| 1 | //===------- CGHLSLBuiltins.cpp - Emit LLVM Code for HLSL builtins --------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This contains code to emit HLSL Builtin calls as LLVM code. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "CGBuiltin.h" |
| 14 | #include "CGHLSLRuntime.h" |
| 15 | #include "CodeGenFunction.h" |
| 16 | |
| 17 | using namespace clang; |
| 18 | using namespace CodeGen; |
| 19 | using namespace llvm; |
| 20 | |
| 21 | static Value *handleAsDoubleBuiltin(CodeGenFunction &CGF, const CallExpr *E) { |
| 22 | assert((E->getArg(0)->getType()->hasUnsignedIntegerRepresentation() && |
| 23 | E->getArg(1)->getType()->hasUnsignedIntegerRepresentation()) && |
| 24 | "asdouble operands types mismatch" ); |
| 25 | Value *OpLowBits = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 26 | Value *OpHighBits = CGF.EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 27 | |
| 28 | llvm::Type *ResultType = CGF.DoubleTy; |
| 29 | int N = 1; |
| 30 | if (auto *VTy = E->getArg(Arg: 0)->getType()->getAs<clang::VectorType>()) { |
| 31 | N = VTy->getNumElements(); |
| 32 | ResultType = llvm::FixedVectorType::get(ElementType: CGF.DoubleTy, NumElts: N); |
| 33 | } |
| 34 | |
| 35 | if (CGF.CGM.getTarget().getTriple().isDXIL()) |
| 36 | return CGF.Builder.CreateIntrinsic( |
| 37 | /*ReturnType=*/RetTy: ResultType, ID: Intrinsic::dx_asdouble, |
| 38 | Args: {OpLowBits, OpHighBits}, FMFSource: nullptr, Name: "hlsl.asdouble" ); |
| 39 | |
| 40 | if (!E->getArg(Arg: 0)->getType()->isVectorType()) { |
| 41 | OpLowBits = CGF.Builder.CreateVectorSplat(NumElts: 1, V: OpLowBits); |
| 42 | OpHighBits = CGF.Builder.CreateVectorSplat(NumElts: 1, V: OpHighBits); |
| 43 | } |
| 44 | |
| 45 | llvm::SmallVector<int> Mask; |
| 46 | for (int i = 0; i < N; i++) { |
| 47 | Mask.push_back(Elt: i); |
| 48 | Mask.push_back(Elt: i + N); |
| 49 | } |
| 50 | |
| 51 | Value *BitVec = CGF.Builder.CreateShuffleVector(V1: OpLowBits, V2: OpHighBits, Mask); |
| 52 | |
| 53 | return CGF.Builder.CreateBitCast(V: BitVec, DestTy: ResultType); |
| 54 | } |
| 55 | |
| 56 | static Value *handleHlslClip(const CallExpr *E, CodeGenFunction *CGF) { |
| 57 | Value *Op0 = CGF->EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 58 | |
| 59 | Constant *FZeroConst = ConstantFP::getZero(Ty: CGF->FloatTy); |
| 60 | Value *CMP; |
| 61 | Value *LastInstr; |
| 62 | |
| 63 | if (const auto *VecTy = E->getArg(Arg: 0)->getType()->getAs<clang::VectorType>()) { |
| 64 | FZeroConst = ConstantVector::getSplat( |
| 65 | EC: ElementCount::getFixed(MinVal: VecTy->getNumElements()), Elt: FZeroConst); |
| 66 | auto *FCompInst = CGF->Builder.CreateFCmpOLT(LHS: Op0, RHS: FZeroConst); |
| 67 | CMP = CGF->Builder.CreateIntrinsic( |
| 68 | RetTy: CGF->Builder.getInt1Ty(), ID: CGF->CGM.getHLSLRuntime().getAnyIntrinsic(), |
| 69 | Args: {FCompInst}); |
| 70 | } else { |
| 71 | CMP = CGF->Builder.CreateFCmpOLT(LHS: Op0, RHS: FZeroConst); |
| 72 | } |
| 73 | |
| 74 | if (CGF->CGM.getTarget().getTriple().isDXIL()) { |
| 75 | LastInstr = CGF->Builder.CreateIntrinsic(ID: Intrinsic::dx_discard, Args: {CMP}); |
| 76 | } else if (CGF->CGM.getTarget().getTriple().isSPIRV()) { |
| 77 | BasicBlock *LT0 = CGF->createBasicBlock(name: "lt0" , parent: CGF->CurFn); |
| 78 | BasicBlock *End = CGF->createBasicBlock(name: "end" , parent: CGF->CurFn); |
| 79 | |
| 80 | CGF->Builder.CreateCondBr(Cond: CMP, True: LT0, False: End); |
| 81 | |
| 82 | CGF->Builder.SetInsertPoint(LT0); |
| 83 | |
| 84 | CGF->Builder.CreateIntrinsic(ID: Intrinsic::spv_discard, Args: {}); |
| 85 | |
| 86 | LastInstr = CGF->Builder.CreateBr(Dest: End); |
| 87 | CGF->Builder.SetInsertPoint(End); |
| 88 | } else { |
| 89 | llvm_unreachable("Backend Codegen not supported." ); |
| 90 | } |
| 91 | |
| 92 | return LastInstr; |
| 93 | } |
| 94 | |
| 95 | static Value *handleHlslSplitdouble(const CallExpr *E, CodeGenFunction *CGF) { |
| 96 | Value *Op0 = CGF->EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 97 | const auto *OutArg1 = dyn_cast<HLSLOutArgExpr>(Val: E->getArg(Arg: 1)); |
| 98 | const auto *OutArg2 = dyn_cast<HLSLOutArgExpr>(Val: E->getArg(Arg: 2)); |
| 99 | |
| 100 | CallArgList Args; |
| 101 | LValue Op1TmpLValue = |
| 102 | CGF->EmitHLSLOutArgExpr(E: OutArg1, Args, Ty: OutArg1->getType()); |
| 103 | LValue Op2TmpLValue = |
| 104 | CGF->EmitHLSLOutArgExpr(E: OutArg2, Args, Ty: OutArg2->getType()); |
| 105 | |
| 106 | if (CGF->getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) |
| 107 | Args.reverseWritebacks(); |
| 108 | |
| 109 | Value *LowBits = nullptr; |
| 110 | Value *HighBits = nullptr; |
| 111 | |
| 112 | if (CGF->CGM.getTarget().getTriple().isDXIL()) { |
| 113 | llvm::Type *RetElementTy = CGF->Int32Ty; |
| 114 | if (auto *Op0VecTy = E->getArg(Arg: 0)->getType()->getAs<clang::VectorType>()) |
| 115 | RetElementTy = llvm::VectorType::get( |
| 116 | ElementType: CGF->Int32Ty, EC: ElementCount::getFixed(MinVal: Op0VecTy->getNumElements())); |
| 117 | auto *RetTy = llvm::StructType::get(elt1: RetElementTy, elts: RetElementTy); |
| 118 | |
| 119 | CallInst *CI = CGF->Builder.CreateIntrinsic( |
| 120 | RetTy, ID: Intrinsic::dx_splitdouble, Args: {Op0}, FMFSource: nullptr, Name: "hlsl.splitdouble" ); |
| 121 | |
| 122 | LowBits = CGF->Builder.CreateExtractValue(Agg: CI, Idxs: 0); |
