1//===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "clang/CodeGen/BackendUtil.h"
10#include "BackendConsumer.h"
11#include "LinkInModulesPass.h"
12#include "clang/Basic/CodeGenOptions.h"
13#include "clang/Basic/Diagnostic.h"
14#include "clang/Basic/LangOptions.h"
15#include "clang/Basic/TargetOptions.h"
16#include "clang/Frontend/FrontendDiagnostic.h"
17#include "clang/Frontend/Utils.h"
18#include "clang/Lex/HeaderSearchOptions.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/ADT/StringSwitch.h"
21#include "llvm/Analysis/GlobalsModRef.h"
22#include "llvm/Analysis/TargetLibraryInfo.h"
23#include "llvm/Analysis/TargetTransformInfo.h"
24#include "llvm/Bitcode/BitcodeReader.h"
25#include "llvm/Bitcode/BitcodeWriter.h"
26#include "llvm/Bitcode/BitcodeWriterPass.h"
27#include "llvm/CodeGen/TargetSubtargetInfo.h"
28#include "llvm/Config/llvm-config.h"
29#include "llvm/Frontend/Driver/CodeGenOptions.h"
30#include "llvm/IR/DataLayout.h"
31#include "llvm/IR/DebugInfo.h"
32#include "llvm/IR/LegacyPassManager.h"
33#include "llvm/IR/Module.h"
34#include "llvm/IR/ModuleSummaryIndex.h"
35#include "llvm/IR/PassManager.h"
36#include "llvm/IR/Verifier.h"
37#include "llvm/IRPrinter/IRPrintingPasses.h"
38#include "llvm/LTO/LTOBackend.h"
39#include "llvm/MC/TargetRegistry.h"
40#include "llvm/Object/OffloadBinary.h"
41#include "llvm/Passes/PassBuilder.h"
42#include "llvm/Passes/PassPlugin.h"
43#include "llvm/Passes/StandardInstrumentations.h"
44#include "llvm/ProfileData/InstrProfCorrelator.h"
45#include "llvm/Support/BuryPointer.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Compiler.h"
48#include "llvm/Support/MemoryBuffer.h"
49#include "llvm/Support/PrettyStackTrace.h"
50#include "llvm/Support/Program.h"
51#include "llvm/Support/TimeProfiler.h"
52#include "llvm/Support/Timer.h"
53#include "llvm/Support/ToolOutputFile.h"
54#include "llvm/Support/VirtualFileSystem.h"
55#include "llvm/Support/raw_ostream.h"
56#include "llvm/Target/TargetMachine.h"
57#include "llvm/Target/TargetOptions.h"
58#include "llvm/TargetParser/SubtargetFeature.h"
59#include "llvm/TargetParser/Triple.h"
60#include "llvm/Transforms/HipStdPar/HipStdPar.h"
61#include "llvm/Transforms/IPO/EmbedBitcodePass.h"
62#include "llvm/Transforms/IPO/LowerTypeTests.h"
63#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
64#include "llvm/Transforms/InstCombine/InstCombine.h"
65#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
66#include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
67#include "llvm/Transforms/Instrumentation/BoundsChecking.h"
68#include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
69#include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
70#include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
71#include "llvm/Transforms/Instrumentation/InstrProfiling.h"
72#include "llvm/Transforms/Instrumentation/KCFI.h"
73#include "llvm/Transforms/Instrumentation/LowerAllowCheckPass.h"
74#include "llvm/Transforms/Instrumentation/MemProfInstrumentation.h"
75#include "llvm/Transforms/Instrumentation/MemProfUse.h"
76#include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
77#include "llvm/Transforms/Instrumentation/NumericalStabilitySanitizer.h"
78#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
79#include "llvm/Transforms/Instrumentation/RealtimeSanitizer.h"
80#include "llvm/Transforms/Instrumentation/SanitizerBinaryMetadata.h"
81#include "llvm/Transforms/Instrumentation/SanitizerCoverage.h"
82#include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
83#include "llvm/Transforms/Instrumentation/TypeSanitizer.h"
84#include "llvm/Transforms/ObjCARC.h"
85#include "llvm/Transforms/Scalar/EarlyCSE.h"
86#include "llvm/Transforms/Scalar/GVN.h"
87#include "llvm/Transforms/Scalar/JumpThreading.h"
88#include "llvm/Transforms/Utils/Debugify.h"
89#include "llvm/Transforms/Utils/ModuleUtils.h"
90#include <limits>
91#include <memory>
92#include <optional>
93using namespace clang;
94using namespace llvm;
95
96#define HANDLE_EXTENSION(Ext) \
97 llvm::PassPluginLibraryInfo get##Ext##PluginInfo();
98#include "llvm/Support/Extension.def"
99
100namespace llvm {
101// Experiment to move sanitizers earlier.
102static cl::opt<bool> ClSanitizeOnOptimizerEarlyEP(
103 "sanitizer-early-opt-ep", cl::Optional,
104 cl::desc("Insert sanitizers on OptimizerEarlyEP."));
105
106// Experiment to mark cold functions as optsize/minsize/optnone.
107// TODO: remove once this is exposed as a proper driver flag.
108static cl::opt<PGOOptions::ColdFuncOpt> ClPGOColdFuncAttr(
109 "pgo-cold-func-opt", cl::init(Val: PGOOptions::ColdFuncOpt::Default), cl::Hidden,
110 cl::desc(
111 "Function attribute to apply to cold functions as determined by PGO"),
112 cl::values(clEnumValN(PGOOptions::ColdFuncOpt::Default, "default",
113 "Default (no attribute)"),
114 clEnumValN(PGOOptions::ColdFuncOpt::OptSize, "optsize",
115 "Mark cold functions with optsize."),
116 clEnumValN(PGOOptions::ColdFuncOpt::MinSize, "minsize",
117 "Mark cold functions with minsize."),
118 clEnumValN(PGOOptions::ColdFuncOpt::OptNone, "optnone",
119 "Mark cold functions with optnone.")));
120
121LLVM_ABI extern cl::opt<InstrProfCorrelator::ProfCorrelatorKind>
122 ProfileCorrelate;
123} // namespace llvm
124namespace clang {
125extern llvm::cl::opt<bool> ClSanitizeGuardChecks;
126}
127
128// Path and name of file used for profile generation
129static std::string getProfileGenName(const CodeGenOptions &CodeGenOpts) {
130 std::string FileName = CodeGenOpts.InstrProfileOutput.empty()
131 ? llvm::driver::getDefaultProfileGenName()
132 : CodeGenOpts.InstrProfileOutput;
133 if (CodeGenOpts.ContinuousProfileSync)
134 FileName = "%c" + FileName;
135 return FileName;
136}
137
138namespace {
139
140class EmitAssemblyHelper {
141 CompilerInstance &CI;
142 DiagnosticsEngine &Diags;
143 const CodeGenOptions &CodeGenOpts;
144 const clang::TargetOptions &TargetOpts;
145 const LangOptions &LangOpts;
146 llvm::Module *TheModule;
147 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS;
148
149 std::unique_ptr<raw_pwrite_stream> OS;
150
151 Triple TargetTriple;
152
153 TargetIRAnalysis getTargetIRAnalysis() const {
154 if (TM)
155 return TM->getTargetIRAnalysis();
156
157 return TargetIRAnalysis();
158 }
159
160 /// Generates the TargetMachine.
161 /// Leaves TM unchanged if it is unable to create the target machine.
162 /// Some of our clang tests specify triples which are not built
163 /// into clang. This is okay because these tests check the generated
164 /// IR, and they require DataLayout which depends on the triple.
165 /// In this case, we allow this method to fail and not report an error.
166 /// When MustCreateTM is used, we print an error if we are unable to load
167 /// the requested target.
168 void CreateTargetMachine(bool MustCreateTM);
169
170 /// Add passes necessary to emit assembly or LLVM IR.
171 ///
172 /// \return True on success.
173 bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
174 raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS);
175
176 std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) {
177 std::error_code EC;
178 auto F = std::make_unique<llvm::ToolOutputFile>(args&: Path, args&: EC,
179 args: llvm::sys::fs::OF_None);
180 if (EC) {
181 Diags.Report(DiagID: diag::err_fe_unable_to_open_output) << Path << EC.message();
182 F.reset();
183 }
184 return F;
185 }
186
187 void RunOptimizationPipeline(
188 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
189 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC);
190 void RunCodegenPipeline(BackendAction Action,
191 std::unique_ptr<raw_pwrite_stream> &OS,
192 std::unique_ptr<llvm::ToolOutputFile> &DwoOS);
193
194 /// Check whether we should emit a module summary for regular LTO.
195 /// The module summary should be emitted by default for regular LTO
196 /// except for ld64 targets.
