| 1 | //===-- SemaConcept.cpp - Semantic Analysis for Constraints and Concepts --===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements semantic analysis for C++ constraints and concepts. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/Sema/SemaConcept.h" |
| 14 | #include "TreeTransform.h" |
| 15 | #include "clang/AST/ASTLambda.h" |
| 16 | #include "clang/AST/DeclCXX.h" |
| 17 | #include "clang/AST/ExprConcepts.h" |
| 18 | #include "clang/Basic/OperatorPrecedence.h" |
| 19 | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
| 20 | #include "clang/Sema/Initialization.h" |
| 21 | #include "clang/Sema/Overload.h" |
| 22 | #include "clang/Sema/ScopeInfo.h" |
| 23 | #include "clang/Sema/Sema.h" |
| 24 | #include "clang/Sema/SemaInternal.h" |
| 25 | #include "clang/Sema/Template.h" |
| 26 | #include "clang/Sema/TemplateDeduction.h" |
| 27 | #include "llvm/ADT/DenseMap.h" |
| 28 | #include "llvm/ADT/PointerUnion.h" |
| 29 | #include "llvm/ADT/StringExtras.h" |
| 30 | #include <optional> |
| 31 | |
| 32 | using namespace clang; |
| 33 | using namespace sema; |
| 34 | |
| 35 | namespace { |
| 36 | class LogicalBinOp { |
| 37 | SourceLocation Loc; |
| 38 | OverloadedOperatorKind Op = OO_None; |
| 39 | const Expr *LHS = nullptr; |
| 40 | const Expr *RHS = nullptr; |
| 41 | |
| 42 | public: |
| 43 | LogicalBinOp(const Expr *E) { |
| 44 | if (auto *BO = dyn_cast<BinaryOperator>(Val: E)) { |
| 45 | Op = BinaryOperator::getOverloadedOperator(Opc: BO->getOpcode()); |
| 46 | LHS = BO->getLHS(); |
| 47 | RHS = BO->getRHS(); |
| 48 | Loc = BO->getExprLoc(); |
| 49 | } else if (auto *OO = dyn_cast<CXXOperatorCallExpr>(Val: E)) { |
| 50 | // If OO is not || or && it might not have exactly 2 arguments. |
| 51 | if (OO->getNumArgs() == 2) { |
| 52 | Op = OO->getOperator(); |
| 53 | LHS = OO->getArg(Arg: 0); |
| 54 | RHS = OO->getArg(Arg: 1); |
| 55 | Loc = OO->getOperatorLoc(); |
| 56 | } |
| 57 | } |
| 58 | } |
| 59 | |
| 60 | bool isAnd() const { return Op == OO_AmpAmp; } |
| 61 | bool isOr() const { return Op == OO_PipePipe; } |
| 62 | explicit operator bool() const { return isAnd() || isOr(); } |
| 63 | |
| 64 | const Expr *getLHS() const { return LHS; } |
| 65 | const Expr *getRHS() const { return RHS; } |
| 66 | OverloadedOperatorKind getOp() const { return Op; } |
| 67 | |
| 68 | ExprResult recreateBinOp(Sema &SemaRef, ExprResult LHS) const { |
| 69 | return recreateBinOp(SemaRef, LHS, RHS: const_cast<Expr *>(getRHS())); |
| 70 | } |
| 71 | |
| 72 | ExprResult recreateBinOp(Sema &SemaRef, ExprResult LHS, |
| 73 | ExprResult RHS) const { |
| 74 | assert((isAnd() || isOr()) && "Not the right kind of op?" ); |
| 75 | assert((!LHS.isInvalid() && !RHS.isInvalid()) && "not good expressions?" ); |
| 76 | |
| 77 | if (!LHS.isUsable() || !RHS.isUsable()) |
| 78 | return ExprEmpty(); |
| 79 | |
| 80 | // We should just be able to 'normalize' these to the builtin Binary |
| 81 | // Operator, since that is how they are evaluated in constriant checks. |
| 82 | return BinaryOperator::Create(C: SemaRef.Context, lhs: LHS.get(), rhs: RHS.get(), |
| 83 | opc: BinaryOperator::getOverloadedOpcode(OO: Op), |
| 84 | ResTy: SemaRef.Context.BoolTy, VK: VK_PRValue, |
| 85 | OK: OK_Ordinary, opLoc: Loc, FPFeatures: FPOptionsOverride{}); |
| 86 | } |
| 87 | }; |
| 88 | } |
| 89 | |
| 90 | bool Sema::CheckConstraintExpression(const Expr *ConstraintExpression, |
| 91 | Token NextToken, bool *PossibleNonPrimary, |
| 92 | bool IsTrailingRequiresClause) { |
| 93 | // C++2a [temp.constr.atomic]p1 |
| 94 | // ..E shall be a constant expression of type bool. |
| 95 | |
| 96 | ConstraintExpression = ConstraintExpression->IgnoreParenImpCasts(); |
| 97 | |
| 98 | if (LogicalBinOp BO = ConstraintExpression) { |
| 99 | return CheckConstraintExpression(ConstraintExpression: BO.getLHS(), NextToken, |
| 100 | PossibleNonPrimary) && |
| 101 | CheckConstraintExpression(ConstraintExpression: BO.getRHS(), NextToken, |
| 102 | PossibleNonPrimary); |
| 103 | } else if (auto *C = dyn_cast<ExprWithCleanups>(Val: ConstraintExpression)) |
| 104 | return CheckConstraintExpression(ConstraintExpression: C->getSubExpr(), NextToken, |
| 105 | PossibleNonPrimary); |
| 106 | |
| 107 | QualType Type = ConstraintExpression->getType(); |
| 108 | |
| 109 | auto CheckForNonPrimary = [&] { |
| 110 | if (!PossibleNonPrimary) |
| 111 | return; |
| 112 | |
| 113 | *PossibleNonPrimary = |
| 114 | // We have the following case: |
| 115 | // template<typename> requires func(0) struct S { }; |
| 116 | // The user probably isn't aware of the parentheses required around |
| 117 | // the function call, and we're only going to parse 'func' as the |
| 118 | // primary-expression, and complain that it is of non-bool type. |
| 119 | // |
| 120 | // However, if we're in a lambda, this might also be: |
| 121 | // []<typename> requires var () {}; |
| 122 | // Which also looks like a function call due to the lambda parentheses, |
| 123 | // but unlike the first case, isn't an error, so this check is skipped. |
| 124 | (NextToken.is(K: tok::l_paren) && |
| 125 | (IsTrailingRequiresClause || |
| 126 | (Type->isDependentType() && |
| 127 | isa<UnresolvedLookupExpr>(Val: ConstraintExpression) && |
| 128 | !dyn_cast_if_present<LambdaScopeInfo>(Val: getCurFunction())) || |
| 129 | Type->isFunctionType() || |
| 130 | Type->isSpecificBuiltinType(K: BuiltinType::Overload))) || |
| 131 | // We have the following case: |
| 132 | // template<typename T> requires size_<T> == 0 struct S { }; |
| 133 | // The user probably isn't aware of the parentheses required around |
| 134 | // the binary operator, and we're only going to parse 'func' as the |
| 135 | // first operand, and complain that it is of non-bool type. |
| 136 | getBinOpPrecedence(Kind: NextToken.getKind(), |
| 137 | /*GreaterThanIsOperator=*/true, |
| 138 | CPlusPlus11: getLangOpts().CPlusPlus11) > prec::LogicalAnd; |
| 139 | }; |
| 140 | |
| 141 | // An atomic constraint! |
| 142 | if (ConstraintExpression->isTypeDependent()) { |
| 143 | CheckForNonPrimary(); |
| 144 | return true; |
| 145 | } |
| 146 | |
| 147 | if (!Context.hasSameUnqualifiedType(T1: Type, T2: Context.BoolTy)) { |
| 148 | Diag(Loc: ConstraintExpression->getExprLoc(), |
| 149 | DiagID: diag::err_non_bool_atomic_constraint) << Type |
| 150 | << ConstraintExpression->getSourceRange(); |
| 151 | CheckForNonPrimary(); |
| 152 | return false; |
| 153 | } |
| 154 | |
| 155 | if (PossibleNonPrimary) |
| 156 | *PossibleNonPrimary = false; |
| 157 | return true; |
| 158 | } |
| 159 | |
| 160 | namespace { |
| 161 | struct SatisfactionStackRAII { |
| 162 | Sema &SemaRef; |
| 163 | bool Inserted = false; |
| 164 | SatisfactionStackRAII(Sema &SemaRef, const NamedDecl *ND, |
| 165 | const llvm::FoldingSetNodeID &FSNID) |
| 166 | : SemaRef(SemaRef) { |
| 167 | if (ND) { |
| 168 | SemaRef.PushSatisfactionStackEntry(D: ND, ID: FSNID); |
| 169 | Inserted = true; |
| 170 | } |
| 171 | } |
| 172 | ~SatisfactionStackRAII() { |
| 173 | if (Inserted) |
| 174 | SemaRef.PopSatisfactionStackEntry(); |
| 175 | } |
| 176 | }; |
| 177 | } // namespace |
| 178 | |
| 179 | static bool |
| 180 | DiagRecursiveConstraintEval(Sema &S, llvm::FoldingSetNodeID &ID, |
| 181 | const NamedDecl *Templ, const Expr *E, |
| 182 | const MultiLevelTemplateArgumentList &MLTAL) { |
| 183 | E->Profile(ID, Context: S.Context, /*Canonical=*/true); |
| 184 | for (const auto &List : MLTAL) |
| 185 | for (const auto &TemplateArg : List.Args) |
| 186 | TemplateArg.Profile(ID, Context: S.Context); |
| 187 | |
| 188 | // Note that we have to do this with our own collection, because there are |
| 189 | // times where a constraint-expression check can cause us to need to evaluate |
| 190 | // other constriants that are unrelated, such as when evaluating a recovery |
| 191 | // expression, or when trying to determine the constexpr-ness of special |
| 192 | // members. Otherwise we could just use the |
| 193 | // Sema::InstantiatingTemplate::isAlreadyBeingInstantiated function. |
| 194 | if (S.SatisfactionStackContains(D: Templ, ID)) { |
| 195 | S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_constraint_depends_on_self) |
| 196 | << const_cast<Expr *>(E) << E->getSourceRange(); |
| 197 | return true; |
| 198 | } |
| 199 | |
| 200 | return false; |
| 201 | } |
| 202 | |
| 203 | static ExprResult EvaluateAtomicConstraint( |
| 204 | Sema &S, const Expr *AtomicExpr, const NamedDecl *Template, |
| 205 | SourceLocation TemplateNameLoc, const MultiLevelTemplateArgumentList &MLTAL, |
| 206 | ConstraintSatisfaction &Satisfaction) { |
| 207 | EnterExpressionEvaluationContext ConstantEvaluated( |
| 208 | S, Sema::ExpressionEvaluationContext::ConstantEvaluated, |
| 209 | Sema::ReuseLambdaContextDecl); |
| 210 | |
| 211 | // Atomic constraint - substitute arguments and check satisfaction. |
| 212 | ExprResult SubstitutedExpression; |
| 213 | { |
| 214 | TemplateDeductionInfo Info(TemplateNameLoc); |
| 215 | Sema::InstantiatingTemplate Inst( |
| 216 | S, AtomicExpr->getBeginLoc(), |
| 217 | Sema::InstantiatingTemplate::ConstraintSubstitution{}, |
| 218 | // FIXME: improve const-correctness of InstantiatingTemplate |
| 219 | const_cast<NamedDecl *>(Template), Info, AtomicExpr->getSourceRange()); |
| 220 | if (Inst.isInvalid()) |
| 221 | return ExprError(); |
| 222 | |
| 223 | llvm::FoldingSetNodeID ID; |
| 224 | if (Template && |
| 225 | DiagRecursiveConstraintEval(S, ID, Templ: Template, E: AtomicExpr, MLTAL)) { |
| 226 | Satisfaction.IsSatisfied = false; |
| 227 | Satisfaction.ContainsErrors = true; |
| 228 | return ExprEmpty(); |
| 229 | } |
| 230 | |
| 231 | SatisfactionStackRAII StackRAII(S, Template, ID); |
| 232 | |
| 233 | // We do not want error diagnostics escaping here. |
| 234 | Sema::SFINAETrap Trap(S); |
| 235 | SubstitutedExpression = |
| 236 | S.SubstConstraintExpr(E: const_cast<Expr *>(AtomicExpr), TemplateArgs: MLTAL); |
| 237 | |
| 238 | if (SubstitutedExpression.isInvalid() || Trap.hasErrorOccurred()) { |
| 239 | // C++2a [temp.constr.atomic]p1 |
| 240 | // ...If substitution results in an invalid type or expression, the |
| 241 | // constraint is not satisfied. |
| 242 | if (!Trap.hasErrorOccurred()) |
| 243 | // A non-SFINAE error has occurred as a result of this |
| 244 | // substitution. |
| 245 | return ExprError(); |
| 246 | |
| 247 | PartialDiagnosticAt SubstDiag{SourceLocation(), |
| 248 | PartialDiagnostic::NullDiagnostic()}; |
| 249 | Info.takeSFINAEDiagnostic(PD&: SubstDiag); |
| 250 | // FIXME: Concepts: This is an unfortunate consequence of there |
| 251 | // being no serialization code for PartialDiagnostics and the fact |
| 252 | // that serializing them would likely take a lot more storage than |
| 253 | // just storing them as strings. We would still like, in the |
| 254 | // future, to serialize the proper PartialDiagnostic as serializing |
| 255 | // it as a string defeats the purpose of the diagnostic mechanism. |
| 256 | SmallString<128> DiagString; |
| 257 | DiagString = ": " ; |
| 258 | SubstDiag.second.EmitToString(Diags&: S.getDiagnostics(), Buf&: DiagString); |
| 259 | unsigned MessageSize = DiagString.size(); |
| 260 | char *Mem = new (S.Context) char[MessageSize]; |
| 261 | memcpy(dest: Mem, src: DiagString.c_str(), n: MessageSize); |
| 262 | Satisfaction.Details.emplace_back( |
| 263 | Args: new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{ |
| 264 | SubstDiag.first, StringRef(Mem, MessageSize)}); |
| 265 | Satisfaction.IsSatisfied = false; |
| 266 | return ExprEmpty(); |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | if (!S.CheckConstraintExpression(ConstraintExpression: SubstitutedExpression.get())) |
| 271 | return ExprError(); |
| 272 | |
| 273 | // [temp.constr.atomic]p3: To determine if an atomic constraint is |
| 274 | // satisfied, the parameter mapping and template arguments are first |
| 275 | // substituted into its expression. If substitution results in an |
| 276 | // invalid type or expression, the constraint is not satisfied. |
| 277 | // Otherwise, the lvalue-to-rvalue conversion is performed if necessary, |
