1 | //===- LoongArch.cpp ------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "ABIInfoImpl.h" |
10 | #include "TargetInfo.h" |
11 | |
12 | using namespace clang; |
13 | using namespace clang::CodeGen; |
14 | |
15 | // LoongArch ABI Implementation. Documented at |
16 | // https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html |
17 | // |
18 | //===----------------------------------------------------------------------===// |
19 | |
20 | namespace { |
21 | class LoongArchABIInfo : public DefaultABIInfo { |
22 | private: |
23 | // Size of the integer ('r') registers in bits. |
24 | unsigned GRLen; |
25 | // Size of the floating point ('f') registers in bits. |
26 | unsigned FRLen; |
27 | // Number of general-purpose argument registers. |
28 | static const int NumGARs = 8; |
29 | // Number of floating-point argument registers. |
30 | static const int NumFARs = 8; |
31 | bool detectFARsEligibleStructHelper(QualType Ty, CharUnits CurOff, |
32 | llvm::Type *&Field1Ty, |
33 | CharUnits &Field1Off, |
34 | llvm::Type *&Field2Ty, |
35 | CharUnits &Field2Off) const; |
36 | |
37 | public: |
38 | LoongArchABIInfo(CodeGen::CodeGenTypes &CGT, unsigned GRLen, unsigned FRLen) |
39 | : DefaultABIInfo(CGT), GRLen(GRLen), FRLen(FRLen) {} |
40 | |
41 | void computeInfo(CGFunctionInfo &FI) const override; |
42 | |
43 | ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &GARsLeft, |
44 | int &FARsLeft) const; |
45 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
46 | |
47 | RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, |
48 | AggValueSlot Slot) const override; |
49 | |
50 | ABIArgInfo extendType(QualType Ty) const; |
51 | |
52 | bool detectFARsEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, |
53 | CharUnits &Field1Off, llvm::Type *&Field2Ty, |
54 | CharUnits &Field2Off, int &NeededArgGPRs, |
55 | int &NeededArgFPRs) const; |
56 | ABIArgInfo coerceAndExpandFARsEligibleStruct(llvm::Type *Field1Ty, |
57 | CharUnits Field1Off, |
58 | llvm::Type *Field2Ty, |
59 | CharUnits Field2Off) const; |
60 | }; |
61 | } // end anonymous namespace |
62 | |
63 | void LoongArchABIInfo::computeInfo(CGFunctionInfo &FI) const { |
64 | QualType RetTy = FI.getReturnType(); |
65 | if (!getCXXABI().classifyReturnType(FI)) |
66 | FI.getReturnInfo() = classifyReturnType(RetTy); |
67 | |
68 | // IsRetIndirect is true if classifyArgumentType indicated the value should |
69 | // be passed indirect, or if the type size is a scalar greater than 2*GRLen |
70 | // and not a complex type with elements <= FRLen. e.g. fp128 is passed direct |
71 | // in LLVM IR, relying on the backend lowering code to rewrite the argument |
72 | // list and pass indirectly on LA32. |
73 | bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; |
74 | if (!IsRetIndirect && RetTy->isScalarType() && |
75 | getContext().getTypeSize(T: RetTy) > (2 * GRLen)) { |
76 | if (RetTy->isComplexType() && FRLen) { |
77 | QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); |
78 | IsRetIndirect = getContext().getTypeSize(T: EltTy) > FRLen; |
79 | } else { |
80 | // This is a normal scalar > 2*GRLen, such as fp128 on LA32. |
81 | IsRetIndirect = true; |
82 | } |
83 | } |
84 | |
85 | // We must track the number of GARs and FARs used in order to conform to the |
