| 1 | //===- Sparc.cpp ----------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "ABIInfoImpl.h" |
| 10 | #include "TargetInfo.h" |
| 11 | |
| 12 | using namespace clang; |
| 13 | using namespace clang::CodeGen; |
| 14 | |
| 15 | //===----------------------------------------------------------------------===// |
| 16 | // SPARC v8 ABI Implementation. |
| 17 | // Based on the SPARC Compliance Definition version 2.4.1. |
| 18 | // |
| 19 | // Ensures that complex values are passed in registers. |
| 20 | // |
| 21 | namespace { |
| 22 | class SparcV8ABIInfo : public DefaultABIInfo { |
| 23 | public: |
| 24 | SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} |
| 25 | |
| 26 | private: |
| 27 | ABIArgInfo classifyReturnType(QualType RetTy) const; |
| 28 | void computeInfo(CGFunctionInfo &FI) const override; |
| 29 | }; |
| 30 | } // end anonymous namespace |
| 31 | |
| 32 | |
| 33 | ABIArgInfo |
| 34 | SparcV8ABIInfo::classifyReturnType(QualType Ty) const { |
| 35 | if (Ty->isAnyComplexType()) { |
| 36 | return ABIArgInfo::getDirect(); |
| 37 | } |
| 38 | else { |
| 39 | return DefaultABIInfo::classifyReturnType(RetTy: Ty); |
| 40 | } |
| 41 | } |
| 42 | |
| 43 | void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| 44 | |
| 45 | FI.getReturnInfo() = classifyReturnType(Ty: FI.getReturnType()); |
| 46 | for (auto &Arg : FI.arguments()) |
| 47 | Arg.info = classifyArgumentType(RetTy: Arg.type); |
| 48 | } |
| 49 | |
| 50 | namespace { |
| 51 | class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { |
| 52 | public: |
| 53 | SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) |
| 54 | : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(args&: CGT)) {} |
| 55 | |
| 56 | llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, |
| 57 | llvm::Value *Address) const override { |
| 58 | int Offset; |
| 59 | if (isAggregateTypeForABI(T: CGF.CurFnInfo->getReturnType())) |
| 60 | Offset = 12; |
| 61 | else |
| 62 | Offset = 8; |
| 63 | return CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: Address, |
| 64 | IdxList: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: Offset)); |
| 65 | } |
| 66 | |
| 67 | llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, |
| 68 | llvm::Value *Address) const override { |
| 69 | int Offset; |
| 70 | if (isAggregateTypeForABI(T: CGF.CurFnInfo->getReturnType())) |
| 71 | Offset = -12; |
| 72 | else |
| 73 | Offset = -8; |
| 74 | return CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: Address, |
| 75 | IdxList: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: Offset)); |
| 76 | } |
| 77 | }; |
| 78 | } // end anonymous namespace |
| 79 | |
| 80 | //===----------------------------------------------------------------------===// |
| 81 | // SPARC v9 ABI Implementation. |
| 82 | // Based on the SPARC Compliance Definition version 2.4.1. |
| 83 | // |
| 84 | // Function arguments a mapped to a nominal "parameter array" and promoted to |
| 85 | // registers depending on their type. Each argument occupies 8 or 16 bytes in |
| 86 | // the array, structs larger than 16 bytes are passed indirectly. |
| 87 | // |
| 88 | // One case requires special care: |
| 89 | // |
| 90 | // struct mixed { |
| 91 | // int i; |
| 92 | // float f; |
| 93 | // }; |
| 94 | // |
| 95 | // When a struct mixed is passed by value, it only occupies 8 bytes in the |