| 278 | // and E shall be a constant expression of type bool. |
| 279 | // |
| 280 | // Perform the L to R Value conversion if necessary. We do so for all |
| 281 | // non-PRValue categories, else we fail to extend the lifetime of |
| 282 | // temporaries, and that fails the constant expression check. |
| 283 | if (!SubstitutedExpression.get()->isPRValue()) |
| 284 | SubstitutedExpression = ImplicitCastExpr::Create( |
| 285 | Context: S.Context, T: SubstitutedExpression.get()->getType(), Kind: CK_LValueToRValue, |
| 286 | Operand: SubstitutedExpression.get(), |
| 287 | /*BasePath=*/nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride()); |
| 288 | |
| 289 | return SubstitutedExpression; |
| 290 | } |
| 291 | |
| 292 | static UnsignedOrNone EvaluateFoldExpandedConstraintSize( |
| 293 | Sema &S, const CXXFoldExpr *FE, const NamedDecl *Template, |
| 294 | SourceLocation TemplateNameLoc, const MultiLevelTemplateArgumentList &MLTAL, |
| 295 | ConstraintSatisfaction &Satisfaction) { |
| 296 | |
| 297 | // We should ignore errors in the presence of packs of different size. |
| 298 | Sema::SFINAETrap Trap(S); |
| 299 | |
| 300 | Expr *Pattern = FE->getPattern(); |
| 301 | |
| 302 | SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| 303 | S.collectUnexpandedParameterPacks(E: Pattern, Unexpanded); |
| 304 | assert(!Unexpanded.empty() && "Pack expansion without parameter packs?" ); |
| 305 | bool Expand = true; |
| 306 | bool RetainExpansion = false; |
| 307 | UnsignedOrNone NumExpansions = FE->getNumExpansions(); |
| 308 | if (S.CheckParameterPacksForExpansion( |
| 309 | EllipsisLoc: FE->getEllipsisLoc(), PatternRange: Pattern->getSourceRange(), Unexpanded, TemplateArgs: MLTAL, |
| 310 | ShouldExpand&: Expand, RetainExpansion, NumExpansions) || |
| 311 | !Expand || RetainExpansion) |
| 312 | return std::nullopt; |
| 313 | |
| 314 | if (NumExpansions && S.getLangOpts().BracketDepth < *NumExpansions) { |
| 315 | S.Diag(Loc: FE->getEllipsisLoc(), |
| 316 | DiagID: clang::diag::err_fold_expression_limit_exceeded) |
| 317 | << *NumExpansions << S.getLangOpts().BracketDepth |
| 318 | << FE->getSourceRange(); |
| 319 | S.Diag(Loc: FE->getEllipsisLoc(), DiagID: diag::note_bracket_depth); |
| 320 | return std::nullopt; |
| 321 | } |
| 322 | return NumExpansions; |
| 323 | } |
| 324 | |
| 325 | static ExprResult calculateConstraintSatisfaction( |
| 326 | Sema &S, const Expr *ConstraintExpr, const NamedDecl *Template, |
| 327 | SourceLocation TemplateNameLoc, const MultiLevelTemplateArgumentList &MLTAL, |
| 328 | ConstraintSatisfaction &Satisfaction); |
| 329 | |
| 330 | static ExprResult calculateConstraintSatisfaction( |
| 331 | Sema &S, const Expr *LHS, OverloadedOperatorKind Op, const Expr *RHS, |
| 332 | const NamedDecl *Template, SourceLocation TemplateNameLoc, |
| 333 | const MultiLevelTemplateArgumentList &MLTAL, |
| 334 | ConstraintSatisfaction &Satisfaction) { |
| 335 | size_t EffectiveDetailEndIndex = Satisfaction.Details.size(); |
| 336 | |
| 337 | ExprResult LHSRes = calculateConstraintSatisfaction( |
| 338 | S, ConstraintExpr: LHS, Template, TemplateNameLoc, MLTAL, Satisfaction); |
| 339 | |
| 340 | if (LHSRes.isInvalid()) |
| 341 | return ExprError(); |
| 342 | |
| 343 | bool IsLHSSatisfied = Satisfaction.IsSatisfied; |
| 344 | |
| 345 | if (Op == clang::OO_PipePipe && IsLHSSatisfied) |
| 346 | // [temp.constr.op] p3 |
| 347 | // A disjunction is a constraint taking two operands. To determine if |
| 348 | // a disjunction is satisfied, the satisfaction of the first operand |
| 349 | // is checked. If that is satisfied, the disjunction is satisfied. |
| 350 | // Otherwise, the disjunction is satisfied if and only if the second |
| 351 | // operand is satisfied. |
| 352 | // LHS is instantiated while RHS is not. Skip creating invalid BinaryOp. |
| 353 | return LHSRes; |
| 354 | |
| 355 | if (Op == clang::OO_AmpAmp && !IsLHSSatisfied) |
| 356 | // [temp.constr.op] p2 |
| 357 | // A conjunction is a constraint taking two operands. To determine if |
| 358 | // a conjunction is satisfied, the satisfaction of the first operand |
| 359 | // is checked. If that is not satisfied, the conjunction is not |
| 360 | // satisfied. Otherwise, the conjunction is satisfied if and only if |
| 361 | // the second operand is satisfied. |
| 362 | // LHS is instantiated while RHS is not. Skip creating invalid BinaryOp. |
| 363 | return LHSRes; |
| 364 | |
| 365 | ExprResult RHSRes = calculateConstraintSatisfaction( |
| 366 | S, ConstraintExpr: RHS, Template, TemplateNameLoc, MLTAL, Satisfaction); |
| 367 | if (RHSRes.isInvalid()) |
| 368 | return ExprError(); |
| 369 | |
| 370 | bool IsRHSSatisfied = Satisfaction.IsSatisfied; |
| 371 | // Current implementation adds diagnostic information about the falsity |
| 372 | // of each false atomic constraint expression when it evaluates them. |
| 373 | // When the evaluation results to `false || true`, the information |
| 374 | // generated during the evaluation of left-hand side is meaningless |
| 375 | // because the whole expression evaluates to true. |
| 376 | // The following code removes the irrelevant diagnostic information. |
| 377 | // FIXME: We should probably delay the addition of diagnostic information |
| 378 | // until we know the entire expression is false. |
| 379 | if (Op == clang::OO_PipePipe && IsRHSSatisfied) { |
| 380 | auto EffectiveDetailEnd = Satisfaction.Details.begin(); |
| 381 | std::advance(i&: EffectiveDetailEnd, n: EffectiveDetailEndIndex); |
| 382 | Satisfaction.Details.erase(CS: EffectiveDetailEnd, CE: Satisfaction.Details.end()); |
| 383 | } |
| 384 | |
| 385 | if (!LHSRes.isUsable() || !RHSRes.isUsable()) |
| 386 | return ExprEmpty(); |
| 387 | |
| 388 | return BinaryOperator::Create(C: S.Context, lhs: LHSRes.get(), rhs: RHSRes.get(), |
| 389 | opc: BinaryOperator::getOverloadedOpcode(OO: Op), |
| 390 | ResTy: S.Context.BoolTy, VK: VK_PRValue, OK: OK_Ordinary, |
| 391 | opLoc: LHS->getBeginLoc(), FPFeatures: FPOptionsOverride{}); |
| 392 | } |
| 393 | |
| 394 | static ExprResult calculateConstraintSatisfaction( |
| 395 | Sema &S, const CXXFoldExpr *FE, const NamedDecl *Template, |
| 396 | SourceLocation TemplateNameLoc, const MultiLevelTemplateArgumentList &MLTAL, |
| 397 | ConstraintSatisfaction &Satisfaction) { |
| 398 | bool Conjunction = FE->getOperator() == BinaryOperatorKind::BO_LAnd; |
| 399 | size_t EffectiveDetailEndIndex = Satisfaction.Details.size(); |
| 400 | |
| 401 | ExprResult Out; |
| 402 | if (FE->isLeftFold() && FE->getInit()) { |
| 403 | Out = calculateConstraintSatisfaction(S, ConstraintExpr: FE->getInit(), Template, |
| 404 | TemplateNameLoc, MLTAL, Satisfaction); |
| 405 | if (Out.isInvalid()) |
| 406 | return ExprError(); |
| 407 | |
| 408 | // If the first clause of a conjunction is not satisfied, |
| 409 | // or if the first clause of a disjection is satisfied, |
| 410 | // we have established satisfaction of the whole constraint |
| 411 | // and we should not continue further. |
| 412 | if (Conjunction != Satisfaction.IsSatisfied) |
| 413 | return Out; |
| 414 | } |
| 415 | UnsignedOrNone NumExpansions = EvaluateFoldExpandedConstraintSize( |
| 416 | S, FE, Template, TemplateNameLoc, MLTAL, Satisfaction); |
| 417 | if (!NumExpansions) |
| 418 | return ExprError(); |
| 419 | for (unsigned I = 0; I < *NumExpansions; I++) { |
| 420 | Sema::ArgPackSubstIndexRAII SubstIndex(S, I); |
| 421 | ExprResult Res = calculateConstraintSatisfaction( |
| 422 | S, ConstraintExpr: FE->getPattern(), Template, TemplateNameLoc, MLTAL, Satisfaction); |
| 423 | if (Res.isInvalid()) |
| 424 | return ExprError(); |
| 425 | bool IsRHSSatisfied = Satisfaction.IsSatisfied; |
| 426 | if (!Conjunction && IsRHSSatisfied) { |
| 427 | auto EffectiveDetailEnd = Satisfaction.Details.begin(); |
| 428 | std::advance(i&: EffectiveDetailEnd, n: EffectiveDetailEndIndex); |
| 429 | Satisfaction.Details.erase(CS: EffectiveDetailEnd, |
| 430 | CE: Satisfaction.Details.end()); |
| 431 | } |
| 432 | if (Out.isUnset()) |
| 433 | Out = Res; |
| 434 | else if (!Res.isUnset()) { |
| 435 | Out = BinaryOperator::Create( |
| 436 | C: S.Context, lhs: Out.get(), rhs: Res.get(), opc: FE->getOperator(), ResTy: S.Context.BoolTy, |
| 437 | VK: VK_PRValue, OK: OK_Ordinary, opLoc: FE->getBeginLoc(), FPFeatures: FPOptionsOverride{}); |
| 438 | } |
| 439 | if (Conjunction != IsRHSSatisfied) |
| 440 | return Out; |
| 441 | } |
| 442 | |
| 443 | if (FE->isRightFold() && FE->getInit()) { |
| 444 | ExprResult Res = calculateConstraintSatisfaction( |
| 445 | S, ConstraintExpr: FE->getInit(), Template, TemplateNameLoc, MLTAL, Satisfaction); |
| 446 | if (Out.isInvalid()) |
| 447 | return ExprError(); |
| 448 | |
| 449 | if (Out.isUnset()) |
| 450 | Out = Res; |
| 451 | else if (!Res.isUnset()) { |
| 452 | Out = BinaryOperator::Create( |
| 453 | C: S.Context, lhs: Out.get(), rhs: Res.get(), opc: FE->getOperator(), ResTy: S.Context.BoolTy, |
| 454 | VK: VK_PRValue, OK: OK_Ordinary, opLoc: FE->getBeginLoc(), FPFeatures: FPOptionsOverride{}); |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | if (Out.isUnset()) { |
| 459 | Satisfaction.IsSatisfied = Conjunction; |
| 460 | Out = S.BuildEmptyCXXFoldExpr(EllipsisLoc: FE->getBeginLoc(), Operator: FE->getOperator()); |
| 461 | } |
| 462 | return Out; |
| 463 | } |
| 464 | |
| 465 | static ExprResult calculateConstraintSatisfaction( |
| 466 | Sema &S, const Expr *ConstraintExpr, const NamedDecl *Template, |
| 467 | SourceLocation TemplateNameLoc, const MultiLevelTemplateArgumentList &MLTAL, |
| 468 | ConstraintSatisfaction &Satisfaction) { |
| 469 | ConstraintExpr = ConstraintExpr->IgnoreParenImpCasts(); |
| 470 | |
| 471 | if (LogicalBinOp BO = ConstraintExpr) |
| 472 | return calculateConstraintSatisfaction( |
| 473 | S, LHS: BO.getLHS(), Op: BO.getOp(), RHS: BO.getRHS(), Template, TemplateNameLoc, |
| 474 | MLTAL, Satisfaction); |
| 475 | |
| 476 | if (auto *C = dyn_cast<ExprWithCleanups>(Val: ConstraintExpr)) { |
| 477 | // These aren't evaluated, so we don't care about cleanups, so we can just |
| 478 | // evaluate these as if the cleanups didn't exist. |
| 479 | return calculateConstraintSatisfaction( |
| 480 | S, ConstraintExpr: C->getSubExpr(), Template, TemplateNameLoc, MLTAL, Satisfaction); |
| 481 | } |
| 482 | |
| 483 | if (auto *FE = dyn_cast<CXXFoldExpr>(Val: ConstraintExpr); |
| 484 | FE && S.getLangOpts().CPlusPlus26 && |
| 485 | (FE->getOperator() == BinaryOperatorKind::BO_LAnd || |
| 486 | FE->getOperator() == BinaryOperatorKind::BO_LOr)) { |
| 487 | return calculateConstraintSatisfaction(S, FE, Template, TemplateNameLoc, |
| 488 | MLTAL, Satisfaction); |
| 489 | } |
| 490 | |
| 491 | // FIXME: We should not treat ConceptSpecializationExpr as atomic constraints. |
| 492 | |
| 493 | // An atomic constraint expression |
| 494 | ExprResult SubstitutedAtomicExpr = EvaluateAtomicConstraint( |
| 495 | S, AtomicExpr: ConstraintExpr, Template, TemplateNameLoc, MLTAL, Satisfaction); |
| 496 | |
| 497 | if (SubstitutedAtomicExpr.isInvalid()) |
| 498 | return ExprError(); |
| 499 | |
| 500 | if (!SubstitutedAtomicExpr.isUsable()) |
| 501 | // Evaluator has decided satisfaction without yielding an expression. |
| 502 | return ExprEmpty(); |
| 503 | |
| 504 | // We don't have the ability to evaluate this, since it contains a |
| 505 | // RecoveryExpr, so we want to fail overload resolution. Otherwise, |
| 506 | // we'd potentially pick up a different overload, and cause confusing |
| 507 | // diagnostics. SO, add a failure detail that will cause us to make this |
| 508 | // overload set not viable. |
| 509 | if (SubstitutedAtomicExpr.get()->containsErrors()) { |
| 510 | Satisfaction.IsSatisfied = false; |
| 511 | Satisfaction.ContainsErrors = true; |
| 512 | |
| 513 | PartialDiagnostic Msg = S.PDiag(DiagID: diag::note_constraint_references_error); |
| 514 | SmallString<128> DiagString; |
| 515 | DiagString = ": " ; |
| 516 | Msg.EmitToString(Diags&: S.getDiagnostics(), Buf&: DiagString); |
| 517 | unsigned MessageSize = DiagString.size(); |
| 518 | char *Mem = new (S.Context) char[MessageSize]; |
| 519 | memcpy(dest: Mem, src: DiagString.c_str(), n: MessageSize); |
