| 1 | //===- Mips.cpp -----------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "ABIInfoImpl.h" |
| 10 | #include "TargetInfo.h" |
| 11 | |
| 12 | using namespace clang; |
| 13 | using namespace clang::CodeGen; |
| 14 | |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | // MIPS ABI Implementation. This works for both little-endian and |
| 17 | // big-endian variants. |
| 18 | //===----------------------------------------------------------------------===// |
| 19 | |
| 20 | namespace { |
| 21 | class MipsABIInfo : public ABIInfo { |
| 22 | bool IsO32; |
| 23 | const unsigned MinABIStackAlignInBytes, StackAlignInBytes; |
| 24 | void CoerceToIntArgs(uint64_t TySize, |
| 25 | SmallVectorImpl<llvm::Type *> &ArgList) const; |
| 26 | llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; |
| 27 | llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; |
| 28 | llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; |
| 29 | public: |
| 30 | MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : |
| 31 | ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), |
| 32 | StackAlignInBytes(IsO32 ? 8 : 16) {} |
| 33 | |
| 34 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
| 35 | ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; |
| 36 | void computeInfo(CGFunctionInfo &FI) const override; |
| 37 | RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, |
| 38 | AggValueSlot Slot) const override; |
| 39 | ABIArgInfo extendType(QualType Ty) const; |
| 40 | }; |
| 41 | |
| 42 | class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { |
| 43 | unsigned SizeOfUnwindException; |
| 44 | public: |
| 45 | MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) |
| 46 | : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(args&: CGT, args&: IsO32)), |
| 47 | SizeOfUnwindException(IsO32 ? 24 : 32) {} |
| 48 | |
| 49 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { |
| 50 | return 29; |
| 51 | } |
| 52 | |
| 53 | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
| 54 | CodeGen::CodeGenModule &CGM) const override { |
| 55 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: D); |
| 56 | if (!FD) return; |
| 57 | llvm::Function *Fn = cast<llvm::Function>(Val: GV); |
| 58 | |
| 59 | if (FD->hasAttr<MipsLongCallAttr>()) |
| 60 | Fn->addFnAttr(Kind: "long-call" ); |
| 61 | else if (FD->hasAttr<MipsShortCallAttr>()) |
| 62 | Fn->addFnAttr(Kind: "short-call" ); |
| 63 | |
| 64 | // Other attributes do not have a meaning for declarations. |
| 65 | if (GV->isDeclaration()) |
| 66 | return; |
| 67 | |
| 68 | if (FD->hasAttr<Mips16Attr>()) { |
| 69 | Fn->addFnAttr(Kind: "mips16" ); |
| 70 | } |
| 71 | else if (FD->hasAttr<NoMips16Attr>()) { |
| 72 | Fn->addFnAttr(Kind: "nomips16" ); |
| 73 | } |
| 74 | |
| 75 | if (FD->hasAttr<MicroMipsAttr>()) |
| 76 | Fn->addFnAttr(Kind: "micromips" ); |
| 77 | else if (FD->hasAttr<NoMicroMipsAttr>()) |
| 78 | Fn->addFnAttr(Kind: "nomicromips" ); |
| 79 | |
| 80 | const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); |
| 81 | if (!Attr) |
| 82 | return; |
| 83 | |
| 84 | const char *Kind; |
| 85 | switch (Attr->getInterrupt()) { |
| 86 | case MipsInterruptAttr::eic: Kind = "eic" ; break; |
| 87 | case MipsInterruptAttr::sw0: Kind = "sw0" ; break; |
