1 | //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements decl-related attribute processing. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/ASTConsumer.h" |
14 | #include "clang/AST/ASTContext.h" |
15 | #include "clang/AST/ASTMutationListener.h" |
16 | #include "clang/AST/CXXInheritance.h" |
17 | #include "clang/AST/Decl.h" |
18 | #include "clang/AST/DeclCXX.h" |
19 | #include "clang/AST/DeclObjC.h" |
20 | #include "clang/AST/DeclTemplate.h" |
21 | #include "clang/AST/DynamicRecursiveASTVisitor.h" |
22 | #include "clang/AST/Expr.h" |
23 | #include "clang/AST/ExprCXX.h" |
24 | #include "clang/AST/Mangle.h" |
25 | #include "clang/AST/Type.h" |
26 | #include "clang/Basic/CharInfo.h" |
27 | #include "clang/Basic/Cuda.h" |
28 | #include "clang/Basic/DarwinSDKInfo.h" |
29 | #include "clang/Basic/IdentifierTable.h" |
30 | #include "clang/Basic/LangOptions.h" |
31 | #include "clang/Basic/SourceLocation.h" |
32 | #include "clang/Basic/SourceManager.h" |
33 | #include "clang/Basic/TargetInfo.h" |
34 | #include "clang/Lex/Preprocessor.h" |
35 | #include "clang/Sema/Attr.h" |
36 | #include "clang/Sema/DeclSpec.h" |
37 | #include "clang/Sema/DelayedDiagnostic.h" |
38 | #include "clang/Sema/Initialization.h" |
39 | #include "clang/Sema/Lookup.h" |
40 | #include "clang/Sema/ParsedAttr.h" |
41 | #include "clang/Sema/Scope.h" |
42 | #include "clang/Sema/ScopeInfo.h" |
43 | #include "clang/Sema/Sema.h" |
44 | #include "clang/Sema/SemaAMDGPU.h" |
45 | #include "clang/Sema/SemaARM.h" |
46 | #include "clang/Sema/SemaAVR.h" |
47 | #include "clang/Sema/SemaBPF.h" |
48 | #include "clang/Sema/SemaCUDA.h" |
49 | #include "clang/Sema/SemaHLSL.h" |
50 | #include "clang/Sema/SemaM68k.h" |
51 | #include "clang/Sema/SemaMIPS.h" |
52 | #include "clang/Sema/SemaMSP430.h" |
53 | #include "clang/Sema/SemaObjC.h" |
54 | #include "clang/Sema/SemaOpenCL.h" |
55 | #include "clang/Sema/SemaOpenMP.h" |
56 | #include "clang/Sema/SemaRISCV.h" |
57 | #include "clang/Sema/SemaSYCL.h" |
58 | #include "clang/Sema/SemaSwift.h" |
59 | #include "clang/Sema/SemaWasm.h" |
60 | #include "clang/Sema/SemaX86.h" |
61 | #include "llvm/ADT/STLExtras.h" |
62 | #include "llvm/ADT/StringExtras.h" |
63 | #include "llvm/Demangle/Demangle.h" |
64 | #include "llvm/IR/DerivedTypes.h" |
65 | #include "llvm/MC/MCSectionMachO.h" |
66 | #include "llvm/Support/Error.h" |
67 | #include "llvm/Support/ErrorHandling.h" |
68 | #include "llvm/Support/MathExtras.h" |
69 | #include "llvm/Support/raw_ostream.h" |
70 | #include "llvm/TargetParser/Triple.h" |
71 | #include <optional> |
72 | |
73 | using namespace clang; |
74 | using namespace sema; |
75 | |
76 | namespace AttributeLangSupport { |
77 | enum LANG { |
78 | C, |
79 | Cpp, |
80 | ObjC |
81 | }; |
82 | } // end namespace AttributeLangSupport |
83 | |
84 | static unsigned getNumAttributeArgs(const ParsedAttr &AL) { |
85 | // FIXME: Include the type in the argument list. |
86 | return AL.getNumArgs() + AL.hasParsedType(); |
87 | } |
88 | |
89 | SourceLocation Sema::getAttrLoc(const AttributeCommonInfo &CI) { |
90 | return CI.getLoc(); |
91 | } |
92 | |
93 | /// Wrapper around checkUInt32Argument, with an extra check to be sure |
94 | /// that the result will fit into a regular (signed) int. All args have the same |
95 | /// purpose as they do in checkUInt32Argument. |
96 | template <typename AttrInfo> |
97 | static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr, |
98 | int &Val, unsigned Idx = UINT_MAX) { |
99 | uint32_t UVal; |
100 | if (!S.checkUInt32Argument(AI, Expr, UVal, Idx)) |
101 | return false; |
102 | |
103 | if (UVal > (uint32_t)std::numeric_limits<int>::max()) { |
104 | llvm::APSInt I(32); // for toString |
105 | I = UVal; |
106 | S.Diag(Loc: Expr->getExprLoc(), DiagID: diag::err_ice_too_large) |
107 | << toString(I, Radix: 10, Signed: false) << 32 << /* Unsigned */ 0; |
108 | return false; |
109 | } |
110 | |
111 | Val = UVal; |
112 | return true; |
113 | } |
114 | |
115 | bool Sema::checkStringLiteralArgumentAttr(const AttributeCommonInfo &CI, |
116 | const Expr *E, StringRef &Str, |
117 | SourceLocation *ArgLocation) { |
118 | const auto *Literal = dyn_cast<StringLiteral>(Val: E->IgnoreParenCasts()); |
119 | if (ArgLocation) |
120 | *ArgLocation = E->getBeginLoc(); |
121 | |
122 | if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) { |
123 | Diag(Loc: E->getBeginLoc(), DiagID: diag::err_attribute_argument_type) |
124 | << CI << AANT_ArgumentString; |
125 | return false; |
126 | } |
127 | |
128 | Str = Literal->getString(); |
129 | return true; |
130 | } |
131 | |
132 | bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum, |
133 | StringRef &Str, |
134 | SourceLocation *ArgLocation) { |
135 | // Look for identifiers. If we have one emit a hint to fix it to a literal. |
136 | if (AL.isArgIdent(Arg: ArgNum)) { |
137 | IdentifierLoc *Loc = AL.getArgAsIdent(Arg: ArgNum); |
138 | Diag(Loc: Loc->getLoc(), DiagID: diag::err_attribute_argument_type) |
139 | << AL << AANT_ArgumentString |
140 | << FixItHint::CreateInsertion(InsertionLoc: Loc->getLoc(), Code: "\"" ) |
141 | << FixItHint::CreateInsertion(InsertionLoc: getLocForEndOfToken(Loc: Loc->getLoc()), Code: "\"" ); |
142 | Str = Loc->getIdentifierInfo()->getName(); |
143 | if (ArgLocation) |
144 | *ArgLocation = Loc->getLoc(); |
145 | return true; |
146 | } |
147 | |
148 | // Now check for an actual string literal. |
149 | Expr *ArgExpr = AL.getArgAsExpr(Arg: ArgNum); |
150 | const auto *Literal = dyn_cast<StringLiteral>(Val: ArgExpr->IgnoreParenCasts()); |
151 | if (ArgLocation) |
152 | *ArgLocation = ArgExpr->getBeginLoc(); |
153 | |
154 | if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) { |
155 | Diag(Loc: ArgExpr->getBeginLoc(), DiagID: diag::err_attribute_argument_type) |
156 | << AL << AANT_ArgumentString; |
157 | return false; |
158 | } |
159 | Str = Literal->getString(); |
160 | return checkStringLiteralArgumentAttr(CI: AL, E: ArgExpr, Str, ArgLocation); |
161 | } |
162 | |
163 | /// Check if the passed-in expression is of type int or bool. |
164 | static bool isIntOrBool(Expr *Exp) { |
165 | QualType QT = Exp->getType(); |
166 | return QT->isBooleanType() || QT->isIntegerType(); |
167 | } |
168 | |
169 | |
170 | // Check to see if the type is a smart pointer of some kind. We assume |
171 | // it's a smart pointer if it defines both operator-> and operator*. |
172 | static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) { |
173 | auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record, |
174 | OverloadedOperatorKind Op) { |
175 | DeclContextLookupResult Result = |
176 | Record->lookup(Name: S.Context.DeclarationNames.getCXXOperatorName(Op)); |
177 | return !Result.empty(); |
178 | }; |
179 | |
180 | const RecordDecl *Record = RT->getDecl(); |
181 | bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star); |
182 | bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow); |
183 | if (foundStarOperator && foundArrowOperator) |
184 | return true; |
185 | |
186 | const CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Val: Record); |
187 | if (!CXXRecord) |
188 | return false; |
189 | |
190 | for (const auto &BaseSpecifier : CXXRecord->bases()) { |
191 | if (!foundStarOperator) |
192 | foundStarOperator = IsOverloadedOperatorPresent( |
193 | BaseSpecifier.getType()->getAsRecordDecl(), OO_Star); |
194 | if (!foundArrowOperator) |
195 | foundArrowOperator = IsOverloadedOperatorPresent( |
196 | BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow); |
197 | } |
198 | |
199 | if (foundStarOperator && foundArrowOperator) |
200 | return true; |
201 | |
202 | return false; |
203 | } |
204 | |
205 | /// Check if passed in Decl is a pointer type. |
206 | /// Note that this function may produce an error message. |
207 | /// \return true if the Decl is a pointer type; false otherwise |
208 | static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D, |
209 | const ParsedAttr &AL) { |
210 | const auto *VD = cast<ValueDecl>(Val: D); |
211 | QualType QT = VD->getType(); |
212 | if (QT->isAnyPointerType()) |
213 | return true; |
214 | |
215 | if (const auto *RT = QT->getAs<RecordType>()) { |
216 | // If it's an incomplete type, it could be a smart pointer; skip it. |
217 | // (We don't want to force template instantiation if we can avoid it, |
218 | // since that would alter the order in which templates are instantiated.) |
219 | if (RT->isIncompleteType()) |
220 | return true; |
221 | |
222 | if (threadSafetyCheckIsSmartPointer(S, RT)) |
223 | return true; |
224 | } |
225 | |
226 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_thread_attribute_decl_not_pointer) << AL << QT; |
227 | return false; |
228 | } |
229 | |
230 | /// Checks that the passed in QualType either is of RecordType or points |
231 | /// to RecordType. Returns the relevant RecordType, null if it does not exit. |
232 | static const RecordType *getRecordType(QualType QT) { |
233 | if (const auto *RT = QT->getAs<RecordType>()) |
234 | return RT; |
235 | |
236 | // Now check if we point to record type. |
237 | if (const auto *PT = QT->getAs<PointerType>()) |
238 | return PT->getPointeeType()->getAs<RecordType>(); |
239 | |
240 | return nullptr; |
241 | } |
242 | |
243 | template <typename AttrType> |
244 | static bool checkRecordDeclForAttr(const RecordDecl *RD) { |
245 | // Check if the record itself has the attribute. |
246 | if (RD->hasAttr<AttrType>()) |
247 | return true; |
248 | |
249 | // Else check if any base classes have the attribute. |
250 | if (const auto *CRD = dyn_cast<CXXRecordDecl>(Val: RD)) { |
251 | if (!CRD->forallBases(BaseMatches: [](const CXXRecordDecl *Base) { |
252 | return !Base->hasAttr<AttrType>(); |
253 | })) |
254 | return true; |
255 | } |
256 | return false; |
257 | } |
258 | |
259 | static bool checkRecordTypeForCapability(Sema &S, QualType Ty) { |
260 | const RecordType *RT = getRecordType(QT: Ty); |
261 | |
262 | if (!RT) |
263 | return false; |
264 | |
265 | // Don't check for the capability if the class hasn't been defined yet. |
266 | if (RT->isIncompleteType()) |
267 | return true; |
268 | |
269 | // Allow smart pointers to be used as capability objects. |
270 | // FIXME -- Check the type that the smart pointer points to. |
271 | if (threadSafetyCheckIsSmartPointer(S, RT)) |
272 | return true; |
273 | |
274 | return checkRecordDeclForAttr<CapabilityAttr>(RD: RT->getDecl()); |
275 | } |
276 | |
277 | static bool checkRecordTypeForScopedCapability(Sema &S, QualType Ty) { |
278 | const RecordType *RT = getRecordType(QT: Ty); |
279 | |
280 | if (!RT) |
281 | return false; |
282 | |
283 | // Don't check for the capability if the class hasn't been defined yet. |
284 | if (RT->isIncompleteType()) |
285 | return true; |
286 | |
287 | return checkRecordDeclForAttr<ScopedLockableAttr>(RD: RT->getDecl()); |
288 | } |
289 | |
290 | static bool checkTypedefTypeForCapability(QualType Ty) { |
291 | const auto *TD = Ty->getAs<TypedefType>(); |
292 | if (!TD) |
293 | return false; |
294 | |
295 | TypedefNameDecl *TN = TD->getDecl(); |
296 | if (!TN) |
297 | return false; |
298 | |
299 | return TN->hasAttr<CapabilityAttr>(); |
300 | } |
301 | |
302 | static bool typeHasCapability(Sema &S, QualType Ty) { |
303 | if (checkTypedefTypeForCapability(Ty)) |
304 | return true; |
305 | |
306 | if (checkRecordTypeForCapability(S, Ty)) |
307 | return true; |
308 | |
309 | return false; |
310 | } |
311 | |
312 | static bool isCapabilityExpr(Sema &S, const Expr *Ex) { |
313 | // Capability expressions are simple expressions involving the boolean logic |
314 | // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once |
315 | // a DeclRefExpr is found, its type should be checked to determine whether it |
316 | // is a capability or not. |
317 | |
318 | if (const auto *E = dyn_cast<CastExpr>(Val: Ex)) |
319 | return isCapabilityExpr(S, Ex: E->getSubExpr()); |
320 | else if (const auto *E = dyn_cast<ParenExpr>(Val: Ex)) |
321 | return isCapabilityExpr(S, Ex: E->getSubExpr()); |
322 | else if (const auto *E = dyn_cast<UnaryOperator>(Val: Ex)) { |
323 | if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf || |
324 | E->getOpcode() == UO_Deref) |
325 | return isCapabilityExpr(S, Ex: E->getSubExpr()); |
326 | return false; |
327 | } else if (const auto *E = dyn_cast<BinaryOperator>(Val: Ex)) { |
328 | if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr) |
329 | return isCapabilityExpr(S, Ex: E->getLHS()) && |
330 | isCapabilityExpr(S, Ex: E->getRHS()); |
331 | return false; |
332 | } |
333 | |
334 | return typeHasCapability(S, Ty: Ex->getType()); |
335 | } |
336 | |
337 | /// Checks that all attribute arguments, starting from Sidx, resolve to |
338 | /// a capability object. |
339 | /// \param Sidx The attribute argument index to start checking with. |
340 | /// \param ParamIdxOk Whether an argument can be indexing into a function |
341 | /// parameter list. |
342 | static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D, |
343 | const ParsedAttr &AL, |
344 | SmallVectorImpl<Expr *> &Args, |
345 | unsigned Sidx = 0, |
346 | bool ParamIdxOk = false) { |
347 | if (Sidx == AL.getNumArgs()) { |
348 | // If we don't have any capability arguments, the attribute implicitly |
349 | // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're |
350 | // a non-static method, and that the class is a (scoped) capability. |
351 | const auto *MD = dyn_cast<const CXXMethodDecl>(Val: D); |
352 | if (MD && !MD->isStatic()) { |
353 | const CXXRecordDecl *RD = MD->getParent(); |
354 | // FIXME -- need to check this again on template instantiation |
355 | if (!checkRecordDeclForAttr<CapabilityAttr>(RD) && |
356 | !checkRecordDeclForAttr<ScopedLockableAttr>(RD)) |
357 | S.Diag(Loc: AL.getLoc(), |
358 | DiagID: diag::warn_thread_attribute_not_on_capability_member) |
359 | << AL << MD->getParent(); |
360 | } else { |
361 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_thread_attribute_not_on_non_static_member) |
362 | << AL; |
363 | } |
364 | } |
365 | |
366 | for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) { |
367 | Expr *ArgExp = AL.getArgAsExpr(Arg: Idx); |
368 | |
369 | if (ArgExp->isTypeDependent()) { |
370 | // FIXME -- need to check this again on template instantiation |
371 | Args.push_back(Elt: ArgExp); |
372 | continue; |
373 | } |
374 | |
375 | if (const auto *StrLit = dyn_cast<StringLiteral>(Val: ArgExp)) { |
376 | if (StrLit->getLength() == 0 || |
377 | (StrLit->isOrdinary() && StrLit->getString() == "*" )) { |
378 | // Pass empty strings to the analyzer without warnings. |
379 | // Treat "*" as the universal lock. |
380 | Args.push_back(Elt: ArgExp); |
381 | continue; |
382 | } |
383 | |
384 | // We allow constant strings to be used as a placeholder for expressions |
385 | // that are not valid C++ syntax, but warn that they are ignored. |
386 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_thread_attribute_ignored) << AL; |
387 | Args.push_back(Elt: ArgExp); |
388 | continue; |
389 | } |
390 | |
391 | QualType ArgTy = ArgExp->getType(); |
392 | |
393 | // A pointer to member expression of the form &MyClass::mu is treated |
394 | // specially -- we need to look at the type of the member. |
395 | if (const auto *UOp = dyn_cast<UnaryOperator>(Val: ArgExp)) |
396 | if (UOp->getOpcode() == UO_AddrOf) |
397 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: UOp->getSubExpr())) |
398 | if (DRE->getDecl()->isCXXInstanceMember()) |
399 | ArgTy = DRE->getDecl()->getType(); |
400 | |
401 | // First see if we can just cast to record type, or pointer to record type. |
402 | const RecordType *RT = getRecordType(QT: ArgTy); |
403 | |
404 | // Now check if we index into a record type function param. |
405 | if(!RT && ParamIdxOk) { |
406 | const auto *FD = dyn_cast<FunctionDecl>(Val: D); |
407 | const auto *IL = dyn_cast<IntegerLiteral>(Val: ArgExp); |
408 | if(FD && IL) { |
409 | unsigned int NumParams = FD->getNumParams(); |
410 | llvm::APInt ArgValue = IL->getValue(); |
411 | uint64_t ParamIdxFromOne = ArgValue.getZExtValue(); |
412 | uint64_t ParamIdxFromZero = ParamIdxFromOne - 1; |
413 | if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) { |
414 | S.Diag(Loc: AL.getLoc(), |
415 | DiagID: diag::err_attribute_argument_out_of_bounds_extra_info) |
416 | << AL << Idx + 1 << NumParams; |
417 | continue; |
418 | } |
419 | ArgTy = FD->getParamDecl(i: ParamIdxFromZero)->getType(); |
420 | } |
421 | } |
422 | |
423 | // If the type does not have a capability, see if the components of the |
424 | // expression have capabilities. This allows for writing C code where the |
425 | // capability may be on the type, and the expression is a capability |
426 | // boolean logic expression. Eg) requires_capability(A || B && !C) |
427 | if (!typeHasCapability(S, Ty: ArgTy) && !isCapabilityExpr(S, Ex: ArgExp)) |
428 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_thread_attribute_argument_not_lockable) |
429 | << AL << ArgTy; |
430 | |
431 | Args.push_back(Elt: ArgExp); |
432 | } |
433 | } |
434 | |
435 | static bool checkFunParamsAreScopedLockable(Sema &S, |
436 | const ParmVarDecl *ParamDecl, |
437 | const ParsedAttr &AL) { |
438 | QualType ParamType = ParamDecl->getType(); |
439 | if (const auto *RefType = ParamType->getAs<ReferenceType>(); |
440 | RefType && |
441 | checkRecordTypeForScopedCapability(S, Ty: RefType->getPointeeType())) |
442 | return true; |
443 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_thread_attribute_not_on_scoped_lockable_param) |
444 | << AL; |
445 | return false; |
446 | } |
447 | |
448 | //===----------------------------------------------------------------------===// |
449 | // Attribute Implementations |
450 | //===----------------------------------------------------------------------===// |
451 | |
452 | static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
453 | if (!threadSafetyCheckIsPointer(S, D, AL)) |
454 | return; |
455 | |
456 | D->addAttr(A: ::new (S.Context) PtGuardedVarAttr(S.Context, AL)); |
457 | } |
458 | |
459 | static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
460 | Expr *&Arg) { |
461 | SmallVector<Expr *, 1> Args; |
462 | // check that all arguments are lockable objects |
463 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
464 | unsigned Size = Args.size(); |
465 | if (Size != 1) |
466 | return false; |
467 | |
468 | Arg = Args[0]; |
469 | |
470 | return true; |
471 | } |
472 | |
473 | static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
474 | Expr *Arg = nullptr; |
475 | if (!checkGuardedByAttrCommon(S, D, AL, Arg)) |
476 | return; |
477 | |
478 | D->addAttr(A: ::new (S.Context) GuardedByAttr(S.Context, AL, Arg)); |
479 | } |
480 | |
481 | static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
482 | Expr *Arg = nullptr; |
483 | if (!checkGuardedByAttrCommon(S, D, AL, Arg)) |
484 | return; |
485 | |
486 | if (!threadSafetyCheckIsPointer(S, D, AL)) |
487 | return; |
488 | |
489 | D->addAttr(A: ::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg)); |
490 | } |
491 | |
492 | static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
493 | SmallVectorImpl<Expr *> &Args) { |
494 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
495 | return false; |
496 | |
497 | // Check that this attribute only applies to lockable types. |
498 | QualType QT = cast<ValueDecl>(Val: D)->getType(); |
499 | if (!QT->isDependentType() && !typeHasCapability(S, Ty: QT)) { |
500 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_thread_attribute_decl_not_lockable) << AL; |
501 | return false; |
502 | } |
503 | |
504 | // Check that all arguments are lockable objects. |
505 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
506 | if (Args.empty()) |
507 | return false; |
508 | |
509 | return true; |
510 | } |
511 | |
512 | static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
513 | SmallVector<Expr *, 1> Args; |
514 | if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) |
515 | return; |
516 | |
517 | Expr **StartArg = &Args[0]; |
518 | D->addAttr(A: ::new (S.Context) |
519 | AcquiredAfterAttr(S.Context, AL, StartArg, Args.size())); |
520 | } |
521 | |
522 | static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
523 | SmallVector<Expr *, 1> Args; |
524 | if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) |
525 | return; |
526 | |
527 | Expr **StartArg = &Args[0]; |
528 | D->addAttr(A: ::new (S.Context) |
529 | AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size())); |
530 | } |
531 | |
532 | static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
533 | SmallVectorImpl<Expr *> &Args) { |
534 | // zero or more arguments ok |
535 | // check that all arguments are lockable objects |
536 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args, Sidx: 0, /*ParamIdxOk=*/true); |
537 | |
538 | return true; |
539 | } |
540 | |
541 | /// Checks to be sure that the given parameter number is in bounds, and |
542 | /// is an integral type. Will emit appropriate diagnostics if this returns |
543 | /// false. |
544 | /// |
545 | /// AttrArgNo is used to actually retrieve the argument, so it's base-0. |
546 | template <typename AttrInfo> |
547 | static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI, |
548 | unsigned AttrArgNo) { |
549 | assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument" ); |
550 | Expr *AttrArg = AI.getArgAsExpr(AttrArgNo); |
551 | ParamIdx Idx; |
552 | if (!S.checkFunctionOrMethodParameterIndex(D, AI, AttrArgNo + 1, AttrArg, |
553 | Idx)) |
554 | return false; |
555 | |
556 | QualType ParamTy = getFunctionOrMethodParamType(D, Idx: Idx.getASTIndex()); |
557 | if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) { |
558 | SourceLocation SrcLoc = AttrArg->getBeginLoc(); |
559 | S.Diag(Loc: SrcLoc, DiagID: diag::err_attribute_integers_only) |
560 | << AI << getFunctionOrMethodParamRange(D, Idx: Idx.getASTIndex()); |
561 | return false; |
562 | } |
563 | return true; |
564 | } |
565 | |
566 | static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
567 | if (!AL.checkAtLeastNumArgs(S, Num: 1) || !AL.checkAtMostNumArgs(S, Num: 2)) |
568 | return; |
569 | |
570 | assert(isFuncOrMethodForAttrSubject(D) && hasFunctionProto(D)); |
571 | |
572 | QualType RetTy = getFunctionOrMethodResultType(D); |
573 | if (!RetTy->isPointerType()) { |
574 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_return_pointers_only) << AL; |
575 | return; |
576 | } |
577 | |
578 | const Expr *SizeExpr = AL.getArgAsExpr(Arg: 0); |
579 | int SizeArgNoVal; |
580 | // Parameter indices are 1-indexed, hence Index=1 |
581 | if (!checkPositiveIntArgument(S, AI: AL, Expr: SizeExpr, Val&: SizeArgNoVal, /*Idx=*/1)) |
582 | return; |
583 | if (!checkParamIsIntegerType(S, D, AI: AL, /*AttrArgNo=*/0)) |
584 | return; |
585 | ParamIdx SizeArgNo(SizeArgNoVal, D); |
586 | |
587 | ParamIdx NumberArgNo; |
588 | if (AL.getNumArgs() == 2) { |
589 | const Expr *NumberExpr = AL.getArgAsExpr(Arg: 1); |
590 | int Val; |
591 | // Parameter indices are 1-based, hence Index=2 |
592 | if (!checkPositiveIntArgument(S, AI: AL, Expr: NumberExpr, Val, /*Idx=*/2)) |
593 | return; |
594 | if (!checkParamIsIntegerType(S, D, AI: AL, /*AttrArgNo=*/1)) |
595 | return; |
596 | NumberArgNo = ParamIdx(Val, D); |
597 | } |
598 | |
599 | D->addAttr(A: ::new (S.Context) |
600 | AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo)); |
601 | } |
602 | |
603 | static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
604 | SmallVectorImpl<Expr *> &Args) { |
605 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
606 | return false; |
607 | |
608 | if (!isIntOrBool(Exp: AL.getArgAsExpr(Arg: 0))) { |
609 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
610 | << AL << 1 << AANT_ArgumentIntOrBool; |
611 | return false; |
612 | } |
613 | |
614 | // check that all arguments are lockable objects |
615 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args, Sidx: 1); |
616 | |
617 | return true; |
618 | } |
619 | |
620 | static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
621 | // check that the argument is lockable object |
622 | SmallVector<Expr*, 1> Args; |
623 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
624 | unsigned Size = Args.size(); |
625 | if (Size == 0) |
626 | return; |
627 | |
628 | D->addAttr(A: ::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0])); |
629 | } |
630 | |
631 | static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
632 | if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(Val: D); |
633 | ParmDecl && !checkFunParamsAreScopedLockable(S, ParamDecl: ParmDecl, AL)) |
634 | return; |
635 | |
636 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
637 | return; |
638 | |
639 | // check that all arguments are lockable objects |
640 | SmallVector<Expr*, 1> Args; |
641 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
642 | unsigned Size = Args.size(); |
643 | if (Size == 0) |
644 | return; |
645 | Expr **StartArg = &Args[0]; |
646 | |
647 | D->addAttr(A: ::new (S.Context) |
648 | LocksExcludedAttr(S.Context, AL, StartArg, Size)); |
649 | } |
650 | |
651 | static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL, |
652 | Expr *&Cond, StringRef &Msg) { |
653 | Cond = AL.getArgAsExpr(Arg: 0); |
654 | if (!Cond->isTypeDependent()) { |
655 | ExprResult Converted = S.PerformContextuallyConvertToBool(From: Cond); |
656 | if (Converted.isInvalid()) |
657 | return false; |
658 | Cond = Converted.get(); |
659 | } |
660 | |
661 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 1, Str&: Msg)) |
662 | return false; |
663 | |
664 | if (Msg.empty()) |
665 | Msg = "<no message provided>" ; |
666 | |
667 | SmallVector<PartialDiagnosticAt, 8> Diags; |
668 | if (isa<FunctionDecl>(Val: D) && !Cond->isValueDependent() && |
669 | !Expr::isPotentialConstantExprUnevaluated(E: Cond, FD: cast<FunctionDecl>(Val: D), |
670 | Diags)) { |
671 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attr_cond_never_constant_expr) << AL; |
672 | for (const PartialDiagnosticAt &PDiag : Diags) |
673 | S.Diag(Loc: PDiag.first, PD: PDiag.second); |
674 | return false; |
675 | } |
676 | return true; |
677 | } |
678 | |
679 | static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
680 | S.Diag(Loc: AL.getLoc(), DiagID: diag::ext_clang_enable_if); |
681 | |
682 | Expr *Cond; |
683 | StringRef Msg; |
684 | if (checkFunctionConditionAttr(S, D, AL, Cond, Msg)) |
685 | D->addAttr(A: ::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg)); |
686 | } |
687 | |
688 | static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
689 | StringRef NewUserDiagnostic; |
690 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: NewUserDiagnostic)) |
691 | return; |
692 | if (ErrorAttr *EA = S.mergeErrorAttr(D, CI: AL, NewUserDiagnostic)) |
693 | D->addAttr(A: EA); |
694 | } |
695 | |
696 | static void handleExcludeFromExplicitInstantiationAttr(Sema &S, Decl *D, |
697 | const ParsedAttr &AL) { |
698 | const auto *PD = isa<CXXRecordDecl>(Val: D) |
699 | ? cast<DeclContext>(Val: D) |
700 | : D->getDeclContext()->getRedeclContext(); |
701 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: PD); RD && RD->isLocalClass()) { |
702 | S.Diag(Loc: AL.getLoc(), |
703 | DiagID: diag::warn_attribute_exclude_from_explicit_instantiation_local_class) |
704 | << AL << /*IsMember=*/!isa<CXXRecordDecl>(Val: D); |
705 | return; |
706 | } |
707 | D->addAttr(A: ::new (S.Context) |
708 | ExcludeFromExplicitInstantiationAttr(S.Context, AL)); |
709 | } |
710 | |
711 | namespace { |
712 | /// Determines if a given Expr references any of the given function's |
713 | /// ParmVarDecls, or the function's implicit `this` parameter (if applicable). |
714 | class ArgumentDependenceChecker : public DynamicRecursiveASTVisitor { |
715 | #ifndef NDEBUG |
716 | const CXXRecordDecl *ClassType; |
717 | #endif |
718 | llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms; |
719 | bool Result; |
720 | |
721 | public: |
722 | ArgumentDependenceChecker(const FunctionDecl *FD) { |
723 | #ifndef NDEBUG |
724 | if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) |
725 | ClassType = MD->getParent(); |
726 | else |
727 | ClassType = nullptr; |
728 | #endif |
729 | Parms.insert(I: FD->param_begin(), E: FD->param_end()); |
730 | } |
731 | |
732 | bool referencesArgs(Expr *E) { |
733 | Result = false; |
734 | TraverseStmt(S: E); |
735 | return Result; |
736 | } |
737 | |
738 | bool VisitCXXThisExpr(CXXThisExpr *E) override { |
739 | assert(E->getType()->getPointeeCXXRecordDecl() == ClassType && |
740 | "`this` doesn't refer to the enclosing class?" ); |
741 | Result = true; |
742 | return false; |
743 | } |
744 | |
745 | bool VisitDeclRefExpr(DeclRefExpr *DRE) override { |
746 | if (const auto *PVD = dyn_cast<ParmVarDecl>(Val: DRE->getDecl())) |
747 | if (Parms.count(Ptr: PVD)) { |
748 | Result = true; |
749 | return false; |
750 | } |
751 | return true; |
752 | } |
753 | }; |
754 | } |
755 | |
756 | static void handleDiagnoseAsBuiltinAttr(Sema &S, Decl *D, |
757 | const ParsedAttr &AL) { |
758 | const auto *DeclFD = cast<FunctionDecl>(Val: D); |
759 | |
760 | if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(Val: DeclFD)) |
761 | if (!MethodDecl->isStatic()) { |
762 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_no_member_function) << AL; |
763 | return; |
764 | } |
765 | |
766 | auto DiagnoseType = [&](unsigned Index, AttributeArgumentNType T) { |
767 | SourceLocation Loc = [&]() { |
768 | auto Union = AL.getArg(Arg: Index - 1); |
769 | if (auto *E = dyn_cast<Expr *>(Val&: Union)) |
770 | return E->getBeginLoc(); |
771 | return cast<IdentifierLoc *>(Val&: Union)->getLoc(); |
772 | }(); |
773 | |
774 | S.Diag(Loc, DiagID: diag::err_attribute_argument_n_type) << AL << Index << T; |
775 | }; |
776 | |
777 | FunctionDecl *AttrFD = [&]() -> FunctionDecl * { |
778 | if (!AL.isArgExpr(Arg: 0)) |
779 | return nullptr; |
780 | auto *F = dyn_cast_if_present<DeclRefExpr>(Val: AL.getArgAsExpr(Arg: 0)); |
781 | if (!F) |
782 | return nullptr; |
783 | return dyn_cast_if_present<FunctionDecl>(Val: F->getFoundDecl()); |
784 | }(); |
785 | |
786 | if (!AttrFD || !AttrFD->getBuiltinID(ConsiderWrapperFunctions: true)) { |
787 | DiagnoseType(1, AANT_ArgumentBuiltinFunction); |
788 | return; |
789 | } |
790 | |
791 | if (AttrFD->getNumParams() != AL.getNumArgs() - 1) { |
792 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments_for) |
793 | << AL << AttrFD << AttrFD->getNumParams(); |
794 | return; |
795 | } |
796 | |
797 | SmallVector<unsigned, 8> Indices; |
798 | |
799 | for (unsigned I = 1; I < AL.getNumArgs(); ++I) { |
800 | if (!AL.isArgExpr(Arg: I)) { |
801 | DiagnoseType(I + 1, AANT_ArgumentIntegerConstant); |
802 | return; |
803 | } |
804 | |
805 | const Expr *IndexExpr = AL.getArgAsExpr(Arg: I); |
806 | uint32_t Index; |
807 | |
808 | if (!S.checkUInt32Argument(AI: AL, Expr: IndexExpr, Val&: Index, Idx: I + 1, StrictlyUnsigned: false)) |
809 | return; |
810 | |
811 | if (Index > DeclFD->getNumParams()) { |
812 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_bounds_for_function) |
813 | << AL << Index << DeclFD << DeclFD->getNumParams(); |
814 | return; |
815 | } |
816 | |
817 | QualType T1 = AttrFD->getParamDecl(i: I - 1)->getType(); |
818 | QualType T2 = DeclFD->getParamDecl(i: Index - 1)->getType(); |
819 | |
820 | if (T1.getCanonicalType().getUnqualifiedType() != |
821 | T2.getCanonicalType().getUnqualifiedType()) { |
822 | S.Diag(Loc: IndexExpr->getBeginLoc(), DiagID: diag::err_attribute_parameter_types) |
823 | << AL << Index << DeclFD << T2 << I << AttrFD << T1; |
824 | return; |
825 | } |
826 | |
827 | Indices.push_back(Elt: Index - 1); |
828 | } |
829 | |
830 | D->addAttr(A: ::new (S.Context) DiagnoseAsBuiltinAttr( |
831 | S.Context, AL, AttrFD, Indices.data(), Indices.size())); |
832 | } |
833 | |
834 | static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
835 | S.Diag(Loc: AL.getLoc(), DiagID: diag::ext_clang_diagnose_if); |
836 | |
837 | Expr *Cond; |
838 | StringRef Msg; |
839 | if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg)) |
840 | return; |
841 | |
842 | StringRef DefaultSevStr; |
843 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 2, Str&: DefaultSevStr)) |
844 | return; |
845 | |
846 | DiagnoseIfAttr::DefaultSeverity DefaultSev; |
847 | if (!DiagnoseIfAttr::ConvertStrToDefaultSeverity(Val: DefaultSevStr, Out&: DefaultSev)) { |
848 | S.Diag(Loc: AL.getArgAsExpr(Arg: 2)->getBeginLoc(), |
849 | DiagID: diag::err_diagnose_if_invalid_diagnostic_type); |
850 | return; |
851 | } |
852 | |
853 | StringRef WarningGroup; |
854 | if (AL.getNumArgs() > 3) { |
855 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 3, Str&: WarningGroup)) |
856 | return; |
857 | if (WarningGroup.empty() || |
858 | !S.getDiagnostics().getDiagnosticIDs()->getGroupForWarningOption( |
859 | WarningGroup)) { |
860 | S.Diag(Loc: AL.getArgAsExpr(Arg: 3)->getBeginLoc(), |
861 | DiagID: diag::err_diagnose_if_unknown_warning) |
862 | << WarningGroup; |
863 | return; |
864 | } |
865 | } |
866 | |
867 | bool ArgDependent = false; |
868 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
869 | ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(E: Cond); |
870 | D->addAttr(A: ::new (S.Context) DiagnoseIfAttr( |
871 | S.Context, AL, Cond, Msg, DefaultSev, WarningGroup, ArgDependent, |
872 | cast<NamedDecl>(Val: D))); |
873 | } |
874 | |
875 | static void handleCFIUncheckedCalleeAttr(Sema &S, Decl *D, |
876 | const ParsedAttr &Attrs) { |
877 | if (hasDeclarator(D)) |
878 | return; |
879 | |
880 | if (!isa<ObjCMethodDecl>(Val: D)) { |
881 | S.Diag(Loc: Attrs.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
882 | << Attrs << Attrs.isRegularKeywordAttribute() |
883 | << ExpectedFunctionOrMethod; |
884 | return; |
885 | } |
886 | |
887 | D->addAttr(A: ::new (S.Context) CFIUncheckedCalleeAttr(S.Context, Attrs)); |
888 | } |
889 | |
890 | static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
891 | static constexpr const StringRef kWildcard = "*" ; |
892 | |
893 | llvm::SmallVector<StringRef, 16> Names; |
894 | bool HasWildcard = false; |
895 | |
896 | const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) { |
897 | if (Name == kWildcard) |
898 | HasWildcard = true; |
899 | Names.push_back(Elt: Name); |
900 | }; |
901 | |
902 | // Add previously defined attributes. |
903 | if (const auto *NBA = D->getAttr<NoBuiltinAttr>()) |
904 | for (StringRef BuiltinName : NBA->builtinNames()) |
905 | AddBuiltinName(BuiltinName); |
906 | |
907 | // Add current attributes. |
908 | if (AL.getNumArgs() == 0) |
909 | AddBuiltinName(kWildcard); |
910 | else |
911 | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
912 | StringRef BuiltinName; |
913 | SourceLocation LiteralLoc; |
914 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: I, Str&: BuiltinName, ArgLocation: &LiteralLoc)) |
915 | return; |
916 | |
917 | if (Builtin::Context::isBuiltinFunc(Name: BuiltinName)) |
918 | AddBuiltinName(BuiltinName); |
919 | else |
920 | S.Diag(Loc: LiteralLoc, DiagID: diag::warn_attribute_no_builtin_invalid_builtin_name) |
921 | << BuiltinName << AL; |
922 | } |
923 | |
924 | // Repeating the same attribute is fine. |
925 | llvm::sort(C&: Names); |
926 | Names.erase(CS: llvm::unique(R&: Names), CE: Names.end()); |
927 | |
928 | // Empty no_builtin must be on its own. |
929 | if (HasWildcard && Names.size() > 1) |
930 | S.Diag(Loc: D->getLocation(), |
931 | DiagID: diag::err_attribute_no_builtin_wildcard_or_builtin_name) |
932 | << AL; |
933 | |
934 | if (D->hasAttr<NoBuiltinAttr>()) |
935 | D->dropAttr<NoBuiltinAttr>(); |
936 | D->addAttr(A: ::new (S.Context) |
937 | NoBuiltinAttr(S.Context, AL, Names.data(), Names.size())); |
938 | } |
939 | |
940 | static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
941 | if (D->hasAttr<PassObjectSizeAttr>()) { |
942 | S.Diag(Loc: D->getBeginLoc(), DiagID: diag::err_attribute_only_once_per_parameter) << AL; |
943 | return; |
944 | } |
945 | |
946 | Expr *E = AL.getArgAsExpr(Arg: 0); |
947 | uint32_t Type; |
948 | if (!S.checkUInt32Argument(AI: AL, Expr: E, Val&: Type, /*Idx=*/1)) |
949 | return; |
950 | |
951 | // pass_object_size's argument is passed in as the second argument of |
952 | // __builtin_object_size. So, it has the same constraints as that second |
953 | // argument; namely, it must be in the range [0, 3]. |
954 | if (Type > 3) { |
955 | S.Diag(Loc: E->getBeginLoc(), DiagID: diag::err_attribute_argument_out_of_range) |
956 | << AL << 0 << 3 << E->getSourceRange(); |
957 | return; |
958 | } |
959 | |
960 | // pass_object_size is only supported on constant pointer parameters; as a |
961 | // kindness to users, we allow the parameter to be non-const for declarations. |
962 | // At this point, we have no clue if `D` belongs to a function declaration or |
963 | // definition, so we defer the constness check until later. |
964 | if (!cast<ParmVarDecl>(Val: D)->getType()->isPointerType()) { |
965 | S.Diag(Loc: D->getBeginLoc(), DiagID: diag::err_attribute_pointers_only) << AL << 1; |
966 | return; |
967 | } |
968 | |
969 | D->addAttr(A: ::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type)); |
970 | } |
971 | |
972 | static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
973 | ConsumableAttr::ConsumedState DefaultState; |
974 | |
975 | if (AL.isArgIdent(Arg: 0)) { |
976 | IdentifierLoc *IL = AL.getArgAsIdent(Arg: 0); |
977 | if (!ConsumableAttr::ConvertStrToConsumedState( |
978 | Val: IL->getIdentifierInfo()->getName(), Out&: DefaultState)) { |
979 | S.Diag(Loc: IL->getLoc(), DiagID: diag::warn_attribute_type_not_supported) |
980 | << AL << IL->getIdentifierInfo(); |
981 | return; |
982 | } |
983 | } else { |
984 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
985 | << AL << AANT_ArgumentIdentifier; |
986 | return; |
987 | } |
988 | |
989 | D->addAttr(A: ::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState)); |
990 | } |
991 | |
992 | static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD, |
993 | const ParsedAttr &AL) { |
994 | QualType ThisType = MD->getFunctionObjectParameterType(); |
995 | |
996 | if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) { |
997 | if (!RD->hasAttr<ConsumableAttr>()) { |
998 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attr_on_unconsumable_class) << RD; |
999 | |
1000 | return false; |
1001 | } |
1002 | } |
1003 | |
1004 | return true; |
1005 | } |
1006 | |
1007 | static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1008 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
1009 | return; |
1010 | |
1011 | if (!checkForConsumableClass(S, MD: cast<CXXMethodDecl>(Val: D), AL)) |
1012 | return; |
1013 | |
1014 | SmallVector<CallableWhenAttr::ConsumedState, 3> States; |
1015 | for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) { |
1016 | CallableWhenAttr::ConsumedState CallableState; |
1017 | |
1018 | StringRef StateString; |
1019 | SourceLocation Loc; |
1020 | if (AL.isArgIdent(Arg: ArgIndex)) { |
1021 | IdentifierLoc *Ident = AL.getArgAsIdent(Arg: ArgIndex); |
1022 | StateString = Ident->getIdentifierInfo()->getName(); |
1023 | Loc = Ident->getLoc(); |
1024 | } else { |
1025 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: ArgIndex, Str&: StateString, ArgLocation: &Loc)) |
1026 | return; |
1027 | } |
1028 | |
1029 | if (!CallableWhenAttr::ConvertStrToConsumedState(Val: StateString, |
1030 | Out&: CallableState)) { |
1031 | S.Diag(Loc, DiagID: diag::warn_attribute_type_not_supported) << AL << StateString; |
1032 | return; |
1033 | } |
1034 | |
1035 | States.push_back(Elt: CallableState); |
1036 | } |
1037 | |
1038 | D->addAttr(A: ::new (S.Context) |
1039 | CallableWhenAttr(S.Context, AL, States.data(), States.size())); |
1040 | } |
1041 | |
1042 | static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1043 | ParamTypestateAttr::ConsumedState ParamState; |
1044 | |
1045 | if (AL.isArgIdent(Arg: 0)) { |
1046 | IdentifierLoc *Ident = AL.getArgAsIdent(Arg: 0); |
1047 | StringRef StateString = Ident->getIdentifierInfo()->getName(); |
1048 | |
1049 | if (!ParamTypestateAttr::ConvertStrToConsumedState(Val: StateString, |
1050 | Out&: ParamState)) { |
1051 | S.Diag(Loc: Ident->getLoc(), DiagID: diag::warn_attribute_type_not_supported) |
1052 | << AL << StateString; |
1053 | return; |
1054 | } |
1055 | } else { |
1056 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
1057 | << AL << AANT_ArgumentIdentifier; |
1058 | return; |
1059 | } |
1060 | |
1061 | // FIXME: This check is currently being done in the analysis. It can be |
1062 | // enabled here only after the parser propagates attributes at |
1063 | // template specialization definition, not declaration. |
1064 | //QualType ReturnType = cast<ParmVarDecl>(D)->getType(); |
1065 | //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); |
1066 | // |
1067 | //if (!RD || !RD->hasAttr<ConsumableAttr>()) { |
1068 | // S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) << |
1069 | // ReturnType.getAsString(); |
1070 | // return; |
1071 | //} |
1072 | |
1073 | D->addAttr(A: ::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState)); |
1074 | } |
1075 | |
1076 | static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1077 | ReturnTypestateAttr::ConsumedState ReturnState; |
1078 | |
1079 | if (AL.isArgIdent(Arg: 0)) { |
1080 | IdentifierLoc *IL = AL.getArgAsIdent(Arg: 0); |
1081 | if (!ReturnTypestateAttr::ConvertStrToConsumedState( |
1082 | Val: IL->getIdentifierInfo()->getName(), Out&: ReturnState)) { |
1083 | S.Diag(Loc: IL->getLoc(), DiagID: diag::warn_attribute_type_not_supported) |
1084 | << AL << IL->getIdentifierInfo(); |
1085 | return; |
1086 | } |
1087 | } else { |
1088 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
1089 | << AL << AANT_ArgumentIdentifier; |
1090 | return; |
1091 | } |
1092 | |
1093 | // FIXME: This check is currently being done in the analysis. It can be |
1094 | // enabled here only after the parser propagates attributes at |
1095 | // template specialization definition, not declaration. |
1096 | // QualType ReturnType; |
1097 | // |
1098 | // if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) { |
1099 | // ReturnType = Param->getType(); |
1100 | // |
1101 | //} else if (const CXXConstructorDecl *Constructor = |
1102 | // dyn_cast<CXXConstructorDecl>(D)) { |
1103 | // ReturnType = Constructor->getFunctionObjectParameterType(); |
1104 | // |
1105 | //} else { |
1106 | // |
1107 | // ReturnType = cast<FunctionDecl>(D)->getCallResultType(); |
1108 | //} |
1109 | // |
1110 | // const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); |
1111 | // |
1112 | // if (!RD || !RD->hasAttr<ConsumableAttr>()) { |
1113 | // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) << |
1114 | // ReturnType.getAsString(); |
1115 | // return; |
1116 | //} |
1117 | |
1118 | D->addAttr(A: ::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState)); |