| 520 | Satisfaction.Details.emplace_back( |
| 521 | Args: new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{ |
| 522 | SubstitutedAtomicExpr.get()->getBeginLoc(), |
| 523 | StringRef(Mem, MessageSize)}); |
| 524 | return SubstitutedAtomicExpr; |
| 525 | } |
| 526 | |
| 527 | EnterExpressionEvaluationContext ConstantEvaluated( |
| 528 | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| 529 | SmallVector<PartialDiagnosticAt, 2> EvaluationDiags; |
| 530 | Expr::EvalResult EvalResult; |
| 531 | EvalResult.Diag = &EvaluationDiags; |
| 532 | if (!SubstitutedAtomicExpr.get()->EvaluateAsConstantExpr(Result&: EvalResult, |
| 533 | Ctx: S.Context) || |
| 534 | !EvaluationDiags.empty()) { |
| 535 | // C++2a [temp.constr.atomic]p1 |
| 536 | // ...E shall be a constant expression of type bool. |
| 537 | S.Diag(Loc: SubstitutedAtomicExpr.get()->getBeginLoc(), |
| 538 | DiagID: diag::err_non_constant_constraint_expression) |
| 539 | << SubstitutedAtomicExpr.get()->getSourceRange(); |
| 540 | for (const PartialDiagnosticAt &PDiag : EvaluationDiags) |
| 541 | S.Diag(Loc: PDiag.first, PD: PDiag.second); |
| 542 | return ExprError(); |
| 543 | } |
| 544 | |
| 545 | assert(EvalResult.Val.isInt() && |
| 546 | "evaluating bool expression didn't produce int" ); |
| 547 | Satisfaction.IsSatisfied = EvalResult.Val.getInt().getBoolValue(); |
| 548 | if (!Satisfaction.IsSatisfied) |
| 549 | Satisfaction.Details.emplace_back(Args: SubstitutedAtomicExpr.get()); |
| 550 | |
| 551 | return SubstitutedAtomicExpr; |
| 552 | } |
| 553 | |
| 554 | static ExprResult calculateConstraintSatisfaction( |
| 555 | Sema &S, const NamedDecl *Template, SourceLocation TemplateNameLoc, |
| 556 | const MultiLevelTemplateArgumentList &MLTAL, const Expr *ConstraintExpr, |
| 557 | ConstraintSatisfaction &Satisfaction) { |
| 558 | |
| 559 | return calculateConstraintSatisfaction(S, ConstraintExpr, Template, |
| 560 | TemplateNameLoc, MLTAL, Satisfaction); |
| 561 | } |
| 562 | |
| 563 | static bool CheckConstraintSatisfaction( |
| 564 | Sema &S, const NamedDecl *Template, |
| 565 | ArrayRef<AssociatedConstraint> AssociatedConstraints, |
| 566 | llvm::SmallVectorImpl<Expr *> &Converted, |
| 567 | const MultiLevelTemplateArgumentList &TemplateArgsLists, |
| 568 | SourceRange TemplateIDRange, ConstraintSatisfaction &Satisfaction) { |
| 569 | if (AssociatedConstraints.empty()) { |
| 570 | Satisfaction.IsSatisfied = true; |
| 571 | return false; |
| 572 | } |
| 573 | |
| 574 | if (TemplateArgsLists.isAnyArgInstantiationDependent()) { |
| 575 | // No need to check satisfaction for dependent constraint expressions. |
| 576 | Satisfaction.IsSatisfied = true; |
| 577 | return false; |
| 578 | } |
| 579 | |
| 580 | ArrayRef<TemplateArgument> TemplateArgs = |
| 581 | TemplateArgsLists.getNumSubstitutedLevels() > 0 |
| 582 | ? TemplateArgsLists.getOutermost() |
| 583 | : ArrayRef<TemplateArgument>{}; |
| 584 | Sema::InstantiatingTemplate Inst(S, TemplateIDRange.getBegin(), |
| 585 | Sema::InstantiatingTemplate::ConstraintsCheck{}, |
| 586 | const_cast<NamedDecl *>(Template), TemplateArgs, TemplateIDRange); |
| 587 | if (Inst.isInvalid()) |
| 588 | return true; |
| 589 | |
| 590 | for (const AssociatedConstraint &AC : AssociatedConstraints) { |
| 591 | Sema::ArgPackSubstIndexRAII _(S, AC.ArgPackSubstIndex); |
| 592 | ExprResult Res = calculateConstraintSatisfaction( |
| 593 | S, Template, TemplateNameLoc: TemplateIDRange.getBegin(), MLTAL: TemplateArgsLists, |
| 594 | ConstraintExpr: AC.ConstraintExpr, Satisfaction); |
| 595 | if (Res.isInvalid()) |
| 596 | return true; |
| 597 | |
| 598 | Converted.push_back(Elt: Res.get()); |
| 599 | if (!Satisfaction.IsSatisfied) { |
| 600 | // Backfill the 'converted' list with nulls so we can keep the Converted |
| 601 | // and unconverted lists in sync. |
| 602 | Converted.append(NumInputs: AssociatedConstraints.size() - Converted.size(), |
| 603 | Elt: nullptr); |
| 604 | // [temp.constr.op] p2 |
| 605 | // [...] To determine if a conjunction is satisfied, the satisfaction |
| 606 | // of the first operand is checked. If that is not satisfied, the |
| 607 | // conjunction is not satisfied. [...] |
| 608 | return false; |
| 609 | } |
| 610 | } |
| 611 | return false; |
| 612 | } |
| 613 | |
| 614 | bool Sema::CheckConstraintSatisfaction( |
| 615 | const NamedDecl *Template, |
| 616 | ArrayRef<AssociatedConstraint> AssociatedConstraints, |
| 617 | llvm::SmallVectorImpl<Expr *> &ConvertedConstraints, |
| 618 | const MultiLevelTemplateArgumentList &TemplateArgsLists, |
| 619 | SourceRange TemplateIDRange, ConstraintSatisfaction &OutSatisfaction) { |
| 620 | if (AssociatedConstraints.empty()) { |
| 621 | OutSatisfaction.IsSatisfied = true; |
| 622 | return false; |
| 623 | } |
| 624 | if (!Template) { |
| 625 | return ::CheckConstraintSatisfaction( |
| 626 | S&: *this, Template: nullptr, AssociatedConstraints, Converted&: ConvertedConstraints, |
| 627 | TemplateArgsLists, TemplateIDRange, Satisfaction&: OutSatisfaction); |
| 628 | } |
| 629 | // Invalid templates could make their way here. Substituting them could result |
| 630 | // in dependent expressions. |
| 631 | if (Template->isInvalidDecl()) { |
| 632 | OutSatisfaction.IsSatisfied = false; |
| 633 | return true; |
| 634 | } |
| 635 | |
| 636 | // A list of the template argument list flattened in a predictible manner for |
| 637 | // the purposes of caching. The ConstraintSatisfaction type is in AST so it |
| 638 | // has no access to the MultiLevelTemplateArgumentList, so this has to happen |
| 639 | // here. |
| 640 | llvm::SmallVector<TemplateArgument, 4> FlattenedArgs; |
| 641 | for (auto List : TemplateArgsLists) |
| 642 | llvm::append_range(C&: FlattenedArgs, R&: List.Args); |
| 643 | |
| 644 | llvm::FoldingSetNodeID ID; |
| 645 | ConstraintSatisfaction::Profile(ID, C: Context, ConstraintOwner: Template, TemplateArgs: FlattenedArgs); |
| 646 | void *InsertPos; |
| 647 | if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) { |
| 648 | OutSatisfaction = *Cached; |
| 649 | return false; |
| 650 | } |
| 651 | |
| 652 | auto Satisfaction = |
| 653 | std::make_unique<ConstraintSatisfaction>(args&: Template, args&: FlattenedArgs); |
| 654 | if (::CheckConstraintSatisfaction(S&: *this, Template, AssociatedConstraints, |
| 655 | Converted&: ConvertedConstraints, TemplateArgsLists, |
| 656 | TemplateIDRange, Satisfaction&: *Satisfaction)) { |
| 657 | OutSatisfaction = *Satisfaction; |
| 658 | return true; |
| 659 | } |
| 660 | |
| 661 | if (auto *Cached = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos)) { |
| 662 | // The evaluation of this constraint resulted in us trying to re-evaluate it |
| 663 | // recursively. This isn't really possible, except we try to form a |
| 664 | // RecoveryExpr as a part of the evaluation. If this is the case, just |
| 665 | // return the 'cached' version (which will have the same result), and save |
| 666 | // ourselves the extra-insert. If it ever becomes possible to legitimately |
| 667 | // recursively check a constraint, we should skip checking the 'inner' one |
| 668 | // above, and replace the cached version with this one, as it would be more |
| 669 | // specific. |
| 670 | OutSatisfaction = *Cached; |
| 671 | return false; |
| 672 | } |
| 673 | |
| 674 | // Else we can simply add this satisfaction to the list. |
| 675 | OutSatisfaction = *Satisfaction; |
| 676 | // We cannot use InsertPos here because CheckConstraintSatisfaction might have |
| 677 | // invalidated it. |
| 678 | // Note that entries of SatisfactionCache are deleted in Sema's destructor. |
| 679 | SatisfactionCache.InsertNode(N: Satisfaction.release()); |
| 680 | return false; |
| 681 | } |
| 682 | |
| 683 | bool Sema::CheckConstraintSatisfaction( |
| 684 | const ConceptSpecializationExpr *ConstraintExpr, |
| 685 | ConstraintSatisfaction &Satisfaction) { |
| 686 | |
| 687 | MultiLevelTemplateArgumentList MLTAL(ConstraintExpr->getNamedConcept(), |
| 688 | ConstraintExpr->getTemplateArguments(), |
| 689 | true); |
| 690 | |
| 691 | return calculateConstraintSatisfaction( |
| 692 | S&: *this, ConstraintExpr, Template: ConstraintExpr->getNamedConcept(), |
| 693 | TemplateNameLoc: ConstraintExpr->getConceptNameLoc(), MLTAL, Satisfaction) |
| 694 | .isInvalid(); |
| 695 | } |
| 696 | |
| 697 | bool Sema::SetupConstraintScope( |
| 698 | FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs, |
| 699 | const MultiLevelTemplateArgumentList &MLTAL, |
| 700 | LocalInstantiationScope &Scope) { |
| 701 | assert(!isLambdaCallOperator(FD) && |
| 702 | "Use LambdaScopeForCallOperatorInstantiationRAII to handle lambda " |
| 703 | "instantiations" ); |
| 704 | if (FD->isTemplateInstantiation() && FD->getPrimaryTemplate()) { |
| 705 | FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate(); |
| 706 | InstantiatingTemplate Inst( |
| 707 | *this, FD->getPointOfInstantiation(), |
| 708 | Sema::InstantiatingTemplate::ConstraintsCheck{}, PrimaryTemplate, |
| 709 | TemplateArgs ? *TemplateArgs : ArrayRef<TemplateArgument>{}, |
| 710 | SourceRange()); |
| 711 | if (Inst.isInvalid()) |
| 712 | return true; |
| 713 | |
| 714 | // addInstantiatedParametersToScope creates a map of 'uninstantiated' to |
| 715 | // 'instantiated' parameters and adds it to the context. For the case where |
| 716 | // this function is a template being instantiated NOW, we also need to add |
| 717 | // the list of current template arguments to the list so that they also can |
| 718 | // be picked out of the map. |
| 719 | if (auto *SpecArgs = FD->getTemplateSpecializationArgs()) { |
| 720 | MultiLevelTemplateArgumentList JustTemplArgs(FD, SpecArgs->asArray(), |
| 721 | /*Final=*/false); |
| 722 | if (addInstantiatedParametersToScope( |
| 723 | Function: FD, PatternDecl: PrimaryTemplate->getTemplatedDecl(), Scope, TemplateArgs: JustTemplArgs)) |
| 724 | return true; |
| 725 | } |
| 726 | |
| 727 | // If this is a member function, make sure we get the parameters that |
| 728 | // reference the original primary template. |
| 729 | if (FunctionTemplateDecl *FromMemTempl = |
| 730 | PrimaryTemplate->getInstantiatedFromMemberTemplate()) { |
| 731 | if (addInstantiatedParametersToScope(Function: FD, PatternDecl: FromMemTempl->getTemplatedDecl(), |
| 732 | Scope, TemplateArgs: MLTAL)) |
| 733 | return true; |
| 734 | } |
| 735 | |
| 736 | return false; |
| 737 | } |
| 738 | |
| 739 | if (FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization || |
| 740 | FD->getTemplatedKind() == FunctionDecl::TK_DependentNonTemplate) { |
| 741 | FunctionDecl *InstantiatedFrom = |
| 742 | FD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization |
| 743 | ? FD->getInstantiatedFromMemberFunction() |
| 744 | : FD->getInstantiatedFromDecl(); |
| 745 | |
| 746 | InstantiatingTemplate Inst( |
| 747 | *this, FD->getPointOfInstantiation(), |
| 748 | Sema::InstantiatingTemplate::ConstraintsCheck{}, InstantiatedFrom, |
| 749 | TemplateArgs ? *TemplateArgs : ArrayRef<TemplateArgument>{}, |
| 750 | SourceRange()); |
| 751 | if (Inst.isInvalid()) |
| 752 | return true; |
| 753 | |
| 754 | // Case where this was not a template, but instantiated as a |
| 755 | // child-function. |
| 756 | if (addInstantiatedParametersToScope(Function: FD, PatternDecl: InstantiatedFrom, Scope, TemplateArgs: MLTAL)) |
| 757 | return true; |
| 758 | } |
| 759 | |
| 760 | return false; |
| 761 | } |
| 762 | |
| 763 | // This function collects all of the template arguments for the purposes of |
| 764 | // constraint-instantiation and checking. |
| 765 | std::optional<MultiLevelTemplateArgumentList> |
| 766 | Sema::SetupConstraintCheckingTemplateArgumentsAndScope( |
| 767 | FunctionDecl *FD, std::optional<ArrayRef<TemplateArgument>> TemplateArgs, |
| 768 | LocalInstantiationScope &Scope) { |
| 769 | MultiLevelTemplateArgumentList MLTAL; |
| 770 | |
| 771 | // Collect the list of template arguments relative to the 'primary' template. |
| 772 | // We need the entire list, since the constraint is completely uninstantiated |
| 773 | // at this point. |
| 774 | MLTAL = |
