1 | //===- Sparc.cpp ----------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "ABIInfoImpl.h" |
10 | #include "TargetInfo.h" |
11 | |
12 | using namespace clang; |
13 | using namespace clang::CodeGen; |
14 | |
15 | //===----------------------------------------------------------------------===// |
16 | // SPARC v8 ABI Implementation. |
17 | // Based on the SPARC Compliance Definition version 2.4.1. |
18 | // |
19 | // Ensures that complex values are passed in registers. |
20 | // |
21 | namespace { |
22 | class SparcV8ABIInfo : public DefaultABIInfo { |
23 | public: |
24 | SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} |
25 | |
26 | private: |
27 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
28 | void computeInfo(CGFunctionInfo &FI) const override; |
29 | }; |
30 | } // end anonymous namespace |
31 | |
32 | |
33 | ABIArgInfo |
34 | SparcV8ABIInfo::classifyReturnType(QualType Ty) const { |
35 | if (Ty->isAnyComplexType()) { |
36 | return ABIArgInfo::getDirect(); |
37 | } |
38 | else { |
39 | return DefaultABIInfo::classifyReturnType(RetTy: Ty); |
40 | } |
41 | } |
42 | |
43 | void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
44 | |
45 | FI.getReturnInfo() = classifyReturnType(Ty: FI.getReturnType()); |
46 | for (auto &Arg : FI.arguments()) |
47 | Arg.info = classifyArgumentType(RetTy: Arg.type); |
48 | } |
49 | |
50 | namespace { |
51 | class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { |
52 | public: |
53 | SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) |
54 | : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(args&: CGT)) {} |
55 | |
56 | llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, |
57 | llvm::Value *Address) const override { |
58 | int Offset; |
59 | if (isAggregateTypeForABI(T: CGF.CurFnInfo->getReturnType())) |
60 | Offset = 12; |
61 | else |
62 | Offset = 8; |
63 | return CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: Address, |
64 | IdxList: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: Offset)); |
65 | } |
66 | |
67 | llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, |
68 | llvm::Value *Address) const override { |
69 | int Offset; |
70 | if (isAggregateTypeForABI(T: CGF.CurFnInfo->getReturnType())) |
71 | Offset = -12; |
72 | else |
73 | Offset = -8; |
74 | return CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: Address, |
75 | IdxList: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: Offset)); |
76 | } |
77 | }; |
78 | } // end anonymous namespace |
79 | |
80 | //===----------------------------------------------------------------------===// |
81 | // SPARC v9 ABI Implementation. |
82 | // Based on the SPARC Compliance Definition version 2.4.1. |
83 | // |
84 | // Function arguments a mapped to a nominal "parameter array" and promoted to |
85 | // registers depending on their type. Each argument occupies 8 or 16 bytes in |
86 | // the array, structs larger than 16 bytes are passed indirectly. |
87 | // |
88 | // One case requires special care: |
89 | // |
90 | // struct mixed { |
91 | // int i; |
92 | // float f; |
93 | // }; |
94 | // |
95 | // When a struct mixed is passed by value, it only occupies 8 bytes in the |
96 | // parameter array, but the int is passed in an integer register, and the float |
97 | // is passed in a floating point register. This is represented as two arguments |
98 | // with the LLVM IR inreg attribute: |
99 | // |
100 | // declare void f(i32 inreg %i, float inreg %f) |
101 | // |
102 | // The code generator will only allocate 4 bytes from the parameter array for |
103 | // the inreg arguments. All other arguments are allocated a multiple of 8 |
104 | // bytes. |
105 | // |
106 | namespace { |
107 | class SparcV9ABIInfo : public ABIInfo { |
108 | public: |
109 | SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} |
110 | |
111 | private: |
112 | ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; |
113 | void computeInfo(CGFunctionInfo &FI) const override; |
