Proto, Policy); |
902 | |
903 | Out << Proto; |
904 | |
905 | return std::string(Name); |
906 | } |
907 | if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(Val: CurrentDecl)) { |
908 | for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent()) |
909 | // Skip to its enclosing function or method, but not its enclosing |
910 | // CapturedDecl. |
911 | if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) { |
912 | const Decl *D = Decl::castFromDeclContext(DC); |
913 | return ComputeName(IK, CurrentDecl: D); |
914 | } |
915 | llvm_unreachable("CapturedDecl not inside a function or method" ); |
916 | } |
917 | if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Val: CurrentDecl)) { |
918 | SmallString<256> Name; |
919 | llvm::raw_svector_ostream Out(Name); |
920 | Out << (MD->isInstanceMethod() ? '-' : '+'); |
921 | Out << '['; |
922 | |
923 | // For incorrect code, there might not be an ObjCInterfaceDecl. Do |
924 | // a null check to avoid a crash. |
925 | if (const ObjCInterfaceDecl *ID = MD->getClassInterface()) |
926 | Out << *ID; |
927 | |
928 | if (const ObjCCategoryImplDecl *CID = |
929 | dyn_cast<ObjCCategoryImplDecl>(Val: MD->getDeclContext())) |
930 | Out << '(' << *CID << ')'; |
931 | |
932 | Out << ' '; |
933 | MD->getSelector().print(OS&: Out); |
934 | Out << ']'; |
935 | |
936 | return std::string(Name); |
937 | } |
938 | if (isa<TranslationUnitDecl>(Val: CurrentDecl) && |
939 | IK == PredefinedIdentKind::PrettyFunction) { |
940 | // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string. |
941 | return "top level" ; |
942 | } |
943 | return "" ; |
944 | } |
945 | |
946 | void APNumericStorage::setIntValue(const ASTContext &C, |
947 | const llvm::APInt &Val) { |
948 | if (hasAllocation()) |
949 | C.Deallocate(Ptr: pVal); |
950 | |
951 | BitWidth = Val.getBitWidth(); |
952 | unsigned NumWords = Val.getNumWords(); |
953 | const uint64_t* Words = Val.getRawData(); |
954 | if (NumWords > 1) { |
955 | pVal = new (C) uint64_t[NumWords]; |
956 | std::copy(first: Words, last: Words + NumWords, result: pVal); |
957 | } else if (NumWords == 1) |
958 | VAL = Words[0]; |
959 | else |
960 | VAL = 0; |
961 | } |
962 | |
963 | IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V, |
964 | QualType type, SourceLocation l) |
965 | : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) { |
966 | assert(type->isIntegerType() && "Illegal type in IntegerLiteral" ); |
967 | assert(V.getBitWidth() == C.getIntWidth(type) && |
968 | "Integer type is not the correct size for constant." ); |
969 | setValue(C, Val: V); |
970 | setDependence(ExprDependence::None); |
971 | } |
972 | |
973 | IntegerLiteral * |
974 | IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V, |
975 | QualType type, SourceLocation l) { |
976 | return new (C) IntegerLiteral(C, V, type, l); |
977 | } |
978 | |
979 | IntegerLiteral * |
980 | IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) { |
981 | return new (C) IntegerLiteral(Empty); |
982 | } |
983 | |
984 | FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V, |
985 | QualType type, SourceLocation l, |
986 | unsigned Scale) |
987 | : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l), |
988 | Scale(Scale) { |
989 | assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral" ); |
990 | assert(V.getBitWidth() == C.getTypeInfo(type).Width && |
991 | "Fixed point type is not the correct size for constant." ); |
992 | setValue(C, Val: V); |
993 | setDependence(ExprDependence::None); |
994 | } |
995 | |
996 | FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C, |
997 | const llvm::APInt &V, |
998 | QualType type, |
999 | SourceLocation l, |
1000 | unsigned Scale) { |
1001 | return new (C) FixedPointLiteral(C, V, type, l, Scale); |
1002 | } |
1003 | |
1004 | FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C, |
1005 | EmptyShell Empty) { |
1006 | return new (C) FixedPointLiteral(Empty); |
1007 | } |
1008 | |
1009 | std::string FixedPointLiteral::getValueAsString(unsigned Radix) const { |
1010 | // Currently the longest decimal number that can be printed is the max for an |
1011 | // unsigned long _Accum: 4294967295.99999999976716935634613037109375 |
1012 | // which is 43 characters. |
1013 | SmallString<64> S; |
1014 | FixedPointValueToString( |
1015 | Str&: S, Val: llvm::APSInt::getUnsigned(X: getValue().getZExtValue()), Scale); |
1016 | return std::string(S); |
1017 | } |
1018 | |
1019 | void CharacterLiteral::print(unsigned Val, CharacterLiteralKind Kind, |
1020 | raw_ostream &OS) { |
1021 | switch (Kind) { |
1022 | case CharacterLiteralKind::Ascii: |
1023 | break; // no prefix. |
1024 | case CharacterLiteralKind::Wide: |
1025 | OS << 'L'; |
1026 | break; |
1027 | case CharacterLiteralKind::UTF8: |
1028 | OS << "u8" ; |
1029 | break; |
1030 | case CharacterLiteralKind::UTF16: |
1031 | OS << 'u'; |
1032 | break; |
1033 | case CharacterLiteralKind::UTF32: |
1034 | OS << 'U'; |
1035 | break; |
1036 | } |
1037 | |
1038 | StringRef Escaped = escapeCStyle<EscapeChar::Single>(Ch: Val); |
1039 | if (!Escaped.empty()) { |
1040 | OS << "'" << Escaped << "'" ; |
1041 | } else { |
1042 | // A character literal might be sign-extended, which |
1043 | // would result in an invalid \U escape sequence. |
1044 | // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF' |
1045 | // are not correctly handled. |
1046 | if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteralKind::Ascii) |
1047 | Val &= 0xFFu; |
1048 | if (Val < 256 && isPrintable(c: (unsigned char)Val)) |
1049 | OS << "'" << (char)Val << "'" ; |
1050 | else if (Val < 256) |
1051 | OS << "'\\x" << llvm::format(Fmt: "%02x" , Vals: Val) << "'" ; |
1052 | else if (Val <= 0xFFFF) |
1053 | OS << "'\\u" << llvm::format(Fmt: "%04x" , Vals: Val) << "'" ; |
1054 | else |
1055 | OS << "'\\U" << llvm::format(Fmt: "%08x" , Vals: Val) << "'" ; |
1056 | } |
1057 | } |
1058 | |
1059 | FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V, |
1060 | bool isexact, QualType Type, SourceLocation L) |
1061 | : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) { |
1062 | setSemantics(V.getSemantics()); |
1063 | FloatingLiteralBits.IsExact = isexact; |
1064 | setValue(C, Val: V); |
1065 | setDependence(ExprDependence::None); |
1066 | } |
1067 | |
1068 | FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty) |
1069 | : Expr(FloatingLiteralClass, Empty) { |
1070 | setRawSemantics(llvm::APFloatBase::S_IEEEhalf); |
1071 | FloatingLiteralBits.IsExact = false; |
1072 | } |
1073 | |
1074 | FloatingLiteral * |
1075 | FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V, |
1076 | bool isexact, QualType Type, SourceLocation L) { |
1077 | return new (C) FloatingLiteral(C, V, isexact, Type, L); |
1078 | } |
1079 | |
1080 | FloatingLiteral * |
1081 | FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) { |
1082 | return new (C) FloatingLiteral(C, Empty); |
1083 | } |
1084 | |
1085 | /// getValueAsApproximateDouble - This returns the value as an inaccurate |
1086 | /// double. Note that this may cause loss of precision, but is useful for |
1087 | /// debugging dumps, etc. |
1088 | double FloatingLiteral::getValueAsApproximateDouble() const { |
1089 | llvm::APFloat V = getValue(); |
1090 | bool ignored; |
1091 | V.convert(ToSemantics: llvm::APFloat::IEEEdouble(), RM: llvm::APFloat::rmNearestTiesToEven, |
1092 | losesInfo: &ignored); |
1093 | return V.convertToDouble(); |
1094 | } |
1095 | |
1096 | unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target, |
1097 | StringLiteralKind SK) { |
1098 | unsigned CharByteWidth = 0; |
1099 | switch (SK) { |
1100 | case StringLiteralKind::Ordinary: |
1101 | case StringLiteralKind::UTF8: |
1102 | case StringLiteralKind::Binary: |
1103 | CharByteWidth = Target.getCharWidth(); |
1104 | break; |
1105 | case StringLiteralKind::Wide: |
1106 | CharByteWidth = Target.getWCharWidth(); |
1107 | break; |
1108 | case StringLiteralKind::UTF16: |
1109 | CharByteWidth = Target.getChar16Width(); |
1110 | break; |
1111 | case StringLiteralKind::UTF32: |
1112 | CharByteWidth = Target.getChar32Width(); |
1113 | break; |
1114 | case StringLiteralKind::Unevaluated: |
1115 | return sizeof(char); // Host; |
1116 | } |
1117 | assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple" ); |
1118 | CharByteWidth /= 8; |
1119 | assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && |
1120 | "The only supported character byte widths are 1,2 and 4!" ); |
1121 | return CharByteWidth; |
1122 | } |
1123 | |
1124 | StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str, |
1125 | StringLiteralKind Kind, bool Pascal, QualType Ty, |
1126 | ArrayRef<SourceLocation> Locs) |
1127 | : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) { |
1128 | |
1129 | unsigned Length = Str.size(); |
1130 | |
1131 | StringLiteralBits.Kind = llvm::to_underlying(E: Kind); |
1132 | StringLiteralBits.NumConcatenated = Locs.size(); |
1133 | |
1134 | if (Kind != StringLiteralKind::Unevaluated) { |
1135 | assert(Ctx.getAsConstantArrayType(Ty) && |
1136 | "StringLiteral must be of constant array type!" ); |
1137 | unsigned CharByteWidth = mapCharByteWidth(Target: Ctx.getTargetInfo(), SK: Kind); |
1138 | unsigned ByteLength = Str.size(); |
1139 | assert((ByteLength % CharByteWidth == 0) && |
1140 | "The size of the data must be a multiple of CharByteWidth!" ); |
1141 | |
1142 | // Avoid the expensive division. The compiler should be able to figure it |
1143 | // out by itself. However as of clang 7, even with the appropriate |
1144 | // llvm_unreachable added just here, it is not able to do so. |
1145 | switch (CharByteWidth) { |
1146 | case 1: |
1147 | Length = ByteLength; |
1148 | break; |
1149 | case 2: |
1150 | Length = ByteLength / 2; |
1151 | break; |
1152 | case 4: |
1153 | Length = ByteLength / 4; |
1154 | break; |
1155 | default: |
1156 | llvm_unreachable("Unsupported character width!" ); |
1157 | } |
1158 | |
1159 | StringLiteralBits.CharByteWidth = CharByteWidth; |
1160 | StringLiteralBits.IsPascal = Pascal; |
1161 | } else { |
1162 | assert(!Pascal && "Can't make an unevaluated Pascal string" ); |
1163 | StringLiteralBits.CharByteWidth = 1; |
1164 | StringLiteralBits.IsPascal = false; |
1165 | } |
1166 | |
1167 | *getTrailingObjects<unsigned>() = Length; |
1168 | |
1169 | // Initialize the trailing array of SourceLocation. |
1170 | // This is safe since SourceLocation is POD-like. |
1171 | llvm::copy(Range&: Locs, Out: getTrailingObjects<SourceLocation>()); |
1172 | |
1173 | // Initialize the trailing array of char holding the string data. |
1174 | llvm::copy(Range&: Str, Out: getTrailingObjects<char>()); |
1175 | |
1176 | setDependence(ExprDependence::None); |
1177 | } |
1178 | |
1179 | StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated, |
1180 | unsigned Length, unsigned CharByteWidth) |
1181 | : Expr(StringLiteralClass, Empty) { |
1182 | StringLiteralBits.CharByteWidth = CharByteWidth; |
1183 | StringLiteralBits.NumConcatenated = NumConcatenated; |
1184 | *getTrailingObjects<unsigned>() = Length; |
1185 | } |
1186 | |
1187 | StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str, |
1188 | StringLiteralKind Kind, bool Pascal, |
1189 | QualType Ty, |
1190 | ArrayRef<SourceLocation> Locs) { |
1191 | void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<unsigned, SourceLocation, char>( |
1192 | Counts: 1, Counts: Locs.size(), Counts: Str.size()), |
1193 | Align: alignof(StringLiteral)); |
1194 | return new (Mem) StringLiteral(Ctx, Str, Kind, Pascal, Ty, Locs); |
1195 | } |
1196 | |
1197 | StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx, |
1198 | unsigned NumConcatenated, |
1199 | unsigned Length, |
1200 | unsigned CharByteWidth) { |
1201 | void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<unsigned, SourceLocation, char>( |
1202 | Counts: 1, Counts: NumConcatenated, Counts: Length * CharByteWidth), |
1203 | Align: alignof(StringLiteral)); |
1204 | return new (Mem) |
1205 | StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth); |
1206 | } |
1207 | |
1208 | void StringLiteral::outputString(raw_ostream &OS) const { |
1209 | switch (getKind()) { |
1210 | case StringLiteralKind::Unevaluated: |
1211 | case StringLiteralKind::Ordinary: |
1212 | case StringLiteralKind::Binary: |
1213 | break; // no prefix. |
1214 | case StringLiteralKind::Wide: |
1215 | OS << 'L'; |
1216 | break; |
1217 | case StringLiteralKind::UTF8: |
1218 | OS << "u8" ; |
1219 | break; |
1220 | case StringLiteralKind::UTF16: |
1221 | OS << 'u'; |
1222 | break; |
1223 | case StringLiteralKind::UTF32: |
1224 | OS << 'U'; |
1225 | break; |
1226 | } |
1227 | OS << '"'; |
1228 | static const char Hex[] = "0123456789ABCDEF" ; |
1229 | |
1230 | unsigned LastSlashX = getLength(); |
1231 | for (unsigned I = 0, N = getLength(); I != N; ++I) { |
1232 | uint32_t Char = getCodeUnit(i: I); |
1233 | StringRef Escaped = escapeCStyle<EscapeChar::Double>(Ch: Char); |
1234 | if (Escaped.empty()) { |
1235 | // FIXME: Convert UTF-8 back to codepoints before rendering. |
1236 | |
1237 | // Convert UTF-16 surrogate pairs back to codepoints before rendering. |
1238 | // Leave invalid surrogates alone; we'll use \x for those. |
1239 | if (getKind() == StringLiteralKind::UTF16 && I != N - 1 && |
1240 | Char >= 0xd800 && Char <= 0xdbff) { |
1241 | uint32_t Trail = getCodeUnit(i: I + 1); |
1242 | if (Trail >= 0xdc00 && Trail <= 0xdfff) { |
1243 | Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00); |
1244 | ++I; |
1245 | } |
1246 | } |
1247 | |
1248 | if (Char > 0xff) { |
1249 | // If this is a wide string, output characters over 0xff using \x |
1250 | // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a |
1251 | // codepoint: use \x escapes for invalid codepoints. |
1252 | if (getKind() == StringLiteralKind::Wide || |
1253 | (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) { |
1254 | // FIXME: Is this the best way to print wchar_t? |
1255 | OS << "\\x" ; |
1256 | int Shift = 28; |
1257 | while ((Char >> Shift) == 0) |
1258 | Shift -= 4; |
1259 | for (/**/; Shift >= 0; Shift -= 4) |
1260 | OS << Hex[(Char >> Shift) & 15]; |
1261 | LastSlashX = I; |
1262 | continue; |
1263 | } |
1264 | |
1265 | if (Char > 0xffff) |
1266 | OS << "\\U00" |
1267 | << Hex[(Char >> 20) & 15] |
1268 | << Hex[(Char >> 16) & 15]; |
1269 | else |
1270 | OS << "\\u" ; |
1271 | OS << Hex[(Char >> 12) & 15] |
1272 | << Hex[(Char >> 8) & 15] |
1273 | << Hex[(Char >> 4) & 15] |
1274 | << Hex[(Char >> 0) & 15]; |
1275 | continue; |
1276 | } |
1277 | |
1278 | // If we used \x... for the previous character, and this character is a |
1279 | // hexadecimal digit, prevent it being slurped as part of the \x. |
1280 | if (LastSlashX + 1 == I) { |
1281 | switch (Char) { |
1282 | case '0': case '1': case '2': case '3': case '4': |
1283 | case '5': case '6': case '7': case '8': case '9': |
1284 | case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': |
1285 | case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': |
1286 | OS << "\"\"" ; |
1287 | } |
1288 | } |
1289 | |
1290 | assert(Char <= 0xff && |
1291 | "Characters above 0xff should already have been handled." ); |
1292 | |
1293 | if (isPrintable(c: Char)) |
1294 | OS << (char)Char; |
1295 | else // Output anything hard as an octal escape. |
1296 | OS << '\\' |
1297 | << (char)('0' + ((Char >> 6) & 7)) |
1298 | << (char)('0' + ((Char >> 3) & 7)) |
1299 | << (char)('0' + ((Char >> 0) & 7)); |
1300 | } else { |
1301 | // Handle some common non-printable cases to make dumps prettier. |
1302 | OS << Escaped; |
1303 | } |
1304 | } |
1305 | OS << '"'; |
1306 | } |
1307 | |
1308 | /// getLocationOfByte - Return a source location that points to the specified |
1309 | /// byte of this string literal. |
1310 | /// |
1311 | /// Strings are amazingly complex. They can be formed from multiple tokens and |
1312 | /// can have escape sequences in them in addition to the usual trigraph and |
1313 | /// escaped newline business. This routine handles this complexity. |
1314 | /// |
1315 | /// The *StartToken sets the first token to be searched in this function and |
1316 | /// the *StartTokenByteOffset is the byte offset of the first token. Before |
1317 | /// returning, it updates the *StartToken to the TokNo of the token being found |
1318 | /// and sets *StartTokenByteOffset to the byte offset of the token in the |
1319 | /// string. |
1320 | /// Using these two parameters can reduce the time complexity from O(n^2) to |
1321 | /// O(n) if one wants to get the location of byte for all the tokens in a |
1322 | /// string. |
1323 | /// |
1324 | SourceLocation |
1325 | StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM, |
1326 | const LangOptions &Features, |
1327 | const TargetInfo &Target, unsigned *StartToken, |
1328 | unsigned *StartTokenByteOffset) const { |
1329 | // No source location of bytes for binary literals since they don't come from |
1330 | // source. |
1331 | if (getKind() == StringLiteralKind::Binary) |
1332 | return getStrTokenLoc(TokNum: 0); |
1333 | |
1334 | assert((getKind() == StringLiteralKind::Ordinary || |
1335 | getKind() == StringLiteralKind::UTF8 || |
1336 | getKind() == StringLiteralKind::Unevaluated) && |
1337 | "Only narrow string literals are currently supported" ); |
1338 | |
1339 | // Loop over all of the tokens in this string until we find the one that |
1340 | // contains the byte we're looking for. |
1341 | unsigned TokNo = 0; |
1342 | unsigned StringOffset = 0; |
1343 | if (StartToken) |
1344 | TokNo = *StartToken; |
1345 | if (StartTokenByteOffset) { |
1346 | StringOffset = *StartTokenByteOffset; |
1347 | ByteNo -= StringOffset; |
1348 | } |
1349 | while (true) { |
1350 | assert(TokNo < getNumConcatenated() && "Invalid byte number!" ); |
1351 | SourceLocation StrTokLoc = getStrTokenLoc(TokNum: TokNo); |
1352 | |
1353 | // Get the spelling of the string so that we can get the data that makes up |
1354 | // the string literal, not the identifier for the macro it is potentially |
1355 | // expanded through. |
1356 | SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(Loc: StrTokLoc); |
1357 | |
1358 | // Re-lex the token to get its length and original spelling. |
1359 | FileIDAndOffset LocInfo = SM.getDecomposedLoc(Loc: StrTokSpellingLoc); |
1360 | bool Invalid = false; |
1361 | StringRef Buffer = SM.getBufferData(FID: LocInfo.first, Invalid: &Invalid); |
1362 | if (Invalid) { |
1363 | if (StartTokenByteOffset != nullptr) |
1364 | *StartTokenByteOffset = StringOffset; |
1365 | if (StartToken != nullptr) |
1366 | *StartToken = TokNo; |
1367 | return StrTokSpellingLoc; |
1368 | } |
1369 | |
1370 | const char *StrData = Buffer.data()+LocInfo.second; |
1371 | |
1372 | // Create a lexer starting at the beginning of this token. |
1373 | Lexer TheLexer(SM.getLocForStartOfFile(FID: LocInfo.first), Features, |
1374 | Buffer.begin(), StrData, Buffer.end()); |
1375 | Token TheTok; |
1376 | TheLexer.LexFromRawLexer(Result&: TheTok); |
1377 | |
1378 | // Use the StringLiteralParser to compute the length of the string in bytes. |
1379 | StringLiteralParser SLP(TheTok, SM, Features, Target); |
1380 | unsigned TokNumBytes = SLP.GetStringLength(); |
1381 | |
1382 | // If the byte is in this token, return the location of the byte. |
1383 | if (ByteNo < TokNumBytes || |
1384 | (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) { |
1385 | unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); |
1386 | |
1387 | // Now that we know the offset of the token in the spelling, use the |
1388 | // preprocessor to get the offset in the original source. |
1389 | if (StartTokenByteOffset != nullptr) |
1390 | *StartTokenByteOffset = StringOffset; |
1391 | if (StartToken != nullptr) |
1392 | *StartToken = TokNo; |
1393 | return Lexer::AdvanceToTokenCharacter(TokStart: StrTokLoc, Characters: Offset, SM, LangOpts: Features); |
1394 | } |
1395 | |
1396 | // Move to the next string token. |
1397 | StringOffset += TokNumBytes; |
1398 | ++TokNo; |
1399 | ByteNo -= TokNumBytes; |
1400 | } |
1401 | } |
1402 | |
1403 | /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it |
1404 | /// corresponds to, e.g. "sizeof" or "[pre]++". |
1405 | StringRef UnaryOperator::getOpcodeStr(Opcode Op) { |
1406 | switch (Op) { |
1407 | #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling; |
1408 | #include "clang/AST/OperationKinds.def" |
1409 | } |
1410 | llvm_unreachable("Unknown unary operator" ); |
1411 | } |
1412 | |
1413 | UnaryOperatorKind |
1414 | UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) { |
1415 | switch (OO) { |
1416 | default: llvm_unreachable("No unary operator for overloaded function" ); |
1417 | case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc; |
1418 | case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec; |
1419 | case OO_Amp: return UO_AddrOf; |
1420 | case OO_Star: return UO_Deref; |
1421 | case OO_Plus: return UO_Plus; |
1422 | case OO_Minus: return UO_Minus; |
1423 | case OO_Tilde: return UO_Not; |
1424 | case OO_Exclaim: return UO_LNot; |
1425 | case OO_Coawait: return UO_Coawait; |
1426 | } |
1427 | } |
1428 | |
1429 | OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) { |
1430 | switch (Opc) { |
1431 | case UO_PostInc: case UO_PreInc: return OO_PlusPlus; |
1432 | case UO_PostDec: case UO_PreDec: return OO_MinusMinus; |
1433 | case UO_AddrOf: return OO_Amp; |
1434 | case UO_Deref: return OO_Star; |
1435 | case UO_Plus: return OO_Plus; |
1436 | case UO_Minus: return OO_Minus; |
1437 | case UO_Not: return OO_Tilde; |
1438 | case UO_LNot: return OO_Exclaim; |
1439 | case UO_Coawait: return OO_Coawait; |
1440 | default: return OO_None; |
1441 | } |
1442 | } |
1443 | |
1444 | |
1445 | //===----------------------------------------------------------------------===// |
1446 | // Postfix Operators. |
1447 | //===----------------------------------------------------------------------===// |
1448 | #ifndef NDEBUG |
1449 | static unsigned SizeOfCallExprInstance(Expr::StmtClass SC) { |
1450 | switch (SC) { |
1451 | case Expr::CallExprClass: |
1452 | return sizeof(CallExpr); |
1453 | case Expr::CXXOperatorCallExprClass: |
1454 | return sizeof(CXXOperatorCallExpr); |
1455 | case Expr::CXXMemberCallExprClass: |
1456 | return sizeof(CXXMemberCallExpr); |
1457 | case Expr::UserDefinedLiteralClass: |
1458 | return sizeof(UserDefinedLiteral); |
1459 | case Expr::CUDAKernelCallExprClass: |
1460 | return sizeof(CUDAKernelCallExpr); |
1461 | default: |
1462 | llvm_unreachable("unexpected class deriving from CallExpr!" ); |
1463 | } |
1464 | } |
1465 | #endif |
1466 | |
1467 | // changing the size of SourceLocation, CallExpr, and |
1468 | // subclasses requires careful considerations |
1469 | static_assert(sizeof(SourceLocation) == 4 && sizeof(CXXOperatorCallExpr) <= 32, |
1470 | "we assume CXXOperatorCallExpr is at most 32 bytes" ); |
1471 | |
1472 | CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs, |
1473 | ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, |
1474 | SourceLocation RParenLoc, FPOptionsOverride FPFeatures, |
1475 | unsigned MinNumArgs, ADLCallKind UsesADL) |
1476 | : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) { |
1477 | NumArgs = std::max<unsigned>(a: Args.size(), b: MinNumArgs); |
1478 | unsigned NumPreArgs = PreArgs.size(); |
1479 | CallExprBits.NumPreArgs = NumPreArgs; |
1480 | assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!" ); |
1481 | assert(SizeOfCallExprInstance(SC) <= OffsetToTrailingObjects && |