197 ///
198 /// \return True if the module summary should be emitted.
199 bool shouldEmitRegularLTOSummary() const {
200 return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses &&
201 TargetTriple.getVendor() != llvm::Triple::Apple;
202 }
203
204 /// Check whether we should emit a flag for UnifiedLTO.
205 /// The UnifiedLTO module flag should be set when UnifiedLTO is enabled for
206 /// ThinLTO or Full LTO with module summaries.
207 bool shouldEmitUnifiedLTOModueFlag() const {
208 return CodeGenOpts.UnifiedLTO &&
209 (CodeGenOpts.PrepareForThinLTO || shouldEmitRegularLTOSummary());
210 }
211
212public:
213 EmitAssemblyHelper(CompilerInstance &CI, CodeGenOptions &CGOpts,
214 llvm::Module *M,
215 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
216 : CI(CI), Diags(CI.getDiagnostics()), CodeGenOpts(CGOpts),
217 TargetOpts(CI.getTargetOpts()), LangOpts(CI.getLangOpts()),
218 TheModule(M), VFS(std::move(VFS)),
219 TargetTriple(TheModule->getTargetTriple()) {}
220
221 ~EmitAssemblyHelper() {
222 if (CodeGenOpts.DisableFree)
223 BuryPointer(Ptr: std::move(TM));
224 }
225
226 std::unique_ptr<TargetMachine> TM;
227
228 // Emit output using the new pass manager for the optimization pipeline.
229 void emitAssembly(BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS,
230 BackendConsumer *BC);
231};
232} // namespace
233
234static SanitizerCoverageOptions
235getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) {
236 SanitizerCoverageOptions Opts;
237 Opts.CoverageType =
238 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
239 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
240 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
241 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
242 Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
243 Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
244 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
245 Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
246 Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
247 Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
248 Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
249 Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag;
250 Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
251 Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
252 Opts.StackDepthCallbackMin = CGOpts.SanitizeCoverageStackDepthCallbackMin;
253 Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads;
254 Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores;
255 Opts.CollectControlFlow = CGOpts.SanitizeCoverageControlFlow;
256 return Opts;
257}
258
259static SanitizerBinaryMetadataOptions
260getSanitizerBinaryMetadataOptions(const CodeGenOptions &CGOpts) {
261 SanitizerBinaryMetadataOptions Opts;
262 Opts.Covered = CGOpts.SanitizeBinaryMetadataCovered;
263 Opts.Atomics = CGOpts.SanitizeBinaryMetadataAtomics;
264 Opts.UAR = CGOpts.SanitizeBinaryMetadataUAR;
265 return Opts;
266}
267
268// Check if ASan should use GC-friendly instrumentation for globals.
269// First of all, there is no point if -fdata-sections is off (expect for MachO,
270// where this is not a factor). Also, on ELF this feature requires an assembler
271// extension that only works with -integrated-as at the moment.
272static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
273 if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
274 return false;
275 switch (T.getObjectFormat()) {
276 case Triple::MachO:
277 case Triple::COFF:
278 return true;
279 case Triple::ELF:
280 return !CGOpts.DisableIntegratedAS;
281 case Triple::GOFF:
282 llvm::report_fatal_error(reason: "ASan not implemented for GOFF");
283 case Triple::XCOFF:
284 llvm::report_fatal_error(reason: "ASan not implemented for XCOFF.");
285 case Triple::Wasm:
286 case Triple::DXContainer:
287 case Triple::SPIRV:
288 case Triple::UnknownObjectFormat:
289 break;
290 }
291 return false;
292}
293
294static std::optional<llvm::CodeModel::Model>
295getCodeModel(const CodeGenOptions &CodeGenOpts) {
296 unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
297 .Case(S: "tiny", Value: llvm::CodeModel::Tiny)
298 .Case(S: "small", Value: llvm::CodeModel::Small)
299 .Case(S: "kernel", Value: llvm::CodeModel::Kernel)
300 .Case(S: "medium", Value: llvm::CodeModel::Medium)
301 .Case(S: "large", Value: llvm::CodeModel::Large)
302 .Cases(S0: "default", S1: "", Value: ~1u)
303 .Default(Value: ~0u);
304 assert(CodeModel != ~0u && "invalid code model!");
305 if (CodeModel == ~1u)
306 return std::nullopt;
307 return static_cast<llvm::CodeModel::Model>(CodeModel);
308}
309
310static CodeGenFileType getCodeGenFileType(BackendAction Action) {
311 if (Action == Backend_EmitObj)
312 return CodeGenFileType::ObjectFile;
313 else if (Action == Backend_EmitMCNull)
314 return CodeGenFileType::Null;
315 else {
316 assert(Action == Backend_EmitAssembly && "Invalid action!");
317 return CodeGenFileType::AssemblyFile;
318 }
319}
320
321static bool actionRequiresCodeGen(BackendAction Action) {
322 return Action != Backend_EmitNothing && Action != Backend_EmitBC &&
323 Action != Backend_EmitLL;
324}
325
326static std::string flattenClangCommandLine(ArrayRef<std::string> Args,
327 StringRef MainFilename) {
328 if (Args.empty())
329 return std::string{};
330
331 std::string FlatCmdLine;
332 raw_string_ostream OS(FlatCmdLine);
333 bool PrintedOneArg = false;
334 if (!StringRef(Args[0]).contains(Other: "-cc1")) {
335 llvm::sys::printArg(OS, Arg: "-cc1", /*Quote=*/true);
336 PrintedOneArg = true;
337 }
338 for (unsigned i = 0; i < Args.size(); i++) {
339 StringRef Arg = Args[i];
340 if (Arg.empty())
341 continue;
342 if (Arg == "-main-file-name" || Arg == "-o") {
343 i++; // Skip this argument and next one.
344 continue;
345 }
346 if (Arg.starts_with(Prefix: "-object-file-name") || Arg == MainFilename)
347 continue;
348 // Skip fmessage-length for reproducibility.
349 if (Arg.starts_with(Prefix: "-fmessage-length"))
350 continue;
351 if (PrintedOneArg)
352 OS << " ";
353 llvm::sys::printArg(OS, Arg, /*Quote=*/true);
354 PrintedOneArg = true;
355 }
356 return FlatCmdLine;
357}
358
359static bool initTargetOptions(const CompilerInstance &CI,
360 DiagnosticsEngine &Diags,
361 llvm::TargetOptions &Options) {
362 const auto &CodeGenOpts = CI.getCodeGenOpts();
363 const auto &TargetOpts = CI.getTargetOpts();
364 const auto &LangOpts = CI.getLangOpts();
365 const auto &HSOpts = CI.getHeaderSearchOpts();
366 switch (LangOpts.getThreadModel()) {
367 case LangOptions::ThreadModelKind::POSIX:
368 Options.ThreadModel = llvm::ThreadModel::POSIX;
369 break;
370 case LangOptions::ThreadModelKind::Single:
371 Options.ThreadModel = llvm::ThreadModel::Single;
372 break;
373 }
374
375 // Set float ABI type.
376 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
377 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
378 "Invalid Floating Point ABI!");
379 Options.FloatABIType =
380 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
381 .Case(S: "soft", Value: llvm::FloatABI::Soft)
382 .Case(S: "softfp", Value: llvm::FloatABI::Soft)
383 .Case(S: "hard", Value: llvm::FloatABI::Hard)
384 .Default(Value: llvm::FloatABI::Default);
385
386 // Set FP fusion mode.
387 switch (LangOpts.getDefaultFPContractMode()) {
388 case LangOptions::FPM_Off:
389 // Preserve any contraction performed by the front-end. (Strict performs
390 // splitting of the muladd intrinsic in the backend.)
391 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
392 break;
393 case LangOptions::FPM_On:
394 case LangOptions::FPM_FastHonorPragmas:
395 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
396 break;
397 case LangOptions::FPM_Fast:
398 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
399 break;
400 }
401
402 Options.BinutilsVersion =
403 llvm::TargetMachine::parseBinutilsVersion(Version: CodeGenOpts.BinutilsVersion);
404 Options.UseInitArray = CodeGenOpts.UseInitArray;
405 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
406
407 // Set EABI version.