| 123 | HighBits = CGF->Builder.CreateExtractValue(Agg: CI, Idxs: 1); |
| 124 | } else { |
| 125 | // For Non DXIL targets we generate the instructions. |
| 126 | |
| 127 | if (!Op0->getType()->isVectorTy()) { |
| 128 | FixedVectorType *DestTy = FixedVectorType::get(ElementType: CGF->Int32Ty, NumElts: 2); |
| 129 | Value *Bitcast = CGF->Builder.CreateBitCast(V: Op0, DestTy); |
| 130 | |
| 131 | LowBits = CGF->Builder.CreateExtractElement(Vec: Bitcast, Idx: (uint64_t)0); |
| 132 | HighBits = CGF->Builder.CreateExtractElement(Vec: Bitcast, Idx: 1); |
| 133 | } else { |
| 134 | int NumElements = 1; |
| 135 | if (const auto *VecTy = |
| 136 | E->getArg(Arg: 0)->getType()->getAs<clang::VectorType>()) |
| 137 | NumElements = VecTy->getNumElements(); |
| 138 | |
| 139 | FixedVectorType *Uint32VecTy = |
| 140 | FixedVectorType::get(ElementType: CGF->Int32Ty, NumElts: NumElements * 2); |
| 141 | Value *Uint32Vec = CGF->Builder.CreateBitCast(V: Op0, DestTy: Uint32VecTy); |
| 142 | if (NumElements == 1) { |
| 143 | LowBits = CGF->Builder.CreateExtractElement(Vec: Uint32Vec, Idx: (uint64_t)0); |
| 144 | HighBits = CGF->Builder.CreateExtractElement(Vec: Uint32Vec, Idx: 1); |
| 145 | } else { |
| 146 | SmallVector<int> EvenMask, OddMask; |
| 147 | for (int I = 0, E = NumElements; I != E; ++I) { |
| 148 | EvenMask.push_back(Elt: I * 2); |
| 149 | OddMask.push_back(Elt: I * 2 + 1); |
| 150 | } |
| 151 | LowBits = CGF->Builder.CreateShuffleVector(V: Uint32Vec, Mask: EvenMask); |
| 152 | HighBits = CGF->Builder.CreateShuffleVector(V: Uint32Vec, Mask: OddMask); |
| 153 | } |
| 154 | } |
| 155 | } |
| 156 | CGF->Builder.CreateStore(Val: LowBits, Addr: Op1TmpLValue.getAddress()); |
| 157 | auto *LastInst = |
| 158 | CGF->Builder.CreateStore(Val: HighBits, Addr: Op2TmpLValue.getAddress()); |
| 159 | CGF->EmitWritebacks(Args); |
| 160 | return LastInst; |
| 161 | } |
| 162 | |
| 163 | // Return dot product intrinsic that corresponds to the QT scalar type |
| 164 | static Intrinsic::ID getDotProductIntrinsic(CGHLSLRuntime &RT, QualType QT) { |
| 165 | if (QT->isFloatingType()) |
| 166 | return RT.getFDotIntrinsic(); |
| 167 | if (QT->isSignedIntegerType()) |
| 168 | return RT.getSDotIntrinsic(); |
| 169 | assert(QT->isUnsignedIntegerType()); |
| 170 | return RT.getUDotIntrinsic(); |
| 171 | } |
| 172 | |
| 173 | static Intrinsic::ID getFirstBitHighIntrinsic(CGHLSLRuntime &RT, QualType QT) { |
| 174 | if (QT->hasSignedIntegerRepresentation()) { |
| 175 | return RT.getFirstBitSHighIntrinsic(); |
| 176 | } |
| 177 | |
| 178 | assert(QT->hasUnsignedIntegerRepresentation()); |
| 179 | return RT.getFirstBitUHighIntrinsic(); |
| 180 | } |
| 181 | |
| 182 | // Return wave active sum that corresponds to the QT scalar type |
| 183 | static Intrinsic::ID getWaveActiveSumIntrinsic(llvm::Triple::ArchType Arch, |
| 184 | CGHLSLRuntime &RT, QualType QT) { |
| 185 | switch (Arch) { |
| 186 | case llvm::Triple::spirv: |
| 187 | return Intrinsic::spv_wave_reduce_sum; |
| 188 | case llvm::Triple::dxil: { |
| 189 | if (QT->isUnsignedIntegerType()) |
| 190 | return Intrinsic::dx_wave_reduce_usum; |
| 191 | return Intrinsic::dx_wave_reduce_sum; |
| 192 | } |
| 193 | default: |
| 194 | llvm_unreachable("Intrinsic WaveActiveSum" |
| 195 | " not supported by target architecture" ); |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | // Return wave active sum that corresponds to the QT scalar type |
| 200 | static Intrinsic::ID getWaveActiveMaxIntrinsic(llvm::Triple::ArchType Arch, |
| 201 | CGHLSLRuntime &RT, QualType QT) { |
| 202 | switch (Arch) { |
| 203 | case llvm::Triple::spirv: |
| 204 | if (QT->isUnsignedIntegerType()) |
| 205 | return Intrinsic::spv_wave_reduce_umax; |
| 206 | return Intrinsic::spv_wave_reduce_max; |
| 207 | case llvm::Triple::dxil: { |
| 208 | if (QT->isUnsignedIntegerType()) |
| 209 | return Intrinsic::dx_wave_reduce_umax; |
| 210 | return Intrinsic::dx_wave_reduce_max; |
| 211 | } |
| 212 | default: |
| 213 | llvm_unreachable("Intrinsic WaveActiveMax" |
| 214 | " not supported by target architecture" ); |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | // Returns the mangled name for a builtin function that the SPIR-V backend |
| 219 | // will expand into a spec Constant. |
| 220 | static std::string getSpecConstantFunctionName(clang::QualType SpecConstantType, |
| 221 | ASTContext &Context) { |
| 222 | // The parameter types for our conceptual intrinsic function. |
| 223 | QualType ClangParamTypes[] = {Context.IntTy, SpecConstantType}; |
| 224 | |
| 225 | // Create a temporary FunctionDecl for the builtin fuction. It won't be |
| 226 | // added to the AST. |
| 227 | FunctionProtoType::ExtProtoInfo EPI; |
| 228 | QualType FnType = |
| 229 | Context.getFunctionType(ResultTy: SpecConstantType, Args: ClangParamTypes, EPI); |
| 230 | DeclarationName FuncName = &Context.Idents.get(Name: "__spirv_SpecConstant" ); |
| 231 | FunctionDecl *FnDeclForMangling = FunctionDecl::Create( |
| 232 | C&: Context, DC: Context.getTranslationUnitDecl(), StartLoc: SourceLocation(), |
| 233 | NLoc: SourceLocation(), N: FuncName, T: FnType, /*TSI=*/TInfo: nullptr, SC: SC_Extern); |
| 234 | |
| 235 | // Attach the created parameter declarations to the function declaration. |
| 236 | SmallVector<ParmVarDecl *, 2> ParamDecls; |
| 237 | for (QualType ParamType : ClangParamTypes) { |