1482 | "This CallExpr subclass is too big or unsupported" ); |
1483 | |
1484 | CallExprBits.UsesADL = static_cast<bool>(UsesADL); |
1485 | |
1486 | setCallee(Fn); |
1487 | for (unsigned I = 0; I != NumPreArgs; ++I) |
1488 | setPreArg(I, PreArg: PreArgs[I]); |
1489 | for (unsigned I = 0; I != Args.size(); ++I) |
1490 | setArg(Arg: I, ArgExpr: Args[I]); |
1491 | for (unsigned I = Args.size(); I != NumArgs; ++I) |
1492 | setArg(Arg: I, ArgExpr: nullptr); |
1493 | |
1494 | this->computeDependence(); |
1495 | |
1496 | CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); |
1497 | CallExprBits.IsCoroElideSafe = false; |
1498 | CallExprBits.ExplicitObjectMemFunUsingMemberSyntax = false; |
1499 | CallExprBits.HasTrailingSourceLoc = false; |
1500 | |
1501 | if (hasStoredFPFeatures()) |
1502 | setStoredFPFeatures(FPFeatures); |
1503 | } |
1504 | |
1505 | CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs, |
1506 | bool HasFPFeatures, EmptyShell Empty) |
1507 | : Expr(SC, Empty), NumArgs(NumArgs) { |
1508 | CallExprBits.NumPreArgs = NumPreArgs; |
1509 | assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!" ); |
1510 | CallExprBits.HasFPFeatures = HasFPFeatures; |
1511 | CallExprBits.IsCoroElideSafe = false; |
1512 | CallExprBits.ExplicitObjectMemFunUsingMemberSyntax = false; |
1513 | CallExprBits.HasTrailingSourceLoc = false; |
1514 | } |
1515 | |
1516 | CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn, |
1517 | ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK, |
1518 | SourceLocation RParenLoc, |
1519 | FPOptionsOverride FPFeatures, unsigned MinNumArgs, |
1520 | ADLCallKind UsesADL) { |
1521 | unsigned NumArgs = std::max<unsigned>(a: Args.size(), b: MinNumArgs); |
1522 | unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects( |
1523 | /*NumPreArgs=*/0, NumArgs, HasFPFeatures: FPFeatures.requiresTrailingStorage()); |
1524 | void *Mem = Ctx.Allocate( |
1525 | Size: sizeToAllocateForCallExprSubclass<CallExpr>(SizeOfTrailingObjects), |
1526 | Align: alignof(CallExpr)); |
1527 | CallExpr *E = |
1528 | new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK, |
1529 | RParenLoc, FPFeatures, MinNumArgs, UsesADL); |
1530 | E->updateTrailingSourceLoc(); |
1531 | return E; |
1532 | } |
1533 | |
1534 | CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs, |
1535 | bool HasFPFeatures, EmptyShell Empty) { |
1536 | unsigned SizeOfTrailingObjects = |
1537 | CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures); |
1538 | void *Mem = Ctx.Allocate( |
1539 | Size: sizeToAllocateForCallExprSubclass<CallExpr>(SizeOfTrailingObjects), |
1540 | Align: alignof(CallExpr)); |
1541 | return new (Mem) |
1542 | CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty); |
1543 | } |
1544 | |
1545 | Decl *Expr::getReferencedDeclOfCallee() { |
1546 | |
1547 | // Optimize for the common case first |
1548 | // (simple function or member function call) |
1549 | // then try more exotic possibilities. |
1550 | Expr *CEE = IgnoreImpCasts(); |
1551 | |
1552 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: CEE)) |
1553 | return DRE->getDecl(); |
1554 | |
1555 | if (auto *ME = dyn_cast<MemberExpr>(Val: CEE)) |
1556 | return ME->getMemberDecl(); |
1557 | |
1558 | CEE = CEE->IgnoreParens(); |
1559 | |
1560 | while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(Val: CEE)) |
1561 | CEE = NTTP->getReplacement()->IgnoreParenImpCasts(); |
1562 | |
1563 | // If we're calling a dereference, look at the pointer instead. |
1564 | while (true) { |
1565 | if (auto *BO = dyn_cast<BinaryOperator>(Val: CEE)) { |
1566 | if (BO->isPtrMemOp()) { |
1567 | CEE = BO->getRHS()->IgnoreParenImpCasts(); |
1568 | continue; |
1569 | } |
1570 | } else if (auto *UO = dyn_cast<UnaryOperator>(Val: CEE)) { |
1571 | if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf || |
1572 | UO->getOpcode() == UO_Plus) { |
1573 | CEE = UO->getSubExpr()->IgnoreParenImpCasts(); |
1574 | continue; |
1575 | } |
1576 | } |
1577 | break; |
1578 | } |
1579 | |
1580 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: CEE)) |
1581 | return DRE->getDecl(); |
1582 | if (auto *ME = dyn_cast<MemberExpr>(Val: CEE)) |
1583 | return ME->getMemberDecl(); |
1584 | if (auto *BE = dyn_cast<BlockExpr>(Val: CEE)) |
1585 | return BE->getBlockDecl(); |
1586 | |
1587 | return nullptr; |
1588 | } |
1589 | |
1590 | /// If this is a call to a builtin, return the builtin ID. If not, return 0. |
1591 | unsigned CallExpr::getBuiltinCallee() const { |
1592 | const auto *FDecl = getDirectCallee(); |
1593 | return FDecl ? FDecl->getBuiltinID() : 0; |
1594 | } |
1595 | |
1596 | bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const { |
1597 | if (unsigned BI = getBuiltinCallee()) |
1598 | return Ctx.BuiltinInfo.isUnevaluated(ID: BI); |
1599 | return false; |
1600 | } |
1601 | |
1602 | QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const { |
1603 | const Expr *Callee = getCallee(); |
1604 | QualType CalleeType = Callee->getType(); |
1605 | if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) { |
1606 | CalleeType = FnTypePtr->getPointeeType(); |
1607 | } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) { |
1608 | CalleeType = BPT->getPointeeType(); |
1609 | } else if (CalleeType->isSpecificPlaceholderType(K: BuiltinType::BoundMember)) { |
1610 | if (isa<CXXPseudoDestructorExpr>(Val: Callee->IgnoreParens())) |
1611 | return Ctx.VoidTy; |
1612 | |
1613 | if (isa<UnresolvedMemberExpr>(Val: Callee->IgnoreParens())) |
1614 | return Ctx.DependentTy; |
1615 | |
1616 | // This should never be overloaded and so should never return null. |
1617 | CalleeType = Expr::findBoundMemberType(expr: Callee); |
1618 | assert(!CalleeType.isNull()); |
1619 | } else if (CalleeType->isRecordType()) { |
1620 | // If the Callee is a record type, then it is a not-yet-resolved |
1621 | // dependent call to the call operator of that type. |
1622 | return Ctx.DependentTy; |
1623 | } else if (CalleeType->isDependentType() || |
1624 | CalleeType->isSpecificPlaceholderType(K: BuiltinType::Overload)) { |
1625 | return Ctx.DependentTy; |
1626 | } |
1627 | |
1628 | const FunctionType *FnType = CalleeType->castAs<FunctionType>(); |
1629 | return FnType->getReturnType(); |
1630 | } |
1631 | |
1632 | std::pair<const NamedDecl *, const Attr *> |
1633 | CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const { |
1634 | // If the callee is marked nodiscard, return that attribute |
1635 | if (const Decl *D = getCalleeDecl()) |
1636 | if (const auto *A = D->getAttr<WarnUnusedResultAttr>()) |
1637 | return {nullptr, A}; |
1638 | |
1639 | // If the return type is a struct, union, or enum that is marked nodiscard, |
1640 | // then return the return type attribute. |
1641 | if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl()) |
1642 | if (const auto *A = TD->getAttr<WarnUnusedResultAttr>()) |
1643 | return {TD, A}; |
1644 | |
1645 | for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD; |
1646 | TD = TD->desugar()->getAs<TypedefType>()) |
1647 | if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>()) |
1648 | return {TD->getDecl(), A}; |
1649 | return {nullptr, nullptr}; |
1650 | } |
1651 | |
1652 | OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type, |
1653 | SourceLocation OperatorLoc, |
1654 | TypeSourceInfo *tsi, |
1655 | ArrayRef<OffsetOfNode> comps, |
1656 | ArrayRef<Expr*> exprs, |
1657 | SourceLocation RParenLoc) { |
1658 | void *Mem = C.Allocate( |
1659 | Size: totalSizeToAlloc<OffsetOfNode, Expr *>(Counts: comps.size(), Counts: exprs.size())); |
1660 | |
1661 | return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs, |
1662 | RParenLoc); |
1663 | } |
1664 | |
1665 | OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C, |
1666 | unsigned numComps, unsigned numExprs) { |
1667 | void *Mem = |
1668 | C.Allocate(Size: totalSizeToAlloc<OffsetOfNode, Expr *>(Counts: numComps, Counts: numExprs)); |
1669 | return new (Mem) OffsetOfExpr(numComps, numExprs); |
1670 | } |
1671 | |
1672 | OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type, |
1673 | SourceLocation OperatorLoc, TypeSourceInfo *tsi, |
1674 | ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs, |
1675 | SourceLocation RParenLoc) |
1676 | : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary), |
1677 | OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), |
1678 | NumComps(comps.size()), NumExprs(exprs.size()) { |
1679 | for (unsigned i = 0; i != comps.size(); ++i) |
1680 | setComponent(Idx: i, ON: comps[i]); |
1681 | for (unsigned i = 0; i != exprs.size(); ++i) |
1682 | setIndexExpr(Idx: i, E: exprs[i]); |
1683 | |
1684 | setDependence(computeDependence(E: this)); |
1685 | } |
1686 | |
1687 | IdentifierInfo *OffsetOfNode::getFieldName() const { |
1688 | assert(getKind() == Field || getKind() == Identifier); |
1689 | if (getKind() == Field) |
1690 | return getField()->getIdentifier(); |
1691 | |
1692 | return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask); |
1693 | } |
1694 | |
1695 | UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr( |
1696 | UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType, |
1697 | SourceLocation op, SourceLocation rp) |
1698 | : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary), |
1699 | OpLoc(op), RParenLoc(rp) { |
1700 | assert(ExprKind <= UETT_Last && "invalid enum value!" ); |
1701 | UnaryExprOrTypeTraitExprBits.Kind = ExprKind; |
1702 | assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind && |
1703 | "UnaryExprOrTypeTraitExprBits.Kind overflow!" ); |
1704 | UnaryExprOrTypeTraitExprBits.IsType = false; |
1705 | Argument.Ex = E; |
1706 | setDependence(computeDependence(E: this)); |
1707 | } |
1708 | |
1709 | MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc, |
1710 | NestedNameSpecifierLoc QualifierLoc, |
1711 | SourceLocation TemplateKWLoc, ValueDecl *MemberDecl, |
1712 | DeclAccessPair FoundDecl, |
1713 | const DeclarationNameInfo &NameInfo, |
1714 | const TemplateArgumentListInfo *TemplateArgs, QualType T, |
1715 | ExprValueKind VK, ExprObjectKind OK, |
1716 | NonOdrUseReason NOUR) |
1717 | : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl), |
1718 | MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) { |
1719 | assert(!NameInfo.getName() || |
1720 | MemberDecl->getDeclName() == NameInfo.getName()); |
1721 | MemberExprBits.IsArrow = IsArrow; |
1722 | MemberExprBits.HasQualifier = QualifierLoc.hasQualifier(); |
1723 | MemberExprBits.HasFoundDecl = |
1724 | FoundDecl.getDecl() != MemberDecl || |
1725 | FoundDecl.getAccess() != MemberDecl->getAccess(); |
1726 | MemberExprBits.HasTemplateKWAndArgsInfo = |
1727 | TemplateArgs || TemplateKWLoc.isValid(); |
1728 | MemberExprBits.HadMultipleCandidates = false; |
1729 | MemberExprBits.NonOdrUseReason = NOUR; |
1730 | MemberExprBits.OperatorLoc = OperatorLoc; |
1731 | |
1732 | if (hasQualifier()) |
1733 | new (getTrailingObjects<NestedNameSpecifierLoc>()) |
1734 | NestedNameSpecifierLoc(QualifierLoc); |
1735 | if (hasFoundDecl()) |
1736 | *getTrailingObjects<DeclAccessPair>() = FoundDecl; |
1737 | if (TemplateArgs) { |
1738 | auto Deps = TemplateArgumentDependence::None; |
1739 | getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( |
1740 | TemplateKWLoc, List: *TemplateArgs, OutArgArray: getTrailingObjects<TemplateArgumentLoc>(), |
1741 | Deps); |
1742 | } else if (TemplateKWLoc.isValid()) { |
1743 | getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom( |
1744 | TemplateKWLoc); |
1745 | } |
1746 | setDependence(computeDependence(E: this)); |
1747 | } |
1748 | |
1749 | MemberExpr *MemberExpr::Create( |
1750 | const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc, |
1751 | NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc, |
1752 | ValueDecl *MemberDecl, DeclAccessPair FoundDecl, |
1753 | DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs, |
1754 | QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) { |
1755 | bool HasQualifier = QualifierLoc.hasQualifier(); |
1756 | bool HasFoundDecl = FoundDecl.getDecl() != MemberDecl || |
1757 | FoundDecl.getAccess() != MemberDecl->getAccess(); |
1758 | bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid(); |
1759 | std::size_t Size = |
1760 | totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair, |
1761 | ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( |
1762 | Counts: HasQualifier, Counts: HasFoundDecl, Counts: HasTemplateKWAndArgsInfo, |
1763 | Counts: TemplateArgs ? TemplateArgs->size() : 0); |
1764 | |
1765 | void *Mem = C.Allocate(Size, Align: alignof(MemberExpr)); |
1766 | return new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, QualifierLoc, |
1767 | TemplateKWLoc, MemberDecl, FoundDecl, NameInfo, |
1768 | TemplateArgs, T, VK, OK, NOUR); |
1769 | } |
1770 | |
1771 | MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context, |
1772 | bool HasQualifier, bool HasFoundDecl, |
1773 | bool HasTemplateKWAndArgsInfo, |
1774 | unsigned NumTemplateArgs) { |
1775 | assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) && |
1776 | "template args but no template arg info?" ); |
1777 | std::size_t Size = |
1778 | totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair, |
1779 | ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>( |
1780 | Counts: HasQualifier, Counts: HasFoundDecl, Counts: HasTemplateKWAndArgsInfo, |
1781 | Counts: NumTemplateArgs); |
1782 | void *Mem = Context.Allocate(Size, Align: alignof(MemberExpr)); |
1783 | return new (Mem) MemberExpr(EmptyShell()); |
1784 | } |
1785 | |
1786 | void MemberExpr::setMemberDecl(ValueDecl *NewD) { |
1787 | MemberDecl = NewD; |
1788 | if (getType()->isUndeducedType()) |
1789 | setType(NewD->getType()); |
1790 | setDependence(computeDependence(E: this)); |
1791 | } |
1792 | |
1793 | SourceLocation MemberExpr::getBeginLoc() const { |
1794 | if (isImplicitAccess()) { |
1795 | if (hasQualifier()) |
1796 | return getQualifierLoc().getBeginLoc(); |
1797 | return MemberLoc; |
1798 | } |
1799 | |
1800 | // FIXME: We don't want this to happen. Rather, we should be able to |
1801 | // detect all kinds of implicit accesses more cleanly. |
1802 | SourceLocation BaseStartLoc = getBase()->getBeginLoc(); |
1803 | if (BaseStartLoc.isValid()) |
1804 | return BaseStartLoc; |
1805 | return MemberLoc; |
1806 | } |
1807 | SourceLocation MemberExpr::getEndLoc() const { |
1808 | SourceLocation EndLoc = getMemberNameInfo().getEndLoc(); |
1809 | if (hasExplicitTemplateArgs()) |
1810 | EndLoc = getRAngleLoc(); |
1811 | else if (EndLoc.isInvalid()) |
1812 | EndLoc = getBase()->getEndLoc(); |
1813 | return EndLoc; |
1814 | } |
1815 | |
1816 | bool CastExpr::CastConsistency() const { |
1817 | switch (getCastKind()) { |
1818 | case CK_DerivedToBase: |
1819 | case CK_UncheckedDerivedToBase: |
1820 | case CK_DerivedToBaseMemberPointer: |
1821 | case CK_BaseToDerived: |
1822 | case CK_BaseToDerivedMemberPointer: |
1823 | assert(!path_empty() && "Cast kind should have a base path!" ); |
1824 | break; |
1825 | |
1826 | case CK_CPointerToObjCPointerCast: |
1827 | assert(getType()->isObjCObjectPointerType()); |
1828 | assert(getSubExpr()->getType()->isPointerType()); |
1829 | goto CheckNoBasePath; |
1830 | |
1831 | case CK_BlockPointerToObjCPointerCast: |
1832 | assert(getType()->isObjCObjectPointerType()); |
1833 | assert(getSubExpr()->getType()->isBlockPointerType()); |
1834 | goto CheckNoBasePath; |
1835 | |
1836 | case CK_ReinterpretMemberPointer: |
1837 | assert(getType()->isMemberPointerType()); |
1838 | assert(getSubExpr()->getType()->isMemberPointerType()); |
1839 | goto CheckNoBasePath; |
1840 | |
1841 | case CK_BitCast: |
1842 | // Arbitrary casts to C pointer types count as bitcasts. |
1843 | // Otherwise, we should only have block and ObjC pointer casts |
1844 | // here if they stay within the type kind. |
1845 | if (!getType()->isPointerType()) { |
1846 | assert(getType()->isObjCObjectPointerType() == |
1847 | getSubExpr()->getType()->isObjCObjectPointerType()); |
1848 | assert(getType()->isBlockPointerType() == |
1849 | getSubExpr()->getType()->isBlockPointerType()); |
1850 | } |
1851 | goto CheckNoBasePath; |
1852 | |
1853 | case CK_AnyPointerToBlockPointerCast: |
1854 | assert(getType()->isBlockPointerType()); |
1855 | assert(getSubExpr()->getType()->isAnyPointerType() && |
1856 | !getSubExpr()->getType()->isBlockPointerType()); |
1857 | goto CheckNoBasePath; |
1858 | |
1859 | case CK_CopyAndAutoreleaseBlockObject: |
1860 | assert(getType()->isBlockPointerType()); |
1861 | assert(getSubExpr()->getType()->isBlockPointerType()); |
1862 | goto CheckNoBasePath; |
1863 | |
1864 | case CK_FunctionToPointerDecay: |
1865 | assert(getType()->isPointerType()); |
1866 | assert(getSubExpr()->getType()->isFunctionType()); |
1867 | goto CheckNoBasePath; |
1868 | |
1869 | case CK_AddressSpaceConversion: { |
1870 | auto Ty = getType(); |
1871 | auto SETy = getSubExpr()->getType(); |
1872 | assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy)); |
1873 | if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) { |
1874 | Ty = Ty->getPointeeType(); |
1875 | SETy = SETy->getPointeeType(); |
1876 | } |
1877 | assert((Ty->isDependentType() || SETy->isDependentType()) || |
1878 | (!Ty.isNull() && !SETy.isNull() && |
1879 | Ty.getAddressSpace() != SETy.getAddressSpace())); |
1880 | goto CheckNoBasePath; |
1881 | } |
1882 | // These should not have an inheritance path. |
1883 | case CK_Dynamic: |
1884 | case CK_ToUnion: |
1885 | case CK_ArrayToPointerDecay: |
1886 | case CK_NullToMemberPointer: |
1887 | case CK_NullToPointer: |
1888 | case CK_ConstructorConversion: |
1889 | case CK_IntegralToPointer: |
1890 | case CK_PointerToIntegral: |
1891 | case CK_ToVoid: |
1892 | case CK_VectorSplat: |
1893 | case CK_IntegralCast: |
1894 | case CK_BooleanToSignedIntegral: |
1895 | case CK_IntegralToFloating: |
1896 | case CK_FloatingToIntegral: |
1897 | case CK_FloatingCast: |
1898 | case CK_ObjCObjectLValueCast: |
1899 | case CK_FloatingRealToComplex: |
1900 | case CK_FloatingComplexToReal: |
1901 | case CK_FloatingComplexCast: |
1902 | case CK_FloatingComplexToIntegralComplex: |
1903 | case CK_IntegralRealToComplex: |
1904 | case CK_IntegralComplexToReal: |
1905 | case CK_IntegralComplexCast: |
1906 | case CK_IntegralComplexToFloatingComplex: |
1907 | case CK_ARCProduceObject: |
1908 | case CK_ARCConsumeObject: |
1909 | case CK_ARCReclaimReturnedObject: |
1910 | case CK_ARCExtendBlockObject: |
1911 | case CK_ZeroToOCLOpaqueType: |
1912 | case CK_IntToOCLSampler: |
1913 | case CK_FloatingToFixedPoint: |
1914 | case CK_FixedPointToFloating: |
1915 | case CK_FixedPointCast: |
1916 | case CK_FixedPointToIntegral: |
1917 | case CK_IntegralToFixedPoint: |
1918 | case CK_MatrixCast: |
1919 | assert(!getType()->isBooleanType() && "unheralded conversion to bool" ); |
1920 | goto CheckNoBasePath; |
1921 | |
1922 | case CK_Dependent: |
1923 | case CK_LValueToRValue: |
1924 | case CK_NoOp: |
1925 | case CK_AtomicToNonAtomic: |
1926 | case CK_NonAtomicToAtomic: |
1927 | case CK_PointerToBoolean: |
1928 | case CK_IntegralToBoolean: |
1929 | case CK_FloatingToBoolean: |
1930 | case CK_MemberPointerToBoolean: |
1931 | case CK_FloatingComplexToBoolean: |
1932 | case CK_IntegralComplexToBoolean: |
1933 | case CK_LValueBitCast: // -> bool& |
1934 | case CK_LValueToRValueBitCast: |
1935 | case CK_UserDefinedConversion: // operator bool() |
1936 | case CK_BuiltinFnToFnPtr: |
1937 | case CK_FixedPointToBoolean: |
1938 | case CK_HLSLArrayRValue: |
1939 | case CK_HLSLVectorTruncation: |
1940 | case CK_HLSLElementwiseCast: |
1941 | case CK_HLSLAggregateSplatCast: |
1942 | CheckNoBasePath: |
1943 | assert(path_empty() && "Cast kind should not have a base path!" ); |
1944 | break; |
1945 | } |
1946 | return true; |
1947 | } |
1948 | |
1949 | const char *CastExpr::getCastKindName(CastKind CK) { |
1950 | switch (CK) { |
1951 | #define CAST_OPERATION(Name) case CK_##Name: return #Name; |
1952 | #include "clang/AST/OperationKinds.def" |
1953 | } |
1954 | llvm_unreachable("Unhandled cast kind!" ); |
1955 | } |
1956 | |
1957 | namespace { |
1958 | // Skip over implicit nodes produced as part of semantic analysis. |
1959 | // Designed for use with IgnoreExprNodes. |
1960 | static Expr *ignoreImplicitSemaNodes(Expr *E) { |
1961 | if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(Val: E)) |
1962 | return Materialize->getSubExpr(); |
1963 | |
1964 | if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(Val: E)) |
1965 | return Binder->getSubExpr(); |
1966 | |
1967 | if (auto *Full = dyn_cast<FullExpr>(Val: E)) |
1968 | return Full->getSubExpr(); |
1969 | |
1970 | if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(Val: E); |
1971 | CPLIE && CPLIE->getInitExprs().size() == 1) |
1972 | return CPLIE->getInitExprs()[0]; |
1973 | |
1974 | return E; |
1975 | } |
1976 | } // namespace |
1977 | |
1978 | Expr *CastExpr::getSubExprAsWritten() { |
1979 | const Expr *SubExpr = nullptr; |
1980 | |
1981 | for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(Val: SubExpr)) { |
1982 | SubExpr = IgnoreExprNodes(E: E->getSubExpr(), Fns&: ignoreImplicitSemaNodes); |
1983 | |
1984 | // Conversions by constructor and conversion functions have a |
1985 | // subexpression describing the call; strip it off. |
1986 | if (E->getCastKind() == CK_ConstructorConversion) { |
1987 | SubExpr = IgnoreExprNodes(E: cast<CXXConstructExpr>(Val: SubExpr)->getArg(Arg: 0), |
1988 | Fns&: ignoreImplicitSemaNodes); |
1989 | } else if (E->getCastKind() == CK_UserDefinedConversion) { |
1990 | assert((isa<CallExpr, BlockExpr>(SubExpr)) && |
1991 | "Unexpected SubExpr for CK_UserDefinedConversion." ); |
1992 | if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: SubExpr)) |
1993 | SubExpr = MCE->getImplicitObjectArgument(); |
1994 | } |
1995 | } |
1996 | |
1997 | return const_cast<Expr *>(SubExpr); |
1998 | } |
1999 | |
2000 | NamedDecl *CastExpr::getConversionFunction() const { |
2001 | const Expr *SubExpr = nullptr; |
2002 | |
2003 | for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(Val: SubExpr)) { |
2004 | SubExpr = IgnoreExprNodes(E: E->getSubExpr(), Fns&: ignoreImplicitSemaNodes); |
2005 | |
2006 | if (E->getCastKind() == CK_ConstructorConversion) |
2007 | return cast<CXXConstructExpr>(Val: SubExpr)->getConstructor(); |
2008 | |
2009 | if (E->getCastKind() == CK_UserDefinedConversion) { |
2010 | if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: SubExpr)) |
2011 | return MCE->getMethodDecl(); |
2012 | } |
2013 | } |
2014 | |
2015 | return nullptr; |
2016 | } |
2017 | |
2018 | CXXBaseSpecifier **CastExpr::path_buffer() { |
2019 | switch (getStmtClass()) { |
2020 | #define ABSTRACT_STMT(x) |
2021 | #define CASTEXPR(Type, Base) \ |
2022 | case Stmt::Type##Class: \ |
2023 | return static_cast<Type *>(this) \ |
2024 | ->getTrailingObjectsNonStrict<CXXBaseSpecifier *>(); |
2025 | #define STMT(Type, Base) |
2026 | #include "clang/AST/StmtNodes.inc" |
2027 | default: |
2028 | llvm_unreachable("non-cast expressions not possible here" ); |
2029 | } |
2030 | } |
2031 | |
2032 | const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType, |
2033 | QualType opType) { |
2034 | auto RD = unionType->castAs<RecordType>()->getDecl(); |
2035 | return getTargetFieldForToUnionCast(RD, opType); |
2036 | } |
2037 | |
2038 | const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD, |
2039 | QualType OpType) { |
2040 | auto &Ctx = RD->getASTContext(); |
