| 1 | //===---------- PPC.cpp - Emit LLVM Code for builtins ---------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This contains code to emit Builtin calls as LLVM code. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "CGBuiltin.h" |
| 14 | #include "clang/Basic/TargetBuiltins.h" |
| 15 | #include "llvm/IR/InlineAsm.h" |
| 16 | #include "llvm/IR/IntrinsicsPowerPC.h" |
| 17 | #include "llvm/Support/ScopedPrinter.h" |
| 18 | |
| 19 | using namespace clang; |
| 20 | using namespace CodeGen; |
| 21 | using namespace llvm; |
| 22 | |
| 23 | static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF, |
| 24 | unsigned BuiltinID, |
| 25 | const CallExpr *E) { |
| 26 | Value *Addr = CGF.EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 27 | |
| 28 | SmallString<64> Asm; |
| 29 | raw_svector_ostream AsmOS(Asm); |
| 30 | llvm::IntegerType *RetType = CGF.Int32Ty; |
| 31 | |
| 32 | switch (BuiltinID) { |
| 33 | case clang::PPC::BI__builtin_ppc_ldarx: |
| 34 | AsmOS << "ldarx " ; |
| 35 | RetType = CGF.Int64Ty; |
| 36 | break; |
| 37 | case clang::PPC::BI__builtin_ppc_lwarx: |
| 38 | AsmOS << "lwarx " ; |
| 39 | RetType = CGF.Int32Ty; |
| 40 | break; |
| 41 | case clang::PPC::BI__builtin_ppc_lharx: |
| 42 | AsmOS << "lharx " ; |
| 43 | RetType = CGF.Int16Ty; |
| 44 | break; |
| 45 | case clang::PPC::BI__builtin_ppc_lbarx: |
| 46 | AsmOS << "lbarx " ; |
| 47 | RetType = CGF.Int8Ty; |
| 48 | break; |
| 49 | default: |
| 50 | llvm_unreachable("Expected only PowerPC load reserve intrinsics" ); |
| 51 | } |
| 52 | |
| 53 | AsmOS << "$0, ${1:y}" ; |
| 54 | |
| 55 | std::string Constraints = "=r,*Z,~{memory}" ; |
| 56 | std::string_view MachineClobbers = CGF.getTarget().getClobbers(); |
| 57 | if (!MachineClobbers.empty()) { |
| 58 | Constraints += ','; |
| 59 | Constraints += MachineClobbers; |
| 60 | } |
| 61 | |
| 62 | llvm::Type *PtrType = CGF.UnqualPtrTy; |
| 63 | llvm::FunctionType *FTy = llvm::FunctionType::get(Result: RetType, Params: {PtrType}, isVarArg: false); |
| 64 | |
| 65 | llvm::InlineAsm *IA = |
| 66 | llvm::InlineAsm::get(Ty: FTy, AsmString: Asm, Constraints, /*hasSideEffects=*/true); |
| 67 | llvm::CallInst *CI = CGF.Builder.CreateCall(Callee: IA, Args: {Addr}); |
| 68 | CI->addParamAttr( |
| 69 | ArgNo: 0, Attr: Attribute::get(Context&: CGF.getLLVMContext(), Kind: Attribute::ElementType, Ty: RetType)); |
| 70 | return CI; |
| 71 | } |
| 72 | |
| 73 | Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID, |
| 74 | const CallExpr *E) { |
| 75 | // Do not emit the builtin arguments in the arguments of a function call, |
| 76 | // because the evaluation order of function arguments is not specified in C++. |
| 77 | // This is important when testing to ensure the arguments are emitted in the |
| 78 | // same order every time. Eg: |
| 79 | // Instead of: |
| 80 | // return Builder.CreateFDiv(EmitScalarExpr(E->getArg(0)), |
| 81 | // EmitScalarExpr(E->getArg(1)), "swdiv"); |
| 82 | // Use: |
| 83 | // Value *Op0 = EmitScalarExpr(E->getArg(0)); |
| 84 | // Value *Op1 = EmitScalarExpr(E->getArg(1)); |
| 85 | // return Builder.CreateFDiv(Op0, Op1, "swdiv") |
| 86 | |
| 87 | Intrinsic::ID ID = Intrinsic::not_intrinsic; |
| 88 | |
| 89 | #include "llvm/TargetParser/PPCTargetParser.def" |
| 90 | auto GenAIXPPCBuiltinCpuExpr = [&](unsigned SupportMethod, unsigned FieldIdx, |
| 91 | unsigned Mask, CmpInst::Predicate CompOp, |
| 92 | unsigned OpValue) -> Value * { |
| 93 | if (SupportMethod == BUILTIN_PPC_FALSE) |
| 94 | return llvm::ConstantInt::getFalse(Ty: ConvertType(T: E->getType())); |
| 95 | |
| 96 | if (SupportMethod == BUILTIN_PPC_TRUE) |
| 97 | return llvm::ConstantInt::getTrue(Ty: ConvertType(T: E->getType())); |
| 98 | |
| 99 | assert(SupportMethod <= SYS_CALL && "Invalid value for SupportMethod." ); |
| 100 | |
| 101 | llvm::Value *FieldValue = nullptr; |
| 102 | if (SupportMethod == USE_SYS_CONF) { |
| 103 | llvm::Type *STy = llvm::StructType::get(PPC_SYSTEMCONFIG_TYPE); |
| 104 | llvm::Constant *SysConf = |
| 105 | CGM.CreateRuntimeVariable(Ty: STy, Name: "_system_configuration" ); |
| 106 | |
| 107 | // Grab the appropriate field from _system_configuration. |
| 108 | llvm::Value *Idxs[] = {ConstantInt::get(Ty: Int32Ty, V: 0), |
| 109 | ConstantInt::get(Ty: Int32Ty, V: FieldIdx)}; |
| 110 | |
| 111 | FieldValue = Builder.CreateInBoundsGEP(Ty: STy, Ptr: SysConf, IdxList: Idxs); |
| 112 | FieldValue = Builder.CreateAlignedLoad(Ty: Int32Ty, Addr: FieldValue, |
| 113 | Align: CharUnits::fromQuantity(Quantity: 4)); |
| 114 | } else if (SupportMethod == SYS_CALL) { |
| 115 | llvm::FunctionType *FTy = |
| 116 | llvm::FunctionType::get(Result: Int64Ty, Params: Int32Ty, isVarArg: false); |
| 117 | llvm::FunctionCallee Func = |
| 118 | CGM.CreateRuntimeFunction(Ty: FTy, Name: "getsystemcfg" ); |
| 119 | |
| 120 | FieldValue = |
| 121 | Builder.CreateCall(Callee: Func, Args: {ConstantInt::get(Ty: Int32Ty, V: FieldIdx)}); |
| 122 | } |
| 123 | assert(FieldValue && |
| 124 | "SupportMethod value is not defined in PPCTargetParser.def." ); |
| 125 | |
| 126 | if (Mask) |
| 127 | FieldValue = Builder.CreateAnd(LHS: FieldValue, RHS: Mask); |
| 128 | |
| 129 | llvm::Type *ValueType = FieldValue->getType(); |
| 130 | bool IsValueType64Bit = ValueType->isIntegerTy(Bitwidth: 64); |
| 131 | assert( |
| 132 | (IsValueType64Bit || ValueType->isIntegerTy(32)) && |
| 133 | "Only 32/64-bit integers are supported in GenAIXPPCBuiltinCpuExpr()." ); |
| 134 | |
| 135 | return Builder.CreateICmp( |
| 136 | P: CompOp, LHS: FieldValue, |
| 137 | RHS: ConstantInt::get(Ty: IsValueType64Bit ? Int64Ty : Int32Ty, V: OpValue)); |
| 138 | }; |
| 139 | |
| 140 | switch (BuiltinID) { |
| 141 | default: return nullptr; |
| 142 | |
| 143 | case Builtin::BI__builtin_cpu_is: { |
| 144 | const Expr *CPUExpr = E->getArg(Arg: 0)->IgnoreParenCasts(); |
| 145 | StringRef CPUStr = cast<clang::StringLiteral>(Val: CPUExpr)->getString(); |
| 146 | llvm::Triple Triple = getTarget().getTriple(); |
| 147 | |
| 148 | typedef std::tuple<unsigned, unsigned, unsigned, unsigned> CPUInfo; |
| 149 | |
| 150 | auto [LinuxSupportMethod, LinuxIDValue, AIXSupportMethod, AIXIDValue] = |
| 151 | static_cast<CPUInfo>(StringSwitch<CPUInfo>(CPUStr) |
| 152 | #define PPC_CPU(NAME, Linux_SUPPORT_METHOD, LinuxID, AIX_SUPPORT_METHOD, \ |
| 153 | AIXID) \ |
| 154 | .Case(NAME, {Linux_SUPPORT_METHOD, LinuxID, AIX_SUPPORT_METHOD, AIXID}) |
| 155 | #include "llvm/TargetParser/PPCTargetParser.def" |
| 156 | .Default(Value: {BUILTIN_PPC_UNSUPPORTED, 0, |
| 157 | BUILTIN_PPC_UNSUPPORTED, 0})); |
| 158 | |
| 159 | if (Triple.isOSAIX()) { |
| 160 | assert((AIXSupportMethod != BUILTIN_PPC_UNSUPPORTED) && |
| 161 | "Invalid CPU name. Missed by SemaChecking?" ); |
| 162 | return GenAIXPPCBuiltinCpuExpr(AIXSupportMethod, AIX_SYSCON_IMPL_IDX, 0, |
| 163 | ICmpInst::ICMP_EQ, AIXIDValue); |
| 164 | } |
| 165 | |
| 166 | assert(Triple.isOSLinux() && |
| 167 | "__builtin_cpu_is() is only supported for AIX and Linux." ); |
| 168 | |
| 169 | assert((LinuxSupportMethod != BUILTIN_PPC_UNSUPPORTED) && |
| 170 | "Invalid CPU name. Missed by SemaChecking?" ); |
| 171 | |
| 172 | if (LinuxSupportMethod == BUILTIN_PPC_FALSE) |
| 173 | return llvm::ConstantInt::getFalse(Ty: ConvertType(T: E->getType())); |
| 174 | |
| 175 | Value *Op0 = llvm::ConstantInt::get(Ty: Int32Ty, PPC_FAWORD_CPUID); |
| 176 | llvm::Function *F = CGM.getIntrinsic(IID: Intrinsic::ppc_fixed_addr_ld); |
| 177 | Value *TheCall = Builder.CreateCall(Callee: F, Args: {Op0}, Name: "cpu_is" ); |
| 178 | return Builder.CreateICmpEQ(LHS: TheCall, |
| 179 | RHS: llvm::ConstantInt::get(Ty: Int32Ty, V: LinuxIDValue)); |
| 180 | } |
| 181 | case Builtin::BI__builtin_cpu_supports: { |
| 182 | llvm::Triple Triple = getTarget().getTriple(); |
| 183 | const Expr *CPUExpr = E->getArg(Arg: 0)->IgnoreParenCasts(); |
| 184 | StringRef CPUStr = cast<clang::StringLiteral>(Val: CPUExpr)->getString(); |
| 185 | if (Triple.isOSAIX()) { |
| 186 | typedef std::tuple<unsigned, unsigned, unsigned, CmpInst::Predicate, |
| 187 | unsigned> |
| 188 | CPUSupportType; |
| 189 | auto [SupportMethod, FieldIdx, Mask, CompOp, Value] = |
| 190 | static_cast<CPUSupportType>(StringSwitch<CPUSupportType>(CPUStr) |