1119 | } |
1120 | |
1121 | static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1122 | if (!checkForConsumableClass(S, MD: cast<CXXMethodDecl>(Val: D), AL)) |
1123 | return; |
1124 | |
1125 | SetTypestateAttr::ConsumedState NewState; |
1126 | if (AL.isArgIdent(Arg: 0)) { |
1127 | IdentifierLoc *Ident = AL.getArgAsIdent(Arg: 0); |
1128 | StringRef Param = Ident->getIdentifierInfo()->getName(); |
1129 | if (!SetTypestateAttr::ConvertStrToConsumedState(Val: Param, Out&: NewState)) { |
1130 | S.Diag(Loc: Ident->getLoc(), DiagID: diag::warn_attribute_type_not_supported) |
1131 | << AL << Param; |
1132 | return; |
1133 | } |
1134 | } else { |
1135 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
1136 | << AL << AANT_ArgumentIdentifier; |
1137 | return; |
1138 | } |
1139 | |
1140 | D->addAttr(A: ::new (S.Context) SetTypestateAttr(S.Context, AL, NewState)); |
1141 | } |
1142 | |
1143 | static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1144 | if (!checkForConsumableClass(S, MD: cast<CXXMethodDecl>(Val: D), AL)) |
1145 | return; |
1146 | |
1147 | TestTypestateAttr::ConsumedState TestState; |
1148 | if (AL.isArgIdent(Arg: 0)) { |
1149 | IdentifierLoc *Ident = AL.getArgAsIdent(Arg: 0); |
1150 | StringRef Param = Ident->getIdentifierInfo()->getName(); |
1151 | if (!TestTypestateAttr::ConvertStrToConsumedState(Val: Param, Out&: TestState)) { |
1152 | S.Diag(Loc: Ident->getLoc(), DiagID: diag::warn_attribute_type_not_supported) |
1153 | << AL << Param; |
1154 | return; |
1155 | } |
1156 | } else { |
1157 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
1158 | << AL << AANT_ArgumentIdentifier; |
1159 | return; |
1160 | } |
1161 | |
1162 | D->addAttr(A: ::new (S.Context) TestTypestateAttr(S.Context, AL, TestState)); |
1163 | } |
1164 | |
1165 | static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1166 | // Remember this typedef decl, we will need it later for diagnostics. |
1167 | if (isa<TypedefNameDecl>(Val: D)) |
1168 | S.ExtVectorDecls.push_back(LocalValue: cast<TypedefNameDecl>(Val: D)); |
1169 | } |
1170 | |
1171 | static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1172 | if (auto *TD = dyn_cast<TagDecl>(Val: D)) |
1173 | TD->addAttr(A: ::new (S.Context) PackedAttr(S.Context, AL)); |
1174 | else if (auto *FD = dyn_cast<FieldDecl>(Val: D)) { |
1175 | bool BitfieldByteAligned = (!FD->getType()->isDependentType() && |
1176 | !FD->getType()->isIncompleteType() && |
1177 | FD->isBitField() && |
1178 | S.Context.getTypeAlign(T: FD->getType()) <= 8); |
1179 | |
1180 | if (S.getASTContext().getTargetInfo().getTriple().isPS()) { |
1181 | if (BitfieldByteAligned) |
1182 | // The PS4/PS5 targets need to maintain ABI backwards compatibility. |
1183 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_ignored_for_field_of_type) |
1184 | << AL << FD->getType(); |
1185 | else |
1186 | FD->addAttr(A: ::new (S.Context) PackedAttr(S.Context, AL)); |
1187 | } else { |
1188 | // Report warning about changed offset in the newer compiler versions. |
1189 | if (BitfieldByteAligned) |
1190 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_packed_for_bitfield); |
1191 | |
1192 | FD->addAttr(A: ::new (S.Context) PackedAttr(S.Context, AL)); |
1193 | } |
1194 | |
1195 | } else |
1196 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_ignored) << AL; |
1197 | } |
1198 | |
1199 | static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) { |
1200 | auto *RD = cast<CXXRecordDecl>(Val: D); |
1201 | ClassTemplateDecl *CTD = RD->getDescribedClassTemplate(); |
1202 | assert(CTD && "attribute does not appertain to this declaration" ); |
1203 | |
1204 | ParsedType PT = AL.getTypeArg(); |
1205 | TypeSourceInfo *TSI = nullptr; |
1206 | QualType T = S.GetTypeFromParser(Ty: PT, TInfo: &TSI); |
1207 | if (!TSI) |
1208 | TSI = S.Context.getTrivialTypeSourceInfo(T, Loc: AL.getLoc()); |
1209 | |
1210 | if (!T.hasQualifiers() && T->isTypedefNameType()) { |
1211 | // Find the template name, if this type names a template specialization. |
1212 | const TemplateDecl *Template = nullptr; |
1213 | if (const auto *CTSD = dyn_cast_if_present<ClassTemplateSpecializationDecl>( |
1214 | Val: T->getAsCXXRecordDecl())) { |
1215 | Template = CTSD->getSpecializedTemplate(); |
1216 | } else if (const auto *TST = T->getAs<TemplateSpecializationType>()) { |
1217 | while (TST && TST->isTypeAlias()) |
1218 | TST = TST->getAliasedType()->getAs<TemplateSpecializationType>(); |
1219 | if (TST) |
1220 | Template = TST->getTemplateName().getAsTemplateDecl(); |
1221 | } |
1222 | |
1223 | if (Template && declaresSameEntity(D1: Template, D2: CTD)) { |
1224 | D->addAttr(A: ::new (S.Context) PreferredNameAttr(S.Context, AL, TSI)); |
1225 | return; |
1226 | } |
1227 | } |
1228 | |
1229 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_preferred_name_arg_invalid) |
1230 | << T << CTD; |
1231 | if (const auto *TT = T->getAs<TypedefType>()) |
1232 | S.Diag(Loc: TT->getDecl()->getLocation(), DiagID: diag::note_entity_declared_at) |
1233 | << TT->getDecl(); |
1234 | } |
1235 | |
1236 | static void handleNoSpecializations(Sema &S, Decl *D, const ParsedAttr &AL) { |
1237 | StringRef Message; |
1238 | if (AL.getNumArgs() != 0) |
1239 | S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: Message); |
1240 | D->getDescribedTemplate()->addAttr( |
1241 | A: NoSpecializationsAttr::Create(Ctx&: S.Context, Message, CommonInfo: AL)); |
1242 | } |
1243 | |
1244 | bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) { |
1245 | if (T->isDependentType()) |
1246 | return true; |
1247 | if (RefOkay) { |
1248 | if (T->isReferenceType()) |
1249 | return true; |
1250 | } else { |
1251 | T = T.getNonReferenceType(); |
1252 | } |
1253 | |
1254 | // The nonnull attribute, and other similar attributes, can be applied to a |
1255 | // transparent union that contains a pointer type. |
1256 | if (const RecordType *UT = T->getAsUnionType()) { |
1257 | if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) { |
1258 | RecordDecl *UD = UT->getDecl(); |
1259 | for (const auto *I : UD->fields()) { |
1260 | QualType QT = I->getType(); |
1261 | if (QT->isAnyPointerType() || QT->isBlockPointerType()) |
1262 | return true; |
1263 | } |
1264 | } |
1265 | } |
1266 | |
1267 | return T->isAnyPointerType() || T->isBlockPointerType(); |
1268 | } |
1269 | |
1270 | static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL, |
1271 | SourceRange AttrParmRange, |
1272 | SourceRange TypeRange, |
1273 | bool isReturnValue = false) { |
1274 | if (!S.isValidPointerAttrType(T)) { |
1275 | if (isReturnValue) |
1276 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_return_pointers_only) |
1277 | << AL << AttrParmRange << TypeRange; |
1278 | else |
1279 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_pointers_only) |
1280 | << AL << AttrParmRange << TypeRange << 0; |
1281 | return false; |
1282 | } |
1283 | return true; |
1284 | } |
1285 | |
1286 | static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1287 | SmallVector<ParamIdx, 8> NonNullArgs; |
1288 | for (unsigned I = 0; I < AL.getNumArgs(); ++I) { |
1289 | Expr *Ex = AL.getArgAsExpr(Arg: I); |
1290 | ParamIdx Idx; |
1291 | if (!S.checkFunctionOrMethodParameterIndex( |
1292 | D, AI: AL, AttrArgNum: I + 1, IdxExpr: Ex, Idx, |
1293 | /*CanIndexImplicitThis=*/false, |
1294 | /*CanIndexVariadicArguments=*/true)) |
1295 | return; |
1296 | |
1297 | // Is the function argument a pointer type? |
1298 | if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) && |
1299 | !attrNonNullArgCheck( |
1300 | S, T: getFunctionOrMethodParamType(D, Idx: Idx.getASTIndex()), AL, |
1301 | AttrParmRange: Ex->getSourceRange(), |
1302 | TypeRange: getFunctionOrMethodParamRange(D, Idx: Idx.getASTIndex()))) |
1303 | continue; |
1304 | |
1305 | NonNullArgs.push_back(Elt: Idx); |
1306 | } |
1307 | |
1308 | // If no arguments were specified to __attribute__((nonnull)) then all pointer |
1309 | // arguments have a nonnull attribute; warn if there aren't any. Skip this |
1310 | // check if the attribute came from a macro expansion or a template |
1311 | // instantiation. |
1312 | if (NonNullArgs.empty() && AL.getLoc().isFileID() && |
1313 | !S.inTemplateInstantiation()) { |
1314 | bool AnyPointers = isFunctionOrMethodVariadic(D); |
1315 | for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); |
1316 | I != E && !AnyPointers; ++I) { |
1317 | QualType T = getFunctionOrMethodParamType(D, Idx: I); |
1318 | if (S.isValidPointerAttrType(T)) |
1319 | AnyPointers = true; |
1320 | } |
1321 | |
1322 | if (!AnyPointers) |
1323 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_nonnull_no_pointers); |
1324 | } |
1325 | |
1326 | ParamIdx *Start = NonNullArgs.data(); |
1327 | unsigned Size = NonNullArgs.size(); |
1328 | llvm::array_pod_sort(Start, End: Start + Size); |
1329 | D->addAttr(A: ::new (S.Context) NonNullAttr(S.Context, AL, Start, Size)); |
1330 | } |
1331 | |
1332 | static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D, |
1333 | const ParsedAttr &AL) { |
1334 | if (AL.getNumArgs() > 0) { |
1335 | if (D->getFunctionType()) { |
1336 | handleNonNullAttr(S, D, AL); |
1337 | } else { |
1338 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_nonnull_parm_no_args) |
1339 | << D->getSourceRange(); |
1340 | } |
1341 | return; |
1342 | } |
1343 | |
1344 | // Is the argument a pointer type? |
1345 | if (!attrNonNullArgCheck(S, T: D->getType(), AL, AttrParmRange: SourceRange(), |
1346 | TypeRange: D->getSourceRange())) |
1347 | return; |
1348 | |
1349 | D->addAttr(A: ::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0)); |
1350 | } |
1351 | |
1352 | static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1353 | QualType ResultType = getFunctionOrMethodResultType(D); |
1354 | SourceRange SR = getFunctionOrMethodResultSourceRange(D); |
1355 | if (!attrNonNullArgCheck(S, T: ResultType, AL, AttrParmRange: SourceRange(), TypeRange: SR, |
1356 | /* isReturnValue */ true)) |
1357 | return; |
1358 | |
1359 | D->addAttr(A: ::new (S.Context) ReturnsNonNullAttr(S.Context, AL)); |
1360 | } |
1361 | |
1362 | static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1363 | if (D->isInvalidDecl()) |
1364 | return; |
1365 | |
1366 | // noescape only applies to pointer types. |
1367 | QualType T = cast<ParmVarDecl>(Val: D)->getType(); |
1368 | if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) { |
1369 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_pointers_only) |
1370 | << AL << AL.getRange() << 0; |
1371 | return; |
1372 | } |
1373 | |
1374 | D->addAttr(A: ::new (S.Context) NoEscapeAttr(S.Context, AL)); |
1375 | } |
1376 | |
1377 | static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1378 | Expr *E = AL.getArgAsExpr(Arg: 0), |
1379 | *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(Arg: 1) : nullptr; |
1380 | S.AddAssumeAlignedAttr(D, CI: AL, E, OE); |
1381 | } |
1382 | |
1383 | static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1384 | S.AddAllocAlignAttr(D, CI: AL, ParamExpr: AL.getArgAsExpr(Arg: 0)); |
1385 | } |
1386 | |
1387 | void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, |
1388 | Expr *OE) { |
1389 | QualType ResultType = getFunctionOrMethodResultType(D); |
1390 | SourceRange SR = getFunctionOrMethodResultSourceRange(D); |
1391 | SourceLocation AttrLoc = CI.getLoc(); |
1392 | |
1393 | if (!isValidPointerAttrType(T: ResultType, /* RefOkay */ true)) { |
1394 | Diag(Loc: AttrLoc, DiagID: diag::warn_attribute_return_pointers_refs_only) |
1395 | << CI << CI.getRange() << SR; |
1396 | return; |
1397 | } |
1398 | |
1399 | if (!E->isValueDependent()) { |
1400 | std::optional<llvm::APSInt> I = llvm::APSInt(64); |
1401 | if (!(I = E->getIntegerConstantExpr(Ctx: Context))) { |
1402 | if (OE) |
1403 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_argument_n_type) |
1404 | << CI << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
1405 | else |
1406 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_argument_type) |
1407 | << CI << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
1408 | return; |
1409 | } |
1410 | |
1411 | if (!I->isPowerOf2()) { |
1412 | Diag(Loc: AttrLoc, DiagID: diag::err_alignment_not_power_of_two) |
1413 | << E->getSourceRange(); |
1414 | return; |
1415 | } |
1416 | |
1417 | if (*I > Sema::MaximumAlignment) |
1418 | Diag(Loc: CI.getLoc(), DiagID: diag::warn_assume_aligned_too_great) |
1419 | << CI.getRange() << Sema::MaximumAlignment; |
1420 | } |
1421 | |
1422 | if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Ctx: Context)) { |
1423 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_argument_n_type) |
1424 | << CI << 2 << AANT_ArgumentIntegerConstant << OE->getSourceRange(); |
1425 | return; |
1426 | } |
1427 | |
1428 | D->addAttr(A: ::new (Context) AssumeAlignedAttr(Context, CI, E, OE)); |
1429 | } |
1430 | |
1431 | void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI, |
1432 | Expr *ParamExpr) { |
1433 | QualType ResultType = getFunctionOrMethodResultType(D); |
1434 | SourceLocation AttrLoc = CI.getLoc(); |
1435 | |
1436 | if (!isValidPointerAttrType(T: ResultType, /* RefOkay */ true)) { |
1437 | Diag(Loc: AttrLoc, DiagID: diag::warn_attribute_return_pointers_refs_only) |
1438 | << CI << CI.getRange() << getFunctionOrMethodResultSourceRange(D); |
1439 | return; |
1440 | } |
1441 | |
1442 | ParamIdx Idx; |
1443 | const auto *FuncDecl = cast<FunctionDecl>(Val: D); |
1444 | if (!checkFunctionOrMethodParameterIndex(D: FuncDecl, AI: CI, |
1445 | /*AttrArgNum=*/1, IdxExpr: ParamExpr, Idx)) |
1446 | return; |
1447 | |
1448 | QualType Ty = getFunctionOrMethodParamType(D, Idx: Idx.getASTIndex()); |
1449 | if (!Ty->isDependentType() && !Ty->isIntegralType(Ctx: Context) && |
1450 | !Ty->isAlignValT()) { |
1451 | Diag(Loc: ParamExpr->getBeginLoc(), DiagID: diag::err_attribute_integers_only) |
1452 | << CI << FuncDecl->getParamDecl(i: Idx.getASTIndex())->getSourceRange(); |
1453 | return; |
1454 | } |
1455 | |
1456 | D->addAttr(A: ::new (Context) AllocAlignAttr(Context, CI, Idx)); |
1457 | } |
1458 | |
1459 | /// Normalize the attribute, __foo__ becomes foo. |
1460 | /// Returns true if normalization was applied. |
1461 | static bool normalizeName(StringRef &AttrName) { |
1462 | if (AttrName.size() > 4 && AttrName.starts_with(Prefix: "__" ) && |
1463 | AttrName.ends_with(Suffix: "__" )) { |
1464 | AttrName = AttrName.drop_front(N: 2).drop_back(N: 2); |
1465 | return true; |
1466 | } |
1467 | return false; |
1468 | } |
1469 | |
1470 | static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1471 | // This attribute must be applied to a function declaration. The first |
1472 | // argument to the attribute must be an identifier, the name of the resource, |
1473 | // for example: malloc. The following arguments must be argument indexes, the |
1474 | // arguments must be of integer type for Returns, otherwise of pointer type. |
1475 | // The difference between Holds and Takes is that a pointer may still be used |
1476 | // after being held. free() should be __attribute((ownership_takes)), whereas |
1477 | // a list append function may well be __attribute((ownership_holds)). |
1478 | |
1479 | if (!AL.isArgIdent(Arg: 0)) { |
1480 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
1481 | << AL << 1 << AANT_ArgumentIdentifier; |
1482 | return; |
1483 | } |
1484 | |
1485 | // Figure out our Kind. |
1486 | OwnershipAttr::OwnershipKind K = |
1487 | OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind(); |
1488 | |
1489 | // Check arguments. |
1490 | switch (K) { |
1491 | case OwnershipAttr::Takes: |
1492 | case OwnershipAttr::Holds: |
1493 | if (AL.getNumArgs() < 2) { |
1494 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_too_few_arguments) << AL << 2; |
1495 | return; |
1496 | } |
1497 | break; |
1498 | case OwnershipAttr::Returns: |
1499 | if (AL.getNumArgs() > 2) { |
1500 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_too_many_arguments) << AL << 2; |
1501 | return; |
1502 | } |
1503 | break; |
1504 | } |
1505 | |
1506 | // Allow only pointers to be return type for functions with ownership_returns |
1507 | // attribute. This matches with current OwnershipAttr::Takes semantics |
1508 | if (K == OwnershipAttr::Returns && |
1509 | !getFunctionOrMethodResultType(D)->isPointerType()) { |
1510 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_ownership_takes_return_type) << AL; |
1511 | return; |
1512 | } |
1513 | |
1514 | IdentifierInfo *Module = AL.getArgAsIdent(Arg: 0)->getIdentifierInfo(); |
1515 | |
1516 | StringRef ModuleName = Module->getName(); |
1517 | if (normalizeName(AttrName&: ModuleName)) { |
1518 | Module = &S.PP.getIdentifierTable().get(Name: ModuleName); |
1519 | } |
1520 | |
1521 | SmallVector<ParamIdx, 8> OwnershipArgs; |
1522 | for (unsigned i = 1; i < AL.getNumArgs(); ++i) { |
1523 | Expr *Ex = AL.getArgAsExpr(Arg: i); |
1524 | ParamIdx Idx; |
1525 | if (!S.checkFunctionOrMethodParameterIndex(D, AI: AL, AttrArgNum: i, IdxExpr: Ex, Idx)) |
1526 | return; |
1527 | |
1528 | // Is the function argument a pointer type? |
1529 | QualType T = getFunctionOrMethodParamType(D, Idx: Idx.getASTIndex()); |
1530 | int Err = -1; // No error |
1531 | switch (K) { |
1532 | case OwnershipAttr::Takes: |
1533 | case OwnershipAttr::Holds: |
1534 | if (!T->isAnyPointerType() && !T->isBlockPointerType()) |
1535 | Err = 0; |
1536 | break; |
1537 | case OwnershipAttr::Returns: |
1538 | if (!T->isIntegerType()) |
1539 | Err = 1; |
1540 | break; |
1541 | } |
1542 | if (-1 != Err) { |
1543 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_ownership_type) << AL << Err |
1544 | << Ex->getSourceRange(); |
1545 | return; |
1546 | } |
1547 | |
1548 | // Check we don't have a conflict with another ownership attribute. |
1549 | for (const auto *I : D->specific_attrs<OwnershipAttr>()) { |
1550 | // Cannot have two ownership attributes of different kinds for the same |
1551 | // index. |
1552 | if (I->getOwnKind() != K && llvm::is_contained(Range: I->args(), Element: Idx)) { |
1553 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attributes_are_not_compatible) |
1554 | << AL << I |
1555 | << (AL.isRegularKeywordAttribute() || |
1556 | I->isRegularKeywordAttribute()); |
1557 | return; |
1558 | } else if (K == OwnershipAttr::Returns && |
1559 | I->getOwnKind() == OwnershipAttr::Returns) { |
1560 | // A returns attribute conflicts with any other returns attribute using |
1561 | // a different index. |
1562 | if (!llvm::is_contained(Range: I->args(), Element: Idx)) { |
1563 | S.Diag(Loc: I->getLocation(), DiagID: diag::err_ownership_returns_index_mismatch) |
1564 | << I->args_begin()->getSourceIndex(); |
1565 | if (I->args_size()) |
1566 | S.Diag(Loc: AL.getLoc(), DiagID: diag::note_ownership_returns_index_mismatch) |
1567 | << Idx.getSourceIndex() << Ex->getSourceRange(); |
1568 | return; |
1569 | } |
1570 | } else if (K == OwnershipAttr::Takes && |
1571 | I->getOwnKind() == OwnershipAttr::Takes) { |
1572 | if (I->getModule()->getName() != ModuleName) { |
1573 | S.Diag(Loc: I->getLocation(), DiagID: diag::err_ownership_takes_class_mismatch) |
1574 | << I->getModule()->getName(); |
1575 | S.Diag(Loc: AL.getLoc(), DiagID: diag::note_ownership_takes_class_mismatch) |
1576 | << ModuleName << Ex->getSourceRange(); |
1577 | |
1578 | return; |
1579 | } |
1580 | } |
1581 | } |
1582 | OwnershipArgs.push_back(Elt: Idx); |
1583 | } |
1584 | |
1585 | ParamIdx *Start = OwnershipArgs.data(); |
1586 | unsigned Size = OwnershipArgs.size(); |
1587 | llvm::array_pod_sort(Start, End: Start + Size); |
1588 | D->addAttr(A: ::new (S.Context) |
1589 | OwnershipAttr(S.Context, AL, Module, Start, Size)); |
1590 | } |
1591 | |
1592 | static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1593 | // Check the attribute arguments. |
1594 | if (AL.getNumArgs() > 1) { |
1595 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) << AL << 1; |
1596 | return; |
1597 | } |
1598 | |
1599 | // gcc rejects |
1600 | // class c { |
1601 | // static int a __attribute__((weakref ("v2"))); |
1602 | // static int b() __attribute__((weakref ("f3"))); |
1603 | // }; |
1604 | // and ignores the attributes of |
1605 | // void f(void) { |
1606 | // static int a __attribute__((weakref ("v2"))); |
1607 | // } |
1608 | // we reject them |
1609 | const DeclContext *Ctx = D->getDeclContext()->getRedeclContext(); |
1610 | if (!Ctx->isFileContext()) { |
1611 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_weakref_not_global_context) |
1612 | << cast<NamedDecl>(Val: D); |
1613 | return; |
1614 | } |
1615 | |
1616 | // The GCC manual says |
1617 | // |
1618 | // At present, a declaration to which `weakref' is attached can only |
1619 | // be `static'. |
1620 | // |
1621 | // It also says |
1622 | // |
1623 | // Without a TARGET, |
1624 | // given as an argument to `weakref' or to `alias', `weakref' is |
1625 | // equivalent to `weak'. |
1626 | // |
1627 | // gcc 4.4.1 will accept |
1628 | // int a7 __attribute__((weakref)); |
1629 | // as |
1630 | // int a7 __attribute__((weak)); |
1631 | // This looks like a bug in gcc. We reject that for now. We should revisit |
1632 | // it if this behaviour is actually used. |
1633 | |
1634 | // GCC rejects |
1635 | // static ((alias ("y"), weakref)). |
1636 | // Should we? How to check that weakref is before or after alias? |
1637 | |
1638 | // FIXME: it would be good for us to keep the WeakRefAttr as-written instead |
1639 | // of transforming it into an AliasAttr. The WeakRefAttr never uses the |
1640 | // StringRef parameter it was given anyway. |
1641 | StringRef Str; |
1642 | if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
1643 | // GCC will accept anything as the argument of weakref. Should we |
1644 | // check for an existing decl? |
1645 | D->addAttr(A: ::new (S.Context) AliasAttr(S.Context, AL, Str)); |
1646 | |
1647 | D->addAttr(A: ::new (S.Context) WeakRefAttr(S.Context, AL)); |
1648 | } |
1649 | |
1650 | // Mark alias/ifunc target as used. Due to name mangling, we look up the |
1651 | // demangled name ignoring parameters (not supported by microsoftDemangle |
1652 | // https://github.com/llvm/llvm-project/issues/88825). This should handle the |
1653 | // majority of use cases while leaving namespace scope names unmarked. |
1654 | static void markUsedForAliasOrIfunc(Sema &S, Decl *D, const ParsedAttr &AL, |
1655 | StringRef Str) { |
1656 | std::unique_ptr<char, llvm::FreeDeleter> Demangled; |
1657 | if (S.getASTContext().getCXXABIKind() != TargetCXXABI::Microsoft) |
1658 | Demangled.reset(p: llvm::itaniumDemangle(mangled_name: Str, /*ParseParams=*/false)); |
1659 | std::unique_ptr<MangleContext> MC(S.Context.createMangleContext()); |
1660 | SmallString<256> Name; |
1661 | |
1662 | const DeclarationNameInfo Target( |
1663 | &S.Context.Idents.get(Name: Demangled ? Demangled.get() : Str), AL.getLoc()); |
1664 | LookupResult LR(S, Target, Sema::LookupOrdinaryName); |
1665 | if (S.LookupName(R&: LR, S: S.TUScope)) { |
1666 | for (NamedDecl *ND : LR) { |
1667 | if (!isa<FunctionDecl>(Val: ND) && !isa<VarDecl>(Val: ND)) |
1668 | continue; |
1669 | if (MC->shouldMangleDeclName(D: ND)) { |
1670 | llvm::raw_svector_ostream Out(Name); |
1671 | Name.clear(); |
1672 | MC->mangleName(GD: GlobalDecl(ND), Out); |
1673 | } else { |
1674 | Name = ND->getIdentifier()->getName(); |
1675 | } |
1676 | if (Name == Str) |
1677 | ND->markUsed(C&: S.Context); |
1678 | } |
1679 | } |
1680 | } |
1681 | |
1682 | static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1683 | StringRef Str; |
1684 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
1685 | return; |
1686 | |
1687 | // Aliases should be on declarations, not definitions. |
1688 | const auto *FD = cast<FunctionDecl>(Val: D); |
1689 | if (FD->isThisDeclarationADefinition()) { |
1690 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_alias_is_definition) << FD << 1; |
1691 | return; |
1692 | } |
1693 | |
1694 | markUsedForAliasOrIfunc(S, D, AL, Str); |
1695 | D->addAttr(A: ::new (S.Context) IFuncAttr(S.Context, AL, Str)); |
1696 | } |
1697 | |
1698 | static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1699 | StringRef Str; |
1700 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
1701 | return; |
1702 | |
1703 | if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { |
1704 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_alias_not_supported_on_darwin); |
1705 | return; |
1706 | } |
1707 | |
1708 | if (S.Context.getTargetInfo().getTriple().isNVPTX()) { |
1709 | CudaVersion Version = |
1710 | ToCudaVersion(S.Context.getTargetInfo().getSDKVersion()); |
1711 | if (Version != CudaVersion::UNKNOWN && Version < CudaVersion::CUDA_100) |
1712 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_alias_not_supported_on_nvptx); |
1713 | } |
1714 | |
1715 | // Aliases should be on declarations, not definitions. |
1716 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
1717 | if (FD->isThisDeclarationADefinition()) { |
1718 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_alias_is_definition) << FD << 0; |
1719 | return; |
1720 | } |
1721 | } else { |
1722 | const auto *VD = cast<VarDecl>(Val: D); |
1723 | if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) { |
1724 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_alias_is_definition) << VD << 0; |
1725 | return; |
1726 | } |
1727 | } |
1728 | |
1729 | markUsedForAliasOrIfunc(S, D, AL, Str); |
1730 | D->addAttr(A: ::new (S.Context) AliasAttr(S.Context, AL, Str)); |
1731 | } |
1732 | |
1733 | static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1734 | StringRef Model; |
1735 | SourceLocation LiteralLoc; |
1736 | // Check that it is a string. |
1737 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: Model, ArgLocation: &LiteralLoc)) |
1738 | return; |
1739 | |
1740 | // Check that the value. |
1741 | if (Model != "global-dynamic" && Model != "local-dynamic" |
1742 | && Model != "initial-exec" && Model != "local-exec" ) { |
1743 | S.Diag(Loc: LiteralLoc, DiagID: diag::err_attr_tlsmodel_arg); |
1744 | return; |
1745 | } |
1746 | |
1747 | D->addAttr(A: ::new (S.Context) TLSModelAttr(S.Context, AL, Model)); |
1748 | } |
1749 | |
1750 | static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1751 | QualType ResultType = getFunctionOrMethodResultType(D); |
1752 | if (!ResultType->isAnyPointerType() && !ResultType->isBlockPointerType()) { |
1753 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_return_pointers_only) |
1754 | << AL << getFunctionOrMethodResultSourceRange(D); |
1755 | return; |
1756 | } |
1757 | |
1758 | if (AL.getNumArgs() == 0) { |
1759 | D->addAttr(A: ::new (S.Context) RestrictAttr(S.Context, AL)); |
1760 | return; |
1761 | } |
1762 | |
1763 | if (AL.getAttributeSpellingListIndex() == RestrictAttr::Declspec_restrict) { |
1764 | // __declspec(restrict) accepts no arguments |
1765 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) << AL << 0; |
1766 | return; |
1767 | } |
1768 | |
1769 | // [[gnu::malloc(deallocator)]] with args specifies a deallocator function |
1770 | Expr *DeallocE = AL.getArgAsExpr(Arg: 0); |
1771 | SourceLocation DeallocLoc = DeallocE->getExprLoc(); |
1772 | FunctionDecl *DeallocFD = nullptr; |
1773 | DeclarationNameInfo DeallocNI; |
1774 | |
1775 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: DeallocE)) { |
1776 | DeallocFD = dyn_cast<FunctionDecl>(Val: DRE->getDecl()); |
1777 | DeallocNI = DRE->getNameInfo(); |
1778 | if (!DeallocFD) { |
1779 | S.Diag(Loc: DeallocLoc, DiagID: diag::err_attribute_malloc_arg_not_function) |
1780 | << 1 << DeallocNI.getName(); |
1781 | return; |
1782 | } |
1783 | } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Val: DeallocE)) { |
1784 | DeallocFD = S.ResolveSingleFunctionTemplateSpecialization(ovl: ULE, Complain: true); |
1785 | DeallocNI = ULE->getNameInfo(); |
1786 | if (!DeallocFD) { |
1787 | S.Diag(Loc: DeallocLoc, DiagID: diag::err_attribute_malloc_arg_not_function) |
1788 | << 2 << DeallocNI.getName(); |
1789 | if (ULE->getType() == S.Context.OverloadTy) |
1790 | S.NoteAllOverloadCandidates(E: ULE); |
1791 | return; |
1792 | } |
1793 | } else { |
1794 | S.Diag(Loc: DeallocLoc, DiagID: diag::err_attribute_malloc_arg_not_function) << 0; |
1795 | return; |
1796 | } |
1797 | |
1798 | // 2nd arg of [[gnu::malloc(deallocator, 2)]] with args specifies the param |
1799 | // of deallocator that deallocates the pointer (defaults to 1) |
1800 | ParamIdx DeallocPtrIdx; |
1801 | if (AL.getNumArgs() == 1) { |
1802 | DeallocPtrIdx = ParamIdx(1, DeallocFD); |
1803 | |
1804 | if (!DeallocPtrIdx.isValid() || |
1805 | !getFunctionOrMethodParamType(D: DeallocFD, Idx: DeallocPtrIdx.getASTIndex()) |
1806 | .getCanonicalType() |
1807 | ->isPointerType()) { |
1808 | S.Diag(Loc: DeallocLoc, |
1809 | DiagID: diag::err_attribute_malloc_arg_not_function_with_pointer_arg) |
1810 | << DeallocNI.getName(); |
1811 | return; |
1812 | } |
1813 | } else { |
1814 | if (!S.checkFunctionOrMethodParameterIndex( |
1815 | D: DeallocFD, AI: AL, AttrArgNum: 2, IdxExpr: AL.getArgAsExpr(Arg: 1), Idx&: DeallocPtrIdx, |
1816 | /* CanIndexImplicitThis=*/false)) |
1817 | return; |
1818 | |
1819 | QualType DeallocPtrArgType = |
1820 | getFunctionOrMethodParamType(D: DeallocFD, Idx: DeallocPtrIdx.getASTIndex()); |
1821 | if (!DeallocPtrArgType.getCanonicalType()->isPointerType()) { |
1822 | S.Diag(Loc: DeallocLoc, |
1823 | DiagID: diag::err_attribute_malloc_arg_refers_to_non_pointer_type) |
1824 | << DeallocPtrIdx.getSourceIndex() << DeallocPtrArgType |
1825 | << DeallocNI.getName(); |
1826 | return; |
1827 | } |
1828 | } |
1829 | |
1830 | // FIXME: we should add this attribute to Clang's AST, so that clang-analyzer |
1831 | // can use it, see -Wmismatched-dealloc in GCC for what we can do with this. |
1832 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_form_ignored) << AL; |
1833 | D->addAttr(A: ::new (S.Context) |
1834 | RestrictAttr(S.Context, AL, DeallocE, DeallocPtrIdx)); |
1835 | } |
1836 | |
1837 | static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1838 | // Ensure we don't combine these with themselves, since that causes some |
1839 | // confusing behavior. |
1840 | if (AL.getParsedKind() == ParsedAttr::AT_CPUDispatch) { |
1841 | if (checkAttrMutualExclusion<CPUSpecificAttr>(S, D, AL)) |
1842 | return; |
1843 | |
1844 | if (const auto *Other = D->getAttr<CPUDispatchAttr>()) { |
1845 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_disallowed_duplicate_attribute) << AL; |
1846 | S.Diag(Loc: Other->getLocation(), DiagID: diag::note_conflicting_attribute); |
1847 | return; |
1848 | } |
1849 | } else if (AL.getParsedKind() == ParsedAttr::AT_CPUSpecific) { |
1850 | if (checkAttrMutualExclusion<CPUDispatchAttr>(S, D, AL)) |
1851 | return; |
1852 | |
1853 | if (const auto *Other = D->getAttr<CPUSpecificAttr>()) { |
1854 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_disallowed_duplicate_attribute) << AL; |
1855 | S.Diag(Loc: Other->getLocation(), DiagID: diag::note_conflicting_attribute); |
1856 | return; |
1857 | } |
1858 | } |
1859 | |
1860 | FunctionDecl *FD = cast<FunctionDecl>(Val: D); |
1861 | |
1862 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: D)) { |
1863 | if (MD->getParent()->isLambda()) { |
1864 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_dll_lambda) << AL; |
1865 | return; |
1866 | } |
1867 | } |
1868 | |
1869 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
1870 | return; |
1871 | |
1872 | SmallVector<IdentifierInfo *, 8> CPUs; |
1873 | for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) { |
1874 | if (!AL.isArgIdent(Arg: ArgNo)) { |
1875 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
1876 | << AL << AANT_ArgumentIdentifier; |
1877 | return; |
1878 | } |
1879 | |
1880 | IdentifierLoc *CPUArg = AL.getArgAsIdent(Arg: ArgNo); |
1881 | StringRef CPUName = CPUArg->getIdentifierInfo()->getName().trim(); |
1882 | |
1883 | if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(Name: CPUName)) { |
1884 | S.Diag(Loc: CPUArg->getLoc(), DiagID: diag::err_invalid_cpu_specific_dispatch_value) |
1885 | << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch); |
1886 | return; |
1887 | } |
1888 | |
1889 | const TargetInfo &Target = S.Context.getTargetInfo(); |
1890 | if (llvm::any_of(Range&: CPUs, P: [CPUName, &Target](const IdentifierInfo *Cur) { |
1891 | return Target.CPUSpecificManglingCharacter(Name: CPUName) == |
1892 | Target.CPUSpecificManglingCharacter(Name: Cur->getName()); |
1893 | })) { |
1894 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_multiversion_duplicate_entries); |
1895 | return; |
1896 | } |
1897 | CPUs.push_back(Elt: CPUArg->getIdentifierInfo()); |
1898 | } |
1899 | |
1900 | FD->setIsMultiVersion(true); |
1901 | if (AL.getKind() == ParsedAttr::AT_CPUSpecific) |
1902 | D->addAttr(A: ::new (S.Context) |
1903 | CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size())); |
1904 | else |
1905 | D->addAttr(A: ::new (S.Context) |
1906 | CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size())); |
1907 | } |
1908 | |
1909 | static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1910 | if (S.LangOpts.CPlusPlus) { |
1911 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_not_supported_in_lang) |
1912 | << AL << AttributeLangSupport::Cpp; |
1913 | return; |
1914 | } |
1915 | |
1916 | D->addAttr(A: ::new (S.Context) CommonAttr(S.Context, AL)); |
1917 | } |
1918 | |
1919 | static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
1920 | if (AL.isDeclspecAttribute()) { |
1921 | const auto &Triple = S.getASTContext().getTargetInfo().getTriple(); |
1922 | const auto &Arch = Triple.getArch(); |
1923 | if (Arch != llvm::Triple::x86 && |
1924 | (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) { |
1925 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_not_supported_on_arch) |
1926 | << AL << Triple.getArchName(); |
1927 | return; |
1928 | } |
1929 | |
1930 | // This form is not allowed to be written on a member function (static or |
1931 | // nonstatic) when in Microsoft compatibility mode. |
1932 | if (S.getLangOpts().MSVCCompat && isa<CXXMethodDecl>(Val: D)) { |
1933 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_decl_type) |
1934 | << AL << AL.isRegularKeywordAttribute() << ExpectedNonMemberFunction; |
1935 | return; |
1936 | } |
1937 | } |
1938 | |
1939 | D->addAttr(A: ::new (S.Context) NakedAttr(S.Context, AL)); |
1940 | } |
1941 | |
1942 | // FIXME: This is a best-effort heuristic. |
1943 | // Currently only handles single throw expressions (optionally with |
1944 | // ExprWithCleanups). We could expand this to perform control-flow analysis for |
1945 | // more complex patterns. |
1946 | static bool isKnownToAlwaysThrow(const FunctionDecl *FD) { |
1947 | if (!FD->hasBody()) |
1948 | return false; |
1949 | const Stmt *Body = FD->getBody(); |
1950 | const Stmt *OnlyStmt = nullptr; |
1951 | |
1952 | if (const auto *Compound = dyn_cast<CompoundStmt>(Val: Body)) { |
1953 | if (Compound->size() != 1) |
1954 | return false; // More than one statement, can't be known to always throw. |
1955 | OnlyStmt = *Compound->body_begin(); |
1956 | } else { |
1957 | OnlyStmt = Body; |
1958 | } |
1959 | |
1960 | // Unwrap ExprWithCleanups if necessary. |
1961 | if (const auto *EWC = dyn_cast<ExprWithCleanups>(Val: OnlyStmt)) { |
1962 | OnlyStmt = EWC->getSubExpr(); |
1963 | } |
1964 | // Check if the only statement is a throw expression. |
1965 | return isa<CXXThrowExpr>(Val: OnlyStmt); |
1966 | } |
1967 | |
1968 | void clang::inferNoReturnAttr(Sema &S, const Decl *D) { |
1969 | auto *FD = dyn_cast<FunctionDecl>(Val: D); |
1970 | if (!FD) |
1971 | return; |
1972 | |
1973 | auto *NonConstFD = const_cast<FunctionDecl *>(FD); |
1974 | DiagnosticsEngine &Diags = S.getDiagnostics(); |
1975 | if (Diags.isIgnored(DiagID: diag::warn_falloff_nonvoid, Loc: FD->getLocation()) && |
1976 | Diags.isIgnored(DiagID: diag::warn_suggest_noreturn_function, Loc: FD->getLocation())) |
1977 | return; |
1978 | |
1979 | if (!FD->hasAttr<NoReturnAttr>() && !FD->hasAttr<InferredNoReturnAttr>() && |
1980 | isKnownToAlwaysThrow(FD)) { |
1981 | NonConstFD->addAttr(A: InferredNoReturnAttr::CreateImplicit(Ctx&: S.Context)); |
1982 | |
1983 | // Emit a diagnostic suggesting the function being marked [[noreturn]]. |
1984 | S.Diag(Loc: FD->getLocation(), DiagID: diag::warn_suggest_noreturn_function) |
1985 | << /*isFunction=*/0 << FD; |
1986 | } |
1987 | } |
1988 | |
1989 | static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { |
1990 | if (hasDeclarator(D)) return; |
1991 | |
1992 | if (!isa<ObjCMethodDecl>(Val: D)) { |
1993 | S.Diag(Loc: Attrs.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
1994 | << Attrs << Attrs.isRegularKeywordAttribute() |
1995 | << ExpectedFunctionOrMethod; |
1996 | return; |
1997 | } |
1998 | |
1999 | D->addAttr(A: ::new (S.Context) NoReturnAttr(S.Context, Attrs)); |
2000 | } |
2001 | |
2002 | static void handleStandardNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &A) { |
2003 | // The [[_Noreturn]] spelling is deprecated in C23, so if that was used, |
2004 | // issue an appropriate diagnostic. However, don't issue a diagnostic if the |
2005 | // attribute name comes from a macro expansion. We don't want to punish users |
2006 | // who write [[noreturn]] after including <stdnoreturn.h> (where 'noreturn' |
2007 | // is defined as a macro which expands to '_Noreturn'). |
2008 | if (!S.getLangOpts().CPlusPlus && |
2009 | A.getSemanticSpelling() == CXX11NoReturnAttr::C23_Noreturn && |
2010 | !(A.getLoc().isMacroID() && |
2011 | S.getSourceManager().isInSystemMacro(loc: A.getLoc()))) |
2012 | S.Diag(Loc: A.getLoc(), DiagID: diag::warn_deprecated_noreturn_spelling) << A.getRange(); |
2013 | |
2014 | D->addAttr(A: ::new (S.Context) CXX11NoReturnAttr(S.Context, A)); |
2015 | } |
2016 | |
2017 | static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { |
2018 | if (!S.getLangOpts().CFProtectionBranch) |
2019 | S.Diag(Loc: Attrs.getLoc(), DiagID: diag::warn_nocf_check_attribute_ignored); |
2020 | else |
2021 | handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, CI: Attrs); |
2022 | } |
2023 | |
2024 | bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) { |
2025 | if (!Attrs.checkExactlyNumArgs(S&: *this, Num: 0)) { |
2026 | Attrs.setInvalid(); |
2027 | return true; |
2028 | } |
2029 | |
2030 | return false; |
2031 | } |
2032 | |
2033 | bool Sema::CheckAttrTarget(const ParsedAttr &AL) { |
2034 | // Check whether the attribute is valid on the current target. |
2035 | if (!AL.existsInTarget(Target: Context.getTargetInfo())) { |
2036 | if (AL.isRegularKeywordAttribute()) |
2037 | Diag(Loc: AL.getLoc(), DiagID: diag::err_keyword_not_supported_on_target); |
2038 | else |
2039 | DiagnoseUnknownAttribute(AL); |
2040 | AL.setInvalid(); |
2041 | return true; |
2042 | } |
2043 | return false; |
2044 | } |
2045 | |
2046 | static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2047 | |
2048 | // The checking path for 'noreturn' and 'analyzer_noreturn' are different |
2049 | // because 'analyzer_noreturn' does not impact the type. |
2050 | if (!isFunctionOrMethodOrBlockForAttrSubject(D)) { |
2051 | ValueDecl *VD = dyn_cast<ValueDecl>(Val: D); |
2052 | if (!VD || (!VD->getType()->isBlockPointerType() && |
2053 | !VD->getType()->isFunctionPointerType())) { |
2054 | S.Diag(Loc: AL.getLoc(), DiagID: AL.isStandardAttributeSyntax() |
2055 | ? diag::err_attribute_wrong_decl_type |
2056 | : diag::warn_attribute_wrong_decl_type) |
2057 | << AL << AL.isRegularKeywordAttribute() |
2058 | << ExpectedFunctionMethodOrBlock; |
2059 | return; |
2060 | } |
2061 | } |
2062 | |
2063 | D->addAttr(A: ::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL)); |
2064 | } |
2065 | |
2066 | // PS3 PPU-specific. |
2067 | static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2068 | /* |
2069 | Returning a Vector Class in Registers |
2070 | |
2071 | According to the PPU ABI specifications, a class with a single member of |
2072 | vector type is returned in memory when used as the return value of a |
2073 | function. |
2074 | This results in inefficient code when implementing vector classes. To return |
2075 | the value in a single vector register, add the vecreturn attribute to the |
2076 | class definition. This attribute is also applicable to struct types. |
2077 | |
2078 | Example: |
2079 | |
2080 | struct Vector |
2081 | { |
2082 | __vector float xyzw; |
2083 | } __attribute__((vecreturn)); |
2084 | |
2085 | Vector Add(Vector lhs, Vector rhs) |
2086 | { |
2087 | Vector result; |
2088 | result.xyzw = vec_add(lhs.xyzw, rhs.xyzw); |
2089 | return result; // This will be returned in a register |
2090 | } |
2091 | */ |
2092 | if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) { |
2093 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_repeat_attribute) << A; |
2094 | return; |
2095 | } |
2096 | |
2097 | const auto *R = cast<RecordDecl>(Val: D); |
2098 | int count = 0; |
2099 | |
2100 | if (!isa<CXXRecordDecl>(Val: R)) { |
2101 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_vecreturn_only_vector_member); |
2102 | return; |
2103 | } |
2104 | |
2105 | if (!cast<CXXRecordDecl>(Val: R)->isPOD()) { |
2106 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_vecreturn_only_pod_record); |
2107 | return; |
2108 | } |
2109 | |
2110 | for (const auto *I : R->fields()) { |
2111 | if ((count == 1) || !I->getType()->isVectorType()) { |
2112 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_vecreturn_only_vector_member); |
2113 | return; |
2114 | } |
2115 | count++; |
2116 | } |
2117 | |
2118 | D->addAttr(A: ::new (S.Context) VecReturnAttr(S.Context, AL)); |
2119 | } |
2120 | |
2121 | static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D, |
2122 | const ParsedAttr &AL) { |
2123 | if (isa<ParmVarDecl>(Val: D)) { |
2124 | // [[carries_dependency]] can only be applied to a parameter if it is a |
2125 | // parameter of a function declaration or lambda. |
2126 | if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) { |
2127 | S.Diag(Loc: AL.getLoc(), |
2128 | DiagID: diag::err_carries_dependency_param_not_function_decl); |
2129 | return; |
2130 | } |
2131 | } |
2132 | |
2133 | D->addAttr(A: ::new (S.Context) CarriesDependencyAttr(S.Context, AL)); |
2134 | } |
2135 | |
2136 | static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2137 | bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName(); |
2138 | |
2139 | // If this is spelled as the standard C++17 attribute, but not in C++17, warn |
2140 | // about using it as an extension. |
2141 | if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr) |
2142 | S.Diag(Loc: AL.getLoc(), DiagID: diag::ext_cxx17_attr) << AL; |
2143 | |
2144 | D->addAttr(A: ::new (S.Context) UnusedAttr(S.Context, AL)); |
2145 | } |
2146 | |
2147 | static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2148 | uint32_t priority = ConstructorAttr::DefaultPriority; |