| 238 | ParmVarDecl *PD = ParmVarDecl::Create( |
| 239 | C&: Context, DC: FnDeclForMangling, StartLoc: SourceLocation(), IdLoc: SourceLocation(), |
| 240 | /*IdentifierInfo*/ Id: nullptr, T: ParamType, /*TSI*/ TInfo: nullptr, S: SC_None, |
| 241 | /*DefaultArg*/ DefArg: nullptr); |
| 242 | ParamDecls.push_back(Elt: PD); |
| 243 | } |
| 244 | FnDeclForMangling->setParams(ParamDecls); |
| 245 | |
| 246 | // Get the mangled name. |
| 247 | std::string Name; |
| 248 | llvm::raw_string_ostream MangledNameStream(Name); |
| 249 | std::unique_ptr<MangleContext> Mangler(Context.createMangleContext()); |
| 250 | Mangler->mangleName(GD: FnDeclForMangling, MangledNameStream); |
| 251 | MangledNameStream.flush(); |
| 252 | |
| 253 | return Name; |
| 254 | } |
| 255 | |
| 256 | Value *CodeGenFunction::EmitHLSLBuiltinExpr(unsigned BuiltinID, |
| 257 | const CallExpr *E, |
| 258 | ReturnValueSlot ReturnValue) { |
| 259 | if (!getLangOpts().HLSL) |
| 260 | return nullptr; |
| 261 | |
| 262 | switch (BuiltinID) { |
| 263 | case Builtin::BI__builtin_hlsl_adduint64: { |
| 264 | Value *OpA = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 265 | Value *OpB = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 266 | QualType Arg0Ty = E->getArg(Arg: 0)->getType(); |
| 267 | uint64_t NumElements = Arg0Ty->castAs<VectorType>()->getNumElements(); |
| 268 | assert(Arg0Ty == E->getArg(1)->getType() && |
| 269 | "AddUint64 operand types must match" ); |
| 270 | assert(Arg0Ty->hasIntegerRepresentation() && |
| 271 | "AddUint64 operands must have an integer representation" ); |
| 272 | assert((NumElements == 2 || NumElements == 4) && |
| 273 | "AddUint64 operands must have 2 or 4 elements" ); |
| 274 | |
| 275 | llvm::Value *LowA; |
| 276 | llvm::Value *HighA; |
| 277 | llvm::Value *LowB; |
| 278 | llvm::Value *HighB; |
| 279 | |
| 280 | // Obtain low and high words of inputs A and B |
| 281 | if (NumElements == 2) { |
| 282 | LowA = Builder.CreateExtractElement(Vec: OpA, Idx: (uint64_t)0, Name: "LowA" ); |
| 283 | HighA = Builder.CreateExtractElement(Vec: OpA, Idx: (uint64_t)1, Name: "HighA" ); |
| 284 | LowB = Builder.CreateExtractElement(Vec: OpB, Idx: (uint64_t)0, Name: "LowB" ); |
| 285 | HighB = Builder.CreateExtractElement(Vec: OpB, Idx: (uint64_t)1, Name: "HighB" ); |
| 286 | } else { |
| 287 | LowA = Builder.CreateShuffleVector(V: OpA, Mask: {0, 2}, Name: "LowA" ); |
| 288 | HighA = Builder.CreateShuffleVector(V: OpA, Mask: {1, 3}, Name: "HighA" ); |
| 289 | LowB = Builder.CreateShuffleVector(V: OpB, Mask: {0, 2}, Name: "LowB" ); |
| 290 | HighB = Builder.CreateShuffleVector(V: OpB, Mask: {1, 3}, Name: "HighB" ); |
| 291 | } |
| 292 | |
| 293 | // Use an uadd_with_overflow to compute the sum of low words and obtain a |
| 294 | // carry value |
| 295 | llvm::Value *Carry; |
| 296 | llvm::Value *LowSum = EmitOverflowIntrinsic( |
| 297 | CGF&: *this, IntrinsicID: Intrinsic::uadd_with_overflow, X: LowA, Y: LowB, Carry); |
| 298 | llvm::Value *ZExtCarry = |
| 299 | Builder.CreateZExt(V: Carry, DestTy: HighA->getType(), Name: "CarryZExt" ); |
| 300 | |
| 301 | // Sum the high words and the carry |
| 302 | llvm::Value *HighSum = Builder.CreateAdd(LHS: HighA, RHS: HighB, Name: "HighSum" ); |
| 303 | llvm::Value *HighSumPlusCarry = |
| 304 | Builder.CreateAdd(LHS: HighSum, RHS: ZExtCarry, Name: "HighSumPlusCarry" ); |
| 305 | |
| 306 | if (NumElements == 4) { |
| 307 | return Builder.CreateShuffleVector(V1: LowSum, V2: HighSumPlusCarry, Mask: {0, 2, 1, 3}, |
| 308 | Name: "hlsl.AddUint64" ); |
| 309 | } |
| 310 | |
| 311 | llvm::Value *Result = PoisonValue::get(T: OpA->getType()); |
| 312 | Result = Builder.CreateInsertElement(Vec: Result, NewElt: LowSum, Idx: (uint64_t)0, |
| 313 | Name: "hlsl.AddUint64.upto0" ); |
| 314 | Result = Builder.CreateInsertElement(Vec: Result, NewElt: HighSumPlusCarry, Idx: (uint64_t)1, |
| 315 | Name: "hlsl.AddUint64" ); |
| 316 | return Result; |
| 317 | } |
| 318 | case Builtin::BI__builtin_hlsl_resource_getpointer: { |
| 319 | Value *HandleOp = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 320 | Value *IndexOp = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 321 | |
| 322 | llvm::Type *RetTy = ConvertType(T: E->getType()); |
| 323 | return Builder.CreateIntrinsic( |
| 324 | RetTy, ID: CGM.getHLSLRuntime().getCreateResourceGetPointerIntrinsic(), |
| 325 | Args: ArrayRef<Value *>{HandleOp, IndexOp}); |
| 326 | } |
| 327 | case Builtin::BI__builtin_hlsl_resource_uninitializedhandle: { |
| 328 | llvm::Type *HandleTy = CGM.getTypes().ConvertType(T: E->getType()); |
| 329 | return llvm::PoisonValue::get(T: HandleTy); |
| 330 | } |
| 331 | case Builtin::BI__builtin_hlsl_resource_handlefrombinding: { |
| 332 | llvm::Type *HandleTy = CGM.getTypes().ConvertType(T: E->getType()); |
| 333 | Value *RegisterOp = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 334 | Value *SpaceOp = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 335 | Value *RangeOp = EmitScalarExpr(E: E->getArg(Arg: 3)); |
| 336 | Value *IndexOp = EmitScalarExpr(E: E->getArg(Arg: 4)); |
| 337 | Value *Name = EmitScalarExpr(E: E->getArg(Arg: 5)); |
| 338 | // FIXME: NonUniformResourceIndex bit is not yet implemented |
| 339 | // (llvm/llvm-project#135452) |
| 340 | Value *NonUniform = |