| 88 | case MipsInterruptAttr::sw1: Kind = "sw1" ; break; |
| 89 | case MipsInterruptAttr::hw0: Kind = "hw0" ; break; |
| 90 | case MipsInterruptAttr::hw1: Kind = "hw1" ; break; |
| 91 | case MipsInterruptAttr::hw2: Kind = "hw2" ; break; |
| 92 | case MipsInterruptAttr::hw3: Kind = "hw3" ; break; |
| 93 | case MipsInterruptAttr::hw4: Kind = "hw4" ; break; |
| 94 | case MipsInterruptAttr::hw5: Kind = "hw5" ; break; |
| 95 | } |
| 96 | |
| 97 | Fn->addFnAttr(Kind: "interrupt" , Val: Kind); |
| 98 | |
| 99 | } |
| 100 | |
| 101 | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| 102 | llvm::Value *Address) const override; |
| 103 | |
| 104 | unsigned getSizeOfUnwindException() const override { |
| 105 | return SizeOfUnwindException; |
| 106 | } |
| 107 | }; |
| 108 | |
| 109 | class WindowsMIPSTargetCodeGenInfo : public MIPSTargetCodeGenInfo { |
| 110 | public: |
| 111 | WindowsMIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) |
| 112 | : MIPSTargetCodeGenInfo(CGT, IsO32) {} |
| 113 | |
| 114 | void getDependentLibraryOption(llvm::StringRef Lib, |
| 115 | llvm::SmallString<24> &Opt) const override { |
| 116 | Opt = "/DEFAULTLIB:" ; |
| 117 | Opt += qualifyWindowsLibrary(Lib); |
| 118 | } |
| 119 | |
| 120 | void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, |
| 121 | llvm::SmallString<32> &Opt) const override { |
| 122 | Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"" ; |
| 123 | } |
| 124 | }; |
| 125 | } |
| 126 | |
| 127 | void MipsABIInfo::CoerceToIntArgs( |
| 128 | uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { |
| 129 | llvm::IntegerType *IntTy = |
| 130 | llvm::IntegerType::get(C&: getVMContext(), NumBits: MinABIStackAlignInBytes * 8); |
| 131 | |
| 132 | // Add (TySize / MinABIStackAlignInBytes) args of IntTy. |
| 133 | for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) |
| 134 | ArgList.push_back(Elt: IntTy); |
| 135 | |
| 136 | // If necessary, add one more integer type to ArgList. |
| 137 | unsigned R = TySize % (MinABIStackAlignInBytes * 8); |
| 138 | |
| 139 | if (R) |
| 140 | ArgList.push_back(Elt: llvm::IntegerType::get(C&: getVMContext(), NumBits: R)); |
| 141 | } |
| 142 | |
| 143 | // In N32/64, an aligned double precision floating point field is passed in |
| 144 | // a register. |
| 145 | llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { |
| 146 | SmallVector<llvm::Type*, 8> ArgList, IntArgList; |
| 147 | |
| 148 | if (IsO32) { |
| 149 | CoerceToIntArgs(TySize, ArgList); |
| 150 | return llvm::StructType::get(Context&: getVMContext(), Elements: ArgList); |
| 151 | } |
| 152 | |
| 153 | if (Ty->isComplexType()) |
| 154 | return CGT.ConvertType(T: Ty); |
| 155 | |
| 156 | const RecordType *RT = Ty->getAs<RecordType>(); |
| 157 | |
| 158 | // Unions/vectors are passed in integer registers. |
| 159 | if (!RT || !RT->isStructureOrClassType()) { |
| 160 | CoerceToIntArgs(TySize, ArgList); |
| 161 | return llvm::StructType::get(Context&: getVMContext(), Elements: ArgList); |
| 162 | } |
| 163 | |
| 164 | const RecordDecl *RD = RT->getDecl(); |
| 165 | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D: RD); |
| 166 | assert(!(TySize % 8) && "Size of structure must be multiple of 8." ); |
| 167 | |
| 168 | uint64_t LastOffset = 0; |
| 169 | unsigned idx = 0; |