86 | // LoongArch ABI. As GAR usage is different for variadic arguments, we must |
87 | // also track whether we are examining a vararg or not. |
88 | int GARsLeft = IsRetIndirect ? NumGARs - 1 : NumGARs; |
89 | int FARsLeft = FRLen ? NumFARs : 0; |
90 | int NumFixedArgs = FI.getNumRequiredArgs(); |
91 | |
92 | int ArgNum = 0; |
93 | for (auto &ArgInfo : FI.arguments()) { |
94 | ArgInfo.info = classifyArgumentType( |
95 | Ty: ArgInfo.type, /*IsFixed=*/ArgNum < NumFixedArgs, GARsLeft, FARsLeft); |
96 | ArgNum++; |
97 | } |
98 | } |
99 | |
100 | // Returns true if the struct is a potential candidate to be passed in FARs (and |
101 | // GARs). If this function returns true, the caller is responsible for checking |
102 | // that if there is only a single field then that field is a float. |
103 | bool LoongArchABIInfo::detectFARsEligibleStructHelper( |
104 | QualType Ty, CharUnits CurOff, llvm::Type *&Field1Ty, CharUnits &Field1Off, |
105 | llvm::Type *&Field2Ty, CharUnits &Field2Off) const { |
106 | bool IsInt = Ty->isIntegralOrEnumerationType(); |
107 | bool IsFloat = Ty->isRealFloatingType(); |
108 | |
109 | if (IsInt || IsFloat) { |
110 | uint64_t Size = getContext().getTypeSize(T: Ty); |
111 | if (IsInt && Size > GRLen) |
112 | return false; |
113 | // Can't be eligible if larger than the FP registers. Handling of half |
114 | // precision values has been specified in the ABI, so don't block those. |
115 | if (IsFloat && Size > FRLen) |
116 | return false; |
117 | // Can't be eligible if an integer type was already found (int+int pairs |
118 | // are not eligible). |
119 | if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) |
120 | return false; |
121 | if (!Field1Ty) { |
122 | Field1Ty = CGT.ConvertType(T: Ty); |
123 | Field1Off = CurOff; |
124 | return true; |
125 | } |
126 | if (!Field2Ty) { |
127 | Field2Ty = CGT.ConvertType(T: Ty); |
128 | Field2Off = CurOff; |
129 | return true; |
130 | } |
131 | return false; |
132 | } |
133 | |
134 | if (auto CTy = Ty->getAs<ComplexType>()) { |
135 | if (Field1Ty) |
136 | return false; |
137 | QualType EltTy = CTy->getElementType(); |
138 | if (getContext().getTypeSize(T: EltTy) > FRLen) |
139 | return false; |
140 | Field1Ty = CGT.ConvertType(T: EltTy); |
141 | Field1Off = CurOff; |
142 | Field2Ty = Field1Ty; |
143 | Field2Off = Field1Off + getContext().getTypeSizeInChars(T: EltTy); |
144 | return true; |
145 | } |
146 | |
147 | if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(T: Ty)) { |
148 | uint64_t ArraySize = ATy->getZExtSize(); |
149 | QualType EltTy = ATy->getElementType(); |
150 | // Non-zero-length arrays of empty records make the struct ineligible to be |
151 | // passed via FARs in C++. |
152 | if (const auto *RTy = EltTy->getAs<RecordType>()) { |
153 | if (ArraySize != 0 && isa<CXXRecordDecl>(Val: RTy->getDecl()) && |
154 | isEmptyRecord(Context&: getContext(), T: EltTy, AllowArrays: true, AsIfNoUniqueAddr: true)) |
155 | return false; |
156 | } |
157 | CharUnits EltSize = getContext().getTypeSizeInChars(T: EltTy); |
158 | for (uint64_t i = 0; i < ArraySize; ++i) { |
159 | if (!detectFARsEligibleStructHelper(Ty: EltTy, CurOff, Field1Ty, Field1Off, |
160 | Field2Ty, Field2Off)) |
161 | return false; |