| 341 | llvm::ConstantInt::get(Ty: llvm::Type::getInt1Ty(C&: getLLVMContext()), V: false); |
| 342 | |
| 343 | llvm::Intrinsic::ID IntrinsicID = |
| 344 | CGM.getHLSLRuntime().getCreateHandleFromBindingIntrinsic(); |
| 345 | SmallVector<Value *> Args{SpaceOp, RegisterOp, RangeOp, |
| 346 | IndexOp, NonUniform, Name}; |
| 347 | return Builder.CreateIntrinsic(RetTy: HandleTy, ID: IntrinsicID, Args); |
| 348 | } |
| 349 | case Builtin::BI__builtin_hlsl_resource_handlefromimplicitbinding: { |
| 350 | llvm::Type *HandleTy = CGM.getTypes().ConvertType(T: E->getType()); |
| 351 | Value *SpaceOp = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 352 | Value *RangeOp = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 353 | Value *IndexOp = EmitScalarExpr(E: E->getArg(Arg: 3)); |
| 354 | Value *OrderID = EmitScalarExpr(E: E->getArg(Arg: 4)); |
| 355 | Value *Name = EmitScalarExpr(E: E->getArg(Arg: 5)); |
| 356 | // FIXME: NonUniformResourceIndex bit is not yet implemented |
| 357 | // (llvm/llvm-project#135452) |
| 358 | Value *NonUniform = |
| 359 | llvm::ConstantInt::get(Ty: llvm::Type::getInt1Ty(C&: getLLVMContext()), V: false); |
| 360 | |
| 361 | llvm::Intrinsic::ID IntrinsicID = |
| 362 | CGM.getHLSLRuntime().getCreateHandleFromImplicitBindingIntrinsic(); |
| 363 | SmallVector<Value *> Args{OrderID, SpaceOp, RangeOp, |
| 364 | IndexOp, NonUniform, Name}; |
| 365 | return Builder.CreateIntrinsic(RetTy: HandleTy, ID: IntrinsicID, Args); |
| 366 | } |
| 367 | case Builtin::BI__builtin_hlsl_all: { |
| 368 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 369 | return Builder.CreateIntrinsic( |
| 370 | /*ReturnType=*/RetTy: llvm::Type::getInt1Ty(C&: getLLVMContext()), |
| 371 | ID: CGM.getHLSLRuntime().getAllIntrinsic(), Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, |
| 372 | Name: "hlsl.all" ); |
| 373 | } |
| 374 | case Builtin::BI__builtin_hlsl_and: { |
| 375 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 376 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 377 | return Builder.CreateAnd(LHS: Op0, RHS: Op1, Name: "hlsl.and" ); |
| 378 | } |
| 379 | case Builtin::BI__builtin_hlsl_or: { |
| 380 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 381 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 382 | return Builder.CreateOr(LHS: Op0, RHS: Op1, Name: "hlsl.or" ); |
| 383 | } |
| 384 | case Builtin::BI__builtin_hlsl_any: { |
| 385 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 386 | return Builder.CreateIntrinsic( |
| 387 | /*ReturnType=*/RetTy: llvm::Type::getInt1Ty(C&: getLLVMContext()), |
| 388 | ID: CGM.getHLSLRuntime().getAnyIntrinsic(), Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, |
| 389 | Name: "hlsl.any" ); |
| 390 | } |
| 391 | case Builtin::BI__builtin_hlsl_asdouble: |
| 392 | return handleAsDoubleBuiltin(CGF&: *this, E); |
| 393 | case Builtin::BI__builtin_hlsl_elementwise_clamp: { |
| 394 | Value *OpX = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 395 | Value *OpMin = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 396 | Value *OpMax = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 397 | |
| 398 | QualType Ty = E->getArg(Arg: 0)->getType(); |
| 399 | if (auto *VecTy = Ty->getAs<VectorType>()) |
| 400 | Ty = VecTy->getElementType(); |
| 401 | |
| 402 | Intrinsic::ID Intr; |
| 403 | if (Ty->isFloatingType()) { |
| 404 | Intr = CGM.getHLSLRuntime().getNClampIntrinsic(); |
| 405 | } else if (Ty->isUnsignedIntegerType()) { |
| 406 | Intr = CGM.getHLSLRuntime().getUClampIntrinsic(); |
| 407 | } else { |
| 408 | assert(Ty->isSignedIntegerType()); |
| 409 | Intr = CGM.getHLSLRuntime().getSClampIntrinsic(); |
| 410 | } |
| 411 | return Builder.CreateIntrinsic( |
| 412 | /*ReturnType=*/RetTy: OpX->getType(), ID: Intr, |
| 413 | Args: ArrayRef<Value *>{OpX, OpMin, OpMax}, FMFSource: nullptr, Name: "hlsl.clamp" ); |
| 414 | } |
| 415 | case Builtin::BI__builtin_hlsl_crossf16: |
| 416 | case Builtin::BI__builtin_hlsl_crossf32: { |
| 417 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 418 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 419 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 420 | E->getArg(1)->getType()->hasFloatingRepresentation() && |
| 421 | "cross operands must have a float representation" ); |
| 422 | // make sure each vector has exactly 3 elements |
| 423 | assert( |
| 424 | E->getArg(0)->getType()->castAs<VectorType>()->getNumElements() == 3 && |
| 425 | E->getArg(1)->getType()->castAs<VectorType>()->getNumElements() == 3 && |
| 426 | "input vectors must have 3 elements each" ); |
| 427 | return Builder.CreateIntrinsic( |
| 428 | /*ReturnType=*/RetTy: Op0->getType(), ID: CGM.getHLSLRuntime().getCrossIntrinsic(), |
| 429 | Args: ArrayRef<Value *>{Op0, Op1}, FMFSource: nullptr, Name: "hlsl.cross" ); |
| 430 | } |
| 431 | case Builtin::BI__builtin_hlsl_dot: { |
| 432 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 433 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 434 | llvm::Type *T0 = Op0->getType(); |
| 435 | llvm::Type *T1 = Op1->getType(); |
| 436 | |
| 437 | // If the arguments are scalars, just emit a multiply |
| 438 | if (!T0->isVectorTy() && !T1->isVectorTy()) { |
| 439 | if (T0->isFloatingPointTy()) |
| 440 | return Builder.CreateFMul(L: Op0, R: Op1, Name: "hlsl.dot" ); |
| 441 | |
| 442 | if (T0->isIntegerTy()) |