| 191 | #define PPC_AIX_FEATURE(NAME, DESC, SUPPORT_METHOD, INDEX, MASK, COMP_OP, \ |
| 192 | VALUE) \ |
| 193 | .Case(NAME, {SUPPORT_METHOD, INDEX, MASK, COMP_OP, VALUE}) |
| 194 | #include "llvm/TargetParser/PPCTargetParser.def" |
| 195 | .Default(Value: {BUILTIN_PPC_FALSE, 0, 0, |
| 196 | CmpInst::Predicate(), 0})); |
| 197 | return GenAIXPPCBuiltinCpuExpr(SupportMethod, FieldIdx, Mask, CompOp, |
| 198 | Value); |
| 199 | } |
| 200 | |
| 201 | assert(Triple.isOSLinux() && |
| 202 | "__builtin_cpu_supports() is only supported for AIX and Linux." ); |
| 203 | auto [FeatureWord, BitMask] = |
| 204 | StringSwitch<std::pair<unsigned, unsigned>>(CPUStr) |
| 205 | #define PPC_LNX_FEATURE(Name, Description, EnumName, Bitmask, FA_WORD) \ |
| 206 | .Case(Name, {FA_WORD, Bitmask}) |
| 207 | #include "llvm/TargetParser/PPCTargetParser.def" |
| 208 | .Default(Value: {0, 0}); |
| 209 | if (!BitMask) |
| 210 | return Builder.getFalse(); |
| 211 | Value *Op0 = llvm::ConstantInt::get(Ty: Int32Ty, V: FeatureWord); |
| 212 | llvm::Function *F = CGM.getIntrinsic(IID: Intrinsic::ppc_fixed_addr_ld); |
| 213 | Value *TheCall = Builder.CreateCall(Callee: F, Args: {Op0}, Name: "cpu_supports" ); |
| 214 | Value *Mask = |
| 215 | Builder.CreateAnd(LHS: TheCall, RHS: llvm::ConstantInt::get(Ty: Int32Ty, V: BitMask)); |
| 216 | return Builder.CreateICmpNE(LHS: Mask, RHS: llvm::Constant::getNullValue(Ty: Int32Ty)); |
| 217 | #undef PPC_FAWORD_HWCAP |
| 218 | #undef PPC_FAWORD_HWCAP2 |
| 219 | #undef PPC_FAWORD_CPUID |
| 220 | } |
| 221 | |
| 222 | // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we |
| 223 | // call __builtin_readcyclecounter. |
| 224 | case PPC::BI__builtin_ppc_get_timebase: |
| 225 | return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::readcyclecounter)); |
| 226 | |
| 227 | // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr |
| 228 | case PPC::BI__builtin_altivec_lvx: |
| 229 | case PPC::BI__builtin_altivec_lvxl: |
| 230 | case PPC::BI__builtin_altivec_lvebx: |
| 231 | case PPC::BI__builtin_altivec_lvehx: |
| 232 | case PPC::BI__builtin_altivec_lvewx: |
| 233 | case PPC::BI__builtin_altivec_lvsl: |
| 234 | case PPC::BI__builtin_altivec_lvsr: |
| 235 | case PPC::BI__builtin_vsx_lxvd2x: |
| 236 | case PPC::BI__builtin_vsx_lxvw4x: |
| 237 | case PPC::BI__builtin_vsx_lxvd2x_be: |
| 238 | case PPC::BI__builtin_vsx_lxvw4x_be: |
| 239 | case PPC::BI__builtin_vsx_lxvl: |
| 240 | case PPC::BI__builtin_vsx_lxvll: |
| 241 | { |
| 242 | SmallVector<Value *, 2> Ops; |
| 243 | Ops.push_back(Elt: EmitScalarExpr(E: E->getArg(Arg: 0))); |
| 244 | Ops.push_back(Elt: EmitScalarExpr(E: E->getArg(Arg: 1))); |
| 245 | if (!(BuiltinID == PPC::BI__builtin_vsx_lxvl || |
| 246 | BuiltinID == PPC::BI__builtin_vsx_lxvll)) { |
| 247 | Ops[0] = Builder.CreateGEP(Ty: Int8Ty, Ptr: Ops[1], IdxList: Ops[0]); |
| 248 | Ops.pop_back(); |
| 249 | } |
| 250 | |
| 251 | switch (BuiltinID) { |
| 252 | default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!" ); |
| 253 | case PPC::BI__builtin_altivec_lvx: |
| 254 | ID = Intrinsic::ppc_altivec_lvx; |
| 255 | break; |
| 256 | case PPC::BI__builtin_altivec_lvxl: |
| 257 | ID = Intrinsic::ppc_altivec_lvxl; |
| 258 | break; |
| 259 | case PPC::BI__builtin_altivec_lvebx: |
| 260 | ID = Intrinsic::ppc_altivec_lvebx; |
| 261 | break; |
| 262 | case PPC::BI__builtin_altivec_lvehx: |
| 263 | ID = Intrinsic::ppc_altivec_lvehx; |
| 264 | break; |
| 265 | case PPC::BI__builtin_altivec_lvewx: |
| 266 | ID = Intrinsic::ppc_altivec_lvewx; |
| 267 | break; |
| 268 | case PPC::BI__builtin_altivec_lvsl: |
| 269 | ID = Intrinsic::ppc_altivec_lvsl; |
| 270 | break; |
| 271 | case PPC::BI__builtin_altivec_lvsr: |
| 272 | ID = Intrinsic::ppc_altivec_lvsr; |
| 273 | break; |
| 274 | case PPC::BI__builtin_vsx_lxvd2x: |
| 275 | ID = Intrinsic::ppc_vsx_lxvd2x; |
| 276 | break; |
| 277 | case PPC::BI__builtin_vsx_lxvw4x: |
| 278 | ID = Intrinsic::ppc_vsx_lxvw4x; |
| 279 | break; |
| 280 | case PPC::BI__builtin_vsx_lxvd2x_be: |
| 281 | ID = Intrinsic::ppc_vsx_lxvd2x_be; |
| 282 | break; |
| 283 | case PPC::BI__builtin_vsx_lxvw4x_be: |
| 284 | ID = Intrinsic::ppc_vsx_lxvw4x_be; |
| 285 | break; |
| 286 | case PPC::BI__builtin_vsx_lxvl: |
| 287 | ID = Intrinsic::ppc_vsx_lxvl; |
| 288 | break; |
| 289 | case PPC::BI__builtin_vsx_lxvll: |
| 290 | ID = Intrinsic::ppc_vsx_lxvll; |
| 291 | break; |
| 292 | } |
| 293 | llvm::Function *F = CGM.getIntrinsic(IID: ID); |
| 294 | return Builder.CreateCall(Callee: F, Args: Ops, Name: "" ); |
| 295 | } |
| 296 | |
| 297 | // vec_st, vec_xst_be |
| 298 | case PPC::BI__builtin_altivec_stvx: |
| 299 | case PPC::BI__builtin_altivec_stvxl: |
| 300 | case PPC::BI__builtin_altivec_stvebx: |
| 301 | case PPC::BI__builtin_altivec_stvehx: |
| 302 | case PPC::BI__builtin_altivec_stvewx: |
| 303 | case PPC::BI__builtin_vsx_stxvd2x: |
| 304 | case PPC::BI__builtin_vsx_stxvw4x: |
| 305 | case PPC::BI__builtin_vsx_stxvd2x_be: |
| 306 | case PPC::BI__builtin_vsx_stxvw4x_be: |
| 307 | case PPC::BI__builtin_vsx_stxvl: |
| 308 | case PPC::BI__builtin_vsx_stxvll: |
| 309 | { |
| 310 | SmallVector<Value *, 3> Ops; |
| 311 | Ops.push_back(Elt: EmitScalarExpr(E: E->getArg(Arg: 0))); |
| 312 | Ops.push_back(Elt: EmitScalarExpr(E: E->getArg(Arg: 1))); |
| 313 | Ops.push_back(Elt: EmitScalarExpr(E: E->getArg(Arg: 2))); |
| 314 | if (!(BuiltinID == PPC::BI__builtin_vsx_stxvl || |
| 315 | BuiltinID == PPC::BI__builtin_vsx_stxvll)) { |
| 316 | Ops[1] = Builder.CreateGEP(Ty: Int8Ty, Ptr: Ops[2], IdxList: Ops[1]); |
| 317 | Ops.pop_back(); |
| 318 | } |
| 319 | |
| 320 | switch (BuiltinID) { |
| 321 | default: llvm_unreachable("Unsupported st intrinsic!" ); |
| 322 | case PPC::BI__builtin_altivec_stvx: |
| 323 | ID = Intrinsic::ppc_altivec_stvx; |
| 324 | break; |
| 325 | case PPC::BI__builtin_altivec_stvxl: |
| 326 | ID = Intrinsic::ppc_altivec_stvxl; |
| 327 | break; |
| 328 | case PPC::BI__builtin_altivec_stvebx: |
| 329 | ID = Intrinsic::ppc_altivec_stvebx; |
| 330 | break; |
| 331 | case PPC::BI__builtin_altivec_stvehx: |
| 332 | ID = Intrinsic::ppc_altivec_stvehx; |
| 333 | break; |
| 334 | case PPC::BI__builtin_altivec_stvewx: |
| 335 | ID = Intrinsic::ppc_altivec_stvewx; |
| 336 | break; |
| 337 | case PPC::BI__builtin_vsx_stxvd2x: |
| 338 | ID = Intrinsic::ppc_vsx_stxvd2x; |
| 339 | break; |
| 340 | case PPC::BI__builtin_vsx_stxvw4x: |
| 341 | ID = Intrinsic::ppc_vsx_stxvw4x; |
| 342 | break; |
| 343 | case PPC::BI__builtin_vsx_stxvd2x_be: |
| 344 | ID = Intrinsic::ppc_vsx_stxvd2x_be; |
| 345 | break; |
| 346 | case PPC::BI__builtin_vsx_stxvw4x_be: |
| 347 | ID = Intrinsic::ppc_vsx_stxvw4x_be; |
| 348 | break; |
| 349 | case PPC::BI__builtin_vsx_stxvl: |
| 350 | ID = Intrinsic::ppc_vsx_stxvl; |
| 351 | break; |
| 352 | case PPC::BI__builtin_vsx_stxvll: |
| 353 | ID = Intrinsic::ppc_vsx_stxvll; |
| 354 | break; |
| 355 | } |
| 356 | llvm::Function *F = CGM.getIntrinsic(IID: ID); |
| 357 | return Builder.CreateCall(Callee: F, Args: Ops, Name: "" ); |
| 358 | } |
| 359 | case PPC::BI__builtin_vsx_ldrmb: { |
| 360 | // Essentially boils down to performing an unaligned VMX load sequence so |
| 361 | // as to avoid crossing a page boundary and then shuffling the elements |
| 362 | // into the right side of the vector register. |
| 363 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 364 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 365 | int64_t NumBytes = cast<ConstantInt>(Val: Op1)->getZExtValue(); |
| 366 | llvm::Type *ResTy = ConvertType(T: E->getType()); |
| 367 | bool IsLE = getTarget().isLittleEndian(); |
| 368 | |
| 369 | // If the user wants the entire vector, just load the entire vector. |
| 370 | if (NumBytes == 16) { |
| 371 | Value *LD = |
| 372 | Builder.CreateLoad(Addr: Address(Op0, ResTy, CharUnits::fromQuantity(Quantity: 1))); |
| 373 | if (!IsLE) |
| 374 | return LD; |
| 375 | |
| 376 | // Reverse the bytes on LE. |
| 377 | SmallVector<int, 16> RevMask; |
| 378 | for (int Idx = 0; Idx < 16; Idx++) |
| 379 | RevMask.push_back(Elt: 15 - Idx); |
| 380 | return Builder.CreateShuffleVector(V1: LD, V2: LD, Mask: RevMask); |
| 381 | } |
| 382 | |
| 383 | llvm::Function *Lvx = CGM.getIntrinsic(IID: Intrinsic::ppc_altivec_lvx); |
| 384 | llvm::Function *Lvs = CGM.getIntrinsic(IID: IsLE ? Intrinsic::ppc_altivec_lvsr |