| 96 | // parameter array, but the int is passed in an integer register, and the float |
| 97 | // is passed in a floating point register. This is represented as two arguments |
| 98 | // with the LLVM IR inreg attribute: |
| 99 | // |
| 100 | // declare void f(i32 inreg %i, float inreg %f) |
| 101 | // |
| 102 | // The code generator will only allocate 4 bytes from the parameter array for |
| 103 | // the inreg arguments. All other arguments are allocated a multiple of 8 |
| 104 | // bytes. |
| 105 | // |
| 106 | namespace { |
| 107 | class SparcV9ABIInfo : public ABIInfo { |
| 108 | public: |
| 109 | SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} |
| 110 | |
| 111 | private: |
| 112 | ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; |
| 113 | void computeInfo(CGFunctionInfo &FI) const override; |
| 114 | RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, |
| 115 | AggValueSlot Slot) const override; |
| 116 | |
| 117 | // Coercion type builder for structs passed in registers. The coercion type |
| 118 | // serves two purposes: |
| 119 | // |
| 120 | // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' |
| 121 | // in registers. |
| 122 | // 2. Expose aligned floating point elements as first-level elements, so the |
| 123 | // code generator knows to pass them in floating point registers. |
| 124 | // |
| 125 | // We also compute the InReg flag which indicates that the struct contains |
| 126 | // aligned 32-bit floats. |
| 127 | // |
| 128 | struct CoerceBuilder { |
| 129 | llvm::LLVMContext &Context; |
| 130 | const llvm::DataLayout &DL; |
| 131 | SmallVector<llvm::Type*, 8> Elems; |
| 132 | uint64_t Size; |
| 133 | bool InReg; |
| 134 | |
| 135 | CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) |
| 136 | : Context(c), DL(dl), Size(0), InReg(false) {} |
| 137 | |
| 138 | // Pad Elems with integers until Size is ToSize. |
| 139 | void pad(uint64_t ToSize) { |
| 140 | assert(ToSize >= Size && "Cannot remove elements" ); |
| 141 | if (ToSize == Size) |
| 142 | return; |
| 143 | |
| 144 | // Finish the current 64-bit word. |
| 145 | uint64_t Aligned = llvm::alignTo(Value: Size, Align: 64); |
| 146 | if (Aligned > Size && Aligned <= ToSize) { |
| 147 | Elems.push_back(Elt: llvm::IntegerType::get(C&: Context, NumBits: Aligned - Size)); |
| 148 | Size = Aligned; |
| 149 | } |
| 150 | |
| 151 | // Add whole 64-bit words. |
| 152 | while (Size + 64 <= ToSize) { |
| 153 | Elems.push_back(Elt: llvm::Type::getInt64Ty(C&: Context)); |
| 154 | Size += 64; |
| 155 | } |
| 156 | |
| 157 | // Final in-word padding. |
| 158 | if (Size < ToSize) { |
| 159 | Elems.push_back(Elt: llvm::IntegerType::get(C&: Context, NumBits: ToSize - Size)); |
| 160 | Size = ToSize; |
| 161 | } |
| 162 | } |
| 163 | |
| 164 | // Add a floating point element at Offset. |
| 165 | void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { |
| 166 | // Unaligned floats are treated as integers. |
| 167 | if (Offset % Bits) |
| 168 | return; |
| 169 | // The InReg flag is only required if there are any floats < 64 bits. |
| 170 | if (Bits < 64) |
| 171 | InReg = true; |
| 172 | pad(ToSize: Offset); |
| 173 | Elems.push_back(Elt: Ty); |
| 174 | Size = Offset + Bits; |
| 175 | } |
| 176 | |
| 177 | // Add a struct type to the coercion type, starting at Offset (in bits). |