2041 | RecordDecl::field_iterator Field, FieldEnd; |
2042 | for (Field = RD->field_begin(), FieldEnd = RD->field_end(); |
2043 | Field != FieldEnd; ++Field) { |
2044 | if (Ctx.hasSameUnqualifiedType(T1: Field->getType(), T2: OpType) && |
2045 | !Field->isUnnamedBitField()) { |
2046 | return *Field; |
2047 | } |
2048 | } |
2049 | return nullptr; |
2050 | } |
2051 | |
2052 | FPOptionsOverride *CastExpr::getTrailingFPFeatures() { |
2053 | assert(hasStoredFPFeatures()); |
2054 | switch (getStmtClass()) { |
2055 | case ImplicitCastExprClass: |
2056 | return static_cast<ImplicitCastExpr *>(this) |
2057 | ->getTrailingObjects<FPOptionsOverride>(); |
2058 | case CStyleCastExprClass: |
2059 | return static_cast<CStyleCastExpr *>(this) |
2060 | ->getTrailingObjects<FPOptionsOverride>(); |
2061 | case CXXFunctionalCastExprClass: |
2062 | return static_cast<CXXFunctionalCastExpr *>(this) |
2063 | ->getTrailingObjects<FPOptionsOverride>(); |
2064 | case CXXStaticCastExprClass: |
2065 | return static_cast<CXXStaticCastExpr *>(this) |
2066 | ->getTrailingObjects<FPOptionsOverride>(); |
2067 | default: |
2068 | llvm_unreachable("Cast does not have FPFeatures" ); |
2069 | } |
2070 | } |
2071 | |
2072 | ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T, |
2073 | CastKind Kind, Expr *Operand, |
2074 | const CXXCastPath *BasePath, |
2075 | ExprValueKind VK, |
2076 | FPOptionsOverride FPO) { |
2077 | unsigned PathSize = (BasePath ? BasePath->size() : 0); |
2078 | void *Buffer = |
2079 | C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( |
2080 | Counts: PathSize, Counts: FPO.requiresTrailingStorage())); |
2081 | // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and |
2082 | // std::nullptr_t have special semantics not captured by CK_LValueToRValue. |
2083 | assert((Kind != CK_LValueToRValue || |
2084 | !(T->isNullPtrType() || T->getAsCXXRecordDecl())) && |
2085 | "invalid type for lvalue-to-rvalue conversion" ); |
2086 | ImplicitCastExpr *E = |
2087 | new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK); |
2088 | if (PathSize) |
2089 | llvm::uninitialized_copy(Src: *BasePath, |
2090 | Dst: E->getTrailingObjects<CXXBaseSpecifier *>()); |
2091 | return E; |
2092 | } |
2093 | |
2094 | ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C, |
2095 | unsigned PathSize, |
2096 | bool HasFPFeatures) { |
2097 | void *Buffer = |
2098 | C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( |
2099 | Counts: PathSize, Counts: HasFPFeatures)); |
2100 | return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures); |
2101 | } |
2102 | |
2103 | CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T, |
2104 | ExprValueKind VK, CastKind K, Expr *Op, |
2105 | const CXXCastPath *BasePath, |
2106 | FPOptionsOverride FPO, |
2107 | TypeSourceInfo *WrittenTy, |
2108 | SourceLocation L, SourceLocation R) { |
2109 | unsigned PathSize = (BasePath ? BasePath->size() : 0); |
2110 | void *Buffer = |
2111 | C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( |
2112 | Counts: PathSize, Counts: FPO.requiresTrailingStorage())); |
2113 | CStyleCastExpr *E = |
2114 | new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R); |
2115 | if (PathSize) |
2116 | llvm::uninitialized_copy(Src: *BasePath, |
2117 | Dst: E->getTrailingObjects<CXXBaseSpecifier *>()); |
2118 | return E; |
2119 | } |
2120 | |
2121 | CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C, |
2122 | unsigned PathSize, |
2123 | bool HasFPFeatures) { |
2124 | void *Buffer = |
2125 | C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>( |
2126 | Counts: PathSize, Counts: HasFPFeatures)); |
2127 | return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures); |
2128 | } |
2129 | |
2130 | /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it |
2131 | /// corresponds to, e.g. "<<=". |
2132 | StringRef BinaryOperator::getOpcodeStr(Opcode Op) { |
2133 | switch (Op) { |
2134 | #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling; |
2135 | #include "clang/AST/OperationKinds.def" |
2136 | } |
2137 | llvm_unreachable("Invalid OpCode!" ); |
2138 | } |
2139 | |
2140 | BinaryOperatorKind |
2141 | BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) { |
2142 | switch (OO) { |
2143 | default: llvm_unreachable("Not an overloadable binary operator" ); |
2144 | case OO_Plus: return BO_Add; |
2145 | case OO_Minus: return BO_Sub; |
2146 | case OO_Star: return BO_Mul; |
2147 | case OO_Slash: return BO_Div; |
2148 | case OO_Percent: return BO_Rem; |
2149 | case OO_Caret: return BO_Xor; |
2150 | case OO_Amp: return BO_And; |
2151 | case OO_Pipe: return BO_Or; |
2152 | case OO_Equal: return BO_Assign; |
2153 | case OO_Spaceship: return BO_Cmp; |
2154 | case OO_Less: return BO_LT; |
2155 | case OO_Greater: return BO_GT; |
2156 | case OO_PlusEqual: return BO_AddAssign; |
2157 | case OO_MinusEqual: return BO_SubAssign; |
2158 | case OO_StarEqual: return BO_MulAssign; |
2159 | case OO_SlashEqual: return BO_DivAssign; |
2160 | case OO_PercentEqual: return BO_RemAssign; |
2161 | case OO_CaretEqual: return BO_XorAssign; |
2162 | case OO_AmpEqual: return BO_AndAssign; |
2163 | case OO_PipeEqual: return BO_OrAssign; |
2164 | case OO_LessLess: return BO_Shl; |
2165 | case OO_GreaterGreater: return BO_Shr; |
2166 | case OO_LessLessEqual: return BO_ShlAssign; |
2167 | case OO_GreaterGreaterEqual: return BO_ShrAssign; |
2168 | case OO_EqualEqual: return BO_EQ; |
2169 | case OO_ExclaimEqual: return BO_NE; |
2170 | case OO_LessEqual: return BO_LE; |
2171 | case OO_GreaterEqual: return BO_GE; |
2172 | case OO_AmpAmp: return BO_LAnd; |
2173 | case OO_PipePipe: return BO_LOr; |
2174 | case OO_Comma: return BO_Comma; |
2175 | case OO_ArrowStar: return BO_PtrMemI; |
2176 | } |
2177 | } |
2178 | |
2179 | OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) { |
2180 | static const OverloadedOperatorKind OverOps[] = { |
2181 | /* .* Cannot be overloaded */OO_None, OO_ArrowStar, |
2182 | OO_Star, OO_Slash, OO_Percent, |
2183 | OO_Plus, OO_Minus, |
2184 | OO_LessLess, OO_GreaterGreater, |
2185 | OO_Spaceship, |
2186 | OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual, |
2187 | OO_EqualEqual, OO_ExclaimEqual, |
2188 | OO_Amp, |
2189 | OO_Caret, |
2190 | OO_Pipe, |
2191 | OO_AmpAmp, |
2192 | OO_PipePipe, |
2193 | OO_Equal, OO_StarEqual, |
2194 | OO_SlashEqual, OO_PercentEqual, |
2195 | OO_PlusEqual, OO_MinusEqual, |
2196 | OO_LessLessEqual, OO_GreaterGreaterEqual, |
2197 | OO_AmpEqual, OO_CaretEqual, |
2198 | OO_PipeEqual, |
2199 | OO_Comma |
2200 | }; |
2201 | return OverOps[Opc]; |
2202 | } |
2203 | |
2204 | bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx, |
2205 | Opcode Opc, |
2206 | const Expr *LHS, |
2207 | const Expr *RHS) { |
2208 | if (Opc != BO_Add) |
2209 | return false; |
2210 | |
2211 | // Check that we have one pointer and one integer operand. |
2212 | const Expr *PExp; |
2213 | if (LHS->getType()->isPointerType()) { |
2214 | if (!RHS->getType()->isIntegerType()) |
2215 | return false; |
2216 | PExp = LHS; |
2217 | } else if (RHS->getType()->isPointerType()) { |
2218 | if (!LHS->getType()->isIntegerType()) |
2219 | return false; |
2220 | PExp = RHS; |
2221 | } else { |
2222 | return false; |
2223 | } |
2224 | |
2225 | // Workaround for old glibc's __PTR_ALIGN macro |
2226 | if (auto *Select = |
2227 | dyn_cast<ConditionalOperator>(Val: PExp->IgnoreParenNoopCasts(Ctx))) { |
2228 | // If the condition can be constant evaluated, we check the selected arm. |
2229 | bool EvalResult; |
2230 | if (!Select->getCond()->EvaluateAsBooleanCondition(Result&: EvalResult, Ctx)) |
2231 | return false; |
2232 | PExp = EvalResult ? Select->getTrueExpr() : Select->getFalseExpr(); |
2233 | } |
2234 | |
2235 | // Check that the pointer is a nullptr. |
2236 | if (!PExp->IgnoreParenCasts() |
2237 | ->isNullPointerConstant(Ctx, NPC: Expr::NPC_ValueDependentIsNotNull)) |
2238 | return false; |
2239 | |
2240 | // Check that the pointee type is char-sized. |
2241 | const PointerType *PTy = PExp->getType()->getAs<PointerType>(); |
2242 | if (!PTy || !PTy->getPointeeType()->isCharType()) |
2243 | return false; |
2244 | |
2245 | return true; |
2246 | } |
2247 | |
2248 | SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, SourceLocIdentKind Kind, |
2249 | QualType ResultTy, SourceLocation BLoc, |
2250 | SourceLocation RParenLoc, |
2251 | DeclContext *ParentContext) |
2252 | : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary), |
2253 | BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) { |
2254 | SourceLocExprBits.Kind = llvm::to_underlying(E: Kind); |
2255 | // In dependent contexts, function names may change. |
2256 | setDependence(MayBeDependent(Kind) && ParentContext->isDependentContext() |
2257 | ? ExprDependence::Value |
2258 | : ExprDependence::None); |
2259 | } |
2260 | |
2261 | StringRef SourceLocExpr::getBuiltinStr() const { |
2262 | switch (getIdentKind()) { |
2263 | case SourceLocIdentKind::File: |
2264 | return "__builtin_FILE" ; |
2265 | case SourceLocIdentKind::FileName: |
2266 | return "__builtin_FILE_NAME" ; |
2267 | case SourceLocIdentKind::Function: |
2268 | return "__builtin_FUNCTION" ; |
2269 | case SourceLocIdentKind::FuncSig: |
2270 | return "__builtin_FUNCSIG" ; |
2271 | case SourceLocIdentKind::Line: |
2272 | return "__builtin_LINE" ; |
2273 | case SourceLocIdentKind::Column: |
2274 | return "__builtin_COLUMN" ; |
2275 | case SourceLocIdentKind::SourceLocStruct: |
2276 | return "__builtin_source_location" ; |
2277 | } |
2278 | llvm_unreachable("unexpected IdentKind!" ); |
2279 | } |
2280 | |
2281 | APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx, |
2282 | const Expr *DefaultExpr) const { |
2283 | SourceLocation Loc; |
2284 | const DeclContext *Context; |
2285 | |
2286 | if (const auto *DIE = dyn_cast_if_present<CXXDefaultInitExpr>(Val: DefaultExpr)) { |
2287 | Loc = DIE->getUsedLocation(); |
2288 | Context = DIE->getUsedContext(); |
2289 | } else if (const auto *DAE = |
2290 | dyn_cast_if_present<CXXDefaultArgExpr>(Val: DefaultExpr)) { |
2291 | Loc = DAE->getUsedLocation(); |
2292 | Context = DAE->getUsedContext(); |
2293 | } else { |
2294 | Loc = getLocation(); |
2295 | Context = getParentContext(); |
2296 | } |
2297 | |
2298 | // If we are currently parsing a lambda declarator, we might not have a fully |
2299 | // formed call operator declaration yet, and we could not form a function name |
2300 | // for it. Because we do not have access to Sema/function scopes here, we |
2301 | // detect this case by relying on the fact such method doesn't yet have a |
2302 | // type. |
2303 | if (const auto *D = dyn_cast<CXXMethodDecl>(Val: Context); |
2304 | D && D->getFunctionTypeLoc().isNull() && isLambdaCallOperator(MD: D)) |
2305 | Context = D->getParent()->getParent(); |
2306 | |
2307 | PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc( |
2308 | Loc: Ctx.getSourceManager().getExpansionRange(Loc).getEnd()); |
2309 | |
2310 | auto MakeStringLiteral = [&](StringRef Tmp) { |
2311 | using LValuePathEntry = APValue::LValuePathEntry; |
2312 | StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Key: Tmp); |
2313 | // Decay the string to a pointer to the first character. |
2314 | LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(Index: 0)}; |
2315 | return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false); |
2316 | }; |
2317 | |
2318 | switch (getIdentKind()) { |
2319 | case SourceLocIdentKind::FileName: { |
2320 | // __builtin_FILE_NAME() is a Clang-specific extension that expands to the |
2321 | // the last part of __builtin_FILE(). |
2322 | SmallString<256> FileName; |
2323 | clang::Preprocessor::processPathToFileName( |
2324 | FileName, PLoc, LangOpts: Ctx.getLangOpts(), TI: Ctx.getTargetInfo()); |
2325 | return MakeStringLiteral(FileName); |
2326 | } |
2327 | case SourceLocIdentKind::File: { |
2328 | SmallString<256> Path(PLoc.getFilename()); |
2329 | clang::Preprocessor::processPathForFileMacro(Path, LangOpts: Ctx.getLangOpts(), |
2330 | TI: Ctx.getTargetInfo()); |
2331 | return MakeStringLiteral(Path); |
2332 | } |
2333 | case SourceLocIdentKind::Function: |
2334 | case SourceLocIdentKind::FuncSig: { |
2335 | const auto *CurDecl = dyn_cast<Decl>(Val: Context); |
2336 | const auto Kind = getIdentKind() == SourceLocIdentKind::Function |
2337 | ? PredefinedIdentKind::Function |
2338 | : PredefinedIdentKind::FuncSig; |
2339 | return MakeStringLiteral( |
2340 | CurDecl ? PredefinedExpr::ComputeName(IK: Kind, CurrentDecl: CurDecl) : std::string("" )); |
2341 | } |
2342 | case SourceLocIdentKind::Line: |
2343 | return APValue(Ctx.MakeIntValue(Value: PLoc.getLine(), Type: Ctx.UnsignedIntTy)); |
2344 | case SourceLocIdentKind::Column: |
2345 | return APValue(Ctx.MakeIntValue(Value: PLoc.getColumn(), Type: Ctx.UnsignedIntTy)); |
2346 | case SourceLocIdentKind::SourceLocStruct: { |
2347 | // Fill in a std::source_location::__impl structure, by creating an |
2348 | // artificial file-scoped CompoundLiteralExpr, and returning a pointer to |
2349 | // that. |
2350 | const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl(); |
2351 | assert(ImplDecl); |
2352 | |
2353 | // Construct an APValue for the __impl struct, and get or create a Decl |
2354 | // corresponding to that. Note that we've already verified that the shape of |
2355 | // the ImplDecl type is as expected. |
2356 | |
2357 | APValue Value(APValue::UninitStruct(), 0, 4); |
2358 | for (const FieldDecl *F : ImplDecl->fields()) { |
2359 | StringRef Name = F->getName(); |
2360 | if (Name == "_M_file_name" ) { |
2361 | SmallString<256> Path(PLoc.getFilename()); |
2362 | clang::Preprocessor::processPathForFileMacro(Path, LangOpts: Ctx.getLangOpts(), |
2363 | TI: Ctx.getTargetInfo()); |
2364 | Value.getStructField(i: F->getFieldIndex()) = MakeStringLiteral(Path); |
2365 | } else if (Name == "_M_function_name" ) { |
2366 | // Note: this emits the PrettyFunction name -- different than what |
2367 | // __builtin_FUNCTION() above returns! |
2368 | const auto *CurDecl = dyn_cast<Decl>(Val: Context); |
2369 | Value.getStructField(i: F->getFieldIndex()) = MakeStringLiteral( |
2370 | CurDecl && !isa<TranslationUnitDecl>(Val: CurDecl) |
2371 | ? StringRef(PredefinedExpr::ComputeName( |
2372 | IK: PredefinedIdentKind::PrettyFunction, CurrentDecl: CurDecl)) |
2373 | : "" ); |
2374 | } else if (Name == "_M_line" ) { |
2375 | llvm::APSInt IntVal = Ctx.MakeIntValue(Value: PLoc.getLine(), Type: F->getType()); |
2376 | Value.getStructField(i: F->getFieldIndex()) = APValue(IntVal); |
2377 | } else if (Name == "_M_column" ) { |
2378 | llvm::APSInt IntVal = Ctx.MakeIntValue(Value: PLoc.getColumn(), Type: F->getType()); |
2379 | Value.getStructField(i: F->getFieldIndex()) = APValue(IntVal); |
2380 | } |
2381 | } |
2382 | |
2383 | UnnamedGlobalConstantDecl *GV = |
2384 | Ctx.getUnnamedGlobalConstantDecl(Ty: getType()->getPointeeType(), Value); |
2385 | |
2386 | return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{}, |
2387 | false); |
2388 | } |
2389 | } |
2390 | llvm_unreachable("unhandled case" ); |
2391 | } |
2392 | |
2393 | EmbedExpr::EmbedExpr(const ASTContext &Ctx, SourceLocation Loc, |
2394 | EmbedDataStorage *Data, unsigned Begin, |
2395 | unsigned NumOfElements) |
2396 | : Expr(EmbedExprClass, Ctx.IntTy, VK_PRValue, OK_Ordinary), |
2397 | EmbedKeywordLoc(Loc), Ctx(&Ctx), Data(Data), Begin(Begin), |
2398 | NumOfElements(NumOfElements) { |
2399 | setDependence(ExprDependence::None); |
2400 | FakeChildNode = IntegerLiteral::Create( |
2401 | C: Ctx, V: llvm::APInt::getZero(numBits: Ctx.getTypeSize(T: getType())), type: getType(), l: Loc); |
2402 | } |
2403 | |
2404 | InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc, |
2405 | ArrayRef<Expr *> initExprs, SourceLocation rbraceloc) |
2406 | : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary), |
2407 | InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc), |
2408 | RBraceLoc(rbraceloc), AltForm(nullptr, true) { |
2409 | sawArrayRangeDesignator(ARD: false); |
2410 | InitExprs.insert(C, I: InitExprs.end(), From: initExprs.begin(), To: initExprs.end()); |
2411 | |
2412 | setDependence(computeDependence(E: this)); |
2413 | } |
2414 | |
2415 | void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) { |
2416 | if (NumInits > InitExprs.size()) |
2417 | InitExprs.reserve(C, N: NumInits); |
2418 | } |
2419 | |
2420 | void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) { |
2421 | InitExprs.resize(C, N: NumInits, NV: nullptr); |
2422 | } |
2423 | |
2424 | Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) { |
2425 | if (Init >= InitExprs.size()) { |
2426 | InitExprs.insert(C, I: InitExprs.end(), NumToInsert: Init - InitExprs.size() + 1, Elt: nullptr); |
2427 | setInit(Init, expr); |
2428 | return nullptr; |
2429 | } |
2430 | |
2431 | Expr *Result = cast_or_null<Expr>(Val: InitExprs[Init]); |
2432 | setInit(Init, expr); |
2433 | return Result; |
2434 | } |
2435 | |
2436 | void InitListExpr::setArrayFiller(Expr *filler) { |
2437 | assert(!hasArrayFiller() && "Filler already set!" ); |
2438 | ArrayFillerOrUnionFieldInit = filler; |
2439 | // Fill out any "holes" in the array due to designated initializers. |
2440 | Expr **inits = getInits(); |
2441 | for (unsigned i = 0, e = getNumInits(); i != e; ++i) |
2442 | if (inits[i] == nullptr) |
2443 | inits[i] = filler; |
2444 | } |
2445 | |
2446 | bool InitListExpr::isStringLiteralInit() const { |
2447 | if (getNumInits() != 1) |
2448 | return false; |
2449 | const ArrayType *AT = getType()->getAsArrayTypeUnsafe(); |
2450 | if (!AT || !AT->getElementType()->isIntegerType()) |
2451 | return false; |
2452 | // It is possible for getInit() to return null. |
2453 | const Expr *Init = getInit(Init: 0); |
2454 | if (!Init) |
2455 | return false; |
2456 | Init = Init->IgnoreParenImpCasts(); |
2457 | return isa<StringLiteral>(Val: Init) || isa<ObjCEncodeExpr>(Val: Init); |
2458 | } |
2459 | |
2460 | bool InitListExpr::isTransparent() const { |
2461 | assert(isSemanticForm() && "syntactic form never semantically transparent" ); |
2462 | |
2463 | // A glvalue InitListExpr is always just sugar. |
2464 | if (isGLValue()) { |
2465 | assert(getNumInits() == 1 && "multiple inits in glvalue init list" ); |
2466 | return true; |
2467 | } |
2468 | |
2469 | // Otherwise, we're sugar if and only if we have exactly one initializer that |
2470 | // is of the same type. |
2471 | if (getNumInits() != 1 || !getInit(Init: 0)) |
2472 | return false; |
2473 | |
2474 | // Don't confuse aggregate initialization of a struct X { X &x; }; with a |
2475 | // transparent struct copy. |
2476 | if (!getInit(Init: 0)->isPRValue() && getType()->isRecordType()) |
2477 | return false; |
2478 | |
2479 | return getType().getCanonicalType() == |
2480 | getInit(Init: 0)->getType().getCanonicalType(); |
2481 | } |
2482 | |
2483 | bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const { |
2484 | assert(isSyntacticForm() && "only test syntactic form as zero initializer" ); |
2485 | |
2486 | if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(Init: 0)) { |
2487 | return false; |
2488 | } |
2489 | |
2490 | const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(Val: getInit(Init: 0)->IgnoreImplicit()); |
2491 | return Lit && Lit->getValue() == 0; |
2492 | } |
2493 | |
2494 | SourceLocation InitListExpr::getBeginLoc() const { |
2495 | if (InitListExpr *SyntacticForm = getSyntacticForm()) |
2496 | return SyntacticForm->getBeginLoc(); |
2497 | SourceLocation Beg = LBraceLoc; |
2498 | if (Beg.isInvalid()) { |
2499 | // Find the first non-null initializer. |
2500 | for (InitExprsTy::const_iterator I = InitExprs.begin(), |
2501 | E = InitExprs.end(); |
2502 | I != E; ++I) { |
2503 | if (Stmt *S = *I) { |
2504 | Beg = S->getBeginLoc(); |
2505 | break; |
2506 | } |
2507 | } |
2508 | } |
2509 | return Beg; |
2510 | } |
2511 | |
2512 | SourceLocation InitListExpr::getEndLoc() const { |
2513 | if (InitListExpr *SyntacticForm = getSyntacticForm()) |
2514 | return SyntacticForm->getEndLoc(); |
2515 | SourceLocation End = RBraceLoc; |
2516 | if (End.isInvalid()) { |
2517 | // Find the first non-null initializer from the end. |
2518 | for (Stmt *S : llvm::reverse(C: InitExprs)) { |
2519 | if (S) { |
2520 | End = S->getEndLoc(); |
2521 | break; |
2522 | } |
2523 | } |
2524 | } |
2525 | return End; |
2526 | } |
2527 | |
2528 | /// getFunctionType - Return the underlying function type for this block. |
2529 | /// |
2530 | const FunctionProtoType *BlockExpr::getFunctionType() const { |
2531 | // The block pointer is never sugared, but the function type might be. |
2532 | return cast<BlockPointerType>(Val: getType()) |
2533 | ->getPointeeType()->castAs<FunctionProtoType>(); |
2534 | } |
2535 | |
2536 | SourceLocation BlockExpr::getCaretLocation() const { |
2537 | return TheBlock->getCaretLocation(); |
2538 | } |
2539 | const Stmt *BlockExpr::getBody() const { |
2540 | return TheBlock->getBody(); |
2541 | } |
2542 | Stmt *BlockExpr::getBody() { |
2543 | return TheBlock->getBody(); |
2544 | } |
2545 | |
2546 | |
2547 | //===----------------------------------------------------------------------===// |
2548 | // Generic Expression Routines |
2549 | //===----------------------------------------------------------------------===// |
2550 | |
2551 | bool Expr::isReadIfDiscardedInCPlusPlus11() const { |
2552 | // In C++11, discarded-value expressions of a certain form are special, |
2553 | // according to [expr]p10: |
2554 | // The lvalue-to-rvalue conversion (4.1) is applied only if the |
2555 | // expression is a glvalue of volatile-qualified type and it has |
2556 | // one of the following forms: |
2557 | if (!isGLValue() || !getType().isVolatileQualified()) |
2558 | return false; |
2559 | |
2560 | const Expr *E = IgnoreParens(); |
2561 | |
2562 | // - id-expression (5.1.1), |
2563 | if (isa<DeclRefExpr>(Val: E)) |
2564 | return true; |
2565 | |
2566 | // - subscripting (5.2.1), |
2567 | if (isa<ArraySubscriptExpr>(Val: E)) |
2568 | return true; |
2569 | |
2570 | // - class member access (5.2.5), |
2571 | if (isa<MemberExpr>(Val: E)) |
2572 | return true; |
2573 | |
2574 | // - indirection (5.3.1), |
2575 | if (auto *UO = dyn_cast<UnaryOperator>(Val: E)) |
2576 | if (UO->getOpcode() == UO_Deref) |
2577 | return true; |
2578 | |
2579 | if (auto *BO = dyn_cast<BinaryOperator>(Val: E)) { |
2580 | // - pointer-to-member operation (5.5), |
2581 | if (BO->isPtrMemOp()) |
2582 | return true; |
2583 | |
2584 | // - comma expression (5.18) where the right operand is one of the above. |
2585 | if (BO->getOpcode() == BO_Comma) |
2586 | return BO->getRHS()->isReadIfDiscardedInCPlusPlus11(); |
2587 | } |
2588 | |
2589 | // - conditional expression (5.16) where both the second and the third |
2590 | // operands are one of the above, or |
2591 | if (auto *CO = dyn_cast<ConditionalOperator>(Val: E)) |
2592 | return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() && |
2593 | CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); |
2594 | // The related edge case of "*x ?: *x". |
2595 | if (auto *BCO = |
2596 | dyn_cast<BinaryConditionalOperator>(Val: E)) { |
2597 | if (auto *OVE = dyn_cast<OpaqueValueExpr>(Val: BCO->getTrueExpr())) |
2598 | return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() && |
2599 | BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11(); |
2600 | } |
2601 | |
2602 | // Objective-C++ extensions to the rule. |
2603 | if (isa<ObjCIvarRefExpr>(Val: E)) |
2604 | return true; |