2149 | if (S.getLangOpts().HLSL && AL.getNumArgs()) { |
2150 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_init_priority_unsupported); |
2151 | return; |
2152 | } |
2153 | if (AL.getNumArgs() && |
2154 | !S.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: priority)) |
2155 | return; |
2156 | S.Diag(Loc: D->getLocation(), DiagID: diag::warn_global_constructor) |
2157 | << D->getSourceRange(); |
2158 | |
2159 | D->addAttr(A: ::new (S.Context) ConstructorAttr(S.Context, AL, priority)); |
2160 | } |
2161 | |
2162 | static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2163 | uint32_t priority = DestructorAttr::DefaultPriority; |
2164 | if (AL.getNumArgs() && |
2165 | !S.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: priority)) |
2166 | return; |
2167 | S.Diag(Loc: D->getLocation(), DiagID: diag::warn_global_destructor) << D->getSourceRange(); |
2168 | |
2169 | D->addAttr(A: ::new (S.Context) DestructorAttr(S.Context, AL, priority)); |
2170 | } |
2171 | |
2172 | template <typename AttrTy> |
2173 | static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) { |
2174 | // Handle the case where the attribute has a text message. |
2175 | StringRef Str; |
2176 | if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
2177 | return; |
2178 | |
2179 | D->addAttr(A: ::new (S.Context) AttrTy(S.Context, AL, Str)); |
2180 | } |
2181 | |
2182 | static bool checkAvailabilityAttr(Sema &S, SourceRange Range, |
2183 | IdentifierInfo *Platform, |
2184 | VersionTuple Introduced, |
2185 | VersionTuple Deprecated, |
2186 | VersionTuple Obsoleted) { |
2187 | StringRef PlatformName |
2188 | = AvailabilityAttr::getPrettyPlatformName(Platform: Platform->getName()); |
2189 | if (PlatformName.empty()) |
2190 | PlatformName = Platform->getName(); |
2191 | |
2192 | // Ensure that Introduced <= Deprecated <= Obsoleted (although not all |
2193 | // of these steps are needed). |
2194 | if (!Introduced.empty() && !Deprecated.empty() && |
2195 | !(Introduced <= Deprecated)) { |
2196 | S.Diag(Loc: Range.getBegin(), DiagID: diag::warn_availability_version_ordering) |
2197 | << 1 << PlatformName << Deprecated.getAsString() |
2198 | << 0 << Introduced.getAsString(); |
2199 | return true; |
2200 | } |
2201 | |
2202 | if (!Introduced.empty() && !Obsoleted.empty() && |
2203 | !(Introduced <= Obsoleted)) { |
2204 | S.Diag(Loc: Range.getBegin(), DiagID: diag::warn_availability_version_ordering) |
2205 | << 2 << PlatformName << Obsoleted.getAsString() |
2206 | << 0 << Introduced.getAsString(); |
2207 | return true; |
2208 | } |
2209 | |
2210 | if (!Deprecated.empty() && !Obsoleted.empty() && |
2211 | !(Deprecated <= Obsoleted)) { |
2212 | S.Diag(Loc: Range.getBegin(), DiagID: diag::warn_availability_version_ordering) |
2213 | << 2 << PlatformName << Obsoleted.getAsString() |
2214 | << 1 << Deprecated.getAsString(); |
2215 | return true; |
2216 | } |
2217 | |
2218 | return false; |
2219 | } |
2220 | |
2221 | /// Check whether the two versions match. |
2222 | /// |
2223 | /// If either version tuple is empty, then they are assumed to match. If |
2224 | /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y. |
2225 | static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y, |
2226 | bool BeforeIsOkay) { |
2227 | if (X.empty() || Y.empty()) |
2228 | return true; |
2229 | |
2230 | if (X == Y) |
2231 | return true; |
2232 | |
2233 | if (BeforeIsOkay && X < Y) |
2234 | return true; |
2235 | |
2236 | return false; |
2237 | } |
2238 | |
2239 | AvailabilityAttr *Sema::mergeAvailabilityAttr( |
2240 | NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform, |
2241 | bool Implicit, VersionTuple Introduced, VersionTuple Deprecated, |
2242 | VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, |
2243 | bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK, |
2244 | int Priority, IdentifierInfo *Environment) { |
2245 | VersionTuple MergedIntroduced = Introduced; |
2246 | VersionTuple MergedDeprecated = Deprecated; |
2247 | VersionTuple MergedObsoleted = Obsoleted; |
2248 | bool FoundAny = false; |
2249 | bool OverrideOrImpl = false; |
2250 | switch (AMK) { |
2251 | case AvailabilityMergeKind::None: |
2252 | case AvailabilityMergeKind::Redeclaration: |
2253 | OverrideOrImpl = false; |
2254 | break; |
2255 | |
2256 | case AvailabilityMergeKind::Override: |
2257 | case AvailabilityMergeKind::ProtocolImplementation: |
2258 | case AvailabilityMergeKind::OptionalProtocolImplementation: |
2259 | OverrideOrImpl = true; |
2260 | break; |
2261 | } |
2262 | |
2263 | if (D->hasAttrs()) { |
2264 | AttrVec &Attrs = D->getAttrs(); |
2265 | for (unsigned i = 0, e = Attrs.size(); i != e;) { |
2266 | const auto *OldAA = dyn_cast<AvailabilityAttr>(Val: Attrs[i]); |
2267 | if (!OldAA) { |
2268 | ++i; |
2269 | continue; |
2270 | } |
2271 | |
2272 | IdentifierInfo *OldPlatform = OldAA->getPlatform(); |
2273 | if (OldPlatform != Platform) { |
2274 | ++i; |
2275 | continue; |
2276 | } |
2277 | |
2278 | IdentifierInfo *OldEnvironment = OldAA->getEnvironment(); |
2279 | if (OldEnvironment != Environment) { |
2280 | ++i; |
2281 | continue; |
2282 | } |
2283 | |
2284 | // If there is an existing availability attribute for this platform that |
2285 | // has a lower priority use the existing one and discard the new |
2286 | // attribute. |
2287 | if (OldAA->getPriority() < Priority) |
2288 | return nullptr; |
2289 | |
2290 | // If there is an existing attribute for this platform that has a higher |
2291 | // priority than the new attribute then erase the old one and continue |
2292 | // processing the attributes. |
2293 | if (OldAA->getPriority() > Priority) { |
2294 | Attrs.erase(CI: Attrs.begin() + i); |
2295 | --e; |
2296 | continue; |
2297 | } |
2298 | |
2299 | FoundAny = true; |
2300 | VersionTuple OldIntroduced = OldAA->getIntroduced(); |
2301 | VersionTuple OldDeprecated = OldAA->getDeprecated(); |
2302 | VersionTuple OldObsoleted = OldAA->getObsoleted(); |
2303 | bool OldIsUnavailable = OldAA->getUnavailable(); |
2304 | |
2305 | if (!versionsMatch(X: OldIntroduced, Y: Introduced, BeforeIsOkay: OverrideOrImpl) || |
2306 | !versionsMatch(X: Deprecated, Y: OldDeprecated, BeforeIsOkay: OverrideOrImpl) || |
2307 | !versionsMatch(X: Obsoleted, Y: OldObsoleted, BeforeIsOkay: OverrideOrImpl) || |
2308 | !(OldIsUnavailable == IsUnavailable || |
2309 | (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) { |
2310 | if (OverrideOrImpl) { |
2311 | int Which = -1; |
2312 | VersionTuple FirstVersion; |
2313 | VersionTuple SecondVersion; |
2314 | if (!versionsMatch(X: OldIntroduced, Y: Introduced, BeforeIsOkay: OverrideOrImpl)) { |
2315 | Which = 0; |
2316 | FirstVersion = OldIntroduced; |
2317 | SecondVersion = Introduced; |
2318 | } else if (!versionsMatch(X: Deprecated, Y: OldDeprecated, BeforeIsOkay: OverrideOrImpl)) { |
2319 | Which = 1; |
2320 | FirstVersion = Deprecated; |
2321 | SecondVersion = OldDeprecated; |
2322 | } else if (!versionsMatch(X: Obsoleted, Y: OldObsoleted, BeforeIsOkay: OverrideOrImpl)) { |
2323 | Which = 2; |
2324 | FirstVersion = Obsoleted; |
2325 | SecondVersion = OldObsoleted; |
2326 | } |
2327 | |
2328 | if (Which == -1) { |
2329 | Diag(Loc: OldAA->getLocation(), |
2330 | DiagID: diag::warn_mismatched_availability_override_unavail) |
2331 | << AvailabilityAttr::getPrettyPlatformName(Platform: Platform->getName()) |
2332 | << (AMK == AvailabilityMergeKind::Override); |
2333 | } else if (Which != 1 && AMK == AvailabilityMergeKind:: |
2334 | OptionalProtocolImplementation) { |
2335 | // Allow different 'introduced' / 'obsoleted' availability versions |
2336 | // on a method that implements an optional protocol requirement. It |
2337 | // makes less sense to allow this for 'deprecated' as the user can't |
2338 | // see if the method is 'deprecated' as 'respondsToSelector' will |
2339 | // still return true when the method is deprecated. |
2340 | ++i; |
2341 | continue; |
2342 | } else { |
2343 | Diag(Loc: OldAA->getLocation(), |
2344 | DiagID: diag::warn_mismatched_availability_override) |
2345 | << Which |
2346 | << AvailabilityAttr::getPrettyPlatformName(Platform: Platform->getName()) |
2347 | << FirstVersion.getAsString() << SecondVersion.getAsString() |
2348 | << (AMK == AvailabilityMergeKind::Override); |
2349 | } |
2350 | if (AMK == AvailabilityMergeKind::Override) |
2351 | Diag(Loc: CI.getLoc(), DiagID: diag::note_overridden_method); |
2352 | else |
2353 | Diag(Loc: CI.getLoc(), DiagID: diag::note_protocol_method); |
2354 | } else { |
2355 | Diag(Loc: OldAA->getLocation(), DiagID: diag::warn_mismatched_availability); |
2356 | Diag(Loc: CI.getLoc(), DiagID: diag::note_previous_attribute); |
2357 | } |
2358 | |
2359 | Attrs.erase(CI: Attrs.begin() + i); |
2360 | --e; |
2361 | continue; |
2362 | } |
2363 | |
2364 | VersionTuple MergedIntroduced2 = MergedIntroduced; |
2365 | VersionTuple MergedDeprecated2 = MergedDeprecated; |
2366 | VersionTuple MergedObsoleted2 = MergedObsoleted; |
2367 | |
2368 | if (MergedIntroduced2.empty()) |
2369 | MergedIntroduced2 = OldIntroduced; |
2370 | if (MergedDeprecated2.empty()) |
2371 | MergedDeprecated2 = OldDeprecated; |
2372 | if (MergedObsoleted2.empty()) |
2373 | MergedObsoleted2 = OldObsoleted; |
2374 | |
2375 | if (checkAvailabilityAttr(S&: *this, Range: OldAA->getRange(), Platform, |
2376 | Introduced: MergedIntroduced2, Deprecated: MergedDeprecated2, |
2377 | Obsoleted: MergedObsoleted2)) { |
2378 | Attrs.erase(CI: Attrs.begin() + i); |
2379 | --e; |
2380 | continue; |
2381 | } |
2382 | |
2383 | MergedIntroduced = MergedIntroduced2; |
2384 | MergedDeprecated = MergedDeprecated2; |
2385 | MergedObsoleted = MergedObsoleted2; |
2386 | ++i; |
2387 | } |
2388 | } |
2389 | |
2390 | if (FoundAny && |
2391 | MergedIntroduced == Introduced && |
2392 | MergedDeprecated == Deprecated && |
2393 | MergedObsoleted == Obsoleted) |
2394 | return nullptr; |
2395 | |
2396 | // Only create a new attribute if !OverrideOrImpl, but we want to do |
2397 | // the checking. |
2398 | if (!checkAvailabilityAttr(S&: *this, Range: CI.getRange(), Platform, Introduced: MergedIntroduced, |
2399 | Deprecated: MergedDeprecated, Obsoleted: MergedObsoleted) && |
2400 | !OverrideOrImpl) { |
2401 | auto *Avail = ::new (Context) AvailabilityAttr( |
2402 | Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable, |
2403 | Message, IsStrict, Replacement, Priority, Environment); |
2404 | Avail->setImplicit(Implicit); |
2405 | return Avail; |
2406 | } |
2407 | return nullptr; |
2408 | } |
2409 | |
2410 | static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2411 | if (isa<UsingDecl, UnresolvedUsingTypenameDecl, UnresolvedUsingValueDecl>( |
2412 | Val: D)) { |
2413 | S.Diag(Loc: AL.getRange().getBegin(), DiagID: diag::warn_deprecated_ignored_on_using) |
2414 | << AL; |
2415 | return; |
2416 | } |
2417 | |
2418 | if (!AL.checkExactlyNumArgs(S, Num: 1)) |
2419 | return; |
2420 | IdentifierLoc *Platform = AL.getArgAsIdent(Arg: 0); |
2421 | |
2422 | IdentifierInfo *II = Platform->getIdentifierInfo(); |
2423 | StringRef PrettyName = AvailabilityAttr::getPrettyPlatformName(Platform: II->getName()); |
2424 | if (PrettyName.empty()) |
2425 | S.Diag(Loc: Platform->getLoc(), DiagID: diag::warn_availability_unknown_platform) |
2426 | << Platform->getIdentifierInfo(); |
2427 | |
2428 | auto *ND = dyn_cast<NamedDecl>(Val: D); |
2429 | if (!ND) // We warned about this already, so just return. |
2430 | return; |
2431 | |
2432 | AvailabilityChange Introduced = AL.getAvailabilityIntroduced(); |
2433 | AvailabilityChange Deprecated = AL.getAvailabilityDeprecated(); |
2434 | AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted(); |
2435 | |
2436 | const llvm::Triple::OSType PlatformOS = AvailabilityAttr::getOSType( |
2437 | Platform: AvailabilityAttr::canonicalizePlatformName(Platform: II->getName())); |
2438 | |
2439 | auto reportAndUpdateIfInvalidOS = [&](auto &InputVersion) -> void { |
2440 | const bool IsInValidRange = |
2441 | llvm::Triple::isValidVersionForOS(OSKind: PlatformOS, Version: InputVersion); |
2442 | // Canonicalize availability versions. |
2443 | auto CanonicalVersion = llvm::Triple::getCanonicalVersionForOS( |
2444 | OSKind: PlatformOS, Version: InputVersion, IsInValidRange); |
2445 | if (!IsInValidRange) { |
2446 | S.Diag(Loc: Platform->getLoc(), DiagID: diag::warn_availability_invalid_os_version) |
2447 | << InputVersion.getAsString() << PrettyName; |
2448 | S.Diag(Loc: Platform->getLoc(), |
2449 | DiagID: diag::note_availability_invalid_os_version_adjusted) |
2450 | << CanonicalVersion.getAsString(); |
2451 | } |
2452 | InputVersion = CanonicalVersion; |
2453 | }; |
2454 | |
2455 | if (PlatformOS != llvm::Triple::OSType::UnknownOS) { |
2456 | reportAndUpdateIfInvalidOS(Introduced.Version); |
2457 | reportAndUpdateIfInvalidOS(Deprecated.Version); |
2458 | reportAndUpdateIfInvalidOS(Obsoleted.Version); |
2459 | } |
2460 | |
2461 | bool IsUnavailable = AL.getUnavailableLoc().isValid(); |
2462 | bool IsStrict = AL.getStrictLoc().isValid(); |
2463 | StringRef Str; |
2464 | if (const auto *SE = dyn_cast_if_present<StringLiteral>(Val: AL.getMessageExpr())) |
2465 | Str = SE->getString(); |
2466 | StringRef Replacement; |
2467 | if (const auto *SE = |
2468 | dyn_cast_if_present<StringLiteral>(Val: AL.getReplacementExpr())) |
2469 | Replacement = SE->getString(); |
2470 | |
2471 | if (II->isStr(Str: "swift" )) { |
2472 | if (Introduced.isValid() || Obsoleted.isValid() || |
2473 | (!IsUnavailable && !Deprecated.isValid())) { |
2474 | S.Diag(Loc: AL.getLoc(), |
2475 | DiagID: diag::warn_availability_swift_unavailable_deprecated_only); |
2476 | return; |
2477 | } |
2478 | } |
2479 | |
2480 | if (II->isStr(Str: "fuchsia" )) { |
2481 | std::optional<unsigned> Min, Sub; |
2482 | if ((Min = Introduced.Version.getMinor()) || |
2483 | (Sub = Introduced.Version.getSubminor())) { |
2484 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_availability_fuchsia_unavailable_minor); |
2485 | return; |
2486 | } |
2487 | } |
2488 | |
2489 | if (S.getLangOpts().HLSL && IsStrict) |
2490 | S.Diag(Loc: AL.getStrictLoc(), DiagID: diag::err_availability_unexpected_parameter) |
2491 | << "strict" << /* HLSL */ 0; |
2492 | |
2493 | int PriorityModifier = AL.isPragmaClangAttribute() |
2494 | ? Sema::AP_PragmaClangAttribute |
2495 | : Sema::AP_Explicit; |
2496 | |
2497 | const IdentifierLoc *EnvironmentLoc = AL.getEnvironment(); |
2498 | IdentifierInfo *IIEnvironment = nullptr; |
2499 | if (EnvironmentLoc) { |
2500 | if (S.getLangOpts().HLSL) { |
2501 | IIEnvironment = EnvironmentLoc->getIdentifierInfo(); |
2502 | if (AvailabilityAttr::getEnvironmentType( |
2503 | Environment: EnvironmentLoc->getIdentifierInfo()->getName()) == |
2504 | llvm::Triple::EnvironmentType::UnknownEnvironment) |
2505 | S.Diag(Loc: EnvironmentLoc->getLoc(), |
2506 | DiagID: diag::warn_availability_unknown_environment) |
2507 | << EnvironmentLoc->getIdentifierInfo(); |
2508 | } else { |
2509 | S.Diag(Loc: EnvironmentLoc->getLoc(), |
2510 | DiagID: diag::err_availability_unexpected_parameter) |
2511 | << "environment" << /* C/C++ */ 1; |
2512 | } |
2513 | } |
2514 | |
2515 | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
2516 | D: ND, CI: AL, Platform: II, Implicit: false /*Implicit*/, Introduced: Introduced.Version, Deprecated: Deprecated.Version, |
2517 | Obsoleted: Obsoleted.Version, IsUnavailable, Message: Str, IsStrict, Replacement, |
2518 | AMK: AvailabilityMergeKind::None, Priority: PriorityModifier, Environment: IIEnvironment); |
2519 | if (NewAttr) |
2520 | D->addAttr(A: NewAttr); |
2521 | |
2522 | // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning |
2523 | // matches before the start of the watchOS platform. |
2524 | if (S.Context.getTargetInfo().getTriple().isWatchOS()) { |
2525 | IdentifierInfo *NewII = nullptr; |
2526 | if (II->getName() == "ios" ) |
2527 | NewII = &S.Context.Idents.get(Name: "watchos" ); |
2528 | else if (II->getName() == "ios_app_extension" ) |
2529 | NewII = &S.Context.Idents.get(Name: "watchos_app_extension" ); |
2530 | |
2531 | if (NewII) { |
2532 | const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking(); |
2533 | const auto *IOSToWatchOSMapping = |
2534 | SDKInfo ? SDKInfo->getVersionMapping( |
2535 | Kind: DarwinSDKInfo::OSEnvPair::iOStoWatchOSPair()) |
2536 | : nullptr; |
2537 | |
2538 | auto adjustWatchOSVersion = |
2539 | [IOSToWatchOSMapping](VersionTuple Version) -> VersionTuple { |
2540 | if (Version.empty()) |
2541 | return Version; |
2542 | auto MinimumWatchOSVersion = VersionTuple(2, 0); |
2543 | |
2544 | if (IOSToWatchOSMapping) { |
2545 | if (auto MappedVersion = IOSToWatchOSMapping->map( |
2546 | Key: Version, MinimumValue: MinimumWatchOSVersion, MaximumValue: std::nullopt)) { |
2547 | return *MappedVersion; |
2548 | } |
2549 | } |
2550 | |
2551 | auto Major = Version.getMajor(); |
2552 | auto NewMajor = Major; |
2553 | if (Major < 9) |
2554 | NewMajor = 0; |
2555 | else if (Major < 12) |
2556 | NewMajor = Major - 7; |
2557 | if (NewMajor >= 2) { |
2558 | if (Version.getMinor()) { |
2559 | if (Version.getSubminor()) |
2560 | return VersionTuple(NewMajor, *Version.getMinor(), |
2561 | *Version.getSubminor()); |
2562 | else |
2563 | return VersionTuple(NewMajor, *Version.getMinor()); |
2564 | } |
2565 | return VersionTuple(NewMajor); |
2566 | } |
2567 | |
2568 | return MinimumWatchOSVersion; |
2569 | }; |
2570 | |
2571 | auto NewIntroduced = adjustWatchOSVersion(Introduced.Version); |
2572 | auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version); |
2573 | auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version); |
2574 | |
2575 | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
2576 | D: ND, CI: AL, Platform: NewII, Implicit: true /*Implicit*/, Introduced: NewIntroduced, Deprecated: NewDeprecated, |
2577 | Obsoleted: NewObsoleted, IsUnavailable, Message: Str, IsStrict, Replacement, |
2578 | AMK: AvailabilityMergeKind::None, |
2579 | Priority: PriorityModifier + Sema::AP_InferredFromOtherPlatform, Environment: IIEnvironment); |
2580 | if (NewAttr) |
2581 | D->addAttr(A: NewAttr); |
2582 | } |
2583 | } else if (S.Context.getTargetInfo().getTriple().isTvOS()) { |
2584 | // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning |
2585 | // matches before the start of the tvOS platform. |
2586 | IdentifierInfo *NewII = nullptr; |
2587 | if (II->getName() == "ios" ) |
2588 | NewII = &S.Context.Idents.get(Name: "tvos" ); |
2589 | else if (II->getName() == "ios_app_extension" ) |
2590 | NewII = &S.Context.Idents.get(Name: "tvos_app_extension" ); |
2591 | |
2592 | if (NewII) { |
2593 | const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking(); |
2594 | const auto *IOSToTvOSMapping = |
2595 | SDKInfo ? SDKInfo->getVersionMapping( |
2596 | Kind: DarwinSDKInfo::OSEnvPair::iOStoTvOSPair()) |
2597 | : nullptr; |
2598 | |
2599 | auto AdjustTvOSVersion = |
2600 | [IOSToTvOSMapping](VersionTuple Version) -> VersionTuple { |
2601 | if (Version.empty()) |
2602 | return Version; |
2603 | |
2604 | if (IOSToTvOSMapping) { |
2605 | if (auto MappedVersion = IOSToTvOSMapping->map( |
2606 | Key: Version, MinimumValue: VersionTuple(0, 0), MaximumValue: std::nullopt)) { |
2607 | return *MappedVersion; |
2608 | } |
2609 | } |
2610 | return Version; |
2611 | }; |
2612 | |
2613 | auto NewIntroduced = AdjustTvOSVersion(Introduced.Version); |
2614 | auto NewDeprecated = AdjustTvOSVersion(Deprecated.Version); |
2615 | auto NewObsoleted = AdjustTvOSVersion(Obsoleted.Version); |
2616 | |
2617 | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
2618 | D: ND, CI: AL, Platform: NewII, Implicit: true /*Implicit*/, Introduced: NewIntroduced, Deprecated: NewDeprecated, |
2619 | Obsoleted: NewObsoleted, IsUnavailable, Message: Str, IsStrict, Replacement, |
2620 | AMK: AvailabilityMergeKind::None, |
2621 | Priority: PriorityModifier + Sema::AP_InferredFromOtherPlatform, Environment: IIEnvironment); |
2622 | if (NewAttr) |
2623 | D->addAttr(A: NewAttr); |
2624 | } |
2625 | } else if (S.Context.getTargetInfo().getTriple().getOS() == |
2626 | llvm::Triple::IOS && |
2627 | S.Context.getTargetInfo().getTriple().isMacCatalystEnvironment()) { |
2628 | auto GetSDKInfo = [&]() { |
2629 | return S.getDarwinSDKInfoForAvailabilityChecking(Loc: AL.getRange().getBegin(), |
2630 | Platform: "macOS" ); |
2631 | }; |
2632 | |
2633 | // Transcribe "ios" to "maccatalyst" (and add a new attribute). |
2634 | IdentifierInfo *NewII = nullptr; |
2635 | if (II->getName() == "ios" ) |
2636 | NewII = &S.Context.Idents.get(Name: "maccatalyst" ); |
2637 | else if (II->getName() == "ios_app_extension" ) |
2638 | NewII = &S.Context.Idents.get(Name: "maccatalyst_app_extension" ); |
2639 | if (NewII) { |
2640 | auto MinMacCatalystVersion = [](const VersionTuple &V) { |
2641 | if (V.empty()) |
2642 | return V; |
2643 | if (V.getMajor() < 13 || |
2644 | (V.getMajor() == 13 && V.getMinor() && *V.getMinor() < 1)) |
2645 | return VersionTuple(13, 1); // The min Mac Catalyst version is 13.1. |
2646 | return V; |
2647 | }; |
2648 | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
2649 | D: ND, CI: AL, Platform: NewII, Implicit: true /*Implicit*/, |
2650 | Introduced: MinMacCatalystVersion(Introduced.Version), |
2651 | Deprecated: MinMacCatalystVersion(Deprecated.Version), |
2652 | Obsoleted: MinMacCatalystVersion(Obsoleted.Version), IsUnavailable, Message: Str, |
2653 | IsStrict, Replacement, AMK: AvailabilityMergeKind::None, |
2654 | Priority: PriorityModifier + Sema::AP_InferredFromOtherPlatform, Environment: IIEnvironment); |
2655 | if (NewAttr) |
2656 | D->addAttr(A: NewAttr); |
2657 | } else if (II->getName() == "macos" && GetSDKInfo() && |
2658 | (!Introduced.Version.empty() || !Deprecated.Version.empty() || |
2659 | !Obsoleted.Version.empty())) { |
2660 | if (const auto *MacOStoMacCatalystMapping = |
2661 | GetSDKInfo()->getVersionMapping( |
2662 | Kind: DarwinSDKInfo::OSEnvPair::macOStoMacCatalystPair())) { |
2663 | // Infer Mac Catalyst availability from the macOS availability attribute |
2664 | // if it has versioned availability. Don't infer 'unavailable'. This |
2665 | // inferred availability has lower priority than the other availability |
2666 | // attributes that are inferred from 'ios'. |
2667 | NewII = &S.Context.Idents.get(Name: "maccatalyst" ); |
2668 | auto RemapMacOSVersion = |
2669 | [&](const VersionTuple &V) -> std::optional<VersionTuple> { |
2670 | if (V.empty()) |
2671 | return std::nullopt; |
2672 | // API_TO_BE_DEPRECATED is 100000. |
2673 | if (V.getMajor() == 100000) |
2674 | return VersionTuple(100000); |
2675 | // The minimum iosmac version is 13.1 |
2676 | return MacOStoMacCatalystMapping->map(Key: V, MinimumValue: VersionTuple(13, 1), |
2677 | MaximumValue: std::nullopt); |
2678 | }; |
2679 | std::optional<VersionTuple> NewIntroduced = |
2680 | RemapMacOSVersion(Introduced.Version), |
2681 | NewDeprecated = |
2682 | RemapMacOSVersion(Deprecated.Version), |
2683 | NewObsoleted = |
2684 | RemapMacOSVersion(Obsoleted.Version); |
2685 | if (NewIntroduced || NewDeprecated || NewObsoleted) { |
2686 | auto VersionOrEmptyVersion = |
2687 | [](const std::optional<VersionTuple> &V) -> VersionTuple { |
2688 | return V ? *V : VersionTuple(); |
2689 | }; |
2690 | AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( |
2691 | D: ND, CI: AL, Platform: NewII, Implicit: true /*Implicit*/, |
2692 | Introduced: VersionOrEmptyVersion(NewIntroduced), |
2693 | Deprecated: VersionOrEmptyVersion(NewDeprecated), |
2694 | Obsoleted: VersionOrEmptyVersion(NewObsoleted), /*IsUnavailable=*/false, Message: Str, |
2695 | IsStrict, Replacement, AMK: AvailabilityMergeKind::None, |
2696 | Priority: PriorityModifier + Sema::AP_InferredFromOtherPlatform + |
2697 | Sema::AP_InferredFromOtherPlatform, |
2698 | Environment: IIEnvironment); |
2699 | if (NewAttr) |
2700 | D->addAttr(A: NewAttr); |
2701 | } |
2702 | } |
2703 | } |
2704 | } |
2705 | } |
2706 | |
2707 | static void handleExternalSourceSymbolAttr(Sema &S, Decl *D, |
2708 | const ParsedAttr &AL) { |
2709 | if (!AL.checkAtLeastNumArgs(S, Num: 1) || !AL.checkAtMostNumArgs(S, Num: 4)) |
2710 | return; |
2711 | |
2712 | StringRef Language; |
2713 | if (const auto *SE = dyn_cast_if_present<StringLiteral>(Val: AL.getArgAsExpr(Arg: 0))) |
2714 | Language = SE->getString(); |
2715 | StringRef DefinedIn; |
2716 | if (const auto *SE = dyn_cast_if_present<StringLiteral>(Val: AL.getArgAsExpr(Arg: 1))) |
2717 | DefinedIn = SE->getString(); |
2718 | bool IsGeneratedDeclaration = AL.getArgAsIdent(Arg: 2) != nullptr; |
2719 | StringRef USR; |
2720 | if (const auto *SE = dyn_cast_if_present<StringLiteral>(Val: AL.getArgAsExpr(Arg: 3))) |
2721 | USR = SE->getString(); |
2722 | |
2723 | D->addAttr(A: ::new (S.Context) ExternalSourceSymbolAttr( |
2724 | S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration, USR)); |
2725 | } |
2726 | |
2727 | template <class T> |
2728 | static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI, |
2729 | typename T::VisibilityType value) { |
2730 | T *existingAttr = D->getAttr<T>(); |
2731 | if (existingAttr) { |
2732 | typename T::VisibilityType existingValue = existingAttr->getVisibility(); |
2733 | if (existingValue == value) |
2734 | return nullptr; |
2735 | S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility); |
2736 | S.Diag(Loc: CI.getLoc(), DiagID: diag::note_previous_attribute); |
2737 | D->dropAttr<T>(); |
2738 | } |
2739 | return ::new (S.Context) T(S.Context, CI, value); |
2740 | } |
2741 | |
2742 | VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, |
2743 | const AttributeCommonInfo &CI, |
2744 | VisibilityAttr::VisibilityType Vis) { |
2745 | return ::mergeVisibilityAttr<VisibilityAttr>(S&: *this, D, CI, value: Vis); |
2746 | } |
2747 | |
2748 | TypeVisibilityAttr * |
2749 | Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, |
2750 | TypeVisibilityAttr::VisibilityType Vis) { |
2751 | return ::mergeVisibilityAttr<TypeVisibilityAttr>(S&: *this, D, CI, value: Vis); |
2752 | } |
2753 | |
2754 | static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL, |
2755 | bool isTypeVisibility) { |
2756 | // Visibility attributes don't mean anything on a typedef. |
2757 | if (isa<TypedefNameDecl>(Val: D)) { |
2758 | S.Diag(Loc: AL.getRange().getBegin(), DiagID: diag::warn_attribute_ignored) << AL; |
2759 | return; |
2760 | } |
2761 | |
2762 | // 'type_visibility' can only go on a type or namespace. |
2763 | if (isTypeVisibility && !(isa<TagDecl>(Val: D) || isa<ObjCInterfaceDecl>(Val: D) || |
2764 | isa<NamespaceDecl>(Val: D))) { |
2765 | S.Diag(Loc: AL.getRange().getBegin(), DiagID: diag::err_attribute_wrong_decl_type) |
2766 | << AL << AL.isRegularKeywordAttribute() << ExpectedTypeOrNamespace; |
2767 | return; |
2768 | } |
2769 | |
2770 | // Check that the argument is a string literal. |
2771 | StringRef TypeStr; |
2772 | SourceLocation LiteralLoc; |
2773 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: TypeStr, ArgLocation: &LiteralLoc)) |
2774 | return; |
2775 | |
2776 | VisibilityAttr::VisibilityType type; |
2777 | if (!VisibilityAttr::ConvertStrToVisibilityType(Val: TypeStr, Out&: type)) { |
2778 | S.Diag(Loc: LiteralLoc, DiagID: diag::warn_attribute_type_not_supported) << AL |
2779 | << TypeStr; |
2780 | return; |
2781 | } |
2782 | |
2783 | // Complain about attempts to use protected visibility on targets |
2784 | // (like Darwin) that don't support it. |
2785 | if (type == VisibilityAttr::Protected && |
2786 | !S.Context.getTargetInfo().hasProtectedVisibility()) { |
2787 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_protected_visibility); |
2788 | type = VisibilityAttr::Default; |
2789 | } |
2790 | |
2791 | Attr *newAttr; |
2792 | if (isTypeVisibility) { |
2793 | newAttr = S.mergeTypeVisibilityAttr( |
2794 | D, CI: AL, Vis: (TypeVisibilityAttr::VisibilityType)type); |
2795 | } else { |
2796 | newAttr = S.mergeVisibilityAttr(D, CI: AL, Vis: type); |
2797 | } |
2798 | if (newAttr) |
2799 | D->addAttr(A: newAttr); |
2800 | } |
2801 | |
2802 | static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2803 | unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel; |
2804 | if (AL.getNumArgs() > 0) { |
2805 | Expr *E = AL.getArgAsExpr(Arg: 0); |
2806 | std::optional<llvm::APSInt> Idx = llvm::APSInt(32); |
2807 | if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(Ctx: S.Context))) { |
2808 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
2809 | << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
2810 | return; |
2811 | } |
2812 | |
2813 | if (Idx->isSigned() && Idx->isNegative()) { |
2814 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_sentinel_less_than_zero) |
2815 | << E->getSourceRange(); |
2816 | return; |
2817 | } |
2818 | |
2819 | sentinel = Idx->getZExtValue(); |
2820 | } |
2821 | |
2822 | unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos; |
2823 | if (AL.getNumArgs() > 1) { |
2824 | Expr *E = AL.getArgAsExpr(Arg: 1); |
2825 | std::optional<llvm::APSInt> Idx = llvm::APSInt(32); |
2826 | if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(Ctx: S.Context))) { |
2827 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
2828 | << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
2829 | return; |
2830 | } |
2831 | nullPos = Idx->getZExtValue(); |
2832 | |
2833 | if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) { |
2834 | // FIXME: This error message could be improved, it would be nice |
2835 | // to say what the bounds actually are. |
2836 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_sentinel_not_zero_or_one) |
2837 | << E->getSourceRange(); |
2838 | return; |
2839 | } |
2840 | } |
2841 | |
2842 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
2843 | const FunctionType *FT = FD->getType()->castAs<FunctionType>(); |
2844 | if (isa<FunctionNoProtoType>(Val: FT)) { |
2845 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_sentinel_named_arguments); |
2846 | return; |
2847 | } |
2848 | |
2849 | if (!cast<FunctionProtoType>(Val: FT)->isVariadic()) { |
2850 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_sentinel_not_variadic) << 0; |
2851 | return; |
2852 | } |
2853 | } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) { |
2854 | if (!MD->isVariadic()) { |
2855 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_sentinel_not_variadic) << 0; |
2856 | return; |
2857 | } |
2858 | } else if (const auto *BD = dyn_cast<BlockDecl>(Val: D)) { |
2859 | if (!BD->isVariadic()) { |
2860 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_sentinel_not_variadic) << 1; |
2861 | return; |
2862 | } |
2863 | } else if (const auto *V = dyn_cast<VarDecl>(Val: D)) { |
2864 | QualType Ty = V->getType(); |
2865 | if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { |
2866 | const FunctionType *FT = Ty->isFunctionPointerType() |
2867 | ? D->getFunctionType() |
2868 | : Ty->castAs<BlockPointerType>() |
2869 | ->getPointeeType() |
2870 | ->castAs<FunctionType>(); |
2871 | if (!cast<FunctionProtoType>(Val: FT)->isVariadic()) { |
2872 | int m = Ty->isFunctionPointerType() ? 0 : 1; |
2873 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_sentinel_not_variadic) << m; |
2874 | return; |
2875 | } |
2876 | } else { |
2877 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
2878 | << AL << AL.isRegularKeywordAttribute() |
2879 | << ExpectedFunctionMethodOrBlock; |
2880 | return; |
2881 | } |
2882 | } else { |
2883 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
2884 | << AL << AL.isRegularKeywordAttribute() |
2885 | << ExpectedFunctionMethodOrBlock; |
2886 | return; |
2887 | } |
2888 | D->addAttr(A: ::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos)); |
2889 | } |
2890 | |
2891 | static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) { |
2892 | if (D->getFunctionType() && |
2893 | D->getFunctionType()->getReturnType()->isVoidType() && |
2894 | !isa<CXXConstructorDecl>(Val: D)) { |
2895 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_void_function_method) << AL << 0; |
2896 | return; |
2897 | } |
2898 | if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) |
2899 | if (MD->getReturnType()->isVoidType()) { |
2900 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_void_function_method) << AL << 1; |
2901 | return; |
2902 | } |
2903 | |
2904 | StringRef Str; |
2905 | if (AL.isStandardAttributeSyntax() && !AL.getScopeName()) { |
2906 | // The standard attribute cannot be applied to variable declarations such |
2907 | // as a function pointer. |
2908 | if (isa<VarDecl>(Val: D)) |
2909 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
2910 | << AL << AL.isRegularKeywordAttribute() |
2911 | << ExpectedFunctionOrClassOrEnum; |
2912 | |
2913 | // If this is spelled as the standard C++17 attribute, but not in C++17, |
2914 | // warn about using it as an extension. If there are attribute arguments, |
2915 | // then claim it's a C++20 extension instead. |
2916 | // FIXME: If WG14 does not seem likely to adopt the same feature, add an |
2917 | // extension warning for C23 mode. |
2918 | const LangOptions &LO = S.getLangOpts(); |
2919 | if (AL.getNumArgs() == 1) { |
2920 | if (LO.CPlusPlus && !LO.CPlusPlus20) |
2921 | S.Diag(Loc: AL.getLoc(), DiagID: diag::ext_cxx20_attr) << AL; |
2922 | |
2923 | // Since this is spelled [[nodiscard]], get the optional string |
2924 | // literal. If in C++ mode, but not in C++20 mode, diagnose as an |
2925 | // extension. |
2926 | // FIXME: C23 should support this feature as well, even as an extension. |
2927 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: nullptr)) |
2928 | return; |
2929 | } else if (LO.CPlusPlus && !LO.CPlusPlus17) |
2930 | S.Diag(Loc: AL.getLoc(), DiagID: diag::ext_cxx17_attr) << AL; |
2931 | } |
2932 | |
2933 | if ((!AL.isGNUAttribute() && |
2934 | !(AL.isStandardAttributeSyntax() && AL.isClangScope())) && |
2935 | isa<TypedefNameDecl>(Val: D)) { |
2936 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_unused_result_typedef_unsupported_spelling) |
2937 | << AL.isGNUScope(); |
2938 | return; |
2939 | } |
2940 | |
2941 | D->addAttr(A: ::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str)); |
2942 | } |
2943 | |
2944 | static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
2945 | // weak_import only applies to variable & function declarations. |
2946 | bool isDef = false; |
2947 | if (!D->canBeWeakImported(IsDefinition&: isDef)) { |
2948 | if (isDef) |
2949 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_invalid_on_definition) |
2950 | << "weak_import" ; |
2951 | else if (isa<ObjCPropertyDecl>(Val: D) || isa<ObjCMethodDecl>(Val: D) || |
2952 | (S.Context.getTargetInfo().getTriple().isOSDarwin() && |
2953 | (isa<ObjCInterfaceDecl>(Val: D) || isa<EnumDecl>(Val: D)))) { |
2954 | // Nothing to warn about here. |
2955 | } else |
2956 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
2957 | << AL << AL.isRegularKeywordAttribute() << ExpectedVariableOrFunction; |
2958 | |
2959 | return; |
2960 | } |
2961 | |
2962 | D->addAttr(A: ::new (S.Context) WeakImportAttr(S.Context, AL)); |
2963 | } |
2964 | |
2965 | // Checks whether an argument of launch_bounds-like attribute is |
2966 | // acceptable, performs implicit conversion to Rvalue, and returns |
2967 | // non-nullptr Expr result on success. Otherwise, it returns nullptr |
2968 | // and may output an error. |
2969 | template <class Attribute> |
2970 | static Expr *makeAttributeArgExpr(Sema &S, Expr *E, const Attribute &Attr, |
2971 | const unsigned Idx) { |
2972 | if (S.DiagnoseUnexpandedParameterPack(E)) |
2973 | return nullptr; |
2974 | |
2975 | // Accept template arguments for now as they depend on something else. |
2976 | // We'll get to check them when they eventually get instantiated. |
2977 | if (E->isValueDependent()) |
2978 | return E; |
2979 | |
2980 | std::optional<llvm::APSInt> I = llvm::APSInt(64); |
2981 | if (!(I = E->getIntegerConstantExpr(Ctx: S.Context))) { |
2982 | S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_attribute_argument_n_type) |
2983 | << &Attr << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
2984 | return nullptr; |
2985 | } |
2986 | // Make sure we can fit it in 32 bits. |
2987 | if (!I->isIntN(N: 32)) { |
2988 | S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_ice_too_large) |
2989 | << toString(I: *I, Radix: 10, Signed: false) << 32 << /* Unsigned */ 1; |
2990 | return nullptr; |
2991 | } |
2992 | if (*I < 0) |
2993 | S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_attribute_requires_positive_integer) |
2994 | << &Attr << /*non-negative*/ 1 << E->getSourceRange(); |
2995 | |
2996 | // We may need to perform implicit conversion of the argument. |
2997 | InitializedEntity Entity = InitializedEntity::InitializeParameter( |
2998 | Context&: S.Context, Type: S.Context.getConstType(T: S.Context.IntTy), /*consume*/ Consumed: false); |
2999 | ExprResult ValArg = S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: E); |
3000 | assert(!ValArg.isInvalid() && |
3001 | "Unexpected PerformCopyInitialization() failure." ); |
3002 | |
3003 | return ValArg.getAs<Expr>(); |
3004 | } |
3005 | |
3006 | // Handles reqd_work_group_size and work_group_size_hint. |
3007 | template <typename WorkGroupAttr> |
3008 | static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { |
3009 | Expr *WGSize[3]; |
3010 | for (unsigned i = 0; i < 3; ++i) { |
3011 | if (Expr *E = makeAttributeArgExpr(S, E: AL.getArgAsExpr(Arg: i), Attr: AL, Idx: i)) |
3012 | WGSize[i] = E; |
3013 | else |
3014 | return; |
3015 | } |
3016 | |
3017 | auto IsZero = [&](Expr *E) { |
3018 | if (E->isValueDependent()) |
3019 | return false; |
3020 | std::optional<llvm::APSInt> I = E->getIntegerConstantExpr(Ctx: S.Context); |
3021 | assert(I && "Non-integer constant expr" ); |
3022 | return I->isZero(); |
3023 | }; |
3024 | |
3025 | if (!llvm::all_of(WGSize, IsZero)) { |
3026 | for (unsigned i = 0; i < 3; ++i) { |
3027 | const Expr *E = AL.getArgAsExpr(Arg: i); |
3028 | if (IsZero(WGSize[i])) { |
3029 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_is_zero) |
3030 | << AL << E->getSourceRange(); |
3031 | return; |
3032 | } |
3033 | } |
3034 | } |
3035 | |
3036 | auto Equal = [&](Expr *LHS, Expr *RHS) { |
3037 | if (LHS->isValueDependent() || RHS->isValueDependent()) |
3038 | return true; |
3039 | std::optional<llvm::APSInt> L = LHS->getIntegerConstantExpr(Ctx: S.Context); |
3040 | assert(L && "Non-integer constant expr" ); |
3041 | std::optional<llvm::APSInt> R = RHS->getIntegerConstantExpr(Ctx: S.Context); |
3042 | assert(L && "Non-integer constant expr" ); |
3043 | return L == R; |
3044 | }; |
3045 | |
3046 | WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>(); |
3047 | if (Existing && |
3048 | !llvm::equal(std::initializer_list<Expr *>{Existing->getXDim(), |
3049 | Existing->getYDim(), |
3050 | Existing->getZDim()}, |
3051 | WGSize, Equal)) |
3052 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_duplicate_attribute) << AL; |
3053 | |
3054 | D->addAttr(A: ::new (S.Context) |
3055 | WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2])); |
3056 | } |
3057 | |
3058 | static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) { |
3059 | if (!AL.hasParsedType()) { |
3060 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) << AL << 1; |
3061 | return; |
3062 | } |
3063 | |
3064 | TypeSourceInfo *ParmTSI = nullptr; |
3065 | QualType ParmType = S.GetTypeFromParser(Ty: AL.getTypeArg(), TInfo: &ParmTSI); |
3066 | assert(ParmTSI && "no type source info for attribute argument" ); |
3067 | |
3068 | if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() && |
3069 | (ParmType->isBooleanType() || |
3070 | !ParmType->isIntegralType(Ctx: S.getASTContext()))) { |
3071 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_invalid_argument) << 2 << AL; |
3072 | return; |
3073 | } |
3074 | |
3075 | if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) { |
3076 | if (!S.Context.hasSameType(T1: A->getTypeHint(), T2: ParmType)) { |
3077 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_duplicate_attribute) << AL; |
3078 | return; |
3079 | } |
3080 | } |
3081 | |
3082 | D->addAttr(A: ::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI)); |
3083 | } |
3084 | |
3085 | SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI, |
3086 | StringRef Name) { |
3087 | // Explicit or partial specializations do not inherit |
3088 | // the section attribute from the primary template. |
3089 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
3090 | if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate && |
3091 | FD->isFunctionTemplateSpecialization()) |
3092 | return nullptr; |
3093 | } |
3094 | if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) { |
3095 | if (ExistingAttr->getName() == Name) |
3096 | return nullptr; |
3097 | Diag(Loc: ExistingAttr->getLocation(), DiagID: diag::warn_mismatched_section) |
3098 | << 1 /*section*/; |
3099 | Diag(Loc: CI.getLoc(), DiagID: diag::note_previous_attribute); |
3100 | return nullptr; |
3101 | } |
3102 | return ::new (Context) SectionAttr(Context, CI, Name); |
3103 | } |
3104 | |
3105 | llvm::Error Sema::isValidSectionSpecifier(StringRef SecName) { |
3106 | if (!Context.getTargetInfo().getTriple().isOSDarwin()) |
3107 | return llvm::Error::success(); |
3108 | |
3109 | // Let MCSectionMachO validate this. |
3110 | StringRef Segment, Section; |
3111 | unsigned TAA, StubSize; |
3112 | bool HasTAA; |
3113 | return llvm::MCSectionMachO::ParseSectionSpecifier(Spec: SecName, Segment, Section, |
3114 | TAA, TAAParsed&: HasTAA, StubSize); |
3115 | } |
3116 | |
3117 | bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) { |
3118 | if (llvm::Error E = isValidSectionSpecifier(SecName)) { |
3119 | Diag(Loc: LiteralLoc, DiagID: diag::err_attribute_section_invalid_for_target) |
3120 | << toString(E: std::move(E)) << 1 /*'section'*/; |
3121 | return false; |
3122 | } |
3123 | return true; |
3124 | } |
3125 | |
3126 | static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3127 | // Make sure that there is a string literal as the sections's single |
3128 | // argument. |
3129 | StringRef Str; |
3130 | SourceLocation LiteralLoc; |
3131 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &LiteralLoc)) |
3132 | return; |
3133 | |
3134 | if (!S.checkSectionName(LiteralLoc, SecName: Str)) |
3135 | return; |
3136 | |
3137 | SectionAttr *NewAttr = S.mergeSectionAttr(D, CI: AL, Name: Str); |
3138 | if (NewAttr) { |
3139 | D->addAttr(A: NewAttr); |
3140 | if (isa<FunctionDecl, FunctionTemplateDecl, ObjCMethodDecl, |
3141 | ObjCPropertyDecl>(Val: D)) |
3142 | S.UnifySection(SectionName: NewAttr->getName(), |
3143 | SectionFlags: ASTContext::PSF_Execute | ASTContext::PSF_Read, |
3144 | TheDecl: cast<NamedDecl>(Val: D)); |
3145 | } |
3146 | } |
3147 | |
3148 | static bool isValidCodeModelAttr(llvm::Triple &Triple, StringRef Str) { |
3149 | if (Triple.isLoongArch()) { |