| 170 | llvm::IntegerType *I64 = llvm::IntegerType::get(C&: getVMContext(), NumBits: 64); |
| 171 | |
| 172 | // Iterate over fields in the struct/class and check if there are any aligned |
| 173 | // double fields. |
| 174 | for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
| 175 | i != e; ++i, ++idx) { |
| 176 | const QualType Ty = i->getType(); |
| 177 | const BuiltinType *BT = Ty->getAs<BuiltinType>(); |
| 178 | |
| 179 | if (!BT || BT->getKind() != BuiltinType::Double) |
| 180 | continue; |
| 181 | |
| 182 | uint64_t Offset = Layout.getFieldOffset(FieldNo: idx); |
| 183 | if (Offset % 64) // Ignore doubles that are not aligned. |
| 184 | continue; |
| 185 | |
| 186 | // Add ((Offset - LastOffset) / 64) args of type i64. |
| 187 | for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) |
| 188 | ArgList.push_back(Elt: I64); |
| 189 | |
| 190 | // Add double type. |
| 191 | ArgList.push_back(Elt: llvm::Type::getDoubleTy(C&: getVMContext())); |
| 192 | LastOffset = Offset + 64; |
| 193 | } |
| 194 | |
| 195 | CoerceToIntArgs(TySize: TySize - LastOffset, ArgList&: IntArgList); |
| 196 | ArgList.append(in_start: IntArgList.begin(), in_end: IntArgList.end()); |
| 197 | |
| 198 | return llvm::StructType::get(Context&: getVMContext(), Elements: ArgList); |
| 199 | } |
| 200 | |
| 201 | llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, |
| 202 | uint64_t Offset) const { |
| 203 | if (OrigOffset + MinABIStackAlignInBytes > Offset) |
| 204 | return nullptr; |
| 205 | |
| 206 | return llvm::IntegerType::get(C&: getVMContext(), NumBits: (Offset - OrigOffset) * 8); |
| 207 | } |
| 208 | |
| 209 | ABIArgInfo |
| 210 | MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { |
| 211 | Ty = useFirstFieldIfTransparentUnion(Ty); |
| 212 | |
| 213 | uint64_t OrigOffset = Offset; |
| 214 | uint64_t TySize = getContext().getTypeSize(T: Ty); |
| 215 | uint64_t Align = getContext().getTypeAlign(T: Ty) / 8; |
| 216 | |
| 217 | Align = std::clamp(val: Align, lo: (uint64_t)MinABIStackAlignInBytes, |
| 218 | hi: (uint64_t)StackAlignInBytes); |
| 219 | unsigned CurrOffset = llvm::alignTo(Value: Offset, Align); |
| 220 | Offset = CurrOffset + llvm::alignTo(Value: TySize, Align: Align * 8) / 8; |
| 221 | |
| 222 | if (isAggregateTypeForABI(T: Ty) || Ty->isVectorType()) { |
| 223 | // Ignore empty aggregates. |
| 224 | if (TySize == 0) |
| 225 | return ABIArgInfo::getIgnore(); |
| 226 | |
| 227 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(T: Ty, CXXABI&: getCXXABI())) { |
| 228 | Offset = OrigOffset + MinABIStackAlignInBytes; |
| 229 | return getNaturalAlignIndirect(Ty, AddrSpace: getDataLayout().getAllocaAddrSpace(), |
| 230 | ByVal: RAA == CGCXXABI::RAA_DirectInMemory); |
| 231 | } |
| 232 | |
| 233 | // If we have reached here, aggregates are passed directly by coercing to |
| 234 | // another structure type. Padding is inserted if the offset of the |
| 235 | // aggregate is unaligned. |
| 236 | ABIArgInfo ArgInfo = |
| 237 | ABIArgInfo::getDirect(T: HandleAggregates(Ty, TySize), Offset: 0, |
| 238 | Padding: getPaddingType(OrigOffset, Offset: CurrOffset)); |
| 239 | ArgInfo.setInReg(true); |
| 240 | return ArgInfo; |
| 241 | } |
| 242 | |
| 243 | // Treat an enum type as its underlying type. |