2605 | if (const auto *POE = dyn_cast<PseudoObjectExpr>(Val: E)) { |
2606 | if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(Val: POE->getSyntacticForm())) |
2607 | return true; |
2608 | } |
2609 | |
2610 | return false; |
2611 | } |
2612 | |
2613 | /// isUnusedResultAWarning - Return true if this immediate expression should |
2614 | /// be warned about if the result is unused. If so, fill in Loc and Ranges |
2615 | /// with location to warn on and the source range[s] to report with the |
2616 | /// warning. |
2617 | bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, |
2618 | SourceRange &R1, SourceRange &R2, |
2619 | ASTContext &Ctx) const { |
2620 | // Don't warn if the expr is type dependent. The type could end up |
2621 | // instantiating to void. |
2622 | if (isTypeDependent()) |
2623 | return false; |
2624 | |
2625 | switch (getStmtClass()) { |
2626 | default: |
2627 | if (getType()->isVoidType()) |
2628 | return false; |
2629 | WarnE = this; |
2630 | Loc = getExprLoc(); |
2631 | R1 = getSourceRange(); |
2632 | return true; |
2633 | case ParenExprClass: |
2634 | return cast<ParenExpr>(Val: this)->getSubExpr()-> |
2635 | isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
2636 | case GenericSelectionExprClass: |
2637 | return cast<GenericSelectionExpr>(Val: this)->getResultExpr()-> |
2638 | isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
2639 | case CoawaitExprClass: |
2640 | case CoyieldExprClass: |
2641 | return cast<CoroutineSuspendExpr>(Val: this)->getResumeExpr()-> |
2642 | isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
2643 | case ChooseExprClass: |
2644 | return cast<ChooseExpr>(Val: this)->getChosenSubExpr()-> |
2645 | isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
2646 | case UnaryOperatorClass: { |
2647 | const UnaryOperator *UO = cast<UnaryOperator>(Val: this); |
2648 | |
2649 | switch (UO->getOpcode()) { |
2650 | case UO_Plus: |
2651 | case UO_Minus: |
2652 | case UO_AddrOf: |
2653 | case UO_Not: |
2654 | case UO_LNot: |
2655 | case UO_Deref: |
2656 | break; |
2657 | case UO_Coawait: |
2658 | // This is just the 'operator co_await' call inside the guts of a |
2659 | // dependent co_await call. |
2660 | case UO_PostInc: |
2661 | case UO_PostDec: |
2662 | case UO_PreInc: |
2663 | case UO_PreDec: // ++/-- |
2664 | return false; // Not a warning. |
2665 | case UO_Real: |
2666 | case UO_Imag: |
2667 | // accessing a piece of a volatile complex is a side-effect. |
2668 | if (Ctx.getCanonicalType(T: UO->getSubExpr()->getType()) |
2669 | .isVolatileQualified()) |
2670 | return false; |
2671 | break; |
2672 | case UO_Extension: |
2673 | return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
2674 | } |
2675 | WarnE = this; |
2676 | Loc = UO->getOperatorLoc(); |
2677 | R1 = UO->getSubExpr()->getSourceRange(); |
2678 | return true; |
2679 | } |
2680 | case BinaryOperatorClass: { |
2681 | const BinaryOperator *BO = cast<BinaryOperator>(Val: this); |
2682 | switch (BO->getOpcode()) { |
2683 | default: |
2684 | break; |
2685 | // Consider the RHS of comma for side effects. LHS was checked by |
2686 | // Sema::CheckCommaOperands. |
2687 | case BO_Comma: |
2688 | // ((foo = <blah>), 0) is an idiom for hiding the result (and |
2689 | // lvalue-ness) of an assignment written in a macro. |
2690 | if (IntegerLiteral *IE = |
2691 | dyn_cast<IntegerLiteral>(Val: BO->getRHS()->IgnoreParens())) |
2692 | if (IE->getValue() == 0) |
2693 | return false; |
2694 | return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
2695 | // Consider '||', '&&' to have side effects if the LHS or RHS does. |
2696 | case BO_LAnd: |
2697 | case BO_LOr: |
2698 | if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) || |
2699 | !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)) |
2700 | return false; |
2701 | break; |
2702 | } |
2703 | if (BO->isAssignmentOp()) |
2704 | return false; |
2705 | WarnE = this; |
2706 | Loc = BO->getOperatorLoc(); |
2707 | R1 = BO->getLHS()->getSourceRange(); |
2708 | R2 = BO->getRHS()->getSourceRange(); |
2709 | return true; |
2710 | } |
2711 | case CompoundAssignOperatorClass: |
2712 | case VAArgExprClass: |
2713 | case AtomicExprClass: |
2714 | return false; |
2715 | |
2716 | case ConditionalOperatorClass: { |
2717 | // If only one of the LHS or RHS is a warning, the operator might |
2718 | // be being used for control flow. Only warn if both the LHS and |
2719 | // RHS are warnings. |
2720 | const auto *Exp = cast<ConditionalOperator>(Val: this); |
2721 | return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) && |
2722 | Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
2723 | } |
2724 | case BinaryConditionalOperatorClass: { |
2725 | const auto *Exp = cast<BinaryConditionalOperator>(Val: this); |
2726 | return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
2727 | } |
2728 | |
2729 | case MemberExprClass: |
2730 | WarnE = this; |
2731 | Loc = cast<MemberExpr>(Val: this)->getMemberLoc(); |
2732 | R1 = SourceRange(Loc, Loc); |
2733 | R2 = cast<MemberExpr>(Val: this)->getBase()->getSourceRange(); |
2734 | return true; |
2735 | |
2736 | case ArraySubscriptExprClass: |
2737 | WarnE = this; |
2738 | Loc = cast<ArraySubscriptExpr>(Val: this)->getRBracketLoc(); |
2739 | R1 = cast<ArraySubscriptExpr>(Val: this)->getLHS()->getSourceRange(); |
2740 | R2 = cast<ArraySubscriptExpr>(Val: this)->getRHS()->getSourceRange(); |
2741 | return true; |
2742 | |
2743 | case CXXOperatorCallExprClass: { |
2744 | // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator |
2745 | // overloads as there is no reasonable way to define these such that they |
2746 | // have non-trivial, desirable side-effects. See the -Wunused-comparison |
2747 | // warning: operators == and != are commonly typo'ed, and so warning on them |
2748 | // provides additional value as well. If this list is updated, |
2749 | // DiagnoseUnusedComparison should be as well. |
2750 | const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(Val: this); |
2751 | switch (Op->getOperator()) { |
2752 | default: |
2753 | break; |
2754 | case OO_EqualEqual: |
2755 | case OO_ExclaimEqual: |
2756 | case OO_Less: |
2757 | case OO_Greater: |
2758 | case OO_GreaterEqual: |
2759 | case OO_LessEqual: |
2760 | if (Op->getCallReturnType(Ctx)->isReferenceType() || |
2761 | Op->getCallReturnType(Ctx)->isVoidType()) |
2762 | break; |
2763 | WarnE = this; |
2764 | Loc = Op->getOperatorLoc(); |
2765 | R1 = Op->getSourceRange(); |
2766 | return true; |
2767 | } |
2768 | |
2769 | // Fallthrough for generic call handling. |
2770 | [[fallthrough]]; |
2771 | } |
2772 | case CallExprClass: |
2773 | case CXXMemberCallExprClass: |
2774 | case UserDefinedLiteralClass: { |
2775 | // If this is a direct call, get the callee. |
2776 | const CallExpr *CE = cast<CallExpr>(Val: this); |
2777 | if (const Decl *FD = CE->getCalleeDecl()) { |
2778 | // If the callee has attribute pure, const, or warn_unused_result, warn |
2779 | // about it. void foo() { strlen("bar"); } should warn. |
2780 | // |
2781 | // Note: If new cases are added here, DiagnoseUnusedExprResult should be |
2782 | // updated to match for QoI. |
2783 | if (CE->hasUnusedResultAttr(Ctx) || |
2784 | FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) { |
2785 | WarnE = this; |
2786 | Loc = CE->getCallee()->getBeginLoc(); |
2787 | R1 = CE->getCallee()->getSourceRange(); |
2788 | |
2789 | if (unsigned NumArgs = CE->getNumArgs()) |
2790 | R2 = SourceRange(CE->getArg(Arg: 0)->getBeginLoc(), |
2791 | CE->getArg(Arg: NumArgs - 1)->getEndLoc()); |
2792 | return true; |
2793 | } |
2794 | } |
2795 | return false; |
2796 | } |
2797 | |
2798 | // If we don't know precisely what we're looking at, let's not warn. |
2799 | case UnresolvedLookupExprClass: |
2800 | case CXXUnresolvedConstructExprClass: |
2801 | case RecoveryExprClass: |
2802 | return false; |
2803 | |
2804 | case CXXTemporaryObjectExprClass: |
2805 | case CXXConstructExprClass: { |
2806 | if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) { |
2807 | const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>(); |
2808 | if (Type->hasAttr<WarnUnusedAttr>() || |
2809 | (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) { |
2810 | WarnE = this; |
2811 | Loc = getBeginLoc(); |
2812 | R1 = getSourceRange(); |
2813 | return true; |
2814 | } |
2815 | } |
2816 | |
2817 | const auto *CE = cast<CXXConstructExpr>(Val: this); |
2818 | if (const CXXConstructorDecl *Ctor = CE->getConstructor()) { |
2819 | const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>(); |
2820 | if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) { |
2821 | WarnE = this; |
2822 | Loc = getBeginLoc(); |
2823 | R1 = getSourceRange(); |
2824 | |
2825 | if (unsigned NumArgs = CE->getNumArgs()) |
2826 | R2 = SourceRange(CE->getArg(Arg: 0)->getBeginLoc(), |
2827 | CE->getArg(Arg: NumArgs - 1)->getEndLoc()); |
2828 | return true; |
2829 | } |
2830 | } |
2831 | |
2832 | return false; |
2833 | } |
2834 | |
2835 | case ObjCMessageExprClass: { |
2836 | const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(Val: this); |
2837 | if (Ctx.getLangOpts().ObjCAutoRefCount && |
2838 | ME->isInstanceMessage() && |
2839 | !ME->getType()->isVoidType() && |
2840 | ME->getMethodFamily() == OMF_init) { |
2841 | WarnE = this; |
2842 | Loc = getExprLoc(); |
2843 | R1 = ME->getSourceRange(); |
2844 | return true; |
2845 | } |
2846 | |
2847 | if (const ObjCMethodDecl *MD = ME->getMethodDecl()) |
2848 | if (MD->hasAttr<WarnUnusedResultAttr>()) { |
2849 | WarnE = this; |
2850 | Loc = getExprLoc(); |
2851 | return true; |
2852 | } |
2853 | |
2854 | return false; |
2855 | } |
2856 | |
2857 | case ObjCPropertyRefExprClass: |
2858 | case ObjCSubscriptRefExprClass: |
2859 | WarnE = this; |
2860 | Loc = getExprLoc(); |
2861 | R1 = getSourceRange(); |
2862 | return true; |
2863 | |
2864 | case PseudoObjectExprClass: { |
2865 | const auto *POE = cast<PseudoObjectExpr>(Val: this); |
2866 | |
2867 | // For some syntactic forms, we should always warn. |
2868 | if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>( |
2869 | Val: POE->getSyntacticForm())) { |
2870 | WarnE = this; |
2871 | Loc = getExprLoc(); |
2872 | R1 = getSourceRange(); |
2873 | return true; |
2874 | } |
2875 | |
2876 | // For others, we should never warn. |
2877 | if (auto *BO = dyn_cast<BinaryOperator>(Val: POE->getSyntacticForm())) |
2878 | if (BO->isAssignmentOp()) |
2879 | return false; |
2880 | if (auto *UO = dyn_cast<UnaryOperator>(Val: POE->getSyntacticForm())) |
2881 | if (UO->isIncrementDecrementOp()) |
2882 | return false; |
2883 | |
2884 | // Otherwise, warn if the result expression would warn. |
2885 | const Expr *Result = POE->getResultExpr(); |
2886 | return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
2887 | } |
2888 | |
2889 | case StmtExprClass: { |
2890 | // Statement exprs don't logically have side effects themselves, but are |
2891 | // sometimes used in macros in ways that give them a type that is unused. |
2892 | // For example ({ blah; foo(); }) will end up with a type if foo has a type. |
2893 | // however, if the result of the stmt expr is dead, we don't want to emit a |
2894 | // warning. |
2895 | const CompoundStmt *CS = cast<StmtExpr>(Val: this)->getSubStmt(); |
2896 | if (!CS->body_empty()) { |
2897 | if (const Expr *E = dyn_cast<Expr>(Val: CS->body_back())) |
2898 | return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
2899 | if (const LabelStmt *Label = dyn_cast<LabelStmt>(Val: CS->body_back())) |
2900 | if (const Expr *E = dyn_cast<Expr>(Val: Label->getSubStmt())) |
2901 | return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
2902 | } |
2903 | |
2904 | if (getType()->isVoidType()) |
2905 | return false; |
2906 | WarnE = this; |
2907 | Loc = cast<StmtExpr>(Val: this)->getLParenLoc(); |
2908 | R1 = getSourceRange(); |
2909 | return true; |
2910 | } |
2911 | case CXXFunctionalCastExprClass: |
2912 | case CStyleCastExprClass: { |
2913 | // Ignore an explicit cast to void, except in C++98 if the operand is a |
2914 | // volatile glvalue for which we would trigger an implicit read in any |
2915 | // other language mode. (Such an implicit read always happens as part of |
2916 | // the lvalue conversion in C, and happens in C++ for expressions of all |
2917 | // forms where it seems likely the user intended to trigger a volatile |
2918 | // load.) |
2919 | const CastExpr *CE = cast<CastExpr>(Val: this); |
2920 | const Expr *SubE = CE->getSubExpr()->IgnoreParens(); |
2921 | if (CE->getCastKind() == CK_ToVoid) { |
2922 | if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 && |
2923 | SubE->isReadIfDiscardedInCPlusPlus11()) { |
2924 | // Suppress the "unused value" warning for idiomatic usage of |
2925 | // '(void)var;' used to suppress "unused variable" warnings. |
2926 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: SubE)) |
2927 | if (auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl())) |
2928 | if (!VD->isExternallyVisible()) |
2929 | return false; |
2930 | |
2931 | // The lvalue-to-rvalue conversion would have no effect for an array. |
2932 | // It's implausible that the programmer expected this to result in a |
2933 | // volatile array load, so don't warn. |
2934 | if (SubE->getType()->isArrayType()) |
2935 | return false; |
2936 | |
2937 | return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
2938 | } |
2939 | return false; |
2940 | } |
2941 | |
2942 | // If this is a cast to a constructor conversion, check the operand. |
2943 | // Otherwise, the result of the cast is unused. |
2944 | if (CE->getCastKind() == CK_ConstructorConversion) |
2945 | return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
2946 | if (CE->getCastKind() == CK_Dependent) |
2947 | return false; |
2948 | |
2949 | WarnE = this; |
2950 | if (const CXXFunctionalCastExpr *CXXCE = |
2951 | dyn_cast<CXXFunctionalCastExpr>(Val: this)) { |
2952 | Loc = CXXCE->getBeginLoc(); |
2953 | R1 = CXXCE->getSubExpr()->getSourceRange(); |
2954 | } else { |
2955 | const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(Val: this); |
2956 | Loc = CStyleCE->getLParenLoc(); |
2957 | R1 = CStyleCE->getSubExpr()->getSourceRange(); |
2958 | } |
2959 | return true; |
2960 | } |
2961 | case ImplicitCastExprClass: { |
2962 | const CastExpr *ICE = cast<ImplicitCastExpr>(Val: this); |
2963 | |
2964 | // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect. |
2965 | if (ICE->getCastKind() == CK_LValueToRValue && |
2966 | ICE->getSubExpr()->getType().isVolatileQualified()) |
2967 | return false; |
2968 | |
2969 | return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
2970 | } |
2971 | case CXXDefaultArgExprClass: |
2972 | return (cast<CXXDefaultArgExpr>(Val: this) |
2973 | ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); |
2974 | case CXXDefaultInitExprClass: |
2975 | return (cast<CXXDefaultInitExpr>(Val: this) |
2976 | ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx)); |
2977 | |
2978 | case CXXNewExprClass: |
2979 | // FIXME: In theory, there might be new expressions that don't have side |
2980 | // effects (e.g. a placement new with an uninitialized POD). |
2981 | case CXXDeleteExprClass: |
2982 | return false; |
2983 | case MaterializeTemporaryExprClass: |
2984 | return cast<MaterializeTemporaryExpr>(Val: this) |
2985 | ->getSubExpr() |
2986 | ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
2987 | case CXXBindTemporaryExprClass: |
2988 | return cast<CXXBindTemporaryExpr>(Val: this)->getSubExpr() |
2989 | ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
2990 | case ExprWithCleanupsClass: |
2991 | return cast<ExprWithCleanups>(Val: this)->getSubExpr() |
2992 | ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx); |
2993 | case OpaqueValueExprClass: |
2994 | return cast<OpaqueValueExpr>(Val: this)->getSourceExpr()->isUnusedResultAWarning( |
2995 | WarnE, Loc, R1, R2, Ctx); |
2996 | } |
2997 | } |
2998 | |
2999 | /// isOBJCGCCandidate - Check if an expression is objc gc'able. |
3000 | /// returns true, if it is; false otherwise. |
3001 | bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const { |
3002 | const Expr *E = IgnoreParens(); |
3003 | switch (E->getStmtClass()) { |
3004 | default: |
3005 | return false; |
3006 | case ObjCIvarRefExprClass: |
3007 | return true; |
3008 | case Expr::UnaryOperatorClass: |
3009 | return cast<UnaryOperator>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx); |
3010 | case ImplicitCastExprClass: |
3011 | return cast<ImplicitCastExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx); |
3012 | case MaterializeTemporaryExprClass: |
3013 | return cast<MaterializeTemporaryExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate( |
3014 | Ctx); |
3015 | case CStyleCastExprClass: |
3016 | return cast<CStyleCastExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx); |
3017 | case DeclRefExprClass: { |
3018 | const Decl *D = cast<DeclRefExpr>(Val: E)->getDecl(); |
3019 | |
3020 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) { |
3021 | if (VD->hasGlobalStorage()) |
3022 | return true; |
3023 | QualType T = VD->getType(); |
3024 | // dereferencing to a pointer is always a gc'able candidate, |
3025 | // unless it is __weak. |
3026 | return T->isPointerType() && |
3027 | (Ctx.getObjCGCAttrKind(Ty: T) != Qualifiers::Weak); |
3028 | } |
3029 | return false; |
3030 | } |
3031 | case MemberExprClass: { |
3032 | const MemberExpr *M = cast<MemberExpr>(Val: E); |
3033 | return M->getBase()->isOBJCGCCandidate(Ctx); |
3034 | } |
3035 | case ArraySubscriptExprClass: |
3036 | return cast<ArraySubscriptExpr>(Val: E)->getBase()->isOBJCGCCandidate(Ctx); |
3037 | } |
3038 | } |
3039 | |
3040 | bool Expr::isBoundMemberFunction(ASTContext &Ctx) const { |
3041 | if (isTypeDependent()) |
3042 | return false; |
3043 | return ClassifyLValue(Ctx) == Expr::LV_MemberFunction; |
3044 | } |
3045 | |
3046 | QualType Expr::findBoundMemberType(const Expr *expr) { |
3047 | assert(expr->hasPlaceholderType(BuiltinType::BoundMember)); |
3048 | |
3049 | // Bound member expressions are always one of these possibilities: |
3050 | // x->m x.m x->*y x.*y |
3051 | // (possibly parenthesized) |
3052 | |
3053 | expr = expr->IgnoreParens(); |
3054 | if (const MemberExpr *mem = dyn_cast<MemberExpr>(Val: expr)) { |
3055 | assert(isa<CXXMethodDecl>(mem->getMemberDecl())); |
3056 | return mem->getMemberDecl()->getType(); |
3057 | } |
3058 | |
3059 | if (const BinaryOperator *op = dyn_cast<BinaryOperator>(Val: expr)) { |
3060 | QualType type = op->getRHS()->getType()->castAs<MemberPointerType>() |
3061 | ->getPointeeType(); |
3062 | assert(type->isFunctionType()); |
3063 | return type; |
3064 | } |
3065 | |
3066 | assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr)); |
3067 | return QualType(); |
3068 | } |
3069 | |
3070 | Expr *Expr::IgnoreImpCasts() { |
3071 | return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitCastsSingleStep); |
3072 | } |
3073 | |
3074 | Expr *Expr::IgnoreCasts() { |
3075 | return IgnoreExprNodes(E: this, Fns&: IgnoreCastsSingleStep); |
3076 | } |
3077 | |
3078 | Expr *Expr::IgnoreImplicit() { |
3079 | return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitSingleStep); |
3080 | } |
3081 | |
3082 | Expr *Expr::IgnoreImplicitAsWritten() { |
3083 | return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitAsWrittenSingleStep); |
3084 | } |
3085 | |
3086 | Expr *Expr::IgnoreParens() { |
3087 | return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep); |
3088 | } |
3089 | |
3090 | Expr *Expr::IgnoreParenImpCasts() { |
3091 | return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep, |
3092 | Fns&: IgnoreImplicitCastsExtraSingleStep); |
3093 | } |
3094 | |
3095 | Expr *Expr::IgnoreParenCasts() { |
3096 | return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep, Fns&: IgnoreCastsSingleStep); |
3097 | } |
3098 | |
3099 | Expr *Expr::IgnoreConversionOperatorSingleStep() { |
3100 | if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: this)) { |
3101 | if (isa_and_nonnull<CXXConversionDecl>(Val: MCE->getMethodDecl())) |
3102 | return MCE->getImplicitObjectArgument(); |
3103 | } |
3104 | return this; |
3105 | } |
3106 | |
3107 | Expr *Expr::IgnoreParenLValueCasts() { |
3108 | return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep, |
3109 | Fns&: IgnoreLValueCastsSingleStep); |
3110 | } |
3111 | |
3112 | Expr *Expr::IgnoreParenBaseCasts() { |
3113 | return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep, |
3114 | Fns&: IgnoreBaseCastsSingleStep); |
3115 | } |
3116 | |
3117 | Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) { |
3118 | auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) { |
3119 | if (auto *CE = dyn_cast<CastExpr>(Val: E)) { |
3120 | // We ignore integer <-> casts that are of the same width, ptr<->ptr and |
3121 | // ptr<->int casts of the same width. We also ignore all identity casts. |
3122 | Expr *SubExpr = CE->getSubExpr(); |
3123 | bool IsIdentityCast = |
3124 | Ctx.hasSameUnqualifiedType(T1: E->getType(), T2: SubExpr->getType()); |
3125 | bool IsSameWidthCast = (E->getType()->isPointerType() || |
3126 | E->getType()->isIntegralType(Ctx)) && |
3127 | (SubExpr->getType()->isPointerType() || |
3128 | SubExpr->getType()->isIntegralType(Ctx)) && |
3129 | (Ctx.getTypeSize(T: E->getType()) == |
3130 | Ctx.getTypeSize(T: SubExpr->getType())); |
3131 | |
3132 | if (IsIdentityCast || IsSameWidthCast) |
3133 | return SubExpr; |
3134 | } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(Val: E)) |
3135 | return NTTP->getReplacement(); |
3136 | |
3137 | return E; |
3138 | }; |
3139 | return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep, |
3140 | Fns&: IgnoreNoopCastsSingleStep); |
3141 | } |
3142 | |
3143 | Expr *Expr::IgnoreUnlessSpelledInSource() { |
3144 | auto IgnoreImplicitConstructorSingleStep = [](Expr *E) { |
3145 | if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(Val: E)) { |
3146 | auto *SE = Cast->getSubExpr(); |
3147 | if (SE->getSourceRange() == E->getSourceRange()) |
3148 | return SE; |
3149 | } |
3150 | |
3151 | if (auto *C = dyn_cast<CXXConstructExpr>(Val: E)) { |
3152 | auto NumArgs = C->getNumArgs(); |
3153 | if (NumArgs == 1 || |
3154 | (NumArgs > 1 && isa<CXXDefaultArgExpr>(Val: C->getArg(Arg: 1)))) { |
3155 | Expr *A = C->getArg(Arg: 0); |
3156 | if (A->getSourceRange() == E->getSourceRange() || C->isElidable()) |
3157 | return A; |
3158 | } |
3159 | } |
3160 | return E; |
3161 | }; |
3162 | auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) { |
3163 | if (auto *C = dyn_cast<CXXMemberCallExpr>(Val: E)) { |
3164 | Expr *ExprNode = C->getImplicitObjectArgument(); |
3165 | if (ExprNode->getSourceRange() == E->getSourceRange()) { |
3166 | return ExprNode; |
3167 | } |
3168 | if (auto *PE = dyn_cast<ParenExpr>(Val: ExprNode)) { |
3169 | if (PE->getSourceRange() == C->getSourceRange()) { |
3170 | return cast<Expr>(Val: PE); |
3171 | } |
3172 | } |
3173 | ExprNode = ExprNode->IgnoreParenImpCasts(); |
3174 | if (ExprNode->getSourceRange() == E->getSourceRange()) |
3175 | return ExprNode; |
3176 | } |
3177 | return E; |
3178 | }; |
3179 | return IgnoreExprNodes( |
3180 | E: this, Fns&: IgnoreImplicitSingleStep, Fns&: IgnoreImplicitCastsExtraSingleStep, |
3181 | Fns&: IgnoreParensOnlySingleStep, Fns&: IgnoreImplicitConstructorSingleStep, |
3182 | Fns&: IgnoreImplicitMemberCallSingleStep); |
3183 | } |
3184 | |
3185 | bool Expr::isDefaultArgument() const { |
3186 | const Expr *E = this; |