3150 | return Str == "normal" || Str == "medium" || Str == "extreme" ; |
3151 | } else { |
3152 | assert(Triple.getArch() == llvm::Triple::x86_64 && |
3153 | "only loongarch/x86-64 supported" ); |
3154 | return Str == "small" || Str == "large" ; |
3155 | } |
3156 | } |
3157 | |
3158 | static void handleCodeModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3159 | StringRef Str; |
3160 | SourceLocation LiteralLoc; |
3161 | auto IsTripleSupported = [](llvm::Triple &Triple) { |
3162 | return Triple.getArch() == llvm::Triple::ArchType::x86_64 || |
3163 | Triple.isLoongArch(); |
3164 | }; |
3165 | |
3166 | // Check that it is a string. |
3167 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &LiteralLoc)) |
3168 | return; |
3169 | |
3170 | SmallVector<llvm::Triple, 2> Triples = { |
3171 | S.Context.getTargetInfo().getTriple()}; |
3172 | if (auto *aux = S.Context.getAuxTargetInfo()) { |
3173 | Triples.push_back(Elt: aux->getTriple()); |
3174 | } else if (S.Context.getTargetInfo().getTriple().isNVPTX() || |
3175 | S.Context.getTargetInfo().getTriple().isAMDGPU() || |
3176 | S.Context.getTargetInfo().getTriple().isSPIRV()) { |
3177 | // Ignore the attribute for pure GPU device compiles since it only applies |
3178 | // to host globals. |
3179 | return; |
3180 | } |
3181 | |
3182 | auto SupportedTripleIt = llvm::find_if(Range&: Triples, P: IsTripleSupported); |
3183 | if (SupportedTripleIt == Triples.end()) { |
3184 | S.Diag(Loc: LiteralLoc, DiagID: diag::warn_unknown_attribute_ignored) << AL; |
3185 | return; |
3186 | } |
3187 | |
3188 | llvm::CodeModel::Model CM; |
3189 | if (!CodeModelAttr::ConvertStrToModel(Val: Str, Out&: CM) || |
3190 | !isValidCodeModelAttr(Triple&: *SupportedTripleIt, Str)) { |
3191 | S.Diag(Loc: LiteralLoc, DiagID: diag::err_attr_codemodel_arg) << Str; |
3192 | return; |
3193 | } |
3194 | |
3195 | D->addAttr(A: ::new (S.Context) CodeModelAttr(S.Context, AL, CM)); |
3196 | } |
3197 | |
3198 | // This is used for `__declspec(code_seg("segname"))` on a decl. |
3199 | // `#pragma code_seg("segname")` uses checkSectionName() instead. |
3200 | static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc, |
3201 | StringRef CodeSegName) { |
3202 | if (llvm::Error E = S.isValidSectionSpecifier(SecName: CodeSegName)) { |
3203 | S.Diag(Loc: LiteralLoc, DiagID: diag::err_attribute_section_invalid_for_target) |
3204 | << toString(E: std::move(E)) << 0 /*'code-seg'*/; |
3205 | return false; |
3206 | } |
3207 | |
3208 | return true; |
3209 | } |
3210 | |
3211 | CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI, |
3212 | StringRef Name) { |
3213 | // Explicit or partial specializations do not inherit |
3214 | // the code_seg attribute from the primary template. |
3215 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
3216 | if (FD->isFunctionTemplateSpecialization()) |
3217 | return nullptr; |
3218 | } |
3219 | if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { |
3220 | if (ExistingAttr->getName() == Name) |
3221 | return nullptr; |
3222 | Diag(Loc: ExistingAttr->getLocation(), DiagID: diag::warn_mismatched_section) |
3223 | << 0 /*codeseg*/; |
3224 | Diag(Loc: CI.getLoc(), DiagID: diag::note_previous_attribute); |
3225 | return nullptr; |
3226 | } |
3227 | return ::new (Context) CodeSegAttr(Context, CI, Name); |
3228 | } |
3229 | |
3230 | static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3231 | StringRef Str; |
3232 | SourceLocation LiteralLoc; |
3233 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &LiteralLoc)) |
3234 | return; |
3235 | if (!checkCodeSegName(S, LiteralLoc, CodeSegName: Str)) |
3236 | return; |
3237 | if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) { |
3238 | if (!ExistingAttr->isImplicit()) { |
3239 | S.Diag(Loc: AL.getLoc(), |
3240 | DiagID: ExistingAttr->getName() == Str |
3241 | ? diag::warn_duplicate_codeseg_attribute |
3242 | : diag::err_conflicting_codeseg_attribute); |
3243 | return; |
3244 | } |
3245 | D->dropAttr<CodeSegAttr>(); |
3246 | } |
3247 | if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, CI: AL, Name: Str)) |
3248 | D->addAttr(A: CSA); |
3249 | } |
3250 | |
3251 | bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) { |
3252 | enum FirstParam { Unsupported, Duplicate, Unknown }; |
3253 | enum SecondParam { None, CPU, Tune }; |
3254 | enum ThirdParam { Target, TargetClones }; |
3255 | if (AttrStr.contains(Other: "fpmath=" )) |
3256 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3257 | << Unsupported << None << "fpmath=" << Target; |
3258 | |
3259 | // Diagnose use of tune if target doesn't support it. |
3260 | if (!Context.getTargetInfo().supportsTargetAttributeTune() && |
3261 | AttrStr.contains(Other: "tune=" )) |
3262 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3263 | << Unsupported << None << "tune=" << Target; |
3264 | |
3265 | ParsedTargetAttr ParsedAttrs = |
3266 | Context.getTargetInfo().parseTargetAttr(Str: AttrStr); |
3267 | |
3268 | if (!ParsedAttrs.CPU.empty() && |
3269 | !Context.getTargetInfo().isValidCPUName(Name: ParsedAttrs.CPU)) |
3270 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3271 | << Unknown << CPU << ParsedAttrs.CPU << Target; |
3272 | |
3273 | if (!ParsedAttrs.Tune.empty() && |
3274 | !Context.getTargetInfo().isValidCPUName(Name: ParsedAttrs.Tune)) |
3275 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3276 | << Unknown << Tune << ParsedAttrs.Tune << Target; |
3277 | |
3278 | if (Context.getTargetInfo().getTriple().isRISCV()) { |
3279 | if (ParsedAttrs.Duplicate != "" ) |
3280 | return Diag(Loc: LiteralLoc, DiagID: diag::err_duplicate_target_attribute) |
3281 | << Duplicate << None << ParsedAttrs.Duplicate << Target; |
3282 | for (StringRef CurFeature : ParsedAttrs.Features) { |
3283 | if (!CurFeature.starts_with(Prefix: '+') && !CurFeature.starts_with(Prefix: '-')) |
3284 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3285 | << Unsupported << None << AttrStr << Target; |
3286 | } |
3287 | } |
3288 | |
3289 | if (Context.getTargetInfo().getTriple().isLoongArch()) { |
3290 | for (StringRef CurFeature : ParsedAttrs.Features) { |
3291 | if (CurFeature.starts_with(Prefix: "!arch=" )) { |
3292 | StringRef ArchValue = CurFeature.split(Separator: "=" ).second.trim(); |
3293 | return Diag(Loc: LiteralLoc, DiagID: diag::err_attribute_unsupported) |
3294 | << "target(arch=..)" << ArchValue; |
3295 | } |
3296 | } |
3297 | } |
3298 | |
3299 | if (ParsedAttrs.Duplicate != "" ) |
3300 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3301 | << Duplicate << None << ParsedAttrs.Duplicate << Target; |
3302 | |
3303 | for (const auto &Feature : ParsedAttrs.Features) { |
3304 | auto CurFeature = StringRef(Feature).drop_front(); // remove + or -. |
3305 | if (!Context.getTargetInfo().isValidFeatureName(Feature: CurFeature)) |
3306 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3307 | << Unsupported << None << CurFeature << Target; |
3308 | } |
3309 | |
3310 | TargetInfo::BranchProtectionInfo BPI{}; |
3311 | StringRef DiagMsg; |
3312 | if (ParsedAttrs.BranchProtection.empty()) |
3313 | return false; |
3314 | if (!Context.getTargetInfo().validateBranchProtection( |
3315 | Spec: ParsedAttrs.BranchProtection, Arch: ParsedAttrs.CPU, BPI, |
3316 | LO: Context.getLangOpts(), Err&: DiagMsg)) { |
3317 | if (DiagMsg.empty()) |
3318 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3319 | << Unsupported << None << "branch-protection" << Target; |
3320 | return Diag(Loc: LiteralLoc, DiagID: diag::err_invalid_branch_protection_spec) |
3321 | << DiagMsg; |
3322 | } |
3323 | if (!DiagMsg.empty()) |
3324 | Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_branch_protection_spec) << DiagMsg; |
3325 | |
3326 | return false; |
3327 | } |
3328 | |
3329 | bool Sema::checkTargetVersionAttr(SourceLocation LiteralLoc, Decl *D, |
3330 | StringRef AttrStr) { |
3331 | enum FirstParam { Unsupported }; |
3332 | enum SecondParam { None }; |
3333 | enum ThirdParam { Target, TargetClones, TargetVersion }; |
3334 | llvm::SmallVector<StringRef, 8> Features; |
3335 | if (Context.getTargetInfo().getTriple().isRISCV()) { |
3336 | llvm::SmallVector<StringRef, 8> AttrStrs; |
3337 | AttrStr.split(A&: AttrStrs, Separator: ';'); |
3338 | |
3339 | bool HasArch = false; |
3340 | bool HasPriority = false; |
3341 | bool HasDefault = false; |
3342 | bool DuplicateAttr = false; |
3343 | for (auto &AttrStr : AttrStrs) { |
3344 | // Only support arch=+ext,... syntax. |
3345 | if (AttrStr.starts_with(Prefix: "arch=+" )) { |
3346 | if (HasArch) |
3347 | DuplicateAttr = true; |
3348 | HasArch = true; |
3349 | ParsedTargetAttr TargetAttr = |
3350 | Context.getTargetInfo().parseTargetAttr(Str: AttrStr); |
3351 | |
3352 | if (TargetAttr.Features.empty() || |
3353 | llvm::any_of(Range&: TargetAttr.Features, P: [&](const StringRef Ext) { |
3354 | return !RISCV().isValidFMVExtension(Ext); |
3355 | })) |
3356 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3357 | << Unsupported << None << AttrStr << TargetVersion; |
3358 | } else if (AttrStr.starts_with(Prefix: "default" )) { |
3359 | if (HasDefault) |
3360 | DuplicateAttr = true; |
3361 | HasDefault = true; |
3362 | } else if (AttrStr.consume_front(Prefix: "priority=" )) { |
3363 | if (HasPriority) |
3364 | DuplicateAttr = true; |
3365 | HasPriority = true; |
3366 | unsigned Digit; |
3367 | if (AttrStr.getAsInteger(Radix: 0, Result&: Digit)) |
3368 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3369 | << Unsupported << None << AttrStr << TargetVersion; |
3370 | } else { |
3371 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3372 | << Unsupported << None << AttrStr << TargetVersion; |
3373 | } |
3374 | } |
3375 | |
3376 | if (((HasPriority || HasArch) && HasDefault) || DuplicateAttr || |
3377 | (HasPriority && !HasArch)) |
3378 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3379 | << Unsupported << None << AttrStr << TargetVersion; |
3380 | |
3381 | return false; |
3382 | } |
3383 | AttrStr.split(A&: Features, Separator: "+" ); |
3384 | for (auto &CurFeature : Features) { |
3385 | CurFeature = CurFeature.trim(); |
3386 | if (CurFeature == "default" ) |
3387 | continue; |
3388 | if (!Context.getTargetInfo().validateCpuSupports(Name: CurFeature)) |
3389 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3390 | << Unsupported << None << CurFeature << TargetVersion; |
3391 | } |
3392 | return false; |
3393 | } |
3394 | |
3395 | static void handleTargetVersionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3396 | StringRef Str; |
3397 | SourceLocation LiteralLoc; |
3398 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &LiteralLoc) || |
3399 | S.checkTargetVersionAttr(LiteralLoc, D, AttrStr: Str)) |
3400 | return; |
3401 | TargetVersionAttr *NewAttr = |
3402 | ::new (S.Context) TargetVersionAttr(S.Context, AL, Str); |
3403 | D->addAttr(A: NewAttr); |
3404 | } |
3405 | |
3406 | static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3407 | StringRef Str; |
3408 | SourceLocation LiteralLoc; |
3409 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str, ArgLocation: &LiteralLoc) || |
3410 | S.checkTargetAttr(LiteralLoc, AttrStr: Str)) |
3411 | return; |
3412 | |
3413 | TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str); |
3414 | D->addAttr(A: NewAttr); |
3415 | } |
3416 | |
3417 | bool Sema::checkTargetClonesAttrString( |
3418 | SourceLocation LiteralLoc, StringRef Str, const StringLiteral *Literal, |
3419 | Decl *D, bool &HasDefault, bool &HasCommas, bool &HasNotDefault, |
3420 | SmallVectorImpl<SmallString<64>> &StringsBuffer) { |
3421 | enum FirstParam { Unsupported, Duplicate, Unknown }; |
3422 | enum SecondParam { None, CPU, Tune }; |
3423 | enum ThirdParam { Target, TargetClones }; |
3424 | HasCommas = HasCommas || Str.contains(C: ','); |
3425 | const TargetInfo &TInfo = Context.getTargetInfo(); |
3426 | // Warn on empty at the beginning of a string. |
3427 | if (Str.size() == 0) |
3428 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3429 | << Unsupported << None << "" << TargetClones; |
3430 | |
3431 | std::pair<StringRef, StringRef> Parts = {{}, Str}; |
3432 | while (!Parts.second.empty()) { |
3433 | Parts = Parts.second.split(Separator: ','); |
3434 | StringRef Cur = Parts.first.trim(); |
3435 | SourceLocation CurLoc = |
3436 | Literal->getLocationOfByte(ByteNo: Cur.data() - Literal->getString().data(), |
3437 | SM: getSourceManager(), Features: getLangOpts(), Target: TInfo); |
3438 | |
3439 | bool DefaultIsDupe = false; |
3440 | bool HasCodeGenImpact = false; |
3441 | if (Cur.empty()) |
3442 | return Diag(Loc: CurLoc, DiagID: diag::warn_unsupported_target_attribute) |
3443 | << Unsupported << None << "" << TargetClones; |
3444 | |
3445 | if (TInfo.getTriple().isAArch64()) { |
3446 | // AArch64 target clones specific |
3447 | if (Cur == "default" ) { |
3448 | DefaultIsDupe = HasDefault; |
3449 | HasDefault = true; |
3450 | if (llvm::is_contained(Range&: StringsBuffer, Element: Cur) || DefaultIsDupe) |
3451 | Diag(Loc: CurLoc, DiagID: diag::warn_target_clone_duplicate_options); |
3452 | else |
3453 | StringsBuffer.push_back(Elt: Cur); |
3454 | } else { |
3455 | std::pair<StringRef, StringRef> CurParts = {{}, Cur}; |
3456 | llvm::SmallVector<StringRef, 8> CurFeatures; |
3457 | while (!CurParts.second.empty()) { |
3458 | CurParts = CurParts.second.split(Separator: '+'); |
3459 | StringRef CurFeature = CurParts.first.trim(); |
3460 | if (!TInfo.validateCpuSupports(Name: CurFeature)) { |
3461 | Diag(Loc: CurLoc, DiagID: diag::warn_unsupported_target_attribute) |
3462 | << Unsupported << None << CurFeature << TargetClones; |
3463 | continue; |
3464 | } |
3465 | if (TInfo.doesFeatureAffectCodeGen(Feature: CurFeature)) |
3466 | HasCodeGenImpact = true; |
3467 | CurFeatures.push_back(Elt: CurFeature); |
3468 | } |
3469 | // Canonize TargetClones Attributes |
3470 | llvm::sort(C&: CurFeatures); |
3471 | SmallString<64> Res; |
3472 | for (auto &CurFeat : CurFeatures) { |
3473 | if (!Res.empty()) |
3474 | Res.append(RHS: "+" ); |
3475 | Res.append(RHS: CurFeat); |
3476 | } |
3477 | if (llvm::is_contained(Range&: StringsBuffer, Element: Res) || DefaultIsDupe) |
3478 | Diag(Loc: CurLoc, DiagID: diag::warn_target_clone_duplicate_options); |
3479 | else if (!HasCodeGenImpact) |
3480 | // Ignore features in target_clone attribute that don't impact |
3481 | // code generation |
3482 | Diag(Loc: CurLoc, DiagID: diag::warn_target_clone_no_impact_options); |
3483 | else if (!Res.empty()) { |
3484 | StringsBuffer.push_back(Elt: Res); |
3485 | HasNotDefault = true; |
3486 | } |
3487 | } |
3488 | } else if (TInfo.getTriple().isRISCV()) { |
3489 | // Suppress warn_target_clone_mixed_values |
3490 | HasCommas = false; |
3491 | |
3492 | // Cur is split's parts of Str. RISC-V uses Str directly, |
3493 | // so skip when encountered more than once. |
3494 | if (!Str.starts_with(Prefix: Cur)) |
3495 | continue; |
3496 | |
3497 | llvm::SmallVector<StringRef, 8> AttrStrs; |
3498 | Str.split(A&: AttrStrs, Separator: ";" ); |
3499 | |
3500 | bool IsPriority = false; |
3501 | bool IsDefault = false; |
3502 | for (auto &AttrStr : AttrStrs) { |
3503 | // Only support arch=+ext,... syntax. |
3504 | if (AttrStr.starts_with(Prefix: "arch=+" )) { |
3505 | ParsedTargetAttr TargetAttr = |
3506 | Context.getTargetInfo().parseTargetAttr(Str: AttrStr); |
3507 | |
3508 | if (TargetAttr.Features.empty() || |
3509 | llvm::any_of(Range&: TargetAttr.Features, P: [&](const StringRef Ext) { |
3510 | return !RISCV().isValidFMVExtension(Ext); |
3511 | })) |
3512 | return Diag(Loc: CurLoc, DiagID: diag::warn_unsupported_target_attribute) |
3513 | << Unsupported << None << Str << TargetClones; |
3514 | } else if (AttrStr.starts_with(Prefix: "default" )) { |
3515 | IsDefault = true; |
3516 | DefaultIsDupe = HasDefault; |
3517 | HasDefault = true; |
3518 | } else if (AttrStr.consume_front(Prefix: "priority=" )) { |
3519 | IsPriority = true; |
3520 | unsigned Digit; |
3521 | if (AttrStr.getAsInteger(Radix: 0, Result&: Digit)) |
3522 | return Diag(Loc: CurLoc, DiagID: diag::warn_unsupported_target_attribute) |
3523 | << Unsupported << None << Str << TargetClones; |
3524 | } else { |
3525 | return Diag(Loc: CurLoc, DiagID: diag::warn_unsupported_target_attribute) |
3526 | << Unsupported << None << Str << TargetClones; |
3527 | } |
3528 | } |
3529 | |
3530 | if (IsPriority && IsDefault) |
3531 | return Diag(Loc: CurLoc, DiagID: diag::warn_unsupported_target_attribute) |
3532 | << Unsupported << None << Str << TargetClones; |
3533 | |
3534 | if (llvm::is_contained(Range&: StringsBuffer, Element: Str) || DefaultIsDupe) |
3535 | Diag(Loc: CurLoc, DiagID: diag::warn_target_clone_duplicate_options); |
3536 | StringsBuffer.push_back(Elt: Str); |
3537 | } else { |
3538 | // Other targets ( currently X86 ) |
3539 | if (Cur.starts_with(Prefix: "arch=" )) { |
3540 | if (!Context.getTargetInfo().isValidCPUName( |
3541 | Name: Cur.drop_front(N: sizeof("arch=" ) - 1))) |
3542 | return Diag(Loc: CurLoc, DiagID: diag::warn_unsupported_target_attribute) |
3543 | << Unsupported << CPU << Cur.drop_front(N: sizeof("arch=" ) - 1) |
3544 | << TargetClones; |
3545 | } else if (Cur == "default" ) { |
3546 | DefaultIsDupe = HasDefault; |
3547 | HasDefault = true; |
3548 | } else if (!Context.getTargetInfo().isValidFeatureName(Feature: Cur) || |
3549 | Context.getTargetInfo().getFMVPriority(Features: Cur) == 0) |
3550 | return Diag(Loc: CurLoc, DiagID: diag::warn_unsupported_target_attribute) |
3551 | << Unsupported << None << Cur << TargetClones; |
3552 | if (llvm::is_contained(Range&: StringsBuffer, Element: Cur) || DefaultIsDupe) |
3553 | Diag(Loc: CurLoc, DiagID: diag::warn_target_clone_duplicate_options); |
3554 | // Note: Add even if there are duplicates, since it changes name mangling. |
3555 | StringsBuffer.push_back(Elt: Cur); |
3556 | } |
3557 | } |
3558 | if (Str.rtrim().ends_with(Suffix: "," )) |
3559 | return Diag(Loc: LiteralLoc, DiagID: diag::warn_unsupported_target_attribute) |
3560 | << Unsupported << None << "" << TargetClones; |
3561 | return false; |
3562 | } |
3563 | |
3564 | static void handleTargetClonesAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3565 | if (S.Context.getTargetInfo().getTriple().isAArch64() && |
3566 | !S.Context.getTargetInfo().hasFeature(Feature: "fmv" )) |
3567 | return; |
3568 | |
3569 | // Ensure we don't combine these with themselves, since that causes some |
3570 | // confusing behavior. |
3571 | if (const auto *Other = D->getAttr<TargetClonesAttr>()) { |
3572 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_disallowed_duplicate_attribute) << AL; |
3573 | S.Diag(Loc: Other->getLocation(), DiagID: diag::note_conflicting_attribute); |
3574 | return; |
3575 | } |
3576 | if (checkAttrMutualExclusion<TargetClonesAttr>(S, D, AL)) |
3577 | return; |
3578 | |
3579 | SmallVector<StringRef, 2> Strings; |
3580 | SmallVector<SmallString<64>, 2> StringsBuffer; |
3581 | bool HasCommas = false, HasDefault = false, HasNotDefault = false; |
3582 | |
3583 | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
3584 | StringRef CurStr; |
3585 | SourceLocation LiteralLoc; |
3586 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: I, Str&: CurStr, ArgLocation: &LiteralLoc) || |
3587 | S.checkTargetClonesAttrString( |
3588 | LiteralLoc, Str: CurStr, |
3589 | Literal: cast<StringLiteral>(Val: AL.getArgAsExpr(Arg: I)->IgnoreParenCasts()), D, |
3590 | HasDefault, HasCommas, HasNotDefault, StringsBuffer)) |
3591 | return; |
3592 | } |
3593 | for (auto &SmallStr : StringsBuffer) |
3594 | Strings.push_back(Elt: SmallStr.str()); |
3595 | |
3596 | if (HasCommas && AL.getNumArgs() > 1) |
3597 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_target_clone_mixed_values); |
3598 | |
3599 | if (!HasDefault && !S.Context.getTargetInfo().getTriple().isAArch64()) { |
3600 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_target_clone_must_have_default); |
3601 | return; |
3602 | } |
3603 | |
3604 | // FIXME: We could probably figure out how to get this to work for lambdas |
3605 | // someday. |
3606 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: D)) { |
3607 | if (MD->getParent()->isLambda()) { |
3608 | S.Diag(Loc: D->getLocation(), DiagID: diag::err_multiversion_doesnt_support) |
3609 | << static_cast<unsigned>(MultiVersionKind::TargetClones) |
3610 | << /*Lambda*/ 9; |
3611 | return; |
3612 | } |
3613 | } |
3614 | |
3615 | // No multiversion if we have default version only. |
3616 | if (S.Context.getTargetInfo().getTriple().isAArch64() && !HasNotDefault) |
3617 | return; |
3618 | |
3619 | cast<FunctionDecl>(Val: D)->setIsMultiVersion(); |
3620 | TargetClonesAttr *NewAttr = ::new (S.Context) |
3621 | TargetClonesAttr(S.Context, AL, Strings.data(), Strings.size()); |
3622 | D->addAttr(A: NewAttr); |
3623 | } |
3624 | |
3625 | static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3626 | Expr *E = AL.getArgAsExpr(Arg: 0); |
3627 | uint32_t VecWidth; |
3628 | if (!S.checkUInt32Argument(AI: AL, Expr: E, Val&: VecWidth)) { |
3629 | AL.setInvalid(); |
3630 | return; |
3631 | } |
3632 | |
3633 | MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>(); |
3634 | if (Existing && Existing->getVectorWidth() != VecWidth) { |
3635 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_duplicate_attribute) << AL; |
3636 | return; |
3637 | } |
3638 | |
3639 | D->addAttr(A: ::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth)); |
3640 | } |
3641 | |
3642 | static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3643 | Expr *E = AL.getArgAsExpr(Arg: 0); |
3644 | SourceLocation Loc = E->getExprLoc(); |
3645 | FunctionDecl *FD = nullptr; |
3646 | DeclarationNameInfo NI; |
3647 | |
3648 | // gcc only allows for simple identifiers. Since we support more than gcc, we |
3649 | // will warn the user. |
3650 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) { |
3651 | if (DRE->hasQualifier()) |
3652 | S.Diag(Loc, DiagID: diag::warn_cleanup_ext); |
3653 | FD = dyn_cast<FunctionDecl>(Val: DRE->getDecl()); |
3654 | NI = DRE->getNameInfo(); |
3655 | if (!FD) { |
3656 | S.Diag(Loc, DiagID: diag::err_attribute_cleanup_arg_not_function) << 1 |
3657 | << NI.getName(); |
3658 | return; |
3659 | } |
3660 | } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Val: E)) { |
3661 | if (ULE->hasExplicitTemplateArgs()) |
3662 | S.Diag(Loc, DiagID: diag::warn_cleanup_ext); |
3663 | FD = S.ResolveSingleFunctionTemplateSpecialization(ovl: ULE, Complain: true); |
3664 | NI = ULE->getNameInfo(); |
3665 | if (!FD) { |
3666 | S.Diag(Loc, DiagID: diag::err_attribute_cleanup_arg_not_function) << 2 |
3667 | << NI.getName(); |
3668 | if (ULE->getType() == S.Context.OverloadTy) |
3669 | S.NoteAllOverloadCandidates(E: ULE); |
3670 | return; |
3671 | } |
3672 | } else { |
3673 | S.Diag(Loc, DiagID: diag::err_attribute_cleanup_arg_not_function) << 0; |
3674 | return; |
3675 | } |
3676 | |
3677 | if (FD->getNumParams() != 1) { |
3678 | S.Diag(Loc, DiagID: diag::err_attribute_cleanup_func_must_take_one_arg) |
3679 | << NI.getName(); |
3680 | return; |
3681 | } |
3682 | |
3683 | // We're currently more strict than GCC about what function types we accept. |
3684 | // If this ever proves to be a problem it should be easy to fix. |
3685 | QualType Ty = S.Context.getPointerType(T: cast<VarDecl>(Val: D)->getType()); |
3686 | QualType ParamTy = FD->getParamDecl(i: 0)->getType(); |
3687 | if (!S.IsAssignConvertCompatible(ConvTy: S.CheckAssignmentConstraints( |
3688 | Loc: FD->getParamDecl(i: 0)->getLocation(), LHSType: ParamTy, RHSType: Ty))) { |
3689 | S.Diag(Loc, DiagID: diag::err_attribute_cleanup_func_arg_incompatible_type) |
3690 | << NI.getName() << ParamTy << Ty; |
3691 | return; |
3692 | } |
3693 | VarDecl *VD = cast<VarDecl>(Val: D); |
3694 | // Create a reference to the variable declaration. This is a fake/dummy |
3695 | // reference. |
3696 | DeclRefExpr *VariableReference = DeclRefExpr::Create( |
3697 | Context: S.Context, QualifierLoc: NestedNameSpecifierLoc{}, TemplateKWLoc: FD->getLocation(), D: VD, RefersToEnclosingVariableOrCapture: false, |
3698 | NameInfo: DeclarationNameInfo{VD->getDeclName(), VD->getLocation()}, T: VD->getType(), |
3699 | VK: VK_LValue); |
3700 | |
3701 | // Create a unary operator expression that represents taking the address of |
3702 | // the variable. This is a fake/dummy expression. |
3703 | Expr *AddressOfVariable = UnaryOperator::Create( |
3704 | C: S.Context, input: VariableReference, opc: UnaryOperatorKind::UO_AddrOf, |
3705 | type: S.Context.getPointerType(T: VD->getType()), VK: VK_PRValue, OK: OK_Ordinary, l: Loc, |
3706 | CanOverflow: +false, FPFeatures: FPOptionsOverride{}); |
3707 | |
3708 | // Create a function call expression. This is a fake/dummy call expression. |
3709 | CallExpr *FunctionCallExpression = |
3710 | CallExpr::Create(Ctx: S.Context, Fn: E, Args: ArrayRef{AddressOfVariable}, |
3711 | Ty: S.Context.VoidTy, VK: VK_PRValue, RParenLoc: Loc, FPFeatures: FPOptionsOverride{}); |
3712 | |
3713 | if (S.CheckFunctionCall(FDecl: FD, TheCall: FunctionCallExpression, |
3714 | Proto: FD->getType()->getAs<FunctionProtoType>())) { |
3715 | return; |
3716 | } |
3717 | |
3718 | auto *attr = ::new (S.Context) CleanupAttr(S.Context, AL, FD); |
3719 | attr->setArgLoc(E->getExprLoc()); |
3720 | D->addAttr(A: attr); |
3721 | } |
3722 | |
3723 | static void handleEnumExtensibilityAttr(Sema &S, Decl *D, |
3724 | const ParsedAttr &AL) { |
3725 | if (!AL.isArgIdent(Arg: 0)) { |
3726 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
3727 | << AL << 0 << AANT_ArgumentIdentifier; |
3728 | return; |
3729 | } |
3730 | |
3731 | EnumExtensibilityAttr::Kind ExtensibilityKind; |
3732 | IdentifierInfo *II = AL.getArgAsIdent(Arg: 0)->getIdentifierInfo(); |
3733 | if (!EnumExtensibilityAttr::ConvertStrToKind(Val: II->getName(), |
3734 | Out&: ExtensibilityKind)) { |
3735 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_type_not_supported) << AL << II; |
3736 | return; |
3737 | } |
3738 | |
3739 | D->addAttr(A: ::new (S.Context) |
3740 | EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind)); |
3741 | } |
3742 | |
3743 | /// Handle __attribute__((format_arg((idx)))) attribute based on |
3744 | /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html |
3745 | static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3746 | const Expr *IdxExpr = AL.getArgAsExpr(Arg: 0); |
3747 | ParamIdx Idx; |
3748 | if (!S.checkFunctionOrMethodParameterIndex(D, AI: AL, AttrArgNum: 1, IdxExpr, Idx)) |
3749 | return; |
3750 | |
3751 | // Make sure the format string is really a string. |
3752 | QualType Ty = getFunctionOrMethodParamType(D, Idx: Idx.getASTIndex()); |
3753 | |
3754 | bool NotNSStringTy = !S.ObjC().isNSStringType(T: Ty); |
3755 | if (NotNSStringTy && !S.ObjC().isCFStringType(T: Ty) && |
3756 | (!Ty->isPointerType() || |
3757 | !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { |
3758 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_format_attribute_not) |
3759 | << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, Idx: 0); |
3760 | return; |
3761 | } |
3762 | Ty = getFunctionOrMethodResultType(D); |
3763 | // replace instancetype with the class type |
3764 | auto Instancetype = S.Context.getObjCInstanceTypeDecl()->getTypeForDecl(); |
3765 | if (Ty->getAs<TypedefType>() == Instancetype) |
3766 | if (auto *OMD = dyn_cast<ObjCMethodDecl>(Val: D)) |
3767 | if (auto *Interface = OMD->getClassInterface()) |
3768 | Ty = S.Context.getObjCObjectPointerType( |
3769 | OIT: QualType(Interface->getTypeForDecl(), 0)); |
3770 | if (!S.ObjC().isNSStringType(T: Ty, /*AllowNSAttributedString=*/true) && |
3771 | !S.ObjC().isCFStringType(T: Ty) && |
3772 | (!Ty->isPointerType() || |
3773 | !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { |
3774 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_format_attribute_result_not) |
3775 | << (NotNSStringTy ? "string type" : "NSString" ) |
3776 | << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, Idx: 0); |
3777 | return; |
3778 | } |
3779 | |
3780 | D->addAttr(A: ::new (S.Context) FormatArgAttr(S.Context, AL, Idx)); |
3781 | } |
3782 | |
3783 | enum FormatAttrKind { |
3784 | CFStringFormat, |
3785 | NSStringFormat, |
3786 | StrftimeFormat, |
3787 | SupportedFormat, |
3788 | IgnoredFormat, |
3789 | InvalidFormat |
3790 | }; |
3791 | |
3792 | /// getFormatAttrKind - Map from format attribute names to supported format |
3793 | /// types. |
3794 | static FormatAttrKind getFormatAttrKind(StringRef Format) { |
3795 | return llvm::StringSwitch<FormatAttrKind>(Format) |
3796 | // Check for formats that get handled specially. |
3797 | .Case(S: "NSString" , Value: NSStringFormat) |
3798 | .Case(S: "CFString" , Value: CFStringFormat) |
3799 | .Case(S: "strftime" , Value: StrftimeFormat) |
3800 | |
3801 | // Otherwise, check for supported formats. |
3802 | .Cases(S0: "scanf" , S1: "printf" , S2: "printf0" , S3: "strfmon" , Value: SupportedFormat) |
3803 | .Cases(S0: "cmn_err" , S1: "vcmn_err" , S2: "zcmn_err" , Value: SupportedFormat) |
3804 | .Cases(S0: "kprintf" , S1: "syslog" , Value: SupportedFormat) // OpenBSD. |
3805 | .Case(S: "freebsd_kprintf" , Value: SupportedFormat) // FreeBSD. |
3806 | .Case(S: "os_trace" , Value: SupportedFormat) |
3807 | .Case(S: "os_log" , Value: SupportedFormat) |
3808 | |
3809 | .Cases(S0: "gcc_diag" , S1: "gcc_cdiag" , S2: "gcc_cxxdiag" , S3: "gcc_tdiag" , Value: IgnoredFormat) |
3810 | .Default(Value: InvalidFormat); |
3811 | } |
3812 | |
3813 | /// Handle __attribute__((init_priority(priority))) attributes based on |
3814 | /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html |
3815 | static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
3816 | if (!S.getLangOpts().CPlusPlus) { |
3817 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_ignored) << AL; |
3818 | return; |
3819 | } |
3820 | |
3821 | if (S.getLangOpts().HLSL) { |
3822 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_hlsl_init_priority_unsupported); |
3823 | return; |
3824 | } |
3825 | |
3826 | if (S.getCurFunctionOrMethodDecl()) { |
3827 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_init_priority_object_attr); |
3828 | AL.setInvalid(); |
3829 | return; |
3830 | } |
3831 | QualType T = cast<VarDecl>(Val: D)->getType(); |
3832 | if (S.Context.getAsArrayType(T)) |
3833 | T = S.Context.getBaseElementType(QT: T); |
3834 | if (!T->getAs<RecordType>()) { |
3835 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_init_priority_object_attr); |
3836 | AL.setInvalid(); |
3837 | return; |
3838 | } |
3839 | |
3840 | Expr *E = AL.getArgAsExpr(Arg: 0); |
3841 | uint32_t prioritynum; |
3842 | if (!S.checkUInt32Argument(AI: AL, Expr: E, Val&: prioritynum)) { |
3843 | AL.setInvalid(); |
3844 | return; |
3845 | } |
3846 | |
3847 | if (prioritynum > 65535) { |
3848 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_out_of_range) |
3849 | << E->getSourceRange() << AL << 0 << 65535; |
3850 | AL.setInvalid(); |
3851 | return; |
3852 | } |
3853 | |
3854 | // Values <= 100 are reserved for the implementation, and libc++ |
3855 | // benefits from being able to specify values in that range. |
3856 | if (prioritynum < 101) |
3857 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_init_priority_reserved) |
3858 | << E->getSourceRange() << prioritynum; |
3859 | D->addAttr(A: ::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum)); |
3860 | } |
3861 | |
3862 | ErrorAttr *Sema::mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI, |
3863 | StringRef NewUserDiagnostic) { |
3864 | if (const auto *EA = D->getAttr<ErrorAttr>()) { |
3865 | std::string NewAttr = CI.getNormalizedFullName(); |
3866 | assert((NewAttr == "error" || NewAttr == "warning" ) && |
3867 | "unexpected normalized full name" ); |
3868 | bool Match = (EA->isError() && NewAttr == "error" ) || |
3869 | (EA->isWarning() && NewAttr == "warning" ); |
3870 | if (!Match) { |
3871 | Diag(Loc: EA->getLocation(), DiagID: diag::err_attributes_are_not_compatible) |
3872 | << CI << EA |
3873 | << (CI.isRegularKeywordAttribute() || |
3874 | EA->isRegularKeywordAttribute()); |
3875 | Diag(Loc: CI.getLoc(), DiagID: diag::note_conflicting_attribute); |
3876 | return nullptr; |
3877 | } |
3878 | if (EA->getUserDiagnostic() != NewUserDiagnostic) { |
3879 | Diag(Loc: CI.getLoc(), DiagID: diag::warn_duplicate_attribute) << EA; |
3880 | Diag(Loc: EA->getLoc(), DiagID: diag::note_previous_attribute); |
3881 | } |
3882 | D->dropAttr<ErrorAttr>(); |
3883 | } |
3884 | return ::new (Context) ErrorAttr(Context, CI, NewUserDiagnostic); |
3885 | } |
3886 | |
3887 | FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI, |
3888 | IdentifierInfo *Format, int FormatIdx, |
3889 | int FirstArg) { |
3890 | // Check whether we already have an equivalent format attribute. |
3891 | for (auto *F : D->specific_attrs<FormatAttr>()) { |
3892 | if (F->getType() == Format && |
3893 | F->getFormatIdx() == FormatIdx && |
3894 | F->getFirstArg() == FirstArg) { |
3895 | // If we don't have a valid location for this attribute, adopt the |
3896 | // location. |
3897 | if (F->getLocation().isInvalid()) |
3898 | F->setRange(CI.getRange()); |
3899 | return nullptr; |
3900 | } |
3901 | } |
3902 | |
3903 | return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg); |
3904 | } |
3905 | |
3906 | FormatMatchesAttr *Sema::mergeFormatMatchesAttr(Decl *D, |
3907 | const AttributeCommonInfo &CI, |
3908 | IdentifierInfo *Format, |
3909 | int FormatIdx, |
3910 | StringLiteral *FormatStr) { |
3911 | // Check whether we already have an equivalent FormatMatches attribute. |
3912 | for (auto *F : D->specific_attrs<FormatMatchesAttr>()) { |
3913 | if (F->getType() == Format && F->getFormatIdx() == FormatIdx) { |
3914 | if (!CheckFormatStringsCompatible(FST: GetFormatStringType(FormatFlavor: Format->getName()), |
3915 | AuthoritativeFormatString: F->getFormatString(), TestedFormatString: FormatStr)) |
3916 | return nullptr; |
3917 | |
3918 | // If we don't have a valid location for this attribute, adopt the |
3919 | // location. |
3920 | if (F->getLocation().isInvalid()) |
3921 | F->setRange(CI.getRange()); |
3922 | return nullptr; |
3923 | } |
3924 | } |
3925 | |
3926 | return ::new (Context) |
3927 | FormatMatchesAttr(Context, CI, Format, FormatIdx, FormatStr); |
3928 | } |
3929 | |
3930 | struct FormatAttrCommon { |
3931 | FormatAttrKind Kind; |
3932 | IdentifierInfo *Identifier; |
3933 | unsigned NumArgs; |
3934 | unsigned FormatStringIdx; |
3935 | }; |
3936 | |
3937 | /// Handle __attribute__((format(type,idx,firstarg))) attributes based on |
3938 | /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html |
3939 | static bool handleFormatAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, |
3940 | FormatAttrCommon *Info) { |
3941 | // Checks the first two arguments of the attribute; this is shared between |
3942 | // Format and FormatMatches attributes. |
3943 | |
3944 | if (!AL.isArgIdent(Arg: 0)) { |
3945 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
3946 | << AL << 1 << AANT_ArgumentIdentifier; |
3947 | return false; |
3948 | } |
3949 | |
3950 | // In C++ the implicit 'this' function parameter also counts, and they are |
3951 | // counted from one. |
3952 | bool HasImplicitThisParam = isInstanceMethod(D); |
3953 | Info->NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam; |
3954 | |
3955 | Info->Identifier = AL.getArgAsIdent(Arg: 0)->getIdentifierInfo(); |
3956 | StringRef Format = Info->Identifier->getName(); |
3957 | |
3958 | if (normalizeName(AttrName&: Format)) { |
3959 | // If we've modified the string name, we need a new identifier for it. |
3960 | Info->Identifier = &S.Context.Idents.get(Name: Format); |
3961 | } |
3962 | |
3963 | // Check for supported formats. |
3964 | Info->Kind = getFormatAttrKind(Format); |
3965 | |
3966 | if (Info->Kind == IgnoredFormat) |
3967 | return false; |
3968 | |
3969 | if (Info->Kind == InvalidFormat) { |
3970 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_type_not_supported) |
3971 | << AL << Info->Identifier->getName(); |
3972 | return false; |
3973 | } |
3974 | |
3975 | // checks for the 2nd argument |
3976 | Expr *IdxExpr = AL.getArgAsExpr(Arg: 1); |
3977 | if (!S.checkUInt32Argument(AI: AL, Expr: IdxExpr, Val&: Info->FormatStringIdx, Idx: 2)) |
3978 | return false; |
3979 | |
3980 | if (Info->FormatStringIdx < 1 || Info->FormatStringIdx > Info->NumArgs) { |
3981 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_out_of_bounds) |
3982 | << AL << 2 << IdxExpr->getSourceRange(); |
3983 | return false; |
3984 | } |
3985 | |
3986 | // FIXME: Do we need to bounds check? |
3987 | unsigned ArgIdx = Info->FormatStringIdx - 1; |
3988 | |
3989 | if (HasImplicitThisParam) { |
3990 | if (ArgIdx == 0) { |
3991 | S.Diag(Loc: AL.getLoc(), |
3992 | DiagID: diag::err_format_attribute_implicit_this_format_string) |
3993 | << IdxExpr->getSourceRange(); |
3994 | return false; |
3995 | } |
3996 | ArgIdx--; |
3997 | } |
3998 | |
3999 | // make sure the format string is really a string |
4000 | QualType Ty = getFunctionOrMethodParamType(D, Idx: ArgIdx); |
4001 | |
4002 | if (!S.ObjC().isNSStringType(T: Ty, AllowNSAttributedString: true) && !S.ObjC().isCFStringType(T: Ty) && |
4003 | (!Ty->isPointerType() || |
4004 | !Ty->castAs<PointerType>()->getPointeeType()->isCharType())) { |
4005 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_format_attribute_not) |
4006 | << IdxExpr->getSourceRange() |
4007 | << getFunctionOrMethodParamRange(D, Idx: ArgIdx); |
4008 | return false; |
4009 | } |
4010 | |
4011 | return true; |
4012 | } |
4013 | |
4014 | static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4015 | FormatAttrCommon Info; |
4016 | if (!handleFormatAttrCommon(S, D, AL, Info: &Info)) |
4017 | return; |
4018 | |
4019 | // check the 3rd argument |
4020 | Expr *FirstArgExpr = AL.getArgAsExpr(Arg: 2); |
4021 | uint32_t FirstArg; |
4022 | if (!S.checkUInt32Argument(AI: AL, Expr: FirstArgExpr, Val&: FirstArg, Idx: 3)) |
4023 | return; |
4024 | |
4025 | // FirstArg == 0 is is always valid. |
4026 | if (FirstArg != 0) { |
4027 | if (Info.Kind == StrftimeFormat) { |
4028 | // If the kind is strftime, FirstArg must be 0 because strftime does not |
4029 | // use any variadic arguments. |
4030 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_format_strftime_third_parameter) |
4031 | << FirstArgExpr->getSourceRange() |
4032 | << FixItHint::CreateReplacement(RemoveRange: FirstArgExpr->getSourceRange(), Code: "0" ); |
4033 | return; |
4034 | } else if (isFunctionOrMethodVariadic(D)) { |
4035 | // Else, if the function is variadic, then FirstArg must be 0 or the |
4036 | // "position" of the ... parameter. It's unusual to use 0 with variadic |
4037 | // functions, so the fixit proposes the latter. |
4038 | if (FirstArg != Info.NumArgs + 1) { |
4039 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_out_of_bounds) |
4040 | << AL << 3 << FirstArgExpr->getSourceRange() |
4041 | << FixItHint::CreateReplacement(RemoveRange: FirstArgExpr->getSourceRange(), |
4042 | Code: std::to_string(val: Info.NumArgs + 1)); |
4043 | return; |
4044 | } |
4045 | } else { |
4046 | // Inescapable GCC compatibility diagnostic. |
4047 | S.Diag(Loc: D->getLocation(), DiagID: diag::warn_gcc_requires_variadic_function) << AL; |
4048 | if (FirstArg <= Info.FormatStringIdx) { |
4049 | // Else, the function is not variadic, and FirstArg must be 0 or any |
4050 | // parameter after the format parameter. We don't offer a fixit because |
4051 | // there are too many possible good values. |
4052 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_out_of_bounds) |
4053 | << AL << 3 << FirstArgExpr->getSourceRange(); |
4054 | return; |
4055 | } |
4056 | } |
4057 | } |
4058 | |
4059 | FormatAttr *NewAttr = |
4060 | S.mergeFormatAttr(D, CI: AL, Format: Info.Identifier, FormatIdx: Info.FormatStringIdx, FirstArg); |
4061 | if (NewAttr) |
4062 | D->addAttr(A: NewAttr); |
4063 | } |
4064 | |
4065 | static void handleFormatMatchesAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4066 | FormatAttrCommon Info; |
4067 | if (!handleFormatAttrCommon(S, D, AL, Info: &Info)) |
4068 | return; |
4069 | |
4070 | Expr *FormatStrExpr = AL.getArgAsExpr(Arg: 2)->IgnoreParenImpCasts(); |
4071 | if (auto *SL = dyn_cast<StringLiteral>(Val: FormatStrExpr)) { |
4072 | FormatStringType FST = S.GetFormatStringType(FormatFlavor: Info.Identifier->getName()); |
4073 | if (S.ValidateFormatString(FST, Str: SL)) |
4074 | if (auto *NewAttr = S.mergeFormatMatchesAttr(D, CI: AL, Format: Info.Identifier, |
4075 | FormatIdx: Info.FormatStringIdx, FormatStr: SL)) |
4076 | D->addAttr(A: NewAttr); |
4077 | return; |
4078 | } |
4079 | |
4080 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_format_nonliteral) |
4081 | << FormatStrExpr->getSourceRange(); |
4082 | } |
4083 | |
4084 | /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes. |
4085 | static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4086 | // The index that identifies the callback callee is mandatory. |
4087 | if (AL.getNumArgs() == 0) { |
4088 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_callback_attribute_no_callee) |
4089 | << AL.getRange(); |
4090 | return; |
4091 | } |
4092 | |
4093 | bool HasImplicitThisParam = isInstanceMethod(D); |
4094 | int32_t NumArgs = getFunctionOrMethodNumParams(D); |
4095 | |
4096 | FunctionDecl *FD = D->getAsFunction(); |
4097 | assert(FD && "Expected a function declaration!" ); |
4098 | |
4099 | llvm::StringMap<int> NameIdxMapping; |
4100 | NameIdxMapping["__" ] = -1; |
4101 | |
4102 | NameIdxMapping["this" ] = 0; |
4103 | |
4104 | int Idx = 1; |
4105 | for (const ParmVarDecl *PVD : FD->parameters()) |
4106 | NameIdxMapping[PVD->getName()] = Idx++; |
4107 | |
4108 | auto UnknownName = NameIdxMapping.end(); |
4109 | |
4110 | SmallVector<int, 8> EncodingIndices; |
4111 | for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) { |
4112 | SourceRange SR; |
4113 | int32_t ArgIdx; |
4114 | |
4115 | if (AL.isArgIdent(Arg: I)) { |
4116 | IdentifierLoc *IdLoc = AL.getArgAsIdent(Arg: I); |
4117 | auto It = NameIdxMapping.find(Key: IdLoc->getIdentifierInfo()->getName()); |
4118 | if (It == UnknownName) { |
4119 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_callback_attribute_argument_unknown) |
4120 | << IdLoc->getIdentifierInfo() << IdLoc->getLoc(); |
4121 | return; |
4122 | } |
4123 | |
4124 | SR = SourceRange(IdLoc->getLoc()); |
4125 | ArgIdx = It->second; |
4126 | } else if (AL.isArgExpr(Arg: I)) { |
4127 | Expr *IdxExpr = AL.getArgAsExpr(Arg: I); |
4128 | |
4129 | // If the expression is not parseable as an int32_t we have a problem. |
4130 | if (!S.checkUInt32Argument(AI: AL, Expr: IdxExpr, Val&: (uint32_t &)ArgIdx, Idx: I + 1, |
4131 | StrictlyUnsigned: false)) { |
4132 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_out_of_bounds) |
4133 | << AL << (I + 1) << IdxExpr->getSourceRange(); |
4134 | return; |