| 385 | : Intrinsic::ppc_altivec_lvsl); |
| 386 | llvm::Function *Vperm = CGM.getIntrinsic(IID: Intrinsic::ppc_altivec_vperm); |
| 387 | Value *HiMem = Builder.CreateGEP( |
| 388 | Ty: Int8Ty, Ptr: Op0, IdxList: ConstantInt::get(Ty: Op1->getType(), V: NumBytes - 1)); |
| 389 | Value *LoLd = Builder.CreateCall(Callee: Lvx, Args: Op0, Name: "ld.lo" ); |
| 390 | Value *HiLd = Builder.CreateCall(Callee: Lvx, Args: HiMem, Name: "ld.hi" ); |
| 391 | Value *Mask1 = Builder.CreateCall(Callee: Lvs, Args: Op0, Name: "mask1" ); |
| 392 | |
| 393 | Op0 = IsLE ? HiLd : LoLd; |
| 394 | Op1 = IsLE ? LoLd : HiLd; |
| 395 | Value *AllElts = Builder.CreateCall(Callee: Vperm, Args: {Op0, Op1, Mask1}, Name: "shuffle1" ); |
| 396 | Constant *Zero = llvm::Constant::getNullValue(Ty: IsLE ? ResTy : AllElts->getType()); |
| 397 | |
| 398 | if (IsLE) { |
| 399 | SmallVector<int, 16> Consts; |
| 400 | for (int Idx = 0; Idx < 16; Idx++) { |
| 401 | int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1) |
| 402 | : 16 - (NumBytes - Idx); |
| 403 | Consts.push_back(Elt: Val); |
| 404 | } |
| 405 | return Builder.CreateShuffleVector(V1: Builder.CreateBitCast(V: AllElts, DestTy: ResTy), |
| 406 | V2: Zero, Mask: Consts); |
| 407 | } |
| 408 | SmallVector<Constant *, 16> Consts; |
| 409 | for (int Idx = 0; Idx < 16; Idx++) |
| 410 | Consts.push_back(Elt: Builder.getInt8(C: NumBytes + Idx)); |
| 411 | Value *Mask2 = ConstantVector::get(V: Consts); |
| 412 | return Builder.CreateBitCast( |
| 413 | V: Builder.CreateCall(Callee: Vperm, Args: {Zero, AllElts, Mask2}, Name: "shuffle2" ), DestTy: ResTy); |
| 414 | } |
| 415 | case PPC::BI__builtin_vsx_strmb: { |
| 416 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 417 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 418 | Value *Op2 = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 419 | int64_t NumBytes = cast<ConstantInt>(Val: Op1)->getZExtValue(); |
| 420 | bool IsLE = getTarget().isLittleEndian(); |
| 421 | auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) { |
| 422 | // Storing the whole vector, simply store it on BE and reverse bytes and |
| 423 | // store on LE. |
| 424 | if (Width == 16) { |
| 425 | Value *StVec = Op2; |
| 426 | if (IsLE) { |
| 427 | SmallVector<int, 16> RevMask; |
| 428 | for (int Idx = 0; Idx < 16; Idx++) |
| 429 | RevMask.push_back(Elt: 15 - Idx); |
| 430 | StVec = Builder.CreateShuffleVector(V1: Op2, V2: Op2, Mask: RevMask); |
| 431 | } |
| 432 | return Builder.CreateStore( |
| 433 | Val: StVec, Addr: Address(Op0, Op2->getType(), CharUnits::fromQuantity(Quantity: 1))); |
| 434 | } |
| 435 | auto *ConvTy = Int64Ty; |
| 436 | unsigned NumElts = 0; |
| 437 | switch (Width) { |
| 438 | default: |
| 439 | llvm_unreachable("width for stores must be a power of 2" ); |
| 440 | case 8: |
| 441 | ConvTy = Int64Ty; |
| 442 | NumElts = 2; |
| 443 | break; |
| 444 | case 4: |
| 445 | ConvTy = Int32Ty; |
| 446 | NumElts = 4; |
| 447 | break; |
| 448 | case 2: |
| 449 | ConvTy = Int16Ty; |
| 450 | NumElts = 8; |
| 451 | break; |
| 452 | case 1: |
| 453 | ConvTy = Int8Ty; |
| 454 | NumElts = 16; |
| 455 | break; |
| 456 | } |
| 457 | Value *Vec = Builder.CreateBitCast( |
| 458 | V: Op2, DestTy: llvm::FixedVectorType::get(ElementType: ConvTy, NumElts)); |
| 459 | Value *Ptr = |
| 460 | Builder.CreateGEP(Ty: Int8Ty, Ptr: Op0, IdxList: ConstantInt::get(Ty: Int64Ty, V: Offset)); |
| 461 | Value *Elt = Builder.CreateExtractElement(Vec, Idx: EltNo); |
| 462 | if (IsLE && Width > 1) { |
| 463 | Function *F = CGM.getIntrinsic(IID: Intrinsic::bswap, Tys: ConvTy); |
| 464 | Elt = Builder.CreateCall(Callee: F, Args: Elt); |
| 465 | } |
| 466 | return Builder.CreateStore( |
| 467 | Val: Elt, Addr: Address(Ptr, ConvTy, CharUnits::fromQuantity(Quantity: 1))); |
| 468 | }; |
| 469 | unsigned Stored = 0; |
| 470 | unsigned RemainingBytes = NumBytes; |
| 471 | Value *Result; |
| 472 | if (NumBytes == 16) |
| 473 | return StoreSubVec(16, 0, 0); |
| 474 | if (NumBytes >= 8) { |
| 475 | Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1); |
| 476 | RemainingBytes -= 8; |
| 477 | Stored += 8; |
| 478 | } |
| 479 | if (RemainingBytes >= 4) { |
| 480 | Result = StoreSubVec(4, NumBytes - Stored - 4, |
| 481 | IsLE ? (Stored >> 2) : 3 - (Stored >> 2)); |
| 482 | RemainingBytes -= 4; |
| 483 | Stored += 4; |
| 484 | } |
| 485 | if (RemainingBytes >= 2) { |
| 486 | Result = StoreSubVec(2, NumBytes - Stored - 2, |
| 487 | IsLE ? (Stored >> 1) : 7 - (Stored >> 1)); |
| 488 | RemainingBytes -= 2; |
| 489 | Stored += 2; |
| 490 | } |
| 491 | if (RemainingBytes) |
| 492 | Result = |
| 493 | StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored); |
| 494 | return Result; |
| 495 | } |
| 496 | // Square root |
| 497 | case PPC::BI__builtin_vsx_xvsqrtsp: |
| 498 | case PPC::BI__builtin_vsx_xvsqrtdp: { |
| 499 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 500 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 501 | if (Builder.getIsFPConstrained()) { |
| 502 | llvm::Function *F = CGM.getIntrinsic( |
| 503 | IID: Intrinsic::experimental_constrained_sqrt, Tys: ResultType); |
| 504 | return Builder.CreateConstrainedFPCall(Callee: F, Args: X); |
| 505 | } else { |
| 506 | llvm::Function *F = CGM.getIntrinsic(IID: Intrinsic::sqrt, Tys: ResultType); |
| 507 | return Builder.CreateCall(Callee: F, Args: X); |
| 508 | } |
| 509 | } |
| 510 | // Count leading zeros |
| 511 | case PPC::BI__builtin_altivec_vclzb: |
| 512 | case PPC::BI__builtin_altivec_vclzh: |
| 513 | case PPC::BI__builtin_altivec_vclzw: |
| 514 | case PPC::BI__builtin_altivec_vclzd: { |
| 515 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 516 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 517 | Value *Undef = ConstantInt::get(Ty: Builder.getInt1Ty(), V: false); |
| 518 | Function *F = CGM.getIntrinsic(IID: Intrinsic::ctlz, Tys: ResultType); |
| 519 | return Builder.CreateCall(Callee: F, Args: {X, Undef}); |
| 520 | } |
| 521 | case PPC::BI__builtin_altivec_vctzb: |
| 522 | case PPC::BI__builtin_altivec_vctzh: |
| 523 | case PPC::BI__builtin_altivec_vctzw: |
| 524 | case PPC::BI__builtin_altivec_vctzd: { |
| 525 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 526 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 527 | Value *Undef = ConstantInt::get(Ty: Builder.getInt1Ty(), V: false); |
| 528 | Function *F = CGM.getIntrinsic(IID: Intrinsic::cttz, Tys: ResultType); |
| 529 | return Builder.CreateCall(Callee: F, Args: {X, Undef}); |
| 530 | } |
| 531 | case PPC::BI__builtin_altivec_vinsd: |
| 532 | case PPC::BI__builtin_altivec_vinsw: |
| 533 | case PPC::BI__builtin_altivec_vinsd_elt: |
| 534 | case PPC::BI__builtin_altivec_vinsw_elt: { |
| 535 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 536 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 537 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 538 | Value *Op2 = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 539 | |
| 540 | bool IsUnaligned = (BuiltinID == PPC::BI__builtin_altivec_vinsw || |
| 541 | BuiltinID == PPC::BI__builtin_altivec_vinsd); |
| 542 | |
| 543 | bool Is32bit = (BuiltinID == PPC::BI__builtin_altivec_vinsw || |
| 544 | BuiltinID == PPC::BI__builtin_altivec_vinsw_elt); |
| 545 | |
| 546 | // The third argument must be a compile time constant. |
| 547 | ConstantInt *ArgCI = dyn_cast<ConstantInt>(Val: Op2); |
| 548 | assert(ArgCI && |
| 549 | "Third Arg to vinsw/vinsd intrinsic must be a constant integer!" ); |
| 550 | |
| 551 | // Valid value for the third argument is dependent on the input type and |
| 552 | // builtin called. |
| 553 | int ValidMaxValue = 0; |
| 554 | if (IsUnaligned) |
| 555 | ValidMaxValue = (Is32bit) ? 12 : 8; |
| 556 | else |
| 557 | ValidMaxValue = (Is32bit) ? 3 : 1; |
| 558 | |
| 559 | // Get value of third argument. |
| 560 | int64_t ConstArg = ArgCI->getSExtValue(); |
| 561 | |
| 562 | // Compose range checking error message. |
| 563 | std::string RangeErrMsg = IsUnaligned ? "byte" : "element" ; |
| 564 | RangeErrMsg += " number " + llvm::to_string(Value: ConstArg); |
| 565 | RangeErrMsg += " is outside of the valid range [0, " ; |
| 566 | RangeErrMsg += llvm::to_string(Value: ValidMaxValue) + "]" ; |
| 567 | |
| 568 | // Issue error if third argument is not within the valid range. |