162 | CurOff += EltSize; |
163 | } |
164 | return true; |
165 | } |
166 | |
167 | if (const auto *RTy = Ty->getAs<RecordType>()) { |
168 | // Structures with either a non-trivial destructor or a non-trivial |
169 | // copy constructor are not eligible for the FP calling convention. |
170 | if (getRecordArgABI(T: Ty, CXXABI&: CGT.getCXXABI())) |
171 | return false; |
172 | const RecordDecl *RD = RTy->getDecl(); |
173 | if (isEmptyRecord(Context&: getContext(), T: Ty, AllowArrays: true, AsIfNoUniqueAddr: true) && |
174 | (!RD->isUnion() || !isa<CXXRecordDecl>(Val: RD))) |
175 | return true; |
176 | // Unions aren't eligible unless they're empty in C (which is caught above). |
177 | if (RD->isUnion()) |
178 | return false; |
179 | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D: RD); |
180 | // If this is a C++ record, check the bases first. |
181 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
182 | for (const CXXBaseSpecifier &B : CXXRD->bases()) { |
183 | const auto *BDecl = |
184 | cast<CXXRecordDecl>(Val: B.getType()->castAs<RecordType>()->getDecl()); |
185 | if (!detectFARsEligibleStructHelper( |
186 | Ty: B.getType(), CurOff: CurOff + Layout.getBaseClassOffset(Base: BDecl), |
187 | Field1Ty, Field1Off, Field2Ty, Field2Off)) |
188 | return false; |
189 | } |
190 | } |
191 | for (const FieldDecl *FD : RD->fields()) { |
192 | QualType QTy = FD->getType(); |
193 | if (FD->isBitField()) { |
194 | unsigned BitWidth = FD->getBitWidthValue(); |
195 | // Zero-width bitfields are ignored. |
196 | if (BitWidth == 0) |
197 | continue; |
198 | // Allow a bitfield with a type greater than GRLen as long as the |
199 | // bitwidth is GRLen or less. |
200 | if (getContext().getTypeSize(T: QTy) > GRLen && BitWidth <= GRLen) { |
201 | QTy = getContext().getIntTypeForBitwidth(DestWidth: GRLen, Signed: false); |
202 | } |
203 | } |
204 | |
205 | if (!detectFARsEligibleStructHelper( |
206 | Ty: QTy, |
207 | CurOff: CurOff + getContext().toCharUnitsFromBits( |
208 | BitSize: Layout.getFieldOffset(FieldNo: FD->getFieldIndex())), |
209 | Field1Ty, Field1Off, Field2Ty, Field2Off)) |
210 | return false; |
211 | } |
212 | return Field1Ty != nullptr; |
213 | } |
214 | |
215 | return false; |
216 | } |
217 | |
218 | // Determine if a struct is eligible to be passed in FARs (and GARs) (i.e., when |
219 | // flattened it contains a single fp value, fp+fp, or int+fp of appropriate |
220 | // size). If so, NeededFARs and NeededGARs are incremented appropriately. |
221 | bool LoongArchABIInfo::detectFARsEligibleStruct( |
222 | QualType Ty, llvm::Type *&Field1Ty, CharUnits &Field1Off, |
223 | llvm::Type *&Field2Ty, CharUnits &Field2Off, int &NeededGARs, |
224 | int &NeededFARs) const { |
225 | Field1Ty = nullptr; |
226 | Field2Ty = nullptr; |
227 | NeededGARs = 0; |
228 | NeededFARs = 0; |
229 | if (!detectFARsEligibleStructHelper(Ty, CurOff: CharUnits::Zero(), Field1Ty, |
230 | Field1Off, Field2Ty, Field2Off)) |
231 | return false; |
232 | if (!Field1Ty) |
233 | return false; |
234 | // Not really a candidate if we have a single int but no float. |
235 | if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) |
236 | return false; |
237 | if (Field1Ty && Field1Ty->isFloatingPointTy()) |
238 | NeededFARs++; |
239 | else if (Field1Ty) |