4135 | } |
4136 | |
4137 | // Check oob, excluding the special values, 0 and -1. |
4138 | if (ArgIdx < -1 || ArgIdx > NumArgs) { |
4139 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_out_of_bounds) |
4140 | << AL << (I + 1) << IdxExpr->getSourceRange(); |
4141 | return; |
4142 | } |
4143 | |
4144 | SR = IdxExpr->getSourceRange(); |
4145 | } else { |
4146 | llvm_unreachable("Unexpected ParsedAttr argument type!" ); |
4147 | } |
4148 | |
4149 | if (ArgIdx == 0 && !HasImplicitThisParam) { |
4150 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_callback_implicit_this_not_available) |
4151 | << (I + 1) << SR; |
4152 | return; |
4153 | } |
4154 | |
4155 | // Adjust for the case we do not have an implicit "this" parameter. In this |
4156 | // case we decrease all positive values by 1 to get LLVM argument indices. |
4157 | if (!HasImplicitThisParam && ArgIdx > 0) |
4158 | ArgIdx -= 1; |
4159 | |
4160 | EncodingIndices.push_back(Elt: ArgIdx); |
4161 | } |
4162 | |
4163 | int CalleeIdx = EncodingIndices.front(); |
4164 | // Check if the callee index is proper, thus not "this" and not "unknown". |
4165 | // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam" |
4166 | // is false and positive if "HasImplicitThisParam" is true. |
4167 | if (CalleeIdx < (int)HasImplicitThisParam) { |
4168 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_callback_attribute_invalid_callee) |
4169 | << AL.getRange(); |
4170 | return; |
4171 | } |
4172 | |
4173 | // Get the callee type, note the index adjustment as the AST doesn't contain |
4174 | // the this type (which the callee cannot reference anyway!). |
4175 | const Type *CalleeType = |
4176 | getFunctionOrMethodParamType(D, Idx: CalleeIdx - HasImplicitThisParam) |
4177 | .getTypePtr(); |
4178 | if (!CalleeType || !CalleeType->isFunctionPointerType()) { |
4179 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_callback_callee_no_function_type) |
4180 | << AL.getRange(); |
4181 | return; |
4182 | } |
4183 | |
4184 | const Type *CalleeFnType = |
4185 | CalleeType->getPointeeType()->getUnqualifiedDesugaredType(); |
4186 | |
4187 | // TODO: Check the type of the callee arguments. |
4188 | |
4189 | const auto *CalleeFnProtoType = dyn_cast<FunctionProtoType>(Val: CalleeFnType); |
4190 | if (!CalleeFnProtoType) { |
4191 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_callback_callee_no_function_type) |
4192 | << AL.getRange(); |
4193 | return; |
4194 | } |
4195 | |
4196 | if (CalleeFnProtoType->getNumParams() != EncodingIndices.size() - 1) { |
4197 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_callback_attribute_wrong_arg_count) |
4198 | << QualType{CalleeFnProtoType, 0} << CalleeFnProtoType->getNumParams() |
4199 | << (unsigned)(EncodingIndices.size() - 1); |
4200 | return; |
4201 | } |
4202 | |
4203 | if (CalleeFnProtoType->isVariadic()) { |
4204 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_callback_callee_is_variadic) << AL.getRange(); |
4205 | return; |
4206 | } |
4207 | |
4208 | // Do not allow multiple callback attributes. |
4209 | if (D->hasAttr<CallbackAttr>()) { |
4210 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_callback_attribute_multiple) << AL.getRange(); |
4211 | return; |
4212 | } |
4213 | |
4214 | D->addAttr(A: ::new (S.Context) CallbackAttr( |
4215 | S.Context, AL, EncodingIndices.data(), EncodingIndices.size())); |
4216 | } |
4217 | |
4218 | LifetimeCaptureByAttr *Sema::ParseLifetimeCaptureByAttr(const ParsedAttr &AL, |
4219 | StringRef ParamName) { |
4220 | // Atleast one capture by is required. |
4221 | if (AL.getNumArgs() == 0) { |
4222 | Diag(Loc: AL.getLoc(), DiagID: diag::err_capture_by_attribute_no_entity) |
4223 | << AL.getRange(); |
4224 | return nullptr; |
4225 | } |
4226 | unsigned N = AL.getNumArgs(); |
4227 | auto ParamIdents = |
4228 | MutableArrayRef<IdentifierInfo *>(new (Context) IdentifierInfo *[N], N); |
4229 | auto ParamLocs = |
4230 | MutableArrayRef<SourceLocation>(new (Context) SourceLocation[N], N); |
4231 | bool IsValid = true; |
4232 | for (unsigned I = 0; I < N; ++I) { |
4233 | if (AL.isArgExpr(Arg: I)) { |
4234 | Expr *E = AL.getArgAsExpr(Arg: I); |
4235 | Diag(Loc: E->getExprLoc(), DiagID: diag::err_capture_by_attribute_argument_unknown) |
4236 | << E << E->getExprLoc(); |
4237 | IsValid = false; |
4238 | continue; |
4239 | } |
4240 | assert(AL.isArgIdent(I)); |
4241 | IdentifierLoc *IdLoc = AL.getArgAsIdent(Arg: I); |
4242 | if (IdLoc->getIdentifierInfo()->getName() == ParamName) { |
4243 | Diag(Loc: IdLoc->getLoc(), DiagID: diag::err_capture_by_references_itself) |
4244 | << IdLoc->getLoc(); |
4245 | IsValid = false; |
4246 | continue; |
4247 | } |
4248 | ParamIdents[I] = IdLoc->getIdentifierInfo(); |
4249 | ParamLocs[I] = IdLoc->getLoc(); |
4250 | } |
4251 | if (!IsValid) |
4252 | return nullptr; |
4253 | SmallVector<int> FakeParamIndices(N, LifetimeCaptureByAttr::Invalid); |
4254 | auto *CapturedBy = |
4255 | LifetimeCaptureByAttr::Create(Ctx&: Context, Params: FakeParamIndices.data(), ParamsSize: N, CommonInfo: AL); |
4256 | CapturedBy->setArgs(Idents: ParamIdents, Locs: ParamLocs); |
4257 | return CapturedBy; |
4258 | } |
4259 | |
4260 | static void handleLifetimeCaptureByAttr(Sema &S, Decl *D, |
4261 | const ParsedAttr &AL) { |
4262 | // Do not allow multiple attributes. |
4263 | if (D->hasAttr<LifetimeCaptureByAttr>()) { |
4264 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_capture_by_attribute_multiple) |
4265 | << AL.getRange(); |
4266 | return; |
4267 | } |
4268 | auto *PVD = dyn_cast<ParmVarDecl>(Val: D); |
4269 | assert(PVD); |
4270 | auto *CaptureByAttr = S.ParseLifetimeCaptureByAttr(AL, ParamName: PVD->getName()); |
4271 | if (CaptureByAttr) |
4272 | D->addAttr(A: CaptureByAttr); |
4273 | } |
4274 | |
4275 | void Sema::LazyProcessLifetimeCaptureByParams(FunctionDecl *FD) { |
4276 | bool HasImplicitThisParam = isInstanceMethod(D: FD); |
4277 | SmallVector<LifetimeCaptureByAttr *, 1> Attrs; |
4278 | for (ParmVarDecl *PVD : FD->parameters()) |
4279 | if (auto *A = PVD->getAttr<LifetimeCaptureByAttr>()) |
4280 | Attrs.push_back(Elt: A); |
4281 | if (HasImplicitThisParam) { |
4282 | TypeSourceInfo *TSI = FD->getTypeSourceInfo(); |
4283 | if (!TSI) |
4284 | return; |
4285 | AttributedTypeLoc ATL; |
4286 | for (TypeLoc TL = TSI->getTypeLoc(); |
4287 | (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); |
4288 | TL = ATL.getModifiedLoc()) { |
4289 | if (auto *A = ATL.getAttrAs<LifetimeCaptureByAttr>()) |
4290 | Attrs.push_back(Elt: const_cast<LifetimeCaptureByAttr *>(A)); |
4291 | } |
4292 | } |
4293 | if (Attrs.empty()) |
4294 | return; |
4295 | llvm::StringMap<int> NameIdxMapping = { |
4296 | {"global" , LifetimeCaptureByAttr::Global}, |
4297 | {"unknown" , LifetimeCaptureByAttr::Unknown}}; |
4298 | int Idx = 0; |
4299 | if (HasImplicitThisParam) { |
4300 | NameIdxMapping["this" ] = 0; |
4301 | Idx++; |
4302 | } |
4303 | for (const ParmVarDecl *PVD : FD->parameters()) |
4304 | NameIdxMapping[PVD->getName()] = Idx++; |
4305 | auto DisallowReservedParams = [&](StringRef Reserved) { |
4306 | for (const ParmVarDecl *PVD : FD->parameters()) |
4307 | if (PVD->getName() == Reserved) |
4308 | Diag(Loc: PVD->getLocation(), DiagID: diag::err_capture_by_param_uses_reserved_name) |
4309 | << (PVD->getName() == "unknown" ); |
4310 | }; |
4311 | for (auto *CapturedBy : Attrs) { |
4312 | const auto &Entities = CapturedBy->getArgIdents(); |
4313 | for (size_t I = 0; I < Entities.size(); ++I) { |
4314 | StringRef Name = Entities[I]->getName(); |
4315 | auto It = NameIdxMapping.find(Key: Name); |
4316 | if (It == NameIdxMapping.end()) { |
4317 | auto Loc = CapturedBy->getArgLocs()[I]; |
4318 | if (!HasImplicitThisParam && Name == "this" ) |
4319 | Diag(Loc, DiagID: diag::err_capture_by_implicit_this_not_available) << Loc; |
4320 | else |
4321 | Diag(Loc, DiagID: diag::err_capture_by_attribute_argument_unknown) |
4322 | << Entities[I] << Loc; |
4323 | continue; |
4324 | } |
4325 | if (Name == "unknown" || Name == "global" ) |
4326 | DisallowReservedParams(Name); |
4327 | CapturedBy->setParamIdx(Idx: I, Val: It->second); |
4328 | } |
4329 | } |
4330 | } |
4331 | |
4332 | static bool isFunctionLike(const Type &T) { |
4333 | // Check for explicit function types. |
4334 | // 'called_once' is only supported in Objective-C and it has |
4335 | // function pointers and block pointers. |
4336 | return T.isFunctionPointerType() || T.isBlockPointerType(); |
4337 | } |
4338 | |
4339 | /// Handle 'called_once' attribute. |
4340 | static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4341 | // 'called_once' only applies to parameters representing functions. |
4342 | QualType T = cast<ParmVarDecl>(Val: D)->getType(); |
4343 | |
4344 | if (!isFunctionLike(T: *T)) { |
4345 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_called_once_attribute_wrong_type); |
4346 | return; |
4347 | } |
4348 | |
4349 | D->addAttr(A: ::new (S.Context) CalledOnceAttr(S.Context, AL)); |
4350 | } |
4351 | |
4352 | static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4353 | // Try to find the underlying union declaration. |
4354 | RecordDecl *RD = nullptr; |
4355 | const auto *TD = dyn_cast<TypedefNameDecl>(Val: D); |
4356 | if (TD && TD->getUnderlyingType()->isUnionType()) |
4357 | RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); |
4358 | else |
4359 | RD = dyn_cast<RecordDecl>(Val: D); |
4360 | |
4361 | if (!RD || !RD->isUnion()) { |
4362 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
4363 | << AL << AL.isRegularKeywordAttribute() << ExpectedUnion; |
4364 | return; |
4365 | } |
4366 | |
4367 | if (!RD->isCompleteDefinition()) { |
4368 | if (!RD->isBeingDefined()) |
4369 | S.Diag(Loc: AL.getLoc(), |
4370 | DiagID: diag::warn_transparent_union_attribute_not_definition); |
4371 | return; |
4372 | } |
4373 | |
4374 | RecordDecl::field_iterator Field = RD->field_begin(), |
4375 | FieldEnd = RD->field_end(); |
4376 | if (Field == FieldEnd) { |
4377 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_transparent_union_attribute_zero_fields); |
4378 | return; |
4379 | } |
4380 | |
4381 | FieldDecl *FirstField = *Field; |
4382 | QualType FirstType = FirstField->getType(); |
4383 | if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) { |
4384 | S.Diag(Loc: FirstField->getLocation(), |
4385 | DiagID: diag::warn_transparent_union_attribute_floating) |
4386 | << FirstType->isVectorType() << FirstType; |
4387 | return; |
4388 | } |
4389 | |
4390 | if (FirstType->isIncompleteType()) |
4391 | return; |
4392 | uint64_t FirstSize = S.Context.getTypeSize(T: FirstType); |
4393 | uint64_t FirstAlign = S.Context.getTypeAlign(T: FirstType); |
4394 | for (; Field != FieldEnd; ++Field) { |
4395 | QualType FieldType = Field->getType(); |
4396 | if (FieldType->isIncompleteType()) |
4397 | return; |
4398 | // FIXME: this isn't fully correct; we also need to test whether the |
4399 | // members of the union would all have the same calling convention as the |
4400 | // first member of the union. Checking just the size and alignment isn't |
4401 | // sufficient (consider structs passed on the stack instead of in registers |
4402 | // as an example). |
4403 | if (S.Context.getTypeSize(T: FieldType) != FirstSize || |
4404 | S.Context.getTypeAlign(T: FieldType) > FirstAlign) { |
4405 | // Warn if we drop the attribute. |
4406 | bool isSize = S.Context.getTypeSize(T: FieldType) != FirstSize; |
4407 | unsigned FieldBits = isSize ? S.Context.getTypeSize(T: FieldType) |
4408 | : S.Context.getTypeAlign(T: FieldType); |
4409 | S.Diag(Loc: Field->getLocation(), |
4410 | DiagID: diag::warn_transparent_union_attribute_field_size_align) |
4411 | << isSize << *Field << FieldBits; |
4412 | unsigned FirstBits = isSize ? FirstSize : FirstAlign; |
4413 | S.Diag(Loc: FirstField->getLocation(), |
4414 | DiagID: diag::note_transparent_union_first_field_size_align) |
4415 | << isSize << FirstBits; |
4416 | return; |
4417 | } |
4418 | } |
4419 | |
4420 | RD->addAttr(A: ::new (S.Context) TransparentUnionAttr(S.Context, AL)); |
4421 | } |
4422 | |
4423 | static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4424 | auto *Attr = S.CreateAnnotationAttr(AL); |
4425 | if (Attr) { |
4426 | D->addAttr(A: Attr); |
4427 | } |
4428 | } |
4429 | |
4430 | static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4431 | S.AddAlignValueAttr(D, CI: AL, E: AL.getArgAsExpr(Arg: 0)); |
4432 | } |
4433 | |
4434 | void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) { |
4435 | SourceLocation AttrLoc = CI.getLoc(); |
4436 | |
4437 | QualType T; |
4438 | if (const auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) |
4439 | T = TD->getUnderlyingType(); |
4440 | else if (const auto *VD = dyn_cast<ValueDecl>(Val: D)) |
4441 | T = VD->getType(); |
4442 | else |
4443 | llvm_unreachable("Unknown decl type for align_value" ); |
4444 | |
4445 | if (!T->isDependentType() && !T->isAnyPointerType() && |
4446 | !T->isReferenceType() && !T->isMemberPointerType()) { |
4447 | Diag(Loc: AttrLoc, DiagID: diag::warn_attribute_pointer_or_reference_only) |
4448 | << CI << T << D->getSourceRange(); |
4449 | return; |
4450 | } |
4451 | |
4452 | if (!E->isValueDependent()) { |
4453 | llvm::APSInt Alignment; |
4454 | ExprResult ICE = VerifyIntegerConstantExpression( |
4455 | E, Result: &Alignment, DiagID: diag::err_align_value_attribute_argument_not_int); |
4456 | if (ICE.isInvalid()) |
4457 | return; |
4458 | |
4459 | if (!Alignment.isPowerOf2()) { |
4460 | Diag(Loc: AttrLoc, DiagID: diag::err_alignment_not_power_of_two) |
4461 | << E->getSourceRange(); |
4462 | return; |
4463 | } |
4464 | |
4465 | D->addAttr(A: ::new (Context) AlignValueAttr(Context, CI, ICE.get())); |
4466 | return; |
4467 | } |
4468 | |
4469 | // Save dependent expressions in the AST to be instantiated. |
4470 | D->addAttr(A: ::new (Context) AlignValueAttr(Context, CI, E)); |
4471 | } |
4472 | |
4473 | static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4474 | if (AL.hasParsedType()) { |
4475 | const ParsedType &TypeArg = AL.getTypeArg(); |
4476 | TypeSourceInfo *TInfo; |
4477 | (void)S.GetTypeFromParser( |
4478 | Ty: ParsedType::getFromOpaquePtr(P: TypeArg.getAsOpaquePtr()), TInfo: &TInfo); |
4479 | if (AL.isPackExpansion() && |
4480 | !TInfo->getType()->containsUnexpandedParameterPack()) { |
4481 | S.Diag(Loc: AL.getEllipsisLoc(), |
4482 | DiagID: diag::err_pack_expansion_without_parameter_packs); |
4483 | return; |
4484 | } |
4485 | |
4486 | if (!AL.isPackExpansion() && |
4487 | S.DiagnoseUnexpandedParameterPack(Loc: TInfo->getTypeLoc().getBeginLoc(), |
4488 | T: TInfo, UPPC: Sema::UPPC_Expression)) |
4489 | return; |
4490 | |
4491 | S.AddAlignedAttr(D, CI: AL, T: TInfo, IsPackExpansion: AL.isPackExpansion()); |
4492 | return; |
4493 | } |
4494 | |
4495 | // check the attribute arguments. |
4496 | if (AL.getNumArgs() > 1) { |
4497 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) << AL << 1; |
4498 | return; |
4499 | } |
4500 | |
4501 | if (AL.getNumArgs() == 0) { |
4502 | D->addAttr(A: ::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr)); |
4503 | return; |
4504 | } |
4505 | |
4506 | Expr *E = AL.getArgAsExpr(Arg: 0); |
4507 | if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) { |
4508 | S.Diag(Loc: AL.getEllipsisLoc(), |
4509 | DiagID: diag::err_pack_expansion_without_parameter_packs); |
4510 | return; |
4511 | } |
4512 | |
4513 | if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E)) |
4514 | return; |
4515 | |
4516 | S.AddAlignedAttr(D, CI: AL, E, IsPackExpansion: AL.isPackExpansion()); |
4517 | } |
4518 | |
4519 | /// Perform checking of type validity |
4520 | /// |
4521 | /// C++11 [dcl.align]p1: |
4522 | /// An alignment-specifier may be applied to a variable or to a class |
4523 | /// data member, but it shall not be applied to a bit-field, a function |
4524 | /// parameter, the formal parameter of a catch clause, or a variable |
4525 | /// declared with the register storage class specifier. An |
4526 | /// alignment-specifier may also be applied to the declaration of a class |
4527 | /// or enumeration type. |
4528 | /// CWG 2354: |
4529 | /// CWG agreed to remove permission for alignas to be applied to |
4530 | /// enumerations. |
4531 | /// C11 6.7.5/2: |
4532 | /// An alignment attribute shall not be specified in a declaration of |
4533 | /// a typedef, or a bit-field, or a function, or a parameter, or an |
4534 | /// object declared with the register storage-class specifier. |
4535 | static bool validateAlignasAppliedType(Sema &S, Decl *D, |
4536 | const AlignedAttr &Attr, |
4537 | SourceLocation AttrLoc) { |
4538 | int DiagKind = -1; |
4539 | if (isa<ParmVarDecl>(Val: D)) { |
4540 | DiagKind = 0; |
4541 | } else if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
4542 | if (VD->getStorageClass() == SC_Register) |
4543 | DiagKind = 1; |
4544 | if (VD->isExceptionVariable()) |
4545 | DiagKind = 2; |
4546 | } else if (const auto *FD = dyn_cast<FieldDecl>(Val: D)) { |
4547 | if (FD->isBitField()) |
4548 | DiagKind = 3; |
4549 | } else if (const auto *ED = dyn_cast<EnumDecl>(Val: D)) { |
4550 | if (ED->getLangOpts().CPlusPlus) |
4551 | DiagKind = 4; |
4552 | } else if (!isa<TagDecl>(Val: D)) { |
4553 | return S.Diag(Loc: AttrLoc, DiagID: diag::err_attribute_wrong_decl_type) |
4554 | << &Attr << Attr.isRegularKeywordAttribute() |
4555 | << (Attr.isC11() ? ExpectedVariableOrField |
4556 | : ExpectedVariableFieldOrTag); |
4557 | } |
4558 | if (DiagKind != -1) { |
4559 | return S.Diag(Loc: AttrLoc, DiagID: diag::err_alignas_attribute_wrong_decl_type) |
4560 | << &Attr << DiagKind; |
4561 | } |
4562 | return false; |
4563 | } |
4564 | |
4565 | void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, |
4566 | bool IsPackExpansion) { |
4567 | AlignedAttr TmpAttr(Context, CI, true, E); |
4568 | SourceLocation AttrLoc = CI.getLoc(); |
4569 | |
4570 | // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. |
4571 | if (TmpAttr.isAlignas() && |
4572 | validateAlignasAppliedType(S&: *this, D, Attr: TmpAttr, AttrLoc)) |
4573 | return; |
4574 | |
4575 | if (E->isValueDependent()) { |
4576 | // We can't support a dependent alignment on a non-dependent type, |
4577 | // because we have no way to model that a type is "alignment-dependent" |
4578 | // but not dependent in any other way. |
4579 | if (const auto *TND = dyn_cast<TypedefNameDecl>(Val: D)) { |
4580 | if (!TND->getUnderlyingType()->isDependentType()) { |
4581 | Diag(Loc: AttrLoc, DiagID: diag::err_alignment_dependent_typedef_name) |
4582 | << E->getSourceRange(); |
4583 | return; |
4584 | } |
4585 | } |
4586 | |
4587 | // Save dependent expressions in the AST to be instantiated. |
4588 | AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E); |
4589 | AA->setPackExpansion(IsPackExpansion); |
4590 | D->addAttr(A: AA); |
4591 | return; |
4592 | } |
4593 | |
4594 | // FIXME: Cache the number on the AL object? |
4595 | llvm::APSInt Alignment; |
4596 | ExprResult ICE = VerifyIntegerConstantExpression( |
4597 | E, Result: &Alignment, DiagID: diag::err_aligned_attribute_argument_not_int); |
4598 | if (ICE.isInvalid()) |
4599 | return; |
4600 | |
4601 | uint64_t MaximumAlignment = Sema::MaximumAlignment; |
4602 | if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF()) |
4603 | MaximumAlignment = std::min(a: MaximumAlignment, b: uint64_t(8192)); |
4604 | if (Alignment > MaximumAlignment) { |
4605 | Diag(Loc: AttrLoc, DiagID: diag::err_attribute_aligned_too_great) |
4606 | << MaximumAlignment << E->getSourceRange(); |
4607 | return; |
4608 | } |
4609 | |
4610 | uint64_t AlignVal = Alignment.getZExtValue(); |
4611 | // C++11 [dcl.align]p2: |
4612 | // -- if the constant expression evaluates to zero, the alignment |
4613 | // specifier shall have no effect |
4614 | // C11 6.7.5p6: |
4615 | // An alignment specification of zero has no effect. |
4616 | if (!(TmpAttr.isAlignas() && !Alignment)) { |
4617 | if (!llvm::isPowerOf2_64(Value: AlignVal)) { |
4618 | Diag(Loc: AttrLoc, DiagID: diag::err_alignment_not_power_of_two) |
4619 | << E->getSourceRange(); |
4620 | return; |
4621 | } |
4622 | } |
4623 | |
4624 | const auto *VD = dyn_cast<VarDecl>(Val: D); |
4625 | if (VD) { |
4626 | unsigned MaxTLSAlign = |
4627 | Context.toCharUnitsFromBits(BitSize: Context.getTargetInfo().getMaxTLSAlign()) |
4628 | .getQuantity(); |
4629 | if (MaxTLSAlign && AlignVal > MaxTLSAlign && |
4630 | VD->getTLSKind() != VarDecl::TLS_None) { |
4631 | Diag(Loc: VD->getLocation(), DiagID: diag::err_tls_var_aligned_over_maximum) |
4632 | << (unsigned)AlignVal << VD << MaxTLSAlign; |
4633 | return; |
4634 | } |
4635 | } |
4636 | |
4637 | // On AIX, an aligned attribute can not decrease the alignment when applied |
4638 | // to a variable declaration with vector type. |
4639 | if (VD && Context.getTargetInfo().getTriple().isOSAIX()) { |
4640 | const Type *Ty = VD->getType().getTypePtr(); |
4641 | if (Ty->isVectorType() && AlignVal < 16) { |
4642 | Diag(Loc: VD->getLocation(), DiagID: diag::warn_aligned_attr_underaligned) |
4643 | << VD->getType() << 16; |
4644 | return; |
4645 | } |
4646 | } |
4647 | |
4648 | AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get()); |
4649 | AA->setPackExpansion(IsPackExpansion); |
4650 | AA->setCachedAlignmentValue( |
4651 | static_cast<unsigned>(AlignVal * Context.getCharWidth())); |
4652 | D->addAttr(A: AA); |
4653 | } |
4654 | |
4655 | void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, |
4656 | TypeSourceInfo *TS, bool IsPackExpansion) { |
4657 | AlignedAttr TmpAttr(Context, CI, false, TS); |
4658 | SourceLocation AttrLoc = CI.getLoc(); |
4659 | |
4660 | // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. |
4661 | if (TmpAttr.isAlignas() && |
4662 | validateAlignasAppliedType(S&: *this, D, Attr: TmpAttr, AttrLoc)) |
4663 | return; |
4664 | |
4665 | if (TS->getType()->isDependentType()) { |
4666 | // We can't support a dependent alignment on a non-dependent type, |
4667 | // because we have no way to model that a type is "type-dependent" |
4668 | // but not dependent in any other way. |
4669 | if (const auto *TND = dyn_cast<TypedefNameDecl>(Val: D)) { |
4670 | if (!TND->getUnderlyingType()->isDependentType()) { |
4671 | Diag(Loc: AttrLoc, DiagID: diag::err_alignment_dependent_typedef_name) |
4672 | << TS->getTypeLoc().getSourceRange(); |
4673 | return; |
4674 | } |
4675 | } |
4676 | |
4677 | AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS); |
4678 | AA->setPackExpansion(IsPackExpansion); |
4679 | D->addAttr(A: AA); |
4680 | return; |
4681 | } |
4682 | |
4683 | const auto *VD = dyn_cast<VarDecl>(Val: D); |
4684 | unsigned AlignVal = TmpAttr.getAlignment(Ctx&: Context); |
4685 | // On AIX, an aligned attribute can not decrease the alignment when applied |
4686 | // to a variable declaration with vector type. |
4687 | if (VD && Context.getTargetInfo().getTriple().isOSAIX()) { |
4688 | const Type *Ty = VD->getType().getTypePtr(); |
4689 | if (Ty->isVectorType() && |
4690 | Context.toCharUnitsFromBits(BitSize: AlignVal).getQuantity() < 16) { |
4691 | Diag(Loc: VD->getLocation(), DiagID: diag::warn_aligned_attr_underaligned) |
4692 | << VD->getType() << 16; |
4693 | return; |
4694 | } |
4695 | } |
4696 | |
4697 | AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS); |
4698 | AA->setPackExpansion(IsPackExpansion); |
4699 | AA->setCachedAlignmentValue(AlignVal); |
4700 | D->addAttr(A: AA); |
4701 | } |
4702 | |
4703 | void Sema::CheckAlignasUnderalignment(Decl *D) { |
4704 | assert(D->hasAttrs() && "no attributes on decl" ); |
4705 | |
4706 | QualType UnderlyingTy, DiagTy; |
4707 | if (const auto *VD = dyn_cast<ValueDecl>(Val: D)) { |
4708 | UnderlyingTy = DiagTy = VD->getType(); |
4709 | } else { |
4710 | UnderlyingTy = DiagTy = Context.getTagDeclType(Decl: cast<TagDecl>(Val: D)); |
4711 | if (const auto *ED = dyn_cast<EnumDecl>(Val: D)) |
4712 | UnderlyingTy = ED->getIntegerType(); |
4713 | } |
4714 | if (DiagTy->isDependentType() || DiagTy->isIncompleteType()) |
4715 | return; |
4716 | |
4717 | // C++11 [dcl.align]p5, C11 6.7.5/4: |
4718 | // The combined effect of all alignment attributes in a declaration shall |
4719 | // not specify an alignment that is less strict than the alignment that |
4720 | // would otherwise be required for the entity being declared. |
4721 | AlignedAttr *AlignasAttr = nullptr; |
4722 | AlignedAttr *LastAlignedAttr = nullptr; |
4723 | unsigned Align = 0; |
4724 | for (auto *I : D->specific_attrs<AlignedAttr>()) { |
4725 | if (I->isAlignmentDependent()) |
4726 | return; |
4727 | if (I->isAlignas()) |
4728 | AlignasAttr = I; |
4729 | Align = std::max(a: Align, b: I->getAlignment(Ctx&: Context)); |
4730 | LastAlignedAttr = I; |
4731 | } |
4732 | |
4733 | if (Align && DiagTy->isSizelessType()) { |
4734 | Diag(Loc: LastAlignedAttr->getLocation(), DiagID: diag::err_attribute_sizeless_type) |
4735 | << LastAlignedAttr << DiagTy; |
4736 | } else if (AlignasAttr && Align) { |
4737 | CharUnits RequestedAlign = Context.toCharUnitsFromBits(BitSize: Align); |
4738 | CharUnits NaturalAlign = Context.getTypeAlignInChars(T: UnderlyingTy); |
4739 | if (NaturalAlign > RequestedAlign) |
4740 | Diag(Loc: AlignasAttr->getLocation(), DiagID: diag::err_alignas_underaligned) |
4741 | << DiagTy << (unsigned)NaturalAlign.getQuantity(); |
4742 | } |
4743 | } |
4744 | |
4745 | bool Sema::checkMSInheritanceAttrOnDefinition( |
4746 | CXXRecordDecl *RD, SourceRange Range, bool BestCase, |
4747 | MSInheritanceModel ExplicitModel) { |
4748 | assert(RD->hasDefinition() && "RD has no definition!" ); |
4749 | |
4750 | // We may not have seen base specifiers or any virtual methods yet. We will |
4751 | // have to wait until the record is defined to catch any mismatches. |
4752 | if (!RD->getDefinition()->isCompleteDefinition()) |
4753 | return false; |
4754 | |
4755 | // The unspecified model never matches what a definition could need. |
4756 | if (ExplicitModel == MSInheritanceModel::Unspecified) |
4757 | return false; |
4758 | |
4759 | if (BestCase) { |
4760 | if (RD->calculateInheritanceModel() == ExplicitModel) |
4761 | return false; |
4762 | } else { |
4763 | if (RD->calculateInheritanceModel() <= ExplicitModel) |
4764 | return false; |
4765 | } |
4766 | |
4767 | Diag(Loc: Range.getBegin(), DiagID: diag::err_mismatched_ms_inheritance) |
4768 | << 0 /*definition*/; |
4769 | Diag(Loc: RD->getDefinition()->getLocation(), DiagID: diag::note_defined_here) << RD; |
4770 | return true; |
4771 | } |
4772 | |
4773 | /// parseModeAttrArg - Parses attribute mode string and returns parsed type |
4774 | /// attribute. |
4775 | static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth, |
4776 | bool &IntegerMode, bool &ComplexMode, |
4777 | FloatModeKind &ExplicitType) { |
4778 | IntegerMode = true; |
4779 | ComplexMode = false; |
4780 | ExplicitType = FloatModeKind::NoFloat; |
4781 | switch (Str.size()) { |
4782 | case 2: |
4783 | switch (Str[0]) { |
4784 | case 'Q': |
4785 | DestWidth = 8; |
4786 | break; |
4787 | case 'H': |
4788 | DestWidth = 16; |
4789 | break; |
4790 | case 'S': |
4791 | DestWidth = 32; |
4792 | break; |
4793 | case 'D': |
4794 | DestWidth = 64; |
4795 | break; |
4796 | case 'X': |
4797 | DestWidth = 96; |
4798 | break; |
4799 | case 'K': // KFmode - IEEE quad precision (__float128) |
4800 | ExplicitType = FloatModeKind::Float128; |
4801 | DestWidth = Str[1] == 'I' ? 0 : 128; |
4802 | break; |
4803 | case 'T': |
4804 | ExplicitType = FloatModeKind::LongDouble; |
4805 | DestWidth = 128; |
4806 | break; |
4807 | case 'I': |
4808 | ExplicitType = FloatModeKind::Ibm128; |
4809 | DestWidth = Str[1] == 'I' ? 0 : 128; |
4810 | break; |
4811 | } |
4812 | if (Str[1] == 'F') { |
4813 | IntegerMode = false; |
4814 | } else if (Str[1] == 'C') { |
4815 | IntegerMode = false; |
4816 | ComplexMode = true; |
4817 | } else if (Str[1] != 'I') { |
4818 | DestWidth = 0; |
4819 | } |
4820 | break; |
4821 | case 4: |
4822 | // FIXME: glibc uses 'word' to define register_t; this is narrower than a |
4823 | // pointer on PIC16 and other embedded platforms. |
4824 | if (Str == "word" ) |
4825 | DestWidth = S.Context.getTargetInfo().getRegisterWidth(); |
4826 | else if (Str == "byte" ) |
4827 | DestWidth = S.Context.getTargetInfo().getCharWidth(); |
4828 | break; |
4829 | case 7: |
4830 | if (Str == "pointer" ) |
4831 | DestWidth = S.Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default); |
4832 | break; |
4833 | case 11: |
4834 | if (Str == "unwind_word" ) |
4835 | DestWidth = S.Context.getTargetInfo().getUnwindWordWidth(); |
4836 | break; |
4837 | } |
4838 | } |
4839 | |
4840 | /// handleModeAttr - This attribute modifies the width of a decl with primitive |
4841 | /// type. |
4842 | /// |
4843 | /// Despite what would be logical, the mode attribute is a decl attribute, not a |
4844 | /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be |
4845 | /// HImode, not an intermediate pointer. |
4846 | static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
4847 | // This attribute isn't documented, but glibc uses it. It changes |
4848 | // the width of an int or unsigned int to the specified size. |
4849 | if (!AL.isArgIdent(Arg: 0)) { |
4850 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
4851 | << AL << AANT_ArgumentIdentifier; |
4852 | return; |
4853 | } |
4854 | |
4855 | IdentifierInfo *Name = AL.getArgAsIdent(Arg: 0)->getIdentifierInfo(); |
4856 | |
4857 | S.AddModeAttr(D, CI: AL, Name); |
4858 | } |
4859 | |
4860 | void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI, |
4861 | IdentifierInfo *Name, bool InInstantiation) { |
4862 | StringRef Str = Name->getName(); |
4863 | normalizeName(AttrName&: Str); |
4864 | SourceLocation AttrLoc = CI.getLoc(); |
4865 | |
4866 | unsigned DestWidth = 0; |
4867 | bool IntegerMode = true; |
4868 | bool ComplexMode = false; |
4869 | FloatModeKind ExplicitType = FloatModeKind::NoFloat; |
4870 | llvm::APInt VectorSize(64, 0); |
4871 | if (Str.size() >= 4 && Str[0] == 'V') { |
4872 | // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2). |
4873 | size_t StrSize = Str.size(); |
4874 | size_t VectorStringLength = 0; |
4875 | while ((VectorStringLength + 1) < StrSize && |
4876 | isdigit(Str[VectorStringLength + 1])) |
4877 | ++VectorStringLength; |
4878 | if (VectorStringLength && |
4879 | !Str.substr(Start: 1, N: VectorStringLength).getAsInteger(Radix: 10, Result&: VectorSize) && |
4880 | VectorSize.isPowerOf2()) { |
4881 | parseModeAttrArg(S&: *this, Str: Str.substr(Start: VectorStringLength + 1), DestWidth, |
4882 | IntegerMode, ComplexMode, ExplicitType); |
4883 | // Avoid duplicate warning from template instantiation. |
4884 | if (!InInstantiation) |
4885 | Diag(Loc: AttrLoc, DiagID: diag::warn_vector_mode_deprecated); |
4886 | } else { |
4887 | VectorSize = 0; |
4888 | } |
4889 | } |
4890 | |
4891 | if (!VectorSize) |
4892 | parseModeAttrArg(S&: *this, Str, DestWidth, IntegerMode, ComplexMode, |
4893 | ExplicitType); |
4894 | |
4895 | // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t |
4896 | // and friends, at least with glibc. |
4897 | // FIXME: Make sure floating-point mappings are accurate |
4898 | // FIXME: Support XF and TF types |
4899 | if (!DestWidth) { |
4900 | Diag(Loc: AttrLoc, DiagID: diag::err_machine_mode) << 0 /*Unknown*/ << Name; |
4901 | return; |
4902 | } |
4903 | |
4904 | QualType OldTy; |
4905 | if (const auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) |
4906 | OldTy = TD->getUnderlyingType(); |
4907 | else if (const auto *ED = dyn_cast<EnumDecl>(Val: D)) { |
4908 | // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'. |
4909 | // Try to get type from enum declaration, default to int. |
4910 | OldTy = ED->getIntegerType(); |
4911 | if (OldTy.isNull()) |
4912 | OldTy = Context.IntTy; |
4913 | } else |
4914 | OldTy = cast<ValueDecl>(Val: D)->getType(); |
4915 | |
4916 | if (OldTy->isDependentType()) { |
4917 | D->addAttr(A: ::new (Context) ModeAttr(Context, CI, Name)); |
4918 | return; |
4919 | } |
4920 | |
4921 | // Base type can also be a vector type (see PR17453). |
4922 | // Distinguish between base type and base element type. |
4923 | QualType OldElemTy = OldTy; |
4924 | if (const auto *VT = OldTy->getAs<VectorType>()) |
4925 | OldElemTy = VT->getElementType(); |
4926 | |
4927 | // GCC allows 'mode' attribute on enumeration types (even incomplete), except |
4928 | // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete |
4929 | // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected. |
4930 | if ((isa<EnumDecl>(Val: D) || OldElemTy->getAs<EnumType>()) && |
4931 | VectorSize.getBoolValue()) { |
4932 | Diag(Loc: AttrLoc, DiagID: diag::err_enum_mode_vector_type) << Name << CI.getRange(); |
4933 | return; |
4934 | } |
4935 | bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() && |
4936 | !OldElemTy->isBitIntType()) || |
4937 | OldElemTy->getAs<EnumType>(); |
4938 | |
4939 | if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() && |
4940 | !IntegralOrAnyEnumType) |
4941 | Diag(Loc: AttrLoc, DiagID: diag::err_mode_not_primitive); |
4942 | else if (IntegerMode) { |
4943 | if (!IntegralOrAnyEnumType) |
4944 | Diag(Loc: AttrLoc, DiagID: diag::err_mode_wrong_type); |
4945 | } else if (ComplexMode) { |
4946 | if (!OldElemTy->isComplexType()) |
4947 | Diag(Loc: AttrLoc, DiagID: diag::err_mode_wrong_type); |
4948 | } else { |
4949 | if (!OldElemTy->isFloatingType()) |
4950 | Diag(Loc: AttrLoc, DiagID: diag::err_mode_wrong_type); |
4951 | } |
4952 | |
4953 | QualType NewElemTy; |
4954 | |
4955 | if (IntegerMode) |
4956 | NewElemTy = Context.getIntTypeForBitwidth(DestWidth, |
4957 | Signed: OldElemTy->isSignedIntegerType()); |
4958 | else |
4959 | NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitType); |
4960 | |
4961 | if (NewElemTy.isNull()) { |
4962 | // Only emit diagnostic on host for 128-bit mode attribute |
4963 | if (!(DestWidth == 128 && |
4964 | (getLangOpts().CUDAIsDevice || getLangOpts().SYCLIsDevice))) |
4965 | Diag(Loc: AttrLoc, DiagID: diag::err_machine_mode) << 1 /*Unsupported*/ << Name; |
4966 | return; |
4967 | } |
4968 | |
4969 | if (ComplexMode) { |
4970 | NewElemTy = Context.getComplexType(T: NewElemTy); |
4971 | } |
4972 | |
4973 | QualType NewTy = NewElemTy; |
4974 | if (VectorSize.getBoolValue()) { |
4975 | NewTy = Context.getVectorType(VectorType: NewTy, NumElts: VectorSize.getZExtValue(), |
4976 | VecKind: VectorKind::Generic); |
4977 | } else if (const auto *OldVT = OldTy->getAs<VectorType>()) { |
4978 | // Complex machine mode does not support base vector types. |
4979 | if (ComplexMode) { |
4980 | Diag(Loc: AttrLoc, DiagID: diag::err_complex_mode_vector_type); |
4981 | return; |
4982 | } |
4983 | unsigned NumElements = Context.getTypeSize(T: OldElemTy) * |
4984 | OldVT->getNumElements() / |
4985 | Context.getTypeSize(T: NewElemTy); |
4986 | NewTy = |
4987 | Context.getVectorType(VectorType: NewElemTy, NumElts: NumElements, VecKind: OldVT->getVectorKind()); |
4988 | } |
4989 | |
4990 | if (NewTy.isNull()) { |
4991 | Diag(Loc: AttrLoc, DiagID: diag::err_mode_wrong_type); |
4992 | return; |
4993 | } |
4994 | |
4995 | // Install the new type. |
4996 | if (auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) |
4997 | TD->setModedTypeSourceInfo(unmodedTSI: TD->getTypeSourceInfo(), modedTy: NewTy); |
4998 | else if (auto *ED = dyn_cast<EnumDecl>(Val: D)) |
4999 | ED->setIntegerType(NewTy); |
5000 | else |
5001 | cast<ValueDecl>(Val: D)->setType(NewTy); |
5002 | |
5003 | D->addAttr(A: ::new (Context) ModeAttr(Context, CI, Name)); |
5004 | } |
5005 | |
5006 | static void handleNonStringAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5007 | // This only applies to fields and variable declarations which have an array |
5008 | // type. |
5009 | QualType QT = cast<ValueDecl>(Val: D)->getType(); |
5010 | if (!QT->isArrayType() || |
5011 | !QT->getBaseElementTypeUnsafe()->isAnyCharacterType()) { |
5012 | S.Diag(Loc: D->getBeginLoc(), DiagID: diag::warn_attribute_non_character_array) |
5013 | << AL << AL.isRegularKeywordAttribute() << QT << AL.getRange(); |
5014 | return; |
5015 | } |
5016 | |
5017 | D->addAttr(A: ::new (S.Context) NonStringAttr(S.Context, AL)); |
5018 | } |
5019 | |
5020 | static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5021 | D->addAttr(A: ::new (S.Context) NoDebugAttr(S.Context, AL)); |
5022 | } |
5023 | |
5024 | AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, |
5025 | const AttributeCommonInfo &CI, |
5026 | const IdentifierInfo *Ident) { |
5027 | if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { |
5028 | Diag(Loc: CI.getLoc(), DiagID: diag::warn_attribute_ignored) << Ident; |
5029 | Diag(Loc: Optnone->getLocation(), DiagID: diag::note_conflicting_attribute); |
5030 | return nullptr; |
5031 | } |
5032 | |
5033 | if (D->hasAttr<AlwaysInlineAttr>()) |
5034 | return nullptr; |
5035 | |
5036 | return ::new (Context) AlwaysInlineAttr(Context, CI); |
5037 | } |
5038 | |
5039 | InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D, |
5040 | const ParsedAttr &AL) { |
5041 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
5042 | // Attribute applies to Var but not any subclass of it (like ParmVar, |
5043 | // ImplicitParm or VarTemplateSpecialization). |
5044 | if (VD->getKind() != Decl::Var) { |
5045 | Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
5046 | << AL << AL.isRegularKeywordAttribute() |
5047 | << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass |
5048 | : ExpectedVariableOrFunction); |
5049 | return nullptr; |
5050 | } |
5051 | // Attribute does not apply to non-static local variables. |
5052 | if (VD->hasLocalStorage()) { |
5053 | Diag(Loc: VD->getLocation(), DiagID: diag::warn_internal_linkage_local_storage); |
5054 | return nullptr; |
5055 | } |
5056 | } |
5057 | |
5058 | return ::new (Context) InternalLinkageAttr(Context, AL); |
5059 | } |
5060 | InternalLinkageAttr * |
5061 | Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) { |
5062 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
5063 | // Attribute applies to Var but not any subclass of it (like ParmVar, |
5064 | // ImplicitParm or VarTemplateSpecialization). |
5065 | if (VD->getKind() != Decl::Var) { |
5066 | Diag(Loc: AL.getLocation(), DiagID: diag::warn_attribute_wrong_decl_type) |
5067 | << &AL << AL.isRegularKeywordAttribute() |
5068 | << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass |
5069 | : ExpectedVariableOrFunction); |
5070 | return nullptr; |
5071 | } |
5072 | // Attribute does not apply to non-static local variables. |
5073 | if (VD->hasLocalStorage()) { |
5074 | Diag(Loc: VD->getLocation(), DiagID: diag::warn_internal_linkage_local_storage); |
5075 | return nullptr; |
5076 | } |
5077 | } |
5078 | |
5079 | return ::new (Context) InternalLinkageAttr(Context, AL); |
5080 | } |
5081 | |
5082 | MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) { |
5083 | if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) { |
5084 | Diag(Loc: CI.getLoc(), DiagID: diag::warn_attribute_ignored) << "'minsize'" ; |
5085 | Diag(Loc: Optnone->getLocation(), DiagID: diag::note_conflicting_attribute); |
5086 | return nullptr; |
5087 | } |
5088 | |
5089 | if (D->hasAttr<MinSizeAttr>()) |
5090 | return nullptr; |
5091 | |
5092 | return ::new (Context) MinSizeAttr(Context, CI); |
5093 | } |
5094 | |
5095 | OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, |
5096 | const AttributeCommonInfo &CI) { |
5097 | if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) { |
5098 | Diag(Loc: Inline->getLocation(), DiagID: diag::warn_attribute_ignored) << Inline; |
5099 | Diag(Loc: CI.getLoc(), DiagID: diag::note_conflicting_attribute); |
5100 | D->dropAttr<AlwaysInlineAttr>(); |
5101 | } |
5102 | if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) { |
5103 | Diag(Loc: MinSize->getLocation(), DiagID: diag::warn_attribute_ignored) << MinSize; |
5104 | Diag(Loc: CI.getLoc(), DiagID: diag::note_conflicting_attribute); |
5105 | D->dropAttr<MinSizeAttr>(); |
5106 | } |
5107 | |
5108 | if (D->hasAttr<OptimizeNoneAttr>()) |
5109 | return nullptr; |
5110 | |
5111 | return ::new (Context) OptimizeNoneAttr(Context, CI); |
5112 | } |
5113 | |
5114 | static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5115 | if (AlwaysInlineAttr *Inline = |
5116 | S.mergeAlwaysInlineAttr(D, CI: AL, Ident: AL.getAttrName())) |
5117 | D->addAttr(A: Inline); |
5118 | } |
5119 | |
5120 | static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5121 | if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, CI: AL)) |
5122 | D->addAttr(A: MinSize); |
5123 | } |
5124 | |
5125 | static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5126 | if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, CI: AL)) |
5127 | D->addAttr(A: Optnone); |
5128 | } |
5129 | |
5130 | static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5131 | const auto *VD = cast<VarDecl>(Val: D); |
5132 | if (VD->hasLocalStorage()) { |
5133 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_cuda_nonstatic_constdev); |
5134 | return; |
5135 | } |
5136 | // constexpr variable may already get an implicit constant attr, which should |
5137 | // be replaced by the explicit constant attr. |
5138 | if (auto *A = D->getAttr<CUDAConstantAttr>()) { |
5139 | if (!A->isImplicit()) |
5140 | return; |
5141 | D->dropAttr<CUDAConstantAttr>(); |
5142 | } |
5143 | D->addAttr(A: ::new (S.Context) CUDAConstantAttr(S.Context, AL)); |
5144 | } |
5145 | |
5146 | static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5147 | const auto *VD = cast<VarDecl>(Val: D); |
5148 | // extern __shared__ is only allowed on arrays with no length (e.g. |
5149 | // "int x[]"). |
5150 | if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() && |
5151 | !isa<IncompleteArrayType>(Val: VD->getType())) { |
5152 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_cuda_extern_shared) << VD; |
5153 | return; |
5154 | } |
5155 | if (S.getLangOpts().CUDA && VD->hasLocalStorage() && |
5156 | S.CUDA().DiagIfHostCode(Loc: AL.getLoc(), DiagID: diag::err_cuda_host_shared) |
5157 | << S.CUDA().CurrentTarget()) |
5158 | return; |
5159 | D->addAttr(A: ::new (S.Context) CUDASharedAttr(S.Context, AL)); |
5160 | } |
5161 | |
5162 | static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5163 | const auto *FD = cast<FunctionDecl>(Val: D); |
5164 | if (!FD->getReturnType()->isVoidType() && |
5165 | !FD->getReturnType()->getAs<AutoType>() && |
5166 | !FD->getReturnType()->isInstantiationDependentType()) { |
5167 | SourceRange RTRange = FD->getReturnTypeSourceRange(); |
5168 | S.Diag(Loc: FD->getTypeSpecStartLoc(), DiagID: diag::err_kern_type_not_void_return) |
5169 | << FD->getType() |
5170 | << (RTRange.isValid() ? FixItHint::CreateReplacement(RemoveRange: RTRange, Code: "void" ) |
5171 | : FixItHint()); |
5172 | return; |
5173 | } |
5174 | if (const auto *Method = dyn_cast<CXXMethodDecl>(Val: FD)) { |