| 569 | if (ConstArg < 0 || ConstArg > ValidMaxValue) |
| 570 | CGM.Error(loc: E->getExprLoc(), error: RangeErrMsg); |
| 571 | |
| 572 | // Input to vec_replace_elt is an element index, convert to byte index. |
| 573 | if (!IsUnaligned) { |
| 574 | ConstArg *= Is32bit ? 4 : 8; |
| 575 | // Fix the constant according to endianess. |
| 576 | if (getTarget().isLittleEndian()) |
| 577 | ConstArg = (Is32bit ? 12 : 8) - ConstArg; |
| 578 | } |
| 579 | |
| 580 | ID = Is32bit ? Intrinsic::ppc_altivec_vinsw : Intrinsic::ppc_altivec_vinsd; |
| 581 | Op2 = ConstantInt::getSigned(Ty: Int32Ty, V: ConstArg); |
| 582 | // Casting input to vector int as per intrinsic definition. |
| 583 | Op0 = |
| 584 | Is32bit |
| 585 | ? Builder.CreateBitCast(V: Op0, DestTy: llvm::FixedVectorType::get(ElementType: Int32Ty, NumElts: 4)) |
| 586 | : Builder.CreateBitCast(V: Op0, |
| 587 | DestTy: llvm::FixedVectorType::get(ElementType: Int64Ty, NumElts: 2)); |
| 588 | return Builder.CreateBitCast( |
| 589 | V: Builder.CreateCall(Callee: CGM.getIntrinsic(IID: ID), Args: {Op0, Op1, Op2}), DestTy: ResultType); |
| 590 | } |
| 591 | case PPC::BI__builtin_altivec_vadduqm: |
| 592 | case PPC::BI__builtin_altivec_vsubuqm: { |
| 593 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 594 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 595 | llvm::Type *Int128Ty = llvm::IntegerType::get(C&: getLLVMContext(), NumBits: 128); |
| 596 | Op0 = Builder.CreateBitCast(V: Op0, DestTy: llvm::FixedVectorType::get(ElementType: Int128Ty, NumElts: 1)); |
| 597 | Op1 = Builder.CreateBitCast(V: Op1, DestTy: llvm::FixedVectorType::get(ElementType: Int128Ty, NumElts: 1)); |
| 598 | if (BuiltinID == PPC::BI__builtin_altivec_vadduqm) |
| 599 | return Builder.CreateAdd(LHS: Op0, RHS: Op1, Name: "vadduqm" ); |
| 600 | else |
| 601 | return Builder.CreateSub(LHS: Op0, RHS: Op1, Name: "vsubuqm" ); |
| 602 | } |
| 603 | case PPC::BI__builtin_altivec_vaddcuq_c: |
| 604 | case PPC::BI__builtin_altivec_vsubcuq_c: { |
| 605 | SmallVector<Value *, 2> Ops; |
| 606 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 607 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 608 | llvm::Type *V1I128Ty = llvm::FixedVectorType::get( |
| 609 | ElementType: llvm::IntegerType::get(C&: getLLVMContext(), NumBits: 128), NumElts: 1); |
| 610 | Ops.push_back(Elt: Builder.CreateBitCast(V: Op0, DestTy: V1I128Ty)); |
| 611 | Ops.push_back(Elt: Builder.CreateBitCast(V: Op1, DestTy: V1I128Ty)); |
| 612 | ID = (BuiltinID == PPC::BI__builtin_altivec_vaddcuq_c) |
| 613 | ? Intrinsic::ppc_altivec_vaddcuq |
| 614 | : Intrinsic::ppc_altivec_vsubcuq; |
| 615 | return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: ID), Args: Ops, Name: "" ); |
| 616 | } |
| 617 | case PPC::BI__builtin_altivec_vaddeuqm_c: |
| 618 | case PPC::BI__builtin_altivec_vaddecuq_c: |
| 619 | case PPC::BI__builtin_altivec_vsubeuqm_c: |
| 620 | case PPC::BI__builtin_altivec_vsubecuq_c: { |
| 621 | SmallVector<Value *, 3> Ops; |
| 622 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 623 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 624 | Value *Op2 = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 625 | llvm::Type *V1I128Ty = llvm::FixedVectorType::get( |
| 626 | ElementType: llvm::IntegerType::get(C&: getLLVMContext(), NumBits: 128), NumElts: 1); |
| 627 | Ops.push_back(Elt: Builder.CreateBitCast(V: Op0, DestTy: V1I128Ty)); |
| 628 | Ops.push_back(Elt: Builder.CreateBitCast(V: Op1, DestTy: V1I128Ty)); |
| 629 | Ops.push_back(Elt: Builder.CreateBitCast(V: Op2, DestTy: V1I128Ty)); |
| 630 | switch (BuiltinID) { |
| 631 | default: |
| 632 | llvm_unreachable("Unsupported intrinsic!" ); |
| 633 | case PPC::BI__builtin_altivec_vaddeuqm_c: |
| 634 | ID = Intrinsic::ppc_altivec_vaddeuqm; |
| 635 | break; |
| 636 | case PPC::BI__builtin_altivec_vaddecuq_c: |
| 637 | ID = Intrinsic::ppc_altivec_vaddecuq; |
| 638 | break; |
| 639 | case PPC::BI__builtin_altivec_vsubeuqm_c: |
| 640 | ID = Intrinsic::ppc_altivec_vsubeuqm; |
| 641 | break; |
| 642 | case PPC::BI__builtin_altivec_vsubecuq_c: |
| 643 | ID = Intrinsic::ppc_altivec_vsubecuq; |
| 644 | break; |
| 645 | } |
| 646 | return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: ID), Args: Ops, Name: "" ); |
| 647 | } |
| 648 | case PPC::BI__builtin_ppc_rldimi: |
| 649 | case PPC::BI__builtin_ppc_rlwimi: { |
| 650 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 651 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 652 | Value *Op2 = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 653 | Value *Op3 = EmitScalarExpr(E: E->getArg(Arg: 3)); |
| 654 | // rldimi is 64-bit instruction, expand the intrinsic before isel to |
| 655 | // leverage peephole and avoid legalization efforts. |
| 656 | if (BuiltinID == PPC::BI__builtin_ppc_rldimi && |
| 657 | !getTarget().getTriple().isPPC64()) { |
| 658 | Function *F = CGM.getIntrinsic(IID: Intrinsic::fshl, Tys: Op0->getType()); |
| 659 | Op2 = Builder.CreateZExt(V: Op2, DestTy: Int64Ty); |
| 660 | Value *Shift = Builder.CreateCall(Callee: F, Args: {Op0, Op0, Op2}); |
| 661 | return Builder.CreateOr(LHS: Builder.CreateAnd(LHS: Shift, RHS: Op3), |
| 662 | RHS: Builder.CreateAnd(LHS: Op1, RHS: Builder.CreateNot(V: Op3))); |
| 663 | } |
| 664 | return Builder.CreateCall( |
| 665 | Callee: CGM.getIntrinsic(IID: BuiltinID == PPC::BI__builtin_ppc_rldimi |
| 666 | ? Intrinsic::ppc_rldimi |
| 667 | : Intrinsic::ppc_rlwimi), |
| 668 | Args: {Op0, Op1, Op2, Op3}); |
| 669 | } |
| 670 | case PPC::BI__builtin_ppc_rlwnm: { |
| 671 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 672 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 673 | Value *Op2 = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 674 | return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::ppc_rlwnm), |
| 675 | Args: {Op0, Op1, Op2}); |
| 676 | } |
| 677 | case PPC::BI__builtin_ppc_poppar4: |
| 678 | case PPC::BI__builtin_ppc_poppar8: { |
| 679 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 680 | llvm::Type *ArgType = Op0->getType(); |
| 681 | Function *F = CGM.getIntrinsic(IID: Intrinsic::ctpop, Tys: ArgType); |
| 682 | Value *Tmp = Builder.CreateCall(Callee: F, Args: Op0); |
| 683 | |
| 684 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 685 | Value *Result = Builder.CreateAnd(LHS: Tmp, RHS: llvm::ConstantInt::get(Ty: ArgType, V: 1)); |
| 686 | if (Result->getType() != ResultType) |
| 687 | Result = Builder.CreateIntCast(V: Result, DestTy: ResultType, /*isSigned*/true, |
| 688 | Name: "cast" ); |
| 689 | return Result; |
| 690 | } |
| 691 | case PPC::BI__builtin_ppc_cmpb: { |
| 692 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 693 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 694 | if (getTarget().getTriple().isPPC64()) { |
| 695 | Function *F = |
| 696 | CGM.getIntrinsic(IID: Intrinsic::ppc_cmpb, Tys: {Int64Ty, Int64Ty, Int64Ty}); |
| 697 | return Builder.CreateCall(Callee: F, Args: {Op0, Op1}, Name: "cmpb" ); |
| 698 | } |
| 699 | // For 32 bit, emit the code as below: |
| 700 | // %conv = trunc i64 %a to i32 |
| 701 | // %conv1 = trunc i64 %b to i32 |
| 702 | // %shr = lshr i64 %a, 32 |
| 703 | // %conv2 = trunc i64 %shr to i32 |
| 704 | // %shr3 = lshr i64 %b, 32 |
| 705 | // %conv4 = trunc i64 %shr3 to i32 |
| 706 | // %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1) |
| 707 | // %conv5 = zext i32 %0 to i64 |
| 708 | // %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4) |
| 709 | // %conv614 = zext i32 %1 to i64 |
| 710 | // %shl = shl nuw i64 %conv614, 32 |
| 711 | // %or = or i64 %shl, %conv5 |
| 712 | // ret i64 %or |
| 713 | Function *F = |
| 714 | CGM.getIntrinsic(IID: Intrinsic::ppc_cmpb, Tys: {Int32Ty, Int32Ty, Int32Ty}); |
| 715 | Value *ArgOneLo = Builder.CreateTrunc(V: Op0, DestTy: Int32Ty); |
| 716 | Value *ArgTwoLo = Builder.CreateTrunc(V: Op1, DestTy: Int32Ty); |
| 717 | Constant *ShiftAmt = ConstantInt::get(Ty: Int64Ty, V: 32); |
| 718 | Value *ArgOneHi = |
| 719 | Builder.CreateTrunc(V: Builder.CreateLShr(LHS: Op0, RHS: ShiftAmt), DestTy: Int32Ty); |
| 720 | Value *ArgTwoHi = |
| 721 | Builder.CreateTrunc(V: Builder.CreateLShr(LHS: Op1, RHS: ShiftAmt), DestTy: Int32Ty); |
| 722 | Value *ResLo = Builder.CreateZExt( |