408 Options.EABIVersion = TargetOpts.EABIVersion;
409
410 if (LangOpts.hasSjLjExceptions())
411 Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
412 if (LangOpts.hasSEHExceptions())
413 Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
414 if (LangOpts.hasDWARFExceptions())
415 Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
416 if (LangOpts.hasWasmExceptions())
417 Options.ExceptionModel = llvm::ExceptionHandling::Wasm;
418
419 Options.NoInfsFPMath = LangOpts.NoHonorInfs;
420 Options.NoNaNsFPMath = LangOpts.NoHonorNaNs;
421 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
422 Options.UnsafeFPMath = LangOpts.AllowFPReassoc && LangOpts.AllowRecip &&
423 LangOpts.NoSignedZero && LangOpts.ApproxFunc &&
424 (LangOpts.getDefaultFPContractMode() ==
425 LangOptions::FPModeKind::FPM_Fast ||
426 LangOpts.getDefaultFPContractMode() ==
427 LangOptions::FPModeKind::FPM_FastHonorPragmas);
428 Options.ApproxFuncFPMath = LangOpts.ApproxFunc;
429
430 Options.BBAddrMap = CodeGenOpts.BBAddrMap;
431 Options.BBSections =
432 llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections)
433 .Case(S: "all", Value: llvm::BasicBlockSection::All)
434 .StartsWith(S: "list=", Value: llvm::BasicBlockSection::List)
435 .Case(S: "none", Value: llvm::BasicBlockSection::None)
436 .Default(Value: llvm::BasicBlockSection::None);
437
438 if (Options.BBSections == llvm::BasicBlockSection::List) {
439 ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr =
440 MemoryBuffer::getFile(Filename: CodeGenOpts.BBSections.substr(pos: 5));
441 if (!MBOrErr) {
442 Diags.Report(DiagID: diag::err_fe_unable_to_load_basic_block_sections_file)
443 << MBOrErr.getError().message();
444 return false;
445 }
446 Options.BBSectionsFuncListBuf = std::move(*MBOrErr);
447 }
448
449 Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions;
450 Options.FunctionSections = CodeGenOpts.FunctionSections;
451 Options.DataSections = CodeGenOpts.DataSections;
452 Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility;
453 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
454 Options.UniqueBasicBlockSectionNames =
455 CodeGenOpts.UniqueBasicBlockSectionNames;
456 Options.SeparateNamedSections = CodeGenOpts.SeparateNamedSections;
457 Options.TLSSize = CodeGenOpts.TLSSize;
458 Options.EnableTLSDESC = CodeGenOpts.EnableTLSDESC;
459 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
460 Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
461 Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection;
462 Options.StackUsageOutput = CodeGenOpts.StackUsageOutput;
463 Options.EmitAddrsig = CodeGenOpts.Addrsig;
464 Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection;
465 Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo;
466 Options.EnableAIXExtendedAltivecABI = LangOpts.EnableAIXExtendedAltivecABI;
467 Options.XRayFunctionIndex = CodeGenOpts.XRayFunctionIndex;
468 Options.LoopAlignment = CodeGenOpts.LoopAlignment;
469 Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf;
470 Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug;
471 Options.Hotpatch = CodeGenOpts.HotPatch;
472 Options.JMCInstrument = CodeGenOpts.JMCInstrument;
473 Options.XCOFFReadOnlyPointers = CodeGenOpts.XCOFFReadOnlyPointers;
474
475 switch (CodeGenOpts.getSwiftAsyncFramePointer()) {
476 case CodeGenOptions::SwiftAsyncFramePointerKind::Auto:
477 Options.SwiftAsyncFramePointer =
478 SwiftAsyncFramePointerMode::DeploymentBased;
479 break;
480
481 case CodeGenOptions::SwiftAsyncFramePointerKind::Always:
482 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always;
483 break;
484
485 case CodeGenOptions::SwiftAsyncFramePointerKind::Never:
486 Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never;
487 break;
488 }
489
490 Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
491 Options.MCOptions.EmitDwarfUnwind = CodeGenOpts.getEmitDwarfUnwind();
492 Options.MCOptions.EmitCompactUnwindNonCanonical =
493 CodeGenOpts.EmitCompactUnwindNonCanonical;
494 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
495 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
496 Options.MCOptions.MCUseDwarfDirectory =
497 CodeGenOpts.NoDwarfDirectoryAsm
498 ? llvm::MCTargetOptions::DisableDwarfDirectory
499 : llvm::MCTargetOptions::EnableDwarfDirectory;
500 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
501 Options.MCOptions.MCIncrementalLinkerCompatible =
502 CodeGenOpts.IncrementalLinkerCompatible;
503 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
504 Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn;
505 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
506 Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64;
507 Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
508 Options.MCOptions.Crel = CodeGenOpts.Crel;
509 Options.MCOptions.ImplicitMapSyms = CodeGenOpts.ImplicitMapSyms;
510 Options.MCOptions.X86RelaxRelocations = CodeGenOpts.X86RelaxRelocations;
511 Options.MCOptions.CompressDebugSections =
512 CodeGenOpts.getCompressDebugSections();
513 if (CodeGenOpts.OutputAsmVariant != 3) // 3 (default): not specified
514 Options.MCOptions.OutputAsmVariant = CodeGenOpts.OutputAsmVariant;
515 Options.MCOptions.ABIName = TargetOpts.ABI;
516 for (const auto &Entry : HSOpts.UserEntries)
517 if (!Entry.IsFramework &&
518 (Entry.Group == frontend::IncludeDirGroup::Quoted ||
519 Entry.Group == frontend::IncludeDirGroup::Angled ||
520 Entry.Group == frontend::IncludeDirGroup::System))
521 Options.MCOptions.IASSearchPaths.push_back(
522 x: Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
523 Options.MCOptions.Argv0 = CodeGenOpts.Argv0 ? CodeGenOpts.Argv0 : "";
524 Options.MCOptions.CommandlineArgs = flattenClangCommandLine(
525 Args: CodeGenOpts.CommandLineArgs, MainFilename: CodeGenOpts.MainFileName);
526 Options.MCOptions.AsSecureLogFile = CodeGenOpts.AsSecureLogFile;
527 Options.MCOptions.PPCUseFullRegisterNames =
528 CodeGenOpts.PPCUseFullRegisterNames;
529 Options.MisExpect = CodeGenOpts.MisExpect;
530
531 return true;
532}
533
534static std::optional<GCOVOptions>
535getGCOVOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts) {
536 if (CodeGenOpts.CoverageNotesFile.empty() &&
537 CodeGenOpts.CoverageDataFile.empty())
538 return std::nullopt;
539 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
540 // LLVM's -default-gcov-version flag is set to something invalid.
541 GCOVOptions Options;
542 Options.EmitNotes = !CodeGenOpts.CoverageNotesFile.empty();
543 Options.EmitData = !CodeGenOpts.CoverageDataFile.empty();
544 llvm::copy(Range: CodeGenOpts.CoverageVersion, Out: std::begin(arr&: Options.Version));
545 Options.NoRedZone = CodeGenOpts.DisableRedZone;
546 Options.Filter = CodeGenOpts.ProfileFilterFiles;
547 Options.Exclude = CodeGenOpts.ProfileExcludeFiles;
548 Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
549 return Options;
550}
551
552static std::optional<InstrProfOptions>
553getInstrProfOptions(const CodeGenOptions &CodeGenOpts,
554 const LangOptions &LangOpts) {
555 if (!CodeGenOpts.hasProfileClangInstr())
556 return std::nullopt;
557 InstrProfOptions Options;
558 Options.NoRedZone = CodeGenOpts.DisableRedZone;
559 Options.InstrProfileOutput = CodeGenOpts.ContinuousProfileSync
560 ? ("%c" + CodeGenOpts.InstrProfileOutput)
561 : CodeGenOpts.InstrProfileOutput;
562 Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
563 return Options;
564}
565
566static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
567 SmallVector<const char *, 16> BackendArgs;
568 BackendArgs.push_back(Elt: "clang"); // Fake program name.
569 if (!CodeGenOpts.DebugPass.empty()) {
570 BackendArgs.push_back(Elt: "-debug-pass");
571 BackendArgs.push_back(Elt: CodeGenOpts.DebugPass.c_str());
572 }
573 if (!CodeGenOpts.LimitFloatPrecision.empty()) {
574 BackendArgs.push_back(Elt: "-limit-float-precision");
575 BackendArgs.push_back(Elt: CodeGenOpts.LimitFloatPrecision.c_str());
576 }
577 // Check for the default "clang" invocation that won't set any cl::opt values.
578 // Skip trying to parse the command line invocation to avoid the issues
579 // described below.
580 if (BackendArgs.size() == 1)
581 return;
582 BackendArgs.push_back(Elt: nullptr);
583 // FIXME: The command line parser below is not thread-safe and shares a global
584 // state, so this call might crash or overwrite the options of another Clang
585 // instance in the same process.
586 llvm::cl::ParseCommandLineOptions(argc: BackendArgs.size() - 1,
587 argv: BackendArgs.data());
588}
589
590void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
591 // Create the TargetMachine for generating code.