5175 | if (Method->isInstance()) { |
5176 | S.Diag(Loc: Method->getBeginLoc(), DiagID: diag::err_kern_is_nonstatic_method) |
5177 | << Method; |
5178 | return; |
5179 | } |
5180 | S.Diag(Loc: Method->getBeginLoc(), DiagID: diag::warn_kern_is_method) << Method; |
5181 | } |
5182 | // Only warn for "inline" when compiling for host, to cut down on noise. |
5183 | if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice) |
5184 | S.Diag(Loc: FD->getBeginLoc(), DiagID: diag::warn_kern_is_inline) << FD; |
5185 | |
5186 | if (AL.getKind() == ParsedAttr::AT_DeviceKernel) |
5187 | D->addAttr(A: ::new (S.Context) DeviceKernelAttr(S.Context, AL)); |
5188 | else |
5189 | D->addAttr(A: ::new (S.Context) CUDAGlobalAttr(S.Context, AL)); |
5190 | // In host compilation the kernel is emitted as a stub function, which is |
5191 | // a helper function for launching the kernel. The instructions in the helper |
5192 | // function has nothing to do with the source code of the kernel. Do not emit |
5193 | // debug info for the stub function to avoid confusing the debugger. |
5194 | if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice) |
5195 | D->addAttr(A: NoDebugAttr::CreateImplicit(Ctx&: S.Context)); |
5196 | } |
5197 | |
5198 | static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5199 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
5200 | if (VD->hasLocalStorage()) { |
5201 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_cuda_nonstatic_constdev); |
5202 | return; |
5203 | } |
5204 | } |
5205 | |
5206 | if (auto *A = D->getAttr<CUDADeviceAttr>()) { |
5207 | if (!A->isImplicit()) |
5208 | return; |
5209 | D->dropAttr<CUDADeviceAttr>(); |
5210 | } |
5211 | D->addAttr(A: ::new (S.Context) CUDADeviceAttr(S.Context, AL)); |
5212 | } |
5213 | |
5214 | static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5215 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) { |
5216 | if (VD->hasLocalStorage()) { |
5217 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_cuda_nonstatic_constdev); |
5218 | return; |
5219 | } |
5220 | } |
5221 | if (!D->hasAttr<HIPManagedAttr>()) |
5222 | D->addAttr(A: ::new (S.Context) HIPManagedAttr(S.Context, AL)); |
5223 | if (!D->hasAttr<CUDADeviceAttr>()) |
5224 | D->addAttr(A: CUDADeviceAttr::CreateImplicit(Ctx&: S.Context)); |
5225 | } |
5226 | |
5227 | static void handleGridConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5228 | if (D->isInvalidDecl()) |
5229 | return; |
5230 | // Whether __grid_constant__ is allowed to be used will be checked in |
5231 | // Sema::CheckFunctionDeclaration as we need complete function decl to make |
5232 | // the call. |
5233 | D->addAttr(A: ::new (S.Context) CUDAGridConstantAttr(S.Context, AL)); |
5234 | } |
5235 | |
5236 | static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5237 | const auto *Fn = cast<FunctionDecl>(Val: D); |
5238 | if (!Fn->isInlineSpecified()) { |
5239 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_gnu_inline_attribute_requires_inline); |
5240 | return; |
5241 | } |
5242 | |
5243 | if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern) |
5244 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_gnu_inline_cplusplus_without_extern); |
5245 | |
5246 | D->addAttr(A: ::new (S.Context) GNUInlineAttr(S.Context, AL)); |
5247 | } |
5248 | |
5249 | static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5250 | if (hasDeclarator(D)) return; |
5251 | |
5252 | // Diagnostic is emitted elsewhere: here we store the (valid) AL |
5253 | // in the Decl node for syntactic reasoning, e.g., pretty-printing. |
5254 | CallingConv CC; |
5255 | if (S.CheckCallingConvAttr( |
5256 | attr: AL, CC, /*FD*/ nullptr, |
5257 | CFT: S.CUDA().IdentifyTarget(D: dyn_cast<FunctionDecl>(Val: D)))) |
5258 | return; |
5259 | |
5260 | if (!isa<ObjCMethodDecl>(Val: D)) { |
5261 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type) |
5262 | << AL << AL.isRegularKeywordAttribute() << ExpectedFunctionOrMethod; |
5263 | return; |
5264 | } |
5265 | |
5266 | switch (AL.getKind()) { |
5267 | case ParsedAttr::AT_FastCall: |
5268 | D->addAttr(A: ::new (S.Context) FastCallAttr(S.Context, AL)); |
5269 | return; |
5270 | case ParsedAttr::AT_StdCall: |
5271 | D->addAttr(A: ::new (S.Context) StdCallAttr(S.Context, AL)); |
5272 | return; |
5273 | case ParsedAttr::AT_ThisCall: |
5274 | D->addAttr(A: ::new (S.Context) ThisCallAttr(S.Context, AL)); |
5275 | return; |
5276 | case ParsedAttr::AT_CDecl: |
5277 | D->addAttr(A: ::new (S.Context) CDeclAttr(S.Context, AL)); |
5278 | return; |
5279 | case ParsedAttr::AT_Pascal: |
5280 | D->addAttr(A: ::new (S.Context) PascalAttr(S.Context, AL)); |
5281 | return; |
5282 | case ParsedAttr::AT_SwiftCall: |
5283 | D->addAttr(A: ::new (S.Context) SwiftCallAttr(S.Context, AL)); |
5284 | return; |
5285 | case ParsedAttr::AT_SwiftAsyncCall: |
5286 | D->addAttr(A: ::new (S.Context) SwiftAsyncCallAttr(S.Context, AL)); |
5287 | return; |
5288 | case ParsedAttr::AT_VectorCall: |
5289 | D->addAttr(A: ::new (S.Context) VectorCallAttr(S.Context, AL)); |
5290 | return; |
5291 | case ParsedAttr::AT_MSABI: |
5292 | D->addAttr(A: ::new (S.Context) MSABIAttr(S.Context, AL)); |
5293 | return; |
5294 | case ParsedAttr::AT_SysVABI: |
5295 | D->addAttr(A: ::new (S.Context) SysVABIAttr(S.Context, AL)); |
5296 | return; |
5297 | case ParsedAttr::AT_RegCall: |
5298 | D->addAttr(A: ::new (S.Context) RegCallAttr(S.Context, AL)); |
5299 | return; |
5300 | case ParsedAttr::AT_Pcs: { |
5301 | PcsAttr::PCSType PCS; |
5302 | switch (CC) { |
5303 | case CC_AAPCS: |
5304 | PCS = PcsAttr::AAPCS; |
5305 | break; |
5306 | case CC_AAPCS_VFP: |
5307 | PCS = PcsAttr::AAPCS_VFP; |
5308 | break; |
5309 | default: |
5310 | llvm_unreachable("unexpected calling convention in pcs attribute" ); |
5311 | } |
5312 | |
5313 | D->addAttr(A: ::new (S.Context) PcsAttr(S.Context, AL, PCS)); |
5314 | return; |
5315 | } |
5316 | case ParsedAttr::AT_AArch64VectorPcs: |
5317 | D->addAttr(A: ::new (S.Context) AArch64VectorPcsAttr(S.Context, AL)); |
5318 | return; |
5319 | case ParsedAttr::AT_AArch64SVEPcs: |
5320 | D->addAttr(A: ::new (S.Context) AArch64SVEPcsAttr(S.Context, AL)); |
5321 | return; |
5322 | case ParsedAttr::AT_DeviceKernel: { |
5323 | // The attribute should already be applied. |
5324 | assert(D->hasAttr<DeviceKernelAttr>() && "Expected attribute" ); |
5325 | return; |
5326 | } |
5327 | case ParsedAttr::AT_IntelOclBicc: |
5328 | D->addAttr(A: ::new (S.Context) IntelOclBiccAttr(S.Context, AL)); |
5329 | return; |
5330 | case ParsedAttr::AT_PreserveMost: |
5331 | D->addAttr(A: ::new (S.Context) PreserveMostAttr(S.Context, AL)); |
5332 | return; |
5333 | case ParsedAttr::AT_PreserveAll: |
5334 | D->addAttr(A: ::new (S.Context) PreserveAllAttr(S.Context, AL)); |
5335 | return; |
5336 | case ParsedAttr::AT_M68kRTD: |
5337 | D->addAttr(A: ::new (S.Context) M68kRTDAttr(S.Context, AL)); |
5338 | return; |
5339 | case ParsedAttr::AT_PreserveNone: |
5340 | D->addAttr(A: ::new (S.Context) PreserveNoneAttr(S.Context, AL)); |
5341 | return; |
5342 | case ParsedAttr::AT_RISCVVectorCC: |
5343 | D->addAttr(A: ::new (S.Context) RISCVVectorCCAttr(S.Context, AL)); |
5344 | return; |
5345 | case ParsedAttr::AT_RISCVVLSCC: { |
5346 | // If the riscv_abi_vlen doesn't have any argument, default ABI_VLEN is 128. |
5347 | unsigned VectorLength = 128; |
5348 | if (AL.getNumArgs() && |
5349 | !S.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: VectorLength)) |
5350 | return; |
5351 | if (VectorLength < 32 || VectorLength > 65536) { |
5352 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_argument_invalid_range) |
5353 | << VectorLength << 32 << 65536; |
5354 | return; |
5355 | } |
5356 | if (!llvm::isPowerOf2_64(Value: VectorLength)) { |
5357 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_argument_not_power_of_2); |
5358 | return; |
5359 | } |
5360 | |
5361 | D->addAttr(A: ::new (S.Context) RISCVVLSCCAttr(S.Context, AL, VectorLength)); |
5362 | return; |
5363 | } |
5364 | default: |
5365 | llvm_unreachable("unexpected attribute kind" ); |
5366 | } |
5367 | } |
5368 | |
5369 | static void handleDeviceKernelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5370 | const auto *FD = dyn_cast_or_null<FunctionDecl>(Val: D); |
5371 | bool IsFunctionTemplate = FD && FD->getDescribedFunctionTemplate(); |
5372 | if (S.getLangOpts().SYCLIsDevice) { |
5373 | if (!IsFunctionTemplate) { |
5374 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_wrong_decl_type_str) |
5375 | << AL << AL.isRegularKeywordAttribute() << "function templates" ; |
5376 | } else { |
5377 | S.SYCL().handleKernelAttr(D, AL); |
5378 | } |
5379 | } else if (DeviceKernelAttr::isSYCLSpelling(A: AL)) { |
5380 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_ignored) << AL; |
5381 | } else if (S.getASTContext().getTargetInfo().getTriple().isNVPTX()) { |
5382 | handleGlobalAttr(S, D, AL); |
5383 | } else { |
5384 | // OpenCL C++ will throw a more specific error. |
5385 | if (!S.getLangOpts().OpenCLCPlusPlus && (!FD || IsFunctionTemplate)) { |
5386 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_decl_type_str) |
5387 | << AL << AL.isRegularKeywordAttribute() << "functions" ; |
5388 | } |
5389 | handleSimpleAttribute<DeviceKernelAttr>(S, D, CI: AL); |
5390 | } |
5391 | // Make sure we validate the CC with the target |
5392 | // and warn/error if necessary. |
5393 | handleCallConvAttr(S, D, AL); |
5394 | } |
5395 | |
5396 | static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5397 | if (AL.getAttributeSpellingListIndex() == SuppressAttr::CXX11_gsl_suppress) { |
5398 | // Suppression attribute with GSL spelling requires at least 1 argument. |
5399 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
5400 | return; |
5401 | } |
5402 | |
5403 | std::vector<StringRef> DiagnosticIdentifiers; |
5404 | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
5405 | StringRef RuleName; |
5406 | |
5407 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: I, Str&: RuleName, ArgLocation: nullptr)) |
5408 | return; |
5409 | |
5410 | DiagnosticIdentifiers.push_back(x: RuleName); |
5411 | } |
5412 | D->addAttr(A: ::new (S.Context) |
5413 | SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(), |
5414 | DiagnosticIdentifiers.size())); |
5415 | } |
5416 | |
5417 | static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5418 | TypeSourceInfo *DerefTypeLoc = nullptr; |
5419 | QualType ParmType; |
5420 | if (AL.hasParsedType()) { |
5421 | ParmType = S.GetTypeFromParser(Ty: AL.getTypeArg(), TInfo: &DerefTypeLoc); |
5422 | |
5423 | unsigned SelectIdx = ~0U; |
5424 | if (ParmType->isReferenceType()) |
5425 | SelectIdx = 0; |
5426 | else if (ParmType->isArrayType()) |
5427 | SelectIdx = 1; |
5428 | |
5429 | if (SelectIdx != ~0U) { |
5430 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_invalid_argument) |
5431 | << SelectIdx << AL; |
5432 | return; |
5433 | } |
5434 | } |
5435 | |
5436 | // To check if earlier decl attributes do not conflict the newly parsed ones |
5437 | // we always add (and check) the attribute to the canonical decl. We need |
5438 | // to repeat the check for attribute mutual exclusion because we're attaching |
5439 | // all of the attributes to the canonical declaration rather than the current |
5440 | // declaration. |
5441 | D = D->getCanonicalDecl(); |
5442 | if (AL.getKind() == ParsedAttr::AT_Owner) { |
5443 | if (checkAttrMutualExclusion<PointerAttr>(S, D, AL)) |
5444 | return; |
5445 | if (const auto *OAttr = D->getAttr<OwnerAttr>()) { |
5446 | const Type *ExistingDerefType = OAttr->getDerefTypeLoc() |
5447 | ? OAttr->getDerefType().getTypePtr() |
5448 | : nullptr; |
5449 | if (ExistingDerefType != ParmType.getTypePtrOrNull()) { |
5450 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attributes_are_not_compatible) |
5451 | << AL << OAttr |
5452 | << (AL.isRegularKeywordAttribute() || |
5453 | OAttr->isRegularKeywordAttribute()); |
5454 | S.Diag(Loc: OAttr->getLocation(), DiagID: diag::note_conflicting_attribute); |
5455 | } |
5456 | return; |
5457 | } |
5458 | for (Decl *Redecl : D->redecls()) { |
5459 | Redecl->addAttr(A: ::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc)); |
5460 | } |
5461 | } else { |
5462 | if (checkAttrMutualExclusion<OwnerAttr>(S, D, AL)) |
5463 | return; |
5464 | if (const auto *PAttr = D->getAttr<PointerAttr>()) { |
5465 | const Type *ExistingDerefType = PAttr->getDerefTypeLoc() |
5466 | ? PAttr->getDerefType().getTypePtr() |
5467 | : nullptr; |
5468 | if (ExistingDerefType != ParmType.getTypePtrOrNull()) { |
5469 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attributes_are_not_compatible) |
5470 | << AL << PAttr |
5471 | << (AL.isRegularKeywordAttribute() || |
5472 | PAttr->isRegularKeywordAttribute()); |
5473 | S.Diag(Loc: PAttr->getLocation(), DiagID: diag::note_conflicting_attribute); |
5474 | } |
5475 | return; |
5476 | } |
5477 | for (Decl *Redecl : D->redecls()) { |
5478 | Redecl->addAttr(A: ::new (S.Context) |
5479 | PointerAttr(S.Context, AL, DerefTypeLoc)); |
5480 | } |
5481 | } |
5482 | } |
5483 | |
5484 | static void handleRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5485 | if (checkAttrMutualExclusion<NoRandomizeLayoutAttr>(S, D, AL)) |
5486 | return; |
5487 | if (!D->hasAttr<RandomizeLayoutAttr>()) |
5488 | D->addAttr(A: ::new (S.Context) RandomizeLayoutAttr(S.Context, AL)); |
5489 | } |
5490 | |
5491 | static void handleNoRandomizeLayoutAttr(Sema &S, Decl *D, |
5492 | const ParsedAttr &AL) { |
5493 | if (checkAttrMutualExclusion<RandomizeLayoutAttr>(S, D, AL)) |
5494 | return; |
5495 | if (!D->hasAttr<NoRandomizeLayoutAttr>()) |
5496 | D->addAttr(A: ::new (S.Context) NoRandomizeLayoutAttr(S.Context, AL)); |
5497 | } |
5498 | |
5499 | bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC, |
5500 | const FunctionDecl *FD, |
5501 | CUDAFunctionTarget CFT) { |
5502 | if (Attrs.isInvalid()) |
5503 | return true; |
5504 | |
5505 | if (Attrs.hasProcessingCache()) { |
5506 | CC = (CallingConv) Attrs.getProcessingCache(); |
5507 | return false; |
5508 | } |
5509 | |
5510 | if (Attrs.getKind() == ParsedAttr::AT_RISCVVLSCC) { |
5511 | // riscv_vls_cc only accepts 0 or 1 argument. |
5512 | if (!Attrs.checkAtLeastNumArgs(S&: *this, Num: 0) || |
5513 | !Attrs.checkAtMostNumArgs(S&: *this, Num: 1)) { |
5514 | Attrs.setInvalid(); |
5515 | return true; |
5516 | } |
5517 | } else { |
5518 | unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0; |
5519 | if (!Attrs.checkExactlyNumArgs(S&: *this, Num: ReqArgs)) { |
5520 | Attrs.setInvalid(); |
5521 | return true; |
5522 | } |
5523 | } |
5524 | |
5525 | bool IsTargetDefaultMSABI = |
5526 | Context.getTargetInfo().getTriple().isOSWindows() || |
5527 | Context.getTargetInfo().getTriple().isUEFI(); |
5528 | // TODO: diagnose uses of these conventions on the wrong target. |
5529 | switch (Attrs.getKind()) { |
5530 | case ParsedAttr::AT_CDecl: |
5531 | CC = CC_C; |
5532 | break; |
5533 | case ParsedAttr::AT_FastCall: |
5534 | CC = CC_X86FastCall; |
5535 | break; |
5536 | case ParsedAttr::AT_StdCall: |
5537 | CC = CC_X86StdCall; |
5538 | break; |
5539 | case ParsedAttr::AT_ThisCall: |
5540 | CC = CC_X86ThisCall; |
5541 | break; |
5542 | case ParsedAttr::AT_Pascal: |
5543 | CC = CC_X86Pascal; |
5544 | break; |
5545 | case ParsedAttr::AT_SwiftCall: |
5546 | CC = CC_Swift; |
5547 | break; |
5548 | case ParsedAttr::AT_SwiftAsyncCall: |
5549 | CC = CC_SwiftAsync; |
5550 | break; |
5551 | case ParsedAttr::AT_VectorCall: |
5552 | CC = CC_X86VectorCall; |
5553 | break; |
5554 | case ParsedAttr::AT_AArch64VectorPcs: |
5555 | CC = CC_AArch64VectorCall; |
5556 | break; |
5557 | case ParsedAttr::AT_AArch64SVEPcs: |
5558 | CC = CC_AArch64SVEPCS; |
5559 | break; |
5560 | case ParsedAttr::AT_RegCall: |
5561 | CC = CC_X86RegCall; |
5562 | break; |
5563 | case ParsedAttr::AT_MSABI: |
5564 | CC = IsTargetDefaultMSABI ? CC_C : CC_Win64; |
5565 | break; |
5566 | case ParsedAttr::AT_SysVABI: |
5567 | CC = IsTargetDefaultMSABI ? CC_X86_64SysV : CC_C; |
5568 | break; |
5569 | case ParsedAttr::AT_Pcs: { |
5570 | StringRef StrRef; |
5571 | if (!checkStringLiteralArgumentAttr(AL: Attrs, ArgNum: 0, Str&: StrRef)) { |
5572 | Attrs.setInvalid(); |
5573 | return true; |
5574 | } |
5575 | if (StrRef == "aapcs" ) { |
5576 | CC = CC_AAPCS; |
5577 | break; |
5578 | } else if (StrRef == "aapcs-vfp" ) { |
5579 | CC = CC_AAPCS_VFP; |
5580 | break; |
5581 | } |
5582 | |
5583 | Attrs.setInvalid(); |
5584 | Diag(Loc: Attrs.getLoc(), DiagID: diag::err_invalid_pcs); |
5585 | return true; |
5586 | } |
5587 | case ParsedAttr::AT_IntelOclBicc: |
5588 | CC = CC_IntelOclBicc; |
5589 | break; |
5590 | case ParsedAttr::AT_PreserveMost: |
5591 | CC = CC_PreserveMost; |
5592 | break; |
5593 | case ParsedAttr::AT_PreserveAll: |
5594 | CC = CC_PreserveAll; |
5595 | break; |
5596 | case ParsedAttr::AT_M68kRTD: |
5597 | CC = CC_M68kRTD; |
5598 | break; |
5599 | case ParsedAttr::AT_PreserveNone: |
5600 | CC = CC_PreserveNone; |
5601 | break; |
5602 | case ParsedAttr::AT_RISCVVectorCC: |
5603 | CC = CC_RISCVVectorCall; |
5604 | break; |
5605 | case ParsedAttr::AT_RISCVVLSCC: { |
5606 | // If the riscv_abi_vlen doesn't have any argument, we set set it to default |
5607 | // value 128. |
5608 | unsigned ABIVLen = 128; |
5609 | if (Attrs.getNumArgs() && |
5610 | !checkUInt32Argument(AI: Attrs, Expr: Attrs.getArgAsExpr(Arg: 0), Val&: ABIVLen)) { |
5611 | Attrs.setInvalid(); |
5612 | return true; |
5613 | } |
5614 | if (Attrs.getNumArgs() && (ABIVLen < 32 || ABIVLen > 65536)) { |
5615 | Attrs.setInvalid(); |
5616 | Diag(Loc: Attrs.getLoc(), DiagID: diag::err_argument_invalid_range) |
5617 | << ABIVLen << 32 << 65536; |
5618 | return true; |
5619 | } |
5620 | if (!llvm::isPowerOf2_64(Value: ABIVLen)) { |
5621 | Attrs.setInvalid(); |
5622 | Diag(Loc: Attrs.getLoc(), DiagID: diag::err_argument_not_power_of_2); |
5623 | return true; |
5624 | } |
5625 | CC = static_cast<CallingConv>(CallingConv::CC_RISCVVLSCall_32 + |
5626 | llvm::Log2_64(Value: ABIVLen) - 5); |
5627 | break; |
5628 | } |
5629 | case ParsedAttr::AT_DeviceKernel: { |
5630 | // Validation was handled in handleDeviceKernelAttr. |
5631 | CC = CC_DeviceKernel; |
5632 | break; |
5633 | } |
5634 | default: llvm_unreachable("unexpected attribute kind" ); |
5635 | } |
5636 | |
5637 | TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK; |
5638 | const TargetInfo &TI = Context.getTargetInfo(); |
5639 | auto *Aux = Context.getAuxTargetInfo(); |
5640 | // CUDA functions may have host and/or device attributes which indicate |
5641 | // their targeted execution environment, therefore the calling convention |
5642 | // of functions in CUDA should be checked against the target deduced based |
5643 | // on their host/device attributes. |
5644 | if (LangOpts.CUDA) { |
5645 | assert(FD || CFT != CUDAFunctionTarget::InvalidTarget); |
5646 | auto CudaTarget = FD ? CUDA().IdentifyTarget(D: FD) : CFT; |
5647 | bool CheckHost = false, CheckDevice = false; |
5648 | switch (CudaTarget) { |
5649 | case CUDAFunctionTarget::HostDevice: |
5650 | CheckHost = true; |
5651 | CheckDevice = true; |
5652 | break; |
5653 | case CUDAFunctionTarget::Host: |
5654 | CheckHost = true; |
5655 | break; |
5656 | case CUDAFunctionTarget::Device: |
5657 | case CUDAFunctionTarget::Global: |
5658 | CheckDevice = true; |
5659 | break; |
5660 | case CUDAFunctionTarget::InvalidTarget: |
5661 | llvm_unreachable("unexpected cuda target" ); |
5662 | } |
5663 | auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI; |
5664 | auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux; |
5665 | if (CheckHost && HostTI) |
5666 | A = HostTI->checkCallingConvention(CC); |
5667 | if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI) |
5668 | A = DeviceTI->checkCallingConvention(CC); |
5669 | } else if (LangOpts.SYCLIsDevice && TI.getTriple().isAMDGPU() && |
5670 | CC == CC_X86VectorCall) { |
5671 | // Assuming SYCL Device AMDGPU CC_X86VectorCall functions are always to be |
5672 | // emitted on the host. The MSVC STL has CC-based specializations so we |
5673 | // cannot change the CC to be the default as that will cause a clash with |
5674 | // another specialization. |
5675 | A = TI.checkCallingConvention(CC); |
5676 | if (Aux && A != TargetInfo::CCCR_OK) |
5677 | A = Aux->checkCallingConvention(CC); |
5678 | } else { |
5679 | A = TI.checkCallingConvention(CC); |
5680 | } |
5681 | |
5682 | switch (A) { |
5683 | case TargetInfo::CCCR_OK: |
5684 | break; |
5685 | |
5686 | case TargetInfo::CCCR_Ignore: |
5687 | // Treat an ignored convention as if it was an explicit C calling convention |
5688 | // attribute. For example, __stdcall on Win x64 functions as __cdecl, so |
5689 | // that command line flags that change the default convention to |
5690 | // __vectorcall don't affect declarations marked __stdcall. |
5691 | CC = CC_C; |
5692 | break; |
5693 | |
5694 | case TargetInfo::CCCR_Error: |
5695 | Diag(Loc: Attrs.getLoc(), DiagID: diag::error_cconv_unsupported) |
5696 | << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; |
5697 | break; |
5698 | |
5699 | case TargetInfo::CCCR_Warning: { |
5700 | Diag(Loc: Attrs.getLoc(), DiagID: diag::warn_cconv_unsupported) |
5701 | << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; |
5702 | |
5703 | // This convention is not valid for the target. Use the default function or |
5704 | // method calling convention. |
5705 | bool IsCXXMethod = false, IsVariadic = false; |
5706 | if (FD) { |
5707 | IsCXXMethod = FD->isCXXInstanceMember(); |
5708 | IsVariadic = FD->isVariadic(); |
5709 | } |
5710 | CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod); |
5711 | break; |
5712 | } |
5713 | } |
5714 | |
5715 | Attrs.setProcessingCache((unsigned) CC); |
5716 | return false; |
5717 | } |
5718 | |
5719 | bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) { |
5720 | if (AL.isInvalid()) |
5721 | return true; |
5722 | |
5723 | if (!AL.checkExactlyNumArgs(S&: *this, Num: 1)) { |
5724 | AL.setInvalid(); |
5725 | return true; |
5726 | } |
5727 | |
5728 | uint32_t NP; |
5729 | Expr *NumParamsExpr = AL.getArgAsExpr(Arg: 0); |
5730 | if (!checkUInt32Argument(AI: AL, Expr: NumParamsExpr, Val&: NP)) { |
5731 | AL.setInvalid(); |
5732 | return true; |
5733 | } |
5734 | |
5735 | if (Context.getTargetInfo().getRegParmMax() == 0) { |
5736 | Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_regparm_wrong_platform) |
5737 | << NumParamsExpr->getSourceRange(); |
5738 | AL.setInvalid(); |
5739 | return true; |
5740 | } |
5741 | |
5742 | numParams = NP; |
5743 | if (numParams > Context.getTargetInfo().getRegParmMax()) { |
5744 | Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_regparm_invalid_number) |
5745 | << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange(); |
5746 | AL.setInvalid(); |
5747 | return true; |
5748 | } |
5749 | |
5750 | return false; |
5751 | } |
5752 | |
5753 | // Helper to get OffloadArch. |
5754 | static OffloadArch getOffloadArch(const TargetInfo &TI) { |
5755 | if (!TI.getTriple().isNVPTX()) |
5756 | llvm_unreachable("getOffloadArch is only valid for NVPTX triple" ); |
5757 | auto &TO = TI.getTargetOpts(); |
5758 | return StringToOffloadArch(S: TO.CPU); |
5759 | } |
5760 | |
5761 | // Checks whether an argument of launch_bounds attribute is |
5762 | // acceptable, performs implicit conversion to Rvalue, and returns |
5763 | // non-nullptr Expr result on success. Otherwise, it returns nullptr |
5764 | // and may output an error. |
5765 | static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E, |
5766 | const CUDALaunchBoundsAttr &AL, |
5767 | const unsigned Idx) { |
5768 | if (S.DiagnoseUnexpandedParameterPack(E)) |
5769 | return nullptr; |
5770 | |
5771 | // Accept template arguments for now as they depend on something else. |
5772 | // We'll get to check them when they eventually get instantiated. |
5773 | if (E->isValueDependent()) |
5774 | return E; |
5775 | |
5776 | std::optional<llvm::APSInt> I = llvm::APSInt(64); |
5777 | if (!(I = E->getIntegerConstantExpr(Ctx: S.Context))) { |
5778 | S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_attribute_argument_n_type) |
5779 | << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange(); |
5780 | return nullptr; |
5781 | } |
5782 | // Make sure we can fit it in 32 bits. |
5783 | if (!I->isIntN(N: 32)) { |
5784 | S.Diag(Loc: E->getExprLoc(), DiagID: diag::err_ice_too_large) |
5785 | << toString(I: *I, Radix: 10, Signed: false) << 32 << /* Unsigned */ 1; |
5786 | return nullptr; |
5787 | } |
5788 | if (*I < 0) |
5789 | S.Diag(Loc: E->getExprLoc(), DiagID: diag::warn_attribute_argument_n_negative) |
5790 | << &AL << Idx << E->getSourceRange(); |
5791 | |
5792 | // We may need to perform implicit conversion of the argument. |
5793 | InitializedEntity Entity = InitializedEntity::InitializeParameter( |
5794 | Context&: S.Context, Type: S.Context.getConstType(T: S.Context.IntTy), /*consume*/ Consumed: false); |
5795 | ExprResult ValArg = S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: E); |
5796 | assert(!ValArg.isInvalid() && |
5797 | "Unexpected PerformCopyInitialization() failure." ); |
5798 | |
5799 | return ValArg.getAs<Expr>(); |
5800 | } |
5801 | |
5802 | CUDALaunchBoundsAttr * |
5803 | Sema::CreateLaunchBoundsAttr(const AttributeCommonInfo &CI, Expr *MaxThreads, |
5804 | Expr *MinBlocks, Expr *MaxBlocks) { |
5805 | CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks); |
5806 | MaxThreads = makeLaunchBoundsArgExpr(S&: *this, E: MaxThreads, AL: TmpAttr, Idx: 0); |
5807 | if (!MaxThreads) |
5808 | return nullptr; |
5809 | |
5810 | if (MinBlocks) { |
5811 | MinBlocks = makeLaunchBoundsArgExpr(S&: *this, E: MinBlocks, AL: TmpAttr, Idx: 1); |
5812 | if (!MinBlocks) |
5813 | return nullptr; |
5814 | } |
5815 | |
5816 | if (MaxBlocks) { |
5817 | // '.maxclusterrank' ptx directive requires .target sm_90 or higher. |
5818 | auto SM = getOffloadArch(TI: Context.getTargetInfo()); |
5819 | if (SM == OffloadArch::UNKNOWN || SM < OffloadArch::SM_90) { |
5820 | Diag(Loc: MaxBlocks->getBeginLoc(), DiagID: diag::warn_cuda_maxclusterrank_sm_90) |
5821 | << OffloadArchToString(A: SM) << CI << MaxBlocks->getSourceRange(); |
5822 | // Ignore it by setting MaxBlocks to null; |
5823 | MaxBlocks = nullptr; |
5824 | } else { |
5825 | MaxBlocks = makeLaunchBoundsArgExpr(S&: *this, E: MaxBlocks, AL: TmpAttr, Idx: 2); |
5826 | if (!MaxBlocks) |
5827 | return nullptr; |
5828 | } |
5829 | } |
5830 | |
5831 | return ::new (Context) |
5832 | CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks); |
5833 | } |
5834 | |
5835 | void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI, |
5836 | Expr *MaxThreads, Expr *MinBlocks, |
5837 | Expr *MaxBlocks) { |
5838 | if (auto *Attr = CreateLaunchBoundsAttr(CI, MaxThreads, MinBlocks, MaxBlocks)) |
5839 | D->addAttr(A: Attr); |
5840 | } |
5841 | |
5842 | static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5843 | if (!AL.checkAtLeastNumArgs(S, Num: 1) || !AL.checkAtMostNumArgs(S, Num: 3)) |
5844 | return; |
5845 | |
5846 | S.AddLaunchBoundsAttr(D, CI: AL, MaxThreads: AL.getArgAsExpr(Arg: 0), |
5847 | MinBlocks: AL.getNumArgs() > 1 ? AL.getArgAsExpr(Arg: 1) : nullptr, |
5848 | MaxBlocks: AL.getNumArgs() > 2 ? AL.getArgAsExpr(Arg: 2) : nullptr); |
5849 | } |
5850 | |
5851 | static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D, |
5852 | const ParsedAttr &AL) { |
5853 | if (!AL.isArgIdent(Arg: 0)) { |
5854 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
5855 | << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier; |
5856 | return; |
5857 | } |
5858 | |
5859 | ParamIdx ArgumentIdx; |
5860 | if (!S.checkFunctionOrMethodParameterIndex( |
5861 | D, AI: AL, AttrArgNum: 2, IdxExpr: AL.getArgAsExpr(Arg: 1), Idx&: ArgumentIdx, |
5862 | /*CanIndexImplicitThis=*/false, |
5863 | /*CanIndexVariadicArguments=*/true)) |
5864 | return; |
5865 | |
5866 | ParamIdx TypeTagIdx; |
5867 | if (!S.checkFunctionOrMethodParameterIndex( |
5868 | D, AI: AL, AttrArgNum: 3, IdxExpr: AL.getArgAsExpr(Arg: 2), Idx&: TypeTagIdx, |
5869 | /*CanIndexImplicitThis=*/false, |
5870 | /*CanIndexVariadicArguments=*/true)) |
5871 | return; |
5872 | |
5873 | bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag" ; |
5874 | if (IsPointer) { |
5875 | // Ensure that buffer has a pointer type. |
5876 | unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex(); |
5877 | if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) || |
5878 | !getFunctionOrMethodParamType(D, Idx: ArgumentIdxAST)->isPointerType()) |
5879 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_pointers_only) << AL << 0; |
5880 | } |
5881 | |
5882 | D->addAttr(A: ::new (S.Context) ArgumentWithTypeTagAttr( |
5883 | S.Context, AL, AL.getArgAsIdent(Arg: 0)->getIdentifierInfo(), ArgumentIdx, |
5884 | TypeTagIdx, IsPointer)); |
5885 | } |
5886 | |
5887 | static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D, |
5888 | const ParsedAttr &AL) { |
5889 | if (!AL.isArgIdent(Arg: 0)) { |
5890 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
5891 | << AL << 1 << AANT_ArgumentIdentifier; |
5892 | return; |
5893 | } |
5894 | |
5895 | if (!AL.checkExactlyNumArgs(S, Num: 1)) |
5896 | return; |
5897 | |
5898 | if (!isa<VarDecl>(Val: D)) { |
5899 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_decl_type) |
5900 | << AL << AL.isRegularKeywordAttribute() << ExpectedVariable; |
5901 | return; |
5902 | } |
5903 | |
5904 | IdentifierInfo *PointerKind = AL.getArgAsIdent(Arg: 0)->getIdentifierInfo(); |
5905 | TypeSourceInfo *MatchingCTypeLoc = nullptr; |
5906 | S.GetTypeFromParser(Ty: AL.getMatchingCType(), TInfo: &MatchingCTypeLoc); |
5907 | assert(MatchingCTypeLoc && "no type source info for attribute argument" ); |
5908 | |
5909 | D->addAttr(A: ::new (S.Context) TypeTagForDatatypeAttr( |
5910 | S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(), |
5911 | AL.getMustBeNull())); |
5912 | } |
5913 | |
5914 | static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5915 | ParamIdx ArgCount; |
5916 | |
5917 | if (!S.checkFunctionOrMethodParameterIndex(D, AI: AL, AttrArgNum: 1, IdxExpr: AL.getArgAsExpr(Arg: 0), |
5918 | Idx&: ArgCount, |
5919 | CanIndexImplicitThis: true /* CanIndexImplicitThis */)) |
5920 | return; |
5921 | |
5922 | // ArgCount isn't a parameter index [0;n), it's a count [1;n] |
5923 | D->addAttr(A: ::new (S.Context) |
5924 | XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex())); |
5925 | } |
5926 | |
5927 | static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D, |
5928 | const ParsedAttr &AL) { |
5929 | if (S.Context.getTargetInfo().getTriple().isOSAIX()) { |
5930 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_aix_attr_unsupported) << AL; |
5931 | return; |
5932 | } |
5933 | uint32_t Count = 0, Offset = 0; |
5934 | StringRef Section; |
5935 | if (!S.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: Count, Idx: 0, StrictlyUnsigned: true)) |
5936 | return; |
5937 | if (AL.getNumArgs() >= 2) { |
5938 | Expr *Arg = AL.getArgAsExpr(Arg: 1); |
5939 | if (!S.checkUInt32Argument(AI: AL, Expr: Arg, Val&: Offset, Idx: 1, StrictlyUnsigned: true)) |
5940 | return; |
5941 | if (Count < Offset) { |
5942 | S.Diag(Loc: S.getAttrLoc(CI: AL), DiagID: diag::err_attribute_argument_out_of_range) |
5943 | << &AL << 0 << Count << Arg->getBeginLoc(); |
5944 | return; |
5945 | } |
5946 | } |
5947 | if (AL.getNumArgs() == 3) { |
5948 | SourceLocation LiteralLoc; |
5949 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 2, Str&: Section, ArgLocation: &LiteralLoc)) |
5950 | return; |
5951 | if (llvm::Error E = S.isValidSectionSpecifier(SecName: Section)) { |
5952 | S.Diag(Loc: LiteralLoc, |
5953 | DiagID: diag::err_attribute_patchable_function_entry_invalid_section) |
5954 | << toString(E: std::move(E)); |
5955 | return; |
5956 | } |
5957 | if (Section.empty()) { |
5958 | S.Diag(Loc: LiteralLoc, |
5959 | DiagID: diag::err_attribute_patchable_function_entry_invalid_section) |
5960 | << "section must not be empty" ; |
5961 | return; |
5962 | } |
5963 | } |
5964 | D->addAttr(A: ::new (S.Context) PatchableFunctionEntryAttr(S.Context, AL, Count, |
5965 | Offset, Section)); |
5966 | } |
5967 | |
5968 | static void handleBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5969 | if (!AL.isArgIdent(Arg: 0)) { |
5970 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_n_type) |
5971 | << AL << 1 << AANT_ArgumentIdentifier; |
5972 | return; |
5973 | } |
5974 | |
5975 | IdentifierInfo *Ident = AL.getArgAsIdent(Arg: 0)->getIdentifierInfo(); |
5976 | unsigned BuiltinID = Ident->getBuiltinID(); |
5977 | StringRef AliasName = cast<FunctionDecl>(Val: D)->getIdentifier()->getName(); |
5978 | |
5979 | bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); |
5980 | bool IsARM = S.Context.getTargetInfo().getTriple().isARM(); |
5981 | bool IsRISCV = S.Context.getTargetInfo().getTriple().isRISCV(); |
5982 | bool IsSPIRV = S.Context.getTargetInfo().getTriple().isSPIRV(); |
5983 | bool IsHLSL = S.Context.getLangOpts().HLSL; |
5984 | if ((IsAArch64 && !S.ARM().SveAliasValid(BuiltinID, AliasName)) || |
5985 | (IsARM && !S.ARM().MveAliasValid(BuiltinID, AliasName) && |
5986 | !S.ARM().CdeAliasValid(BuiltinID, AliasName)) || |
5987 | (IsRISCV && !S.RISCV().isAliasValid(BuiltinID, AliasName)) || |
5988 | (!IsAArch64 && !IsARM && !IsRISCV && !IsHLSL && !IsSPIRV)) { |
5989 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_builtin_alias) << AL; |
5990 | return; |
5991 | } |
5992 | |
5993 | D->addAttr(A: ::new (S.Context) BuiltinAliasAttr(S.Context, AL, Ident)); |
5994 | } |
5995 | |
5996 | static void handleNullableTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
5997 | if (AL.isUsedAsTypeAttr()) |
5998 | return; |
5999 | |
6000 | if (auto *CRD = dyn_cast<CXXRecordDecl>(Val: D); |
6001 | !CRD || !(CRD->isClass() || CRD->isStruct())) { |
6002 | S.Diag(Loc: AL.getRange().getBegin(), DiagID: diag::err_attribute_wrong_decl_type) |
6003 | << AL << AL.isRegularKeywordAttribute() << ExpectedClass; |
6004 | return; |
6005 | } |
6006 | |
6007 | handleSimpleAttribute<TypeNullableAttr>(S, D, CI: AL); |
6008 | } |
6009 | |
6010 | static void handlePreferredTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6011 | if (!AL.hasParsedType()) { |
6012 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_wrong_number_arguments) << AL << 1; |
6013 | return; |
6014 | } |
6015 | |
6016 | TypeSourceInfo *ParmTSI = nullptr; |
6017 | QualType QT = S.GetTypeFromParser(Ty: AL.getTypeArg(), TInfo: &ParmTSI); |
6018 | assert(ParmTSI && "no type source info for attribute argument" ); |
6019 | S.RequireCompleteType(Loc: ParmTSI->getTypeLoc().getBeginLoc(), T: QT, |
6020 | DiagID: diag::err_incomplete_type); |
6021 | |
6022 | D->addAttr(A: ::new (S.Context) PreferredTypeAttr(S.Context, AL, ParmTSI)); |
6023 | } |
6024 | |
6025 | //===----------------------------------------------------------------------===// |
6026 | // Microsoft specific attribute handlers. |
6027 | //===----------------------------------------------------------------------===// |
6028 | |
6029 | UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI, |
6030 | StringRef UuidAsWritten, MSGuidDecl *GuidDecl) { |
6031 | if (const auto *UA = D->getAttr<UuidAttr>()) { |
6032 | if (declaresSameEntity(D1: UA->getGuidDecl(), D2: GuidDecl)) |
6033 | return nullptr; |
6034 | if (!UA->getGuid().empty()) { |
6035 | Diag(Loc: UA->getLocation(), DiagID: diag::err_mismatched_uuid); |
6036 | Diag(Loc: CI.getLoc(), DiagID: diag::note_previous_uuid); |
6037 | D->dropAttr<UuidAttr>(); |
6038 | } |
6039 | } |
6040 | |
6041 | return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl); |
6042 | } |
6043 | |
6044 | static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6045 | if (!S.LangOpts.CPlusPlus) { |
6046 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_not_supported_in_lang) |
6047 | << AL << AttributeLangSupport::C; |
6048 | return; |
6049 | } |
6050 | |
6051 | StringRef OrigStrRef; |
6052 | SourceLocation LiteralLoc; |
6053 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: OrigStrRef, ArgLocation: &LiteralLoc)) |
6054 | return; |
6055 | |
6056 | // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or |
6057 | // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former. |
6058 | StringRef StrRef = OrigStrRef; |
6059 | if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}') |
6060 | StrRef = StrRef.drop_front().drop_back(); |
6061 | |
6062 | // Validate GUID length. |
6063 | if (StrRef.size() != 36) { |
6064 | S.Diag(Loc: LiteralLoc, DiagID: diag::err_attribute_uuid_malformed_guid); |
6065 | return; |
6066 | } |
6067 | |
6068 | for (unsigned i = 0; i < 36; ++i) { |
6069 | if (i == 8 || i == 13 || i == 18 || i == 23) { |
6070 | if (StrRef[i] != '-') { |
6071 | S.Diag(Loc: LiteralLoc, DiagID: diag::err_attribute_uuid_malformed_guid); |
6072 | return; |
6073 | } |
6074 | } else if (!isHexDigit(c: StrRef[i])) { |
6075 | S.Diag(Loc: LiteralLoc, DiagID: diag::err_attribute_uuid_malformed_guid); |
6076 | return; |
6077 | } |
6078 | } |
6079 | |
6080 | // Convert to our parsed format and canonicalize. |
6081 | MSGuidDecl::Parts Parsed; |
6082 | StrRef.substr(Start: 0, N: 8).getAsInteger(Radix: 16, Result&: Parsed.Part1); |
6083 | StrRef.substr(Start: 9, N: 4).getAsInteger(Radix: 16, Result&: Parsed.Part2); |
6084 | StrRef.substr(Start: 14, N: 4).getAsInteger(Radix: 16, Result&: Parsed.Part3); |
6085 | for (unsigned i = 0; i != 8; ++i) |
6086 | StrRef.substr(Start: 19 + 2 * i + (i >= 2 ? 1 : 0), N: 2) |
6087 | .getAsInteger(Radix: 16, Result&: Parsed.Part4And5[i]); |
6088 | MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parts: Parsed); |
6089 | |
6090 | // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's |
6091 | // the only thing in the [] list, the [] too), and add an insertion of |
6092 | // __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas |
6093 | // separating attributes nor of the [ and the ] are in the AST. |
6094 | // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc" |
6095 | // on cfe-dev. |
6096 | if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling. |
6097 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_atl_uuid_deprecated); |
6098 | |
6099 | UuidAttr *UA = S.mergeUuidAttr(D, CI: AL, UuidAsWritten: OrigStrRef, GuidDecl: Guid); |
6100 | if (UA) |
6101 | D->addAttr(A: UA); |
6102 | } |
6103 | |
6104 | static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6105 | if (!S.LangOpts.CPlusPlus) { |
6106 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_not_supported_in_lang) |
6107 | << AL << AttributeLangSupport::C; |
6108 | return; |
6109 | } |
6110 | MSInheritanceAttr *IA = S.mergeMSInheritanceAttr( |
6111 | D, CI: AL, /*BestCase=*/true, Model: (MSInheritanceModel)AL.getSemanticSpelling()); |
6112 | if (IA) { |
6113 | D->addAttr(A: IA); |
6114 | S.Consumer.AssignInheritanceModel(RD: cast<CXXRecordDecl>(Val: D)); |
6115 | } |
6116 | } |
6117 | |
6118 | static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6119 | const auto *VD = cast<VarDecl>(Val: D); |
6120 | if (!S.Context.getTargetInfo().isTLSSupported()) { |
6121 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_thread_unsupported); |
6122 | return; |
6123 | } |
6124 | if (VD->getTSCSpec() != TSCS_unspecified) { |
6125 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_declspec_thread_on_thread_variable); |
6126 | return; |
6127 | } |
6128 | if (VD->hasLocalStorage()) { |
6129 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_thread_non_global) << "__declspec(thread)" ; |
6130 | return; |
6131 | } |
6132 | D->addAttr(A: ::new (S.Context) ThreadAttr(S.Context, AL)); |
6133 | } |
6134 | |
6135 | static void handleMSConstexprAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6136 | if (!S.getLangOpts().isCompatibleWithMSVC(MajorVersion: LangOptions::MSVC2022_3)) { |
6137 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_unknown_attribute_ignored) |
6138 | << AL << AL.getRange(); |
6139 | return; |
6140 | } |
6141 | auto *FD = cast<FunctionDecl>(Val: D); |
6142 | if (FD->isConstexprSpecified() || FD->isConsteval()) { |
6143 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_ms_constexpr_cannot_be_applied) |
6144 | << FD->isConsteval() << FD; |
6145 | return; |
6146 | } |
6147 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
6148 | if (!S.getLangOpts().CPlusPlus20 && MD->isVirtual()) { |
6149 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_ms_constexpr_cannot_be_applied) |
6150 | << /*virtual*/ 2 << MD; |
6151 | return; |
6152 | } |
6153 | } |
6154 | D->addAttr(A: ::new (S.Context) MSConstexprAttr(S.Context, AL)); |
6155 | } |
6156 | |
6157 | static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6158 | SmallVector<StringRef, 4> Tags; |
6159 | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
6160 | StringRef Tag; |
6161 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: I, Str&: Tag)) |
6162 | return; |
6163 | Tags.push_back(Elt: Tag); |
6164 | } |
6165 | |
6166 | if (const auto *NS = dyn_cast<NamespaceDecl>(Val: D)) { |
6167 | if (!NS->isInline()) { |
6168 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attr_abi_tag_namespace) << 0; |
6169 | return; |
6170 | } |
6171 | if (NS->isAnonymousNamespace()) { |
6172 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attr_abi_tag_namespace) << 1; |
6173 | return; |
6174 | } |
6175 | if (AL.getNumArgs() == 0) |
6176 | Tags.push_back(Elt: NS->getName()); |
6177 | } else if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
6178 | return; |
6179 | |
6180 | // Store tags sorted and without duplicates. |
6181 | llvm::sort(C&: Tags); |
6182 | Tags.erase(CS: llvm::unique(R&: Tags), CE: Tags.end()); |
6183 | |
6184 | D->addAttr(A: ::new (S.Context) |
6185 | AbiTagAttr(S.Context, AL, Tags.data(), Tags.size())); |
6186 | } |
6187 | |
6188 | static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag) { |
6189 | for (const auto *I : D->specific_attrs<BTFDeclTagAttr>()) { |
6190 | if (I->getBTFDeclTag() == Tag) |
6191 | return true; |
6192 | } |
6193 | return false; |
6194 | } |
6195 | |
6196 | static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6197 | StringRef Str; |
6198 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
6199 | return; |
6200 | if (hasBTFDeclTagAttr(D, Tag: Str)) |
6201 | return; |
6202 | |
6203 | D->addAttr(A: ::new (S.Context) BTFDeclTagAttr(S.Context, AL, Str)); |
6204 | } |
6205 | |
6206 | BTFDeclTagAttr *Sema::mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL) { |
6207 | if (hasBTFDeclTagAttr(D, Tag: AL.getBTFDeclTag())) |
6208 | return nullptr; |
6209 | return ::new (Context) BTFDeclTagAttr(Context, AL, AL.getBTFDeclTag()); |
6210 | } |
6211 | |
6212 | static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6213 | // Dispatch the interrupt attribute based on the current target. |
6214 | switch (S.Context.getTargetInfo().getTriple().getArch()) { |