| 178 | void addStruct(uint64_t Offset, llvm::StructType *StrTy) { |
| 179 | const llvm::StructLayout *Layout = DL.getStructLayout(Ty: StrTy); |
| 180 | for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { |
| 181 | llvm::Type *ElemTy = StrTy->getElementType(N: i); |
| 182 | uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(Idx: i); |
| 183 | switch (ElemTy->getTypeID()) { |
| 184 | case llvm::Type::StructTyID: |
| 185 | addStruct(Offset: ElemOffset, StrTy: cast<llvm::StructType>(Val: ElemTy)); |
| 186 | break; |
| 187 | case llvm::Type::FloatTyID: |
| 188 | addFloat(Offset: ElemOffset, Ty: ElemTy, Bits: 32); |
| 189 | break; |
| 190 | case llvm::Type::DoubleTyID: |
| 191 | addFloat(Offset: ElemOffset, Ty: ElemTy, Bits: 64); |
| 192 | break; |
| 193 | case llvm::Type::FP128TyID: |
| 194 | addFloat(Offset: ElemOffset, Ty: ElemTy, Bits: 128); |
| 195 | break; |
| 196 | case llvm::Type::PointerTyID: |
| 197 | if (ElemOffset % 64 == 0) { |
| 198 | pad(ToSize: ElemOffset); |
| 199 | Elems.push_back(Elt: ElemTy); |
| 200 | Size += 64; |
| 201 | } |
| 202 | break; |
| 203 | default: |
| 204 | break; |
| 205 | } |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | // Check if Ty is a usable substitute for the coercion type. |
| 210 | bool isUsableType(llvm::StructType *Ty) const { |
| 211 | return llvm::ArrayRef(Elems) == Ty->elements(); |
| 212 | } |
| 213 | |
| 214 | // Get the coercion type as a literal struct type. |
| 215 | llvm::Type *getType() const { |
| 216 | if (Elems.size() == 1) |
| 217 | return Elems.front(); |
| 218 | else |
| 219 | return llvm::StructType::get(Context, Elements: Elems); |
| 220 | } |
| 221 | }; |
| 222 | }; |
| 223 | } // end anonymous namespace |
| 224 | |
| 225 | ABIArgInfo |
| 226 | SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { |
| 227 | if (Ty->isVoidType()) |
| 228 | return ABIArgInfo::getIgnore(); |
| 229 | |
| 230 | uint64_t Size = getContext().getTypeSize(T: Ty); |
| 231 | |
| 232 | // Anything too big to fit in registers is passed with an explicit indirect |
| 233 | // pointer / sret pointer. |
| 234 | if (Size > SizeLimit) |
| 235 | return getNaturalAlignIndirect( |
| 236 | Ty, /*AddrSpace=*/getDataLayout().getAllocaAddrSpace(), |
| 237 | /*ByVal=*/false); |
| 238 | |
| 239 | // Treat an enum type as its underlying type. |
| 240 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
| 241 | Ty = EnumTy->getDecl()->getIntegerType(); |
| 242 | |
| 243 | // Integer types smaller than a register are extended. |
| 244 | if (Size < 64 && Ty->isIntegerType()) |
| 245 | return ABIArgInfo::getExtend(Ty); |
| 246 | |
| 247 | if (const auto *EIT = Ty->getAs<BitIntType>()) |
| 248 | if (EIT->getNumBits() < 64) |
| 249 | return ABIArgInfo::getExtend(Ty); |
| 250 | |
| 251 | // Other non-aggregates go in registers. |
| 252 | if (!isAggregateTypeForABI(T: Ty)) |
| 253 | return ABIArgInfo::getDirect(); |
| 254 | |
| 255 | // If a C++ object has either a non-trivial copy constructor or a non-trivial |
| 256 | // destructor, it is passed with an explicit indirect pointer / sret pointer. |
| 257 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(T: Ty, CXXABI&: getCXXABI())) |
| 258 | return getNaturalAlignIndirect(Ty, AddrSpace: getDataLayout().getAllocaAddrSpace(), |
| 259 | ByVal: RAA == CGCXXABI::RAA_DirectInMemory); |