| 775 | getTemplateInstantiationArgs(D: FD, DC: FD->getLexicalDeclContext(), |
| 776 | /*Final=*/false, /*Innermost=*/std::nullopt, |
| 777 | /*RelativeToPrimary=*/true, |
| 778 | /*Pattern=*/nullptr, |
| 779 | /*ForConstraintInstantiation=*/true); |
| 780 | // Lambdas are handled by LambdaScopeForCallOperatorInstantiationRAII. |
| 781 | if (isLambdaCallOperator(DC: FD)) |
| 782 | return MLTAL; |
| 783 | if (SetupConstraintScope(FD, TemplateArgs, MLTAL, Scope)) |
| 784 | return std::nullopt; |
| 785 | |
| 786 | return MLTAL; |
| 787 | } |
| 788 | |
| 789 | bool Sema::CheckFunctionConstraints(const FunctionDecl *FD, |
| 790 | ConstraintSatisfaction &Satisfaction, |
| 791 | SourceLocation UsageLoc, |
| 792 | bool ForOverloadResolution) { |
| 793 | // Don't check constraints if the function is dependent. Also don't check if |
| 794 | // this is a function template specialization, as the call to |
| 795 | // CheckFunctionTemplateConstraints after this will check it |
| 796 | // better. |
| 797 | if (FD->isDependentContext() || |
| 798 | FD->getTemplatedKind() == |
| 799 | FunctionDecl::TK_FunctionTemplateSpecialization) { |
| 800 | Satisfaction.IsSatisfied = true; |
| 801 | return false; |
| 802 | } |
| 803 | |
| 804 | // A lambda conversion operator has the same constraints as the call operator |
| 805 | // and constraints checking relies on whether we are in a lambda call operator |
| 806 | // (and may refer to its parameters), so check the call operator instead. |
| 807 | // Note that the declarations outside of the lambda should also be |
| 808 | // considered. Turning on the 'ForOverloadResolution' flag results in the |
| 809 | // LocalInstantiationScope not looking into its parents, but we can still |
| 810 | // access Decls from the parents while building a lambda RAII scope later. |
| 811 | if (const auto *MD = dyn_cast<CXXConversionDecl>(Val: FD); |
| 812 | MD && isLambdaConversionOperator(C: const_cast<CXXConversionDecl *>(MD))) |
| 813 | return CheckFunctionConstraints(FD: MD->getParent()->getLambdaCallOperator(), |
| 814 | Satisfaction, UsageLoc, |
| 815 | /*ShouldAddDeclsFromParentScope=*/ForOverloadResolution: true); |
| 816 | |
| 817 | DeclContext *CtxToSave = const_cast<FunctionDecl *>(FD); |
| 818 | |
| 819 | while (isLambdaCallOperator(DC: CtxToSave) || FD->isTransparentContext()) { |
| 820 | if (isLambdaCallOperator(DC: CtxToSave)) |
| 821 | CtxToSave = CtxToSave->getParent()->getParent(); |
| 822 | else |
| 823 | CtxToSave = CtxToSave->getNonTransparentContext(); |
| 824 | } |
| 825 | |
| 826 | ContextRAII SavedContext{*this, CtxToSave}; |
| 827 | LocalInstantiationScope Scope(*this, !ForOverloadResolution); |
| 828 | std::optional<MultiLevelTemplateArgumentList> MLTAL = |
| 829 | SetupConstraintCheckingTemplateArgumentsAndScope( |
| 830 | FD: const_cast<FunctionDecl *>(FD), TemplateArgs: {}, Scope); |
| 831 | |
| 832 | if (!MLTAL) |
| 833 | return true; |
| 834 | |
| 835 | Qualifiers ThisQuals; |
| 836 | CXXRecordDecl *Record = nullptr; |
| 837 | if (auto *Method = dyn_cast<CXXMethodDecl>(Val: FD)) { |
| 838 | ThisQuals = Method->getMethodQualifiers(); |
| 839 | Record = const_cast<CXXRecordDecl *>(Method->getParent()); |
| 840 | } |
| 841 | CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr); |
| 842 | |
| 843 | LambdaScopeForCallOperatorInstantiationRAII LambdaScope( |
| 844 | *this, const_cast<FunctionDecl *>(FD), *MLTAL, Scope, |
| 845 | ForOverloadResolution); |
| 846 | |
| 847 | return CheckConstraintSatisfaction( |
| 848 | Template: FD, AssociatedConstraints: FD->getTrailingRequiresClause(), TemplateArgLists: *MLTAL, |
| 849 | TemplateIDRange: SourceRange(UsageLoc.isValid() ? UsageLoc : FD->getLocation()), |
| 850 | Satisfaction); |
| 851 | } |
| 852 | |
| 853 | |
| 854 | // Figure out the to-translation-unit depth for this function declaration for |
| 855 | // the purpose of seeing if they differ by constraints. This isn't the same as |
| 856 | // getTemplateDepth, because it includes already instantiated parents. |
| 857 | static unsigned |
| 858 | CalculateTemplateDepthForConstraints(Sema &S, const NamedDecl *ND, |
| 859 | bool SkipForSpecialization = false) { |
| 860 | MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs( |
| 861 | D: ND, DC: ND->getLexicalDeclContext(), /*Final=*/false, |
| 862 | /*Innermost=*/std::nullopt, |
| 863 | /*RelativeToPrimary=*/true, |
| 864 | /*Pattern=*/nullptr, |
| 865 | /*ForConstraintInstantiation=*/true, SkipForSpecialization); |
| 866 | return MLTAL.getNumLevels(); |
| 867 | } |
| 868 | |
| 869 | namespace { |
| 870 | class AdjustConstraintDepth : public TreeTransform<AdjustConstraintDepth> { |
| 871 | unsigned TemplateDepth = 0; |
| 872 | public: |
| 873 | using inherited = TreeTransform<AdjustConstraintDepth>; |
| 874 | AdjustConstraintDepth(Sema &SemaRef, unsigned TemplateDepth) |
| 875 | : inherited(SemaRef), TemplateDepth(TemplateDepth) {} |
| 876 | |
| 877 | using inherited::TransformTemplateTypeParmType; |
| 878 | QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB, |
| 879 | TemplateTypeParmTypeLoc TL, bool) { |
| 880 | const TemplateTypeParmType *T = TL.getTypePtr(); |
| 881 | |
| 882 | TemplateTypeParmDecl *NewTTPDecl = nullptr; |
| 883 | if (TemplateTypeParmDecl *OldTTPDecl = T->getDecl()) |
| 884 | NewTTPDecl = cast_or_null<TemplateTypeParmDecl>( |
| 885 | Val: TransformDecl(Loc: TL.getNameLoc(), D: OldTTPDecl)); |
| 886 | |
| 887 | QualType Result = getSema().Context.getTemplateTypeParmType( |
| 888 | Depth: T->getDepth() + TemplateDepth, Index: T->getIndex(), ParameterPack: T->isParameterPack(), |
| 889 | ParmDecl: NewTTPDecl); |
| 890 | TemplateTypeParmTypeLoc NewTL = TLB.push<TemplateTypeParmTypeLoc>(T: Result); |
| 891 | NewTL.setNameLoc(TL.getNameLoc()); |
| 892 | return Result; |
| 893 | } |
| 894 | }; |
| 895 | } // namespace |
| 896 | |
| 897 | static const Expr *SubstituteConstraintExpressionWithoutSatisfaction( |
| 898 | Sema &S, const Sema::TemplateCompareNewDeclInfo &DeclInfo, |
| 899 | const Expr *ConstrExpr) { |
| 900 | MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs( |
| 901 | D: DeclInfo.getDecl(), DC: DeclInfo.getLexicalDeclContext(), /*Final=*/false, |
| 902 | /*Innermost=*/std::nullopt, |
| 903 | /*RelativeToPrimary=*/true, |
| 904 | /*Pattern=*/nullptr, /*ForConstraintInstantiation=*/true, |
| 905 | /*SkipForSpecialization*/ false); |
| 906 | |
| 907 | if (MLTAL.getNumSubstitutedLevels() == 0) |
| 908 | return ConstrExpr; |
| 909 | |
| 910 | Sema::SFINAETrap SFINAE(S); |
| 911 | |
| 912 | Sema::InstantiatingTemplate Inst( |
| 913 | S, DeclInfo.getLocation(), |
| 914 | Sema::InstantiatingTemplate::ConstraintNormalization{}, |
| 915 | const_cast<NamedDecl *>(DeclInfo.getDecl()), SourceRange{}); |
| 916 | if (Inst.isInvalid()) |
| 917 | return nullptr; |
| 918 | |
| 919 | // Set up a dummy 'instantiation' scope in the case of reference to function |
| 920 | // parameters that the surrounding function hasn't been instantiated yet. Note |
| 921 | // this may happen while we're comparing two templates' constraint |
| 922 | // equivalence. |
| 923 | std::optional<LocalInstantiationScope> ScopeForParameters; |
| 924 | if (const NamedDecl *ND = DeclInfo.getDecl(); |
| 925 | ND && ND->isFunctionOrFunctionTemplate()) { |
| 926 | ScopeForParameters.emplace(args&: S, /*CombineWithOuterScope=*/args: true); |
| 927 | const FunctionDecl *FD = ND->getAsFunction(); |
| 928 | for (auto *PVD : FD->parameters()) { |
| 929 | if (!PVD->isParameterPack()) { |
| 930 | ScopeForParameters->InstantiatedLocal(D: PVD, Inst: PVD); |
| 931 | continue; |
| 932 | } |
| 933 | // This is hacky: we're mapping the parameter pack to a size-of-1 argument |
| 934 | // to avoid building SubstTemplateTypeParmPackTypes for |
| 935 | // PackExpansionTypes. The SubstTemplateTypeParmPackType node would |
| 936 | // otherwise reference the AssociatedDecl of the template arguments, which |
| 937 | // is, in this case, the template declaration. |
| 938 | // |
| 939 | // However, as we are in the process of comparing potential |
| 940 | // re-declarations, the canonical declaration is the declaration itself at |
| 941 | // this point. So if we didn't expand these packs, we would end up with an |
| 942 | // incorrect profile difference because we will be profiling the |
| 943 | // canonical types! |
| 944 | // |
| 945 | // FIXME: Improve the "no-transform" machinery in FindInstantiatedDecl so |
| 946 | // that we can eliminate the Scope in the cases where the declarations are |
| 947 | // not necessarily instantiated. It would also benefit the noexcept |
| 948 | // specifier comparison. |
| 949 | ScopeForParameters->MakeInstantiatedLocalArgPack(D: PVD); |
| 950 | ScopeForParameters->InstantiatedLocalPackArg(D: PVD, Inst: PVD); |
| 951 | } |
| 952 | } |
| 953 | |
| 954 | std::optional<Sema::CXXThisScopeRAII> ThisScope; |
| 955 | |
| 956 | // See TreeTransform::RebuildTemplateSpecializationType. A context scope is |
| 957 | // essential for having an injected class as the canonical type for a template |
| 958 | // specialization type at the rebuilding stage. This guarantees that, for |
| 959 | // out-of-line definitions, injected class name types and their equivalent |
| 960 | // template specializations can be profiled to the same value, which makes it |
| 961 | // possible that e.g. constraints involving C<Class<T>> and C<Class> are |
| 962 | // perceived identical. |
| 963 | std::optional<Sema::ContextRAII> ContextScope; |
| 964 | const DeclContext *DC = [&] { |
| 965 | if (!DeclInfo.getDecl()) |
| 966 | return DeclInfo.getDeclContext(); |
| 967 | return DeclInfo.getDecl()->getFriendObjectKind() |
| 968 | ? DeclInfo.getLexicalDeclContext() |
| 969 | : DeclInfo.getDeclContext(); |
| 970 | }(); |
| 971 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: DC)) { |
| 972 | ThisScope.emplace(args&: S, args: const_cast<CXXRecordDecl *>(RD), args: Qualifiers()); |
| 973 | ContextScope.emplace(args&: S, args: const_cast<DeclContext *>(cast<DeclContext>(Val: RD)), |
| 974 | /*NewThisContext=*/args: false); |
| 975 | } |
| 976 | EnterExpressionEvaluationContext UnevaluatedContext( |
| 977 | S, Sema::ExpressionEvaluationContext::Unevaluated, |
| 978 | Sema::ReuseLambdaContextDecl); |
| 979 | ExprResult SubstConstr = S.SubstConstraintExprWithoutSatisfaction( |
| 980 | E: const_cast<clang::Expr *>(ConstrExpr), TemplateArgs: MLTAL); |
| 981 | if (SFINAE.hasErrorOccurred() || !SubstConstr.isUsable()) |
| 982 | return nullptr; |
| 983 | return SubstConstr.get(); |
| 984 | } |
| 985 | |
| 986 | bool Sema::AreConstraintExpressionsEqual(const NamedDecl *Old, |
| 987 | const Expr *OldConstr, |
| 988 | const TemplateCompareNewDeclInfo &New, |
| 989 | const Expr *NewConstr) { |
| 990 | if (OldConstr == NewConstr) |
| 991 | return true; |
| 992 | // C++ [temp.constr.decl]p4 |
| 993 | if (Old && !New.isInvalid() && !New.ContainsDecl(ND: Old) && |
| 994 | Old->getLexicalDeclContext() != New.getLexicalDeclContext()) { |
| 995 | if (const Expr *SubstConstr = |
| 996 | SubstituteConstraintExpressionWithoutSatisfaction(S&: *this, DeclInfo: Old, |
| 997 | ConstrExpr: OldConstr)) |
| 998 | OldConstr = SubstConstr; |
| 999 | else |
| 1000 | return false; |
| 1001 | if (const Expr *SubstConstr = |
| 1002 | SubstituteConstraintExpressionWithoutSatisfaction(S&: *this, DeclInfo: New, |
| 1003 | ConstrExpr: NewConstr)) |
| 1004 | NewConstr = SubstConstr; |
| 1005 | else |
| 1006 | return false; |
| 1007 | } |
| 1008 | |
| 1009 | llvm::FoldingSetNodeID ID1, ID2; |
| 1010 | OldConstr->Profile(ID&: ID1, Context, /*Canonical=*/true); |
| 1011 | NewConstr->Profile(ID&: ID2, Context, /*Canonical=*/true); |
| 1012 | return ID1 == ID2; |
| 1013 | } |
| 1014 | |
| 1015 | bool Sema::FriendConstraintsDependOnEnclosingTemplate(const FunctionDecl *FD) { |
| 1016 | assert(FD->getFriendObjectKind() && "Must be a friend!" ); |
| 1017 | |
| 1018 | // The logic for non-templates is handled in ASTContext::isSameEntity, so we |
| 1019 | // don't have to bother checking 'DependsOnEnclosingTemplate' for a |
| 1020 | // non-function-template. |
| 1021 | assert(FD->getDescribedFunctionTemplate() && |