6215 | case llvm::Triple::msp430: |
6216 | S.MSP430().handleInterruptAttr(D, AL); |
6217 | break; |
6218 | case llvm::Triple::mipsel: |
6219 | case llvm::Triple::mips: |
6220 | S.MIPS().handleInterruptAttr(D, AL); |
6221 | break; |
6222 | case llvm::Triple::m68k: |
6223 | S.M68k().handleInterruptAttr(D, AL); |
6224 | break; |
6225 | case llvm::Triple::x86: |
6226 | case llvm::Triple::x86_64: |
6227 | S.X86().handleAnyInterruptAttr(D, AL); |
6228 | break; |
6229 | case llvm::Triple::avr: |
6230 | S.AVR().handleInterruptAttr(D, AL); |
6231 | break; |
6232 | case llvm::Triple::riscv32: |
6233 | case llvm::Triple::riscv64: |
6234 | S.RISCV().handleInterruptAttr(D, AL); |
6235 | break; |
6236 | default: |
6237 | S.ARM().handleInterruptAttr(D, AL); |
6238 | break; |
6239 | } |
6240 | } |
6241 | |
6242 | static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) { |
6243 | uint32_t Version; |
6244 | Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(Arg: 0)); |
6245 | if (!S.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 0), Val&: Version)) |
6246 | return; |
6247 | |
6248 | // TODO: Investigate what happens with the next major version of MSVC. |
6249 | if (Version != LangOptions::MSVC2015 / 100) { |
6250 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_out_of_bounds) |
6251 | << AL << Version << VersionExpr->getSourceRange(); |
6252 | return; |
6253 | } |
6254 | |
6255 | // The attribute expects a "major" version number like 19, but new versions of |
6256 | // MSVC have moved to updating the "minor", or less significant numbers, so we |
6257 | // have to multiply by 100 now. |
6258 | Version *= 100; |
6259 | |
6260 | D->addAttr(A: ::new (S.Context) LayoutVersionAttr(S.Context, AL, Version)); |
6261 | } |
6262 | |
6263 | DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, |
6264 | const AttributeCommonInfo &CI) { |
6265 | if (D->hasAttr<DLLExportAttr>()) { |
6266 | Diag(Loc: CI.getLoc(), DiagID: diag::warn_attribute_ignored) << "'dllimport'" ; |
6267 | return nullptr; |
6268 | } |
6269 | |
6270 | if (D->hasAttr<DLLImportAttr>()) |
6271 | return nullptr; |
6272 | |
6273 | return ::new (Context) DLLImportAttr(Context, CI); |
6274 | } |
6275 | |
6276 | DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, |
6277 | const AttributeCommonInfo &CI) { |
6278 | if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) { |
6279 | Diag(Loc: Import->getLocation(), DiagID: diag::warn_attribute_ignored) << Import; |
6280 | D->dropAttr<DLLImportAttr>(); |
6281 | } |
6282 | |
6283 | if (D->hasAttr<DLLExportAttr>()) |
6284 | return nullptr; |
6285 | |
6286 | return ::new (Context) DLLExportAttr(Context, CI); |
6287 | } |
6288 | |
6289 | static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) { |
6290 | if (isa<ClassTemplatePartialSpecializationDecl>(Val: D) && |
6291 | (S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) { |
6292 | S.Diag(Loc: A.getRange().getBegin(), DiagID: diag::warn_attribute_ignored) << A; |
6293 | return; |
6294 | } |
6295 | |
6296 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
6297 | if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport && |
6298 | !(S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) { |
6299 | // MinGW doesn't allow dllimport on inline functions. |
6300 | S.Diag(Loc: A.getRange().getBegin(), DiagID: diag::warn_attribute_ignored_on_inline) |
6301 | << A; |
6302 | return; |
6303 | } |
6304 | } |
6305 | |
6306 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: D)) { |
6307 | if ((S.Context.getTargetInfo().shouldDLLImportComdatSymbols()) && |
6308 | MD->getParent()->isLambda()) { |
6309 | S.Diag(Loc: A.getRange().getBegin(), DiagID: diag::err_attribute_dll_lambda) << A; |
6310 | return; |
6311 | } |
6312 | } |
6313 | |
6314 | Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport |
6315 | ? (Attr *)S.mergeDLLExportAttr(D, CI: A) |
6316 | : (Attr *)S.mergeDLLImportAttr(D, CI: A); |
6317 | if (NewAttr) |
6318 | D->addAttr(A: NewAttr); |
6319 | } |
6320 | |
6321 | MSInheritanceAttr * |
6322 | Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI, |
6323 | bool BestCase, |
6324 | MSInheritanceModel Model) { |
6325 | if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) { |
6326 | if (IA->getInheritanceModel() == Model) |
6327 | return nullptr; |
6328 | Diag(Loc: IA->getLocation(), DiagID: diag::err_mismatched_ms_inheritance) |
6329 | << 1 /*previous declaration*/; |
6330 | Diag(Loc: CI.getLoc(), DiagID: diag::note_previous_ms_inheritance); |
6331 | D->dropAttr<MSInheritanceAttr>(); |
6332 | } |
6333 | |
6334 | auto *RD = cast<CXXRecordDecl>(Val: D); |
6335 | if (RD->hasDefinition()) { |
6336 | if (checkMSInheritanceAttrOnDefinition(RD, Range: CI.getRange(), BestCase, |
6337 | ExplicitModel: Model)) { |
6338 | return nullptr; |
6339 | } |
6340 | } else { |
6341 | if (isa<ClassTemplatePartialSpecializationDecl>(Val: RD)) { |
6342 | Diag(Loc: CI.getLoc(), DiagID: diag::warn_ignored_ms_inheritance) |
6343 | << 1 /*partial specialization*/; |
6344 | return nullptr; |
6345 | } |
6346 | if (RD->getDescribedClassTemplate()) { |
6347 | Diag(Loc: CI.getLoc(), DiagID: diag::warn_ignored_ms_inheritance) |
6348 | << 0 /*primary template*/; |
6349 | return nullptr; |
6350 | } |
6351 | } |
6352 | |
6353 | return ::new (Context) MSInheritanceAttr(Context, CI, BestCase); |
6354 | } |
6355 | |
6356 | static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6357 | // The capability attributes take a single string parameter for the name of |
6358 | // the capability they represent. The lockable attribute does not take any |
6359 | // parameters. However, semantically, both attributes represent the same |
6360 | // concept, and so they use the same semantic attribute. Eventually, the |
6361 | // lockable attribute will be removed. |
6362 | // |
6363 | // For backward compatibility, any capability which has no specified string |
6364 | // literal will be considered a "mutex." |
6365 | StringRef N("mutex" ); |
6366 | SourceLocation LiteralLoc; |
6367 | if (AL.getKind() == ParsedAttr::AT_Capability && |
6368 | !S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: N, ArgLocation: &LiteralLoc)) |
6369 | return; |
6370 | |
6371 | D->addAttr(A: ::new (S.Context) CapabilityAttr(S.Context, AL, N)); |
6372 | } |
6373 | |
6374 | static void handleReentrantCapabilityAttr(Sema &S, Decl *D, |
6375 | const ParsedAttr &AL) { |
6376 | // Do not permit 'reentrant_capability' without 'capability(..)'. Note that |
6377 | // the check here requires 'capability' to be before 'reentrant_capability'. |
6378 | // This helps enforce a canonical style. Also avoids placing an additional |
6379 | // branch into ProcessDeclAttributeList(). |
6380 | if (!D->hasAttr<CapabilityAttr>()) { |
6381 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_thread_attribute_requires_preceded) |
6382 | << AL << cast<NamedDecl>(Val: D) << "'capability'" ; |
6383 | return; |
6384 | } |
6385 | |
6386 | D->addAttr(A: ::new (S.Context) ReentrantCapabilityAttr(S.Context, AL)); |
6387 | } |
6388 | |
6389 | static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6390 | SmallVector<Expr*, 1> Args; |
6391 | if (!checkLockFunAttrCommon(S, D, AL, Args)) |
6392 | return; |
6393 | |
6394 | D->addAttr(A: ::new (S.Context) |
6395 | AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size())); |
6396 | } |
6397 | |
6398 | static void handleAcquireCapabilityAttr(Sema &S, Decl *D, |
6399 | const ParsedAttr &AL) { |
6400 | if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(Val: D); |
6401 | ParmDecl && !checkFunParamsAreScopedLockable(S, ParamDecl: ParmDecl, AL)) |
6402 | return; |
6403 | |
6404 | SmallVector<Expr*, 1> Args; |
6405 | if (!checkLockFunAttrCommon(S, D, AL, Args)) |
6406 | return; |
6407 | |
6408 | D->addAttr(A: ::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(), |
6409 | Args.size())); |
6410 | } |
6411 | |
6412 | static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D, |
6413 | const ParsedAttr &AL) { |
6414 | SmallVector<Expr*, 2> Args; |
6415 | if (!checkTryLockFunAttrCommon(S, D, AL, Args)) |
6416 | return; |
6417 | |
6418 | D->addAttr(A: ::new (S.Context) TryAcquireCapabilityAttr( |
6419 | S.Context, AL, AL.getArgAsExpr(Arg: 0), Args.data(), Args.size())); |
6420 | } |
6421 | |
6422 | static void handleReleaseCapabilityAttr(Sema &S, Decl *D, |
6423 | const ParsedAttr &AL) { |
6424 | if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(Val: D); |
6425 | ParmDecl && !checkFunParamsAreScopedLockable(S, ParamDecl: ParmDecl, AL)) |
6426 | return; |
6427 | // Check that all arguments are lockable objects. |
6428 | SmallVector<Expr *, 1> Args; |
6429 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args, Sidx: 0, ParamIdxOk: true); |
6430 | |
6431 | D->addAttr(A: ::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(), |
6432 | Args.size())); |
6433 | } |
6434 | |
6435 | static void handleRequiresCapabilityAttr(Sema &S, Decl *D, |
6436 | const ParsedAttr &AL) { |
6437 | if (const auto *ParmDecl = dyn_cast<ParmVarDecl>(Val: D); |
6438 | ParmDecl && !checkFunParamsAreScopedLockable(S, ParamDecl: ParmDecl, AL)) |
6439 | return; |
6440 | |
6441 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
6442 | return; |
6443 | |
6444 | // check that all arguments are lockable objects |
6445 | SmallVector<Expr*, 1> Args; |
6446 | checkAttrArgsAreCapabilityObjs(S, D, AL, Args); |
6447 | if (Args.empty()) |
6448 | return; |
6449 | |
6450 | RequiresCapabilityAttr *RCA = ::new (S.Context) |
6451 | RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size()); |
6452 | |
6453 | D->addAttr(A: RCA); |
6454 | } |
6455 | |
6456 | static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6457 | if (const auto *NSD = dyn_cast<NamespaceDecl>(Val: D)) { |
6458 | if (NSD->isAnonymousNamespace()) { |
6459 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_deprecated_anonymous_namespace); |
6460 | // Do not want to attach the attribute to the namespace because that will |
6461 | // cause confusing diagnostic reports for uses of declarations within the |
6462 | // namespace. |
6463 | return; |
6464 | } |
6465 | } else if (isa<UsingDecl, UnresolvedUsingTypenameDecl, |
6466 | UnresolvedUsingValueDecl>(Val: D)) { |
6467 | S.Diag(Loc: AL.getRange().getBegin(), DiagID: diag::warn_deprecated_ignored_on_using) |
6468 | << AL; |
6469 | return; |
6470 | } |
6471 | |
6472 | // Handle the cases where the attribute has a text message. |
6473 | StringRef Str, Replacement; |
6474 | if (AL.isArgExpr(Arg: 0) && AL.getArgAsExpr(Arg: 0) && |
6475 | !S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str)) |
6476 | return; |
6477 | |
6478 | // Support a single optional message only for Declspec and [[]] spellings. |
6479 | if (AL.isDeclspecAttribute() || AL.isStandardAttributeSyntax()) |
6480 | AL.checkAtMostNumArgs(S, Num: 1); |
6481 | else if (AL.isArgExpr(Arg: 1) && AL.getArgAsExpr(Arg: 1) && |
6482 | !S.checkStringLiteralArgumentAttr(AL, ArgNum: 1, Str&: Replacement)) |
6483 | return; |
6484 | |
6485 | if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope()) |
6486 | S.Diag(Loc: AL.getLoc(), DiagID: diag::ext_cxx14_attr) << AL; |
6487 | |
6488 | D->addAttr(A: ::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement)); |
6489 | } |
6490 | |
6491 | static bool isGlobalVar(const Decl *D) { |
6492 | if (const auto *S = dyn_cast<VarDecl>(Val: D)) |
6493 | return S->hasGlobalStorage(); |
6494 | return false; |
6495 | } |
6496 | |
6497 | static bool isSanitizerAttributeAllowedOnGlobals(StringRef Sanitizer) { |
6498 | return Sanitizer == "address" || Sanitizer == "hwaddress" || |
6499 | Sanitizer == "memtag" ; |
6500 | } |
6501 | |
6502 | static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6503 | if (!AL.checkAtLeastNumArgs(S, Num: 1)) |
6504 | return; |
6505 | |
6506 | std::vector<StringRef> Sanitizers; |
6507 | |
6508 | for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { |
6509 | StringRef SanitizerName; |
6510 | SourceLocation LiteralLoc; |
6511 | |
6512 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: I, Str&: SanitizerName, ArgLocation: &LiteralLoc)) |
6513 | return; |
6514 | |
6515 | if (parseSanitizerValue(Value: SanitizerName, /*AllowGroups=*/true) == |
6516 | SanitizerMask() && |
6517 | SanitizerName != "coverage" ) |
6518 | S.Diag(Loc: LiteralLoc, DiagID: diag::warn_unknown_sanitizer_ignored) << SanitizerName; |
6519 | else if (isGlobalVar(D) && !isSanitizerAttributeAllowedOnGlobals(Sanitizer: SanitizerName)) |
6520 | S.Diag(Loc: D->getLocation(), DiagID: diag::warn_attribute_type_not_supported_global) |
6521 | << AL << SanitizerName; |
6522 | Sanitizers.push_back(x: SanitizerName); |
6523 | } |
6524 | |
6525 | D->addAttr(A: ::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(), |
6526 | Sanitizers.size())); |
6527 | } |
6528 | |
6529 | static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D, |
6530 | const ParsedAttr &AL) { |
6531 | StringRef AttrName = AL.getAttrName()->getName(); |
6532 | normalizeName(AttrName); |
6533 | StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName) |
6534 | .Case(S: "no_address_safety_analysis" , Value: "address" ) |
6535 | .Case(S: "no_sanitize_address" , Value: "address" ) |
6536 | .Case(S: "no_sanitize_thread" , Value: "thread" ) |
6537 | .Case(S: "no_sanitize_memory" , Value: "memory" ); |
6538 | if (isGlobalVar(D) && SanitizerName != "address" ) |
6539 | S.Diag(Loc: D->getLocation(), DiagID: diag::err_attribute_wrong_decl_type) |
6540 | << AL << AL.isRegularKeywordAttribute() << ExpectedFunction; |
6541 | |
6542 | // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a |
6543 | // NoSanitizeAttr object; but we need to calculate the correct spelling list |
6544 | // index rather than incorrectly assume the index for NoSanitizeSpecificAttr |
6545 | // has the same spellings as the index for NoSanitizeAttr. We don't have a |
6546 | // general way to "translate" between the two, so this hack attempts to work |
6547 | // around the issue with hard-coded indices. This is critical for calling |
6548 | // getSpelling() or prettyPrint() on the resulting semantic attribute object |
6549 | // without failing assertions. |
6550 | unsigned TranslatedSpellingIndex = 0; |
6551 | if (AL.isStandardAttributeSyntax()) |
6552 | TranslatedSpellingIndex = 1; |
6553 | |
6554 | AttributeCommonInfo Info = AL; |
6555 | Info.setAttributeSpellingListIndex(TranslatedSpellingIndex); |
6556 | D->addAttr(A: ::new (S.Context) |
6557 | NoSanitizeAttr(S.Context, Info, &SanitizerName, 1)); |
6558 | } |
6559 | |
6560 | static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6561 | if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL)) |
6562 | D->addAttr(A: Internal); |
6563 | } |
6564 | |
6565 | static void handleZeroCallUsedRegsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6566 | // Check that the argument is a string literal. |
6567 | StringRef KindStr; |
6568 | SourceLocation LiteralLoc; |
6569 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: KindStr, ArgLocation: &LiteralLoc)) |
6570 | return; |
6571 | |
6572 | ZeroCallUsedRegsAttr::ZeroCallUsedRegsKind Kind; |
6573 | if (!ZeroCallUsedRegsAttr::ConvertStrToZeroCallUsedRegsKind(Val: KindStr, Out&: Kind)) { |
6574 | S.Diag(Loc: LiteralLoc, DiagID: diag::warn_attribute_type_not_supported) |
6575 | << AL << KindStr; |
6576 | return; |
6577 | } |
6578 | |
6579 | D->dropAttr<ZeroCallUsedRegsAttr>(); |
6580 | D->addAttr(A: ZeroCallUsedRegsAttr::Create(Ctx&: S.Context, ZeroCallUsedRegs: Kind, CommonInfo: AL)); |
6581 | } |
6582 | |
6583 | static void handleCountedByAttrField(Sema &S, Decl *D, const ParsedAttr &AL) { |
6584 | auto *FD = dyn_cast<FieldDecl>(Val: D); |
6585 | assert(FD); |
6586 | |
6587 | auto *CountExpr = AL.getArgAsExpr(Arg: 0); |
6588 | if (!CountExpr) |
6589 | return; |
6590 | |
6591 | bool CountInBytes; |
6592 | bool OrNull; |
6593 | switch (AL.getKind()) { |
6594 | case ParsedAttr::AT_CountedBy: |
6595 | CountInBytes = false; |
6596 | OrNull = false; |
6597 | break; |
6598 | case ParsedAttr::AT_CountedByOrNull: |
6599 | CountInBytes = false; |
6600 | OrNull = true; |
6601 | break; |
6602 | case ParsedAttr::AT_SizedBy: |
6603 | CountInBytes = true; |
6604 | OrNull = false; |
6605 | break; |
6606 | case ParsedAttr::AT_SizedByOrNull: |
6607 | CountInBytes = true; |
6608 | OrNull = true; |
6609 | break; |
6610 | default: |
6611 | llvm_unreachable("unexpected counted_by family attribute" ); |
6612 | } |
6613 | |
6614 | if (S.CheckCountedByAttrOnField(FD, E: CountExpr, CountInBytes, OrNull)) |
6615 | return; |
6616 | |
6617 | QualType CAT = S.BuildCountAttributedArrayOrPointerType( |
6618 | WrappedTy: FD->getType(), CountExpr, CountInBytes, OrNull); |
6619 | FD->setType(CAT); |
6620 | } |
6621 | |
6622 | static void handleFunctionReturnThunksAttr(Sema &S, Decl *D, |
6623 | const ParsedAttr &AL) { |
6624 | StringRef KindStr; |
6625 | SourceLocation LiteralLoc; |
6626 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: KindStr, ArgLocation: &LiteralLoc)) |
6627 | return; |
6628 | |
6629 | FunctionReturnThunksAttr::Kind Kind; |
6630 | if (!FunctionReturnThunksAttr::ConvertStrToKind(Val: KindStr, Out&: Kind)) { |
6631 | S.Diag(Loc: LiteralLoc, DiagID: diag::warn_attribute_type_not_supported) |
6632 | << AL << KindStr; |
6633 | return; |
6634 | } |
6635 | // FIXME: it would be good to better handle attribute merging rather than |
6636 | // silently replacing the existing attribute, so long as it does not break |
6637 | // the expected codegen tests. |
6638 | D->dropAttr<FunctionReturnThunksAttr>(); |
6639 | D->addAttr(A: FunctionReturnThunksAttr::Create(Ctx&: S.Context, ThunkType: Kind, CommonInfo: AL)); |
6640 | } |
6641 | |
6642 | static void handleAvailableOnlyInDefaultEvalMethod(Sema &S, Decl *D, |
6643 | const ParsedAttr &AL) { |
6644 | assert(isa<TypedefNameDecl>(D) && "This attribute only applies to a typedef" ); |
6645 | handleSimpleAttribute<AvailableOnlyInDefaultEvalMethodAttr>(S, D, CI: AL); |
6646 | } |
6647 | |
6648 | static void handleNoMergeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6649 | auto *VDecl = dyn_cast<VarDecl>(Val: D); |
6650 | if (VDecl && !VDecl->isFunctionPointerType()) { |
6651 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_ignored_non_function_pointer) |
6652 | << AL << VDecl; |
6653 | return; |
6654 | } |
6655 | D->addAttr(A: NoMergeAttr::Create(Ctx&: S.Context, CommonInfo: AL)); |
6656 | } |
6657 | |
6658 | static void handleNoUniqueAddressAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6659 | D->addAttr(A: NoUniqueAddressAttr::Create(Ctx&: S.Context, CommonInfo: AL)); |
6660 | } |
6661 | |
6662 | static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) { |
6663 | if (!cast<VarDecl>(Val: D)->hasGlobalStorage()) { |
6664 | S.Diag(Loc: D->getLocation(), DiagID: diag::err_destroy_attr_on_non_static_var) |
6665 | << (A.getKind() == ParsedAttr::AT_AlwaysDestroy); |
6666 | return; |
6667 | } |
6668 | |
6669 | if (A.getKind() == ParsedAttr::AT_AlwaysDestroy) |
6670 | handleSimpleAttribute<AlwaysDestroyAttr>(S, D, CI: A); |
6671 | else |
6672 | handleSimpleAttribute<NoDestroyAttr>(S, D, CI: A); |
6673 | } |
6674 | |
6675 | static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6676 | assert(cast<VarDecl>(D)->getStorageDuration() == SD_Automatic && |
6677 | "uninitialized is only valid on automatic duration variables" ); |
6678 | D->addAttr(A: ::new (S.Context) UninitializedAttr(S.Context, AL)); |
6679 | } |
6680 | |
6681 | static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6682 | // Check that the return type is a `typedef int kern_return_t` or a typedef |
6683 | // around it, because otherwise MIG convention checks make no sense. |
6684 | // BlockDecl doesn't store a return type, so it's annoying to check, |
6685 | // so let's skip it for now. |
6686 | if (!isa<BlockDecl>(Val: D)) { |
6687 | QualType T = getFunctionOrMethodResultType(D); |
6688 | bool IsKernReturnT = false; |
6689 | while (const auto *TT = T->getAs<TypedefType>()) { |
6690 | IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t" ); |
6691 | T = TT->desugar(); |
6692 | } |
6693 | if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) { |
6694 | S.Diag(Loc: D->getBeginLoc(), |
6695 | DiagID: diag::warn_mig_server_routine_does_not_return_kern_return_t); |
6696 | return; |
6697 | } |
6698 | } |
6699 | |
6700 | handleSimpleAttribute<MIGServerRoutineAttr>(S, D, CI: AL); |
6701 | } |
6702 | |
6703 | static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6704 | // Warn if the return type is not a pointer or reference type. |
6705 | if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
6706 | QualType RetTy = FD->getReturnType(); |
6707 | if (!RetTy->isPointerOrReferenceType()) { |
6708 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_declspec_allocator_nonpointer) |
6709 | << AL.getRange() << RetTy; |
6710 | return; |
6711 | } |
6712 | } |
6713 | |
6714 | handleSimpleAttribute<MSAllocatorAttr>(S, D, CI: AL); |
6715 | } |
6716 | |
6717 | static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6718 | if (AL.isUsedAsTypeAttr()) |
6719 | return; |
6720 | // Warn if the parameter is definitely not an output parameter. |
6721 | if (const auto *PVD = dyn_cast<ParmVarDecl>(Val: D)) { |
6722 | if (PVD->getType()->isIntegerType()) { |
6723 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_output_parameter) |
6724 | << AL.getRange(); |
6725 | return; |
6726 | } |
6727 | } |
6728 | StringRef Argument; |
6729 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: Argument)) |
6730 | return; |
6731 | D->addAttr(A: AcquireHandleAttr::Create(Ctx&: S.Context, HandleType: Argument, CommonInfo: AL)); |
6732 | } |
6733 | |
6734 | template<typename Attr> |
6735 | static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6736 | StringRef Argument; |
6737 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: Argument)) |
6738 | return; |
6739 | D->addAttr(A: Attr::Create(S.Context, Argument, AL)); |
6740 | } |
6741 | |
6742 | template<typename Attr> |
6743 | static void handleUnsafeBufferUsage(Sema &S, Decl *D, const ParsedAttr &AL) { |
6744 | D->addAttr(A: Attr::Create(S.Context, AL)); |
6745 | } |
6746 | |
6747 | static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6748 | // The guard attribute takes a single identifier argument. |
6749 | |
6750 | if (!AL.isArgIdent(Arg: 0)) { |
6751 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
6752 | << AL << AANT_ArgumentIdentifier; |
6753 | return; |
6754 | } |
6755 | |
6756 | CFGuardAttr::GuardArg Arg; |
6757 | IdentifierInfo *II = AL.getArgAsIdent(Arg: 0)->getIdentifierInfo(); |
6758 | if (!CFGuardAttr::ConvertStrToGuardArg(Val: II->getName(), Out&: Arg)) { |
6759 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_type_not_supported) << AL << II; |
6760 | return; |
6761 | } |
6762 | |
6763 | D->addAttr(A: ::new (S.Context) CFGuardAttr(S.Context, AL, Arg)); |
6764 | } |
6765 | |
6766 | |
6767 | template <typename AttrTy> |
6768 | static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) { |
6769 | auto Attrs = D->specific_attrs<AttrTy>(); |
6770 | auto I = llvm::find_if(Attrs, |
6771 | [Name](const AttrTy *A) { |
6772 | return A->getTCBName() == Name; |
6773 | }); |
6774 | return I == Attrs.end() ? nullptr : *I; |
6775 | } |
6776 | |
6777 | template <typename AttrTy, typename ConflictingAttrTy> |
6778 | static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) { |
6779 | StringRef Argument; |
6780 | if (!S.checkStringLiteralArgumentAttr(AL, ArgNum: 0, Str&: Argument)) |
6781 | return; |
6782 | |
6783 | // A function cannot be have both regular and leaf membership in the same TCB. |
6784 | if (const ConflictingAttrTy *ConflictingAttr = |
6785 | findEnforceTCBAttrByName<ConflictingAttrTy>(D, Argument)) { |
6786 | // We could attach a note to the other attribute but in this case |
6787 | // there's no need given how the two are very close to each other. |
6788 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_tcb_conflicting_attributes) |
6789 | << AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName() |
6790 | << Argument; |
6791 | |
6792 | // Error recovery: drop the non-leaf attribute so that to suppress |
6793 | // all future warnings caused by erroneous attributes. The leaf attribute |
6794 | // needs to be kept because it can only suppresses warnings, not cause them. |
6795 | D->dropAttr<EnforceTCBAttr>(); |
6796 | return; |
6797 | } |
6798 | |
6799 | D->addAttr(A: AttrTy::Create(S.Context, Argument, AL)); |
6800 | } |
6801 | |
6802 | template <typename AttrTy, typename ConflictingAttrTy> |
6803 | static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) { |
6804 | // Check if the new redeclaration has different leaf-ness in the same TCB. |
6805 | StringRef TCBName = AL.getTCBName(); |
6806 | if (const ConflictingAttrTy *ConflictingAttr = |
6807 | findEnforceTCBAttrByName<ConflictingAttrTy>(D, TCBName)) { |
6808 | S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes) |
6809 | << ConflictingAttr->getAttrName()->getName() |
6810 | << AL.getAttrName()->getName() << TCBName; |
6811 | |
6812 | // Add a note so that the user could easily find the conflicting attribute. |
6813 | S.Diag(AL.getLoc(), diag::note_conflicting_attribute); |
6814 | |
6815 | // More error recovery. |
6816 | D->dropAttr<EnforceTCBAttr>(); |
6817 | return nullptr; |
6818 | } |
6819 | |
6820 | ASTContext &Context = S.getASTContext(); |
6821 | return ::new(Context) AttrTy(Context, AL, AL.getTCBName()); |
6822 | } |
6823 | |
6824 | EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) { |
6825 | return mergeEnforceTCBAttrImpl<EnforceTCBAttr, EnforceTCBLeafAttr>( |
6826 | S&: *this, D, AL); |
6827 | } |
6828 | |
6829 | EnforceTCBLeafAttr *Sema::mergeEnforceTCBLeafAttr( |
6830 | Decl *D, const EnforceTCBLeafAttr &AL) { |
6831 | return mergeEnforceTCBAttrImpl<EnforceTCBLeafAttr, EnforceTCBAttr>( |
6832 | S&: *this, D, AL); |
6833 | } |
6834 | |
6835 | static void handleVTablePointerAuthentication(Sema &S, Decl *D, |
6836 | const ParsedAttr &AL) { |
6837 | CXXRecordDecl *Decl = cast<CXXRecordDecl>(Val: D); |
6838 | const uint32_t NumArgs = AL.getNumArgs(); |
6839 | if (NumArgs > 4) { |
6840 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_too_many_arguments) << AL << 4; |
6841 | AL.setInvalid(); |
6842 | } |
6843 | |
6844 | if (NumArgs == 0) { |
6845 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_too_few_arguments) << AL; |
6846 | AL.setInvalid(); |
6847 | return; |
6848 | } |
6849 | |
6850 | if (D->getAttr<VTablePointerAuthenticationAttr>()) { |
6851 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_duplicated_vtable_pointer_auth) << Decl; |
6852 | AL.setInvalid(); |
6853 | } |
6854 | |
6855 | auto KeyType = VTablePointerAuthenticationAttr::VPtrAuthKeyType::DefaultKey; |
6856 | if (AL.isArgIdent(Arg: 0)) { |
6857 | IdentifierLoc *IL = AL.getArgAsIdent(Arg: 0); |
6858 | if (!VTablePointerAuthenticationAttr::ConvertStrToVPtrAuthKeyType( |
6859 | Val: IL->getIdentifierInfo()->getName(), Out&: KeyType)) { |
6860 | S.Diag(Loc: IL->getLoc(), DiagID: diag::err_invalid_authentication_key) |
6861 | << IL->getIdentifierInfo(); |
6862 | AL.setInvalid(); |
6863 | } |
6864 | if (KeyType == VTablePointerAuthenticationAttr::DefaultKey && |
6865 | !S.getLangOpts().PointerAuthCalls) { |
6866 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_no_default_vtable_pointer_auth) << 0; |
6867 | AL.setInvalid(); |
6868 | } |
6869 | } else { |
6870 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
6871 | << AL << AANT_ArgumentIdentifier; |
6872 | return; |
6873 | } |
6874 | |
6875 | auto AddressDiversityMode = VTablePointerAuthenticationAttr:: |
6876 | AddressDiscriminationMode::DefaultAddressDiscrimination; |
6877 | if (AL.getNumArgs() > 1) { |
6878 | if (AL.isArgIdent(Arg: 1)) { |
6879 | IdentifierLoc *IL = AL.getArgAsIdent(Arg: 1); |
6880 | if (!VTablePointerAuthenticationAttr:: |
6881 | ConvertStrToAddressDiscriminationMode( |
6882 | Val: IL->getIdentifierInfo()->getName(), Out&: AddressDiversityMode)) { |
6883 | S.Diag(Loc: IL->getLoc(), DiagID: diag::err_invalid_address_discrimination) |
6884 | << IL->getIdentifierInfo(); |
6885 | AL.setInvalid(); |
6886 | } |
6887 | if (AddressDiversityMode == |
6888 | VTablePointerAuthenticationAttr::DefaultAddressDiscrimination && |
6889 | !S.getLangOpts().PointerAuthCalls) { |
6890 | S.Diag(Loc: IL->getLoc(), DiagID: diag::err_no_default_vtable_pointer_auth) << 1; |
6891 | AL.setInvalid(); |
6892 | } |
6893 | } else { |
6894 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
6895 | << AL << AANT_ArgumentIdentifier; |
6896 | } |
6897 | } |
6898 | |
6899 | auto ED = VTablePointerAuthenticationAttr::ExtraDiscrimination:: |
6900 | DefaultExtraDiscrimination; |
6901 | if (AL.getNumArgs() > 2) { |
6902 | if (AL.isArgIdent(Arg: 2)) { |
6903 | IdentifierLoc *IL = AL.getArgAsIdent(Arg: 2); |
6904 | if (!VTablePointerAuthenticationAttr::ConvertStrToExtraDiscrimination( |
6905 | Val: IL->getIdentifierInfo()->getName(), Out&: ED)) { |
6906 | S.Diag(Loc: IL->getLoc(), DiagID: diag::err_invalid_extra_discrimination) |
6907 | << IL->getIdentifierInfo(); |
6908 | AL.setInvalid(); |
6909 | } |
6910 | if (ED == VTablePointerAuthenticationAttr::DefaultExtraDiscrimination && |
6911 | !S.getLangOpts().PointerAuthCalls) { |
6912 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_no_default_vtable_pointer_auth) << 2; |
6913 | AL.setInvalid(); |
6914 | } |
6915 | } else { |
6916 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_argument_type) |
6917 | << AL << AANT_ArgumentIdentifier; |
6918 | } |
6919 | } |
6920 | |
6921 | uint32_t CustomDiscriminationValue = 0; |
6922 | if (ED == VTablePointerAuthenticationAttr::CustomDiscrimination) { |
6923 | if (NumArgs < 4) { |
6924 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_missing_custom_discrimination) << AL << 4; |
6925 | AL.setInvalid(); |
6926 | return; |
6927 | } |
6928 | if (NumArgs > 4) { |
6929 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_too_many_arguments) << AL << 4; |
6930 | AL.setInvalid(); |
6931 | } |
6932 | |
6933 | if (!AL.isArgExpr(Arg: 3) || !S.checkUInt32Argument(AI: AL, Expr: AL.getArgAsExpr(Arg: 3), |
6934 | Val&: CustomDiscriminationValue)) { |
6935 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_invalid_custom_discrimination); |
6936 | AL.setInvalid(); |
6937 | } |
6938 | } else if (NumArgs > 3) { |
6939 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_too_many_arguments) << AL << 3; |
6940 | AL.setInvalid(); |
6941 | } |
6942 | |
6943 | Decl->addAttr(A: ::new (S.Context) VTablePointerAuthenticationAttr( |
6944 | S.Context, AL, KeyType, AddressDiversityMode, ED, |
6945 | CustomDiscriminationValue)); |
6946 | } |
6947 | |
6948 | //===----------------------------------------------------------------------===// |
6949 | // Top Level Sema Entry Points |
6950 | //===----------------------------------------------------------------------===// |
6951 | |
6952 | // Returns true if the attribute must delay setting its arguments until after |
6953 | // template instantiation, and false otherwise. |
6954 | static bool MustDelayAttributeArguments(const ParsedAttr &AL) { |
6955 | // Only attributes that accept expression parameter packs can delay arguments. |
6956 | if (!AL.acceptsExprPack()) |
6957 | return false; |
6958 | |
6959 | bool AttrHasVariadicArg = AL.hasVariadicArg(); |
6960 | unsigned AttrNumArgs = AL.getNumArgMembers(); |
6961 | for (size_t I = 0; I < std::min(a: AL.getNumArgs(), b: AttrNumArgs); ++I) { |
6962 | bool IsLastAttrArg = I == (AttrNumArgs - 1); |
6963 | // If the argument is the last argument and it is variadic it can contain |
6964 | // any expression. |
6965 | if (IsLastAttrArg && AttrHasVariadicArg) |
6966 | return false; |
6967 | Expr *E = AL.getArgAsExpr(Arg: I); |
6968 | bool ArgMemberCanHoldExpr = AL.isParamExpr(N: I); |
6969 | // If the expression is a pack expansion then arguments must be delayed |
6970 | // unless the argument is an expression and it is the last argument of the |
6971 | // attribute. |
6972 | if (isa<PackExpansionExpr>(Val: E)) |
6973 | return !(IsLastAttrArg && ArgMemberCanHoldExpr); |
6974 | // Last case is if the expression is value dependent then it must delay |
6975 | // arguments unless the corresponding argument is able to hold the |
6976 | // expression. |
6977 | if (E->isValueDependent() && !ArgMemberCanHoldExpr) |
6978 | return true; |
6979 | } |
6980 | return false; |
6981 | } |
6982 | |
6983 | /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if |
6984 | /// the attribute applies to decls. If the attribute is a type attribute, just |
6985 | /// silently ignore it if a GNU attribute. |
6986 | static void |
6987 | ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, const ParsedAttr &AL, |
6988 | const Sema::ProcessDeclAttributeOptions &Options) { |
6989 | if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) |
6990 | return; |
6991 | |
6992 | // Ignore C++11 attributes on declarator chunks: they appertain to the type |
6993 | // instead. Note, isCXX11Attribute() will look at whether the attribute is |
6994 | // [[]] or alignas, while isC23Attribute() will only look at [[]]. This is |
6995 | // important for ensuring that alignas in C23 is properly handled on a |
6996 | // structure member declaration because it is a type-specifier-qualifier in |
6997 | // C but still applies to the declaration rather than the type. |
6998 | if ((S.getLangOpts().CPlusPlus ? AL.isCXX11Attribute() |
6999 | : AL.isC23Attribute()) && |
7000 | !Options.IncludeCXX11Attributes) |
7001 | return; |
7002 | |
7003 | // Unknown attributes are automatically warned on. Target-specific attributes |
7004 | // which do not apply to the current target architecture are treated as |
7005 | // though they were unknown attributes. |
7006 | if (AL.getKind() == ParsedAttr::UnknownAttribute || |
7007 | !AL.existsInTarget(Target: S.Context.getTargetInfo())) { |
7008 | if (AL.isRegularKeywordAttribute() || AL.isDeclspecAttribute()) { |
7009 | S.Diag(Loc: AL.getLoc(), DiagID: AL.isRegularKeywordAttribute() |
7010 | ? diag::err_keyword_not_supported_on_target |
7011 | : diag::warn_unhandled_ms_attribute_ignored) |
7012 | << AL.getAttrName() << AL.getRange(); |
7013 | } else { |
7014 | S.DiagnoseUnknownAttribute(AL); |
7015 | } |
7016 | return; |
7017 | } |
7018 | |
7019 | // Check if argument population must delayed to after template instantiation. |
7020 | bool MustDelayArgs = MustDelayAttributeArguments(AL); |
7021 | |
7022 | // Argument number check must be skipped if arguments are delayed. |
7023 | if (S.checkCommonAttributeFeatures(D, A: AL, SkipArgCountCheck: MustDelayArgs)) |
7024 | return; |
7025 | |
7026 | if (MustDelayArgs) { |
7027 | AL.handleAttrWithDelayedArgs(S, D); |
7028 | return; |
7029 | } |
7030 | |
7031 | switch (AL.getKind()) { |
7032 | default: |
7033 | if (AL.getInfo().handleDeclAttribute(S, D, Attr: AL) != ParsedAttrInfo::NotHandled) |
7034 | break; |
7035 | if (!AL.isStmtAttr()) { |
7036 | assert(AL.isTypeAttr() && "Non-type attribute not handled" ); |
7037 | } |
7038 | if (AL.isTypeAttr()) { |
7039 | if (Options.IgnoreTypeAttributes) |
7040 | break; |
7041 | if (!AL.isStandardAttributeSyntax() && !AL.isRegularKeywordAttribute()) { |
7042 | // Non-[[]] type attributes are handled in processTypeAttrs(); silently |
7043 | // move on. |
7044 | break; |
7045 | } |
7046 | |
7047 | // According to the C and C++ standards, we should never see a |
7048 | // [[]] type attribute on a declaration. However, we have in the past |
7049 | // allowed some type attributes to "slide" to the `DeclSpec`, so we need |
7050 | // to continue to support this legacy behavior. We only do this, however, |
7051 | // if |
7052 | // - we actually have a `DeclSpec`, i.e. if we're looking at a |
7053 | // `DeclaratorDecl`, or |
7054 | // - we are looking at an alias-declaration, where historically we have |
7055 | // allowed type attributes after the identifier to slide to the type. |
7056 | if (AL.slidesFromDeclToDeclSpecLegacyBehavior() && |
7057 | isa<DeclaratorDecl, TypeAliasDecl>(Val: D)) { |
7058 | // Suggest moving the attribute to the type instead, but only for our |
7059 | // own vendor attributes; moving other vendors' attributes might hurt |
7060 | // portability. |
7061 | if (AL.isClangScope()) { |
7062 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_type_attribute_deprecated_on_decl) |
7063 | << AL << D->getLocation(); |
7064 | } |
7065 | |
7066 | // Allow this type attribute to be handled in processTypeAttrs(); |
7067 | // silently move on. |
7068 | break; |
7069 | } |
7070 | |
7071 | if (AL.getKind() == ParsedAttr::AT_Regparm) { |
7072 | // `regparm` is a special case: It's a type attribute but we still want |
7073 | // to treat it as if it had been written on the declaration because that |
7074 | // way we'll be able to handle it directly in `processTypeAttr()`. |
7075 | // If we treated `regparm` it as if it had been written on the |
7076 | // `DeclSpec`, the logic in `distributeFunctionTypeAttrFromDeclSepc()` |
7077 | // would try to move it to the declarator, but that doesn't work: We |
7078 | // can't remove the attribute from the list of declaration attributes |
7079 | // because it might be needed by other declarators in the same |
7080 | // declaration. |
7081 | break; |
7082 | } |
7083 | |
7084 | if (AL.getKind() == ParsedAttr::AT_VectorSize) { |
7085 | // `vector_size` is a special case: It's a type attribute semantically, |
7086 | // but GCC expects the [[]] syntax to be written on the declaration (and |
7087 | // warns that the attribute has no effect if it is placed on the |
7088 | // decl-specifier-seq). |
7089 | // Silently move on and allow the attribute to be handled in |
7090 | // processTypeAttr(). |
7091 | break; |
7092 | } |
7093 | |
7094 | if (AL.getKind() == ParsedAttr::AT_NoDeref) { |
7095 | // FIXME: `noderef` currently doesn't work correctly in [[]] syntax. |
7096 | // See https://github.com/llvm/llvm-project/issues/55790 for details. |
7097 | // We allow processTypeAttrs() to emit a warning and silently move on. |
7098 | break; |
7099 | } |
7100 | } |
7101 | // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a |
7102 | // statement attribute is not written on a declaration, but this code is |
7103 | // needed for type attributes as well as statement attributes in Attr.td |
7104 | // that do not list any subjects. |
7105 | S.Diag(Loc: AL.getLoc(), DiagID: diag::err_attribute_invalid_on_decl) |
7106 | << AL << AL.isRegularKeywordAttribute() << D->getLocation(); |
7107 | break; |
7108 | case ParsedAttr::AT_Interrupt: |
7109 | handleInterruptAttr(S, D, AL); |
7110 | break; |
7111 | case ParsedAttr::AT_ARMInterruptSaveFP: |
7112 | S.ARM().handleInterruptSaveFPAttr(D, AL); |
7113 | break; |
7114 | case ParsedAttr::AT_X86ForceAlignArgPointer: |
7115 | S.X86().handleForceAlignArgPointerAttr(D, AL); |
7116 | break; |
7117 | case ParsedAttr::AT_ReadOnlyPlacement: |
7118 | handleSimpleAttribute<ReadOnlyPlacementAttr>(S, D, CI: AL); |
7119 | break; |
7120 | case ParsedAttr::AT_DLLExport: |
7121 | case ParsedAttr::AT_DLLImport: |
7122 | handleDLLAttr(S, D, A: AL); |
7123 | break; |
7124 | case ParsedAttr::AT_AMDGPUFlatWorkGroupSize: |
7125 | S.AMDGPU().handleAMDGPUFlatWorkGroupSizeAttr(D, AL); |
7126 | break; |
7127 | case ParsedAttr::AT_AMDGPUWavesPerEU: |
7128 | S.AMDGPU().handleAMDGPUWavesPerEUAttr(D, AL); |
7129 | break; |
7130 | case ParsedAttr::AT_AMDGPUNumSGPR: |
7131 | S.AMDGPU().handleAMDGPUNumSGPRAttr(D, AL); |
7132 | break; |
7133 | case ParsedAttr::AT_AMDGPUNumVGPR: |
7134 | S.AMDGPU().handleAMDGPUNumVGPRAttr(D, AL); |
7135 | break; |
7136 | case ParsedAttr::AT_AMDGPUMaxNumWorkGroups: |
7137 | S.AMDGPU().handleAMDGPUMaxNumWorkGroupsAttr(D, AL); |
7138 | break; |
7139 | case ParsedAttr::AT_AVRSignal: |
7140 | S.AVR().handleSignalAttr(D, AL); |
7141 | break; |
7142 | case ParsedAttr::AT_BPFPreserveAccessIndex: |
7143 | S.BPF().handlePreserveAccessIndexAttr(D, AL); |
7144 | break; |
7145 | case ParsedAttr::AT_BPFPreserveStaticOffset: |
7146 | handleSimpleAttribute<BPFPreserveStaticOffsetAttr>(S, D, CI: AL); |
7147 | break; |
7148 | case ParsedAttr::AT_BTFDeclTag: |
7149 | handleBTFDeclTagAttr(S, D, AL); |
7150 | break; |
7151 | case ParsedAttr::AT_WebAssemblyExportName: |
7152 | S.Wasm().handleWebAssemblyExportNameAttr(D, AL); |
7153 | break; |
7154 | case ParsedAttr::AT_WebAssemblyImportModule: |
7155 | S.Wasm().handleWebAssemblyImportModuleAttr(D, AL); |
7156 | break; |
7157 | case ParsedAttr::AT_WebAssemblyImportName: |
7158 | S.Wasm().handleWebAssemblyImportNameAttr(D, AL); |
7159 | break; |
7160 | case ParsedAttr::AT_IBOutlet: |
7161 | S.ObjC().handleIBOutlet(D, AL); |
7162 | break; |
7163 | case ParsedAttr::AT_IBOutletCollection: |
7164 | S.ObjC().handleIBOutletCollection(D, AL); |
7165 | break; |
7166 | case ParsedAttr::AT_IFunc: |
7167 | handleIFuncAttr(S, D, AL); |
7168 | break; |
7169 | case ParsedAttr::AT_Alias: |
7170 | handleAliasAttr(S, D, AL); |
7171 | break; |
7172 | case ParsedAttr::AT_Aligned: |
7173 | handleAlignedAttr(S, D, AL); |
7174 | break; |
7175 | case ParsedAttr::AT_AlignValue: |
7176 | handleAlignValueAttr(S, D, AL); |
7177 | break; |
7178 | case ParsedAttr::AT_AllocSize: |
7179 | handleAllocSizeAttr(S, D, AL); |
7180 | break; |
7181 | case ParsedAttr::AT_AlwaysInline: |
7182 | handleAlwaysInlineAttr(S, D, AL); |
7183 | break; |
7184 | case ParsedAttr::AT_AnalyzerNoReturn: |
7185 | handleAnalyzerNoReturnAttr(S, D, AL); |
7186 | break; |
7187 | case ParsedAttr::AT_TLSModel: |
7188 | handleTLSModelAttr(S, D, AL); |
7189 | break; |
7190 | case ParsedAttr::AT_Annotate: |
7191 | handleAnnotateAttr(S, D, AL); |
7192 | break; |
7193 | case ParsedAttr::AT_Availability: |
7194 | handleAvailabilityAttr(S, D, AL); |
7195 | break; |
7196 | case ParsedAttr::AT_CarriesDependency: |
7197 | handleDependencyAttr(S, Scope: scope, D, AL); |
7198 | break; |
7199 | case ParsedAttr::AT_CPUDispatch: |
7200 | case ParsedAttr::AT_CPUSpecific: |
7201 | handleCPUSpecificAttr(S, D, AL); |
7202 | break; |
7203 | case ParsedAttr::AT_Common: |
7204 | handleCommonAttr(S, D, AL); |
7205 | break; |
7206 | case ParsedAttr::AT_CUDAConstant: |
7207 | handleConstantAttr(S, D, AL); |
7208 | break; |
7209 | case ParsedAttr::AT_PassObjectSize: |
7210 | handlePassObjectSizeAttr(S, D, AL); |
7211 | break; |
7212 | case ParsedAttr::AT_Constructor: |
7213 | handleConstructorAttr(S, D, AL); |
7214 | break; |
7215 | case ParsedAttr::AT_Deprecated: |
7216 | handleDeprecatedAttr(S, D, AL); |
7217 | break; |
7218 | case ParsedAttr::AT_Destructor: |
7219 | handleDestructorAttr(S, D, AL); |
7220 | break; |
7221 | case ParsedAttr::AT_EnableIf: |
7222 | handleEnableIfAttr(S, D, AL); |
7223 | break; |
7224 | case ParsedAttr::AT_Error: |