| 443 | return Builder.CreateMul(LHS: Op0, RHS: Op1, Name: "hlsl.dot" ); |
| 444 | |
| 445 | llvm_unreachable( |
| 446 | "Scalar dot product is only supported on ints and floats." ); |
| 447 | } |
| 448 | // For vectors, validate types and emit the appropriate intrinsic |
| 449 | assert(CGM.getContext().hasSameUnqualifiedType(E->getArg(0)->getType(), |
| 450 | E->getArg(1)->getType()) && |
| 451 | "Dot product operands must have the same type." ); |
| 452 | |
| 453 | auto *VecTy0 = E->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
| 454 | assert(VecTy0 && "Dot product argument must be a vector." ); |
| 455 | |
| 456 | return Builder.CreateIntrinsic( |
| 457 | /*ReturnType=*/RetTy: T0->getScalarType(), |
| 458 | ID: getDotProductIntrinsic(RT&: CGM.getHLSLRuntime(), QT: VecTy0->getElementType()), |
| 459 | Args: ArrayRef<Value *>{Op0, Op1}, FMFSource: nullptr, Name: "hlsl.dot" ); |
| 460 | } |
| 461 | case Builtin::BI__builtin_hlsl_dot4add_i8packed: { |
| 462 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 463 | Value *Y = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 464 | Value *Acc = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 465 | |
| 466 | Intrinsic::ID ID = CGM.getHLSLRuntime().getDot4AddI8PackedIntrinsic(); |
| 467 | // Note that the argument order disagrees between the builtin and the |
| 468 | // intrinsic here. |
| 469 | return Builder.CreateIntrinsic( |
| 470 | /*ReturnType=*/RetTy: Acc->getType(), ID, Args: ArrayRef<Value *>{Acc, X, Y}, |
| 471 | FMFSource: nullptr, Name: "hlsl.dot4add.i8packed" ); |
| 472 | } |
| 473 | case Builtin::BI__builtin_hlsl_dot4add_u8packed: { |
| 474 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 475 | Value *Y = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 476 | Value *Acc = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 477 | |
| 478 | Intrinsic::ID ID = CGM.getHLSLRuntime().getDot4AddU8PackedIntrinsic(); |
| 479 | // Note that the argument order disagrees between the builtin and the |
| 480 | // intrinsic here. |
| 481 | return Builder.CreateIntrinsic( |
| 482 | /*ReturnType=*/RetTy: Acc->getType(), ID, Args: ArrayRef<Value *>{Acc, X, Y}, |
| 483 | FMFSource: nullptr, Name: "hlsl.dot4add.u8packed" ); |
| 484 | } |
| 485 | case Builtin::BI__builtin_hlsl_elementwise_firstbithigh: { |
| 486 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 487 | |
| 488 | return Builder.CreateIntrinsic( |
| 489 | /*ReturnType=*/RetTy: ConvertType(T: E->getType()), |
| 490 | ID: getFirstBitHighIntrinsic(RT&: CGM.getHLSLRuntime(), QT: E->getArg(Arg: 0)->getType()), |
| 491 | Args: ArrayRef<Value *>{X}, FMFSource: nullptr, Name: "hlsl.firstbithigh" ); |
| 492 | } |
| 493 | case Builtin::BI__builtin_hlsl_elementwise_firstbitlow: { |
| 494 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 495 | |
| 496 | return Builder.CreateIntrinsic( |
| 497 | /*ReturnType=*/RetTy: ConvertType(T: E->getType()), |
| 498 | ID: CGM.getHLSLRuntime().getFirstBitLowIntrinsic(), Args: ArrayRef<Value *>{X}, |
| 499 | FMFSource: nullptr, Name: "hlsl.firstbitlow" ); |
| 500 | } |
| 501 | case Builtin::BI__builtin_hlsl_lerp: { |
| 502 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 503 | Value *Y = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 504 | Value *S = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 505 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 506 | llvm_unreachable("lerp operand must have a float representation" ); |
| 507 | return Builder.CreateIntrinsic( |
| 508 | /*ReturnType=*/RetTy: X->getType(), ID: CGM.getHLSLRuntime().getLerpIntrinsic(), |
| 509 | Args: ArrayRef<Value *>{X, Y, S}, FMFSource: nullptr, Name: "hlsl.lerp" ); |
| 510 | } |
| 511 | case Builtin::BI__builtin_hlsl_normalize: { |
| 512 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 513 | |
| 514 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 515 | "normalize operand must have a float representation" ); |
| 516 | |
| 517 | return Builder.CreateIntrinsic( |
| 518 | /*ReturnType=*/RetTy: X->getType(), |
| 519 | ID: CGM.getHLSLRuntime().getNormalizeIntrinsic(), Args: ArrayRef<Value *>{X}, |
| 520 | FMFSource: nullptr, Name: "hlsl.normalize" ); |
| 521 | } |
| 522 | case Builtin::BI__builtin_hlsl_elementwise_degrees: { |
| 523 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 524 | |
| 525 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 526 | "degree operand must have a float representation" ); |
| 527 | |
| 528 | return Builder.CreateIntrinsic( |
| 529 | /*ReturnType=*/RetTy: X->getType(), ID: CGM.getHLSLRuntime().getDegreesIntrinsic(), |
| 530 | Args: ArrayRef<Value *>{X}, FMFSource: nullptr, Name: "hlsl.degrees" ); |
| 531 | } |
| 532 | case Builtin::BI__builtin_hlsl_elementwise_frac: { |
| 533 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 534 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 535 | llvm_unreachable("frac operand must have a float representation" ); |
| 536 | return Builder.CreateIntrinsic( |
| 537 | /*ReturnType=*/RetTy: Op0->getType(), ID: CGM.getHLSLRuntime().getFracIntrinsic(), |
| 538 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, Name: "hlsl.frac" ); |
| 539 | } |
| 540 | case Builtin::BI__builtin_hlsl_elementwise_isinf: { |
| 541 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 542 | llvm::Type *Xty = Op0->getType(); |