592 std::string Error;
593 const llvm::Triple &Triple = TheModule->getTargetTriple();
594 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(TheTriple: Triple, Error);
595 if (!TheTarget) {
596 if (MustCreateTM)
597 Diags.Report(DiagID: diag::err_fe_unable_to_create_target) << Error;
598 return;
599 }
600
601 std::optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts);
602 std::string FeaturesStr =
603 llvm::join(Begin: TargetOpts.Features.begin(), End: TargetOpts.Features.end(), Separator: ",");
604 llvm::Reloc::Model RM = CodeGenOpts.RelocationModel;
605 std::optional<CodeGenOptLevel> OptLevelOrNone =
606 CodeGenOpt::getLevel(OL: CodeGenOpts.OptimizationLevel);
607 assert(OptLevelOrNone && "Invalid optimization level!");
608 CodeGenOptLevel OptLevel = *OptLevelOrNone;
609
610 llvm::TargetOptions Options;
611 if (!initTargetOptions(CI, Diags, Options))
612 return;
613 TM.reset(p: TheTarget->createTargetMachine(TT: Triple, CPU: TargetOpts.CPU, Features: FeaturesStr,
614 Options, RM, CM, OL: OptLevel));
615 if (TM)
616 TM->setLargeDataThreshold(CodeGenOpts.LargeDataThreshold);
617}
618
619bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
620 BackendAction Action,
621 raw_pwrite_stream &OS,
622 raw_pwrite_stream *DwoOS) {
623 // Add LibraryInfo.
624 std::unique_ptr<TargetLibraryInfoImpl> TLII(
625 llvm::driver::createTLII(TargetTriple, Veclib: CodeGenOpts.getVecLib()));
626 CodeGenPasses.add(P: new TargetLibraryInfoWrapperPass(*TLII));
627
628 // Normal mode, emit a .s or .o file by running the code generator. Note,
629 // this also adds codegenerator level optimization passes.
630 CodeGenFileType CGFT = getCodeGenFileType(Action);
631
632 if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT,
633 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
634 Diags.Report(DiagID: diag::err_fe_unable_to_interface_with_target);
635 return false;
636 }
637
638 return true;
639}
640
641static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
642 switch (Opts.OptimizationLevel) {
643 default:
644 llvm_unreachable("Invalid optimization level!");
645
646 case 0:
647 return OptimizationLevel::O0;
648
649 case 1:
650 return OptimizationLevel::O1;
651
652 case 2:
653 switch (Opts.OptimizeSize) {
654 default:
655 llvm_unreachable("Invalid optimization level for size!");
656
657 case 0:
658 return OptimizationLevel::O2;
659
660 case 1:
661 return OptimizationLevel::Os;
662
663 case 2:
664 return OptimizationLevel::Oz;
665 }
666
667 case 3:
668 return OptimizationLevel::O3;
669 }
670}
671
672static void addKCFIPass(const Triple &TargetTriple, const LangOptions &LangOpts,
673 PassBuilder &PB) {
674 // If the back-end supports KCFI operand bundle lowering, skip KCFIPass.
675 if (TargetTriple.getArch() == llvm::Triple::x86_64 ||
676 TargetTriple.isAArch64(PointerWidth: 64) || TargetTriple.isRISCV())
677 return;
678
679 // Ensure we lower KCFI operand bundles with -O0.
680 PB.registerOptimizerLastEPCallback(
681 C: [&](ModulePassManager &MPM, OptimizationLevel Level, ThinOrFullLTOPhase) {
682 if (Level == OptimizationLevel::O0 &&
683 LangOpts.Sanitize.has(K: SanitizerKind::KCFI))
684 MPM.addPass(Pass: createModuleToFunctionPassAdaptor(Pass: KCFIPass()));
685 });
686
687 // When optimizations are requested, run KCIFPass after InstCombine to
688 // avoid unnecessary checks.
689 PB.registerPeepholeEPCallback(
690 C: [&](FunctionPassManager &FPM, OptimizationLevel Level) {
691 if (Level != OptimizationLevel::O0 &&
692 LangOpts.Sanitize.has(K: SanitizerKind::KCFI))
693 FPM.addPass(Pass: KCFIPass());
694 });
695}
696
697static void addSanitizers(const Triple &TargetTriple,
698 const CodeGenOptions &CodeGenOpts,
699 const LangOptions &LangOpts, PassBuilder &PB) {
700 auto SanitizersCallback = [&](ModulePassManager &MPM, OptimizationLevel Level,
701 ThinOrFullLTOPhase) {
702 if (CodeGenOpts.hasSanitizeCoverage()) {
703 auto SancovOpts = getSancovOptsFromCGOpts(CGOpts: CodeGenOpts);
704 MPM.addPass(Pass: SanitizerCoveragePass(
705 SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles,
706 CodeGenOpts.SanitizeCoverageIgnorelistFiles));
707 }
708
709 if (CodeGenOpts.hasSanitizeBinaryMetadata()) {
710 MPM.addPass(Pass: SanitizerBinaryMetadataPass(
711 getSanitizerBinaryMetadataOptions(CGOpts: CodeGenOpts),
712 CodeGenOpts.SanitizeMetadataIgnorelistFiles));
713 }
714
715 auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) {
716 if (LangOpts.Sanitize.has(K: Mask)) {
717 int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins;
718 bool Recover = CodeGenOpts.SanitizeRecover.has(K: Mask);
719
720 MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel,
721 CodeGenOpts.SanitizeMemoryParamRetval);
722 MPM.addPass(Pass: MemorySanitizerPass(options));
723 if (Level != OptimizationLevel::O0) {
724 // MemorySanitizer inserts complex instrumentation that mostly follows
725 // the logic of the original code, but operates on "shadow" values. It
726 // can benefit from re-running some general purpose optimization
727 // passes.
728 MPM.addPass(Pass: RequireAnalysisPass<GlobalsAA, llvm::Module>());
729 FunctionPassManager FPM;
730 FPM.addPass(Pass: EarlyCSEPass(true /* Enable mem-ssa. */));
731 FPM.addPass(Pass: InstCombinePass());
732 FPM.addPass(Pass: JumpThreadingPass());
733 FPM.addPass(Pass: GVNPass());
734 FPM.addPass(Pass: InstCombinePass());
735 MPM.addPass(Pass: createModuleToFunctionPassAdaptor(Pass: std::move(FPM)));
736 }
737 }
738 };
739 MSanPass(SanitizerKind::Memory, false);
740 MSanPass(SanitizerKind::KernelMemory, true);
741
742 if (LangOpts.Sanitize.has(K: SanitizerKind::Thread)) {
743 MPM.addPass(Pass: ModuleThreadSanitizerPass());
744 MPM.addPass(Pass: createModuleToFunctionPassAdaptor(Pass: ThreadSanitizerPass()));
745 }
746
747 if (LangOpts.Sanitize.has(K: SanitizerKind::Type))
748 MPM.addPass(Pass: TypeSanitizerPass());
749
750 if (LangOpts.Sanitize.has(K: SanitizerKind::NumericalStability))
751 MPM.addPass(Pass: NumericalStabilitySanitizerPass());
752
753 if (LangOpts.Sanitize.has(K: SanitizerKind::Realtime))
754 MPM.addPass(Pass: RealtimeSanitizerPass());
755
756 auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
757 if (LangOpts.Sanitize.has(K: Mask)) {
758 bool UseGlobalGC = asanUseGlobalsGC(T: TargetTriple, CGOpts: CodeGenOpts);
759 bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator;
760 llvm::AsanDtorKind DestructorKind =
761 CodeGenOpts.getSanitizeAddressDtor();
762 AddressSanitizerOptions Opts;
763 Opts.CompileKernel = CompileKernel;
764 Opts.Recover = CodeGenOpts.SanitizeRecover.has(K: Mask);
765 Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope;
766 Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn();
767 MPM.addPass(Pass: AddressSanitizerPass(Opts, UseGlobalGC, UseOdrIndicator,
768 DestructorKind));
769 }
770 };
771 ASanPass(SanitizerKind::Address, false);
772 ASanPass(SanitizerKind::KernelAddress, true);
773
774 auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
775 if (LangOpts.Sanitize.has(K: Mask)) {
776 bool Recover = CodeGenOpts.SanitizeRecover.has(K: Mask);
777 MPM.addPass(Pass: HWAddressSanitizerPass(
778 {CompileKernel, Recover,
779 /*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0}));
780 }
781 };
782 HWASanPass(SanitizerKind::HWAddress, false);
783 HWASanPass(SanitizerKind::KernelHWAddress, true);
784
785 if (LangOpts.Sanitize.has(K: SanitizerKind::DataFlow)) {
786 MPM.addPass(Pass: DataFlowSanitizerPass(LangOpts.NoSanitizeFiles));
787 }
788 };
789 if (ClSanitizeOnOptimizerEarlyEP) {
790 PB.registerOptimizerEarlyEPCallback(
791 C: [SanitizersCallback](ModulePassManager &MPM, OptimizationLevel Level,
792 ThinOrFullLTOPhase Phase) {
793 ModulePassManager NewMPM;
794 SanitizersCallback(NewMPM, Level, Phase);
795 if (!NewMPM.isEmpty()) {
796 // Sanitizers can abandon<GlobalsAA>.