| 244 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| 245 | Ty = EnumTy->getDecl()->getIntegerType(); |
| 246 | |
| 247 | // Make sure we pass indirectly things that are too large. |
| 248 | if (const auto *EIT = Ty->getAs<BitIntType>()) |
| 249 | if (EIT->getNumBits() > 128 || |
| 250 | (EIT->getNumBits() > 64 && |
| 251 | !getContext().getTargetInfo().hasInt128Type())) |
| 252 | return getNaturalAlignIndirect(Ty, AddrSpace: getDataLayout().getAllocaAddrSpace()); |
| 253 | |
| 254 | // All integral types are promoted to the GPR width. |
| 255 | if (Ty->isIntegralOrEnumerationType()) |
| 256 | return extendType(Ty); |
| 257 | |
| 258 | return ABIArgInfo::getDirect( |
| 259 | T: nullptr, Offset: 0, Padding: IsO32 ? nullptr : getPaddingType(OrigOffset, Offset: CurrOffset)); |
| 260 | } |
| 261 | |
| 262 | llvm::Type* |
| 263 | MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { |
| 264 | const RecordType *RT = RetTy->getAs<RecordType>(); |
| 265 | SmallVector<llvm::Type*, 8> RTList; |
| 266 | |
| 267 | if (RT && RT->isStructureOrClassType()) { |
| 268 | const RecordDecl *RD = RT->getDecl(); |
| 269 | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D: RD); |
| 270 | unsigned FieldCnt = Layout.getFieldCount(); |
| 271 | |
| 272 | // N32/64 returns struct/classes in floating point registers if the |
| 273 | // following conditions are met: |
| 274 | // 1. The size of the struct/class is no larger than 128-bit. |
| 275 | // 2. The struct/class has one or two fields all of which are floating |
| 276 | // point types. |
| 277 | // 3. The offset of the first field is zero (this follows what gcc does). |
| 278 | // |
| 279 | // Any other composite results are returned in integer registers. |
| 280 | // |
| 281 | if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(FieldNo: 0)) { |
| 282 | RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); |
| 283 | for (; b != e; ++b) { |
| 284 | const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); |
| 285 | |
| 286 | if (!BT || !BT->isFloatingPoint()) |
| 287 | break; |
| 288 | |
| 289 | RTList.push_back(Elt: CGT.ConvertType(T: b->getType())); |
| 290 | } |
| 291 | |
| 292 | if (b == e) |
| 293 | return llvm::StructType::get(Context&: getVMContext(), Elements: RTList, |
| 294 | isPacked: RD->hasAttr<PackedAttr>()); |
| 295 | |
| 296 | RTList.clear(); |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | CoerceToIntArgs(TySize: Size, ArgList&: RTList); |
| 301 | return llvm::StructType::get(Context&: getVMContext(), Elements: RTList); |
| 302 | } |
| 303 | |
| 304 | ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { |
| 305 | uint64_t Size = getContext().getTypeSize(T: RetTy); |
| 306 | |
| 307 | if (RetTy->isVoidType()) |
| 308 | return ABIArgInfo::getIgnore(); |
| 309 | |
| 310 | // O32 doesn't treat zero-sized structs differently from other structs. |
| 311 | // However, N32/N64 ignores zero sized return values. |
| 312 | if (!IsO32 && Size == 0) |
| 313 | return ABIArgInfo::getIgnore(); |
| 314 | |
| 315 | if (isAggregateTypeForABI(T: RetTy) || RetTy->isVectorType()) { |
| 316 | if (Size <= 128) { |
| 317 | if (RetTy->isAnyComplexType()) |
| 318 | return ABIArgInfo::getDirect(); |
| 319 | |
| 320 | // O32 returns integer vectors in registers and N32/N64 returns all small |