| 260 | |
| 261 | // This is a small aggregate type that should be passed in registers. |
| 262 | // Build a coercion type from the LLVM struct type. |
| 263 | llvm::StructType *StrTy = dyn_cast<llvm::StructType>(Val: CGT.ConvertType(T: Ty)); |
| 264 | if (!StrTy) |
| 265 | return ABIArgInfo::getDirect(); |
| 266 | |
| 267 | CoerceBuilder CB(getVMContext(), getDataLayout()); |
| 268 | CB.addStruct(Offset: 0, StrTy); |
| 269 | // All structs, even empty ones, should take up a register argument slot, |
| 270 | // so pin the minimum struct size to one bit. |
| 271 | CB.pad(ToSize: llvm::alignTo( |
| 272 | Value: std::max(a: CB.DL.getTypeSizeInBits(Ty: StrTy).getKnownMinValue(), b: uint64_t(1)), |
| 273 | Align: 64)); |
| 274 | |
| 275 | // Try to use the original type for coercion. |
| 276 | llvm::Type *CoerceTy = CB.isUsableType(Ty: StrTy) ? StrTy : CB.getType(); |
| 277 | |
| 278 | if (CB.InReg) |
| 279 | return ABIArgInfo::getDirectInReg(T: CoerceTy); |
| 280 | else |
| 281 | return ABIArgInfo::getDirect(T: CoerceTy); |
| 282 | } |
| 283 | |
| 284 | RValue SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
| 285 | QualType Ty, AggValueSlot Slot) const { |
| 286 | ABIArgInfo AI = classifyType(Ty, SizeLimit: 16 * 8); |
| 287 | llvm::Type *ArgTy = CGT.ConvertType(T: Ty); |
| 288 | if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) |
| 289 | AI.setCoerceToType(ArgTy); |
| 290 | |
| 291 | CharUnits SlotSize = CharUnits::fromQuantity(Quantity: 8); |
| 292 | |
| 293 | CGBuilderTy &Builder = CGF.Builder; |
| 294 | Address Addr = Address(Builder.CreateLoad(Addr: VAListAddr, Name: "ap.cur" ), |
| 295 | getVAListElementType(CGF), SlotSize); |
| 296 | llvm::Type *ArgPtrTy = CGF.UnqualPtrTy; |
| 297 | |
| 298 | auto TypeInfo = getContext().getTypeInfoInChars(T: Ty); |
| 299 | |
| 300 | Address ArgAddr = Address::invalid(); |
| 301 | CharUnits Stride; |
| 302 | switch (AI.getKind()) { |
| 303 | case ABIArgInfo::Expand: |
| 304 | case ABIArgInfo::CoerceAndExpand: |
| 305 | case ABIArgInfo::InAlloca: |
| 306 | llvm_unreachable("Unsupported ABI kind for va_arg" ); |
| 307 | |
| 308 | case ABIArgInfo::Extend: { |
| 309 | Stride = SlotSize; |
| 310 | CharUnits Offset = SlotSize - TypeInfo.Width; |
| 311 | ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, Name: "extend" ); |
| 312 | break; |
| 313 | } |
| 314 | |
| 315 | case ABIArgInfo::Direct: { |
| 316 | auto AllocSize = getDataLayout().getTypeAllocSize(Ty: AI.getCoerceToType()); |
| 317 | Stride = CharUnits::fromQuantity(Quantity: AllocSize).alignTo(Align: SlotSize); |
| 318 | ArgAddr = Addr; |
| 319 | break; |
| 320 | } |
| 321 | |
| 322 | case ABIArgInfo::Indirect: |
| 323 | case ABIArgInfo::IndirectAliased: |
| 324 | Stride = SlotSize; |
| 325 | ArgAddr = Addr.withElementType(ElemTy: ArgPtrTy); |
| 326 | ArgAddr = Address(Builder.CreateLoad(Addr: ArgAddr, Name: "indirect.arg" ), ArgTy, |
| 327 | TypeInfo.Align); |
| 328 | break; |
| 329 | |
| 330 | case ABIArgInfo::Ignore: |
| 331 | return Slot.asRValue(); |
| 332 | } |
| 333 | |
| 334 | // Update VAList. |
| 335 | Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Offset: Stride, Name: "ap.next" ); |
| 336 | Builder.CreateStore(Val: NextPtr.emitRawPointer(CGF), Addr: VAListAddr); |
| 337 | |
| 338 | return CGF.EmitLoadOfAnyValue( |