797 NewMPM.addPass(Pass: RequireAnalysisPass<GlobalsAA, llvm::Module>());
798 MPM.addPass(Pass: std::move(NewMPM));
799 }
800 });
801 } else {
802 // LastEP does not need GlobalsAA.
803 PB.registerOptimizerLastEPCallback(C: SanitizersCallback);
804 }
805
806 // SanitizeSkipHotCutoffs: doubles with range [0, 1]
807 // Opts.cutoffs: unsigned ints with range [0, 1000000]
808 auto ScaledCutoffs = CodeGenOpts.SanitizeSkipHotCutoffs.getAllScaled(ScalingFactor: 1000000);
809 uint64_t AllowRuntimeCheckSkipHotCutoff =
810 CodeGenOpts.AllowRuntimeCheckSkipHotCutoff.value_or(u: 0.0) * 1000000;
811 // TODO: remove IsRequested()
812 if (LowerAllowCheckPass::IsRequested() || ScaledCutoffs.has_value() ||
813 CodeGenOpts.AllowRuntimeCheckSkipHotCutoff.has_value()) {
814 // We want to call it after inline, which is about OptimizerEarlyEPCallback.
815 PB.registerOptimizerEarlyEPCallback(
816 C: [ScaledCutoffs, AllowRuntimeCheckSkipHotCutoff](
817 ModulePassManager &MPM, OptimizationLevel Level,
818 ThinOrFullLTOPhase Phase) {
819 LowerAllowCheckPass::Options Opts;
820 // TODO: after removing IsRequested(), make this unconditional
821 if (ScaledCutoffs.has_value())
822 Opts.cutoffs = ScaledCutoffs.value();
823 Opts.runtime_check = AllowRuntimeCheckSkipHotCutoff;
824 MPM.addPass(
825 Pass: createModuleToFunctionPassAdaptor(Pass: LowerAllowCheckPass(Opts)));
826 });
827 }
828}
829
830void EmitAssemblyHelper::RunOptimizationPipeline(
831 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
832 std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC) {
833 std::optional<PGOOptions> PGOOpt;
834
835 if (CodeGenOpts.hasProfileIRInstr())
836 // -fprofile-generate.
837 PGOOpt = PGOOptions(getProfileGenName(CodeGenOpts), "", "",
838 CodeGenOpts.MemoryProfileUsePath, nullptr,
839 PGOOptions::IRInstr, PGOOptions::NoCSAction,
840 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling,
841 /*PseudoProbeForProfiling=*/false,
842 CodeGenOpts.AtomicProfileUpdate);
843 else if (CodeGenOpts.hasProfileIRUse()) {
844 // -fprofile-use.
845 auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse
846 : PGOOptions::NoCSAction;
847 PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "",
848 CodeGenOpts.ProfileRemappingFile,
849 CodeGenOpts.MemoryProfileUsePath, VFS,
850 PGOOptions::IRUse, CSAction, ClPGOColdFuncAttr,
851 CodeGenOpts.DebugInfoForProfiling);
852 } else if (!CodeGenOpts.SampleProfileFile.empty())
853 // -fprofile-sample-use
854 PGOOpt = PGOOptions(
855 CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile,
856 CodeGenOpts.MemoryProfileUsePath, VFS, PGOOptions::SampleUse,
857 PGOOptions::NoCSAction, ClPGOColdFuncAttr,
858 CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling);
859 else if (!CodeGenOpts.MemoryProfileUsePath.empty())
860 // -fmemory-profile-use (without any of the above options)
861 PGOOpt = PGOOptions("", "", "", CodeGenOpts.MemoryProfileUsePath, VFS,
862 PGOOptions::NoAction, PGOOptions::NoCSAction,
863 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling);
864 else if (CodeGenOpts.PseudoProbeForProfiling)
865 // -fpseudo-probe-for-profiling
866 PGOOpt =
867 PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr,
868 PGOOptions::NoAction, PGOOptions::NoCSAction,
869 ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling, true);
870 else if (CodeGenOpts.DebugInfoForProfiling)
871 // -fdebug-info-for-profiling
872 PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr,
873 PGOOptions::NoAction, PGOOptions::NoCSAction,
874 ClPGOColdFuncAttr, true);
875
876 // Check to see if we want to generate a CS profile.
877 if (CodeGenOpts.hasProfileCSIRInstr()) {
878 assert(!CodeGenOpts.hasProfileCSIRUse() &&
879 "Cannot have both CSProfileUse pass and CSProfileGen pass at "
880 "the same time");
881 if (PGOOpt) {
882 assert(PGOOpt->Action != PGOOptions::IRInstr &&
883 PGOOpt->Action != PGOOptions::SampleUse &&
884 "Cannot run CSProfileGen pass with ProfileGen or SampleUse "
885 " pass");
886 PGOOpt->CSProfileGenFile = getProfileGenName(CodeGenOpts);
887 PGOOpt->CSAction = PGOOptions::CSIRInstr;
888 } else
889 PGOOpt = PGOOptions("", getProfileGenName(CodeGenOpts), "",
890 /*MemoryProfile=*/"", nullptr, PGOOptions::NoAction,
891 PGOOptions::CSIRInstr, ClPGOColdFuncAttr,
892 CodeGenOpts.DebugInfoForProfiling);
893 }
894 if (TM)
895 TM->setPGOOption(PGOOpt);
896
897 PipelineTuningOptions PTO;
898 PTO.LoopUnrolling = CodeGenOpts.UnrollLoops;
899 PTO.LoopInterchange = CodeGenOpts.InterchangeLoops;
900 // For historical reasons, loop interleaving is set to mirror setting for loop
901 // unrolling.
902 PTO.LoopInterleaving = CodeGenOpts.UnrollLoops;
903 PTO.LoopVectorization = CodeGenOpts.VectorizeLoop;
904 PTO.SLPVectorization = CodeGenOpts.VectorizeSLP;
905 PTO.MergeFunctions = CodeGenOpts.MergeFunctions;
906 // Only enable CGProfilePass when using integrated assembler, since
907 // non-integrated assemblers don't recognize .cgprofile section.
908 PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS;
909 PTO.UnifiedLTO = CodeGenOpts.UnifiedLTO;
910
911 LoopAnalysisManager LAM;
912 FunctionAnalysisManager FAM;
913 CGSCCAnalysisManager CGAM;
914 ModuleAnalysisManager MAM;
915
916 bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure";
917 PassInstrumentationCallbacks PIC;
918 PrintPassOptions PrintPassOpts;
919 PrintPassOpts.Indent = DebugPassStructure;
920 PrintPassOpts.SkipAnalyses = DebugPassStructure;
921 StandardInstrumentations SI(
922 TheModule->getContext(),
923 (CodeGenOpts.DebugPassManager || DebugPassStructure),
924 CodeGenOpts.VerifyEach, PrintPassOpts);
925 SI.registerCallbacks(PIC, MAM: &MAM);
926 PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC);
927
928 // Handle the assignment tracking feature options.
929 switch (CodeGenOpts.getAssignmentTrackingMode()) {
930 case CodeGenOptions::AssignmentTrackingOpts::Forced:
931 PB.registerPipelineStartEPCallback(
932 C: [&](ModulePassManager &MPM, OptimizationLevel Level) {
933 MPM.addPass(Pass: AssignmentTrackingPass());
934 });
935 break;
936 case CodeGenOptions::AssignmentTrackingOpts::Enabled:
937 // Disable assignment tracking in LTO builds for now as the performance
938 // cost is too high. Disable for LLDB tuning due to llvm.org/PR43126.
939 if (!CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.PrepareForLTO &&
940 CodeGenOpts.getDebuggerTuning() != llvm::DebuggerKind::LLDB) {
941 PB.registerPipelineStartEPCallback(
942 C: [&](ModulePassManager &MPM, OptimizationLevel Level) {
943 // Only use assignment tracking if optimisations are enabled.
944 if (Level != OptimizationLevel::O0)
945 MPM.addPass(Pass: AssignmentTrackingPass());
946 });
947 }
948 break;
949 case CodeGenOptions::AssignmentTrackingOpts::Disabled:
950 break;
951 }
952
953 // Enable verify-debuginfo-preserve-each for new PM.