| 543 | llvm::Type *retType = llvm::Type::getInt1Ty(C&: this->getLLVMContext()); |
| 544 | if (Xty->isVectorTy()) { |
| 545 | auto *XVecTy = E->getArg(Arg: 0)->getType()->castAs<VectorType>(); |
| 546 | retType = llvm::VectorType::get( |
| 547 | ElementType: retType, EC: ElementCount::getFixed(MinVal: XVecTy->getNumElements())); |
| 548 | } |
| 549 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 550 | llvm_unreachable("isinf operand must have a float representation" ); |
| 551 | return Builder.CreateIntrinsic(RetTy: retType, ID: Intrinsic::dx_isinf, |
| 552 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, Name: "dx.isinf" ); |
| 553 | } |
| 554 | case Builtin::BI__builtin_hlsl_mad: { |
| 555 | Value *M = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 556 | Value *A = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 557 | Value *B = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 558 | if (E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 559 | return Builder.CreateIntrinsic( |
| 560 | /*ReturnType*/ RetTy: M->getType(), ID: Intrinsic::fmuladd, |
| 561 | Args: ArrayRef<Value *>{M, A, B}, FMFSource: nullptr, Name: "hlsl.fmad" ); |
| 562 | |
| 563 | if (E->getArg(Arg: 0)->getType()->hasSignedIntegerRepresentation()) { |
| 564 | if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil) |
| 565 | return Builder.CreateIntrinsic( |
| 566 | /*ReturnType*/ RetTy: M->getType(), ID: Intrinsic::dx_imad, |
| 567 | Args: ArrayRef<Value *>{M, A, B}, FMFSource: nullptr, Name: "dx.imad" ); |
| 568 | |
| 569 | Value *Mul = Builder.CreateNSWMul(LHS: M, RHS: A); |
| 570 | return Builder.CreateNSWAdd(LHS: Mul, RHS: B); |
| 571 | } |
| 572 | assert(E->getArg(0)->getType()->hasUnsignedIntegerRepresentation()); |
| 573 | if (CGM.getTarget().getTriple().getArch() == llvm::Triple::dxil) |
| 574 | return Builder.CreateIntrinsic( |
| 575 | /*ReturnType=*/RetTy: M->getType(), ID: Intrinsic::dx_umad, |
| 576 | Args: ArrayRef<Value *>{M, A, B}, FMFSource: nullptr, Name: "dx.umad" ); |
| 577 | |
| 578 | Value *Mul = Builder.CreateNUWMul(LHS: M, RHS: A); |
| 579 | return Builder.CreateNUWAdd(LHS: Mul, RHS: B); |
| 580 | } |
| 581 | case Builtin::BI__builtin_hlsl_elementwise_rcp: { |
| 582 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 583 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 584 | llvm_unreachable("rcp operand must have a float representation" ); |
| 585 | llvm::Type *Ty = Op0->getType(); |
| 586 | llvm::Type *EltTy = Ty->getScalarType(); |
| 587 | Constant *One = Ty->isVectorTy() |
| 588 | ? ConstantVector::getSplat( |
| 589 | EC: ElementCount::getFixed( |
| 590 | MinVal: cast<FixedVectorType>(Val: Ty)->getNumElements()), |
| 591 | Elt: ConstantFP::get(Ty: EltTy, V: 1.0)) |
| 592 | : ConstantFP::get(Ty: EltTy, V: 1.0); |
| 593 | return Builder.CreateFDiv(L: One, R: Op0, Name: "hlsl.rcp" ); |
| 594 | } |
| 595 | case Builtin::BI__builtin_hlsl_elementwise_rsqrt: { |
| 596 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 597 | if (!E->getArg(Arg: 0)->getType()->hasFloatingRepresentation()) |
| 598 | llvm_unreachable("rsqrt operand must have a float representation" ); |
| 599 | return Builder.CreateIntrinsic( |
| 600 | /*ReturnType=*/RetTy: Op0->getType(), ID: CGM.getHLSLRuntime().getRsqrtIntrinsic(), |
| 601 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, Name: "hlsl.rsqrt" ); |
| 602 | } |
| 603 | case Builtin::BI__builtin_hlsl_elementwise_saturate: { |
| 604 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 605 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 606 | "saturate operand must have a float representation" ); |
| 607 | return Builder.CreateIntrinsic( |
| 608 | /*ReturnType=*/RetTy: Op0->getType(), |
| 609 | ID: CGM.getHLSLRuntime().getSaturateIntrinsic(), Args: ArrayRef<Value *>{Op0}, |
| 610 | FMFSource: nullptr, Name: "hlsl.saturate" ); |
| 611 | } |
| 612 | case Builtin::BI__builtin_hlsl_select: { |
| 613 | Value *OpCond = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 614 | RValue RValTrue = EmitAnyExpr(E: E->getArg(Arg: 1)); |
| 615 | Value *OpTrue = |
| 616 | RValTrue.isScalar() |
| 617 | ? RValTrue.getScalarVal() |
| 618 | : RValTrue.getAggregatePointer(PointeeType: E->getArg(Arg: 1)->getType(), CGF&: *this); |
| 619 | RValue RValFalse = EmitAnyExpr(E: E->getArg(Arg: 2)); |
| 620 | Value *OpFalse = |
| 621 | RValFalse.isScalar() |
| 622 | ? RValFalse.getScalarVal() |
| 623 | : RValFalse.getAggregatePointer(PointeeType: E->getArg(Arg: 2)->getType(), CGF&: *this); |
| 624 | if (auto *VTy = E->getType()->getAs<VectorType>()) { |
| 625 | if (!OpTrue->getType()->isVectorTy()) |
| 626 | OpTrue = |
| 627 | Builder.CreateVectorSplat(NumElts: VTy->getNumElements(), V: OpTrue, Name: "splat" ); |
| 628 | if (!OpFalse->getType()->isVectorTy()) |
| 629 | OpFalse = |
| 630 | Builder.CreateVectorSplat(NumElts: VTy->getNumElements(), V: OpFalse, Name: "splat" ); |
| 631 | } |
| 632 | |
| 633 | Value *SelectVal = |
| 634 | Builder.CreateSelect(C: OpCond, True: OpTrue, False: OpFalse, Name: "hlsl.select" ); |
| 635 | if (!RValTrue.isScalar()) |
| 636 | Builder.CreateStore(Val: SelectVal, Addr: ReturnValue.getAddress(), |
| 637 | IsVolatile: ReturnValue.isVolatile()); |
| 638 | |
| 639 | return SelectVal; |
| 640 | } |
| 641 | case Builtin::BI__builtin_hlsl_step: { |