3187 | if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(Val: E)) |
3188 | E = M->getSubExpr(); |
3189 | |
3190 | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) |
3191 | E = ICE->getSubExprAsWritten(); |
3192 | |
3193 | return isa<CXXDefaultArgExpr>(Val: E); |
3194 | } |
3195 | |
3196 | /// Skip over any no-op casts and any temporary-binding |
3197 | /// expressions. |
3198 | static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) { |
3199 | if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(Val: E)) |
3200 | E = M->getSubExpr(); |
3201 | |
3202 | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
3203 | if (ICE->getCastKind() == CK_NoOp) |
3204 | E = ICE->getSubExpr(); |
3205 | else |
3206 | break; |
3207 | } |
3208 | |
3209 | while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(Val: E)) |
3210 | E = BE->getSubExpr(); |
3211 | |
3212 | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
3213 | if (ICE->getCastKind() == CK_NoOp) |
3214 | E = ICE->getSubExpr(); |
3215 | else |
3216 | break; |
3217 | } |
3218 | |
3219 | return E->IgnoreParens(); |
3220 | } |
3221 | |
3222 | /// isTemporaryObject - Determines if this expression produces a |
3223 | /// temporary of the given class type. |
3224 | bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const { |
3225 | if (!C.hasSameUnqualifiedType(T1: getType(), T2: C.getTypeDeclType(Decl: TempTy))) |
3226 | return false; |
3227 | |
3228 | const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(E: this); |
3229 | |
3230 | // Temporaries are by definition pr-values of class type. |
3231 | if (!E->Classify(Ctx&: C).isPRValue()) { |
3232 | // In this context, property reference is a message call and is pr-value. |
3233 | if (!isa<ObjCPropertyRefExpr>(Val: E)) |
3234 | return false; |
3235 | } |
3236 | |
3237 | // Black-list a few cases which yield pr-values of class type that don't |
3238 | // refer to temporaries of that type: |
3239 | |
3240 | // - implicit derived-to-base conversions |
3241 | if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
3242 | switch (ICE->getCastKind()) { |
3243 | case CK_DerivedToBase: |
3244 | case CK_UncheckedDerivedToBase: |
3245 | return false; |
3246 | default: |
3247 | break; |
3248 | } |
3249 | } |
3250 | |
3251 | // - member expressions (all) |
3252 | if (isa<MemberExpr>(Val: E)) |
3253 | return false; |
3254 | |
3255 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: E)) |
3256 | if (BO->isPtrMemOp()) |
3257 | return false; |
3258 | |
3259 | // - opaque values (all) |
3260 | if (isa<OpaqueValueExpr>(Val: E)) |
3261 | return false; |
3262 | |
3263 | return true; |
3264 | } |
3265 | |
3266 | bool Expr::isImplicitCXXThis() const { |
3267 | const Expr *E = this; |
3268 | |
3269 | // Strip away parentheses and casts we don't care about. |
3270 | while (true) { |
3271 | if (const ParenExpr *Paren = dyn_cast<ParenExpr>(Val: E)) { |
3272 | E = Paren->getSubExpr(); |
3273 | continue; |
3274 | } |
3275 | |
3276 | if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
3277 | if (ICE->getCastKind() == CK_NoOp || |
3278 | ICE->getCastKind() == CK_LValueToRValue || |
3279 | ICE->getCastKind() == CK_DerivedToBase || |
3280 | ICE->getCastKind() == CK_UncheckedDerivedToBase) { |
3281 | E = ICE->getSubExpr(); |
3282 | continue; |
3283 | } |
3284 | } |
3285 | |
3286 | if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(Val: E)) { |
3287 | if (UnOp->getOpcode() == UO_Extension) { |
3288 | E = UnOp->getSubExpr(); |
3289 | continue; |
3290 | } |
3291 | } |
3292 | |
3293 | if (const MaterializeTemporaryExpr *M |
3294 | = dyn_cast<MaterializeTemporaryExpr>(Val: E)) { |
3295 | E = M->getSubExpr(); |
3296 | continue; |
3297 | } |
3298 | |
3299 | break; |
3300 | } |
3301 | |
3302 | if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(Val: E)) |
3303 | return This->isImplicit(); |
3304 | |
3305 | return false; |
3306 | } |
3307 | |
3308 | /// hasAnyTypeDependentArguments - Determines if any of the expressions |
3309 | /// in Exprs is type-dependent. |
3310 | bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) { |
3311 | for (unsigned I = 0; I < Exprs.size(); ++I) |
3312 | if (Exprs[I]->isTypeDependent()) |
3313 | return true; |
3314 | |
3315 | return false; |
3316 | } |
3317 | |
3318 | bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef, |
3319 | const Expr **Culprit) const { |
3320 | assert(!isValueDependent() && |
3321 | "Expression evaluator can't be called on a dependent expression." ); |
3322 | |
3323 | // This function is attempting whether an expression is an initializer |
3324 | // which can be evaluated at compile-time. It very closely parallels |
3325 | // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it |
3326 | // will lead to unexpected results. Like ConstExprEmitter, it falls back |
3327 | // to isEvaluatable most of the time. |
3328 | // |
3329 | // If we ever capture reference-binding directly in the AST, we can |
3330 | // kill the second parameter. |
3331 | |
3332 | if (IsForRef) { |
3333 | if (auto *EWC = dyn_cast<ExprWithCleanups>(Val: this)) |
3334 | return EWC->getSubExpr()->isConstantInitializer(Ctx, IsForRef: true, Culprit); |
3335 | if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: this)) |
3336 | return MTE->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
3337 | EvalResult Result; |
3338 | if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects) |
3339 | return true; |
3340 | if (Culprit) |
3341 | *Culprit = this; |
3342 | return false; |
3343 | } |
3344 | |
3345 | switch (getStmtClass()) { |
3346 | default: break; |
3347 | case Stmt::ExprWithCleanupsClass: |
3348 | return cast<ExprWithCleanups>(Val: this)->getSubExpr()->isConstantInitializer( |
3349 | Ctx, IsForRef, Culprit); |
3350 | case StringLiteralClass: |
3351 | case ObjCEncodeExprClass: |
3352 | return true; |
3353 | case CXXTemporaryObjectExprClass: |
3354 | case CXXConstructExprClass: { |
3355 | const CXXConstructExpr *CE = cast<CXXConstructExpr>(Val: this); |
3356 | |
3357 | if (CE->getConstructor()->isTrivial() && |
3358 | CE->getConstructor()->getParent()->hasTrivialDestructor()) { |
3359 | // Trivial default constructor |
3360 | if (!CE->getNumArgs()) return true; |
3361 | |
3362 | // Trivial copy constructor |
3363 | assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument" ); |
3364 | return CE->getArg(Arg: 0)->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
3365 | } |
3366 | |
3367 | break; |
3368 | } |
3369 | case ConstantExprClass: { |
3370 | // FIXME: We should be able to return "true" here, but it can lead to extra |
3371 | // error messages. E.g. in Sema/array-init.c. |
3372 | const Expr *Exp = cast<ConstantExpr>(Val: this)->getSubExpr(); |
3373 | return Exp->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
3374 | } |
3375 | case CompoundLiteralExprClass: { |
3376 | // This handles gcc's extension that allows global initializers like |
3377 | // "struct x {int x;} x = (struct x) {};". |
3378 | // FIXME: This accepts other cases it shouldn't! |
3379 | const Expr *Exp = cast<CompoundLiteralExpr>(Val: this)->getInitializer(); |
3380 | return Exp->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
3381 | } |
3382 | case DesignatedInitUpdateExprClass: { |
3383 | const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(Val: this); |
3384 | return DIUE->getBase()->isConstantInitializer(Ctx, IsForRef: false, Culprit) && |
3385 | DIUE->getUpdater()->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
3386 | } |
3387 | case InitListExprClass: { |
3388 | // C++ [dcl.init.aggr]p2: |
3389 | // The elements of an aggregate are: |
3390 | // - for an array, the array elements in increasing subscript order, or |
3391 | // - for a class, the direct base classes in declaration order, followed |
3392 | // by the direct non-static data members (11.4) that are not members of |
3393 | // an anonymous union, in declaration order. |
3394 | const InitListExpr *ILE = cast<InitListExpr>(Val: this); |
3395 | assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form" ); |
3396 | if (ILE->getType()->isArrayType()) { |
3397 | unsigned numInits = ILE->getNumInits(); |
3398 | for (unsigned i = 0; i < numInits; i++) { |
3399 | if (!ILE->getInit(Init: i)->isConstantInitializer(Ctx, IsForRef: false, Culprit)) |
3400 | return false; |
3401 | } |
3402 | return true; |
3403 | } |
3404 | |
3405 | if (ILE->getType()->isRecordType()) { |
3406 | unsigned ElementNo = 0; |
3407 | RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl(); |
3408 | |
3409 | // In C++17, bases were added to the list of members used by aggregate |
3410 | // initialization. |
3411 | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
3412 | for (unsigned i = 0, e = CXXRD->getNumBases(); i < e; i++) { |
3413 | if (ElementNo < ILE->getNumInits()) { |
3414 | const Expr *Elt = ILE->getInit(Init: ElementNo++); |
3415 | if (!Elt->isConstantInitializer(Ctx, IsForRef: false, Culprit)) |
3416 | return false; |
3417 | } |
3418 | } |
3419 | } |
3420 | |
3421 | for (const auto *Field : RD->fields()) { |
3422 | // If this is a union, skip all the fields that aren't being initialized. |
3423 | if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field) |
3424 | continue; |
3425 | |
3426 | // Don't emit anonymous bitfields, they just affect layout. |
3427 | if (Field->isUnnamedBitField()) |
3428 | continue; |
3429 | |
3430 | if (ElementNo < ILE->getNumInits()) { |
3431 | const Expr *Elt = ILE->getInit(Init: ElementNo++); |
3432 | if (Field->isBitField()) { |
3433 | // Bitfields have to evaluate to an integer. |
3434 | EvalResult Result; |
3435 | if (!Elt->EvaluateAsInt(Result, Ctx)) { |
3436 | if (Culprit) |
3437 | *Culprit = Elt; |
3438 | return false; |
3439 | } |
3440 | } else { |
3441 | bool RefType = Field->getType()->isReferenceType(); |
3442 | if (!Elt->isConstantInitializer(Ctx, IsForRef: RefType, Culprit)) |
3443 | return false; |
3444 | } |
3445 | } |
3446 | } |
3447 | return true; |
3448 | } |
3449 | |
3450 | break; |
3451 | } |
3452 | case ImplicitValueInitExprClass: |
3453 | case NoInitExprClass: |
3454 | return true; |
3455 | case ParenExprClass: |
3456 | return cast<ParenExpr>(Val: this)->getSubExpr() |
3457 | ->isConstantInitializer(Ctx, IsForRef, Culprit); |
3458 | case GenericSelectionExprClass: |
3459 | return cast<GenericSelectionExpr>(Val: this)->getResultExpr() |
3460 | ->isConstantInitializer(Ctx, IsForRef, Culprit); |
3461 | case ChooseExprClass: |
3462 | if (cast<ChooseExpr>(Val: this)->isConditionDependent()) { |
3463 | if (Culprit) |
3464 | *Culprit = this; |
3465 | return false; |
3466 | } |
3467 | return cast<ChooseExpr>(Val: this)->getChosenSubExpr() |
3468 | ->isConstantInitializer(Ctx, IsForRef, Culprit); |
3469 | case UnaryOperatorClass: { |
3470 | const UnaryOperator* Exp = cast<UnaryOperator>(Val: this); |
3471 | if (Exp->getOpcode() == UO_Extension) |
3472 | return Exp->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
3473 | break; |
3474 | } |
3475 | case PackIndexingExprClass: { |
3476 | return cast<PackIndexingExpr>(Val: this) |
3477 | ->getSelectedExpr() |
3478 | ->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
3479 | } |
3480 | case CXXFunctionalCastExprClass: |
3481 | case CXXStaticCastExprClass: |
3482 | case ImplicitCastExprClass: |
3483 | case CStyleCastExprClass: |
3484 | case ObjCBridgedCastExprClass: |
3485 | case CXXDynamicCastExprClass: |
3486 | case CXXReinterpretCastExprClass: |
3487 | case CXXAddrspaceCastExprClass: |
3488 | case CXXConstCastExprClass: { |
3489 | const CastExpr *CE = cast<CastExpr>(Val: this); |
3490 | |
3491 | // Handle misc casts we want to ignore. |
3492 | if (CE->getCastKind() == CK_NoOp || |
3493 | CE->getCastKind() == CK_LValueToRValue || |
3494 | CE->getCastKind() == CK_ToUnion || |
3495 | CE->getCastKind() == CK_ConstructorConversion || |
3496 | CE->getCastKind() == CK_NonAtomicToAtomic || |
3497 | CE->getCastKind() == CK_AtomicToNonAtomic || |
3498 | CE->getCastKind() == CK_NullToPointer || |
3499 | CE->getCastKind() == CK_IntToOCLSampler) |
3500 | return CE->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
3501 | |
3502 | break; |
3503 | } |
3504 | case MaterializeTemporaryExprClass: |
3505 | return cast<MaterializeTemporaryExpr>(Val: this) |
3506 | ->getSubExpr() |
3507 | ->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
3508 | |
3509 | case SubstNonTypeTemplateParmExprClass: |
3510 | return cast<SubstNonTypeTemplateParmExpr>(Val: this)->getReplacement() |
3511 | ->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
3512 | case CXXDefaultArgExprClass: |
3513 | return cast<CXXDefaultArgExpr>(Val: this)->getExpr() |
3514 | ->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
3515 | case CXXDefaultInitExprClass: |
3516 | return cast<CXXDefaultInitExpr>(Val: this)->getExpr() |
3517 | ->isConstantInitializer(Ctx, IsForRef: false, Culprit); |
3518 | } |
3519 | // Allow certain forms of UB in constant initializers: signed integer |
3520 | // overflow and floating-point division by zero. We'll give a warning on |
3521 | // these, but they're common enough that we have to accept them. |
3522 | if (isEvaluatable(Ctx, AllowSideEffects: SE_AllowUndefinedBehavior)) |
3523 | return true; |
3524 | if (Culprit) |
3525 | *Culprit = this; |
3526 | return false; |
3527 | } |
3528 | |
3529 | bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const { |
3530 | unsigned BuiltinID = getBuiltinCallee(); |
3531 | if (BuiltinID != Builtin::BI__assume && |
3532 | BuiltinID != Builtin::BI__builtin_assume) |
3533 | return false; |
3534 | |
3535 | const Expr* Arg = getArg(Arg: 0); |
3536 | bool ArgVal; |
3537 | return !Arg->isValueDependent() && |
3538 | Arg->EvaluateAsBooleanCondition(Result&: ArgVal, Ctx) && !ArgVal; |
3539 | } |
3540 | |
3541 | bool CallExpr::isCallToStdMove() const { |
3542 | return getBuiltinCallee() == Builtin::BImove; |
3543 | } |
3544 | |
3545 | namespace { |
3546 | /// Look for any side effects within a Stmt. |
3547 | class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> { |
3548 | typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited; |
3549 | const bool IncludePossibleEffects; |
3550 | bool HasSideEffects; |
3551 | |
3552 | public: |
3553 | explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible) |
3554 | : Inherited(Context), |
3555 | IncludePossibleEffects(IncludePossible), HasSideEffects(false) { } |
3556 | |
3557 | bool hasSideEffects() const { return HasSideEffects; } |
3558 | |
3559 | void VisitDecl(const Decl *D) { |
3560 | if (!D) |
3561 | return; |
3562 | |
3563 | // We assume the caller checks subexpressions (eg, the initializer, VLA |
3564 | // bounds) for side-effects on our behalf. |
3565 | if (auto *VD = dyn_cast<VarDecl>(Val: D)) { |
3566 | // Registering a destructor is a side-effect. |
3567 | if (IncludePossibleEffects && VD->isThisDeclarationADefinition() && |
3568 | VD->needsDestruction(Ctx: Context)) |
3569 | HasSideEffects = true; |
3570 | } |
3571 | } |
3572 | |
3573 | void VisitDeclStmt(const DeclStmt *DS) { |
3574 | for (auto *D : DS->decls()) |
3575 | VisitDecl(D); |
3576 | Inherited::VisitDeclStmt(S: DS); |
3577 | } |
3578 | |
3579 | void VisitExpr(const Expr *E) { |
3580 | if (!HasSideEffects && |
3581 | E->HasSideEffects(Ctx: Context, IncludePossibleEffects)) |
3582 | HasSideEffects = true; |
3583 | } |
3584 | }; |
3585 | } |
3586 | |
3587 | bool Expr::HasSideEffects(const ASTContext &Ctx, |
3588 | bool IncludePossibleEffects) const { |
3589 | // In circumstances where we care about definite side effects instead of |
3590 | // potential side effects, we want to ignore expressions that are part of a |
3591 | // macro expansion as a potential side effect. |
3592 | if (!IncludePossibleEffects && getExprLoc().isMacroID()) |
3593 | return false; |
3594 | |
3595 | switch (getStmtClass()) { |
3596 | case NoStmtClass: |
3597 | #define ABSTRACT_STMT(Type) |
3598 | #define STMT(Type, Base) case Type##Class: |
3599 | #define EXPR(Type, Base) |
3600 | #include "clang/AST/StmtNodes.inc" |
3601 | llvm_unreachable("unexpected Expr kind" ); |
3602 | |
3603 | case DependentScopeDeclRefExprClass: |
3604 | case CXXUnresolvedConstructExprClass: |
3605 | case CXXDependentScopeMemberExprClass: |
3606 | case UnresolvedLookupExprClass: |
3607 | case UnresolvedMemberExprClass: |
3608 | case PackExpansionExprClass: |
3609 | case SubstNonTypeTemplateParmPackExprClass: |
3610 | case FunctionParmPackExprClass: |
3611 | case RecoveryExprClass: |
3612 | case CXXFoldExprClass: |
3613 | // Make a conservative assumption for dependent nodes. |
3614 | return IncludePossibleEffects; |
3615 | |
3616 | case DeclRefExprClass: |
3617 | case ObjCIvarRefExprClass: |
3618 | case PredefinedExprClass: |
3619 | case IntegerLiteralClass: |
3620 | case FixedPointLiteralClass: |
3621 | case FloatingLiteralClass: |
3622 | case ImaginaryLiteralClass: |
3623 | case StringLiteralClass: |
3624 | case CharacterLiteralClass: |
3625 | case OffsetOfExprClass: |
3626 | case ImplicitValueInitExprClass: |
3627 | case UnaryExprOrTypeTraitExprClass: |
3628 | case AddrLabelExprClass: |
3629 | case GNUNullExprClass: |
3630 | case ArrayInitIndexExprClass: |
3631 | case NoInitExprClass: |
3632 | case CXXBoolLiteralExprClass: |
3633 | case CXXNullPtrLiteralExprClass: |
3634 | case CXXThisExprClass: |
3635 | case CXXScalarValueInitExprClass: |
3636 | case TypeTraitExprClass: |
3637 | case ArrayTypeTraitExprClass: |
3638 | case ExpressionTraitExprClass: |
3639 | case CXXNoexceptExprClass: |
3640 | case SizeOfPackExprClass: |
3641 | case ObjCStringLiteralClass: |
3642 | case ObjCEncodeExprClass: |
3643 | case ObjCBoolLiteralExprClass: |
3644 | case ObjCAvailabilityCheckExprClass: |
3645 | case CXXUuidofExprClass: |
3646 | case OpaqueValueExprClass: |
3647 | case SourceLocExprClass: |
3648 | case EmbedExprClass: |
3649 | case ConceptSpecializationExprClass: |
3650 | case RequiresExprClass: |
3651 | case SYCLUniqueStableNameExprClass: |
3652 | case PackIndexingExprClass: |
3653 | case HLSLOutArgExprClass: |
3654 | case OpenACCAsteriskSizeExprClass: |
3655 | // These never have a side-effect. |
3656 | return false; |
3657 | |
3658 | case ConstantExprClass: |
3659 | // FIXME: Move this into the "return false;" block above. |
3660 | return cast<ConstantExpr>(Val: this)->getSubExpr()->HasSideEffects( |
3661 | Ctx, IncludePossibleEffects); |
3662 | |
3663 | case CallExprClass: |
3664 | case CXXOperatorCallExprClass: |
3665 | case CXXMemberCallExprClass: |
3666 | case CUDAKernelCallExprClass: |
3667 | case UserDefinedLiteralClass: { |
3668 | // We don't know a call definitely has side effects, except for calls |
3669 | // to pure/const functions that definitely don't. |
3670 | // If the call itself is considered side-effect free, check the operands. |
3671 | const Decl *FD = cast<CallExpr>(Val: this)->getCalleeDecl(); |
3672 | bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>()); |
3673 | if (IsPure || !IncludePossibleEffects) |
3674 | break; |
3675 | return true; |
3676 | } |
3677 | |
3678 | case BlockExprClass: |
3679 | case CXXBindTemporaryExprClass: |
3680 | if (!IncludePossibleEffects) |
3681 | break; |
3682 | return true; |
3683 | |
3684 | case MSPropertyRefExprClass: |
3685 | case MSPropertySubscriptExprClass: |
3686 | case CompoundAssignOperatorClass: |
3687 | case VAArgExprClass: |
3688 | case AtomicExprClass: |
3689 | case CXXThrowExprClass: |
3690 | case CXXNewExprClass: |
3691 | case CXXDeleteExprClass: |
3692 | case CoawaitExprClass: |
3693 | case DependentCoawaitExprClass: |
3694 | case CoyieldExprClass: |
3695 | // These always have a side-effect. |
3696 | return true; |
3697 | |
3698 | case StmtExprClass: { |
3699 | // StmtExprs have a side-effect if any substatement does. |
3700 | SideEffectFinder Finder(Ctx, IncludePossibleEffects); |
3701 | Finder.Visit(S: cast<StmtExpr>(Val: this)->getSubStmt()); |
3702 | return Finder.hasSideEffects(); |
3703 | } |
3704 | |
3705 | case ExprWithCleanupsClass: |
3706 | if (IncludePossibleEffects) |
3707 | if (cast<ExprWithCleanups>(Val: this)->cleanupsHaveSideEffects()) |
3708 | return true; |
3709 | break; |
3710 | |
3711 | case ParenExprClass: |
3712 | case ArraySubscriptExprClass: |
3713 | case MatrixSubscriptExprClass: |
3714 | case ArraySectionExprClass: |
3715 | case OMPArrayShapingExprClass: |
3716 | case OMPIteratorExprClass: |
3717 | case MemberExprClass: |
3718 | case ConditionalOperatorClass: |
3719 | case BinaryConditionalOperatorClass: |
3720 | case CompoundLiteralExprClass: |
3721 | case ExtVectorElementExprClass: |
3722 | case DesignatedInitExprClass: |
3723 | case DesignatedInitUpdateExprClass: |
3724 | case ArrayInitLoopExprClass: |
3725 | case ParenListExprClass: |
3726 | case CXXPseudoDestructorExprClass: |
3727 | case CXXRewrittenBinaryOperatorClass: |
3728 | case CXXStdInitializerListExprClass: |
3729 | case SubstNonTypeTemplateParmExprClass: |
3730 | case MaterializeTemporaryExprClass: |
3731 | case ShuffleVectorExprClass: |
3732 | case ConvertVectorExprClass: |
3733 | case AsTypeExprClass: |
3734 | case CXXParenListInitExprClass: |
3735 | // These have a side-effect if any subexpression does. |
3736 | break; |
3737 | |
3738 | case UnaryOperatorClass: |
3739 | if (cast<UnaryOperator>(Val: this)->isIncrementDecrementOp()) |
3740 | return true; |
3741 | break; |
3742 | |
3743 | case BinaryOperatorClass: |
3744 | if (cast<BinaryOperator>(Val: this)->isAssignmentOp()) |
3745 | return true; |
3746 | break; |
3747 | |
3748 | case InitListExprClass: |
3749 | // FIXME: The children for an InitListExpr doesn't include the array filler. |
3750 | if (const Expr *E = cast<InitListExpr>(Val: this)->getArrayFiller()) |
3751 | if (E->HasSideEffects(Ctx, IncludePossibleEffects)) |
3752 | return true; |
3753 | break; |
3754 | |
3755 | case GenericSelectionExprClass: |
3756 | return cast<GenericSelectionExpr>(Val: this)->getResultExpr()-> |
3757 | HasSideEffects(Ctx, IncludePossibleEffects); |
3758 | |
3759 | case ChooseExprClass: |
3760 | return cast<ChooseExpr>(Val: this)->getChosenSubExpr()->HasSideEffects( |
3761 | Ctx, IncludePossibleEffects); |
3762 | |
3763 | case CXXDefaultArgExprClass: |
3764 | return cast<CXXDefaultArgExpr>(Val: this)->getExpr()->HasSideEffects( |
3765 | Ctx, IncludePossibleEffects); |
3766 | |
3767 | case CXXDefaultInitExprClass: { |
3768 | const FieldDecl *FD = cast<CXXDefaultInitExpr>(Val: this)->getField(); |
3769 | if (const Expr *E = FD->getInClassInitializer()) |
3770 | return E->HasSideEffects(Ctx, IncludePossibleEffects); |
3771 | // If we've not yet parsed the initializer, assume it has side-effects. |
3772 | return true; |
3773 | } |
3774 | |
3775 | case CXXDynamicCastExprClass: { |
3776 | // A dynamic_cast expression has side-effects if it can throw. |
3777 | const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(Val: this); |
3778 | if (DCE->getTypeAsWritten()->isReferenceType() && |
3779 | DCE->getCastKind() == CK_Dynamic) |
3780 | return true; |
3781 | } |
3782 | [[fallthrough]]; |
3783 | case ImplicitCastExprClass: |
3784 | case CStyleCastExprClass: |
3785 | case CXXStaticCastExprClass: |
3786 | case CXXReinterpretCastExprClass: |
3787 | case CXXConstCastExprClass: |
3788 | case CXXAddrspaceCastExprClass: |
3789 | case CXXFunctionalCastExprClass: |
3790 | case BuiltinBitCastExprClass: { |
3791 | // While volatile reads are side-effecting in both C and C++, we treat them |