| 1022 | "Non-function templates don't need to be checked" ); |
| 1023 | |
| 1024 | SmallVector<AssociatedConstraint, 3> ACs; |
| 1025 | FD->getDescribedFunctionTemplate()->getAssociatedConstraints(AC&: ACs); |
| 1026 | |
| 1027 | unsigned OldTemplateDepth = CalculateTemplateDepthForConstraints(S&: *this, ND: FD); |
| 1028 | for (const AssociatedConstraint &AC : ACs) |
| 1029 | if (ConstraintExpressionDependsOnEnclosingTemplate(Friend: FD, TemplateDepth: OldTemplateDepth, |
| 1030 | Constraint: AC.ConstraintExpr)) |
| 1031 | return true; |
| 1032 | |
| 1033 | return false; |
| 1034 | } |
| 1035 | |
| 1036 | bool Sema::EnsureTemplateArgumentListConstraints( |
| 1037 | TemplateDecl *TD, const MultiLevelTemplateArgumentList &TemplateArgsLists, |
| 1038 | SourceRange TemplateIDRange) { |
| 1039 | ConstraintSatisfaction Satisfaction; |
| 1040 | llvm::SmallVector<AssociatedConstraint, 3> AssociatedConstraints; |
| 1041 | TD->getAssociatedConstraints(AC&: AssociatedConstraints); |
| 1042 | if (CheckConstraintSatisfaction(Template: TD, AssociatedConstraints, TemplateArgLists: TemplateArgsLists, |
| 1043 | TemplateIDRange, Satisfaction)) |
| 1044 | return true; |
| 1045 | |
| 1046 | if (!Satisfaction.IsSatisfied) { |
| 1047 | SmallString<128> TemplateArgString; |
| 1048 | TemplateArgString = " " ; |
| 1049 | TemplateArgString += getTemplateArgumentBindingsText( |
| 1050 | Params: TD->getTemplateParameters(), Args: TemplateArgsLists.getInnermost().data(), |
| 1051 | NumArgs: TemplateArgsLists.getInnermost().size()); |
| 1052 | |
| 1053 | Diag(Loc: TemplateIDRange.getBegin(), |
| 1054 | DiagID: diag::err_template_arg_list_constraints_not_satisfied) |
| 1055 | << (int)getTemplateNameKindForDiagnostics(Name: TemplateName(TD)) << TD |
| 1056 | << TemplateArgString << TemplateIDRange; |
| 1057 | DiagnoseUnsatisfiedConstraint(Satisfaction); |
| 1058 | return true; |
| 1059 | } |
| 1060 | return false; |
| 1061 | } |
| 1062 | |
| 1063 | static bool CheckFunctionConstraintsWithoutInstantiation( |
| 1064 | Sema &SemaRef, SourceLocation PointOfInstantiation, |
| 1065 | FunctionTemplateDecl *Template, ArrayRef<TemplateArgument> TemplateArgs, |
| 1066 | ConstraintSatisfaction &Satisfaction) { |
| 1067 | SmallVector<AssociatedConstraint, 3> TemplateAC; |
| 1068 | Template->getAssociatedConstraints(AC&: TemplateAC); |
| 1069 | if (TemplateAC.empty()) { |
| 1070 | Satisfaction.IsSatisfied = true; |
| 1071 | return false; |
| 1072 | } |
| 1073 | |
| 1074 | LocalInstantiationScope Scope(SemaRef); |
| 1075 | |
| 1076 | FunctionDecl *FD = Template->getTemplatedDecl(); |
| 1077 | // Collect the list of template arguments relative to the 'primary' |
| 1078 | // template. We need the entire list, since the constraint is completely |
| 1079 | // uninstantiated at this point. |
| 1080 | |
| 1081 | // FIXME: Add TemplateArgs through the 'Innermost' parameter once |
| 1082 | // the refactoring of getTemplateInstantiationArgs() relands. |
| 1083 | MultiLevelTemplateArgumentList MLTAL; |
| 1084 | MLTAL.addOuterTemplateArguments(AssociatedDecl: Template, Args: {}, /*Final=*/false); |
| 1085 | SemaRef.getTemplateInstantiationArgs( |
| 1086 | Result&: MLTAL, /*D=*/FD, DC: FD, |
| 1087 | /*Final=*/false, /*Innermost=*/{}, /*RelativeToPrimary=*/true, |
| 1088 | /*Pattern=*/nullptr, /*ForConstraintInstantiation=*/true); |
| 1089 | MLTAL.replaceInnermostTemplateArguments(AssociatedDecl: Template, Args: TemplateArgs); |
| 1090 | |
| 1091 | Sema::ContextRAII SavedContext(SemaRef, FD); |
| 1092 | std::optional<Sema::CXXThisScopeRAII> ThisScope; |
| 1093 | if (auto *Method = dyn_cast<CXXMethodDecl>(Val: FD)) |
| 1094 | ThisScope.emplace(args&: SemaRef, /*Record=*/args: Method->getParent(), |
| 1095 | /*ThisQuals=*/args: Method->getMethodQualifiers()); |
| 1096 | return SemaRef.CheckConstraintSatisfaction( |
| 1097 | Template, AssociatedConstraints: TemplateAC, TemplateArgLists: MLTAL, TemplateIDRange: PointOfInstantiation, Satisfaction); |
| 1098 | } |
| 1099 | |
| 1100 | bool Sema::CheckFunctionTemplateConstraints( |
| 1101 | SourceLocation PointOfInstantiation, FunctionDecl *Decl, |
| 1102 | ArrayRef<TemplateArgument> TemplateArgs, |
| 1103 | ConstraintSatisfaction &Satisfaction) { |
| 1104 | // In most cases we're not going to have constraints, so check for that first. |
| 1105 | FunctionTemplateDecl *Template = Decl->getPrimaryTemplate(); |
| 1106 | |
| 1107 | if (!Template) |
| 1108 | return ::CheckFunctionConstraintsWithoutInstantiation( |
| 1109 | SemaRef&: *this, PointOfInstantiation, Template: Decl->getDescribedFunctionTemplate(), |
| 1110 | TemplateArgs, Satisfaction); |
| 1111 | |
| 1112 | // Note - code synthesis context for the constraints check is created |
| 1113 | // inside CheckConstraintsSatisfaction. |
| 1114 | SmallVector<AssociatedConstraint, 3> TemplateAC; |
| 1115 | Template->getAssociatedConstraints(AC&: TemplateAC); |
| 1116 | if (TemplateAC.empty()) { |
| 1117 | Satisfaction.IsSatisfied = true; |
| 1118 | return false; |
| 1119 | } |
| 1120 | |
| 1121 | // Enter the scope of this instantiation. We don't use |
| 1122 | // PushDeclContext because we don't have a scope. |
| 1123 | Sema::ContextRAII savedContext(*this, Decl); |
| 1124 | LocalInstantiationScope Scope(*this); |
| 1125 | |
| 1126 | std::optional<MultiLevelTemplateArgumentList> MLTAL = |
| 1127 | SetupConstraintCheckingTemplateArgumentsAndScope(FD: Decl, TemplateArgs, |
| 1128 | Scope); |
| 1129 | |
| 1130 | if (!MLTAL) |
| 1131 | return true; |
| 1132 | |
| 1133 | Qualifiers ThisQuals; |
| 1134 | CXXRecordDecl *Record = nullptr; |
| 1135 | if (auto *Method = dyn_cast<CXXMethodDecl>(Val: Decl)) { |
| 1136 | ThisQuals = Method->getMethodQualifiers(); |
| 1137 | Record = Method->getParent(); |
| 1138 | } |
| 1139 | |
| 1140 | CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr); |
| 1141 | LambdaScopeForCallOperatorInstantiationRAII LambdaScope( |
| 1142 | *this, const_cast<FunctionDecl *>(Decl), *MLTAL, Scope); |
| 1143 | |
| 1144 | return CheckConstraintSatisfaction(Template, AssociatedConstraints: TemplateAC, TemplateArgLists: *MLTAL, |
| 1145 | TemplateIDRange: PointOfInstantiation, Satisfaction); |
| 1146 | } |
| 1147 | |
| 1148 | static void diagnoseUnsatisfiedRequirement(Sema &S, |
| 1149 | concepts::ExprRequirement *Req, |
| 1150 | bool First) { |
| 1151 | assert(!Req->isSatisfied() |
| 1152 | && "Diagnose() can only be used on an unsatisfied requirement" ); |
| 1153 | switch (Req->getSatisfactionStatus()) { |
| 1154 | case concepts::ExprRequirement::SS_Dependent: |
| 1155 | llvm_unreachable("Diagnosing a dependent requirement" ); |
| 1156 | break; |
| 1157 | case concepts::ExprRequirement::SS_ExprSubstitutionFailure: { |
| 1158 | auto *SubstDiag = Req->getExprSubstitutionDiagnostic(); |
| 1159 | if (!SubstDiag->DiagMessage.empty()) |
| 1160 | S.Diag(Loc: SubstDiag->DiagLoc, |
| 1161 | DiagID: diag::note_expr_requirement_expr_substitution_error) |
| 1162 | << (int)First << SubstDiag->SubstitutedEntity |
| 1163 | << SubstDiag->DiagMessage; |
| 1164 | else |
| 1165 | S.Diag(Loc: SubstDiag->DiagLoc, |
| 1166 | DiagID: diag::note_expr_requirement_expr_unknown_substitution_error) |
| 1167 | << (int)First << SubstDiag->SubstitutedEntity; |
| 1168 | break; |
| 1169 | } |
| 1170 | case concepts::ExprRequirement::SS_NoexceptNotMet: |
| 1171 | S.Diag(Loc: Req->getNoexceptLoc(), |
| 1172 | DiagID: diag::note_expr_requirement_noexcept_not_met) |
| 1173 | << (int)First << Req->getExpr(); |
| 1174 | break; |
| 1175 | case concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure: { |
| 1176 | auto *SubstDiag = |
| 1177 | Req->getReturnTypeRequirement().getSubstitutionDiagnostic(); |
| 1178 | if (!SubstDiag->DiagMessage.empty()) |
| 1179 | S.Diag(Loc: SubstDiag->DiagLoc, |
| 1180 | DiagID: diag::note_expr_requirement_type_requirement_substitution_error) |
| 1181 | << (int)First << SubstDiag->SubstitutedEntity |
| 1182 | << SubstDiag->DiagMessage; |
| 1183 | else |
| 1184 | S.Diag(Loc: SubstDiag->DiagLoc, |
| 1185 | DiagID: diag::note_expr_requirement_type_requirement_unknown_substitution_error) |
| 1186 | << (int)First << SubstDiag->SubstitutedEntity; |
| 1187 | break; |
| 1188 | } |
| 1189 | case concepts::ExprRequirement::SS_ConstraintsNotSatisfied: { |
| 1190 | ConceptSpecializationExpr *ConstraintExpr = |
| 1191 | Req->getReturnTypeRequirementSubstitutedConstraintExpr(); |
| 1192 | if (ConstraintExpr->getTemplateArgsAsWritten()->NumTemplateArgs == 1) { |
| 1193 | // A simple case - expr type is the type being constrained and the concept |
| 1194 | // was not provided arguments. |
| 1195 | Expr *e = Req->getExpr(); |
| 1196 | S.Diag(Loc: e->getBeginLoc(), |
| 1197 | DiagID: diag::note_expr_requirement_constraints_not_satisfied_simple) |
| 1198 | << (int)First << S.Context.getReferenceQualifiedType(e) |
| 1199 | << ConstraintExpr->getNamedConcept(); |
| 1200 | } else { |
| 1201 | S.Diag(Loc: ConstraintExpr->getBeginLoc(), |
| 1202 | DiagID: diag::note_expr_requirement_constraints_not_satisfied) |
| 1203 | << (int)First << ConstraintExpr; |
| 1204 | } |
| 1205 | S.DiagnoseUnsatisfiedConstraint(Satisfaction: ConstraintExpr->getSatisfaction()); |
| 1206 | break; |
| 1207 | } |
| 1208 | case concepts::ExprRequirement::SS_Satisfied: |
| 1209 | llvm_unreachable("We checked this above" ); |
| 1210 | } |
| 1211 | } |
| 1212 | |
| 1213 | static void diagnoseUnsatisfiedRequirement(Sema &S, |
| 1214 | concepts::TypeRequirement *Req, |
| 1215 | bool First) { |
| 1216 | assert(!Req->isSatisfied() |
| 1217 | && "Diagnose() can only be used on an unsatisfied requirement" ); |
| 1218 | switch (Req->getSatisfactionStatus()) { |
| 1219 | case concepts::TypeRequirement::SS_Dependent: |
| 1220 | llvm_unreachable("Diagnosing a dependent requirement" ); |
| 1221 | return; |
| 1222 | case concepts::TypeRequirement::SS_SubstitutionFailure: { |
| 1223 | auto *SubstDiag = Req->getSubstitutionDiagnostic(); |
| 1224 | if (!SubstDiag->DiagMessage.empty()) |
| 1225 | S.Diag(Loc: SubstDiag->DiagLoc, |
| 1226 | DiagID: diag::note_type_requirement_substitution_error) << (int)First |
| 1227 | << SubstDiag->SubstitutedEntity << SubstDiag->DiagMessage; |
| 1228 | else |
| 1229 | S.Diag(Loc: SubstDiag->DiagLoc, |
| 1230 | DiagID: diag::note_type_requirement_unknown_substitution_error) |
| 1231 | << (int)First << SubstDiag->SubstitutedEntity; |
| 1232 | return; |
| 1233 | } |
| 1234 | default: |
| 1235 | llvm_unreachable("Unknown satisfaction status" ); |
| 1236 | return; |
| 1237 | } |
| 1238 | } |
| 1239 | static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S, |
| 1240 | Expr *SubstExpr, |
| 1241 | bool First = true); |
| 1242 | |
| 1243 | static void diagnoseUnsatisfiedRequirement(Sema &S, |
| 1244 | concepts::NestedRequirement *Req, |
| 1245 | bool First) { |
| 1246 | using SubstitutionDiagnostic = std::pair<SourceLocation, StringRef>; |
| 1247 | for (auto &Record : Req->getConstraintSatisfaction()) { |
| 1248 | if (auto *SubstDiag = Record.dyn_cast<SubstitutionDiagnostic *>()) |
| 1249 | S.Diag(Loc: SubstDiag->first, DiagID: diag::note_nested_requirement_substitution_error) |
| 1250 | << (int)First << Req->getInvalidConstraintEntity() |
| 1251 | << SubstDiag->second; |
| 1252 | else |
| 1253 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, SubstExpr: Record.dyn_cast<Expr *>(), |
| 1254 | First); |
| 1255 | First = false; |
| 1256 | } |
| 1257 | } |
| 1258 | |
| 1259 | static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S, |
| 1260 | Expr *SubstExpr, |
| 1261 | bool First) { |
| 1262 | SubstExpr = SubstExpr->IgnoreParenImpCasts(); |
| 1263 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: SubstExpr)) { |
| 1264 | switch (BO->getOpcode()) { |
| 1265 | // These two cases will in practice only be reached when using fold |
| 1266 | // expressions with || and &&, since otherwise the || and && will have been |
| 1267 | // broken down into atomic constraints during satisfaction checking. |
| 1268 | case BO_LOr: |
| 1269 | // Or evaluated to false - meaning both RHS and LHS evaluated to false. |
| 1270 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, SubstExpr: BO->getLHS(), First); |