| 642 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 643 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 644 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 645 | E->getArg(1)->getType()->hasFloatingRepresentation() && |
| 646 | "step operands must have a float representation" ); |
| 647 | return Builder.CreateIntrinsic( |
| 648 | /*ReturnType=*/RetTy: Op0->getType(), ID: CGM.getHLSLRuntime().getStepIntrinsic(), |
| 649 | Args: ArrayRef<Value *>{Op0, Op1}, FMFSource: nullptr, Name: "hlsl.step" ); |
| 650 | } |
| 651 | case Builtin::BI__builtin_hlsl_wave_active_all_true: { |
| 652 | Value *Op = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 653 | assert(Op->getType()->isIntegerTy(1) && |
| 654 | "Intrinsic WaveActiveAllTrue operand must be a bool" ); |
| 655 | |
| 656 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveAllTrueIntrinsic(); |
| 657 | return EmitRuntimeCall( |
| 658 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID), args: {Op}); |
| 659 | } |
| 660 | case Builtin::BI__builtin_hlsl_wave_active_any_true: { |
| 661 | Value *Op = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 662 | assert(Op->getType()->isIntegerTy(1) && |
| 663 | "Intrinsic WaveActiveAnyTrue operand must be a bool" ); |
| 664 | |
| 665 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveAnyTrueIntrinsic(); |
| 666 | return EmitRuntimeCall( |
| 667 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID), args: {Op}); |
| 668 | } |
| 669 | case Builtin::BI__builtin_hlsl_wave_active_count_bits: { |
| 670 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 671 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveActiveCountBitsIntrinsic(); |
| 672 | return EmitRuntimeCall( |
| 673 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID), |
| 674 | args: ArrayRef{OpExpr}); |
| 675 | } |
| 676 | case Builtin::BI__builtin_hlsl_wave_active_sum: { |
| 677 | // Due to the use of variadic arguments, explicitly retreive argument |
| 678 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 679 | Intrinsic::ID IID = getWaveActiveSumIntrinsic( |
| 680 | Arch: getTarget().getTriple().getArch(), RT&: CGM.getHLSLRuntime(), |
| 681 | QT: E->getArg(Arg: 0)->getType()); |
| 682 | |
| 683 | return EmitRuntimeCall(callee: Intrinsic::getOrInsertDeclaration( |
| 684 | M: &CGM.getModule(), id: IID, Tys: {OpExpr->getType()}), |
| 685 | args: ArrayRef{OpExpr}, name: "hlsl.wave.active.sum" ); |
| 686 | } |
| 687 | case Builtin::BI__builtin_hlsl_wave_active_max: { |
| 688 | // Due to the use of variadic arguments, explicitly retreive argument |
| 689 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 690 | Intrinsic::ID IID = getWaveActiveMaxIntrinsic( |
| 691 | Arch: getTarget().getTriple().getArch(), RT&: CGM.getHLSLRuntime(), |
| 692 | QT: E->getArg(Arg: 0)->getType()); |
| 693 | |
| 694 | return EmitRuntimeCall(callee: Intrinsic::getOrInsertDeclaration( |
| 695 | M: &CGM.getModule(), id: IID, Tys: {OpExpr->getType()}), |
| 696 | args: ArrayRef{OpExpr}, name: "hlsl.wave.active.max" ); |
| 697 | } |
| 698 | case Builtin::BI__builtin_hlsl_wave_get_lane_index: { |
| 699 | // We don't define a SPIR-V intrinsic, instead it is a SPIR-V built-in |
| 700 | // defined in SPIRVBuiltins.td. So instead we manually get the matching name |
| 701 | // for the DirectX intrinsic and the demangled builtin name |
| 702 | switch (CGM.getTarget().getTriple().getArch()) { |
| 703 | case llvm::Triple::dxil: |
| 704 | return EmitRuntimeCall(callee: Intrinsic::getOrInsertDeclaration( |
| 705 | M: &CGM.getModule(), id: Intrinsic::dx_wave_getlaneindex)); |
| 706 | case llvm::Triple::spirv: |
| 707 | return EmitRuntimeCall(callee: CGM.CreateRuntimeFunction( |
| 708 | Ty: llvm::FunctionType::get(Result: IntTy, Params: {}, isVarArg: false), |
| 709 | Name: "__hlsl_wave_get_lane_index" , ExtraAttrs: {}, Local: false, AssumeConvergent: true)); |
| 710 | default: |
| 711 | llvm_unreachable( |
| 712 | "Intrinsic WaveGetLaneIndex not supported by target architecture" ); |
| 713 | } |
| 714 | } |
| 715 | case Builtin::BI__builtin_hlsl_wave_is_first_lane: { |
| 716 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveIsFirstLaneIntrinsic(); |
| 717 | return EmitRuntimeCall( |
| 718 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID)); |
| 719 | } |
| 720 | case Builtin::BI__builtin_hlsl_wave_get_lane_count: { |
| 721 | Intrinsic::ID ID = CGM.getHLSLRuntime().getWaveGetLaneCountIntrinsic(); |
| 722 | return EmitRuntimeCall( |
| 723 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID)); |
| 724 | } |
| 725 | case Builtin::BI__builtin_hlsl_wave_read_lane_at: { |
| 726 | // Due to the use of variadic arguments we must explicitly retreive them and |
| 727 | // create our function type. |
| 728 | Value *OpExpr = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 729 | Value *OpIndex = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 730 | return EmitRuntimeCall( |
| 731 | callee: Intrinsic::getOrInsertDeclaration( |
| 732 | M: &CGM.getModule(), id: CGM.getHLSLRuntime().getWaveReadLaneAtIntrinsic(), |
| 733 | Tys: {OpExpr->getType()}), |
| 734 | args: ArrayRef{OpExpr, OpIndex}, name: "hlsl.wave.readlane" ); |
| 735 | } |
| 736 | case Builtin::BI__builtin_hlsl_elementwise_sign: { |
| 737 | auto *Arg0 = E->getArg(Arg: 0); |