3792 | // as having possible (not definite) side-effects. This allows idiomatic |
3793 | // code to behave without warning, such as sizeof(*v) for a volatile- |
3794 | // qualified pointer. |
3795 | if (!IncludePossibleEffects) |
3796 | break; |
3797 | |
3798 | const CastExpr *CE = cast<CastExpr>(Val: this); |
3799 | if (CE->getCastKind() == CK_LValueToRValue && |
3800 | CE->getSubExpr()->getType().isVolatileQualified()) |
3801 | return true; |
3802 | break; |
3803 | } |
3804 | |
3805 | case CXXTypeidExprClass: { |
3806 | const auto *TE = cast<CXXTypeidExpr>(Val: this); |
3807 | if (!TE->isPotentiallyEvaluated()) |
3808 | return false; |
3809 | |
3810 | // If this type id expression can throw because of a null pointer, that is a |
3811 | // side-effect independent of if the operand has a side-effect |
3812 | if (IncludePossibleEffects && TE->hasNullCheck()) |
3813 | return true; |
3814 | |
3815 | break; |
3816 | } |
3817 | |
3818 | case CXXConstructExprClass: |
3819 | case CXXTemporaryObjectExprClass: { |
3820 | const CXXConstructExpr *CE = cast<CXXConstructExpr>(Val: this); |
3821 | if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects) |
3822 | return true; |
3823 | // A trivial constructor does not add any side-effects of its own. Just look |
3824 | // at its arguments. |
3825 | break; |
3826 | } |
3827 | |
3828 | case CXXInheritedCtorInitExprClass: { |
3829 | const auto *ICIE = cast<CXXInheritedCtorInitExpr>(Val: this); |
3830 | if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects) |
3831 | return true; |
3832 | break; |
3833 | } |
3834 | |
3835 | case LambdaExprClass: { |
3836 | const LambdaExpr *LE = cast<LambdaExpr>(Val: this); |
3837 | for (Expr *E : LE->capture_inits()) |
3838 | if (E && E->HasSideEffects(Ctx, IncludePossibleEffects)) |
3839 | return true; |
3840 | return false; |
3841 | } |
3842 | |
3843 | case PseudoObjectExprClass: { |
3844 | // Only look for side-effects in the semantic form, and look past |
3845 | // OpaqueValueExpr bindings in that form. |
3846 | const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(Val: this); |
3847 | for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(), |
3848 | E = PO->semantics_end(); |
3849 | I != E; ++I) { |
3850 | const Expr *Subexpr = *I; |
3851 | if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Val: Subexpr)) |
3852 | Subexpr = OVE->getSourceExpr(); |
3853 | if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects)) |
3854 | return true; |
3855 | } |
3856 | return false; |
3857 | } |
3858 | |
3859 | case ObjCBoxedExprClass: |
3860 | case ObjCArrayLiteralClass: |
3861 | case ObjCDictionaryLiteralClass: |
3862 | case ObjCSelectorExprClass: |
3863 | case ObjCProtocolExprClass: |
3864 | case ObjCIsaExprClass: |
3865 | case ObjCIndirectCopyRestoreExprClass: |
3866 | case ObjCSubscriptRefExprClass: |
3867 | case ObjCBridgedCastExprClass: |
3868 | case ObjCMessageExprClass: |
3869 | case ObjCPropertyRefExprClass: |
3870 | // FIXME: Classify these cases better. |
3871 | if (IncludePossibleEffects) |
3872 | return true; |
3873 | break; |
3874 | } |
3875 | |
3876 | // Recurse to children. |
3877 | for (const Stmt *SubStmt : children()) |
3878 | if (SubStmt && |
3879 | cast<Expr>(Val: SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects)) |
3880 | return true; |
3881 | |
3882 | return false; |
3883 | } |
3884 | |
3885 | FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const { |
3886 | if (auto Call = dyn_cast<CallExpr>(Val: this)) |
3887 | return Call->getFPFeaturesInEffect(LO); |
3888 | if (auto UO = dyn_cast<UnaryOperator>(Val: this)) |
3889 | return UO->getFPFeaturesInEffect(LO); |
3890 | if (auto BO = dyn_cast<BinaryOperator>(Val: this)) |
3891 | return BO->getFPFeaturesInEffect(LO); |
3892 | if (auto Cast = dyn_cast<CastExpr>(Val: this)) |
3893 | return Cast->getFPFeaturesInEffect(LO); |
3894 | if (auto ConvertVector = dyn_cast<ConvertVectorExpr>(Val: this)) |
3895 | return ConvertVector->getFPFeaturesInEffect(LO); |
3896 | return FPOptions::defaultWithoutTrailingStorage(LO); |
3897 | } |
3898 | |
3899 | namespace { |
3900 | /// Look for a call to a non-trivial function within an expression. |
3901 | class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder> |
3902 | { |
3903 | typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited; |
3904 | |
3905 | bool NonTrivial; |
3906 | |
3907 | public: |
3908 | explicit NonTrivialCallFinder(const ASTContext &Context) |
3909 | : Inherited(Context), NonTrivial(false) { } |
3910 | |
3911 | bool hasNonTrivialCall() const { return NonTrivial; } |
3912 | |
3913 | void VisitCallExpr(const CallExpr *E) { |
3914 | if (const CXXMethodDecl *Method |
3915 | = dyn_cast_or_null<const CXXMethodDecl>(Val: E->getCalleeDecl())) { |
3916 | if (Method->isTrivial()) { |
3917 | // Recurse to children of the call. |
3918 | Inherited::VisitStmt(S: E); |
3919 | return; |
3920 | } |
3921 | } |
3922 | |
3923 | NonTrivial = true; |
3924 | } |
3925 | |
3926 | void VisitCXXConstructExpr(const CXXConstructExpr *E) { |
3927 | if (E->getConstructor()->isTrivial()) { |
3928 | // Recurse to children of the call. |
3929 | Inherited::VisitStmt(S: E); |
3930 | return; |
3931 | } |
3932 | |
3933 | NonTrivial = true; |
3934 | } |
3935 | |
3936 | void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { |
3937 | // Destructor of the temporary might be null if destructor declaration |
3938 | // is not valid. |
3939 | if (const CXXDestructorDecl *DtorDecl = |
3940 | E->getTemporary()->getDestructor()) { |
3941 | if (DtorDecl->isTrivial()) { |
3942 | Inherited::VisitStmt(S: E); |
3943 | return; |
3944 | } |
3945 | } |
3946 | |
3947 | NonTrivial = true; |
3948 | } |
3949 | }; |
3950 | } |
3951 | |
3952 | bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const { |
3953 | NonTrivialCallFinder Finder(Ctx); |
3954 | Finder.Visit(S: this); |
3955 | return Finder.hasNonTrivialCall(); |
3956 | } |
3957 | |
3958 | /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null |
3959 | /// pointer constant or not, as well as the specific kind of constant detected. |
3960 | /// Null pointer constants can be integer constant expressions with the |
3961 | /// value zero, casts of zero to void*, nullptr (C++0X), or __null |
3962 | /// (a GNU extension). |
3963 | Expr::NullPointerConstantKind |
3964 | Expr::isNullPointerConstant(ASTContext &Ctx, |
3965 | NullPointerConstantValueDependence NPC) const { |
3966 | if (isValueDependent() && |
3967 | (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) { |
3968 | // Error-dependent expr should never be a null pointer. |
3969 | if (containsErrors()) |
3970 | return NPCK_NotNull; |
3971 | switch (NPC) { |
3972 | case NPC_NeverValueDependent: |
3973 | llvm_unreachable("Unexpected value dependent expression!" ); |
3974 | case NPC_ValueDependentIsNull: |
3975 | if (isTypeDependent() || getType()->isIntegralType(Ctx)) |
3976 | return NPCK_ZeroExpression; |
3977 | else |
3978 | return NPCK_NotNull; |
3979 | |
3980 | case NPC_ValueDependentIsNotNull: |
3981 | return NPCK_NotNull; |
3982 | } |
3983 | } |
3984 | |
3985 | // Strip off a cast to void*, if it exists. Except in C++. |
3986 | if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(Val: this)) { |
3987 | if (!Ctx.getLangOpts().CPlusPlus) { |
3988 | // Check that it is a cast to void*. |
3989 | if (const PointerType *PT = CE->getType()->getAs<PointerType>()) { |
3990 | QualType Pointee = PT->getPointeeType(); |
3991 | Qualifiers Qs = Pointee.getQualifiers(); |
3992 | // Only (void*)0 or equivalent are treated as nullptr. If pointee type |
3993 | // has non-default address space it is not treated as nullptr. |
3994 | // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr |
3995 | // since it cannot be assigned to a pointer to constant address space. |
3996 | if (Ctx.getLangOpts().OpenCL && |
3997 | Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace()) |
3998 | Qs.removeAddressSpace(); |
3999 | |
4000 | if (Pointee->isVoidType() && Qs.empty() && // to void* |
4001 | CE->getSubExpr()->getType()->isIntegerType()) // from int |
4002 | return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC); |
4003 | } |
4004 | } |
4005 | } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: this)) { |
4006 | // Ignore the ImplicitCastExpr type entirely. |
4007 | return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC); |
4008 | } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Val: this)) { |
4009 | // Accept ((void*)0) as a null pointer constant, as many other |
4010 | // implementations do. |
4011 | return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC); |
4012 | } else if (const GenericSelectionExpr *GE = |
4013 | dyn_cast<GenericSelectionExpr>(Val: this)) { |
4014 | if (GE->isResultDependent()) |
4015 | return NPCK_NotNull; |
4016 | return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC); |
4017 | } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(Val: this)) { |
4018 | if (CE->isConditionDependent()) |
4019 | return NPCK_NotNull; |
4020 | return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC); |
4021 | } else if (const CXXDefaultArgExpr *DefaultArg |
4022 | = dyn_cast<CXXDefaultArgExpr>(Val: this)) { |
4023 | // See through default argument expressions. |
4024 | return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC); |
4025 | } else if (const CXXDefaultInitExpr *DefaultInit |
4026 | = dyn_cast<CXXDefaultInitExpr>(Val: this)) { |
4027 | // See through default initializer expressions. |
4028 | return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC); |
4029 | } else if (isa<GNUNullExpr>(Val: this)) { |
4030 | // The GNU __null extension is always a null pointer constant. |
4031 | return NPCK_GNUNull; |
4032 | } else if (const MaterializeTemporaryExpr *M |
4033 | = dyn_cast<MaterializeTemporaryExpr>(Val: this)) { |
4034 | return M->getSubExpr()->isNullPointerConstant(Ctx, NPC); |
4035 | } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Val: this)) { |
4036 | if (const Expr *Source = OVE->getSourceExpr()) |
4037 | return Source->isNullPointerConstant(Ctx, NPC); |
4038 | } |
4039 | |
4040 | // If the expression has no type information, it cannot be a null pointer |
4041 | // constant. |
4042 | if (getType().isNull()) |
4043 | return NPCK_NotNull; |
4044 | |
4045 | // C++11/C23 nullptr_t is always a null pointer constant. |
4046 | if (getType()->isNullPtrType()) |
4047 | return NPCK_CXX11_nullptr; |
4048 | |
4049 | if (const RecordType *UT = getType()->getAsUnionType()) |
4050 | if (!Ctx.getLangOpts().CPlusPlus11 && |
4051 | UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) |
4052 | if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Val: this)){ |
4053 | const Expr *InitExpr = CLE->getInitializer(); |
4054 | if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Val: InitExpr)) |
4055 | return ILE->getInit(Init: 0)->isNullPointerConstant(Ctx, NPC); |
4056 | } |
4057 | // This expression must be an integer type. |
4058 | if (!getType()->isIntegerType() || |
4059 | (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType())) |
4060 | return NPCK_NotNull; |
4061 | |
4062 | if (Ctx.getLangOpts().CPlusPlus11) { |
4063 | // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with |
4064 | // value zero or a prvalue of type std::nullptr_t. |
4065 | // Microsoft mode permits C++98 rules reflecting MSVC behavior. |
4066 | const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(Val: this); |
4067 | if (Lit && !Lit->getValue()) |
4068 | return NPCK_ZeroLiteral; |
4069 | if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx)) |
4070 | return NPCK_NotNull; |
4071 | } else { |
4072 | // If we have an integer constant expression, we need to *evaluate* it and |
4073 | // test for the value 0. |
4074 | if (!isIntegerConstantExpr(Ctx)) |
4075 | return NPCK_NotNull; |
4076 | } |
4077 | |
4078 | if (EvaluateKnownConstInt(Ctx) != 0) |
4079 | return NPCK_NotNull; |
4080 | |
4081 | if (isa<IntegerLiteral>(Val: this)) |
4082 | return NPCK_ZeroLiteral; |
4083 | return NPCK_ZeroExpression; |
4084 | } |
4085 | |
4086 | /// If this expression is an l-value for an Objective C |
4087 | /// property, find the underlying property reference expression. |
4088 | const ObjCPropertyRefExpr *Expr::getObjCProperty() const { |
4089 | const Expr *E = this; |
4090 | while (true) { |
4091 | assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) && |
4092 | "expression is not a property reference" ); |
4093 | E = E->IgnoreParenCasts(); |
4094 | if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) { |
4095 | if (BO->getOpcode() == BO_Comma) { |
4096 | E = BO->getRHS(); |
4097 | continue; |
4098 | } |
4099 | } |
4100 | |
4101 | break; |
4102 | } |
4103 | |
4104 | return cast<ObjCPropertyRefExpr>(Val: E); |
4105 | } |
4106 | |
4107 | bool Expr::isObjCSelfExpr() const { |
4108 | const Expr *E = IgnoreParenImpCasts(); |
4109 | |
4110 | const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E); |
4111 | if (!DRE) |
4112 | return false; |
4113 | |
4114 | const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(Val: DRE->getDecl()); |
4115 | if (!Param) |
4116 | return false; |
4117 | |
4118 | const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Val: Param->getDeclContext()); |
4119 | if (!M) |
4120 | return false; |
4121 | |
4122 | return M->getSelfDecl() == Param; |
4123 | } |
4124 | |
4125 | FieldDecl *Expr::getSourceBitField() { |
4126 | Expr *E = this->IgnoreParens(); |
4127 | |
4128 | while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
4129 | if (ICE->getCastKind() == CK_LValueToRValue || |
4130 | (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)) |
4131 | E = ICE->getSubExpr()->IgnoreParens(); |
4132 | else |
4133 | break; |
4134 | } |
4135 | |
4136 | if (MemberExpr *MemRef = dyn_cast<MemberExpr>(Val: E)) |
4137 | if (FieldDecl *Field = dyn_cast<FieldDecl>(Val: MemRef->getMemberDecl())) |
4138 | if (Field->isBitField()) |
4139 | return Field; |
4140 | |
4141 | if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(Val: E)) { |
4142 | FieldDecl *Ivar = IvarRef->getDecl(); |
4143 | if (Ivar->isBitField()) |
4144 | return Ivar; |
4145 | } |
4146 | |
4147 | if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(Val: E)) { |
4148 | if (FieldDecl *Field = dyn_cast<FieldDecl>(Val: DeclRef->getDecl())) |
4149 | if (Field->isBitField()) |
4150 | return Field; |
4151 | |
4152 | if (BindingDecl *BD = dyn_cast<BindingDecl>(Val: DeclRef->getDecl())) |
4153 | if (Expr *E = BD->getBinding()) |
4154 | return E->getSourceBitField(); |
4155 | } |
4156 | |
4157 | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val: E)) { |
4158 | if (BinOp->isAssignmentOp() && BinOp->getLHS()) |
4159 | return BinOp->getLHS()->getSourceBitField(); |
4160 | |
4161 | if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS()) |
4162 | return BinOp->getRHS()->getSourceBitField(); |
4163 | } |
4164 | |
4165 | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: E)) |
4166 | if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp()) |
4167 | return UnOp->getSubExpr()->getSourceBitField(); |
4168 | |
4169 | return nullptr; |
4170 | } |
4171 | |
4172 | EnumConstantDecl *Expr::getEnumConstantDecl() { |
4173 | Expr *E = this->IgnoreParenImpCasts(); |
4174 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
4175 | return dyn_cast<EnumConstantDecl>(Val: DRE->getDecl()); |
4176 | return nullptr; |
4177 | } |
4178 | |
4179 | bool Expr::refersToVectorElement() const { |
4180 | // FIXME: Why do we not just look at the ObjectKind here? |
4181 | const Expr *E = this->IgnoreParens(); |
4182 | |
4183 | while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
4184 | if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp) |
4185 | E = ICE->getSubExpr()->IgnoreParens(); |
4186 | else |
4187 | break; |
4188 | } |
4189 | |
4190 | if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Val: E)) |
4191 | return ASE->getBase()->getType()->isVectorType(); |
4192 | |
4193 | if (isa<ExtVectorElementExpr>(Val: E)) |
4194 | return true; |
4195 | |
4196 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
4197 | if (auto *BD = dyn_cast<BindingDecl>(Val: DRE->getDecl())) |
4198 | if (auto *E = BD->getBinding()) |
4199 | return E->refersToVectorElement(); |
4200 | |
4201 | return false; |
4202 | } |
4203 | |
4204 | bool Expr::refersToGlobalRegisterVar() const { |
4205 | const Expr *E = this->IgnoreParenImpCasts(); |
4206 | |
4207 | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
4208 | if (const auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl())) |
4209 | if (VD->getStorageClass() == SC_Register && |
4210 | VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl()) |
4211 | return true; |
4212 | |
4213 | return false; |
4214 | } |
4215 | |
4216 | bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) { |
4217 | E1 = E1->IgnoreParens(); |
4218 | E2 = E2->IgnoreParens(); |
4219 | |
4220 | if (E1->getStmtClass() != E2->getStmtClass()) |
4221 | return false; |
4222 | |
4223 | switch (E1->getStmtClass()) { |
4224 | default: |
4225 | return false; |
4226 | case CXXThisExprClass: |
4227 | return true; |
4228 | case DeclRefExprClass: { |
4229 | // DeclRefExpr without an ImplicitCastExpr can happen for integral |
4230 | // template parameters. |
4231 | const auto *DRE1 = cast<DeclRefExpr>(Val: E1); |
4232 | const auto *DRE2 = cast<DeclRefExpr>(Val: E2); |
4233 | return DRE1->isPRValue() && DRE2->isPRValue() && |
4234 | DRE1->getDecl() == DRE2->getDecl(); |
4235 | } |
4236 | case ImplicitCastExprClass: { |
4237 | // Peel off implicit casts. |
4238 | while (true) { |
4239 | const auto *ICE1 = dyn_cast<ImplicitCastExpr>(Val: E1); |
4240 | const auto *ICE2 = dyn_cast<ImplicitCastExpr>(Val: E2); |
4241 | if (!ICE1 || !ICE2) |
4242 | return false; |
4243 | if (ICE1->getCastKind() != ICE2->getCastKind()) |
4244 | return false; |
4245 | E1 = ICE1->getSubExpr()->IgnoreParens(); |
4246 | E2 = ICE2->getSubExpr()->IgnoreParens(); |
4247 | // The final cast must be one of these types. |
4248 | if (ICE1->getCastKind() == CK_LValueToRValue || |
4249 | ICE1->getCastKind() == CK_ArrayToPointerDecay || |
4250 | ICE1->getCastKind() == CK_FunctionToPointerDecay) { |
4251 | break; |
4252 | } |
4253 | } |
4254 | |
4255 | const auto *DRE1 = dyn_cast<DeclRefExpr>(Val: E1); |
4256 | const auto *DRE2 = dyn_cast<DeclRefExpr>(Val: E2); |
4257 | if (DRE1 && DRE2) |
4258 | return declaresSameEntity(D1: DRE1->getDecl(), D2: DRE2->getDecl()); |
4259 | |
4260 | const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(Val: E1); |
4261 | const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(Val: E2); |
4262 | if (Ivar1 && Ivar2) { |
4263 | return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() && |
4264 | declaresSameEntity(D1: Ivar1->getDecl(), D2: Ivar2->getDecl()); |
4265 | } |
4266 | |
4267 | const auto *Array1 = dyn_cast<ArraySubscriptExpr>(Val: E1); |
4268 | const auto *Array2 = dyn_cast<ArraySubscriptExpr>(Val: E2); |
4269 | if (Array1 && Array2) { |
4270 | if (!isSameComparisonOperand(E1: Array1->getBase(), E2: Array2->getBase())) |
4271 | return false; |
4272 | |
4273 | auto Idx1 = Array1->getIdx(); |
4274 | auto Idx2 = Array2->getIdx(); |
4275 | const auto Integer1 = dyn_cast<IntegerLiteral>(Val: Idx1); |
4276 | const auto Integer2 = dyn_cast<IntegerLiteral>(Val: Idx2); |
4277 | if (Integer1 && Integer2) { |
4278 | if (!llvm::APInt::isSameValue(I1: Integer1->getValue(), |
4279 | I2: Integer2->getValue())) |
4280 | return false; |
4281 | } else { |
4282 | if (!isSameComparisonOperand(E1: Idx1, E2: Idx2)) |
4283 | return false; |
4284 | } |
4285 | |
4286 | return true; |
4287 | } |
4288 | |
4289 | // Walk the MemberExpr chain. |
4290 | while (isa<MemberExpr>(Val: E1) && isa<MemberExpr>(Val: E2)) { |
4291 | const auto *ME1 = cast<MemberExpr>(Val: E1); |
4292 | const auto *ME2 = cast<MemberExpr>(Val: E2); |
4293 | if (!declaresSameEntity(D1: ME1->getMemberDecl(), D2: ME2->getMemberDecl())) |
4294 | return false; |
4295 | if (const auto *D = dyn_cast<VarDecl>(Val: ME1->getMemberDecl())) |
4296 | if (D->isStaticDataMember()) |
4297 | return true; |
4298 | E1 = ME1->getBase()->IgnoreParenImpCasts(); |
4299 | E2 = ME2->getBase()->IgnoreParenImpCasts(); |
4300 | } |
4301 | |
4302 | if (isa<CXXThisExpr>(Val: E1) && isa<CXXThisExpr>(Val: E2)) |
4303 | return true; |
4304 | |
4305 | // A static member variable can end the MemberExpr chain with either |
4306 | // a MemberExpr or a DeclRefExpr. |
4307 | auto getAnyDecl = [](const Expr *E) -> const ValueDecl * { |
4308 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
4309 | return DRE->getDecl(); |
4310 | if (const auto *ME = dyn_cast<MemberExpr>(Val: E)) |
4311 | return ME->getMemberDecl(); |
4312 | return nullptr; |
4313 | }; |
4314 | |
4315 | const ValueDecl *VD1 = getAnyDecl(E1); |
4316 | const ValueDecl *VD2 = getAnyDecl(E2); |
4317 | return declaresSameEntity(D1: VD1, D2: VD2); |
4318 | } |
4319 | } |
4320 | } |
4321 | |
4322 | /// isArrow - Return true if the base expression is a pointer to vector, |
4323 | /// return false if the base expression is a vector. |
4324 | bool ExtVectorElementExpr::isArrow() const { |
4325 | return getBase()->getType()->isPointerType(); |
4326 | } |
4327 | |
4328 | unsigned ExtVectorElementExpr::getNumElements() const { |
4329 | if (const VectorType *VT = getType()->getAs<VectorType>()) |
4330 | return VT->getNumElements(); |
4331 | return 1; |
4332 | } |
4333 | |
4334 | /// containsDuplicateElements - Return true if any element access is repeated. |
4335 | bool ExtVectorElementExpr::containsDuplicateElements() const { |
4336 | // FIXME: Refactor this code to an accessor on the AST node which returns the |
4337 | // "type" of component access, and share with code below and in Sema. |
4338 | StringRef Comp = Accessor->getName(); |
4339 | |
4340 | // Halving swizzles do not contain duplicate elements. |
4341 | if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd" ) |
4342 | return false; |
4343 | |
4344 | // Advance past s-char prefix on hex swizzles. |
4345 | if (Comp[0] == 's' || Comp[0] == 'S') |
4346 | Comp = Comp.substr(Start: 1); |
4347 | |
4348 | for (unsigned i = 0, e = Comp.size(); i != e; ++i) |
4349 | if (Comp.substr(Start: i + 1).contains(C: Comp[i])) |
4350 | return true; |
4351 | |
4352 | return false; |
4353 | } |
4354 | |
4355 | /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray. |
4356 | void ExtVectorElementExpr::getEncodedElementAccess( |
4357 | SmallVectorImpl<uint32_t> &Elts) const { |
4358 | StringRef Comp = Accessor->getName(); |
4359 | bool isNumericAccessor = false; |
4360 | if (Comp[0] == 's' || Comp[0] == 'S') { |
4361 | Comp = Comp.substr(Start: 1); |
4362 | isNumericAccessor = true; |
4363 | } |
4364 | |
4365 | bool isHi = Comp == "hi" ; |
4366 | bool isLo = Comp == "lo" ; |
4367 | bool isEven = Comp == "even" ; |
4368 | bool isOdd = Comp == "odd" ; |
4369 | |
4370 | for (unsigned i = 0, e = getNumElements(); i != e; ++i) { |
4371 | uint64_t Index; |
4372 | |
4373 | if (isHi) |
4374 | Index = e + i; |
4375 | else if (isLo) |
4376 | Index = i; |
4377 | else if (isEven) |
4378 | Index = 2 * i; |
4379 | else if (isOdd) |
4380 | Index = 2 * i + 1; |
4381 | else |
4382 | Index = ExtVectorType::getAccessorIdx(c: Comp[i], isNumericAccessor); |
4383 | |
4384 | Elts.push_back(Elt: Index); |
4385 | } |
4386 | } |
4387 | |
4388 | ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args, |
4389 | QualType Type, SourceLocation BLoc, |