| 339 | V: CGF.MakeAddrLValue(Addr: ArgAddr.withElementType(ElemTy: ArgTy), T: Ty), Slot); |
| 340 | } |
| 341 | |
| 342 | void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
| 343 | FI.getReturnInfo() = classifyType(Ty: FI.getReturnType(), SizeLimit: 32 * 8); |
| 344 | for (auto &I : FI.arguments()) |
| 345 | I.info = classifyType(Ty: I.type, SizeLimit: 16 * 8); |
| 346 | } |
| 347 | |
| 348 | namespace { |
| 349 | class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { |
| 350 | public: |
| 351 | SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) |
| 352 | : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(args&: CGT)) {} |
| 353 | |
| 354 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
| 355 | return 14; |
| 356 | } |
| 357 | |
| 358 | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| 359 | llvm::Value *Address) const override; |
| 360 | |
| 361 | llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, |
| 362 | llvm::Value *Address) const override { |
| 363 | return CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: Address, |
| 364 | IdxList: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: 8)); |
| 365 | } |
| 366 | |
| 367 | llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, |
| 368 | llvm::Value *Address) const override { |
| 369 | return CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: Address, |
| 370 | IdxList: llvm::ConstantInt::get(Ty: CGF.Int32Ty, V: -8)); |
| 371 | } |
| 372 | }; |
| 373 | } // end anonymous namespace |
| 374 | |
| 375 | bool |
| 376 | SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
| 377 | llvm::Value *Address) const { |
| 378 | // This is calculated from the LLVM and GCC tables and verified |
| 379 | // against gcc output. AFAIK all ABIs use the same encoding. |
| 380 | |
| 381 | CodeGen::CGBuilderTy &Builder = CGF.Builder; |
| 382 | |
| 383 | llvm::IntegerType *i8 = CGF.Int8Ty; |
| 384 | llvm::Value *Four8 = llvm::ConstantInt::get(Ty: i8, V: 4); |
| 385 | llvm::Value *Eight8 = llvm::ConstantInt::get(Ty: i8, V: 8); |
| 386 | |
| 387 | // 0-31: the 8-byte general-purpose registers |
| 388 | AssignToArrayRange(Builder, Array: Address, Value: Eight8, FirstIndex: 0, LastIndex: 31); |
| 389 | |
| 390 | // 32-63: f0-31, the 4-byte floating-point registers |
| 391 | AssignToArrayRange(Builder, Array: Address, Value: Four8, FirstIndex: 32, LastIndex: 63); |
| 392 | |
| 393 | // Y = 64 |
| 394 | // PSR = 65 |
| 395 | // WIM = 66 |
| 396 | // TBR = 67 |
| 397 | // PC = 68 |
| 398 | // NPC = 69 |
| 399 | // FSR = 70 |
| 400 | // CSR = 71 |
| 401 | AssignToArrayRange(Builder, Array: Address, Value: Eight8, FirstIndex: 64, LastIndex: 71); |
| 402 | |
| 403 | // 72-87: d0-15, the 8-byte floating-point registers |
| 404 | AssignToArrayRange(Builder, Array: Address, Value: Eight8, FirstIndex: 72, LastIndex: 87); |
| 405 | |
| 406 | return false; |
| 407 | } |
| 408 | |
| 409 | std::unique_ptr<TargetCodeGenInfo> |
| 410 | CodeGen::createSparcV8TargetCodeGenInfo(CodeGenModule &CGM) { |
| 411 | return std::make_unique<SparcV8TargetCodeGenInfo>(args&: CGM.getTypes()); |
| 412 | } |
| 413 | |
| 414 | std::unique_ptr<TargetCodeGenInfo> |
| 415 | CodeGen::createSparcV9TargetCodeGenInfo(CodeGenModule &CGM) { |
| 416 | return std::make_unique<SparcV9TargetCodeGenInfo>(args&: CGM.getTypes()); |
| 417 | } |
| 418 | |