| 1271 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, SubstExpr: BO->getRHS(), |
| 1272 | /*First=*/false); |
| 1273 | return; |
| 1274 | case BO_LAnd: { |
| 1275 | bool LHSSatisfied = |
| 1276 | BO->getLHS()->EvaluateKnownConstInt(Ctx: S.Context).getBoolValue(); |
| 1277 | if (LHSSatisfied) { |
| 1278 | // LHS is true, so RHS must be false. |
| 1279 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, SubstExpr: BO->getRHS(), First); |
| 1280 | return; |
| 1281 | } |
| 1282 | // LHS is false |
| 1283 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, SubstExpr: BO->getLHS(), First); |
| 1284 | |
| 1285 | // RHS might also be false |
| 1286 | bool RHSSatisfied = |
| 1287 | BO->getRHS()->EvaluateKnownConstInt(Ctx: S.Context).getBoolValue(); |
| 1288 | if (!RHSSatisfied) |
| 1289 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, SubstExpr: BO->getRHS(), |
| 1290 | /*First=*/false); |
| 1291 | return; |
| 1292 | } |
| 1293 | case BO_GE: |
| 1294 | case BO_LE: |
| 1295 | case BO_GT: |
| 1296 | case BO_LT: |
| 1297 | case BO_EQ: |
| 1298 | case BO_NE: |
| 1299 | if (BO->getLHS()->getType()->isIntegerType() && |
| 1300 | BO->getRHS()->getType()->isIntegerType()) { |
| 1301 | Expr::EvalResult SimplifiedLHS; |
| 1302 | Expr::EvalResult SimplifiedRHS; |
| 1303 | BO->getLHS()->EvaluateAsInt(Result&: SimplifiedLHS, Ctx: S.Context, |
| 1304 | AllowSideEffects: Expr::SE_NoSideEffects, |
| 1305 | /*InConstantContext=*/true); |
| 1306 | BO->getRHS()->EvaluateAsInt(Result&: SimplifiedRHS, Ctx: S.Context, |
| 1307 | AllowSideEffects: Expr::SE_NoSideEffects, |
| 1308 | /*InConstantContext=*/true); |
| 1309 | if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) { |
| 1310 | S.Diag(Loc: SubstExpr->getBeginLoc(), |
| 1311 | DiagID: diag::note_atomic_constraint_evaluated_to_false_elaborated) |
| 1312 | << (int)First << SubstExpr |
| 1313 | << toString(I: SimplifiedLHS.Val.getInt(), Radix: 10) |
| 1314 | << BinaryOperator::getOpcodeStr(Op: BO->getOpcode()) |
| 1315 | << toString(I: SimplifiedRHS.Val.getInt(), Radix: 10); |
| 1316 | return; |
| 1317 | } |
| 1318 | } |
| 1319 | break; |
| 1320 | |
| 1321 | default: |
| 1322 | break; |
| 1323 | } |
| 1324 | } else if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(Val: SubstExpr)) { |
| 1325 | if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) { |
| 1326 | S.Diag( |
| 1327 | Loc: CSE->getSourceRange().getBegin(), |
| 1328 | DiagID: diag:: |
| 1329 | note_single_arg_concept_specialization_constraint_evaluated_to_false) |
| 1330 | << (int)First |
| 1331 | << CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument() |
| 1332 | << CSE->getNamedConcept(); |
| 1333 | } else { |
| 1334 | S.Diag(Loc: SubstExpr->getSourceRange().getBegin(), |
| 1335 | DiagID: diag::note_concept_specialization_constraint_evaluated_to_false) |
| 1336 | << (int)First << CSE; |
| 1337 | } |
| 1338 | S.DiagnoseUnsatisfiedConstraint(Satisfaction: CSE->getSatisfaction()); |
| 1339 | return; |
| 1340 | } else if (auto *RE = dyn_cast<RequiresExpr>(Val: SubstExpr)) { |
| 1341 | // FIXME: RequiresExpr should store dependent diagnostics. |
| 1342 | for (concepts::Requirement *Req : RE->getRequirements()) |
| 1343 | if (!Req->isDependent() && !Req->isSatisfied()) { |
| 1344 | if (auto *E = dyn_cast<concepts::ExprRequirement>(Val: Req)) |
| 1345 | diagnoseUnsatisfiedRequirement(S, Req: E, First); |
| 1346 | else if (auto *T = dyn_cast<concepts::TypeRequirement>(Val: Req)) |
| 1347 | diagnoseUnsatisfiedRequirement(S, Req: T, First); |
| 1348 | else |
| 1349 | diagnoseUnsatisfiedRequirement( |
| 1350 | S, Req: cast<concepts::NestedRequirement>(Val: Req), First); |
| 1351 | break; |
| 1352 | } |
| 1353 | return; |
| 1354 | } else if (auto *TTE = dyn_cast<TypeTraitExpr>(Val: SubstExpr); |
| 1355 | TTE && TTE->getTrait() == clang::TypeTrait::BTT_IsDeducible) { |
| 1356 | assert(TTE->getNumArgs() == 2); |
| 1357 | S.Diag(Loc: SubstExpr->getSourceRange().getBegin(), |
| 1358 | DiagID: diag::note_is_deducible_constraint_evaluated_to_false) |
| 1359 | << TTE->getArg(I: 0)->getType() << TTE->getArg(I: 1)->getType(); |
| 1360 | return; |
| 1361 | } |
| 1362 | |
| 1363 | S.Diag(Loc: SubstExpr->getSourceRange().getBegin(), |
| 1364 | DiagID: diag::note_atomic_constraint_evaluated_to_false) |
| 1365 | << (int)First << SubstExpr; |
| 1366 | S.DiagnoseTypeTraitDetails(E: SubstExpr); |
| 1367 | } |
| 1368 | |
| 1369 | template <typename SubstitutionDiagnostic> |
| 1370 | static void diagnoseUnsatisfiedConstraintExpr( |
| 1371 | Sema &S, const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record, |
| 1372 | bool First = true) { |
| 1373 | if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()) { |
| 1374 | S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed) |
| 1375 | << Diag->second; |
| 1376 | return; |
| 1377 | } |
| 1378 | |
| 1379 | diagnoseWellFormedUnsatisfiedConstraintExpr(S, cast<Expr *>(Record), First); |
| 1380 | } |
| 1381 | |
| 1382 | void |
| 1383 | Sema::DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction& Satisfaction, |
| 1384 | bool First) { |
| 1385 | assert(!Satisfaction.IsSatisfied && |
| 1386 | "Attempted to diagnose a satisfied constraint" ); |
| 1387 | for (auto &Record : Satisfaction.Details) { |
| 1388 | diagnoseUnsatisfiedConstraintExpr(S&: *this, Record, First); |
| 1389 | First = false; |
| 1390 | } |
| 1391 | } |
| 1392 | |
| 1393 | void Sema::DiagnoseUnsatisfiedConstraint( |
| 1394 | const ASTConstraintSatisfaction &Satisfaction, |
| 1395 | bool First) { |
| 1396 | assert(!Satisfaction.IsSatisfied && |
| 1397 | "Attempted to diagnose a satisfied constraint" ); |
| 1398 | for (auto &Record : Satisfaction) { |
| 1399 | diagnoseUnsatisfiedConstraintExpr(S&: *this, Record, First); |
| 1400 | First = false; |
| 1401 | } |
| 1402 | } |
| 1403 | |
| 1404 | const NormalizedConstraint *Sema::getNormalizedAssociatedConstraints( |
| 1405 | const NamedDecl *ConstrainedDecl, |
| 1406 | ArrayRef<AssociatedConstraint> AssociatedConstraints) { |
| 1407 | // In case the ConstrainedDecl comes from modules, it is necessary to use |
| 1408 | // the canonical decl to avoid different atomic constraints with the 'same' |
| 1409 | // declarations. |
| 1410 | ConstrainedDecl = cast<NamedDecl>(Val: ConstrainedDecl->getCanonicalDecl()); |
| 1411 | |
| 1412 | auto CacheEntry = NormalizationCache.find(Val: ConstrainedDecl); |
| 1413 | if (CacheEntry == NormalizationCache.end()) { |
| 1414 | auto Normalized = NormalizedConstraint::fromAssociatedConstraints( |
| 1415 | S&: *this, D: ConstrainedDecl, ACs: AssociatedConstraints); |
| 1416 | CacheEntry = |
| 1417 | NormalizationCache |
| 1418 | .try_emplace(Key: ConstrainedDecl, |
| 1419 | Args: Normalized |
| 1420 | ? new (Context) NormalizedConstraint( |
| 1421 | std::move(*Normalized)) |
| 1422 | : nullptr) |
| 1423 | .first; |
| 1424 | } |
| 1425 | return CacheEntry->second; |
| 1426 | } |
| 1427 | |
| 1428 | const NormalizedConstraint *clang::getNormalizedAssociatedConstraints( |
| 1429 | Sema &S, const NamedDecl *ConstrainedDecl, |
| 1430 | ArrayRef<AssociatedConstraint> AssociatedConstraints) { |
| 1431 | return S.getNormalizedAssociatedConstraints(ConstrainedDecl, |
| 1432 | AssociatedConstraints); |
| 1433 | } |
| 1434 | |
| 1435 | static bool |
| 1436 | substituteParameterMappings(Sema &S, NormalizedConstraint &N, |
| 1437 | ConceptDecl *Concept, |
| 1438 | const MultiLevelTemplateArgumentList &MLTAL, |
| 1439 | const ASTTemplateArgumentListInfo *ArgsAsWritten) { |
| 1440 | |
| 1441 | if (N.isCompound()) { |
| 1442 | if (substituteParameterMappings(S, N&: N.getLHS(), Concept, MLTAL, |
| 1443 | ArgsAsWritten)) |
| 1444 | return true; |
| 1445 | return substituteParameterMappings(S, N&: N.getRHS(), Concept, MLTAL, |
| 1446 | ArgsAsWritten); |
| 1447 | } |
| 1448 | |
| 1449 | if (N.isFoldExpanded()) { |
| 1450 | Sema::ArgPackSubstIndexRAII _(S, std::nullopt); |
| 1451 | return substituteParameterMappings( |
| 1452 | S, N&: N.getFoldExpandedConstraint()->Constraint, Concept, MLTAL, |
| 1453 | ArgsAsWritten); |
| 1454 | } |
| 1455 | |
| 1456 | TemplateParameterList *TemplateParams = Concept->getTemplateParameters(); |
| 1457 | |
| 1458 | AtomicConstraint &Atomic = *N.getAtomicConstraint(); |
| 1459 | TemplateArgumentListInfo SubstArgs; |
| 1460 | if (!Atomic.ParameterMapping) { |
| 1461 | llvm::SmallBitVector OccurringIndices(TemplateParams->size()); |
| 1462 | S.MarkUsedTemplateParameters(E: Atomic.ConstraintExpr, /*OnlyDeduced=*/false, |
| 1463 | /*Depth=*/0, Used&: OccurringIndices); |
| 1464 | TemplateArgumentLoc *TempArgs = |
| 1465 | new (S.Context) TemplateArgumentLoc[OccurringIndices.count()]; |
| 1466 | for (unsigned I = 0, J = 0, C = TemplateParams->size(); I != C; ++I) |
| 1467 | if (OccurringIndices[I]) |
| 1468 | new (&(TempArgs)[J++]) |
| 1469 | TemplateArgumentLoc(S.getIdentityTemplateArgumentLoc( |
| 1470 | Param: TemplateParams->begin()[I], |
| 1471 | // Here we assume we do not support things like |
| 1472 | // template<typename A, typename B> |
| 1473 | // concept C = ...; |
| 1474 | // |
| 1475 | // template<typename... Ts> requires C<Ts...> |
| 1476 | // struct S { }; |
| 1477 | // The above currently yields a diagnostic. |
| 1478 | // We still might have default arguments for concept parameters. |
| 1479 | Location: ArgsAsWritten->NumTemplateArgs > I |
| 1480 | ? ArgsAsWritten->arguments()[I].getLocation() |
| 1481 | : SourceLocation())); |
| 1482 | Atomic.ParameterMapping.emplace(args&: TempArgs, args: OccurringIndices.count()); |
| 1483 | } |
| 1484 | SourceLocation InstLocBegin = |
| 1485 | ArgsAsWritten->arguments().empty() |
| 1486 | ? ArgsAsWritten->getLAngleLoc() |
| 1487 | : ArgsAsWritten->arguments().front().getSourceRange().getBegin(); |
| 1488 | SourceLocation InstLocEnd = |
| 1489 | ArgsAsWritten->arguments().empty() |
| 1490 | ? ArgsAsWritten->getRAngleLoc() |
| 1491 | : ArgsAsWritten->arguments().front().getSourceRange().getEnd(); |
| 1492 | Sema::InstantiatingTemplate Inst( |
| 1493 | S, InstLocBegin, |
| 1494 | Sema::InstantiatingTemplate::ParameterMappingSubstitution{}, |
| 1495 | const_cast<NamedDecl *>(Atomic.ConstraintDecl), |
| 1496 | {InstLocBegin, InstLocEnd}); |
| 1497 | if (Inst.isInvalid()) |
| 1498 | return true; |
| 1499 | if (S.SubstTemplateArguments(Args: *Atomic.ParameterMapping, TemplateArgs: MLTAL, Outputs&: SubstArgs)) |
| 1500 | return true; |
| 1501 | |
| 1502 | TemplateArgumentLoc *TempArgs = |
| 1503 | new (S.Context) TemplateArgumentLoc[SubstArgs.size()]; |
| 1504 | std::copy(first: SubstArgs.arguments().begin(), last: SubstArgs.arguments().end(), |
| 1505 | result: TempArgs); |
| 1506 | Atomic.ParameterMapping.emplace(args&: TempArgs, args: SubstArgs.size()); |
| 1507 | return false; |
| 1508 | } |
| 1509 | |
| 1510 | static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N, |
| 1511 | const ConceptSpecializationExpr *CSE) { |
| 1512 | MultiLevelTemplateArgumentList MLTAL = S.getTemplateInstantiationArgs( |
| 1513 | D: CSE->getNamedConcept(), DC: CSE->getNamedConcept()->getLexicalDeclContext(), |
| 1514 | /*Final=*/false, Innermost: CSE->getTemplateArguments(), |
| 1515 | /*RelativeToPrimary=*/true, |
| 1516 | /*Pattern=*/nullptr, |
| 1517 | /*ForConstraintInstantiation=*/true); |
| 1518 | |
| 1519 | return substituteParameterMappings(S, N, Concept: CSE->getNamedConcept(), MLTAL, |
| 1520 | ArgsAsWritten: CSE->getTemplateArgsAsWritten()); |
| 1521 | } |
| 1522 | |
| 1523 | NormalizedConstraint::NormalizedConstraint(ASTContext &C, |
| 1524 | NormalizedConstraint LHS, |
| 1525 | NormalizedConstraint RHS, |
| 1526 | CompoundConstraintKind Kind) |
| 1527 | : Constraint{CompoundConstraint{ |
| 1528 | new(C) NormalizedConstraintPair{.LHS: std::move(LHS), .RHS: std::move(RHS)}, |
| 1529 | Kind}} {} |
| 1530 | |
| 1531 | NormalizedConstraint::NormalizedConstraint(ASTContext &C, |
| 1532 | const NormalizedConstraint &Other) { |
| 1533 | if (Other.isAtomic()) { |
| 1534 | Constraint = new (C) AtomicConstraint(*Other.getAtomicConstraint()); |
| 1535 | } else if (Other.isFoldExpanded()) { |