4390 | SourceLocation RP) |
4391 | : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary), |
4392 | BuiltinLoc(BLoc), RParenLoc(RP) { |
4393 | ShuffleVectorExprBits.NumExprs = args.size(); |
4394 | SubExprs = new (C) Stmt*[args.size()]; |
4395 | for (unsigned i = 0; i != args.size(); i++) |
4396 | SubExprs[i] = args[i]; |
4397 | |
4398 | setDependence(computeDependence(E: this)); |
4399 | } |
4400 | |
4401 | void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) { |
4402 | if (SubExprs) C.Deallocate(Ptr: SubExprs); |
4403 | |
4404 | this->ShuffleVectorExprBits.NumExprs = Exprs.size(); |
4405 | SubExprs = new (C) Stmt *[ShuffleVectorExprBits.NumExprs]; |
4406 | llvm::copy(Range&: Exprs, Out: SubExprs); |
4407 | } |
4408 | |
4409 | GenericSelectionExpr::GenericSelectionExpr( |
4410 | const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr, |
4411 | ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, |
4412 | SourceLocation DefaultLoc, SourceLocation RParenLoc, |
4413 | bool ContainsUnexpandedParameterPack, unsigned ResultIndex) |
4414 | : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), |
4415 | AssocExprs[ResultIndex]->getValueKind(), |
4416 | AssocExprs[ResultIndex]->getObjectKind()), |
4417 | NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), |
4418 | IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { |
4419 | assert(AssocTypes.size() == AssocExprs.size() && |
4420 | "Must have the same number of association expressions" |
4421 | " and TypeSourceInfo!" ); |
4422 | assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!" ); |
4423 | |
4424 | GenericSelectionExprBits.GenericLoc = GenericLoc; |
4425 | getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] = |
4426 | ControllingExpr; |
4427 | llvm::copy(Range&: AssocExprs, |
4428 | Out: getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); |
4429 | llvm::copy(Range&: AssocTypes, Out: getTrailingObjects<TypeSourceInfo *>() + |
4430 | getIndexOfStartOfAssociatedTypes()); |
4431 | |
4432 | setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack)); |
4433 | } |
4434 | |
4435 | GenericSelectionExpr::GenericSelectionExpr( |
4436 | const ASTContext &, SourceLocation GenericLoc, |
4437 | TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, |
4438 | ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, |
4439 | SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, |
4440 | unsigned ResultIndex) |
4441 | : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(), |
4442 | AssocExprs[ResultIndex]->getValueKind(), |
4443 | AssocExprs[ResultIndex]->getObjectKind()), |
4444 | NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex), |
4445 | IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { |
4446 | assert(AssocTypes.size() == AssocExprs.size() && |
4447 | "Must have the same number of association expressions" |
4448 | " and TypeSourceInfo!" ); |
4449 | assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!" ); |
4450 | |
4451 | GenericSelectionExprBits.GenericLoc = GenericLoc; |
4452 | getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] = |
4453 | ControllingType; |
4454 | llvm::copy(Range&: AssocExprs, |
4455 | Out: getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); |
4456 | llvm::copy(Range&: AssocTypes, Out: getTrailingObjects<TypeSourceInfo *>() + |
4457 | getIndexOfStartOfAssociatedTypes()); |
4458 | |
4459 | setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack)); |
4460 | } |
4461 | |
4462 | GenericSelectionExpr::GenericSelectionExpr( |
4463 | const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, |
4464 | ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, |
4465 | SourceLocation DefaultLoc, SourceLocation RParenLoc, |
4466 | bool ContainsUnexpandedParameterPack) |
4467 | : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, |
4468 | OK_Ordinary), |
4469 | NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), |
4470 | IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { |
4471 | assert(AssocTypes.size() == AssocExprs.size() && |
4472 | "Must have the same number of association expressions" |
4473 | " and TypeSourceInfo!" ); |
4474 | |
4475 | GenericSelectionExprBits.GenericLoc = GenericLoc; |
4476 | getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] = |
4477 | ControllingExpr; |
4478 | llvm::copy(Range&: AssocExprs, |
4479 | Out: getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); |
4480 | llvm::copy(Range&: AssocTypes, Out: getTrailingObjects<TypeSourceInfo *>() + |
4481 | getIndexOfStartOfAssociatedTypes()); |
4482 | |
4483 | setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack)); |
4484 | } |
4485 | |
4486 | GenericSelectionExpr::GenericSelectionExpr( |
4487 | const ASTContext &Context, SourceLocation GenericLoc, |
4488 | TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, |
4489 | ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, |
4490 | SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) |
4491 | : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue, |
4492 | OK_Ordinary), |
4493 | NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex), |
4494 | IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) { |
4495 | assert(AssocTypes.size() == AssocExprs.size() && |
4496 | "Must have the same number of association expressions" |
4497 | " and TypeSourceInfo!" ); |
4498 | |
4499 | GenericSelectionExprBits.GenericLoc = GenericLoc; |
4500 | getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] = |
4501 | ControllingType; |
4502 | llvm::copy(Range&: AssocExprs, |
4503 | Out: getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs()); |
4504 | llvm::copy(Range&: AssocTypes, Out: getTrailingObjects<TypeSourceInfo *>() + |
4505 | getIndexOfStartOfAssociatedTypes()); |
4506 | |
4507 | setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack)); |
4508 | } |
4509 | |
4510 | GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs) |
4511 | : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {} |
4512 | |
4513 | GenericSelectionExpr *GenericSelectionExpr::Create( |
4514 | const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, |
4515 | ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, |
4516 | SourceLocation DefaultLoc, SourceLocation RParenLoc, |
4517 | bool ContainsUnexpandedParameterPack, unsigned ResultIndex) { |
4518 | unsigned NumAssocs = AssocExprs.size(); |
4519 | void *Mem = Context.Allocate( |
4520 | Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs), |
4521 | Align: alignof(GenericSelectionExpr)); |
4522 | return new (Mem) GenericSelectionExpr( |
4523 | Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, |
4524 | RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); |
4525 | } |
4526 | |
4527 | GenericSelectionExpr *GenericSelectionExpr::Create( |
4528 | const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr, |
4529 | ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs, |
4530 | SourceLocation DefaultLoc, SourceLocation RParenLoc, |
4531 | bool ContainsUnexpandedParameterPack) { |
4532 | unsigned NumAssocs = AssocExprs.size(); |
4533 | void *Mem = Context.Allocate( |
4534 | Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs), |
4535 | Align: alignof(GenericSelectionExpr)); |
4536 | return new (Mem) GenericSelectionExpr( |
4537 | Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc, |
4538 | RParenLoc, ContainsUnexpandedParameterPack); |
4539 | } |
4540 | |
4541 | GenericSelectionExpr *GenericSelectionExpr::Create( |
4542 | const ASTContext &Context, SourceLocation GenericLoc, |
4543 | TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, |
4544 | ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, |
4545 | SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack, |
4546 | unsigned ResultIndex) { |
4547 | unsigned NumAssocs = AssocExprs.size(); |
4548 | void *Mem = Context.Allocate( |
4549 | Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs), |
4550 | Align: alignof(GenericSelectionExpr)); |
4551 | return new (Mem) GenericSelectionExpr( |
4552 | Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc, |
4553 | RParenLoc, ContainsUnexpandedParameterPack, ResultIndex); |
4554 | } |
4555 | |
4556 | GenericSelectionExpr *GenericSelectionExpr::Create( |
4557 | const ASTContext &Context, SourceLocation GenericLoc, |
4558 | TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes, |
4559 | ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc, |
4560 | SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) { |
4561 | unsigned NumAssocs = AssocExprs.size(); |
4562 | void *Mem = Context.Allocate( |
4563 | Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs), |
4564 | Align: alignof(GenericSelectionExpr)); |
4565 | return new (Mem) GenericSelectionExpr( |
4566 | Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc, |
4567 | RParenLoc, ContainsUnexpandedParameterPack); |
4568 | } |
4569 | |
4570 | GenericSelectionExpr * |
4571 | GenericSelectionExpr::CreateEmpty(const ASTContext &Context, |
4572 | unsigned NumAssocs) { |
4573 | void *Mem = Context.Allocate( |
4574 | Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs), |
4575 | Align: alignof(GenericSelectionExpr)); |
4576 | return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs); |
4577 | } |
4578 | |
4579 | //===----------------------------------------------------------------------===// |
4580 | // DesignatedInitExpr |
4581 | //===----------------------------------------------------------------------===// |
4582 | |
4583 | const IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const { |
4584 | assert(isFieldDesignator() && "Only valid on a field designator" ); |
4585 | if (FieldInfo.NameOrField & 0x01) |
4586 | return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01); |
4587 | return getFieldDecl()->getIdentifier(); |
4588 | } |
4589 | |
4590 | DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty, |
4591 | ArrayRef<Designator> Designators, |
4592 | SourceLocation EqualOrColonLoc, |
4593 | bool GNUSyntax, |
4594 | ArrayRef<Expr *> IndexExprs, Expr *Init) |
4595 | : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(), |
4596 | Init->getObjectKind()), |
4597 | EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax), |
4598 | NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) { |
4599 | this->Designators = new (C) Designator[NumDesignators]; |
4600 | |
4601 | // Record the initializer itself. |
4602 | child_iterator Child = child_begin(); |
4603 | *Child++ = Init; |
4604 | |
4605 | // Copy the designators and their subexpressions, computing |
4606 | // value-dependence along the way. |
4607 | unsigned IndexIdx = 0; |
4608 | for (unsigned I = 0; I != NumDesignators; ++I) { |
4609 | this->Designators[I] = Designators[I]; |
4610 | if (this->Designators[I].isArrayDesignator()) { |
4611 | // Copy the index expressions into permanent storage. |
4612 | *Child++ = IndexExprs[IndexIdx++]; |
4613 | } else if (this->Designators[I].isArrayRangeDesignator()) { |
4614 | // Copy the start/end expressions into permanent storage. |
4615 | *Child++ = IndexExprs[IndexIdx++]; |
4616 | *Child++ = IndexExprs[IndexIdx++]; |
4617 | } |
4618 | } |
4619 | |
4620 | assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions" ); |
4621 | setDependence(computeDependence(E: this)); |
4622 | } |
4623 | |
4624 | DesignatedInitExpr *DesignatedInitExpr::Create(const ASTContext &C, |
4625 | ArrayRef<Designator> Designators, |
4626 | ArrayRef<Expr *> IndexExprs, |
4627 | SourceLocation ColonOrEqualLoc, |
4628 | bool UsesColonSyntax, |
4629 | Expr *Init) { |
4630 | void *Mem = C.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: IndexExprs.size() + 1), |
4631 | Align: alignof(DesignatedInitExpr)); |
4632 | return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators, |
4633 | ColonOrEqualLoc, UsesColonSyntax, |
4634 | IndexExprs, Init); |
4635 | } |
4636 | |
4637 | DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C, |
4638 | unsigned NumIndexExprs) { |
4639 | void *Mem = C.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: NumIndexExprs + 1), |
4640 | Align: alignof(DesignatedInitExpr)); |
4641 | return new (Mem) DesignatedInitExpr(NumIndexExprs + 1); |
4642 | } |
4643 | |
4644 | void DesignatedInitExpr::setDesignators(const ASTContext &C, |
4645 | const Designator *Desigs, |
4646 | unsigned NumDesigs) { |
4647 | Designators = new (C) Designator[NumDesigs]; |
4648 | NumDesignators = NumDesigs; |
4649 | for (unsigned I = 0; I != NumDesigs; ++I) |
4650 | Designators[I] = Desigs[I]; |
4651 | } |
4652 | |
4653 | SourceRange DesignatedInitExpr::() const { |
4654 | DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this); |
4655 | if (size() == 1) |
4656 | return DIE->getDesignator(Idx: 0)->getSourceRange(); |
4657 | return SourceRange(DIE->getDesignator(Idx: 0)->getBeginLoc(), |
4658 | DIE->getDesignator(Idx: size() - 1)->getEndLoc()); |
4659 | } |
4660 | |
4661 | SourceLocation DesignatedInitExpr::getBeginLoc() const { |
4662 | auto *DIE = const_cast<DesignatedInitExpr *>(this); |
4663 | Designator &First = *DIE->getDesignator(Idx: 0); |
4664 | if (First.isFieldDesignator()) { |
4665 | // Skip past implicit designators for anonymous structs/unions, since |
4666 | // these do not have valid source locations. |
4667 | for (unsigned int i = 0; i < DIE->size(); i++) { |
4668 | Designator &Des = *DIE->getDesignator(Idx: i); |
4669 | SourceLocation retval = GNUSyntax ? Des.getFieldLoc() : Des.getDotLoc(); |
4670 | if (!retval.isValid()) |
4671 | continue; |
4672 | return retval; |
4673 | } |
4674 | } |
4675 | return First.getLBracketLoc(); |
4676 | } |
4677 | |
4678 | SourceLocation DesignatedInitExpr::getEndLoc() const { |
4679 | return getInit()->getEndLoc(); |
4680 | } |
4681 | |
4682 | Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const { |
4683 | assert(D.isArrayDesignator() && "Requires array designator" ); |
4684 | return getSubExpr(Idx: D.getArrayIndex() + 1); |
4685 | } |
4686 | |
4687 | Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const { |
4688 | assert(D.isArrayRangeDesignator() && "Requires array range designator" ); |
4689 | return getSubExpr(Idx: D.getArrayIndex() + 1); |
4690 | } |
4691 | |
4692 | Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const { |
4693 | assert(D.isArrayRangeDesignator() && "Requires array range designator" ); |
4694 | return getSubExpr(Idx: D.getArrayIndex() + 2); |
4695 | } |
4696 | |
4697 | /// Replaces the designator at index @p Idx with the series |
4698 | /// of designators in [First, Last). |
4699 | void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx, |
4700 | const Designator *First, |
4701 | const Designator *Last) { |
4702 | unsigned NumNewDesignators = Last - First; |
4703 | if (NumNewDesignators == 0) { |
4704 | std::copy_backward(first: Designators + Idx + 1, |
4705 | last: Designators + NumDesignators, |
4706 | result: Designators + Idx); |
4707 | --NumNewDesignators; |
4708 | return; |
4709 | } |
4710 | if (NumNewDesignators == 1) { |
4711 | Designators[Idx] = *First; |
4712 | return; |
4713 | } |
4714 | |
4715 | Designator *NewDesignators |
4716 | = new (C) Designator[NumDesignators - 1 + NumNewDesignators]; |
4717 | std::copy(first: Designators, last: Designators + Idx, result: NewDesignators); |
4718 | std::copy(first: First, last: Last, result: NewDesignators + Idx); |
4719 | std::copy(first: Designators + Idx + 1, last: Designators + NumDesignators, |
4720 | result: NewDesignators + Idx + NumNewDesignators); |
4721 | Designators = NewDesignators; |
4722 | NumDesignators = NumDesignators - 1 + NumNewDesignators; |
4723 | } |
4724 | |
4725 | DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C, |
4726 | SourceLocation lBraceLoc, |
4727 | Expr *baseExpr, |
4728 | SourceLocation rBraceLoc) |
4729 | : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue, |
4730 | OK_Ordinary) { |
4731 | BaseAndUpdaterExprs[0] = baseExpr; |
4732 | |
4733 | InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, {}, rBraceLoc); |
4734 | ILE->setType(baseExpr->getType()); |
4735 | BaseAndUpdaterExprs[1] = ILE; |
4736 | |
4737 | // FIXME: this is wrong, set it correctly. |
4738 | setDependence(ExprDependence::None); |
4739 | } |
4740 | |
4741 | SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const { |
4742 | return getBase()->getBeginLoc(); |
4743 | } |
4744 | |
4745 | SourceLocation DesignatedInitUpdateExpr::getEndLoc() const { |
4746 | return getBase()->getEndLoc(); |
4747 | } |
4748 | |
4749 | ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs, |
4750 | SourceLocation RParenLoc) |
4751 | : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary), |
4752 | LParenLoc(LParenLoc), RParenLoc(RParenLoc) { |
4753 | ParenListExprBits.NumExprs = Exprs.size(); |
4754 | llvm::copy(Range&: Exprs, Out: getTrailingObjects()); |
4755 | setDependence(computeDependence(E: this)); |
4756 | } |
4757 | |
4758 | ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs) |
4759 | : Expr(ParenListExprClass, Empty) { |
4760 | ParenListExprBits.NumExprs = NumExprs; |
4761 | } |
4762 | |
4763 | ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx, |
4764 | SourceLocation LParenLoc, |
4765 | ArrayRef<Expr *> Exprs, |
4766 | SourceLocation RParenLoc) { |
4767 | void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: Exprs.size()), |
4768 | Align: alignof(ParenListExpr)); |
4769 | return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc); |
4770 | } |
4771 | |
4772 | ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx, |
4773 | unsigned NumExprs) { |
4774 | void *Mem = |
4775 | Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: NumExprs), Align: alignof(ParenListExpr)); |
4776 | return new (Mem) ParenListExpr(EmptyShell(), NumExprs); |
4777 | } |
4778 | |
4779 | /// Certain overflow-dependent code patterns can have their integer overflow |
4780 | /// sanitization disabled. Check for the common pattern `if (a + b < a)` and |
4781 | /// return the resulting BinaryOperator responsible for the addition so we can |
4782 | /// elide overflow checks during codegen. |
4783 | static std::optional<BinaryOperator *> |
4784 | getOverflowPatternBinOp(const BinaryOperator *E) { |
4785 | Expr *Addition, *ComparedTo; |
4786 | if (E->getOpcode() == BO_LT) { |
4787 | Addition = E->getLHS(); |
4788 | ComparedTo = E->getRHS(); |
4789 | } else if (E->getOpcode() == BO_GT) { |
4790 | Addition = E->getRHS(); |
4791 | ComparedTo = E->getLHS(); |
4792 | } else { |
4793 | return {}; |
4794 | } |
4795 | |
4796 | const Expr *AddLHS = nullptr, *AddRHS = nullptr; |
4797 | BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: Addition); |
4798 | |
4799 | if (BO && BO->getOpcode() == clang::BO_Add) { |
4800 | // now store addends for lookup on other side of '>' |
4801 | AddLHS = BO->getLHS(); |
4802 | AddRHS = BO->getRHS(); |
4803 | } |
4804 | |
4805 | if (!AddLHS || !AddRHS) |
4806 | return {}; |
4807 | |
4808 | const Decl *LHSDecl, *RHSDecl, *OtherDecl; |
4809 | |
4810 | LHSDecl = AddLHS->IgnoreParenImpCasts()->getReferencedDeclOfCallee(); |
4811 | RHSDecl = AddRHS->IgnoreParenImpCasts()->getReferencedDeclOfCallee(); |
4812 | OtherDecl = ComparedTo->IgnoreParenImpCasts()->getReferencedDeclOfCallee(); |
4813 | |
4814 | if (!OtherDecl) |
4815 | return {}; |
4816 | |
4817 | if (!LHSDecl && !RHSDecl) |
4818 | return {}; |
4819 | |
4820 | if ((LHSDecl && LHSDecl == OtherDecl && LHSDecl != RHSDecl) || |
4821 | (RHSDecl && RHSDecl == OtherDecl && RHSDecl != LHSDecl)) |
4822 | return BO; |
4823 | return {}; |
4824 | } |
4825 | |
4826 | /// Compute and set the OverflowPatternExclusion bit based on whether the |
4827 | /// BinaryOperator expression matches an overflow pattern being ignored by |
4828 | /// -fsanitize-undefined-ignore-overflow-pattern=add-signed-overflow-test or |
4829 | /// -fsanitize-undefined-ignore-overflow-pattern=add-unsigned-overflow-test |
4830 | static void computeOverflowPatternExclusion(const ASTContext &Ctx, |
4831 | const BinaryOperator *E) { |
4832 | std::optional<BinaryOperator *> Result = getOverflowPatternBinOp(E); |
4833 | if (!Result.has_value()) |
4834 | return; |
4835 | QualType AdditionResultType = Result.value()->getType(); |
4836 | |
4837 | if ((AdditionResultType->isSignedIntegerType() && |
4838 | Ctx.getLangOpts().isOverflowPatternExcluded( |
4839 | Kind: LangOptions::OverflowPatternExclusionKind::AddSignedOverflowTest)) || |
4840 | (AdditionResultType->isUnsignedIntegerType() && |
4841 | Ctx.getLangOpts().isOverflowPatternExcluded( |
4842 | Kind: LangOptions::OverflowPatternExclusionKind::AddUnsignedOverflowTest))) |
4843 | Result.value()->setExcludedOverflowPattern(true); |
4844 | } |
4845 | |
4846 | BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, |
4847 | Opcode opc, QualType ResTy, ExprValueKind VK, |
4848 | ExprObjectKind OK, SourceLocation opLoc, |
4849 | FPOptionsOverride FPFeatures) |
4850 | : Expr(BinaryOperatorClass, ResTy, VK, OK) { |
4851 | BinaryOperatorBits.Opc = opc; |
4852 | assert(!isCompoundAssignmentOp() && |
4853 | "Use CompoundAssignOperator for compound assignments" ); |
4854 | BinaryOperatorBits.OpLoc = opLoc; |
4855 | BinaryOperatorBits.ExcludedOverflowPattern = false; |
4856 | SubExprs[LHS] = lhs; |
4857 | SubExprs[RHS] = rhs; |
4858 | computeOverflowPatternExclusion(Ctx, E: this); |
4859 | BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); |
4860 | if (hasStoredFPFeatures()) |
4861 | setStoredFPFeatures(FPFeatures); |
4862 | setDependence(computeDependence(E: this)); |
4863 | } |
4864 | |
4865 | BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs, |
4866 | Opcode opc, QualType ResTy, ExprValueKind VK, |
4867 | ExprObjectKind OK, SourceLocation opLoc, |
4868 | FPOptionsOverride FPFeatures, bool dead2) |
4869 | : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) { |
4870 | BinaryOperatorBits.Opc = opc; |
4871 | BinaryOperatorBits.ExcludedOverflowPattern = false; |
4872 | assert(isCompoundAssignmentOp() && |
4873 | "Use CompoundAssignOperator for compound assignments" ); |
4874 | BinaryOperatorBits.OpLoc = opLoc; |
4875 | SubExprs[LHS] = lhs; |
4876 | SubExprs[RHS] = rhs; |
4877 | BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); |
4878 | if (hasStoredFPFeatures()) |
4879 | setStoredFPFeatures(FPFeatures); |
4880 | setDependence(computeDependence(E: this)); |
4881 | } |
4882 | |
4883 | BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C, |
4884 | bool HasFPFeatures) { |
4885 | unsigned = sizeOfTrailingObjects(HasFPFeatures); |
4886 | void *Mem = |
4887 | C.Allocate(Size: sizeof(BinaryOperator) + Extra, Align: alignof(BinaryOperator)); |
4888 | return new (Mem) BinaryOperator(EmptyShell()); |
4889 | } |
4890 | |
4891 | BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs, |
4892 | Expr *rhs, Opcode opc, QualType ResTy, |
4893 | ExprValueKind VK, ExprObjectKind OK, |
4894 | SourceLocation opLoc, |
4895 | FPOptionsOverride FPFeatures) { |
4896 | bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); |
4897 | unsigned = sizeOfTrailingObjects(HasFPFeatures); |
4898 | void *Mem = |
4899 | C.Allocate(Size: sizeof(BinaryOperator) + Extra, Align: alignof(BinaryOperator)); |
4900 | return new (Mem) |
4901 | BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures); |
4902 | } |
4903 | |
4904 | CompoundAssignOperator * |
4905 | CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) { |
4906 | unsigned = sizeOfTrailingObjects(HasFPFeatures); |