114 | RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, |
115 | AggValueSlot Slot) const override; |
116 | |
117 | // Coercion type builder for structs passed in registers. The coercion type |
118 | // serves two purposes: |
119 | // |
120 | // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' |
121 | // in registers. |
122 | // 2. Expose aligned floating point elements as first-level elements, so the |
123 | // code generator knows to pass them in floating point registers. |
124 | // |
125 | // We also compute the InReg flag which indicates that the struct contains |
126 | // aligned 32-bit floats. |
127 | // |
128 | struct CoerceBuilder { |
129 | llvm::LLVMContext &Context; |
130 | const llvm::DataLayout &DL; |
131 | SmallVector<llvm::Type*, 8> Elems; |
132 | uint64_t Size; |
133 | bool InReg; |
134 | |
135 | CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) |
136 | : Context(c), DL(dl), Size(0), InReg(false) {} |
137 | |
138 | // Pad Elems with integers until Size is ToSize. |
139 | void pad(uint64_t ToSize) { |
140 | assert(ToSize >= Size && "Cannot remove elements" ); |
141 | if (ToSize == Size) |
142 | return; |
143 | |
144 | // Finish the current 64-bit word. |
145 | uint64_t Aligned = llvm::alignTo(Value: Size, Align: 64); |
146 | if (Aligned > Size && Aligned <= ToSize) { |
147 | Elems.push_back(Elt: llvm::IntegerType::get(C&: Context, NumBits: Aligned - Size)); |
148 | Size = Aligned; |
149 | } |
150 | |
151 | // Add whole 64-bit words. |
152 | while (Size + 64 <= ToSize) { |
153 | Elems.push_back(Elt: llvm::Type::getInt64Ty(C&: Context)); |
154 | Size += 64; |
155 | } |
156 | |
157 | // Final in-word padding. |
158 | if (Size < ToSize) { |
159 | Elems.push_back(Elt: llvm::IntegerType::get(C&: Context, NumBits: ToSize - Size)); |
160 | Size = ToSize; |
161 | } |
162 | } |
163 | |
164 | // Add a floating point element at Offset. |
165 | void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { |
166 | // Unaligned floats are treated as integers. |
167 | if (Offset % Bits) |
168 | return; |
169 | // The InReg flag is only required if there are any floats < 64 bits. |
170 | if (Bits < 64) |
171 | InReg = true; |
172 | pad(ToSize: Offset); |
173 | Elems.push_back(Elt: Ty); |
174 | Size = Offset + Bits; |
175 | } |
176 | |
177 | // Add a struct type to the coercion type, starting at Offset (in bits). |
178 | void addStruct(uint64_t Offset, llvm::StructType *StrTy) { |
179 | const llvm::StructLayout *Layout = DL.getStructLayout(Ty: StrTy); |
180 | for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { |
181 | llvm::Type *ElemTy = StrTy->getElementType(N: i); |
182 | uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(Idx: i); |
183 | switch (ElemTy->getTypeID()) { |
184 | case llvm::Type::StructTyID: |
185 | addStruct(Offset: ElemOffset, StrTy: cast<llvm::StructType>(Val: ElemTy)); |
186 | break; |
187 | case llvm::Type::FloatTyID: |
188 | addFloat(Offset: ElemOffset, Ty: ElemTy, Bits: 32); |
189 | break; |
190 | case llvm::Type::DoubleTyID: |
191 | addFloat(Offset: ElemOffset, Ty: ElemTy, Bits: 64); |
192 | break; |
193 | case llvm::Type::FP128TyID: |
194 | addFloat(Offset: ElemOffset, Ty: ElemTy, Bits: 128); |
195 | break; |
196 | case llvm::Type::PointerTyID: |
197 | if (ElemOffset % 64 == 0) { |
198 | pad(ToSize: ElemOffset); |
199 | Elems.push_back(Elt: ElemTy); |
200 | Size += 64; |
201 | } |
202 | break; |
203 | default: |
204 | break; |
205 | } |
206 | } |
207 | } |
208 | |
209 | // Check if Ty is a usable substitute for the coercion type. |
210 | bool isUsableType(llvm::StructType *Ty) const { |
211 | return llvm::ArrayRef(Elems) == Ty->elements(); |
212 | } |
213 | |
214 | // Get the coercion type as a literal struct type. |
215 | llvm::Type *getType() const { |
216 | if (Elems.size() == 1) |
217 | return Elems.front(); |
218 | else |
219 | return llvm::StructType::get(Context, Elements: Elems); |
220 | } |
221 | }; |
222 | }; |