| 738 | Value *Op0 = EmitScalarExpr(E: Arg0); |
| 739 | llvm::Type *Xty = Op0->getType(); |
| 740 | llvm::Type *retType = llvm::Type::getInt32Ty(C&: this->getLLVMContext()); |
| 741 | if (Xty->isVectorTy()) { |
| 742 | auto *XVecTy = Arg0->getType()->castAs<VectorType>(); |
| 743 | retType = llvm::VectorType::get( |
| 744 | ElementType: retType, EC: ElementCount::getFixed(MinVal: XVecTy->getNumElements())); |
| 745 | } |
| 746 | assert((Arg0->getType()->hasFloatingRepresentation() || |
| 747 | Arg0->getType()->hasIntegerRepresentation()) && |
| 748 | "sign operand must have a float or int representation" ); |
| 749 | |
| 750 | if (Arg0->getType()->hasUnsignedIntegerRepresentation()) { |
| 751 | Value *Cmp = Builder.CreateICmpEQ(LHS: Op0, RHS: ConstantInt::get(Ty: Xty, V: 0)); |
| 752 | return Builder.CreateSelect(C: Cmp, True: ConstantInt::get(Ty: retType, V: 0), |
| 753 | False: ConstantInt::get(Ty: retType, V: 1), Name: "hlsl.sign" ); |
| 754 | } |
| 755 | |
| 756 | return Builder.CreateIntrinsic( |
| 757 | RetTy: retType, ID: CGM.getHLSLRuntime().getSignIntrinsic(), |
| 758 | Args: ArrayRef<Value *>{Op0}, FMFSource: nullptr, Name: "hlsl.sign" ); |
| 759 | } |
| 760 | case Builtin::BI__builtin_hlsl_elementwise_radians: { |
| 761 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 762 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 763 | "radians operand must have a float representation" ); |
| 764 | return Builder.CreateIntrinsic( |
| 765 | /*ReturnType=*/RetTy: Op0->getType(), |
| 766 | ID: CGM.getHLSLRuntime().getRadiansIntrinsic(), Args: ArrayRef<Value *>{Op0}, |
| 767 | FMFSource: nullptr, Name: "hlsl.radians" ); |
| 768 | } |
| 769 | case Builtin::BI__builtin_hlsl_buffer_update_counter: { |
| 770 | Value *ResHandle = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 771 | Value *Offset = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 772 | Value *OffsetI8 = Builder.CreateIntCast(V: Offset, DestTy: Int8Ty, isSigned: true); |
| 773 | return Builder.CreateIntrinsic( |
| 774 | /*ReturnType=*/RetTy: Offset->getType(), |
| 775 | ID: CGM.getHLSLRuntime().getBufferUpdateCounterIntrinsic(), |
| 776 | Args: ArrayRef<Value *>{ResHandle, OffsetI8}, FMFSource: nullptr); |
| 777 | } |
| 778 | case Builtin::BI__builtin_hlsl_elementwise_splitdouble: { |
| 779 | |
| 780 | assert((E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 781 | E->getArg(1)->getType()->hasUnsignedIntegerRepresentation() && |
| 782 | E->getArg(2)->getType()->hasUnsignedIntegerRepresentation()) && |
| 783 | "asuint operands types mismatch" ); |
| 784 | return handleHlslSplitdouble(E, CGF: this); |
| 785 | } |
| 786 | case Builtin::BI__builtin_hlsl_elementwise_clip: |
| 787 | assert(E->getArg(0)->getType()->hasFloatingRepresentation() && |
| 788 | "clip operands types mismatch" ); |
| 789 | return handleHlslClip(E, CGF: this); |
| 790 | case Builtin::BI__builtin_hlsl_group_memory_barrier_with_group_sync: { |
| 791 | Intrinsic::ID ID = |
| 792 | CGM.getHLSLRuntime().getGroupMemoryBarrierWithGroupSyncIntrinsic(); |
| 793 | return EmitRuntimeCall( |
| 794 | callee: Intrinsic::getOrInsertDeclaration(M: &CGM.getModule(), id: ID)); |
| 795 | } |
| 796 | case Builtin::BI__builtin_get_spirv_spec_constant_bool: |
| 797 | case Builtin::BI__builtin_get_spirv_spec_constant_short: |
| 798 | case Builtin::BI__builtin_get_spirv_spec_constant_ushort: |
| 799 | case Builtin::BI__builtin_get_spirv_spec_constant_int: |
| 800 | case Builtin::BI__builtin_get_spirv_spec_constant_uint: |
| 801 | case Builtin::BI__builtin_get_spirv_spec_constant_longlong: |
| 802 | case Builtin::BI__builtin_get_spirv_spec_constant_ulonglong: |
| 803 | case Builtin::BI__builtin_get_spirv_spec_constant_half: |
| 804 | case Builtin::BI__builtin_get_spirv_spec_constant_float: |
| 805 | case Builtin::BI__builtin_get_spirv_spec_constant_double: { |
| 806 | llvm::Function *SpecConstantFn = getSpecConstantFunction(SpecConstantType: E->getType()); |
| 807 | llvm::Value *SpecId = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 808 | llvm::Value *DefaultVal = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 809 | llvm::Value *Args[] = {SpecId, DefaultVal}; |
| 810 | return Builder.CreateCall(Callee: SpecConstantFn, Args); |
| 811 | } |
| 812 | } |
| 813 | return nullptr; |
| 814 | } |
| 815 | |
| 816 | llvm::Function *clang::CodeGen::CodeGenFunction::getSpecConstantFunction( |
| 817 | const clang::QualType &SpecConstantType) { |
| 818 | |
| 819 | // Find or create the declaration for the function. |
| 820 | llvm::Module *M = &CGM.getModule(); |
| 821 | std::string MangledName = |
| 822 | getSpecConstantFunctionName(SpecConstantType, Context&: getContext()); |
| 823 | llvm::Function *SpecConstantFn = M->getFunction(Name: MangledName); |
| 824 | |
| 825 | if (!SpecConstantFn) { |
| 826 | llvm::Type *IntType = ConvertType(T: getContext().IntTy); |
| 827 | llvm::Type *RetTy = ConvertType(T: SpecConstantType); |
| 828 | llvm::Type *ArgTypes[] = {IntType, RetTy}; |
| 829 | llvm::FunctionType *FnTy = llvm::FunctionType::get(Result: RetTy, Params: ArgTypes, isVarArg: false); |
| 830 | SpecConstantFn = llvm::Function::Create( |
| 831 | Ty: FnTy, Linkage: llvm::GlobalValue::ExternalLinkage, N: MangledName, M); |
| 832 | } |
| 833 | return SpecConstantFn; |
| 834 | } |
| 835 | |