| 723 | V: Builder.CreateCall(Callee: F, Args: {ArgOneLo, ArgTwoLo}, Name: "cmpb" ), DestTy: Int64Ty); |
| 724 | Value *ResHiShift = Builder.CreateZExt( |
| 725 | V: Builder.CreateCall(Callee: F, Args: {ArgOneHi, ArgTwoHi}, Name: "cmpb" ), DestTy: Int64Ty); |
| 726 | Value *ResHi = Builder.CreateShl(LHS: ResHiShift, RHS: ShiftAmt); |
| 727 | return Builder.CreateOr(LHS: ResLo, RHS: ResHi); |
| 728 | } |
| 729 | // Copy sign |
| 730 | case PPC::BI__builtin_vsx_xvcpsgnsp: |
| 731 | case PPC::BI__builtin_vsx_xvcpsgndp: { |
| 732 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 733 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 734 | Value *Y = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 735 | ID = Intrinsic::copysign; |
| 736 | llvm::Function *F = CGM.getIntrinsic(IID: ID, Tys: ResultType); |
| 737 | return Builder.CreateCall(Callee: F, Args: {X, Y}); |
| 738 | } |
| 739 | // Rounding/truncation |
| 740 | case PPC::BI__builtin_vsx_xvrspip: |
| 741 | case PPC::BI__builtin_vsx_xvrdpip: |
| 742 | case PPC::BI__builtin_vsx_xvrdpim: |
| 743 | case PPC::BI__builtin_vsx_xvrspim: |
| 744 | case PPC::BI__builtin_vsx_xvrdpi: |
| 745 | case PPC::BI__builtin_vsx_xvrspi: |
| 746 | case PPC::BI__builtin_vsx_xvrdpic: |
| 747 | case PPC::BI__builtin_vsx_xvrspic: |
| 748 | case PPC::BI__builtin_vsx_xvrdpiz: |
| 749 | case PPC::BI__builtin_vsx_xvrspiz: { |
| 750 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 751 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 752 | if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim || |
| 753 | BuiltinID == PPC::BI__builtin_vsx_xvrspim) |
| 754 | ID = Builder.getIsFPConstrained() |
| 755 | ? Intrinsic::experimental_constrained_floor |
| 756 | : Intrinsic::floor; |
| 757 | else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi || |
| 758 | BuiltinID == PPC::BI__builtin_vsx_xvrspi) |
| 759 | ID = Builder.getIsFPConstrained() |
| 760 | ? Intrinsic::experimental_constrained_round |
| 761 | : Intrinsic::round; |
| 762 | else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic || |
| 763 | BuiltinID == PPC::BI__builtin_vsx_xvrspic) |
| 764 | ID = Builder.getIsFPConstrained() |
| 765 | ? Intrinsic::experimental_constrained_rint |
| 766 | : Intrinsic::rint; |
| 767 | else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip || |
| 768 | BuiltinID == PPC::BI__builtin_vsx_xvrspip) |
| 769 | ID = Builder.getIsFPConstrained() |
| 770 | ? Intrinsic::experimental_constrained_ceil |
| 771 | : Intrinsic::ceil; |
| 772 | else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz || |
| 773 | BuiltinID == PPC::BI__builtin_vsx_xvrspiz) |
| 774 | ID = Builder.getIsFPConstrained() |
| 775 | ? Intrinsic::experimental_constrained_trunc |
| 776 | : Intrinsic::trunc; |
| 777 | llvm::Function *F = CGM.getIntrinsic(IID: ID, Tys: ResultType); |
| 778 | return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(Callee: F, Args: X) |
| 779 | : Builder.CreateCall(Callee: F, Args: X); |
| 780 | } |
| 781 | |
| 782 | // Absolute value |
| 783 | case PPC::BI__builtin_vsx_xvabsdp: |
| 784 | case PPC::BI__builtin_vsx_xvabssp: { |
| 785 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 786 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 787 | llvm::Function *F = CGM.getIntrinsic(IID: Intrinsic::fabs, Tys: ResultType); |
| 788 | return Builder.CreateCall(Callee: F, Args: X); |
| 789 | } |
| 790 | |
| 791 | // Fastmath by default |
| 792 | case PPC::BI__builtin_ppc_recipdivf: |
| 793 | case PPC::BI__builtin_ppc_recipdivd: |
| 794 | case PPC::BI__builtin_ppc_rsqrtf: |
| 795 | case PPC::BI__builtin_ppc_rsqrtd: { |
| 796 | FastMathFlags FMF = Builder.getFastMathFlags(); |
| 797 | Builder.getFastMathFlags().setFast(); |
| 798 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 799 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 800 | |
| 801 | if (BuiltinID == PPC::BI__builtin_ppc_recipdivf || |
| 802 | BuiltinID == PPC::BI__builtin_ppc_recipdivd) { |
| 803 | Value *Y = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 804 | Value *FDiv = Builder.CreateFDiv(L: X, R: Y, Name: "recipdiv" ); |
| 805 | Builder.getFastMathFlags() &= (FMF); |
| 806 | return FDiv; |
| 807 | } |
| 808 | auto *One = ConstantFP::get(Ty: ResultType, V: 1.0); |
| 809 | llvm::Function *F = CGM.getIntrinsic(IID: Intrinsic::sqrt, Tys: ResultType); |
| 810 | Value *FDiv = Builder.CreateFDiv(L: One, R: Builder.CreateCall(Callee: F, Args: X), Name: "rsqrt" ); |
| 811 | Builder.getFastMathFlags() &= (FMF); |
| 812 | return FDiv; |
| 813 | } |
| 814 | case PPC::BI__builtin_ppc_alignx: { |
| 815 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 816 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 817 | ConstantInt *AlignmentCI = cast<ConstantInt>(Val: Op0); |
| 818 | if (AlignmentCI->getValue().ugt(RHS: llvm::Value::MaximumAlignment)) |
| 819 | AlignmentCI = ConstantInt::get(Ty: AlignmentCI->getIntegerType(), |
| 820 | V: llvm::Value::MaximumAlignment); |
| 821 | |
| 822 | emitAlignmentAssumption(PtrValue: Op1, E: E->getArg(Arg: 1), |
| 823 | /*The expr loc is sufficient.*/ AssumptionLoc: SourceLocation(), |
| 824 | Alignment: AlignmentCI, OffsetValue: nullptr); |
| 825 | return Op1; |
| 826 | } |
| 827 | case PPC::BI__builtin_ppc_rdlam: { |
| 828 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 829 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 830 | Value *Op2 = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 831 | llvm::Type *Ty = Op0->getType(); |
| 832 | Value *ShiftAmt = Builder.CreateIntCast(V: Op1, DestTy: Ty, isSigned: false); |
| 833 | Function *F = CGM.getIntrinsic(IID: Intrinsic::fshl, Tys: Ty); |
| 834 | Value *Rotate = Builder.CreateCall(Callee: F, Args: {Op0, Op0, ShiftAmt}); |
| 835 | return Builder.CreateAnd(LHS: Rotate, RHS: Op2); |
| 836 | } |
| 837 | case PPC::BI__builtin_ppc_load2r: { |
| 838 | Function *F = CGM.getIntrinsic(IID: Intrinsic::ppc_load2r); |
| 839 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 840 | Value *LoadIntrinsic = Builder.CreateCall(Callee: F, Args: {Op0}); |
| 841 | return Builder.CreateTrunc(V: LoadIntrinsic, DestTy: Int16Ty); |
| 842 | } |
| 843 | // FMA variations |
| 844 | case PPC::BI__builtin_ppc_fnmsub: |
| 845 | case PPC::BI__builtin_ppc_fnmsubs: |
| 846 | case PPC::BI__builtin_vsx_xvmaddadp: |
| 847 | case PPC::BI__builtin_vsx_xvmaddasp: |
| 848 | case PPC::BI__builtin_vsx_xvnmaddadp: |
| 849 | case PPC::BI__builtin_vsx_xvnmaddasp: |
| 850 | case PPC::BI__builtin_vsx_xvmsubadp: |
| 851 | case PPC::BI__builtin_vsx_xvmsubasp: |
| 852 | case PPC::BI__builtin_vsx_xvnmsubadp: |
| 853 | case PPC::BI__builtin_vsx_xvnmsubasp: { |
| 854 | llvm::Type *ResultType = ConvertType(T: E->getType()); |
| 855 | Value *X = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 856 | Value *Y = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 857 | Value *Z = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 858 | llvm::Function *F; |
| 859 | if (Builder.getIsFPConstrained()) |
| 860 | F = CGM.getIntrinsic(IID: Intrinsic::experimental_constrained_fma, Tys: ResultType); |
| 861 | else |
| 862 | F = CGM.getIntrinsic(IID: Intrinsic::fma, Tys: ResultType); |
| 863 | switch (BuiltinID) { |
| 864 | case PPC::BI__builtin_vsx_xvmaddadp: |
| 865 | case PPC::BI__builtin_vsx_xvmaddasp: |
| 866 | if (Builder.getIsFPConstrained()) |
| 867 | return Builder.CreateConstrainedFPCall(Callee: F, Args: {X, Y, Z}); |
| 868 | else |
| 869 | return Builder.CreateCall(Callee: F, Args: {X, Y, Z}); |
| 870 | case PPC::BI__builtin_vsx_xvnmaddadp: |
| 871 | case PPC::BI__builtin_vsx_xvnmaddasp: |
| 872 | if (Builder.getIsFPConstrained()) |
| 873 | return Builder.CreateFNeg( |
| 874 | V: Builder.CreateConstrainedFPCall(Callee: F, Args: {X, Y, Z}), Name: "neg" ); |
| 875 | else |
| 876 | return Builder.CreateFNeg(V: Builder.CreateCall(Callee: F, Args: {X, Y, Z}), Name: "neg" ); |
| 877 | case PPC::BI__builtin_vsx_xvmsubadp: |
| 878 | case PPC::BI__builtin_vsx_xvmsubasp: |
| 879 | if (Builder.getIsFPConstrained()) |
| 880 | return Builder.CreateConstrainedFPCall( |
| 881 | Callee: F, Args: {X, Y, Builder.CreateFNeg(V: Z, Name: "neg" )}); |
| 882 | else |
| 883 | return Builder.CreateCall(Callee: F, Args: {X, Y, Builder.CreateFNeg(V: Z, Name: "neg" )}); |