223 | } // end anonymous namespace |
224 | |
225 | ABIArgInfo |
226 | SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { |
227 | if (Ty->isVoidType()) |
228 | return ABIArgInfo::getIgnore(); |
229 | |
230 | uint64_t Size = getContext().getTypeSize(T: Ty); |
231 | |
232 | // Anything too big to fit in registers is passed with an explicit indirect |
233 | // pointer / sret pointer. |
234 | if (Size > SizeLimit) |
235 | return getNaturalAlignIndirect( |
236 | Ty, /*AddrSpace=*/getDataLayout().getAllocaAddrSpace(), |
237 | /*ByVal=*/false); |
238 | |
239 | // Treat an enum type as its underlying type. |
240 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
241 | Ty = EnumTy->getDecl()->getIntegerType(); |
242 | |
243 | // Integer types smaller than a register are extended. |
244 | if (Size < 64 && Ty->isIntegerType()) |
245 | return ABIArgInfo::getExtend(Ty); |
246 | |
247 | if (const auto *EIT = Ty->getAs<BitIntType>()) |
248 | if (EIT->getNumBits() < 64) |
249 | return ABIArgInfo::getExtend(Ty); |
250 | |
251 | // Other non-aggregates go in registers. |
252 | if (!isAggregateTypeForABI(T: Ty)) |
253 | return ABIArgInfo::getDirect(); |
254 | |
255 | // If a C++ object has either a non-trivial copy constructor or a non-trivial |
256 | // destructor, it is passed with an explicit indirect pointer / sret pointer. |
257 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(T: Ty, CXXABI&: getCXXABI())) |
258 | return getNaturalAlignIndirect(Ty, AddrSpace: getDataLayout().getAllocaAddrSpace(), |
259 | ByVal: RAA == CGCXXABI::RAA_DirectInMemory); |
260 | |
261 | // This is a small aggregate type that should be passed in registers. |
262 | // Build a coercion type from the LLVM struct type. |
263 | llvm::StructType *StrTy = dyn_cast<llvm::StructType>(Val: CGT.ConvertType(T: Ty)); |
264 | if (!StrTy) |
265 | return ABIArgInfo::getDirect(); |
266 | |
267 | CoerceBuilder CB(getVMContext(), getDataLayout()); |
268 | CB.addStruct(Offset: 0, StrTy); |
269 | // All structs, even empty ones, should take up a register argument slot, |
270 | // so pin the minimum struct size to one bit. |
271 | CB.pad(ToSize: llvm::alignTo( |
272 | Value: std::max(a: CB.DL.getTypeSizeInBits(Ty: StrTy).getKnownMinValue(), b: uint64_t(1)), |
273 | Align: 64)); |
274 | |
275 | // Try to use the original type for coercion. |
276 | llvm::Type *CoerceTy = CB.isUsableType(Ty: StrTy) ? StrTy : CB.getType(); |
277 | |
278 | if (CB.InReg) |
279 | return ABIArgInfo::getDirectInReg(T: CoerceTy); |
280 | else |
281 | return ABIArgInfo::getDirect(T: CoerceTy); |
282 | } |
283 | |
284 | RValue SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
285 | QualType Ty, AggValueSlot Slot) const { |
286 | ABIArgInfo AI = classifyType(Ty, SizeLimit: 16 * 8); |
287 | llvm::Type *ArgTy = CGT.ConvertType(T: Ty); |
288 | if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) |
289 | AI.setCoerceToType(ArgTy); |
290 | |
291 | CharUnits SlotSize = CharUnits::fromQuantity(Quantity: 8); |
292 | |
293 | CGBuilderTy &Builder = CGF.Builder; |
294 | Address Addr = Address(Builder.CreateLoad(Addr: VAListAddr, Name: "ap.cur" ), |
295 | getVAListElementType(CGF), SlotSize); |
296 | llvm::Type *ArgPtrTy = CGF.UnqualPtrTy; |
297 | |
298 | auto TypeInfo = getContext().getTypeInfoInChars(T: Ty); |
299 | |
300 | Address ArgAddr = Address::invalid(); |
301 | CharUnits Stride; |
302 | switch (AI.getKind()) { |
303 | case ABIArgInfo::Expand: |
304 | case ABIArgInfo::CoerceAndExpand: |
305 | case ABIArgInfo::InAlloca: |
306 | llvm_unreachable("Unsupported ABI kind for va_arg" ); |
307 | |
308 | case ABIArgInfo::Extend: { |
309 | Stride = SlotSize; |
310 | CharUnits Offset = SlotSize - TypeInfo.Width; |
311 | ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, Name: "extend" ); |
312 | break; |
313 | } |
314 | |
315 | case ABIArgInfo::Direct: { |
316 | auto AllocSize = getDataLayout().getTypeAllocSize(Ty: AI.getCoerceToType()); |