240 | NeededGARs++; |
241 | if (Field2Ty && Field2Ty->isFloatingPointTy()) |
242 | NeededFARs++; |
243 | else if (Field2Ty) |
244 | NeededGARs++; |
245 | return true; |
246 | } |
247 | |
248 | // Call getCoerceAndExpand for the two-element flattened struct described by |
249 | // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an |
250 | // appropriate coerceToType and unpaddedCoerceToType. |
251 | ABIArgInfo LoongArchABIInfo::coerceAndExpandFARsEligibleStruct( |
252 | llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, |
253 | CharUnits Field2Off) const { |
254 | SmallVector<llvm::Type *, 3> CoerceElts; |
255 | SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; |
256 | if (!Field1Off.isZero()) |
257 | CoerceElts.push_back(Elt: llvm::ArrayType::get( |
258 | ElementType: llvm::Type::getInt8Ty(C&: getVMContext()), NumElements: Field1Off.getQuantity())); |
259 | |
260 | CoerceElts.push_back(Elt: Field1Ty); |
261 | UnpaddedCoerceElts.push_back(Elt: Field1Ty); |
262 | |
263 | if (!Field2Ty) { |
264 | return ABIArgInfo::getCoerceAndExpand( |
265 | coerceToType: llvm::StructType::get(Context&: getVMContext(), Elements: CoerceElts, isPacked: !Field1Off.isZero()), |
266 | unpaddedCoerceToType: UnpaddedCoerceElts[0]); |
267 | } |
268 | |
269 | CharUnits Field2Align = |
270 | CharUnits::fromQuantity(Quantity: getDataLayout().getABITypeAlign(Ty: Field2Ty)); |
271 | CharUnits Field1End = |
272 | Field1Off + |
273 | CharUnits::fromQuantity(Quantity: getDataLayout().getTypeStoreSize(Ty: Field1Ty)); |
274 | CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Align: Field2Align); |
275 | |
276 | CharUnits Padding = CharUnits::Zero(); |
277 | if (Field2Off > Field2OffNoPadNoPack) |
278 | Padding = Field2Off - Field2OffNoPadNoPack; |
279 | else if (Field2Off != Field2Align && Field2Off > Field1End) |
280 | Padding = Field2Off - Field1End; |
281 | |
282 | bool IsPacked = !Field2Off.isMultipleOf(N: Field2Align); |
283 | |
284 | if (!Padding.isZero()) |
285 | CoerceElts.push_back(Elt: llvm::ArrayType::get( |
286 | ElementType: llvm::Type::getInt8Ty(C&: getVMContext()), NumElements: Padding.getQuantity())); |
287 | |
288 | CoerceElts.push_back(Elt: Field2Ty); |
289 | UnpaddedCoerceElts.push_back(Elt: Field2Ty); |
290 | |
291 | return ABIArgInfo::getCoerceAndExpand( |
292 | coerceToType: llvm::StructType::get(Context&: getVMContext(), Elements: CoerceElts, isPacked: IsPacked), |
293 | unpaddedCoerceToType: llvm::StructType::get(Context&: getVMContext(), Elements: UnpaddedCoerceElts, isPacked: IsPacked)); |
294 | } |
295 | |
296 | ABIArgInfo LoongArchABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, |
297 | int &GARsLeft, |
298 | int &FARsLeft) const { |
299 | assert(GARsLeft <= NumGARs && "GAR tracking underflow" ); |
300 | Ty = useFirstFieldIfTransparentUnion(Ty); |
301 | |
302 | // Structures with either a non-trivial destructor or a non-trivial |
303 | // copy constructor are always passed indirectly. |
304 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(T: Ty, CXXABI&: getCXXABI())) { |
305 | if (GARsLeft) |
306 | GARsLeft -= 1; |
307 | return getNaturalAlignIndirect( |
308 | Ty, /*AddrSpace=*/getDataLayout().getAllocaAddrSpace(), |
309 | /*ByVal=*/RAA == CGCXXABI::RAA_DirectInMemory); |