| 1536 | Constraint = new (C) FoldExpandedConstraint( |
| 1537 | Other.getFoldExpandedConstraint()->Kind, |
| 1538 | NormalizedConstraint(C, Other.getFoldExpandedConstraint()->Constraint), |
| 1539 | Other.getFoldExpandedConstraint()->Pattern); |
| 1540 | } else { |
| 1541 | Constraint = CompoundConstraint( |
| 1542 | new (C) |
| 1543 | NormalizedConstraintPair{.LHS: NormalizedConstraint(C, Other.getLHS()), |
| 1544 | .RHS: NormalizedConstraint(C, Other.getRHS())}, |
| 1545 | Other.getCompoundKind()); |
| 1546 | } |
| 1547 | } |
| 1548 | |
| 1549 | NormalizedConstraint &NormalizedConstraint::getLHS() const { |
| 1550 | assert(isCompound() && "getLHS called on a non-compound constraint." ); |
| 1551 | return cast<CompoundConstraint>(Val: Constraint).getPointer()->LHS; |
| 1552 | } |
| 1553 | |
| 1554 | NormalizedConstraint &NormalizedConstraint::getRHS() const { |
| 1555 | assert(isCompound() && "getRHS called on a non-compound constraint." ); |
| 1556 | return cast<CompoundConstraint>(Val: Constraint).getPointer()->RHS; |
| 1557 | } |
| 1558 | |
| 1559 | std::optional<NormalizedConstraint> |
| 1560 | NormalizedConstraint::fromAssociatedConstraints( |
| 1561 | Sema &S, const NamedDecl *D, ArrayRef<AssociatedConstraint> ACs) { |
| 1562 | assert(ACs.size() != 0); |
| 1563 | auto Conjunction = fromConstraintExpr(S, D, E: ACs[0].ConstraintExpr); |
| 1564 | if (!Conjunction) |
| 1565 | return std::nullopt; |
| 1566 | for (unsigned I = 1; I < ACs.size(); ++I) { |
| 1567 | auto Next = fromConstraintExpr(S, D, E: ACs[I].ConstraintExpr); |
| 1568 | if (!Next) |
| 1569 | return std::nullopt; |
| 1570 | *Conjunction = NormalizedConstraint(S.Context, std::move(*Conjunction), |
| 1571 | std::move(*Next), CCK_Conjunction); |
| 1572 | } |
| 1573 | return Conjunction; |
| 1574 | } |
| 1575 | |
| 1576 | std::optional<NormalizedConstraint> |
| 1577 | NormalizedConstraint::fromConstraintExpr(Sema &S, const NamedDecl *D, |
| 1578 | const Expr *E) { |
| 1579 | assert(E != nullptr); |
| 1580 | |
| 1581 | // C++ [temp.constr.normal]p1.1 |
| 1582 | // [...] |
| 1583 | // - The normal form of an expression (E) is the normal form of E. |
| 1584 | // [...] |
| 1585 | E = E->IgnoreParenImpCasts(); |
| 1586 | |
| 1587 | // C++2a [temp.param]p4: |
| 1588 | // [...] If T is not a pack, then E is E', otherwise E is (E' && ...). |
| 1589 | // Fold expression is considered atomic constraints per current wording. |
| 1590 | // See http://cplusplus.github.io/concepts-ts/ts-active.html#28 |
| 1591 | |
| 1592 | if (LogicalBinOp BO = E) { |
| 1593 | auto LHS = fromConstraintExpr(S, D, E: BO.getLHS()); |
| 1594 | if (!LHS) |
| 1595 | return std::nullopt; |
| 1596 | auto RHS = fromConstraintExpr(S, D, E: BO.getRHS()); |
| 1597 | if (!RHS) |
| 1598 | return std::nullopt; |
| 1599 | |
| 1600 | return NormalizedConstraint(S.Context, std::move(*LHS), std::move(*RHS), |
| 1601 | BO.isAnd() ? CCK_Conjunction : CCK_Disjunction); |
| 1602 | } else if (auto *CSE = dyn_cast<const ConceptSpecializationExpr>(Val: E)) { |
| 1603 | const NormalizedConstraint *SubNF; |
| 1604 | { |
| 1605 | Sema::InstantiatingTemplate Inst( |
| 1606 | S, CSE->getExprLoc(), |
| 1607 | Sema::InstantiatingTemplate::ConstraintNormalization{}, |
| 1608 | // FIXME: improve const-correctness of InstantiatingTemplate |
| 1609 | const_cast<NamedDecl *>(D), CSE->getSourceRange()); |
| 1610 | if (Inst.isInvalid()) |
| 1611 | return std::nullopt; |
| 1612 | // C++ [temp.constr.normal]p1.1 |
| 1613 | // [...] |
| 1614 | // The normal form of an id-expression of the form C<A1, A2, ..., AN>, |
| 1615 | // where C names a concept, is the normal form of the |
| 1616 | // constraint-expression of C, after substituting A1, A2, ..., AN for C’s |
| 1617 | // respective template parameters in the parameter mappings in each atomic |
| 1618 | // constraint. If any such substitution results in an invalid type or |
| 1619 | // expression, the program is ill-formed; no diagnostic is required. |
| 1620 | // [...] |
| 1621 | ConceptDecl *CD = CSE->getNamedConcept(); |
| 1622 | SubNF = S.getNormalizedAssociatedConstraints( |
| 1623 | ConstrainedDecl: CD, AssociatedConstraints: AssociatedConstraint(CD->getConstraintExpr())); |
| 1624 | if (!SubNF) |
| 1625 | return std::nullopt; |
| 1626 | } |
| 1627 | |
| 1628 | std::optional<NormalizedConstraint> New; |
| 1629 | New.emplace(args&: S.Context, args: *SubNF); |
| 1630 | |
| 1631 | if (substituteParameterMappings(S, N&: *New, CSE)) |
| 1632 | return std::nullopt; |
| 1633 | |
| 1634 | return New; |
| 1635 | } else if (auto *FE = dyn_cast<const CXXFoldExpr>(Val: E); |
| 1636 | FE && S.getLangOpts().CPlusPlus26 && |
| 1637 | (FE->getOperator() == BinaryOperatorKind::BO_LAnd || |
| 1638 | FE->getOperator() == BinaryOperatorKind::BO_LOr)) { |
| 1639 | |
| 1640 | // Normalize fold expressions in C++26. |
| 1641 | |
| 1642 | FoldExpandedConstraint::FoldOperatorKind Kind = |
| 1643 | FE->getOperator() == BinaryOperatorKind::BO_LAnd |
| 1644 | ? FoldExpandedConstraint::FoldOperatorKind::And |
| 1645 | : FoldExpandedConstraint::FoldOperatorKind::Or; |
| 1646 | |
| 1647 | if (FE->getInit()) { |
| 1648 | auto LHS = fromConstraintExpr(S, D, E: FE->getLHS()); |
| 1649 | auto RHS = fromConstraintExpr(S, D, E: FE->getRHS()); |
| 1650 | if (!LHS || !RHS) |
| 1651 | return std::nullopt; |
| 1652 | |
| 1653 | if (FE->isRightFold()) |
| 1654 | RHS = NormalizedConstraint{new (S.Context) FoldExpandedConstraint{ |
| 1655 | Kind, std::move(*RHS), FE->getPattern()}}; |
| 1656 | else |
| 1657 | LHS = NormalizedConstraint{new (S.Context) FoldExpandedConstraint{ |
| 1658 | Kind, std::move(*LHS), FE->getPattern()}}; |
| 1659 | |
| 1660 | return NormalizedConstraint( |
| 1661 | S.Context, std::move(*LHS), std::move(*RHS), |
| 1662 | FE->getOperator() == BinaryOperatorKind::BO_LAnd ? CCK_Conjunction |
| 1663 | : CCK_Disjunction); |
| 1664 | } |
| 1665 | auto Sub = fromConstraintExpr(S, D, E: FE->getPattern()); |
| 1666 | if (!Sub) |
| 1667 | return std::nullopt; |
| 1668 | return NormalizedConstraint{new (S.Context) FoldExpandedConstraint{ |
| 1669 | Kind, std::move(*Sub), FE->getPattern()}}; |
| 1670 | } |
| 1671 | |
| 1672 | return NormalizedConstraint{new (S.Context) AtomicConstraint(E, D)}; |
| 1673 | } |
| 1674 | |
| 1675 | bool FoldExpandedConstraint::AreCompatibleForSubsumption( |
| 1676 | const FoldExpandedConstraint &A, const FoldExpandedConstraint &B) { |
| 1677 | |
| 1678 | // [C++26] [temp.constr.fold] |
| 1679 | // Two fold expanded constraints are compatible for subsumption |
| 1680 | // if their respective constraints both contain an equivalent unexpanded pack. |
| 1681 | |
| 1682 | llvm::SmallVector<UnexpandedParameterPack> APacks, BPacks; |
| 1683 | Sema::collectUnexpandedParameterPacks(E: const_cast<Expr *>(A.Pattern), Unexpanded&: APacks); |
| 1684 | Sema::collectUnexpandedParameterPacks(E: const_cast<Expr *>(B.Pattern), Unexpanded&: BPacks); |
| 1685 | |
| 1686 | for (const UnexpandedParameterPack &APack : APacks) { |
| 1687 | std::pair<unsigned, unsigned> DepthAndIndex = getDepthAndIndex(UPP: APack); |
| 1688 | auto it = llvm::find_if(Range&: BPacks, P: [&](const UnexpandedParameterPack &BPack) { |
| 1689 | return getDepthAndIndex(UPP: BPack) == DepthAndIndex; |
| 1690 | }); |
| 1691 | if (it != BPacks.end()) |
| 1692 | return true; |
| 1693 | } |
| 1694 | return false; |
| 1695 | } |
| 1696 | |
| 1697 | bool Sema::IsAtLeastAsConstrained(const NamedDecl *D1, |
| 1698 | MutableArrayRef<AssociatedConstraint> AC1, |
| 1699 | const NamedDecl *D2, |
| 1700 | MutableArrayRef<AssociatedConstraint> AC2, |
| 1701 | bool &Result) { |
| 1702 | #ifndef NDEBUG |
| 1703 | if (const auto *FD1 = dyn_cast<FunctionDecl>(D1)) { |
| 1704 | auto IsExpectedEntity = [](const FunctionDecl *FD) { |
| 1705 | FunctionDecl::TemplatedKind Kind = FD->getTemplatedKind(); |
| 1706 | return Kind == FunctionDecl::TK_NonTemplate || |
| 1707 | Kind == FunctionDecl::TK_FunctionTemplate; |
| 1708 | }; |
| 1709 | const auto *FD2 = dyn_cast<FunctionDecl>(D2); |
| 1710 | assert(IsExpectedEntity(FD1) && FD2 && IsExpectedEntity(FD2) && |
| 1711 | "use non-instantiated function declaration for constraints partial " |
| 1712 | "ordering" ); |
| 1713 | } |
| 1714 | #endif |
| 1715 | |
| 1716 | if (AC1.empty()) { |
| 1717 | Result = AC2.empty(); |
| 1718 | return false; |
| 1719 | } |
| 1720 | if (AC2.empty()) { |
| 1721 | // TD1 has associated constraints and TD2 does not. |
| 1722 | Result = true; |
| 1723 | return false; |
| 1724 | } |
| 1725 | |
| 1726 | std::pair<const NamedDecl *, const NamedDecl *> Key{D1, D2}; |
| 1727 | auto CacheEntry = SubsumptionCache.find(Val: Key); |
| 1728 | if (CacheEntry != SubsumptionCache.end()) { |
| 1729 | Result = CacheEntry->second; |
| 1730 | return false; |
| 1731 | } |
| 1732 | |
| 1733 | unsigned Depth1 = CalculateTemplateDepthForConstraints(S&: *this, ND: D1, SkipForSpecialization: true); |
| 1734 | unsigned Depth2 = CalculateTemplateDepthForConstraints(S&: *this, ND: D2, SkipForSpecialization: true); |
| 1735 | |
| 1736 | for (size_t I = 0; I != AC1.size() && I != AC2.size(); ++I) { |
| 1737 | if (Depth2 > Depth1) { |
| 1738 | AC1[I].ConstraintExpr = |
| 1739 | AdjustConstraintDepth(*this, Depth2 - Depth1) |
| 1740 | .TransformExpr(E: const_cast<Expr *>(AC1[I].ConstraintExpr)) |
| 1741 | .get(); |
| 1742 | } else if (Depth1 > Depth2) { |
| 1743 | AC2[I].ConstraintExpr = |
| 1744 | AdjustConstraintDepth(*this, Depth1 - Depth2) |
| 1745 | .TransformExpr(E: const_cast<Expr *>(AC2[I].ConstraintExpr)) |
| 1746 | .get(); |
| 1747 | } |
| 1748 | } |
| 1749 | |
| 1750 | SubsumptionChecker SC(*this); |
| 1751 | std::optional<bool> Subsumes = SC.Subsumes(DP: D1, P: AC1, DQ: D2, Q: AC2); |
| 1752 | if (!Subsumes) { |
| 1753 | // Normalization failed |
| 1754 | return true; |
| 1755 | } |
| 1756 | Result = *Subsumes; |
| 1757 | SubsumptionCache.try_emplace(Key, Args&: *Subsumes); |
| 1758 | return false; |
| 1759 | } |
| 1760 | |
| 1761 | bool Sema::MaybeEmitAmbiguousAtomicConstraintsDiagnostic( |
| 1762 | const NamedDecl *D1, ArrayRef<AssociatedConstraint> AC1, |
| 1763 | const NamedDecl *D2, ArrayRef<AssociatedConstraint> AC2) { |
| 1764 | if (isSFINAEContext()) |
| 1765 | // No need to work here because our notes would be discarded. |
| 1766 | return false; |
| 1767 | |
| 1768 | if (AC1.empty() || AC2.empty()) |
| 1769 | return false; |
| 1770 | |
| 1771 | const Expr *AmbiguousAtomic1 = nullptr, *AmbiguousAtomic2 = nullptr; |
| 1772 | auto IdenticalExprEvaluator = [&](const AtomicConstraint &A, |
| 1773 | const AtomicConstraint &B) { |
| 1774 | if (!A.hasMatchingParameterMapping(C&: Context, Other: B)) |
| 1775 | return false; |
| 1776 | const Expr *EA = A.ConstraintExpr, *EB = B.ConstraintExpr; |
| 1777 | if (EA == EB) |
| 1778 | return true; |
| 1779 | |
| 1780 | // Not the same source level expression - are the expressions |
| 1781 | // identical? |
| 1782 | llvm::FoldingSetNodeID IDA, IDB; |
| 1783 | EA->Profile(ID&: IDA, Context, /*Canonical=*/true); |
| 1784 | EB->Profile(ID&: IDB, Context, /*Canonical=*/true); |
| 1785 | if (IDA != IDB) |
| 1786 | return false; |
| 1787 | |
| 1788 | AmbiguousAtomic1 = EA; |
| 1789 | AmbiguousAtomic2 = EB; |
| 1790 | return true; |
| 1791 | }; |
| 1792 | |
| 1793 | { |
| 1794 | // The subsumption checks might cause diagnostics |
| 1795 | SFINAETrap Trap(*this); |
| 1796 | auto *Normalized1 = getNormalizedAssociatedConstraints(ConstrainedDecl: D1, AssociatedConstraints: AC1); |
| 1797 | if (!Normalized1) |
| 1798 | return false; |
| 1799 | |
| 1800 | auto *Normalized2 = getNormalizedAssociatedConstraints(ConstrainedDecl: D2, AssociatedConstraints: AC2); |
| 1801 | if (!Normalized2) |
| 1802 | return false; |
| 1803 | |
| 1804 | SubsumptionChecker SC(*this); |
| 1805 | |
| 1806 | bool Is1AtLeastAs2Normally = SC.Subsumes(P: Normalized1, Q: Normalized2); |
| 1807 | bool Is2AtLeastAs1Normally = SC.Subsumes(P: Normalized2, Q: Normalized1); |
| 1808 | |
| 1809 | SubsumptionChecker SC2(*this, IdenticalExprEvaluator); |
| 1810 | bool Is1AtLeastAs2 = SC2.Subsumes(P: Normalized1, Q: Normalized2); |