4907 | void *Mem = C.Allocate(Size: sizeof(CompoundAssignOperator) + Extra, |
4908 | Align: alignof(CompoundAssignOperator)); |
4909 | return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures); |
4910 | } |
4911 | |
4912 | CompoundAssignOperator * |
4913 | CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs, |
4914 | Opcode opc, QualType ResTy, ExprValueKind VK, |
4915 | ExprObjectKind OK, SourceLocation opLoc, |
4916 | FPOptionsOverride FPFeatures, |
4917 | QualType CompLHSType, QualType CompResultType) { |
4918 | bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); |
4919 | unsigned = sizeOfTrailingObjects(HasFPFeatures); |
4920 | void *Mem = C.Allocate(Size: sizeof(CompoundAssignOperator) + Extra, |
4921 | Align: alignof(CompoundAssignOperator)); |
4922 | return new (Mem) |
4923 | CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures, |
4924 | CompLHSType, CompResultType); |
4925 | } |
4926 | |
4927 | UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C, |
4928 | bool hasFPFeatures) { |
4929 | void *Mem = C.Allocate(Size: totalSizeToAlloc<FPOptionsOverride>(Counts: hasFPFeatures), |
4930 | Align: alignof(UnaryOperator)); |
4931 | return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell()); |
4932 | } |
4933 | |
4934 | UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc, |
4935 | QualType type, ExprValueKind VK, ExprObjectKind OK, |
4936 | SourceLocation l, bool CanOverflow, |
4937 | FPOptionsOverride FPFeatures) |
4938 | : Expr(UnaryOperatorClass, type, VK, OK), Val(input) { |
4939 | UnaryOperatorBits.Opc = opc; |
4940 | UnaryOperatorBits.CanOverflow = CanOverflow; |
4941 | UnaryOperatorBits.Loc = l; |
4942 | UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage(); |
4943 | if (hasStoredFPFeatures()) |
4944 | setStoredFPFeatures(FPFeatures); |
4945 | setDependence(computeDependence(E: this, Ctx)); |
4946 | } |
4947 | |
4948 | UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input, |
4949 | Opcode opc, QualType type, |
4950 | ExprValueKind VK, ExprObjectKind OK, |
4951 | SourceLocation l, bool CanOverflow, |
4952 | FPOptionsOverride FPFeatures) { |
4953 | bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); |
4954 | unsigned Size = totalSizeToAlloc<FPOptionsOverride>(Counts: HasFPFeatures); |
4955 | void *Mem = C.Allocate(Size, Align: alignof(UnaryOperator)); |
4956 | return new (Mem) |
4957 | UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures); |
4958 | } |
4959 | |
4960 | const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) { |
4961 | if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(Val: e)) |
4962 | e = ewc->getSubExpr(); |
4963 | if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(Val: e)) |
4964 | e = m->getSubExpr(); |
4965 | e = cast<CXXConstructExpr>(Val: e)->getArg(Arg: 0); |
4966 | while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(Val: e)) |
4967 | e = ice->getSubExpr(); |
4968 | return cast<OpaqueValueExpr>(Val: e); |
4969 | } |
4970 | |
4971 | PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context, |
4972 | EmptyShell sh, |
4973 | unsigned numSemanticExprs) { |
4974 | void *buffer = |
4975 | Context.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: 1 + numSemanticExprs), |
4976 | Align: alignof(PseudoObjectExpr)); |
4977 | return new(buffer) PseudoObjectExpr(sh, numSemanticExprs); |
4978 | } |
4979 | |
4980 | PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs) |
4981 | : Expr(PseudoObjectExprClass, shell) { |
4982 | PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1; |
4983 | } |
4984 | |
4985 | PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax, |
4986 | ArrayRef<Expr*> semantics, |
4987 | unsigned resultIndex) { |
4988 | assert(syntax && "no syntactic expression!" ); |
4989 | assert(semantics.size() && "no semantic expressions!" ); |
4990 | |
4991 | QualType type; |
4992 | ExprValueKind VK; |
4993 | if (resultIndex == NoResult) { |
4994 | type = C.VoidTy; |
4995 | VK = VK_PRValue; |
4996 | } else { |
4997 | assert(resultIndex < semantics.size()); |
4998 | type = semantics[resultIndex]->getType(); |
4999 | VK = semantics[resultIndex]->getValueKind(); |
5000 | assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary); |
5001 | } |
5002 | |
5003 | void *buffer = C.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: semantics.size() + 1), |
5004 | Align: alignof(PseudoObjectExpr)); |
5005 | return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics, |
5006 | resultIndex); |
5007 | } |
5008 | |
5009 | PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK, |
5010 | Expr *syntax, ArrayRef<Expr *> semantics, |
5011 | unsigned resultIndex) |
5012 | : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) { |
5013 | PseudoObjectExprBits.NumSubExprs = semantics.size() + 1; |
5014 | PseudoObjectExprBits.ResultIndex = resultIndex + 1; |
5015 | MutableArrayRef<Expr *> Trail = getTrailingObjects(N: semantics.size() + 1); |
5016 | Trail[0] = syntax; |
5017 | |
5018 | assert(llvm::all_of(semantics, |
5019 | [](const Expr *E) { |
5020 | return !isa<OpaqueValueExpr>(E) || |
5021 | cast<OpaqueValueExpr>(E)->getSourceExpr() != |
5022 | nullptr; |
5023 | }) && |
5024 | "opaque-value semantic expressions for pseudo-object " |
5025 | "operations must have sources" ); |
5026 | |
5027 | llvm::copy(Range&: semantics, Out: Trail.drop_front().begin()); |
5028 | setDependence(computeDependence(E: this)); |
5029 | } |
5030 | |
5031 | //===----------------------------------------------------------------------===// |
5032 | // Child Iterators for iterating over subexpressions/substatements |
5033 | //===----------------------------------------------------------------------===// |
5034 | |
5035 | // UnaryExprOrTypeTraitExpr |
5036 | Stmt::child_range UnaryExprOrTypeTraitExpr::children() { |
5037 | const_child_range CCR = |
5038 | const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children(); |
5039 | return child_range(cast_away_const(RHS: CCR.begin()), cast_away_const(RHS: CCR.end())); |
5040 | } |
5041 | |
5042 | Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const { |
5043 | // If this is of a type and the type is a VLA type (and not a typedef), the |
5044 | // size expression of the VLA needs to be treated as an executable expression. |
5045 | // Why isn't this weirdness documented better in StmtIterator? |
5046 | if (isArgumentType()) { |
5047 | if (const VariableArrayType *T = |
5048 | dyn_cast<VariableArrayType>(Val: getArgumentType().getTypePtr())) |
5049 | return const_child_range(const_child_iterator(T), const_child_iterator()); |
5050 | return const_child_range(const_child_iterator(), const_child_iterator()); |
5051 | } |
5052 | return const_child_range(&Argument.Ex, &Argument.Ex + 1); |
5053 | } |
5054 | |
5055 | AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t, |
5056 | AtomicOp op, SourceLocation RP) |
5057 | : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary), |
5058 | NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) { |
5059 | assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions" ); |
5060 | for (unsigned i = 0; i != args.size(); i++) |
5061 | SubExprs[i] = args[i]; |
5062 | setDependence(computeDependence(E: this)); |
5063 | } |
5064 | |
5065 | unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) { |
5066 | switch (Op) { |
5067 | case AO__c11_atomic_init: |
5068 | case AO__opencl_atomic_init: |
5069 | case AO__c11_atomic_load: |
5070 | case AO__atomic_load_n: |
5071 | case AO__atomic_test_and_set: |
5072 | case AO__atomic_clear: |
5073 | return 2; |
5074 | |
5075 | case AO__scoped_atomic_load_n: |
5076 | case AO__opencl_atomic_load: |
5077 | case AO__hip_atomic_load: |
5078 | case AO__c11_atomic_store: |
5079 | case AO__c11_atomic_exchange: |
5080 | case AO__atomic_load: |
5081 | case AO__atomic_store: |
5082 | case AO__atomic_store_n: |
5083 | case AO__atomic_exchange_n: |
5084 | case AO__c11_atomic_fetch_add: |
5085 | case AO__c11_atomic_fetch_sub: |
5086 | case AO__c11_atomic_fetch_and: |
5087 | case AO__c11_atomic_fetch_or: |
5088 | case AO__c11_atomic_fetch_xor: |
5089 | case AO__c11_atomic_fetch_nand: |
5090 | case AO__c11_atomic_fetch_max: |
5091 | case AO__c11_atomic_fetch_min: |
5092 | case AO__atomic_fetch_add: |
5093 | case AO__atomic_fetch_sub: |
5094 | case AO__atomic_fetch_and: |
5095 | case AO__atomic_fetch_or: |
5096 | case AO__atomic_fetch_xor: |
5097 | case AO__atomic_fetch_nand: |
5098 | case AO__atomic_add_fetch: |
5099 | case AO__atomic_sub_fetch: |
5100 | case AO__atomic_and_fetch: |
5101 | case AO__atomic_or_fetch: |
5102 | case AO__atomic_xor_fetch: |
5103 | case AO__atomic_nand_fetch: |
5104 | case AO__atomic_min_fetch: |
5105 | case AO__atomic_max_fetch: |
5106 | case AO__atomic_fetch_min: |
5107 | case AO__atomic_fetch_max: |
5108 | return 3; |
5109 | |
5110 | case AO__scoped_atomic_load: |
5111 | case AO__scoped_atomic_store: |
5112 | case AO__scoped_atomic_store_n: |
5113 | case AO__scoped_atomic_fetch_add: |
5114 | case AO__scoped_atomic_fetch_sub: |
5115 | case AO__scoped_atomic_fetch_and: |
5116 | case AO__scoped_atomic_fetch_or: |
5117 | case AO__scoped_atomic_fetch_xor: |
5118 | case AO__scoped_atomic_fetch_nand: |
5119 | case AO__scoped_atomic_add_fetch: |
5120 | case AO__scoped_atomic_sub_fetch: |
5121 | case AO__scoped_atomic_and_fetch: |
5122 | case AO__scoped_atomic_or_fetch: |
5123 | case AO__scoped_atomic_xor_fetch: |
5124 | case AO__scoped_atomic_nand_fetch: |
5125 | case AO__scoped_atomic_min_fetch: |
5126 | case AO__scoped_atomic_max_fetch: |
5127 | case AO__scoped_atomic_fetch_min: |
5128 | case AO__scoped_atomic_fetch_max: |
5129 | case AO__scoped_atomic_exchange_n: |
5130 | case AO__hip_atomic_exchange: |
5131 | case AO__hip_atomic_fetch_add: |
5132 | case AO__hip_atomic_fetch_sub: |
5133 | case AO__hip_atomic_fetch_and: |
5134 | case AO__hip_atomic_fetch_or: |
5135 | case AO__hip_atomic_fetch_xor: |
5136 | case AO__hip_atomic_fetch_min: |
5137 | case AO__hip_atomic_fetch_max: |
5138 | case AO__opencl_atomic_store: |
5139 | case AO__hip_atomic_store: |
5140 | case AO__opencl_atomic_exchange: |
5141 | case AO__opencl_atomic_fetch_add: |
5142 | case AO__opencl_atomic_fetch_sub: |
5143 | case AO__opencl_atomic_fetch_and: |
5144 | case AO__opencl_atomic_fetch_or: |
5145 | case AO__opencl_atomic_fetch_xor: |
5146 | case AO__opencl_atomic_fetch_min: |
5147 | case AO__opencl_atomic_fetch_max: |
5148 | case AO__atomic_exchange: |
5149 | return 4; |
5150 | |
5151 | case AO__scoped_atomic_exchange: |
5152 | case AO__c11_atomic_compare_exchange_strong: |
5153 | case AO__c11_atomic_compare_exchange_weak: |
5154 | return 5; |
5155 | case AO__hip_atomic_compare_exchange_strong: |
5156 | case AO__opencl_atomic_compare_exchange_strong: |
5157 | case AO__opencl_atomic_compare_exchange_weak: |
5158 | case AO__hip_atomic_compare_exchange_weak: |
5159 | case AO__atomic_compare_exchange: |
5160 | case AO__atomic_compare_exchange_n: |
5161 | return 6; |
5162 | |
5163 | case AO__scoped_atomic_compare_exchange: |
5164 | case AO__scoped_atomic_compare_exchange_n: |
5165 | return 7; |
5166 | } |
5167 | llvm_unreachable("unknown atomic op" ); |
5168 | } |
5169 | |
5170 | QualType AtomicExpr::getValueType() const { |
5171 | auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType(); |
5172 | if (auto AT = T->getAs<AtomicType>()) |
5173 | return AT->getValueType(); |
5174 | return T; |
5175 | } |
5176 | |
5177 | QualType ArraySectionExpr::getBaseOriginalType(const Expr *Base) { |
5178 | unsigned ArraySectionCount = 0; |
5179 | while (auto *OASE = dyn_cast<ArraySectionExpr>(Val: Base->IgnoreParens())) { |
5180 | Base = OASE->getBase(); |
5181 | ++ArraySectionCount; |
5182 | } |
5183 | while (auto *ASE = |
5184 | dyn_cast<ArraySubscriptExpr>(Val: Base->IgnoreParenImpCasts())) { |
5185 | Base = ASE->getBase(); |
5186 | ++ArraySectionCount; |
5187 | } |
5188 | Base = Base->IgnoreParenImpCasts(); |
5189 | auto OriginalTy = Base->getType(); |
5190 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: Base)) |
5191 | if (auto *PVD = dyn_cast<ParmVarDecl>(Val: DRE->getDecl())) |
5192 | OriginalTy = PVD->getOriginalType().getNonReferenceType(); |
5193 | |
5194 | for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) { |
5195 | if (OriginalTy->isAnyPointerType()) |
5196 | OriginalTy = OriginalTy->getPointeeType(); |
5197 | else if (OriginalTy->isArrayType()) |
5198 | OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType(); |
5199 | else |
5200 | return {}; |
5201 | } |
5202 | return OriginalTy; |
5203 | } |
5204 | |
5205 | RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc, |
5206 | SourceLocation EndLoc, ArrayRef<Expr *> SubExprs) |
5207 | : Expr(RecoveryExprClass, T.getNonReferenceType(), |
5208 | T->isDependentType() ? VK_LValue : getValueKindForType(T), |
5209 | OK_Ordinary), |
5210 | BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) { |
5211 | assert(!T.isNull()); |
5212 | assert(!llvm::is_contained(SubExprs, nullptr)); |
5213 | |
5214 | llvm::copy(Range&: SubExprs, Out: getTrailingObjects()); |
5215 | setDependence(computeDependence(E: this)); |
5216 | } |
5217 | |
5218 | RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T, |
5219 | SourceLocation BeginLoc, |
5220 | SourceLocation EndLoc, |
5221 | ArrayRef<Expr *> SubExprs) { |
5222 | void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: SubExprs.size()), |
5223 | Align: alignof(RecoveryExpr)); |
5224 | return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs); |
5225 | } |
5226 | |
5227 | RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) { |
5228 | void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: NumSubExprs), |
5229 | Align: alignof(RecoveryExpr)); |
5230 | return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs); |
5231 | } |
5232 | |
5233 | void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) { |
5234 | assert( |
5235 | NumDims == Dims.size() && |
5236 | "Preallocated number of dimensions is different from the provided one." ); |
5237 | llvm::copy(Range&: Dims, Out: getTrailingObjects<Expr *>()); |
5238 | } |
5239 | |
5240 | void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) { |
5241 | assert( |
5242 | NumDims == BR.size() && |
5243 | "Preallocated number of dimensions is different from the provided one." ); |
5244 | llvm::copy(Range&: BR, Out: getTrailingObjects<SourceRange>()); |
5245 | } |
5246 | |
5247 | OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op, |
5248 | SourceLocation L, SourceLocation R, |
5249 | ArrayRef<Expr *> Dims) |
5250 | : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L), |
5251 | RPLoc(R), NumDims(Dims.size()) { |
5252 | setBase(Op); |
5253 | setDimensions(Dims); |
5254 | setDependence(computeDependence(E: this)); |
5255 | } |
5256 | |
5257 | OMPArrayShapingExpr * |
5258 | OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op, |
5259 | SourceLocation L, SourceLocation R, |
5260 | ArrayRef<Expr *> Dims, |
5261 | ArrayRef<SourceRange> BracketRanges) { |
5262 | assert(Dims.size() == BracketRanges.size() && |
5263 | "Different number of dimensions and brackets ranges." ); |
5264 | void *Mem = Context.Allocate( |
5265 | Size: totalSizeToAlloc<Expr *, SourceRange>(Counts: Dims.size() + 1, Counts: Dims.size()), |
5266 | Align: alignof(OMPArrayShapingExpr)); |
5267 | auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims); |
5268 | E->setBracketsRanges(BracketRanges); |
5269 | return E; |
5270 | } |
5271 | |
5272 | OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context, |
5273 | unsigned NumDims) { |
5274 | void *Mem = Context.Allocate( |
5275 | Size: totalSizeToAlloc<Expr *, SourceRange>(Counts: NumDims + 1, Counts: NumDims), |
5276 | Align: alignof(OMPArrayShapingExpr)); |
5277 | return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims); |
5278 | } |
5279 | |
5280 | void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) { |
5281 | getTrailingObjects<Decl *>(N: NumIterators)[I] = D; |
5282 | } |
5283 | |
5284 | void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) { |
5285 | assert(I < NumIterators && |
5286 | "Idx is greater or equal the number of iterators definitions." ); |
5287 | getTrailingObjects< |
5288 | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + |
5289 | static_cast<int>(RangeLocOffset::AssignLoc)] = Loc; |
5290 | } |
5291 | |
5292 | void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin, |
5293 | SourceLocation ColonLoc, Expr *End, |
5294 | SourceLocation SecondColonLoc, |
5295 | Expr *Step) { |
5296 | assert(I < NumIterators && |
5297 | "Idx is greater or equal the number of iterators definitions." ); |
5298 | getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + |
5299 | static_cast<int>(RangeExprOffset::Begin)] = |
5300 | Begin; |
5301 | getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + |
5302 | static_cast<int>(RangeExprOffset::End)] = End; |
5303 | getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) + |
5304 | static_cast<int>(RangeExprOffset::Step)] = Step; |
5305 | getTrailingObjects< |
5306 | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + |
5307 | static_cast<int>(RangeLocOffset::FirstColonLoc)] = |
5308 | ColonLoc; |
5309 | getTrailingObjects< |
5310 | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + |
5311 | static_cast<int>(RangeLocOffset::SecondColonLoc)] = |
5312 | SecondColonLoc; |
5313 | } |
5314 | |
5315 | Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) { |
5316 | return getTrailingObjects<Decl *>()[I]; |
5317 | } |
5318 | |
5319 | OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) { |
5320 | IteratorRange Res; |
5321 | Res.Begin = |
5322 | getTrailingObjects<Expr *>()[I * static_cast<int>( |
5323 | RangeExprOffset::Total) + |
5324 | static_cast<int>(RangeExprOffset::Begin)]; |
5325 | Res.End = |
5326 | getTrailingObjects<Expr *>()[I * static_cast<int>( |
5327 | RangeExprOffset::Total) + |
5328 | static_cast<int>(RangeExprOffset::End)]; |
5329 | Res.Step = |
5330 | getTrailingObjects<Expr *>()[I * static_cast<int>( |
5331 | RangeExprOffset::Total) + |
5332 | static_cast<int>(RangeExprOffset::Step)]; |
5333 | return Res; |
5334 | } |
5335 | |
5336 | SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const { |
5337 | return getTrailingObjects< |
5338 | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + |
5339 | static_cast<int>(RangeLocOffset::AssignLoc)]; |
5340 | } |
5341 | |
5342 | SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const { |
5343 | return getTrailingObjects< |
5344 | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + |
5345 | static_cast<int>(RangeLocOffset::FirstColonLoc)]; |
5346 | } |
5347 | |
5348 | SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const { |
5349 | return getTrailingObjects< |
5350 | SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) + |
5351 | static_cast<int>(RangeLocOffset::SecondColonLoc)]; |
5352 | } |
5353 | |
5354 | void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) { |
5355 | getTrailingObjects<OMPIteratorHelperData>()[I] = D; |
5356 | } |
5357 | |
5358 | OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) { |
5359 | return getTrailingObjects<OMPIteratorHelperData>()[I]; |
5360 | } |
5361 | |
5362 | const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const { |
5363 | return getTrailingObjects<OMPIteratorHelperData>()[I]; |
5364 | } |
5365 | |
5366 | OMPIteratorExpr::OMPIteratorExpr( |
5367 | QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L, |
5368 | SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, |
5369 | ArrayRef<OMPIteratorHelperData> Helpers) |
5370 | : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary), |
5371 | IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R), |
5372 | NumIterators(Data.size()) { |
5373 | for (unsigned I = 0, E = Data.size(); I < E; ++I) { |
5374 | const IteratorDefinition &D = Data[I]; |
5375 | setIteratorDeclaration(I, D: D.IteratorDecl); |
5376 | setAssignmentLoc(I, Loc: D.AssignmentLoc); |
5377 | setIteratorRange(I, Begin: D.Range.Begin, ColonLoc: D.ColonLoc, End: D.Range.End, |
5378 | SecondColonLoc: D.SecondColonLoc, Step: D.Range.Step); |
5379 | setHelper(I, D: Helpers[I]); |
5380 | } |
5381 | setDependence(computeDependence(E: this)); |
5382 | } |
5383 | |
5384 | OMPIteratorExpr * |
5385 | OMPIteratorExpr::Create(const ASTContext &Context, QualType T, |
5386 | SourceLocation IteratorKwLoc, SourceLocation L, |
5387 | SourceLocation R, |
5388 | ArrayRef<OMPIteratorExpr::IteratorDefinition> Data, |
5389 | ArrayRef<OMPIteratorHelperData> Helpers) { |
5390 | assert(Data.size() == Helpers.size() && |
5391 | "Data and helpers must have the same size." ); |
5392 | void *Mem = Context.Allocate( |
5393 | Size: totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( |
5394 | Counts: Data.size(), Counts: Data.size() * static_cast<int>(RangeExprOffset::Total), |
5395 | Counts: Data.size() * static_cast<int>(RangeLocOffset::Total), |
5396 | Counts: Helpers.size()), |
5397 | Align: alignof(OMPIteratorExpr)); |
5398 | return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers); |
5399 | } |
5400 | |
5401 | OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context, |
5402 | unsigned NumIterators) { |
5403 | void *Mem = Context.Allocate( |
5404 | Size: totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>( |
5405 | Counts: NumIterators, Counts: NumIterators * static_cast<int>(RangeExprOffset::Total), |
5406 | Counts: NumIterators * static_cast<int>(RangeLocOffset::Total), Counts: NumIterators), |
5407 | Align: alignof(OMPIteratorExpr)); |
5408 | return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators); |
5409 | } |
5410 | |
5411 | HLSLOutArgExpr *HLSLOutArgExpr::Create(const ASTContext &C, QualType Ty, |
5412 | OpaqueValueExpr *Base, |
5413 | OpaqueValueExpr *OpV, Expr *WB, |
5414 | bool IsInOut) { |
5415 | return new (C) HLSLOutArgExpr(Ty, Base, OpV, WB, IsInOut); |
5416 | } |
5417 | |
5418 | HLSLOutArgExpr *HLSLOutArgExpr::CreateEmpty(const ASTContext &C) { |
5419 | return new (C) HLSLOutArgExpr(EmptyShell()); |
5420 | } |
5421 | |
5422 | OpenACCAsteriskSizeExpr *OpenACCAsteriskSizeExpr::Create(const ASTContext &C, |
5423 | SourceLocation Loc) { |
5424 | return new (C) OpenACCAsteriskSizeExpr(Loc, C.IntTy); |
5425 | } |
5426 | |
5427 | OpenACCAsteriskSizeExpr * |
5428 | OpenACCAsteriskSizeExpr::CreateEmpty(const ASTContext &C) { |
5429 | return new (C) OpenACCAsteriskSizeExpr({}, C.IntTy); |
5430 | } |
5431 | |
5432 | ConvertVectorExpr *ConvertVectorExpr::CreateEmpty(const ASTContext &C, |
5433 | bool hasFPFeatures) { |
5434 | void *Mem = C.Allocate(Size: totalSizeToAlloc<FPOptionsOverride>(Counts: hasFPFeatures), |
5435 | Align: alignof(ConvertVectorExpr)); |
5436 | return new (Mem) ConvertVectorExpr(hasFPFeatures, EmptyShell()); |
5437 | } |
5438 | |
5439 | ConvertVectorExpr *ConvertVectorExpr::Create( |
5440 | const ASTContext &C, Expr *SrcExpr, TypeSourceInfo *TI, QualType DstType, |
5441 | ExprValueKind VK, ExprObjectKind OK, SourceLocation BuiltinLoc, |
5442 | SourceLocation RParenLoc, FPOptionsOverride FPFeatures) { |
5443 | bool HasFPFeatures = FPFeatures.requiresTrailingStorage(); |
5444 | unsigned Size = totalSizeToAlloc<FPOptionsOverride>(Counts: HasFPFeatures); |
5445 | void *Mem = C.Allocate(Size, Align: alignof(ConvertVectorExpr)); |
5446 | return new (Mem) ConvertVectorExpr(SrcExpr, TI, DstType, VK, OK, BuiltinLoc, |
5447 | RParenLoc, FPFeatures); |
5448 | } |
5449 | |