310 | } |
311 | |
312 | uint64_t Size = getContext().getTypeSize(T: Ty); |
313 | |
314 | // Ignore empty struct or union whose size is zero, e.g. `struct { }` in C or |
315 | // `struct { int a[0]; }` in C++. In C++, `struct { }` is empty but it's size |
316 | // is 1 byte and g++ doesn't ignore it; clang++ matches this behaviour. |
317 | if (isEmptyRecord(Context&: getContext(), T: Ty, AllowArrays: true) && Size == 0) |
318 | return ABIArgInfo::getIgnore(); |
319 | |
320 | // Pass floating point values via FARs if possible. |
321 | if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && |
322 | FRLen >= Size && FARsLeft) { |
323 | FARsLeft--; |
324 | return ABIArgInfo::getDirect(); |
325 | } |
326 | |
327 | // Complex types for the *f or *d ABI must be passed directly rather than |
328 | // using CoerceAndExpand. |
329 | if (IsFixed && Ty->isComplexType() && FRLen && FARsLeft >= 2) { |
330 | QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); |
331 | if (getContext().getTypeSize(T: EltTy) <= FRLen) { |
332 | FARsLeft -= 2; |
333 | return ABIArgInfo::getDirect(); |
334 | } |
335 | } |
336 | |
337 | if (IsFixed && FRLen && Ty->isStructureOrClassType()) { |
338 | llvm::Type *Field1Ty = nullptr; |
339 | llvm::Type *Field2Ty = nullptr; |
340 | CharUnits Field1Off = CharUnits::Zero(); |
341 | CharUnits Field2Off = CharUnits::Zero(); |
342 | int NeededGARs = 0; |
343 | int NeededFARs = 0; |
344 | bool IsCandidate = detectFARsEligibleStruct( |
345 | Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, NeededGARs, NeededFARs); |
346 | if (IsCandidate && NeededGARs <= GARsLeft && NeededFARs <= FARsLeft) { |
347 | GARsLeft -= NeededGARs; |
348 | FARsLeft -= NeededFARs; |
349 | return coerceAndExpandFARsEligibleStruct(Field1Ty, Field1Off, Field2Ty, |
350 | Field2Off); |
351 | } |
352 | } |
353 | |
354 | uint64_t NeededAlign = getContext().getTypeAlign(T: Ty); |
355 | // Determine the number of GARs needed to pass the current argument |
356 | // according to the ABI. 2*GRLen-aligned varargs are passed in "aligned" |
357 | // register pairs, so may consume 3 registers. |
358 | int NeededGARs = 1; |
359 | if (!IsFixed && NeededAlign == 2 * GRLen) |
360 | NeededGARs = 2 + (GARsLeft % 2); |
361 | else if (Size > GRLen && Size <= 2 * GRLen) |
362 | NeededGARs = 2; |
363 | |
364 | if (NeededGARs > GARsLeft) |
365 | NeededGARs = GARsLeft; |
366 | |
367 | GARsLeft -= NeededGARs; |
368 | |
369 | if (!isAggregateTypeForABI(T: Ty) && !Ty->isVectorType()) { |
370 | // Treat an enum type as its underlying type. |
371 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
372 | Ty = EnumTy->getDecl()->getIntegerType(); |
373 | |
374 | // All integral types are promoted to GRLen width. |
375 | if (Size < GRLen && Ty->isIntegralOrEnumerationType()) |
376 | return extendType(Ty); |
377 | |
378 | if (const auto *EIT = Ty->getAs<BitIntType>()) { |
379 | if (EIT->getNumBits() < GRLen) |
380 | return extendType(Ty); |
381 | if (EIT->getNumBits() > 128 || |
382 | (!getContext().getTargetInfo().hasInt128Type() && |
383 | EIT->getNumBits() > 64)) |
384 | return getNaturalAlignIndirect( |
385 | Ty, /*AddrSpace=*/getDataLayout().getAllocaAddrSpace(), |
386 | /*ByVal=*/false); |
387 | } |
388 | |