954 DebugifyEachInstrumentation Debugify;
955 DebugInfoPerPass DebugInfoBeforePass;
956 if (CodeGenOpts.EnableDIPreservationVerify) {
957 Debugify.setDebugifyMode(DebugifyMode::OriginalDebugInfo);
958 Debugify.setDebugInfoBeforePass(DebugInfoBeforePass);
959
960 if (!CodeGenOpts.DIBugsReportFilePath.empty())
961 Debugify.setOrigDIVerifyBugsReportFilePath(
962 CodeGenOpts.DIBugsReportFilePath);
963 Debugify.registerCallbacks(PIC, MAM);
964
965#if LLVM_ENABLE_DEBUGLOC_TRACKING_COVERAGE
966 // If we're using debug location coverage tracking, mark all the
967 // instructions coming out of the frontend without a DebugLoc as being
968 // compiler-generated, to prevent both those instructions and new
969 // instructions that inherit their location from being treated as
970 // incorrectly empty locations.
971 for (Function &F : *TheModule) {
972 if (!F.getSubprogram())
973 continue;
974 for (BasicBlock &BB : F)
975 for (Instruction &I : BB)
976 if (!I.getDebugLoc())
977 I.setDebugLoc(DebugLoc::getCompilerGenerated());
978 }
979#endif
980 }
981 // Attempt to load pass plugins and register their callbacks with PB.
982 for (auto &PluginFN : CodeGenOpts.PassPlugins) {
983 auto PassPlugin = PassPlugin::Load(Filename: PluginFN);
984 if (PassPlugin) {
985 PassPlugin->registerPassBuilderCallbacks(PB);
986 } else {
987 Diags.Report(DiagID: diag::err_fe_unable_to_load_plugin)
988 << PluginFN << toString(E: PassPlugin.takeError());
989 }
990 }
991 for (const auto &PassCallback : CodeGenOpts.PassBuilderCallbacks)
992 PassCallback(PB);
993#define HANDLE_EXTENSION(Ext) \
994 get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB);
995#include "llvm/Support/Extension.def"
996
997 // Register the target library analysis directly and give it a customized
998 // preset TLI.
999 std::unique_ptr<TargetLibraryInfoImpl> TLII(
1000 llvm::driver::createTLII(TargetTriple, Veclib: CodeGenOpts.getVecLib()));
1001 FAM.registerPass(PassBuilder: [&] { return TargetLibraryAnalysis(*TLII); });
1002
1003 // Register all the basic analyses with the managers.
1004 PB.registerModuleAnalyses(MAM);
1005 PB.registerCGSCCAnalyses(CGAM);
1006 PB.registerFunctionAnalyses(FAM);
1007 PB.registerLoopAnalyses(LAM);
1008 PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
1009
1010 ModulePassManager MPM;
1011 // Add a verifier pass, before any other passes, to catch CodeGen issues.
1012 if (CodeGenOpts.VerifyModule)
1013 MPM.addPass(Pass: VerifierPass());
1014
1015 if (!CodeGenOpts.DisableLLVMPasses) {
1016 // Map our optimization levels into one of the distinct levels used to
1017 // configure the pipeline.
1018 OptimizationLevel Level = mapToLevel(Opts: CodeGenOpts);
1019
1020 const bool PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO;
1021 const bool PrepareForLTO = CodeGenOpts.PrepareForLTO;
1022
1023 if (LangOpts.ObjCAutoRefCount) {
1024 PB.registerPipelineStartEPCallback(
1025 C: [](ModulePassManager &MPM, OptimizationLevel Level) {
1026 if (Level != OptimizationLevel::O0)
1027 MPM.addPass(
1028 Pass: createModuleToFunctionPassAdaptor(Pass: ObjCARCExpandPass()));
1029 });
1030 PB.registerPipelineEarlySimplificationEPCallback(
1031 C: [](ModulePassManager &MPM, OptimizationLevel Level,
1032 ThinOrFullLTOPhase) {
1033 if (Level != OptimizationLevel::O0)
1034 MPM.addPass(Pass: ObjCARCAPElimPass());
1035 });
1036 PB.registerScalarOptimizerLateEPCallback(
1037 C: [](FunctionPassManager &FPM, OptimizationLevel Level) {
1038 if (Level != OptimizationLevel::O0)
1039 FPM.addPass(Pass: ObjCARCOptPass());
1040 });
1041 }
1042
1043 // If we reached here with a non-empty index file name, then the index
1044 // file was empty and we are not performing ThinLTO backend compilation
1045 // (used in testing in a distributed build environment).
1046 bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty();
1047 // If so drop any the type test assume sequences inserted for whole program
1048 // vtables so that codegen doesn't complain.
1049 if (IsThinLTOPostLink)
1050 PB.registerPipelineStartEPCallback(
1051 C: [](ModulePassManager &MPM, OptimizationLevel Level) {
1052 MPM.addPass(Pass: LowerTypeTestsPass(
1053 /*ExportSummary=*/nullptr,
1054 /*ImportSummary=*/nullptr,
1055 /*DropTypeTests=*/lowertypetests::DropTestKind::Assume));
1056 });
1057
1058 // Register callbacks to schedule sanitizer passes at the appropriate part
1059 // of the pipeline.
1060 if (LangOpts.Sanitize.has(K: SanitizerKind::LocalBounds))
1061 PB.registerScalarOptimizerLateEPCallback(C: [this](FunctionPassManager &FPM,
1062 OptimizationLevel Level) {
1063 BoundsCheckingPass::Options Options;
1064 if (CodeGenOpts.SanitizeSkipHotCutoffs[SanitizerKind::SO_LocalBounds] ||
1065 ClSanitizeGuardChecks) {
1066 static_assert(SanitizerKind::SO_LocalBounds <=
1067 std::numeric_limits<
1068 decltype(Options.GuardKind)::value_type>::max(),
1069 "Update type of llvm.allow.ubsan.check to represent "
1070 "SanitizerKind::SO_LocalBounds.");
1071 Options.GuardKind = SanitizerKind::SO_LocalBounds;
1072 }
1073 Options.Merge =
1074 CodeGenOpts.SanitizeMergeHandlers.has(K: SanitizerKind::LocalBounds);
1075 if (!CodeGenOpts.SanitizeTrap.has(K: SanitizerKind::LocalBounds)) {
1076 Options.Rt = {
1077 /*MinRuntime=*/static_cast<bool>(
1078 CodeGenOpts.SanitizeMinimalRuntime),
1079 /*MayReturn=*/
1080 CodeGenOpts.SanitizeRecover.has(K: SanitizerKind::LocalBounds),
1081 };
1082 }
1083 FPM.addPass(Pass: BoundsCheckingPass(Options));
1084 });
1085
1086 // Don't add sanitizers if we are here from ThinLTO PostLink. That already
1087 // done on PreLink stage.
1088 if (!IsThinLTOPostLink) {
1089 addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB);
1090 addKCFIPass(TargetTriple, LangOpts, PB);
1091 }
1092
1093 if (std::optional<GCOVOptions> Options =
1094 getGCOVOptions(CodeGenOpts, LangOpts))
1095 PB.registerPipelineStartEPCallback(
1096 C: [Options](ModulePassManager &MPM, OptimizationLevel Level) {
1097 MPM.addPass(Pass: GCOVProfilerPass(*Options));
1098 });
1099 if (std::optional<InstrProfOptions> Options =
1100 getInstrProfOptions(CodeGenOpts, LangOpts))
1101 PB.registerPipelineStartEPCallback(
1102 C: [Options](ModulePassManager &MPM, OptimizationLevel Level) {
1103 MPM.addPass(Pass: InstrProfilingLoweringPass(*Options, false));
1104 });
1105
1106 // TODO: Consider passing the MemoryProfileOutput to the pass builder via
1107 // the PGOOptions, and set this up there.
1108 if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1109 PB.registerOptimizerLastEPCallback(C: [](ModulePassManager &MPM,
1110 OptimizationLevel Level,
1111 ThinOrFullLTOPhase) {
1112 MPM.addPass(Pass: createModuleToFunctionPassAdaptor(Pass: MemProfilerPass()));
1113 MPM.addPass(Pass: ModuleMemProfilerPass());
1114 });
1115 }
1116
1117 if (CodeGenOpts.FatLTO) {
1118 MPM.addPass(Pass: PB.buildFatLTODefaultPipeline(
1119 Level, ThinLTO: PrepareForThinLTO,
1120 EmitSummary: PrepareForThinLTO || shouldEmitRegularLTOSummary()));
1121 } else if (PrepareForThinLTO) {
1122 MPM.addPass(Pass: PB.buildThinLTOPreLinkDefaultPipeline(Level));
1123 } else if (PrepareForLTO) {
1124 MPM.addPass(Pass: PB.buildLTOPreLinkDefaultPipeline(Level));
1125 } else {
1126 MPM.addPass(Pass: PB.buildPerModuleDefaultPipeline(Level));
1127 }
1128 }
1129
1130 // Link against bitcodes supplied via the -mlink-builtin-bitcode option
1131 if (CodeGenOpts.LinkBitcodePostopt)
1132 MPM.addPass(Pass: LinkInModulesPass(BC));
1133
1134 if (LangOpts.HIPStdPar && !LangOpts.CUDAIsDevice &&
1135 LangOpts.HIPStdParInterposeAlloc)
1136 MPM.addPass(Pass: HipStdParAllocationInterpositionPass());
1137
1138 // Add a verifier pass if requested. We don't have to do this if the action
1139 // requires code generation because there will already be a verifier pass in
1140 // the code-generation pipeline.