| 884 | case PPC::BI__builtin_ppc_fnmsub: |
| 885 | case PPC::BI__builtin_ppc_fnmsubs: |
| 886 | case PPC::BI__builtin_vsx_xvnmsubadp: |
| 887 | case PPC::BI__builtin_vsx_xvnmsubasp: |
| 888 | if (Builder.getIsFPConstrained()) |
| 889 | return Builder.CreateFNeg( |
| 890 | V: Builder.CreateConstrainedFPCall( |
| 891 | Callee: F, Args: {X, Y, Builder.CreateFNeg(V: Z, Name: "neg" )}), |
| 892 | Name: "neg" ); |
| 893 | else |
| 894 | return Builder.CreateCall( |
| 895 | Callee: CGM.getIntrinsic(IID: Intrinsic::ppc_fnmsub, Tys: ResultType), Args: {X, Y, Z}); |
| 896 | } |
| 897 | llvm_unreachable("Unknown FMA operation" ); |
| 898 | return nullptr; // Suppress no-return warning |
| 899 | } |
| 900 | |
| 901 | case PPC::BI__builtin_vsx_insertword: { |
| 902 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 903 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 904 | Value *Op2 = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 905 | llvm::Function *F = CGM.getIntrinsic(IID: Intrinsic::ppc_vsx_xxinsertw); |
| 906 | |
| 907 | // Third argument is a compile time constant int. It must be clamped to |
| 908 | // to the range [0, 12]. |
| 909 | ConstantInt *ArgCI = dyn_cast<ConstantInt>(Val: Op2); |
| 910 | assert(ArgCI && |
| 911 | "Third arg to xxinsertw intrinsic must be constant integer" ); |
| 912 | const int64_t MaxIndex = 12; |
| 913 | int64_t Index = std::clamp(val: ArgCI->getSExtValue(), lo: (int64_t)0, hi: MaxIndex); |
| 914 | |
| 915 | // The builtin semantics don't exactly match the xxinsertw instructions |
| 916 | // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the |
| 917 | // word from the first argument, and inserts it in the second argument. The |
| 918 | // instruction extracts the word from its second input register and inserts |
| 919 | // it into its first input register, so swap the first and second arguments. |
| 920 | std::swap(a&: Op0, b&: Op1); |
| 921 | |
| 922 | // Need to cast the second argument from a vector of unsigned int to a |
| 923 | // vector of long long. |
| 924 | Op1 = Builder.CreateBitCast(V: Op1, DestTy: llvm::FixedVectorType::get(ElementType: Int64Ty, NumElts: 2)); |
| 925 | |
| 926 | if (getTarget().isLittleEndian()) { |
| 927 | // Reverse the double words in the vector we will extract from. |
| 928 | Op0 = Builder.CreateBitCast(V: Op0, DestTy: llvm::FixedVectorType::get(ElementType: Int64Ty, NumElts: 2)); |
| 929 | Op0 = Builder.CreateShuffleVector(V1: Op0, V2: Op0, Mask: {1, 0}); |
| 930 | |
| 931 | // Reverse the index. |
| 932 | Index = MaxIndex - Index; |
| 933 | } |
| 934 | |
| 935 | // Intrinsic expects the first arg to be a vector of int. |
| 936 | Op0 = Builder.CreateBitCast(V: Op0, DestTy: llvm::FixedVectorType::get(ElementType: Int32Ty, NumElts: 4)); |
| 937 | Op2 = ConstantInt::getSigned(Ty: Int32Ty, V: Index); |
| 938 | return Builder.CreateCall(Callee: F, Args: {Op0, Op1, Op2}); |
| 939 | } |
| 940 | |
| 941 | case PPC::BI__builtin_vsx_extractuword: { |
| 942 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 943 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 944 | llvm::Function *F = CGM.getIntrinsic(IID: Intrinsic::ppc_vsx_xxextractuw); |
| 945 | |
| 946 | // Intrinsic expects the first argument to be a vector of doublewords. |
| 947 | Op0 = Builder.CreateBitCast(V: Op0, DestTy: llvm::FixedVectorType::get(ElementType: Int64Ty, NumElts: 2)); |
| 948 | |
| 949 | // The second argument is a compile time constant int that needs to |
| 950 | // be clamped to the range [0, 12]. |
| 951 | ConstantInt *ArgCI = dyn_cast<ConstantInt>(Val: Op1); |
| 952 | assert(ArgCI && |
| 953 | "Second Arg to xxextractuw intrinsic must be a constant integer!" ); |
| 954 | const int64_t MaxIndex = 12; |
| 955 | int64_t Index = std::clamp(val: ArgCI->getSExtValue(), lo: (int64_t)0, hi: MaxIndex); |
| 956 | |
| 957 | if (getTarget().isLittleEndian()) { |
| 958 | // Reverse the index. |
| 959 | Index = MaxIndex - Index; |
| 960 | Op1 = ConstantInt::getSigned(Ty: Int32Ty, V: Index); |
| 961 | |
| 962 | // Emit the call, then reverse the double words of the results vector. |
| 963 | Value *Call = Builder.CreateCall(Callee: F, Args: {Op0, Op1}); |
| 964 | |
| 965 | Value *ShuffleCall = |
| 966 | Builder.CreateShuffleVector(V1: Call, V2: Call, Mask: {1, 0}); |
| 967 | return ShuffleCall; |
| 968 | } else { |
| 969 | Op1 = ConstantInt::getSigned(Ty: Int32Ty, V: Index); |
| 970 | return Builder.CreateCall(Callee: F, Args: {Op0, Op1}); |
| 971 | } |
| 972 | } |
| 973 | |
| 974 | case PPC::BI__builtin_vsx_xxpermdi: { |
| 975 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 976 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 977 | Value *Op2 = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 978 | ConstantInt *ArgCI = dyn_cast<ConstantInt>(Val: Op2); |
| 979 | assert(ArgCI && "Third arg must be constant integer!" ); |
| 980 | |
| 981 | unsigned Index = ArgCI->getZExtValue(); |
| 982 | Op0 = Builder.CreateBitCast(V: Op0, DestTy: llvm::FixedVectorType::get(ElementType: Int64Ty, NumElts: 2)); |
| 983 | Op1 = Builder.CreateBitCast(V: Op1, DestTy: llvm::FixedVectorType::get(ElementType: Int64Ty, NumElts: 2)); |
| 984 | |
| 985 | // Account for endianness by treating this as just a shuffle. So we use the |
| 986 | // same indices for both LE and BE in order to produce expected results in |
| 987 | // both cases. |
| 988 | int ElemIdx0 = (Index & 2) >> 1; |
| 989 | int ElemIdx1 = 2 + (Index & 1); |
| 990 | |
| 991 | int ShuffleElts[2] = {ElemIdx0, ElemIdx1}; |
| 992 | Value *ShuffleCall = Builder.CreateShuffleVector(V1: Op0, V2: Op1, Mask: ShuffleElts); |
| 993 | QualType BIRetType = E->getType(); |
| 994 | auto RetTy = ConvertType(T: BIRetType); |
| 995 | return Builder.CreateBitCast(V: ShuffleCall, DestTy: RetTy); |
| 996 | } |
| 997 | |
| 998 | case PPC::BI__builtin_vsx_xxsldwi: { |
| 999 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1000 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1001 | Value *Op2 = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 1002 | ConstantInt *ArgCI = dyn_cast<ConstantInt>(Val: Op2); |
| 1003 | assert(ArgCI && "Third argument must be a compile time constant" ); |
| 1004 | unsigned Index = ArgCI->getZExtValue() & 0x3; |
| 1005 | Op0 = Builder.CreateBitCast(V: Op0, DestTy: llvm::FixedVectorType::get(ElementType: Int32Ty, NumElts: 4)); |
| 1006 | Op1 = Builder.CreateBitCast(V: Op1, DestTy: llvm::FixedVectorType::get(ElementType: Int32Ty, NumElts: 4)); |
| 1007 | |
| 1008 | // Create a shuffle mask |
| 1009 | int ElemIdx0; |
| 1010 | int ElemIdx1; |
| 1011 | int ElemIdx2; |
| 1012 | int ElemIdx3; |
| 1013 | if (getTarget().isLittleEndian()) { |
| 1014 | // Little endian element N comes from element 8+N-Index of the |
| 1015 | // concatenated wide vector (of course, using modulo arithmetic on |
| 1016 | // the total number of elements). |
| 1017 | ElemIdx0 = (8 - Index) % 8; |
| 1018 | ElemIdx1 = (9 - Index) % 8; |
| 1019 | ElemIdx2 = (10 - Index) % 8; |
| 1020 | ElemIdx3 = (11 - Index) % 8; |
| 1021 | } else { |
| 1022 | // Big endian ElemIdx<N> = Index + N |
| 1023 | ElemIdx0 = Index; |
| 1024 | ElemIdx1 = Index + 1; |
| 1025 | ElemIdx2 = Index + 2; |
| 1026 | ElemIdx3 = Index + 3; |
| 1027 | } |
| 1028 | |
| 1029 | int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3}; |
| 1030 | Value *ShuffleCall = Builder.CreateShuffleVector(V1: Op0, V2: Op1, Mask: ShuffleElts); |
| 1031 | QualType BIRetType = E->getType(); |
| 1032 | auto RetTy = ConvertType(T: BIRetType); |
| 1033 | return Builder.CreateBitCast(V: ShuffleCall, DestTy: RetTy); |
| 1034 | } |
| 1035 | |
| 1036 | case PPC::BI__builtin_pack_vector_int128: { |
| 1037 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1038 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1039 | bool isLittleEndian = getTarget().isLittleEndian(); |
| 1040 | Value *PoisonValue = |
| 1041 | llvm::PoisonValue::get(T: llvm::FixedVectorType::get(ElementType: Op0->getType(), NumElts: 2)); |
| 1042 | Value *Res = Builder.CreateInsertElement( |
| 1043 | Vec: PoisonValue, NewElt: Op0, Idx: (uint64_t)(isLittleEndian ? 1 : 0)); |
| 1044 | Res = Builder.CreateInsertElement(Vec: Res, NewElt: Op1, |
| 1045 | Idx: (uint64_t)(isLittleEndian ? 0 : 1)); |