| 321 | // aggregates in registers. |
| 322 | if (!IsO32 || |
| 323 | (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { |
| 324 | ABIArgInfo ArgInfo = |
| 325 | ABIArgInfo::getDirect(T: returnAggregateInRegs(RetTy, Size)); |
| 326 | ArgInfo.setInReg(true); |
| 327 | return ArgInfo; |
| 328 | } |
| 329 | } |
| 330 | |
| 331 | return getNaturalAlignIndirect(Ty: RetTy, AddrSpace: getDataLayout().getAllocaAddrSpace()); |
| 332 | } |
| 333 | |
| 334 | // Treat an enum type as its underlying type. |
| 335 | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
| 336 | RetTy = EnumTy->getDecl()->getIntegerType(); |
| 337 | |
| 338 | // Make sure we pass indirectly things that are too large. |
| 339 | if (const auto *EIT = RetTy->getAs<BitIntType>()) |
| 340 | if (EIT->getNumBits() > 128 || |
| 341 | (EIT->getNumBits() > 64 && |
| 342 | !getContext().getTargetInfo().hasInt128Type())) |
| 343 | return getNaturalAlignIndirect(Ty: RetTy, |
| 344 | AddrSpace: getDataLayout().getAllocaAddrSpace()); |
| 345 | |
| 346 | if (isPromotableIntegerTypeForABI(Ty: RetTy)) |
| 347 | return ABIArgInfo::getExtend(Ty: RetTy); |
| 348 | |
| 349 | if ((RetTy->isUnsignedIntegerOrEnumerationType() || |
| 350 | RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) |
| 351 | return ABIArgInfo::getSignExtend(Ty: RetTy); |
| 352 | |
| 353 | return ABIArgInfo::getDirect(); |
| 354 | } |
| 355 | |
| 356 | void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| 357 | ABIArgInfo &RetInfo = FI.getReturnInfo(); |
| 358 | if (!getCXXABI().classifyReturnType(FI)) |
| 359 | RetInfo = classifyReturnType(RetTy: FI.getReturnType()); |
| 360 | |
| 361 | // Check if a pointer to an aggregate is passed as a hidden argument. |
| 362 | uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; |
| 363 | |
| 364 | for (auto &I : FI.arguments()) |
| 365 | I.info = classifyArgumentType(Ty: I.type, Offset); |
| 366 | } |
| 367 | |
| 368 | RValue MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| 369 | QualType OrigTy, AggValueSlot Slot) const { |
| 370 | QualType Ty = OrigTy; |
| 371 | |
| 372 | // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. |
| 373 | // Pointers are also promoted in the same way but this only matters for N32. |
| 374 | unsigned SlotSizeInBits = IsO32 ? 32 : 64; |
| 375 | unsigned PtrWidth = getTarget().getPointerWidth(AddrSpace: LangAS::Default); |
| 376 | bool DidPromote = false; |
| 377 | if ((Ty->isIntegerType() && |
| 378 | getContext().getIntWidth(T: Ty) < SlotSizeInBits) || |
| 379 | (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { |
| 380 | DidPromote = true; |
| 381 | Ty = getContext().getIntTypeForBitwidth(DestWidth: SlotSizeInBits, |
| 382 | Signed: Ty->isSignedIntegerType()); |
| 383 | } |
| 384 | |
| 385 | auto TyInfo = getContext().getTypeInfoInChars(T: Ty); |
| 386 | |
| 387 | // The alignment of things in the argument area is never larger than |
| 388 | // StackAlignInBytes. |
| 389 | TyInfo.Align = |
| 390 | std::min(a: TyInfo.Align, b: CharUnits::fromQuantity(Quantity: StackAlignInBytes)); |
| 391 | |
| 392 | // MinABIStackAlignInBytes is the size of argument slots on the stack. |
| 393 | CharUnits ArgSlotSize = CharUnits::fromQuantity(Quantity: MinABIStackAlignInBytes); |
| 394 | |