1141 // Since we already added a verifier pass above, this
1142 // might even not run the analysis, if previous passes caused no changes.
1143 if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule)
1144 MPM.addPass(Pass: VerifierPass());
1145
1146 if (Action == Backend_EmitBC || Action == Backend_EmitLL ||
1147 CodeGenOpts.FatLTO) {
1148 if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
1149 if (!TheModule->getModuleFlag(Key: "EnableSplitLTOUnit"))
1150 TheModule->addModuleFlag(Behavior: llvm::Module::Error, Key: "EnableSplitLTOUnit",
1151 Val: CodeGenOpts.EnableSplitLTOUnit);
1152 if (Action == Backend_EmitBC) {
1153 if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
1154 ThinLinkOS = openOutputFile(Path: CodeGenOpts.ThinLinkBitcodeFile);
1155 if (!ThinLinkOS)
1156 return;
1157 }
1158 MPM.addPass(Pass: ThinLTOBitcodeWriterPass(
1159 *OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr));
1160 } else if (Action == Backend_EmitLL) {
1161 MPM.addPass(Pass: PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists,
1162 /*EmitLTOSummary=*/true));
1163 }
1164 } else {
1165 // Emit a module summary by default for Regular LTO except for ld64
1166 // targets
1167 bool EmitLTOSummary = shouldEmitRegularLTOSummary();
1168 if (EmitLTOSummary) {
1169 if (!TheModule->getModuleFlag(Key: "ThinLTO") && !CodeGenOpts.UnifiedLTO)
1170 TheModule->addModuleFlag(Behavior: llvm::Module::Error, Key: "ThinLTO", Val: uint32_t(0));
1171 if (!TheModule->getModuleFlag(Key: "EnableSplitLTOUnit"))
1172 TheModule->addModuleFlag(Behavior: llvm::Module::Error, Key: "EnableSplitLTOUnit",
1173 Val: uint32_t(1));
1174 }
1175 if (Action == Backend_EmitBC) {
1176 MPM.addPass(Pass: BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists,
1177 EmitLTOSummary));
1178 } else if (Action == Backend_EmitLL) {
1179 MPM.addPass(Pass: PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists,
1180 EmitLTOSummary));
1181 }
1182 }
1183
1184 if (shouldEmitUnifiedLTOModueFlag())
1185 TheModule->addModuleFlag(Behavior: llvm::Module::Error, Key: "UnifiedLTO", Val: uint32_t(1));
1186 }
1187
1188 // FIXME: This should eventually be replaced by a first-class driver option.
1189 // This should be done for both clang and flang simultaneously.
1190 // Print a textual, '-passes=' compatible, representation of pipeline if
1191 // requested.
1192 if (PrintPipelinePasses) {
1193 MPM.printPipeline(OS&: outs(), MapClassName2PassName: [&PIC](StringRef ClassName) {
1194 auto PassName = PIC.getPassNameForClassName(ClassName);
1195 return PassName.empty() ? ClassName : PassName;
1196 });
1197 outs() << "\n";
1198 return;
1199 }
1200
1201 // Now that we have all of the passes ready, run them.
1202 {
1203 PrettyStackTraceString CrashInfo("Optimizer");
1204 llvm::TimeTraceScope TimeScope("Optimizer");
1205 Timer timer;
1206 if (CI.getCodeGenOpts().TimePasses) {
1207 timer.init(TimerName: "optimizer", TimerDescription: "Optimizer", tg&: CI.getTimerGroup());
1208 CI.getFrontendTimer().yieldTo(timer);
1209 }
1210 MPM.run(IR&: *TheModule, AM&: MAM);
1211 if (CI.getCodeGenOpts().TimePasses)
1212 timer.yieldTo(CI.getFrontendTimer());
1213 }
1214}
1215
1216void EmitAssemblyHelper::RunCodegenPipeline(
1217 BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
1218 std::unique_ptr<llvm::ToolOutputFile> &DwoOS) {
1219 // We still use the legacy PM to run the codegen pipeline since the new PM
1220 // does not work with the codegen pipeline.
1221 // FIXME: make the new PM work with the codegen pipeline.
1222 legacy::PassManager CodeGenPasses;
1223
1224 // Append any output we need to the pass manager.
1225 switch (Action) {
1226 case Backend_EmitAssembly:
1227 case Backend_EmitMCNull:
1228 case Backend_EmitObj:
1229 CodeGenPasses.add(
1230 P: createTargetTransformInfoWrapperPass(TIRA: getTargetIRAnalysis()));
1231 if (!CodeGenOpts.SplitDwarfOutput.empty()) {
1232 DwoOS = openOutputFile(Path: CodeGenOpts.SplitDwarfOutput);
1233 if (!DwoOS)
1234 return;
1235 }
1236 if (!AddEmitPasses(CodeGenPasses, Action, OS&: *OS,
1237 DwoOS: DwoOS ? &DwoOS->os() : nullptr))
1238 // FIXME: Should we handle this error differently?
1239 return;
1240 break;
1241 default:
1242 return;
1243 }
1244
1245 // If -print-pipeline-passes is requested, don't run the legacy pass manager.
1246 // FIXME: when codegen is switched to use the new pass manager, it should also
1247 // emit pass names here.
1248 if (PrintPipelinePasses) {
1249 return;
1250 }
1251
1252 {
1253 PrettyStackTraceString CrashInfo("Code generation");
1254 llvm::TimeTraceScope TimeScope("CodeGenPasses");
1255 Timer timer;
1256 if (CI.getCodeGenOpts().TimePasses) {
1257 timer.init(TimerName: "codegen", TimerDescription: "Machine code generation", tg&: CI.getTimerGroup());
1258 CI.getFrontendTimer().yieldTo(timer);
1259 }
1260 CodeGenPasses.run(M&: *TheModule);
1261 if (CI.getCodeGenOpts().TimePasses)
1262 timer.yieldTo(CI.getFrontendTimer());
1263 }
1264}
1265
1266void EmitAssemblyHelper::emitAssembly(BackendAction Action,
1267 std::unique_ptr<raw_pwrite_stream> OS,
1268 BackendConsumer *BC) {
1269 setCommandLineOpts(CodeGenOpts);
1270
1271 bool RequiresCodeGen = actionRequiresCodeGen(Action);
1272 CreateTargetMachine(MustCreateTM: RequiresCodeGen);
1273
1274 if (RequiresCodeGen && !TM)
1275 return;
1276 if (TM)
1277 TheModule->setDataLayout(TM->createDataLayout());
1278
1279 // Before executing passes, print the final values of the LLVM options.
1280 cl::PrintOptionValues();
1281
1282 std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
1283 RunOptimizationPipeline(Action, OS, ThinLinkOS, BC);
1284 RunCodegenPipeline(Action, OS, DwoOS);
1285
1286 if (ThinLinkOS)
1287 ThinLinkOS->keep();
1288 if (DwoOS)
1289 DwoOS->keep();
1290}
1291
1292static void
1293runThinLTOBackend(CompilerInstance &CI, ModuleSummaryIndex *CombinedIndex,
1294 llvm::Module *M, std::unique_ptr<raw_pwrite_stream> OS,
1295 std::string SampleProfile, std::string ProfileRemapping,
1296 BackendAction Action) {
1297 DiagnosticsEngine &Diags = CI.getDiagnostics();
1298 const auto &CGOpts = CI.getCodeGenOpts();
1299 const auto &TOpts = CI.getTargetOpts();
1300 DenseMap<StringRef, DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
1301 ModuleToDefinedGVSummaries;
1302 CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
1303
1304 setCommandLineOpts(CGOpts);
1305
1306 // We can simply import the values mentioned in the combined index, since
1307 // we should only invoke this using the individual indexes written out
1308 // via a WriteIndexesThinBackend.