| 1046 | return Builder.CreateBitCast(V: Res, DestTy: ConvertType(T: E->getType())); |
| 1047 | } |
| 1048 | |
| 1049 | case PPC::BI__builtin_unpack_vector_int128: { |
| 1050 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1051 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1052 | ConstantInt *Index = cast<ConstantInt>(Val: Op1); |
| 1053 | Value *Unpacked = Builder.CreateBitCast( |
| 1054 | V: Op0, DestTy: llvm::FixedVectorType::get(ElementType: ConvertType(T: E->getType()), NumElts: 2)); |
| 1055 | |
| 1056 | if (getTarget().isLittleEndian()) |
| 1057 | Index = |
| 1058 | ConstantInt::get(Ty: Index->getIntegerType(), V: 1 - Index->getZExtValue()); |
| 1059 | |
| 1060 | return Builder.CreateExtractElement(Vec: Unpacked, Idx: Index); |
| 1061 | } |
| 1062 | |
| 1063 | case PPC::BI__builtin_ppc_sthcx: { |
| 1064 | llvm::Function *F = CGM.getIntrinsic(IID: Intrinsic::ppc_sthcx); |
| 1065 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1066 | Value *Op1 = Builder.CreateSExt(V: EmitScalarExpr(E: E->getArg(Arg: 1)), DestTy: Int32Ty); |
| 1067 | return Builder.CreateCall(Callee: F, Args: {Op0, Op1}); |
| 1068 | } |
| 1069 | |
| 1070 | // The PPC MMA builtins take a pointer to a __vector_quad as an argument. |
| 1071 | // Some of the MMA instructions accumulate their result into an existing |
| 1072 | // accumulator whereas the others generate a new accumulator. So we need to |
| 1073 | // use custom code generation to expand a builtin call with a pointer to a |
| 1074 | // load (if the corresponding instruction accumulates its result) followed by |
| 1075 | // the call to the intrinsic and a store of the result. |
| 1076 | #define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate, Feature) \ |
| 1077 | case PPC::BI__builtin_##Name: |
| 1078 | #include "clang/Basic/BuiltinsPPC.def" |
| 1079 | { |
| 1080 | SmallVector<Value *, 4> Ops; |
| 1081 | for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) |
| 1082 | if (E->getArg(Arg: i)->getType()->isArrayType()) |
| 1083 | Ops.push_back( |
| 1084 | Elt: EmitArrayToPointerDecay(Array: E->getArg(Arg: i)).emitRawPointer(CGF&: *this)); |
| 1085 | else |
| 1086 | Ops.push_back(Elt: EmitScalarExpr(E: E->getArg(Arg: i))); |
| 1087 | // The first argument of these two builtins is a pointer used to store their |
| 1088 | // result. However, the llvm intrinsics return their result in multiple |
| 1089 | // return values. So, here we emit code extracting these values from the |
| 1090 | // intrinsic results and storing them using that pointer. |
| 1091 | if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc || |
| 1092 | BuiltinID == PPC::BI__builtin_vsx_disassemble_pair || |
| 1093 | BuiltinID == PPC::BI__builtin_mma_disassemble_pair) { |
| 1094 | unsigned NumVecs = 2; |
| 1095 | auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair; |
| 1096 | if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) { |
| 1097 | NumVecs = 4; |
| 1098 | Intrinsic = Intrinsic::ppc_mma_disassemble_acc; |
| 1099 | } |
| 1100 | llvm::Function *F = CGM.getIntrinsic(IID: Intrinsic); |
| 1101 | Address Addr = EmitPointerWithAlignment(Addr: E->getArg(Arg: 1)); |
| 1102 | Value *Vec = Builder.CreateLoad(Addr); |
| 1103 | Value *Call = Builder.CreateCall(Callee: F, Args: {Vec}); |
| 1104 | llvm::Type *VTy = llvm::FixedVectorType::get(ElementType: Int8Ty, NumElts: 16); |
| 1105 | Value *Ptr = Ops[0]; |
| 1106 | for (unsigned i=0; i<NumVecs; i++) { |
| 1107 | Value *Vec = Builder.CreateExtractValue(Agg: Call, Idxs: i); |
| 1108 | llvm::ConstantInt* Index = llvm::ConstantInt::get(Ty: IntTy, V: i); |
| 1109 | Value *GEP = Builder.CreateInBoundsGEP(Ty: VTy, Ptr, IdxList: Index); |
| 1110 | Builder.CreateAlignedStore(Val: Vec, Ptr: GEP, Align: MaybeAlign(16)); |
| 1111 | } |
| 1112 | return Call; |
| 1113 | } |
| 1114 | if (BuiltinID == PPC::BI__builtin_vsx_build_pair || |
| 1115 | BuiltinID == PPC::BI__builtin_mma_build_acc) { |
| 1116 | // Reverse the order of the operands for LE, so the |
| 1117 | // same builtin call can be used on both LE and BE |
| 1118 | // without the need for the programmer to swap operands. |
| 1119 | // The operands are reversed starting from the second argument, |
| 1120 | // the first operand is the pointer to the pair/accumulator |
| 1121 | // that is being built. |
| 1122 | if (getTarget().isLittleEndian()) |
| 1123 | std::reverse(first: Ops.begin() + 1, last: Ops.end()); |
| 1124 | } |
| 1125 | bool Accumulate; |
| 1126 | switch (BuiltinID) { |
| 1127 | #define CUSTOM_BUILTIN(Name, Intr, Types, Acc, Feature) \ |
| 1128 | case PPC::BI__builtin_##Name: \ |
| 1129 | ID = Intrinsic::ppc_##Intr; \ |
| 1130 | Accumulate = Acc; \ |
| 1131 | break; |
| 1132 | #include "clang/Basic/BuiltinsPPC.def" |
| 1133 | } |
| 1134 | if (BuiltinID == PPC::BI__builtin_vsx_lxvp || |
| 1135 | BuiltinID == PPC::BI__builtin_vsx_stxvp || |
| 1136 | BuiltinID == PPC::BI__builtin_mma_lxvp || |
| 1137 | BuiltinID == PPC::BI__builtin_mma_stxvp) { |
| 1138 | if (BuiltinID == PPC::BI__builtin_vsx_lxvp || |
| 1139 | BuiltinID == PPC::BI__builtin_mma_lxvp) { |
| 1140 | Ops[0] = Builder.CreateGEP(Ty: Int8Ty, Ptr: Ops[1], IdxList: Ops[0]); |
| 1141 | } else { |
| 1142 | Ops[1] = Builder.CreateGEP(Ty: Int8Ty, Ptr: Ops[2], IdxList: Ops[1]); |
| 1143 | } |
| 1144 | Ops.pop_back(); |
| 1145 | llvm::Function *F = CGM.getIntrinsic(IID: ID); |
| 1146 | return Builder.CreateCall(Callee: F, Args: Ops, Name: "" ); |
| 1147 | } |
| 1148 | SmallVector<Value*, 4> CallOps; |
| 1149 | if (Accumulate) { |
| 1150 | Address Addr = EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 1151 | Value *Acc = Builder.CreateLoad(Addr); |
| 1152 | CallOps.push_back(Elt: Acc); |
| 1153 | } |
| 1154 | for (unsigned i=1; i<Ops.size(); i++) |
| 1155 | CallOps.push_back(Elt: Ops[i]); |
| 1156 | llvm::Function *F = CGM.getIntrinsic(IID: ID); |
| 1157 | Value *Call = Builder.CreateCall(Callee: F, Args: CallOps); |
| 1158 | return Builder.CreateAlignedStore(Val: Call, Ptr: Ops[0], Align: MaybeAlign()); |
| 1159 | } |
| 1160 | |
| 1161 | case PPC::BI__builtin_ppc_compare_and_swap: |
| 1162 | case PPC::BI__builtin_ppc_compare_and_swaplp: { |
| 1163 | Address Addr = EmitPointerWithAlignment(Addr: E->getArg(Arg: 0)); |
| 1164 | Address OldValAddr = EmitPointerWithAlignment(Addr: E->getArg(Arg: 1)); |
| 1165 | Value *OldVal = Builder.CreateLoad(Addr: OldValAddr); |
| 1166 | QualType AtomicTy = E->getArg(Arg: 0)->getType()->getPointeeType(); |
| 1167 | LValue LV = MakeAddrLValue(Addr, T: AtomicTy); |
| 1168 | Value *Op2 = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 1169 | auto Pair = EmitAtomicCompareExchange( |
| 1170 | Obj: LV, Expected: RValue::get(V: OldVal), Desired: RValue::get(V: Op2), Loc: E->getExprLoc(), |
| 1171 | Success: llvm::AtomicOrdering::Monotonic, Failure: llvm::AtomicOrdering::Monotonic, IsWeak: true); |
| 1172 | // Unlike c11's atomic_compare_exchange, according to |
| 1173 | // https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp |
| 1174 | // > In either case, the contents of the memory location specified by addr |
| 1175 | // > are copied into the memory location specified by old_val_addr. |
| 1176 | // But it hasn't specified storing to OldValAddr is atomic or not and |
| 1177 | // which order to use. Now following XL's codegen, treat it as a normal |
| 1178 | // store. |
| 1179 | Value *LoadedVal = Pair.first.getScalarVal(); |
| 1180 | Builder.CreateStore(Val: LoadedVal, Addr: OldValAddr); |
| 1181 | return Builder.CreateZExt(V: Pair.second, DestTy: Builder.getInt32Ty()); |
| 1182 | } |
| 1183 | case PPC::BI__builtin_ppc_fetch_and_add: |
| 1184 | case PPC::BI__builtin_ppc_fetch_and_addlp: { |
| 1185 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Add, E, |
| 1186 | Ordering: llvm::AtomicOrdering::Monotonic); |
| 1187 | } |
| 1188 | case PPC::BI__builtin_ppc_fetch_and_and: |
| 1189 | case PPC::BI__builtin_ppc_fetch_and_andlp: { |
| 1190 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::And, E, |
| 1191 | Ordering: llvm::AtomicOrdering::Monotonic); |
| 1192 | } |
| 1193 | |
| 1194 | case PPC::BI__builtin_ppc_fetch_and_or: |
| 1195 | case PPC::BI__builtin_ppc_fetch_and_orlp: { |
| 1196 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Or, E, |
| 1197 | Ordering: llvm::AtomicOrdering::Monotonic); |