| 395 | RValue Res = emitVoidPtrVAArg(CGF, VAListAddr, ValueTy: Ty, /*indirect*/ IsIndirect: false, ValueInfo: TyInfo, |
| 396 | SlotSizeAndAlign: ArgSlotSize, /*AllowHigherAlign*/ true, Slot); |
| 397 | |
| 398 | // If there was a promotion, "unpromote". |
| 399 | // TODO: can we just use a pointer into a subset of the original slot? |
| 400 | if (DidPromote) { |
| 401 | llvm::Type *ValTy = CGF.ConvertType(T: OrigTy); |
| 402 | llvm::Value *Promoted = Res.getScalarVal(); |
| 403 | |
| 404 | // Truncate down to the right width. |
| 405 | llvm::Type *IntTy = (OrigTy->isIntegerType() ? ValTy : CGF.IntPtrTy); |
| 406 | llvm::Value *V = CGF.Builder.CreateTrunc(V: Promoted, DestTy: IntTy); |
| 407 | if (OrigTy->isPointerType()) |
| 408 | V = CGF.Builder.CreateIntToPtr(V, DestTy: ValTy); |
| 409 | |
| 410 | return RValue::get(V); |
| 411 | } |
| 412 | |
| 413 | return Res; |
| 414 | } |
| 415 | |
| 416 | ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { |
| 417 | int TySize = getContext().getTypeSize(T: Ty); |
| 418 | |
| 419 | // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. |
| 420 | if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) |
| 421 | return ABIArgInfo::getSignExtend(Ty); |
| 422 | |
| 423 | return ABIArgInfo::getExtend(Ty); |
| 424 | } |
| 425 | |
| 426 | bool |
| 427 | MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| 428 | llvm::Value *Address) const { |
| 429 | // This information comes from gcc's implementation, which seems to |
| 430 | // as canonical as it gets. |
| 431 | |
| 432 | // Everything on MIPS is 4 bytes. Double-precision FP registers |
| 433 | // are aliased to pairs of single-precision FP registers. |
| 434 | llvm::Value *Four8 = llvm::ConstantInt::get(Ty: CGF.Int8Ty, V: 4); |
| 435 | |
| 436 | // 0-31 are the general purpose registers, $0 - $31. |
| 437 | // 32-63 are the floating-point registers, $f0 - $f31. |
| 438 | // 64 and 65 are the multiply/divide registers, $hi and $lo. |
| 439 | // 66 is the (notional, I think) register for signal-handler return. |
| 440 | AssignToArrayRange(Builder&: CGF.Builder, Array: Address, Value: Four8, FirstIndex: 0, LastIndex: 65); |
| 441 | |
| 442 | // 67-74 are the floating-point status registers, $fcc0 - $fcc7. |
| 443 | // They are one bit wide and ignored here. |
| 444 | |
| 445 | // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. |
| 446 | // (coprocessor 1 is the FP unit) |
| 447 | // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. |
| 448 | // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. |
| 449 | // 176-181 are the DSP accumulator registers. |
| 450 | AssignToArrayRange(Builder&: CGF.Builder, Array: Address, Value: Four8, FirstIndex: 80, LastIndex: 181); |
| 451 | return false; |
| 452 | } |
| 453 | |
| 454 | std::unique_ptr<TargetCodeGenInfo> |
| 455 | CodeGen::createMIPSTargetCodeGenInfo(CodeGenModule &CGM, bool IsOS32) { |
| 456 | return std::make_unique<MIPSTargetCodeGenInfo>(args&: CGM.getTypes(), args&: IsOS32); |
| 457 | } |
| 458 | |
| 459 | std::unique_ptr<TargetCodeGenInfo> |
| 460 | CodeGen::createWindowsMIPSTargetCodeGenInfo(CodeGenModule &CGM, bool IsOS32) { |
| 461 | return std::make_unique<WindowsMIPSTargetCodeGenInfo>(args&: CGM.getTypes(), args&: IsOS32); |
| 462 | } |
| 463 | |