1309 FunctionImporter::ImportIDTable ImportIDs;
1310 FunctionImporter::ImportMapTy ImportList(ImportIDs);
1311 if (!lto::initImportList(M: *M, CombinedIndex: *CombinedIndex, ImportList))
1312 return;
1313
1314 auto AddStream = [&](size_t Task, const Twine &ModuleName) {
1315 return std::make_unique<CachedFileStream>(args: std::move(OS),
1316 args: CGOpts.ObjectFilenameForDebug);
1317 };
1318 lto::Config Conf;
1319 if (CGOpts.SaveTempsFilePrefix != "") {
1320 if (Error E = Conf.addSaveTemps(OutputFileName: CGOpts.SaveTempsFilePrefix + ".",
1321 /* UseInputModulePath */ false)) {
1322 handleAllErrors(E: std::move(E), Handlers: [&](ErrorInfoBase &EIB) {
1323 errs() << "Error setting up ThinLTO save-temps: " << EIB.message()
1324 << '\n';
1325 });
1326 }
1327 }
1328 Conf.CPU = TOpts.CPU;
1329 Conf.CodeModel = getCodeModel(CodeGenOpts: CGOpts);
1330 Conf.MAttrs = TOpts.Features;
1331 Conf.RelocModel = CGOpts.RelocationModel;
1332 std::optional<CodeGenOptLevel> OptLevelOrNone =
1333 CodeGenOpt::getLevel(OL: CGOpts.OptimizationLevel);
1334 assert(OptLevelOrNone && "Invalid optimization level!");
1335 Conf.CGOptLevel = *OptLevelOrNone;
1336 Conf.OptLevel = CGOpts.OptimizationLevel;
1337 initTargetOptions(CI, Diags, Options&: Conf.Options);
1338 Conf.SampleProfile = std::move(SampleProfile);
1339 Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops;
1340 Conf.PTO.LoopInterchange = CGOpts.InterchangeLoops;
1341 // For historical reasons, loop interleaving is set to mirror setting for loop
1342 // unrolling.
1343 Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops;
1344 Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop;
1345 Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP;
1346 // Only enable CGProfilePass when using integrated assembler, since
1347 // non-integrated assemblers don't recognize .cgprofile section.
1348 Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS;
1349
1350 // Context sensitive profile.
1351 if (CGOpts.hasProfileCSIRInstr()) {
1352 Conf.RunCSIRInstr = true;
1353 Conf.CSIRProfile = getProfileGenName(CodeGenOpts: CGOpts);
1354 } else if (CGOpts.hasProfileCSIRUse()) {
1355 Conf.RunCSIRInstr = false;
1356 Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath);
1357 }
1358
1359 Conf.ProfileRemapping = std::move(ProfileRemapping);
1360 Conf.DebugPassManager = CGOpts.DebugPassManager;
1361 Conf.VerifyEach = CGOpts.VerifyEach;
1362 Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness;
1363 Conf.RemarksFilename = CGOpts.OptRecordFile;
1364 Conf.RemarksPasses = CGOpts.OptRecordPasses;
1365 Conf.RemarksFormat = CGOpts.OptRecordFormat;
1366 Conf.SplitDwarfFile = CGOpts.SplitDwarfFile;
1367 Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput;
1368 switch (Action) {
1369 case Backend_EmitNothing:
1370 Conf.PreCodeGenModuleHook = [](size_t Task, const llvm::Module &Mod) {
1371 return false;
1372 };
1373 break;
1374 case Backend_EmitLL:
1375 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) {
1376 M->print(OS&: *OS, AAW: nullptr, ShouldPreserveUseListOrder: CGOpts.EmitLLVMUseLists);
1377 return false;
1378 };
1379 break;
1380 case Backend_EmitBC:
1381 Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) {
1382 WriteBitcodeToFile(M: *M, Out&: *OS, ShouldPreserveUseListOrder: CGOpts.EmitLLVMUseLists);
1383 return false;
1384 };
1385 break;
1386 default:
1387 Conf.CGFileType = getCodeGenFileType(Action);
1388 break;
1389 }
1390 if (Error E =
1391 thinBackend(C: Conf, Task: -1, AddStream, M&: *M, CombinedIndex: *CombinedIndex, ImportList,
1392 DefinedGlobals: ModuleToDefinedGVSummaries[M->getModuleIdentifier()],
1393 /*ModuleMap=*/nullptr, CodeGenOnly: Conf.CodeGenOnly,
1394 /*IRAddStream=*/nullptr, CmdArgs: CGOpts.CmdArgs)) {
1395 handleAllErrors(E: std::move(E), Handlers: [&](ErrorInfoBase &EIB) {
1396 errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
1397 });
1398 }
1399}
1400
1401void clang::emitBackendOutput(CompilerInstance &CI, CodeGenOptions &CGOpts,
1402 StringRef TDesc, llvm::Module *M,
1403 BackendAction Action,
1404 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS,
1405 std::unique_ptr<raw_pwrite_stream> OS,
1406 BackendConsumer *BC) {
1407 llvm::TimeTraceScope TimeScope("Backend");
1408 DiagnosticsEngine &Diags = CI.getDiagnostics();
1409
1410 std::unique_ptr<llvm::Module> EmptyModule;
1411 if (!CGOpts.ThinLTOIndexFile.empty()) {
1412 // If we are performing a ThinLTO importing compile, load the function index
1413 // into memory and pass it into runThinLTOBackend, which will run the
1414 // function importer and invoke LTO passes.
1415 std::unique_ptr<ModuleSummaryIndex> CombinedIndex;
1416 if (Error E = llvm::getModuleSummaryIndexForFile(
1417 Path: CGOpts.ThinLTOIndexFile,
1418 /*IgnoreEmptyThinLTOIndexFile*/ true)
1419 .moveInto(Value&: CombinedIndex)) {
1420 logAllUnhandledErrors(E: std::move(E), OS&: errs(),
1421 ErrorBanner: "Error loading index file '" +
1422 CGOpts.ThinLTOIndexFile + "': ");
1423 return;
1424 }
1425
1426 // A null CombinedIndex means we should skip ThinLTO compilation
1427 // (LLVM will optionally ignore empty index files, returning null instead
1428 // of an error).
1429 if (CombinedIndex) {
1430 if (!CombinedIndex->skipModuleByDistributedBackend()) {
1431 runThinLTOBackend(CI, CombinedIndex: CombinedIndex.get(), M, OS: std::move(OS),
1432 SampleProfile: CGOpts.SampleProfileFile, ProfileRemapping: CGOpts.ProfileRemappingFile,
1433 Action);
1434 return;
1435 }
1436 // Distributed indexing detected that nothing from the module is needed
1437 // for the final linking. So we can skip the compilation. We sill need to
1438 // output an empty object file to make sure that a linker does not fail
1439 // trying to read it. Also for some features, like CFI, we must skip
1440 // the compilation as CombinedIndex does not contain all required
1441 // information.
1442 EmptyModule = std::make_unique<llvm::Module>(args: "empty", args&: M->getContext());
1443 EmptyModule->setTargetTriple(M->getTargetTriple());
1444 M = EmptyModule.get();
1445 }
1446 }
1447
1448 EmitAssemblyHelper AsmHelper(CI, CGOpts, M, VFS);
1449 AsmHelper.emitAssembly(Action, OS: std::move(OS), BC);
1450
1451 // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
1452 // DataLayout.
1453 if (AsmHelper.TM) {
1454 std::string DLDesc = M->getDataLayout().getStringRepresentation();
1455 if (DLDesc != TDesc) {
1456 unsigned DiagID = Diags.getCustomDiagID(
1457 L: DiagnosticsEngine::Error, FormatString: "backend data layout '%0' does not match "
1458 "expected target description '%1'");
1459 Diags.Report(DiagID) << DLDesc << TDesc;
1460 }
1461 }
1462}
1463
1464// With -fembed-bitcode, save a copy of the llvm IR as data in the
1465// __LLVM,__bitcode section.
1466void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
1467 llvm::MemoryBufferRef Buf) {
1468 if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
1469 return;
1470 llvm::embedBitcodeInModule(
1471 M&: *M, Buf, EmbedBitcode: CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker,
1472 EmbedCmdline: CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode,
1473 CmdArgs: CGOpts.CmdArgs);
1474}
1475
1476void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts,
1477 DiagnosticsEngine &Diags) {
1478 if (CGOpts.OffloadObjects.empty())
1479 return;
1480
1481 for (StringRef OffloadObject : CGOpts.OffloadObjects) {
1482 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr =
1483 llvm::MemoryBuffer::getFileOrSTDIN(Filename: OffloadObject);
1484 if (ObjectOrErr.getError()) {
1485 auto DiagID = Diags.getCustomDiagID(L: DiagnosticsEngine::Error,
1486 FormatString: "could not open '%0' for embedding");
1487 Diags.Report(DiagID) << OffloadObject;
1488 return;
1489 }
1490
1491 llvm::embedBufferInModule(M&: *M, Buf: **ObjectOrErr, SectionName: ".llvm.offloading",
1492 Alignment: Align(object::OffloadBinary::getAlignment()));
1493 }
1494}
1495