389 | return ABIArgInfo::getDirect(); |
390 | } |
391 | |
392 | // Aggregates which are <= 2*GRLen will be passed in registers if possible, |
393 | // so coerce to integers. |
394 | if (Size <= 2 * GRLen) { |
395 | // Use a single GRLen int if possible, 2*GRLen if 2*GRLen alignment is |
396 | // required, and a 2-element GRLen array if only GRLen alignment is |
397 | // required. |
398 | if (Size <= GRLen) { |
399 | return ABIArgInfo::getDirect( |
400 | T: llvm::IntegerType::get(C&: getVMContext(), NumBits: GRLen)); |
401 | } |
402 | if (getContext().getTypeAlign(T: Ty) == 2 * GRLen) { |
403 | return ABIArgInfo::getDirect( |
404 | T: llvm::IntegerType::get(C&: getVMContext(), NumBits: 2 * GRLen)); |
405 | } |
406 | return ABIArgInfo::getDirect( |
407 | T: llvm::ArrayType::get(ElementType: llvm::IntegerType::get(C&: getVMContext(), NumBits: GRLen), NumElements: 2)); |
408 | } |
409 | return getNaturalAlignIndirect( |
410 | Ty, /*AddrSpace=*/getDataLayout().getAllocaAddrSpace(), |
411 | /*ByVal=*/false); |
412 | } |
413 | |
414 | ABIArgInfo LoongArchABIInfo::classifyReturnType(QualType RetTy) const { |
415 | if (RetTy->isVoidType()) |
416 | return ABIArgInfo::getIgnore(); |
417 | // The rules for return and argument types are the same, so defer to |
418 | // classifyArgumentType. |
419 | int GARsLeft = 2; |
420 | int FARsLeft = FRLen ? 2 : 0; |
421 | return classifyArgumentType(Ty: RetTy, /*IsFixed=*/true, GARsLeft, FARsLeft); |
422 | } |
423 | |
424 | RValue LoongArchABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
425 | QualType Ty, AggValueSlot Slot) const { |
426 | CharUnits SlotSize = CharUnits::fromQuantity(Quantity: GRLen / 8); |
427 | |
428 | // Empty records are ignored for parameter passing purposes. |
429 | if (isEmptyRecord(Context&: getContext(), T: Ty, AllowArrays: true)) |
430 | return Slot.asRValue(); |
431 | |
432 | auto TInfo = getContext().getTypeInfoInChars(T: Ty); |
433 | |
434 | // Arguments bigger than 2*GRLen bytes are passed indirectly. |
435 | return emitVoidPtrVAArg(CGF, VAListAddr, ValueTy: Ty, |
436 | /*IsIndirect=*/TInfo.Width > 2 * SlotSize, ValueInfo: TInfo, |
437 | SlotSizeAndAlign: SlotSize, |
438 | /*AllowHigherAlign=*/true, Slot); |
439 | } |
440 | |
441 | ABIArgInfo LoongArchABIInfo::extendType(QualType Ty) const { |
442 | int TySize = getContext().getTypeSize(T: Ty); |
443 | // LA64 ABI requires unsigned 32 bit integers to be sign extended. |
444 | if (GRLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) |
445 | return ABIArgInfo::getSignExtend(Ty); |
446 | return ABIArgInfo::getExtend(Ty); |
447 | } |
448 | |
449 | namespace { |
450 | class LoongArchTargetCodeGenInfo : public TargetCodeGenInfo { |
451 | public: |
452 | LoongArchTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned GRLen, |
453 | unsigned FRLen) |
454 | : TargetCodeGenInfo( |
455 | std::make_unique<LoongArchABIInfo>(args&: CGT, args&: GRLen, args&: FRLen)) {} |
456 | }; |
457 | } // namespace |
458 | |
459 | std::unique_ptr<TargetCodeGenInfo> |
460 | CodeGen::createLoongArchTargetCodeGenInfo(CodeGenModule &CGM, unsigned GRLen, |
461 | unsigned FLen) { |
462 | return std::make_unique<LoongArchTargetCodeGenInfo>(args&: CGM.getTypes(), args&: GRLen, |
463 | args&: FLen); |
464 | } |
465 | |