| 1198 | } |
| 1199 | case PPC::BI__builtin_ppc_fetch_and_swap: |
| 1200 | case PPC::BI__builtin_ppc_fetch_and_swaplp: { |
| 1201 | return MakeBinaryAtomicValue(CGF&: *this, Kind: AtomicRMWInst::Xchg, E, |
| 1202 | Ordering: llvm::AtomicOrdering::Monotonic); |
| 1203 | } |
| 1204 | case PPC::BI__builtin_ppc_ldarx: |
| 1205 | case PPC::BI__builtin_ppc_lwarx: |
| 1206 | case PPC::BI__builtin_ppc_lharx: |
| 1207 | case PPC::BI__builtin_ppc_lbarx: |
| 1208 | return emitPPCLoadReserveIntrinsic(CGF&: *this, BuiltinID, E); |
| 1209 | case PPC::BI__builtin_ppc_mfspr: { |
| 1210 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1211 | llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(Ty: VoidPtrTy) == 32 |
| 1212 | ? Int32Ty |
| 1213 | : Int64Ty; |
| 1214 | Function *F = CGM.getIntrinsic(IID: Intrinsic::ppc_mfspr, Tys: RetType); |
| 1215 | return Builder.CreateCall(Callee: F, Args: {Op0}); |
| 1216 | } |
| 1217 | case PPC::BI__builtin_ppc_mtspr: { |
| 1218 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1219 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1220 | llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(Ty: VoidPtrTy) == 32 |
| 1221 | ? Int32Ty |
| 1222 | : Int64Ty; |
| 1223 | Function *F = CGM.getIntrinsic(IID: Intrinsic::ppc_mtspr, Tys: RetType); |
| 1224 | return Builder.CreateCall(Callee: F, Args: {Op0, Op1}); |
| 1225 | } |
| 1226 | case PPC::BI__builtin_ppc_popcntb: { |
| 1227 | Value *ArgValue = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1228 | llvm::Type *ArgType = ArgValue->getType(); |
| 1229 | Function *F = CGM.getIntrinsic(IID: Intrinsic::ppc_popcntb, Tys: {ArgType, ArgType}); |
| 1230 | return Builder.CreateCall(Callee: F, Args: {ArgValue}, Name: "popcntb" ); |
| 1231 | } |
| 1232 | case PPC::BI__builtin_ppc_mtfsf: { |
| 1233 | // The builtin takes a uint32 that needs to be cast to an |
| 1234 | // f64 to be passed to the intrinsic. |
| 1235 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1236 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1237 | Value *Cast = Builder.CreateUIToFP(V: Op1, DestTy: DoubleTy); |
| 1238 | llvm::Function *F = CGM.getIntrinsic(IID: Intrinsic::ppc_mtfsf); |
| 1239 | return Builder.CreateCall(Callee: F, Args: {Op0, Cast}, Name: "" ); |
| 1240 | } |
| 1241 | |
| 1242 | case PPC::BI__builtin_ppc_swdiv_nochk: |
| 1243 | case PPC::BI__builtin_ppc_swdivs_nochk: { |
| 1244 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1245 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1246 | FastMathFlags FMF = Builder.getFastMathFlags(); |
| 1247 | Builder.getFastMathFlags().setFast(); |
| 1248 | Value *FDiv = Builder.CreateFDiv(L: Op0, R: Op1, Name: "swdiv_nochk" ); |
| 1249 | Builder.getFastMathFlags() &= (FMF); |
| 1250 | return FDiv; |
| 1251 | } |
| 1252 | case PPC::BI__builtin_ppc_fric: |
| 1253 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin( |
| 1254 | CGF&: *this, E, IntrinsicID: Intrinsic::rint, |
| 1255 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_rint)) |
| 1256 | .getScalarVal(); |
| 1257 | case PPC::BI__builtin_ppc_frim: |
| 1258 | case PPC::BI__builtin_ppc_frims: |
| 1259 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin( |
| 1260 | CGF&: *this, E, IntrinsicID: Intrinsic::floor, |
| 1261 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_floor)) |
| 1262 | .getScalarVal(); |
| 1263 | case PPC::BI__builtin_ppc_frin: |
| 1264 | case PPC::BI__builtin_ppc_frins: |
| 1265 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin( |
| 1266 | CGF&: *this, E, IntrinsicID: Intrinsic::round, |
| 1267 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_round)) |
| 1268 | .getScalarVal(); |
| 1269 | case PPC::BI__builtin_ppc_frip: |
| 1270 | case PPC::BI__builtin_ppc_frips: |
| 1271 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin( |
| 1272 | CGF&: *this, E, IntrinsicID: Intrinsic::ceil, |
| 1273 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_ceil)) |
| 1274 | .getScalarVal(); |
| 1275 | case PPC::BI__builtin_ppc_friz: |
| 1276 | case PPC::BI__builtin_ppc_frizs: |
| 1277 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin( |
| 1278 | CGF&: *this, E, IntrinsicID: Intrinsic::trunc, |
| 1279 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_trunc)) |
| 1280 | .getScalarVal(); |
| 1281 | case PPC::BI__builtin_ppc_fsqrt: |
| 1282 | case PPC::BI__builtin_ppc_fsqrts: |
| 1283 | return RValue::get(V: emitUnaryMaybeConstrainedFPBuiltin( |
| 1284 | CGF&: *this, E, IntrinsicID: Intrinsic::sqrt, |
| 1285 | ConstrainedIntrinsicID: Intrinsic::experimental_constrained_sqrt)) |
| 1286 | .getScalarVal(); |
| 1287 | case PPC::BI__builtin_ppc_test_data_class: { |
| 1288 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1289 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1290 | return Builder.CreateCall( |
| 1291 | Callee: CGM.getIntrinsic(IID: Intrinsic::ppc_test_data_class, Tys: Op0->getType()), |
| 1292 | Args: {Op0, Op1}, Name: "test_data_class" ); |
| 1293 | } |
| 1294 | case PPC::BI__builtin_ppc_maxfe: { |
| 1295 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1296 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1297 | Value *Op2 = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 1298 | Value *Op3 = EmitScalarExpr(E: E->getArg(Arg: 3)); |
| 1299 | return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::ppc_maxfe), |
| 1300 | Args: {Op0, Op1, Op2, Op3}); |
| 1301 | } |
| 1302 | case PPC::BI__builtin_ppc_maxfl: { |
| 1303 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1304 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1305 | Value *Op2 = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 1306 | Value *Op3 = EmitScalarExpr(E: E->getArg(Arg: 3)); |
| 1307 | return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::ppc_maxfl), |
| 1308 | Args: {Op0, Op1, Op2, Op3}); |
| 1309 | } |
| 1310 | case PPC::BI__builtin_ppc_maxfs: { |
| 1311 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1312 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1313 | Value *Op2 = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 1314 | Value *Op3 = EmitScalarExpr(E: E->getArg(Arg: 3)); |
| 1315 | return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::ppc_maxfs), |
| 1316 | Args: {Op0, Op1, Op2, Op3}); |
| 1317 | } |
| 1318 | case PPC::BI__builtin_ppc_minfe: { |
| 1319 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1320 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1321 | Value *Op2 = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 1322 | Value *Op3 = EmitScalarExpr(E: E->getArg(Arg: 3)); |
| 1323 | return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::ppc_minfe), |
| 1324 | Args: {Op0, Op1, Op2, Op3}); |
| 1325 | } |
| 1326 | case PPC::BI__builtin_ppc_minfl: { |
| 1327 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1328 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1329 | Value *Op2 = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 1330 | Value *Op3 = EmitScalarExpr(E: E->getArg(Arg: 3)); |
| 1331 | return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::ppc_minfl), |
| 1332 | Args: {Op0, Op1, Op2, Op3}); |
| 1333 | } |
| 1334 | case PPC::BI__builtin_ppc_minfs: { |
| 1335 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1336 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1337 | Value *Op2 = EmitScalarExpr(E: E->getArg(Arg: 2)); |
| 1338 | Value *Op3 = EmitScalarExpr(E: E->getArg(Arg: 3)); |
| 1339 | return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::ppc_minfs), |
| 1340 | Args: {Op0, Op1, Op2, Op3}); |
| 1341 | } |
| 1342 | case PPC::BI__builtin_ppc_swdiv: |
| 1343 | case PPC::BI__builtin_ppc_swdivs: { |
| 1344 | Value *Op0 = EmitScalarExpr(E: E->getArg(Arg: 0)); |
| 1345 | Value *Op1 = EmitScalarExpr(E: E->getArg(Arg: 1)); |
| 1346 | return Builder.CreateFDiv(L: Op0, R: Op1, Name: "swdiv" ); |
| 1347 | } |
| 1348 | case PPC::BI__builtin_ppc_set_fpscr_rn: |
| 1349 | return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::ppc_setrnd), |
| 1350 | Args: {EmitScalarExpr(E: E->getArg(Arg: 0))}); |
| 1351 | case PPC::BI__builtin_ppc_mffs: |
| 1352 | return Builder.CreateCall(Callee: CGM.getIntrinsic(IID: Intrinsic::ppc_readflm)); |
| 1353 | } |
| 1354 | } |
| 1355 | |