| 1811 | bool Is2AtLeastAs1 = SC2.Subsumes(P: Normalized2, Q: Normalized1); |
| 1812 | |
| 1813 | if (Is1AtLeastAs2 == Is1AtLeastAs2Normally && |
| 1814 | Is2AtLeastAs1 == Is2AtLeastAs1Normally) |
| 1815 | // Same result - no ambiguity was caused by identical atomic expressions. |
| 1816 | return false; |
| 1817 | } |
| 1818 | // A different result! Some ambiguous atomic constraint(s) caused a difference |
| 1819 | assert(AmbiguousAtomic1 && AmbiguousAtomic2); |
| 1820 | |
| 1821 | Diag(Loc: AmbiguousAtomic1->getBeginLoc(), DiagID: diag::note_ambiguous_atomic_constraints) |
| 1822 | << AmbiguousAtomic1->getSourceRange(); |
| 1823 | Diag(Loc: AmbiguousAtomic2->getBeginLoc(), |
| 1824 | DiagID: diag::note_ambiguous_atomic_constraints_similar_expression) |
| 1825 | << AmbiguousAtomic2->getSourceRange(); |
| 1826 | return true; |
| 1827 | } |
| 1828 | |
| 1829 | NormalizedConstraint::CompoundConstraintKind |
| 1830 | NormalizedConstraint::getCompoundKind() const { |
| 1831 | assert(isCompound() && "getCompoundKind on a non-compound constraint.." ); |
| 1832 | return cast<CompoundConstraint>(Val: Constraint).getInt(); |
| 1833 | } |
| 1834 | |
| 1835 | AtomicConstraint *NormalizedConstraint::getAtomicConstraint() const { |
| 1836 | assert(isAtomic() && "getAtomicConstraint called on non-atomic constraint." ); |
| 1837 | return cast<AtomicConstraint *>(Val: Constraint); |
| 1838 | } |
| 1839 | |
| 1840 | FoldExpandedConstraint * |
| 1841 | NormalizedConstraint::getFoldExpandedConstraint() const { |
| 1842 | assert(isFoldExpanded() && |
| 1843 | "getFoldExpandedConstraint called on non-fold-expanded constraint." ); |
| 1844 | return cast<FoldExpandedConstraint *>(Val: Constraint); |
| 1845 | } |
| 1846 | |
| 1847 | // |
| 1848 | // |
| 1849 | // ------------------------ Subsumption ----------------------------------- |
| 1850 | // |
| 1851 | // |
| 1852 | |
| 1853 | template <> struct llvm::DenseMapInfo<llvm::FoldingSetNodeID> { |
| 1854 | |
| 1855 | static FoldingSetNodeID getEmptyKey() { |
| 1856 | FoldingSetNodeID ID; |
| 1857 | ID.AddInteger(I: std::numeric_limits<unsigned>::max()); |
| 1858 | return ID; |
| 1859 | } |
| 1860 | |
| 1861 | static FoldingSetNodeID getTombstoneKey() { |
| 1862 | FoldingSetNodeID ID; |
| 1863 | for (unsigned I = 0; I < sizeof(ID) / sizeof(unsigned); ++I) { |
| 1864 | ID.AddInteger(I: std::numeric_limits<unsigned>::max()); |
| 1865 | } |
| 1866 | return ID; |
| 1867 | } |
| 1868 | |
| 1869 | static unsigned getHashValue(const FoldingSetNodeID &Val) { |
| 1870 | return Val.ComputeHash(); |
| 1871 | } |
| 1872 | |
| 1873 | static bool isEqual(const FoldingSetNodeID &LHS, |
| 1874 | const FoldingSetNodeID &RHS) { |
| 1875 | return LHS == RHS; |
| 1876 | } |
| 1877 | }; |
| 1878 | |
| 1879 | SubsumptionChecker::SubsumptionChecker(Sema &SemaRef, |
| 1880 | SubsumptionCallable Callable) |
| 1881 | : SemaRef(SemaRef), Callable(Callable), NextID(1) {} |
| 1882 | |
| 1883 | uint16_t SubsumptionChecker::getNewLiteralId() { |
| 1884 | assert((unsigned(NextID) + 1 < std::numeric_limits<uint16_t>::max()) && |
| 1885 | "too many constraints!" ); |
| 1886 | return NextID++; |
| 1887 | } |
| 1888 | |
| 1889 | auto SubsumptionChecker::find(AtomicConstraint *Ori) -> Literal { |
| 1890 | auto &Elems = AtomicMap[Ori->ConstraintExpr]; |
| 1891 | // C++ [temp.constr.order] p2 |
| 1892 | // - an atomic constraint A subsumes another atomic constraint B |
| 1893 | // if and only if the A and B are identical [...] |
| 1894 | // |
| 1895 | // C++ [temp.constr.atomic] p2 |
| 1896 | // Two atomic constraints are identical if they are formed from the |
| 1897 | // same expression and the targets of the parameter mappings are |
| 1898 | // equivalent according to the rules for expressions [...] |
| 1899 | |
| 1900 | // Because subsumption of atomic constraints is an identity |
| 1901 | // relationship that does not require further analysis |
| 1902 | // We cache the results such that if an atomic constraint literal |
| 1903 | // subsumes another, their literal will be the same |
| 1904 | |
| 1905 | llvm::FoldingSetNodeID ID; |
| 1906 | const auto &Mapping = Ori->ParameterMapping; |
| 1907 | ID.AddBoolean(B: Mapping.has_value()); |
| 1908 | if (Mapping) { |
| 1909 | for (const TemplateArgumentLoc &TAL : *Mapping) { |
| 1910 | SemaRef.getASTContext() |
| 1911 | .getCanonicalTemplateArgument(Arg: TAL.getArgument()) |
| 1912 | .Profile(ID, Context: SemaRef.getASTContext()); |
| 1913 | } |
| 1914 | } |
| 1915 | auto It = Elems.find(Val: ID); |
| 1916 | if (It == Elems.end()) { |
| 1917 | It = Elems |
| 1918 | .insert(KV: {ID, |
| 1919 | MappedAtomicConstraint{ |
| 1920 | .Constraint: Ori, .ID: {.Value: getNewLiteralId(), .Kind: Literal::Atomic}}}) |
| 1921 | .first; |
| 1922 | ReverseMap[It->second.ID.Value] = Ori; |
| 1923 | } |
| 1924 | return It->getSecond().ID; |
| 1925 | } |
| 1926 | |
| 1927 | auto SubsumptionChecker::find(FoldExpandedConstraint *Ori) -> Literal { |
| 1928 | auto &Elems = FoldMap[Ori->Pattern]; |
| 1929 | |
| 1930 | FoldExpendedConstraintKey K; |
| 1931 | K.Kind = Ori->Kind; |
| 1932 | |
| 1933 | auto It = llvm::find_if(Range&: Elems, P: [&K](const FoldExpendedConstraintKey &Other) { |
| 1934 | return K.Kind == Other.Kind; |
| 1935 | }); |
| 1936 | if (It == Elems.end()) { |
| 1937 | K.ID = {.Value: getNewLiteralId(), .Kind: Literal::FoldExpanded}; |
| 1938 | It = Elems.insert(position: Elems.end(), x: std::move(K)); |
| 1939 | ReverseMap[It->ID.Value] = Ori; |
| 1940 | } |
| 1941 | return It->ID; |
| 1942 | } |
| 1943 | |
| 1944 | auto SubsumptionChecker::CNF(const NormalizedConstraint &C) -> CNFFormula { |
| 1945 | return SubsumptionChecker::Normalize<CNFFormula>(NC: C); |
| 1946 | } |
| 1947 | auto SubsumptionChecker::DNF(const NormalizedConstraint &C) -> DNFFormula { |
| 1948 | return SubsumptionChecker::Normalize<DNFFormula>(NC: C); |
| 1949 | } |
| 1950 | |
| 1951 | /// |
| 1952 | /// \brief SubsumptionChecker::Normalize |
| 1953 | /// |
| 1954 | /// Normalize a formula to Conjunctive Normal Form or |
| 1955 | /// Disjunctive normal form. |
| 1956 | /// |
| 1957 | /// Each Atomic (and Fold Expanded) constraint gets represented by |
| 1958 | /// a single id to reduce space. |
| 1959 | /// |
| 1960 | /// To minimize risks of exponential blow up, if two atomic |
| 1961 | /// constraints subsumes each other (same constraint and mapping), |
| 1962 | /// they are represented by the same literal. |
| 1963 | /// |
| 1964 | template <typename FormulaType> |
| 1965 | FormulaType SubsumptionChecker::Normalize(const NormalizedConstraint &NC) { |
| 1966 | FormulaType Res; |
| 1967 | |
| 1968 | auto Add = [&, this](Clause C) { |
| 1969 | // Sort each clause and remove duplicates for faster comparisons. |
| 1970 | llvm::sort(C); |
| 1971 | C.erase(CS: llvm::unique(R&: C), CE: C.end()); |
| 1972 | AddUniqueClauseToFormula(F&: Res, C: std::move(C)); |
| 1973 | }; |
| 1974 | |
| 1975 | if (NC.isAtomic()) |
| 1976 | return {{find(Ori: NC.getAtomicConstraint())}}; |
| 1977 | |
| 1978 | if (NC.isFoldExpanded()) |
| 1979 | return {{find(Ori: NC.getFoldExpandedConstraint())}}; |
| 1980 | |
| 1981 | FormulaType Left, Right; |
| 1982 | SemaRef.runWithSufficientStackSpace(Loc: SourceLocation(), Fn: [&] { |
| 1983 | Left = Normalize<FormulaType>(NC.getLHS()); |
| 1984 | Right = Normalize<FormulaType>(NC.getRHS()); |
| 1985 | }); |
| 1986 | |
| 1987 | if (NC.getCompoundKind() == FormulaType::Kind) { |
| 1988 | auto SizeLeft = Left.size(); |
| 1989 | Res = std::move(Left); |
| 1990 | Res.reserve(SizeLeft + Right.size()); |
| 1991 | std::for_each(std::make_move_iterator(Right.begin()), |
| 1992 | std::make_move_iterator(Right.end()), Add); |
| 1993 | return Res; |
| 1994 | } |
| 1995 | |
| 1996 | Res.reserve(Left.size() * Right.size()); |
| 1997 | for (const auto <ransform : Left) { |
| 1998 | for (const auto &RTransform : Right) { |
| 1999 | Clause Combined; |
| 2000 | Combined.reserve(N: LTransform.size() + RTransform.size()); |
| 2001 | llvm::append_range(Combined, LTransform); |
| 2002 | llvm::append_range(Combined, RTransform); |
| 2003 | Add(std::move(Combined)); |
| 2004 | } |
| 2005 | } |
| 2006 | return Res; |
| 2007 | } |
| 2008 | |
| 2009 | void SubsumptionChecker::AddUniqueClauseToFormula(Formula &F, Clause C) { |
| 2010 | for (auto &Other : F) { |
| 2011 | if (llvm::equal(LRange&: C, RRange&: Other)) |
| 2012 | return; |
| 2013 | } |
| 2014 | F.push_back(Elt: C); |
| 2015 | } |
| 2016 | |
| 2017 | std::optional<bool> SubsumptionChecker::Subsumes( |
| 2018 | const NamedDecl *DP, ArrayRef<AssociatedConstraint> P, const NamedDecl *DQ, |
| 2019 | ArrayRef<AssociatedConstraint> Q) { |
| 2020 | const NormalizedConstraint *PNormalized = |
| 2021 | getNormalizedAssociatedConstraints(S&: SemaRef, ConstrainedDecl: DP, AssociatedConstraints: P); |
| 2022 | if (!PNormalized) |
| 2023 | return std::nullopt; |
| 2024 | |
| 2025 | const NormalizedConstraint *QNormalized = |
| 2026 | getNormalizedAssociatedConstraints(S&: SemaRef, ConstrainedDecl: DQ, AssociatedConstraints: Q); |
| 2027 | if (!QNormalized) |
| 2028 | return std::nullopt; |
| 2029 | |
| 2030 | return Subsumes(P: PNormalized, Q: QNormalized); |
| 2031 | } |
| 2032 | |
| 2033 | bool SubsumptionChecker::Subsumes(const NormalizedConstraint *P, |
| 2034 | const NormalizedConstraint *Q) { |
| 2035 | |
| 2036 | DNFFormula DNFP = DNF(C: *P); |
| 2037 | CNFFormula CNFQ = CNF(C: *Q); |
| 2038 | return Subsumes(P: DNFP, Q: CNFQ); |
| 2039 | } |
| 2040 | |
| 2041 | bool SubsumptionChecker::Subsumes(const DNFFormula &PDNF, |
| 2042 | const CNFFormula &QCNF) { |
| 2043 | for (const auto &Pi : PDNF) { |
| 2044 | for (const auto &Qj : QCNF) { |
| 2045 | // C++ [temp.constr.order] p2 |
| 2046 | // - [...] a disjunctive clause Pi subsumes a conjunctive clause Qj if |
| 2047 | // and only if there exists an atomic constraint Pia in Pi for which |
| 2048 | // there exists an atomic constraint, Qjb, in Qj such that Pia |
| 2049 | // subsumes Qjb. |
| 2050 | if (!DNFSubsumes(P: Pi, Q: Qj)) |
| 2051 | return false; |
| 2052 | } |
| 2053 | } |
| 2054 | return true; |
| 2055 | } |
| 2056 | |
| 2057 | bool SubsumptionChecker::DNFSubsumes(const Clause &P, const Clause &Q) { |
| 2058 | |
| 2059 | return llvm::any_of(Range: P, P: [&](Literal LP) { |
| 2060 | return llvm::any_of(Range: Q, P: [this, LP](Literal LQ) { return Subsumes(A: LP, B: LQ); }); |
| 2061 | }); |
| 2062 | } |
| 2063 | |
| 2064 | bool SubsumptionChecker::Subsumes(const FoldExpandedConstraint *A, |
| 2065 | const FoldExpandedConstraint *B) { |
| 2066 | std::pair<const FoldExpandedConstraint *, const FoldExpandedConstraint *> Key{ |
| 2067 | A, B}; |
| 2068 | |
| 2069 | auto It = FoldSubsumptionCache.find(Val: Key); |
| 2070 | if (It == FoldSubsumptionCache.end()) { |
| 2071 | // C++ [temp.constr.order] |
| 2072 | // a fold expanded constraint A subsumes another fold expanded |
| 2073 | // constraint B if they are compatible for subsumption, have the same |
| 2074 | // fold-operator, and the constraint of A subsumes that of B. |
| 2075 | bool DoesSubsume = |
| 2076 | A->Kind == B->Kind && |
| 2077 | FoldExpandedConstraint::AreCompatibleForSubsumption(A: *A, B: *B) && |
| 2078 | Subsumes(P: &A->Constraint, Q: &B->Constraint); |
| 2079 | It = FoldSubsumptionCache.try_emplace(Key: std::move(Key), Args&: DoesSubsume).first; |
| 2080 | } |
| 2081 | return It->second; |
| 2082 | } |
| 2083 | |
| 2084 | bool SubsumptionChecker::Subsumes(Literal A, Literal B) { |
| 2085 | if (A.Kind != B.Kind) |
| 2086 | return false; |
| 2087 | switch (A.Kind) { |
| 2088 | case Literal::Atomic: |
| 2089 | if (!Callable) |
| 2090 | return A.Value == B.Value; |
| 2091 | return Callable( |
| 2092 | *static_cast<const AtomicConstraint *>(ReverseMap[A.Value]), |
| 2093 | *static_cast<const AtomicConstraint *>(ReverseMap[B.Value])); |
| 2094 | case Literal::FoldExpanded: |
| 2095 | return Subsumes( |
| 2096 | A: static_cast<const FoldExpandedConstraint *>(ReverseMap[A.Value]), |
| 2097 | B: static_cast<const FoldExpandedConstraint *>(ReverseMap[B.Value])); |
| 2098 | } |
| 2099 | llvm_unreachable("unknown literal kind" ); |
| 2100 | } |
| 2101 | |