317 | Stride = CharUnits::fromQuantity(Quantity: AllocSize).alignTo(Align: SlotSize); |
318 | ArgAddr = Addr; |
319 | break; |
320 | } |
321 | |
322 | case ABIArgInfo::Indirect: |
323 | case ABIArgInfo::IndirectAliased: |
324 | Stride = SlotSize; |
325 | ArgAddr = Addr.withElementType(ElemTy: ArgPtrTy); |
326 | ArgAddr = Address(Builder.CreateLoad(Addr: ArgAddr, Name: "indirect.arg" ), ArgTy, |
327 | TypeInfo.Align); |
328 | break; |
329 | |
330 | case ABIArgInfo::Ignore: |
331 | return Slot.asRValue(); |
332 | } |
333 | |
334 | // Update VAList. |
335 | Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Offset: Stride, Name: "ap.next" ); |
336 | Builder.CreateStore(Val: NextPtr.emitRawPointer(CGF), Addr: VAListAddr); |
337 | |
338 | return CGF.EmitLoadOfAnyValue( |
339 | V: CGF.MakeAddrLValue(Addr: ArgAddr.withElementType(ElemTy: ArgTy), T: Ty), Slot); |
340 | } |
341 | |
342 | void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
343 | FI.getReturnInfo() = classifyType(Ty: FI.getReturnType(), SizeLimit: 32 * 8); |
344 | for (auto &I : FI.arguments()) |
345 | I.info = classifyType(Ty: I.type, SizeLimit: 16 * 8); |
346 | } |
347 | |
348 | namespace { |
349 | class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { |
350 | public: |
351 | SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) |
352 | : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(args&: CGT)) {} |
353 | |
354 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
355 | return 14; |
356 | } |
357 | |
358 | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
359 | llvm::Value *Address) const override; |
360 | |
361 | llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, |
362 | llvm::Value *Address) const override { |
363 | return CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: Address, |
364 | IdxList: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: 8)); |
365 | } |
366 | |
367 | llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, |
368 | llvm::Value *Address) const override { |
369 | return CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: Address, |
370 | IdxList: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: -8)); |
371 | } |
372 | }; |
373 | } // end anonymous namespace |
374 | |
375 | bool |
376 | SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
377 | llvm::Value *Address) const { |
378 | // This is calculated from the LLVM and GCC tables and verified |
379 | // against gcc output. AFAIK all ABIs use the same encoding. |
380 | |
381 | CodeGen::CGBuilderTy &Builder = CGF.Builder; |
382 | |
383 | llvm::IntegerType *i8 = CGF.Int8Ty; |
384 | llvm::Value *Four8 = llvm::ConstantInt::get(Ty: i8, V: 4); |
385 | llvm::Value *Eight8 = llvm::ConstantInt::get(Ty: i8, V: 8); |
386 | |
387 | // 0-31: the 8-byte general-purpose registers |
388 | AssignToArrayRange(Builder, Array: Address, Value: Eight8, FirstIndex: 0, LastIndex: 31); |
389 | |
390 | // 32-63: f0-31, the 4-byte floating-point registers |
391 | AssignToArrayRange(Builder, Array: Address, Value: Four8, FirstIndex: 32, LastIndex: 63); |
392 | |
393 | // Y = 64 |
394 | // PSR = 65 |
395 | // WIM = 66 |
396 | // TBR = 67 |
397 | // PC = 68 |
398 | // NPC = 69 |
399 | // FSR = 70 |
400 | // CSR = 71 |
401 | AssignToArrayRange(Builder, Array: Address, Value: Eight8, FirstIndex: 64, LastIndex: 71); |
402 | |
403 | // 72-87: d0-15, the 8-byte floating-point registers |
404 | AssignToArrayRange(Builder, Array: Address, Value: Eight8, FirstIndex: 72, LastIndex: 87); |
405 | |
406 | return false; |
407 | } |
408 | |
409 | std::unique_ptr<TargetCodeGenInfo> |
410 | CodeGen::createSparcV8TargetCodeGenInfo(CodeGenModule &CGM) { |
411 | return std::make_unique<SparcV8TargetCodeGenInfo>(args&: CGM.getTypes()); |
412 | } |
413 | |
414 | std::unique_ptr<TargetCodeGenInfo> |
415 | CodeGen::createSparcV9TargetCodeGenInfo(CodeGenModule &CGM) { |
416 | return std::make_unique<SparcV9TargetCodeGenInfo>(args&: CGM.getTypes()); |
417 | } |
418 | |