7225 | handleErrorAttr(S, D, AL); |
7226 | break; |
7227 | case ParsedAttr::AT_ExcludeFromExplicitInstantiation: |
7228 | handleExcludeFromExplicitInstantiationAttr(S, D, AL); |
7229 | break; |
7230 | case ParsedAttr::AT_DiagnoseIf: |
7231 | handleDiagnoseIfAttr(S, D, AL); |
7232 | break; |
7233 | case ParsedAttr::AT_DiagnoseAsBuiltin: |
7234 | handleDiagnoseAsBuiltinAttr(S, D, AL); |
7235 | break; |
7236 | case ParsedAttr::AT_NoBuiltin: |
7237 | handleNoBuiltinAttr(S, D, AL); |
7238 | break; |
7239 | case ParsedAttr::AT_CFIUncheckedCallee: |
7240 | handleCFIUncheckedCalleeAttr(S, D, Attrs: AL); |
7241 | break; |
7242 | case ParsedAttr::AT_ExtVectorType: |
7243 | handleExtVectorTypeAttr(S, D, AL); |
7244 | break; |
7245 | case ParsedAttr::AT_ExternalSourceSymbol: |
7246 | handleExternalSourceSymbolAttr(S, D, AL); |
7247 | break; |
7248 | case ParsedAttr::AT_MinSize: |
7249 | handleMinSizeAttr(S, D, AL); |
7250 | break; |
7251 | case ParsedAttr::AT_OptimizeNone: |
7252 | handleOptimizeNoneAttr(S, D, AL); |
7253 | break; |
7254 | case ParsedAttr::AT_EnumExtensibility: |
7255 | handleEnumExtensibilityAttr(S, D, AL); |
7256 | break; |
7257 | case ParsedAttr::AT_SYCLKernelEntryPoint: |
7258 | S.SYCL().handleKernelEntryPointAttr(D, AL); |
7259 | break; |
7260 | case ParsedAttr::AT_SYCLSpecialClass: |
7261 | handleSimpleAttribute<SYCLSpecialClassAttr>(S, D, CI: AL); |
7262 | break; |
7263 | case ParsedAttr::AT_Format: |
7264 | handleFormatAttr(S, D, AL); |
7265 | break; |
7266 | case ParsedAttr::AT_FormatMatches: |
7267 | handleFormatMatchesAttr(S, D, AL); |
7268 | break; |
7269 | case ParsedAttr::AT_FormatArg: |
7270 | handleFormatArgAttr(S, D, AL); |
7271 | break; |
7272 | case ParsedAttr::AT_Callback: |
7273 | handleCallbackAttr(S, D, AL); |
7274 | break; |
7275 | case ParsedAttr::AT_LifetimeCaptureBy: |
7276 | handleLifetimeCaptureByAttr(S, D, AL); |
7277 | break; |
7278 | case ParsedAttr::AT_CalledOnce: |
7279 | handleCalledOnceAttr(S, D, AL); |
7280 | break; |
7281 | case ParsedAttr::AT_CUDAGlobal: |
7282 | handleGlobalAttr(S, D, AL); |
7283 | break; |
7284 | case ParsedAttr::AT_CUDADevice: |
7285 | handleDeviceAttr(S, D, AL); |
7286 | break; |
7287 | case ParsedAttr::AT_CUDAGridConstant: |
7288 | handleGridConstantAttr(S, D, AL); |
7289 | break; |
7290 | case ParsedAttr::AT_HIPManaged: |
7291 | handleManagedAttr(S, D, AL); |
7292 | break; |
7293 | case ParsedAttr::AT_GNUInline: |
7294 | handleGNUInlineAttr(S, D, AL); |
7295 | break; |
7296 | case ParsedAttr::AT_CUDALaunchBounds: |
7297 | handleLaunchBoundsAttr(S, D, AL); |
7298 | break; |
7299 | case ParsedAttr::AT_Restrict: |
7300 | handleRestrictAttr(S, D, AL); |
7301 | break; |
7302 | case ParsedAttr::AT_Mode: |
7303 | handleModeAttr(S, D, AL); |
7304 | break; |
7305 | case ParsedAttr::AT_NonString: |
7306 | handleNonStringAttr(S, D, AL); |
7307 | break; |
7308 | case ParsedAttr::AT_NonNull: |
7309 | if (auto *PVD = dyn_cast<ParmVarDecl>(Val: D)) |
7310 | handleNonNullAttrParameter(S, D: PVD, AL); |
7311 | else |
7312 | handleNonNullAttr(S, D, AL); |
7313 | break; |
7314 | case ParsedAttr::AT_ReturnsNonNull: |
7315 | handleReturnsNonNullAttr(S, D, AL); |
7316 | break; |
7317 | case ParsedAttr::AT_NoEscape: |
7318 | handleNoEscapeAttr(S, D, AL); |
7319 | break; |
7320 | case ParsedAttr::AT_MaybeUndef: |
7321 | handleSimpleAttribute<MaybeUndefAttr>(S, D, CI: AL); |
7322 | break; |
7323 | case ParsedAttr::AT_AssumeAligned: |
7324 | handleAssumeAlignedAttr(S, D, AL); |
7325 | break; |
7326 | case ParsedAttr::AT_AllocAlign: |
7327 | handleAllocAlignAttr(S, D, AL); |
7328 | break; |
7329 | case ParsedAttr::AT_Ownership: |
7330 | handleOwnershipAttr(S, D, AL); |
7331 | break; |
7332 | case ParsedAttr::AT_Naked: |
7333 | handleNakedAttr(S, D, AL); |
7334 | break; |
7335 | case ParsedAttr::AT_NoReturn: |
7336 | handleNoReturnAttr(S, D, Attrs: AL); |
7337 | break; |
7338 | case ParsedAttr::AT_CXX11NoReturn: |
7339 | handleStandardNoReturnAttr(S, D, A: AL); |
7340 | break; |
7341 | case ParsedAttr::AT_AnyX86NoCfCheck: |
7342 | handleNoCfCheckAttr(S, D, Attrs: AL); |
7343 | break; |
7344 | case ParsedAttr::AT_NoThrow: |
7345 | if (!AL.isUsedAsTypeAttr()) |
7346 | handleSimpleAttribute<NoThrowAttr>(S, D, CI: AL); |
7347 | break; |
7348 | case ParsedAttr::AT_CUDAShared: |
7349 | handleSharedAttr(S, D, AL); |
7350 | break; |
7351 | case ParsedAttr::AT_VecReturn: |
7352 | handleVecReturnAttr(S, D, AL); |
7353 | break; |
7354 | case ParsedAttr::AT_ObjCOwnership: |
7355 | S.ObjC().handleOwnershipAttr(D, AL); |
7356 | break; |
7357 | case ParsedAttr::AT_ObjCPreciseLifetime: |
7358 | S.ObjC().handlePreciseLifetimeAttr(D, AL); |
7359 | break; |
7360 | case ParsedAttr::AT_ObjCReturnsInnerPointer: |
7361 | S.ObjC().handleReturnsInnerPointerAttr(D, Attrs: AL); |
7362 | break; |
7363 | case ParsedAttr::AT_ObjCRequiresSuper: |
7364 | S.ObjC().handleRequiresSuperAttr(D, Attrs: AL); |
7365 | break; |
7366 | case ParsedAttr::AT_ObjCBridge: |
7367 | S.ObjC().handleBridgeAttr(D, AL); |
7368 | break; |
7369 | case ParsedAttr::AT_ObjCBridgeMutable: |
7370 | S.ObjC().handleBridgeMutableAttr(D, AL); |
7371 | break; |
7372 | case ParsedAttr::AT_ObjCBridgeRelated: |
7373 | S.ObjC().handleBridgeRelatedAttr(D, AL); |
7374 | break; |
7375 | case ParsedAttr::AT_ObjCDesignatedInitializer: |
7376 | S.ObjC().handleDesignatedInitializer(D, AL); |
7377 | break; |
7378 | case ParsedAttr::AT_ObjCRuntimeName: |
7379 | S.ObjC().handleRuntimeName(D, AL); |
7380 | break; |
7381 | case ParsedAttr::AT_ObjCBoxable: |
7382 | S.ObjC().handleBoxable(D, AL); |
7383 | break; |
7384 | case ParsedAttr::AT_NSErrorDomain: |
7385 | S.ObjC().handleNSErrorDomain(D, Attr: AL); |
7386 | break; |
7387 | case ParsedAttr::AT_CFConsumed: |
7388 | case ParsedAttr::AT_NSConsumed: |
7389 | case ParsedAttr::AT_OSConsumed: |
7390 | S.ObjC().AddXConsumedAttr(D, CI: AL, |
7391 | K: S.ObjC().parsedAttrToRetainOwnershipKind(AL), |
7392 | /*IsTemplateInstantiation=*/false); |
7393 | break; |
7394 | case ParsedAttr::AT_OSReturnsRetainedOnZero: |
7395 | handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnZeroAttr>( |
7396 | S, D, CI: AL, PassesCheck: S.ObjC().isValidOSObjectOutParameter(D), |
7397 | DiagID: diag::warn_ns_attribute_wrong_parameter_type, |
7398 | /*Extra Args=*/ExtraArgs: AL, /*pointer-to-OSObject-pointer*/ ExtraArgs: 3, ExtraArgs: AL.getRange()); |
7399 | break; |
7400 | case ParsedAttr::AT_OSReturnsRetainedOnNonZero: |
7401 | handleSimpleAttributeOrDiagnose<OSReturnsRetainedOnNonZeroAttr>( |
7402 | S, D, CI: AL, PassesCheck: S.ObjC().isValidOSObjectOutParameter(D), |
7403 | DiagID: diag::warn_ns_attribute_wrong_parameter_type, |
7404 | /*Extra Args=*/ExtraArgs: AL, /*pointer-to-OSObject-poointer*/ ExtraArgs: 3, ExtraArgs: AL.getRange()); |
7405 | break; |
7406 | case ParsedAttr::AT_NSReturnsAutoreleased: |
7407 | case ParsedAttr::AT_NSReturnsNotRetained: |
7408 | case ParsedAttr::AT_NSReturnsRetained: |
7409 | case ParsedAttr::AT_CFReturnsNotRetained: |
7410 | case ParsedAttr::AT_CFReturnsRetained: |
7411 | case ParsedAttr::AT_OSReturnsNotRetained: |
7412 | case ParsedAttr::AT_OSReturnsRetained: |
7413 | S.ObjC().handleXReturnsXRetainedAttr(D, AL); |
7414 | break; |
7415 | case ParsedAttr::AT_WorkGroupSizeHint: |
7416 | handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, AL); |
7417 | break; |
7418 | case ParsedAttr::AT_ReqdWorkGroupSize: |
7419 | handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, AL); |
7420 | break; |
7421 | case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize: |
7422 | S.OpenCL().handleSubGroupSize(D, AL); |
7423 | break; |
7424 | case ParsedAttr::AT_VecTypeHint: |
7425 | handleVecTypeHint(S, D, AL); |
7426 | break; |
7427 | case ParsedAttr::AT_InitPriority: |
7428 | handleInitPriorityAttr(S, D, AL); |
7429 | break; |
7430 | case ParsedAttr::AT_Packed: |
7431 | handlePackedAttr(S, D, AL); |
7432 | break; |
7433 | case ParsedAttr::AT_PreferredName: |
7434 | handlePreferredName(S, D, AL); |
7435 | break; |
7436 | case ParsedAttr::AT_NoSpecializations: |
7437 | handleNoSpecializations(S, D, AL); |
7438 | break; |
7439 | case ParsedAttr::AT_Section: |
7440 | handleSectionAttr(S, D, AL); |
7441 | break; |
7442 | case ParsedAttr::AT_CodeModel: |
7443 | handleCodeModelAttr(S, D, AL); |
7444 | break; |
7445 | case ParsedAttr::AT_RandomizeLayout: |
7446 | handleRandomizeLayoutAttr(S, D, AL); |
7447 | break; |
7448 | case ParsedAttr::AT_NoRandomizeLayout: |
7449 | handleNoRandomizeLayoutAttr(S, D, AL); |
7450 | break; |
7451 | case ParsedAttr::AT_CodeSeg: |
7452 | handleCodeSegAttr(S, D, AL); |
7453 | break; |
7454 | case ParsedAttr::AT_Target: |
7455 | handleTargetAttr(S, D, AL); |
7456 | break; |
7457 | case ParsedAttr::AT_TargetVersion: |
7458 | handleTargetVersionAttr(S, D, AL); |
7459 | break; |
7460 | case ParsedAttr::AT_TargetClones: |
7461 | handleTargetClonesAttr(S, D, AL); |
7462 | break; |
7463 | case ParsedAttr::AT_MinVectorWidth: |
7464 | handleMinVectorWidthAttr(S, D, AL); |
7465 | break; |
7466 | case ParsedAttr::AT_Unavailable: |
7467 | handleAttrWithMessage<UnavailableAttr>(S, D, AL); |
7468 | break; |
7469 | case ParsedAttr::AT_OMPAssume: |
7470 | S.OpenMP().handleOMPAssumeAttr(D, AL); |
7471 | break; |
7472 | case ParsedAttr::AT_ObjCDirect: |
7473 | S.ObjC().handleDirectAttr(D, AL); |
7474 | break; |
7475 | case ParsedAttr::AT_ObjCDirectMembers: |
7476 | S.ObjC().handleDirectMembersAttr(D, AL); |
7477 | handleSimpleAttribute<ObjCDirectMembersAttr>(S, D, CI: AL); |
7478 | break; |
7479 | case ParsedAttr::AT_ObjCExplicitProtocolImpl: |
7480 | S.ObjC().handleSuppresProtocolAttr(D, AL); |
7481 | break; |
7482 | case ParsedAttr::AT_Unused: |
7483 | handleUnusedAttr(S, D, AL); |
7484 | break; |
7485 | case ParsedAttr::AT_Visibility: |
7486 | handleVisibilityAttr(S, D, AL, isTypeVisibility: false); |
7487 | break; |
7488 | case ParsedAttr::AT_TypeVisibility: |
7489 | handleVisibilityAttr(S, D, AL, isTypeVisibility: true); |
7490 | break; |
7491 | case ParsedAttr::AT_WarnUnusedResult: |
7492 | handleWarnUnusedResult(S, D, AL); |
7493 | break; |
7494 | case ParsedAttr::AT_WeakRef: |
7495 | handleWeakRefAttr(S, D, AL); |
7496 | break; |
7497 | case ParsedAttr::AT_WeakImport: |
7498 | handleWeakImportAttr(S, D, AL); |
7499 | break; |
7500 | case ParsedAttr::AT_TransparentUnion: |
7501 | handleTransparentUnionAttr(S, D, AL); |
7502 | break; |
7503 | case ParsedAttr::AT_ObjCMethodFamily: |
7504 | S.ObjC().handleMethodFamilyAttr(D, AL); |
7505 | break; |
7506 | case ParsedAttr::AT_ObjCNSObject: |
7507 | S.ObjC().handleNSObject(D, AL); |
7508 | break; |
7509 | case ParsedAttr::AT_ObjCIndependentClass: |
7510 | S.ObjC().handleIndependentClass(D, AL); |
7511 | break; |
7512 | case ParsedAttr::AT_Blocks: |
7513 | S.ObjC().handleBlocksAttr(D, AL); |
7514 | break; |
7515 | case ParsedAttr::AT_Sentinel: |
7516 | handleSentinelAttr(S, D, AL); |
7517 | break; |
7518 | case ParsedAttr::AT_Cleanup: |
7519 | handleCleanupAttr(S, D, AL); |
7520 | break; |
7521 | case ParsedAttr::AT_NoDebug: |
7522 | handleNoDebugAttr(S, D, AL); |
7523 | break; |
7524 | case ParsedAttr::AT_CmseNSEntry: |
7525 | S.ARM().handleCmseNSEntryAttr(D, AL); |
7526 | break; |
7527 | case ParsedAttr::AT_StdCall: |
7528 | case ParsedAttr::AT_CDecl: |
7529 | case ParsedAttr::AT_FastCall: |
7530 | case ParsedAttr::AT_ThisCall: |
7531 | case ParsedAttr::AT_Pascal: |
7532 | case ParsedAttr::AT_RegCall: |
7533 | case ParsedAttr::AT_SwiftCall: |
7534 | case ParsedAttr::AT_SwiftAsyncCall: |
7535 | case ParsedAttr::AT_VectorCall: |
7536 | case ParsedAttr::AT_MSABI: |
7537 | case ParsedAttr::AT_SysVABI: |
7538 | case ParsedAttr::AT_Pcs: |
7539 | case ParsedAttr::AT_IntelOclBicc: |
7540 | case ParsedAttr::AT_PreserveMost: |
7541 | case ParsedAttr::AT_PreserveAll: |
7542 | case ParsedAttr::AT_AArch64VectorPcs: |
7543 | case ParsedAttr::AT_AArch64SVEPcs: |
7544 | case ParsedAttr::AT_M68kRTD: |
7545 | case ParsedAttr::AT_PreserveNone: |
7546 | case ParsedAttr::AT_RISCVVectorCC: |
7547 | case ParsedAttr::AT_RISCVVLSCC: |
7548 | handleCallConvAttr(S, D, AL); |
7549 | break; |
7550 | case ParsedAttr::AT_DeviceKernel: |
7551 | handleDeviceKernelAttr(S, D, AL); |
7552 | break; |
7553 | case ParsedAttr::AT_Suppress: |
7554 | handleSuppressAttr(S, D, AL); |
7555 | break; |
7556 | case ParsedAttr::AT_Owner: |
7557 | case ParsedAttr::AT_Pointer: |
7558 | handleLifetimeCategoryAttr(S, D, AL); |
7559 | break; |
7560 | case ParsedAttr::AT_OpenCLAccess: |
7561 | S.OpenCL().handleAccessAttr(D, AL); |
7562 | break; |
7563 | case ParsedAttr::AT_OpenCLNoSVM: |
7564 | S.OpenCL().handleNoSVMAttr(D, AL); |
7565 | break; |
7566 | case ParsedAttr::AT_SwiftContext: |
7567 | S.Swift().AddParameterABIAttr(D, CI: AL, abi: ParameterABI::SwiftContext); |
7568 | break; |
7569 | case ParsedAttr::AT_SwiftAsyncContext: |
7570 | S.Swift().AddParameterABIAttr(D, CI: AL, abi: ParameterABI::SwiftAsyncContext); |
7571 | break; |
7572 | case ParsedAttr::AT_SwiftErrorResult: |
7573 | S.Swift().AddParameterABIAttr(D, CI: AL, abi: ParameterABI::SwiftErrorResult); |
7574 | break; |
7575 | case ParsedAttr::AT_SwiftIndirectResult: |
7576 | S.Swift().AddParameterABIAttr(D, CI: AL, abi: ParameterABI::SwiftIndirectResult); |
7577 | break; |
7578 | case ParsedAttr::AT_InternalLinkage: |
7579 | handleInternalLinkageAttr(S, D, AL); |
7580 | break; |
7581 | case ParsedAttr::AT_ZeroCallUsedRegs: |
7582 | handleZeroCallUsedRegsAttr(S, D, AL); |
7583 | break; |
7584 | case ParsedAttr::AT_FunctionReturnThunks: |
7585 | handleFunctionReturnThunksAttr(S, D, AL); |
7586 | break; |
7587 | case ParsedAttr::AT_NoMerge: |
7588 | handleNoMergeAttr(S, D, AL); |
7589 | break; |
7590 | case ParsedAttr::AT_NoUniqueAddress: |
7591 | handleNoUniqueAddressAttr(S, D, AL); |
7592 | break; |
7593 | |
7594 | case ParsedAttr::AT_AvailableOnlyInDefaultEvalMethod: |
7595 | handleAvailableOnlyInDefaultEvalMethod(S, D, AL); |
7596 | break; |
7597 | |
7598 | case ParsedAttr::AT_CountedBy: |
7599 | case ParsedAttr::AT_CountedByOrNull: |
7600 | case ParsedAttr::AT_SizedBy: |
7601 | case ParsedAttr::AT_SizedByOrNull: |
7602 | handleCountedByAttrField(S, D, AL); |
7603 | break; |
7604 | |
7605 | // Microsoft attributes: |
7606 | case ParsedAttr::AT_LayoutVersion: |
7607 | handleLayoutVersion(S, D, AL); |
7608 | break; |
7609 | case ParsedAttr::AT_Uuid: |
7610 | handleUuidAttr(S, D, AL); |
7611 | break; |
7612 | case ParsedAttr::AT_MSInheritance: |
7613 | handleMSInheritanceAttr(S, D, AL); |
7614 | break; |
7615 | case ParsedAttr::AT_Thread: |
7616 | handleDeclspecThreadAttr(S, D, AL); |
7617 | break; |
7618 | case ParsedAttr::AT_MSConstexpr: |
7619 | handleMSConstexprAttr(S, D, AL); |
7620 | break; |
7621 | case ParsedAttr::AT_HybridPatchable: |
7622 | handleSimpleAttribute<HybridPatchableAttr>(S, D, CI: AL); |
7623 | break; |
7624 | |
7625 | // HLSL attributes: |
7626 | case ParsedAttr::AT_RootSignature: |
7627 | S.HLSL().handleRootSignatureAttr(D, AL); |
7628 | break; |
7629 | case ParsedAttr::AT_HLSLNumThreads: |
7630 | S.HLSL().handleNumThreadsAttr(D, AL); |
7631 | break; |
7632 | case ParsedAttr::AT_HLSLWaveSize: |
7633 | S.HLSL().handleWaveSizeAttr(D, AL); |
7634 | break; |
7635 | case ParsedAttr::AT_HLSLSV_Position: |
7636 | S.HLSL().handleSV_PositionAttr(D, AL); |
7637 | break; |
7638 | case ParsedAttr::AT_HLSLVkExtBuiltinInput: |
7639 | S.HLSL().handleVkExtBuiltinInputAttr(D, AL); |
7640 | break; |
7641 | case ParsedAttr::AT_HLSLVkConstantId: |
7642 | S.HLSL().handleVkConstantIdAttr(D, AL); |
7643 | break; |
7644 | case ParsedAttr::AT_HLSLSV_GroupThreadID: |
7645 | S.HLSL().handleSV_GroupThreadIDAttr(D, AL); |
7646 | break; |
7647 | case ParsedAttr::AT_HLSLSV_GroupID: |
7648 | S.HLSL().handleSV_GroupIDAttr(D, AL); |
7649 | break; |
7650 | case ParsedAttr::AT_HLSLSV_GroupIndex: |
7651 | handleSimpleAttribute<HLSLSV_GroupIndexAttr>(S, D, CI: AL); |
7652 | break; |
7653 | case ParsedAttr::AT_HLSLGroupSharedAddressSpace: |
7654 | handleSimpleAttribute<HLSLGroupSharedAddressSpaceAttr>(S, D, CI: AL); |
7655 | break; |
7656 | case ParsedAttr::AT_HLSLSV_DispatchThreadID: |
7657 | S.HLSL().handleSV_DispatchThreadIDAttr(D, AL); |
7658 | break; |
7659 | case ParsedAttr::AT_HLSLPackOffset: |
7660 | S.HLSL().handlePackOffsetAttr(D, AL); |
7661 | break; |
7662 | case ParsedAttr::AT_HLSLShader: |
7663 | S.HLSL().handleShaderAttr(D, AL); |
7664 | break; |
7665 | case ParsedAttr::AT_HLSLResourceBinding: |
7666 | S.HLSL().handleResourceBindingAttr(D, AL); |
7667 | break; |
7668 | case ParsedAttr::AT_HLSLParamModifier: |
7669 | S.HLSL().handleParamModifierAttr(D, AL); |
7670 | break; |
7671 | |
7672 | case ParsedAttr::AT_AbiTag: |
7673 | handleAbiTagAttr(S, D, AL); |
7674 | break; |
7675 | case ParsedAttr::AT_CFGuard: |
7676 | handleCFGuardAttr(S, D, AL); |
7677 | break; |
7678 | |
7679 | // Thread safety attributes: |
7680 | case ParsedAttr::AT_PtGuardedVar: |
7681 | handlePtGuardedVarAttr(S, D, AL); |
7682 | break; |
7683 | case ParsedAttr::AT_NoSanitize: |
7684 | handleNoSanitizeAttr(S, D, AL); |
7685 | break; |
7686 | case ParsedAttr::AT_NoSanitizeSpecific: |
7687 | handleNoSanitizeSpecificAttr(S, D, AL); |
7688 | break; |
7689 | case ParsedAttr::AT_GuardedBy: |
7690 | handleGuardedByAttr(S, D, AL); |
7691 | break; |
7692 | case ParsedAttr::AT_PtGuardedBy: |
7693 | handlePtGuardedByAttr(S, D, AL); |
7694 | break; |
7695 | case ParsedAttr::AT_LockReturned: |
7696 | handleLockReturnedAttr(S, D, AL); |
7697 | break; |
7698 | case ParsedAttr::AT_LocksExcluded: |
7699 | handleLocksExcludedAttr(S, D, AL); |
7700 | break; |
7701 | case ParsedAttr::AT_AcquiredBefore: |
7702 | handleAcquiredBeforeAttr(S, D, AL); |
7703 | break; |
7704 | case ParsedAttr::AT_AcquiredAfter: |
7705 | handleAcquiredAfterAttr(S, D, AL); |
7706 | break; |
7707 | |
7708 | // Capability analysis attributes. |
7709 | case ParsedAttr::AT_Capability: |
7710 | case ParsedAttr::AT_Lockable: |
7711 | handleCapabilityAttr(S, D, AL); |
7712 | break; |
7713 | case ParsedAttr::AT_ReentrantCapability: |
7714 | handleReentrantCapabilityAttr(S, D, AL); |
7715 | break; |
7716 | case ParsedAttr::AT_RequiresCapability: |
7717 | handleRequiresCapabilityAttr(S, D, AL); |
7718 | break; |
7719 | |
7720 | case ParsedAttr::AT_AssertCapability: |
7721 | handleAssertCapabilityAttr(S, D, AL); |
7722 | break; |
7723 | case ParsedAttr::AT_AcquireCapability: |
7724 | handleAcquireCapabilityAttr(S, D, AL); |
7725 | break; |
7726 | case ParsedAttr::AT_ReleaseCapability: |
7727 | handleReleaseCapabilityAttr(S, D, AL); |
7728 | break; |
7729 | case ParsedAttr::AT_TryAcquireCapability: |
7730 | handleTryAcquireCapabilityAttr(S, D, AL); |
7731 | break; |
7732 | |
7733 | // Consumed analysis attributes. |
7734 | case ParsedAttr::AT_Consumable: |
7735 | handleConsumableAttr(S, D, AL); |
7736 | break; |
7737 | case ParsedAttr::AT_CallableWhen: |
7738 | handleCallableWhenAttr(S, D, AL); |
7739 | break; |
7740 | case ParsedAttr::AT_ParamTypestate: |
7741 | handleParamTypestateAttr(S, D, AL); |
7742 | break; |
7743 | case ParsedAttr::AT_ReturnTypestate: |
7744 | handleReturnTypestateAttr(S, D, AL); |
7745 | break; |
7746 | case ParsedAttr::AT_SetTypestate: |
7747 | handleSetTypestateAttr(S, D, AL); |
7748 | break; |
7749 | case ParsedAttr::AT_TestTypestate: |
7750 | handleTestTypestateAttr(S, D, AL); |
7751 | break; |
7752 | |
7753 | // Type safety attributes. |
7754 | case ParsedAttr::AT_ArgumentWithTypeTag: |
7755 | handleArgumentWithTypeTagAttr(S, D, AL); |
7756 | break; |
7757 | case ParsedAttr::AT_TypeTagForDatatype: |
7758 | handleTypeTagForDatatypeAttr(S, D, AL); |
7759 | break; |
7760 | |
7761 | // Swift attributes. |
7762 | case ParsedAttr::AT_SwiftAsyncName: |
7763 | S.Swift().handleAsyncName(D, AL); |
7764 | break; |
7765 | case ParsedAttr::AT_SwiftAttr: |
7766 | S.Swift().handleAttrAttr(D, AL); |
7767 | break; |
7768 | case ParsedAttr::AT_SwiftBridge: |
7769 | S.Swift().handleBridge(D, AL); |
7770 | break; |
7771 | case ParsedAttr::AT_SwiftError: |
7772 | S.Swift().handleError(D, AL); |
7773 | break; |
7774 | case ParsedAttr::AT_SwiftName: |
7775 | S.Swift().handleName(D, AL); |
7776 | break; |
7777 | case ParsedAttr::AT_SwiftNewType: |
7778 | S.Swift().handleNewType(D, AL); |
7779 | break; |
7780 | case ParsedAttr::AT_SwiftAsync: |
7781 | S.Swift().handleAsyncAttr(D, AL); |
7782 | break; |
7783 | case ParsedAttr::AT_SwiftAsyncError: |
7784 | S.Swift().handleAsyncError(D, AL); |
7785 | break; |
7786 | |
7787 | // XRay attributes. |
7788 | case ParsedAttr::AT_XRayLogArgs: |
7789 | handleXRayLogArgsAttr(S, D, AL); |
7790 | break; |
7791 | |
7792 | case ParsedAttr::AT_PatchableFunctionEntry: |
7793 | handlePatchableFunctionEntryAttr(S, D, AL); |
7794 | break; |
7795 | |
7796 | case ParsedAttr::AT_AlwaysDestroy: |
7797 | case ParsedAttr::AT_NoDestroy: |
7798 | handleDestroyAttr(S, D, A: AL); |
7799 | break; |
7800 | |
7801 | case ParsedAttr::AT_Uninitialized: |
7802 | handleUninitializedAttr(S, D, AL); |
7803 | break; |
7804 | |
7805 | case ParsedAttr::AT_ObjCExternallyRetained: |
7806 | S.ObjC().handleExternallyRetainedAttr(D, AL); |
7807 | break; |
7808 | |
7809 | case ParsedAttr::AT_MIGServerRoutine: |
7810 | handleMIGServerRoutineAttr(S, D, AL); |
7811 | break; |
7812 | |
7813 | case ParsedAttr::AT_MSAllocator: |
7814 | handleMSAllocatorAttr(S, D, AL); |
7815 | break; |
7816 | |
7817 | case ParsedAttr::AT_ArmBuiltinAlias: |
7818 | S.ARM().handleBuiltinAliasAttr(D, AL); |
7819 | break; |
7820 | |
7821 | case ParsedAttr::AT_ArmLocallyStreaming: |
7822 | handleSimpleAttribute<ArmLocallyStreamingAttr>(S, D, CI: AL); |
7823 | break; |
7824 | |
7825 | case ParsedAttr::AT_ArmNew: |
7826 | S.ARM().handleNewAttr(D, AL); |
7827 | break; |
7828 | |
7829 | case ParsedAttr::AT_AcquireHandle: |
7830 | handleAcquireHandleAttr(S, D, AL); |
7831 | break; |
7832 | |
7833 | case ParsedAttr::AT_ReleaseHandle: |
7834 | handleHandleAttr<ReleaseHandleAttr>(S, D, AL); |
7835 | break; |
7836 | |
7837 | case ParsedAttr::AT_UnsafeBufferUsage: |
7838 | handleUnsafeBufferUsage<UnsafeBufferUsageAttr>(S, D, AL); |
7839 | break; |
7840 | |
7841 | case ParsedAttr::AT_UseHandle: |
7842 | handleHandleAttr<UseHandleAttr>(S, D, AL); |
7843 | break; |
7844 | |
7845 | case ParsedAttr::AT_EnforceTCB: |
7846 | handleEnforceTCBAttr<EnforceTCBAttr, EnforceTCBLeafAttr>(S, D, AL); |
7847 | break; |
7848 | |
7849 | case ParsedAttr::AT_EnforceTCBLeaf: |
7850 | handleEnforceTCBAttr<EnforceTCBLeafAttr, EnforceTCBAttr>(S, D, AL); |
7851 | break; |
7852 | |
7853 | case ParsedAttr::AT_BuiltinAlias: |
7854 | handleBuiltinAliasAttr(S, D, AL); |
7855 | break; |
7856 | |
7857 | case ParsedAttr::AT_PreferredType: |
7858 | handlePreferredTypeAttr(S, D, AL); |
7859 | break; |
7860 | |
7861 | case ParsedAttr::AT_UsingIfExists: |
7862 | handleSimpleAttribute<UsingIfExistsAttr>(S, D, CI: AL); |
7863 | break; |
7864 | |
7865 | case ParsedAttr::AT_TypeNullable: |
7866 | handleNullableTypeAttr(S, D, AL); |
7867 | break; |
7868 | |
7869 | case ParsedAttr::AT_VTablePointerAuthentication: |
7870 | handleVTablePointerAuthentication(S, D, AL); |
7871 | break; |
7872 | } |
7873 | } |
7874 | |
7875 | static bool isKernelDecl(Decl *D) { |
7876 | const FunctionType *FnTy = D->getFunctionType(); |
7877 | return D->hasAttr<DeviceKernelAttr>() || |
7878 | (FnTy && FnTy->getCallConv() == CallingConv::CC_DeviceKernel) || |
7879 | D->hasAttr<CUDAGlobalAttr>(); |
7880 | } |
7881 | |
7882 | void Sema::ProcessDeclAttributeList( |
7883 | Scope *S, Decl *D, const ParsedAttributesView &AttrList, |
7884 | const ProcessDeclAttributeOptions &Options) { |
7885 | if (AttrList.empty()) |
7886 | return; |
7887 | |
7888 | for (const ParsedAttr &AL : AttrList) |
7889 | ProcessDeclAttribute(S&: *this, scope: S, D, AL, Options); |
7890 | |
7891 | // FIXME: We should be able to handle these cases in TableGen. |
7892 | // GCC accepts |
7893 | // static int a9 __attribute__((weakref)); |
7894 | // but that looks really pointless. We reject it. |
7895 | if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) { |
7896 | Diag(Loc: AttrList.begin()->getLoc(), DiagID: diag::err_attribute_weakref_without_alias) |
7897 | << cast<NamedDecl>(Val: D); |
7898 | D->dropAttr<WeakRefAttr>(); |
7899 | return; |
7900 | } |
7901 | |
7902 | // FIXME: We should be able to handle this in TableGen as well. It would be |
7903 | // good to have a way to specify "these attributes must appear as a group", |
7904 | // for these. Additionally, it would be good to have a way to specify "these |
7905 | // attribute must never appear as a group" for attributes like cold and hot. |
7906 | if (!(D->hasAttr<DeviceKernelAttr>() || |
7907 | (D->hasAttr<CUDAGlobalAttr>() && |
7908 | Context.getTargetInfo().getTriple().isSPIRV()))) { |
7909 | // These attributes cannot be applied to a non-kernel function. |
7910 | if (const auto *A = D->getAttr<ReqdWorkGroupSizeAttr>()) { |
7911 | // FIXME: This emits a different error message than |
7912 | // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction. |
7913 | Diag(Loc: D->getLocation(), DiagID: diag::err_opencl_kernel_attr) << A; |
7914 | D->setInvalidDecl(); |
7915 | } else if (const auto *A = D->getAttr<WorkGroupSizeHintAttr>()) { |
7916 | Diag(Loc: D->getLocation(), DiagID: diag::err_opencl_kernel_attr) << A; |
7917 | D->setInvalidDecl(); |
7918 | } else if (const auto *A = D->getAttr<VecTypeHintAttr>()) { |
7919 | Diag(Loc: D->getLocation(), DiagID: diag::err_opencl_kernel_attr) << A; |
7920 | D->setInvalidDecl(); |
7921 | } else if (const auto *A = D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { |
7922 | Diag(Loc: D->getLocation(), DiagID: diag::err_opencl_kernel_attr) << A; |
7923 | D->setInvalidDecl(); |
7924 | } |
7925 | } |
7926 | if (!isKernelDecl(D)) { |
7927 | if (const auto *A = D->getAttr<AMDGPUFlatWorkGroupSizeAttr>()) { |
7928 | Diag(Loc: D->getLocation(), DiagID: diag::err_attribute_wrong_decl_type) |
7929 | << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; |
7930 | D->setInvalidDecl(); |
7931 | } else if (const auto *A = D->getAttr<AMDGPUWavesPerEUAttr>()) { |
7932 | Diag(Loc: D->getLocation(), DiagID: diag::err_attribute_wrong_decl_type) |
7933 | << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; |
7934 | D->setInvalidDecl(); |
7935 | } else if (const auto *A = D->getAttr<AMDGPUNumSGPRAttr>()) { |
7936 | Diag(Loc: D->getLocation(), DiagID: diag::err_attribute_wrong_decl_type) |
7937 | << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; |
7938 | D->setInvalidDecl(); |
7939 | } else if (const auto *A = D->getAttr<AMDGPUNumVGPRAttr>()) { |
7940 | Diag(Loc: D->getLocation(), DiagID: diag::err_attribute_wrong_decl_type) |
7941 | << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; |
7942 | D->setInvalidDecl(); |
7943 | } |
7944 | } |
7945 | |
7946 | // Do not permit 'constructor' or 'destructor' attributes on __device__ code. |
7947 | if (getLangOpts().CUDAIsDevice && D->hasAttr<CUDADeviceAttr>() && |
7948 | (D->hasAttr<ConstructorAttr>() || D->hasAttr<DestructorAttr>()) && |
7949 | !getLangOpts().GPUAllowDeviceInit) { |
7950 | Diag(Loc: D->getLocation(), DiagID: diag::err_cuda_ctor_dtor_attrs) |
7951 | << (D->hasAttr<ConstructorAttr>() ? "constructors" : "destructors" ); |
7952 | D->setInvalidDecl(); |
7953 | } |
7954 | |
7955 | // Do this check after processing D's attributes because the attribute |
7956 | // objc_method_family can change whether the given method is in the init |
7957 | // family, and it can be applied after objc_designated_initializer. This is a |
7958 | // bit of a hack, but we need it to be compatible with versions of clang that |
7959 | // processed the attribute list in the wrong order. |
7960 | if (D->hasAttr<ObjCDesignatedInitializerAttr>() && |
7961 | cast<ObjCMethodDecl>(Val: D)->getMethodFamily() != OMF_init) { |
7962 | Diag(Loc: D->getLocation(), DiagID: diag::err_designated_init_attr_non_init); |
7963 | D->dropAttr<ObjCDesignatedInitializerAttr>(); |
7964 | } |
7965 | } |
7966 | |
7967 | void Sema::ProcessDeclAttributeDelayed(Decl *D, |
7968 | const ParsedAttributesView &AttrList) { |
7969 | for (const ParsedAttr &AL : AttrList) |
7970 | if (AL.getKind() == ParsedAttr::AT_TransparentUnion) { |
7971 | handleTransparentUnionAttr(S&: *this, D, AL); |
7972 | break; |
7973 | } |
7974 | |
7975 | // For BPFPreserveAccessIndexAttr, we want to populate the attributes |
7976 | // to fields and inner records as well. |
7977 | if (D && D->hasAttr<BPFPreserveAccessIndexAttr>()) |
7978 | BPF().handlePreserveAIRecord(RD: cast<RecordDecl>(Val: D)); |
7979 | } |
7980 | |
7981 | bool Sema::ProcessAccessDeclAttributeList( |
7982 | AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) { |
7983 | for (const ParsedAttr &AL : AttrList) { |
7984 | if (AL.getKind() == ParsedAttr::AT_Annotate) { |
7985 | ProcessDeclAttribute(S&: *this, scope: nullptr, D: ASDecl, AL, |
7986 | Options: ProcessDeclAttributeOptions()); |
7987 | } else { |
7988 | Diag(Loc: AL.getLoc(), DiagID: diag::err_only_annotate_after_access_spec); |
7989 | return true; |
7990 | } |
7991 | } |
7992 | return false; |
7993 | } |
7994 | |
7995 | /// checkUnusedDeclAttributes - Check a list of attributes to see if it |
7996 | /// contains any decl attributes that we should warn about. |
7997 | static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) { |
7998 | for (const ParsedAttr &AL : A) { |
7999 | // Only warn if the attribute is an unignored, non-type attribute. |
8000 | if (AL.isUsedAsTypeAttr() || AL.isInvalid()) |
8001 | continue; |
8002 | if (AL.getKind() == ParsedAttr::IgnoredAttribute) |
8003 | continue; |
8004 | |
8005 | if (AL.getKind() == ParsedAttr::UnknownAttribute) { |
8006 | S.DiagnoseUnknownAttribute(AL); |
8007 | } else { |
8008 | S.Diag(Loc: AL.getLoc(), DiagID: diag::warn_attribute_not_on_decl) << AL |
8009 | << AL.getRange(); |
8010 | } |
8011 | } |
8012 | } |
8013 | |
8014 | void Sema::checkUnusedDeclAttributes(Declarator &D) { |
8015 | ::checkUnusedDeclAttributes(S&: *this, A: D.getDeclarationAttributes()); |
8016 | ::checkUnusedDeclAttributes(S&: *this, A: D.getDeclSpec().getAttributes()); |
8017 | ::checkUnusedDeclAttributes(S&: *this, A: D.getAttributes()); |
8018 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) |
8019 | ::checkUnusedDeclAttributes(S&: *this, A: D.getTypeObject(i).getAttrs()); |
8020 | } |
8021 | |
8022 | void Sema::DiagnoseUnknownAttribute(const ParsedAttr &AL) { |
8023 | std::string NormalizedFullName = '\'' + AL.getNormalizedFullName() + '\''; |
8024 | SourceRange NR = AL.getNormalizedRange(); |
8025 | |
8026 | StringRef ScopeName = AL.getNormalizedScopeName(); |
8027 | std::optional<StringRef> CorrectedScopeName = |
8028 | AL.tryGetCorrectedScopeName(ScopeName); |
8029 | if (CorrectedScopeName) { |
8030 | ScopeName = *CorrectedScopeName; |
8031 | } |
8032 | |
8033 | StringRef AttrName = AL.getNormalizedAttrName(ScopeName); |
8034 | std::optional<StringRef> CorrectedAttrName = AL.tryGetCorrectedAttrName( |
8035 | ScopeName, AttrName, Target: Context.getTargetInfo(), LangOpts: getLangOpts()); |
8036 | if (CorrectedAttrName) { |
8037 | AttrName = *CorrectedAttrName; |
8038 | } |
8039 | |
8040 | if (CorrectedScopeName || CorrectedAttrName) { |
8041 | std::string CorrectedFullName = |
8042 | AL.getNormalizedFullName(ScopeName, AttrName); |
8043 | SemaDiagnosticBuilder D = |
8044 | Diag(Loc: CorrectedScopeName ? NR.getBegin() : AL.getRange().getBegin(), |
8045 | DiagID: diag::warn_unknown_attribute_ignored_suggestion); |
8046 | |
8047 | D << NormalizedFullName << CorrectedFullName; |
8048 | |
8049 | if (AL.isExplicitScope()) { |
8050 | D << FixItHint::CreateReplacement(RemoveRange: NR, Code: CorrectedFullName) << NR; |
8051 | } else { |
8052 | if (CorrectedScopeName) { |
8053 | D << FixItHint::CreateReplacement(RemoveRange: SourceRange(AL.getScopeLoc()), |
8054 | Code: ScopeName); |
8055 | } |
8056 | if (CorrectedAttrName) { |
8057 | D << FixItHint::CreateReplacement(RemoveRange: AL.getRange(), Code: AttrName); |
8058 | } |
8059 | } |
8060 | } else { |
8061 | Diag(Loc: NR.getBegin(), DiagID: diag::warn_unknown_attribute_ignored) |
8062 | << NormalizedFullName << NR; |
8063 | } |
8064 | } |
8065 | |
8066 | NamedDecl *Sema::DeclClonePragmaWeak(NamedDecl *ND, const IdentifierInfo *II, |
8067 | SourceLocation Loc) { |
8068 | assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND)); |
8069 | NamedDecl *NewD = nullptr; |
8070 | if (auto *FD = dyn_cast<FunctionDecl>(Val: ND)) { |
8071 | FunctionDecl *NewFD; |
8072 | // FIXME: Missing call to CheckFunctionDeclaration(). |
8073 | // FIXME: Mangling? |
8074 | // FIXME: Is the qualifier info correct? |
8075 | // FIXME: Is the DeclContext correct? |
8076 | NewFD = FunctionDecl::Create( |
8077 | C&: FD->getASTContext(), DC: FD->getDeclContext(), StartLoc: Loc, NLoc: Loc, |
8078 | N: DeclarationName(II), T: FD->getType(), TInfo: FD->getTypeSourceInfo(), SC: SC_None, |
8079 | UsesFPIntrin: getCurFPFeatures().isFPConstrained(), isInlineSpecified: false /*isInlineSpecified*/, |
8080 | hasWrittenPrototype: FD->hasPrototype(), ConstexprKind: ConstexprSpecKind::Unspecified, |
8081 | TrailingRequiresClause: FD->getTrailingRequiresClause()); |
8082 | NewD = NewFD; |
8083 | |
8084 | if (FD->getQualifier()) |
8085 | NewFD->setQualifierInfo(FD->getQualifierLoc()); |
8086 | |
8087 | // Fake up parameter variables; they are declared as if this were |
8088 | // a typedef. |
8089 | QualType FDTy = FD->getType(); |
8090 | if (const auto *FT = FDTy->getAs<FunctionProtoType>()) { |
8091 | SmallVector<ParmVarDecl*, 16> Params; |
8092 | for (const auto &AI : FT->param_types()) { |
8093 | ParmVarDecl *Param = BuildParmVarDeclForTypedef(DC: NewFD, Loc, T: AI); |
8094 | Param->setScopeInfo(scopeDepth: 0, parameterIndex: Params.size()); |
8095 | Params.push_back(Elt: Param); |
8096 | } |
8097 | NewFD->setParams(Params); |
8098 | } |
8099 | } else if (auto *VD = dyn_cast<VarDecl>(Val: ND)) { |
8100 | NewD = VarDecl::Create(C&: VD->getASTContext(), DC: VD->getDeclContext(), |
8101 | StartLoc: VD->getInnerLocStart(), IdLoc: VD->getLocation(), Id: II, |
8102 | T: VD->getType(), TInfo: VD->getTypeSourceInfo(), |
8103 | S: VD->getStorageClass()); |
8104 | if (VD->getQualifier()) |
8105 | cast<VarDecl>(Val: NewD)->setQualifierInfo(VD->getQualifierLoc()); |
8106 | } |
8107 | return NewD; |
8108 | } |
8109 | |
8110 | void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, const WeakInfo &W) { |
8111 | if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...)) |
8112 | IdentifierInfo *NDId = ND->getIdentifier(); |
8113 | NamedDecl *NewD = DeclClonePragmaWeak(ND, II: W.getAlias(), Loc: W.getLocation()); |
8114 | NewD->addAttr( |
8115 | A: AliasAttr::CreateImplicit(Ctx&: Context, Aliasee: NDId->getName(), Range: W.getLocation())); |
8116 | NewD->addAttr(A: WeakAttr::CreateImplicit(Ctx&: Context, Range: W.getLocation())); |
8117 | WeakTopLevelDecl.push_back(Elt: NewD); |
8118 | // FIXME: "hideous" code from Sema::LazilyCreateBuiltin |
8119 | // to insert Decl at TU scope, sorry. |
8120 | DeclContext *SavedContext = CurContext; |
8121 | CurContext = Context.getTranslationUnitDecl(); |
8122 | NewD->setDeclContext(CurContext); |
8123 | NewD->setLexicalDeclContext(CurContext); |
8124 | PushOnScopeChains(D: NewD, S); |
8125 | CurContext = SavedContext; |
8126 | } else { // just add weak to existing |
8127 | ND->addAttr(A: WeakAttr::CreateImplicit(Ctx&: Context, Range: W.getLocation())); |
8128 | } |
8129 | } |
8130 | |
8131 | void Sema::ProcessPragmaWeak(Scope *S, Decl *D) { |
8132 | // It's valid to "forward-declare" #pragma weak, in which case we |
8133 | // have to do this. |
8134 | LoadExternalWeakUndeclaredIdentifiers(); |
8135 | if (WeakUndeclaredIdentifiers.empty()) |
8136 | return; |
8137 | NamedDecl *ND = nullptr; |
8138 | if (auto *VD = dyn_cast<VarDecl>(Val: D)) |
8139 | if (VD->isExternC()) |
8140 | ND = VD; |
8141 | if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
8142 | if (FD->isExternC()) |
8143 | ND = FD; |
8144 | if (!ND) |
8145 | return; |
8146 | if (IdentifierInfo *Id = ND->getIdentifier()) { |
8147 | auto I = WeakUndeclaredIdentifiers.find(Key: Id); |
8148 | if (I != WeakUndeclaredIdentifiers.end()) { |
8149 | auto &WeakInfos = I->second; |
8150 | for (const auto &W : WeakInfos) |
8151 | DeclApplyPragmaWeak(S, ND, W); |
8152 | std::remove_reference_t<decltype(WeakInfos)> EmptyWeakInfos; |
8153 | WeakInfos.swap(RHS&: EmptyWeakInfos); |
8154 | } |
8155 | } |
8156 | } |
8157 | |
8158 | /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in |
8159 | /// it, apply them to D. This is a bit tricky because PD can have attributes |
8160 | /// specified in many different places, and we need to find and apply them all. |
8161 | void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) { |
8162 | // Ordering of attributes can be important, so we take care to process |
8163 | // attributes in the order in which they appeared in the source code. |
8164 | |
8165 | auto ProcessAttributesWithSliding = |
8166 | [&](const ParsedAttributesView &Src, |
8167 | const ProcessDeclAttributeOptions &Options) { |
8168 | ParsedAttributesView NonSlidingAttrs; |
8169 | for (ParsedAttr &AL : Src) { |
8170 | // FIXME: this sliding is specific to standard attributes and should |
8171 | // eventually be deprecated and removed as those are not intended to |
8172 | // slide to anything. |
8173 | if ((AL.isStandardAttributeSyntax() || AL.isAlignas()) && |
8174 | AL.slidesFromDeclToDeclSpecLegacyBehavior()) { |
8175 | // Skip processing the attribute, but do check if it appertains to |
8176 | // the declaration. This is needed for the `MatrixType` attribute, |
8177 | // which, despite being a type attribute, defines a `SubjectList` |
8178 | // that only allows it to be used on typedef declarations. |
8179 | AL.diagnoseAppertainsTo(S&: *this, D); |
8180 | } else { |
8181 | NonSlidingAttrs.addAtEnd(newAttr: &AL); |
8182 | } |
8183 | } |
8184 | ProcessDeclAttributeList(S, D, AttrList: NonSlidingAttrs, Options); |
8185 | }; |
8186 | |
8187 | // First, process attributes that appeared on the declaration itself (but |
8188 | // only if they don't have the legacy behavior of "sliding" to the DeclSepc). |
8189 | ProcessAttributesWithSliding(PD.getDeclarationAttributes(), {}); |
8190 | |
8191 | // Apply decl attributes from the DeclSpec if present. |
8192 | ProcessAttributesWithSliding(PD.getDeclSpec().getAttributes(), |
8193 | ProcessDeclAttributeOptions() |
8194 | .WithIncludeCXX11Attributes(Val: false) |
8195 | .WithIgnoreTypeAttributes(Val: true)); |
8196 | |
8197 | // Walk the declarator structure, applying decl attributes that were in a type |
8198 | // position to the decl itself. This handles cases like: |
8199 | // int *__attr__(x)** D; |
8200 | // when X is a decl attribute. |
8201 | for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) { |
8202 | ProcessDeclAttributeList(S, D, AttrList: PD.getTypeObject(i).getAttrs(), |
8203 | Options: ProcessDeclAttributeOptions() |
8204 | .WithIncludeCXX11Attributes(Val: false) |
8205 | .WithIgnoreTypeAttributes(Val: true)); |
8206 | } |
8207 | |
8208 | // Finally, apply any attributes on the decl itself. |
8209 | ProcessDeclAttributeList(S, D, AttrList: PD.getAttributes()); |
8210 | |
8211 | // Apply additional attributes specified by '#pragma clang attribute'. |
8212 | AddPragmaAttributes(S, D); |
8213 | |
8214 | // Look for API notes that map to attributes. |
8215 | ProcessAPINotes(D); |
8216 | } |
8217 | |
8218 | /// Is the given declaration allowed to use a forbidden type? |
8219 | /// If so, it'll still be annotated with an attribute that makes it |
8220 | /// illegal to actually use. |
8221 | static bool isForbiddenTypeAllowed(Sema &S, Decl *D, |
8222 | const DelayedDiagnostic &diag, |
8223 | UnavailableAttr::ImplicitReason &reason) { |
8224 | // Private ivars are always okay. Unfortunately, people don't |
8225 | // always properly make their ivars private, even in system headers. |
8226 | // Plus we need to make fields okay, too. |
8227 | if (!isa<FieldDecl>(Val: D) && !isa<ObjCPropertyDecl>(Val: D) && |
8228 | !isa<FunctionDecl>(Val: D)) |
8229 | return false; |
8230 | |
8231 | // Silently accept unsupported uses of __weak in both user and system |
8232 | // declarations when it's been disabled, for ease of integration with |
8233 | // -fno-objc-arc files. We do have to take some care against attempts |
8234 | // to define such things; for now, we've only done that for ivars |
8235 | // and properties. |
8236 | if ((isa<ObjCIvarDecl>(Val: D) || isa<ObjCPropertyDecl>(Val: D))) { |
8237 | if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled || |
8238 | diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) { |
8239 | reason = UnavailableAttr::IR_ForbiddenWeak; |
8240 | return true; |
8241 | } |
8242 | } |
8243 | |
8244 | // Allow all sorts of things in system headers. |
8245 | if (S.Context.getSourceManager().isInSystemHeader(Loc: D->getLocation())) { |
8246 | // Currently, all the failures dealt with this way are due to ARC |
8247 | // restrictions. |
8248 | reason = UnavailableAttr::IR_ARCForbiddenType; |
8249 | return true; |
8250 | } |
8251 | |
8252 | return false; |
8253 | } |
8254 | |
8255 | /// Handle a delayed forbidden-type diagnostic. |
8256 | static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD, |
8257 | Decl *D) { |
8258 | auto Reason = UnavailableAttr::IR_None; |
8259 | if (D && isForbiddenTypeAllowed(S, D, diag: DD, reason&: Reason)) { |
8260 | assert(Reason && "didn't set reason?" ); |
8261 | D->addAttr(A: UnavailableAttr::CreateImplicit(Ctx&: S.Context, Message: "" , ImplicitReason: Reason, Range: DD.Loc)); |
8262 | return; |
8263 | } |
8264 | if (S.getLangOpts().ObjCAutoRefCount) |
8265 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
8266 | // FIXME: we may want to suppress diagnostics for all |
8267 | // kind of forbidden type messages on unavailable functions. |
8268 | if (FD->hasAttr<UnavailableAttr>() && |
8269 | DD.getForbiddenTypeDiagnostic() == |
8270 | diag::err_arc_array_param_no_ownership) { |
8271 | DD.Triggered = true; |
8272 | return; |
8273 | } |
8274 | } |
8275 | |
8276 | S.Diag(Loc: DD.Loc, DiagID: DD.getForbiddenTypeDiagnostic()) |
8277 | << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument(); |
8278 | DD.Triggered = true; |
8279 | } |
8280 | |
8281 | |
8282 | void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) { |
8283 | assert(DelayedDiagnostics.getCurrentPool()); |
8284 | DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool(); |
8285 | DelayedDiagnostics.popWithoutEmitting(state); |
8286 | |
8287 | // When delaying diagnostics to run in the context of a parsed |
8288 | // declaration, we only want to actually emit anything if parsing |
8289 | // succeeds. |
8290 | if (!decl) return; |
8291 | |
8292 | // We emit all the active diagnostics in this pool or any of its |
8293 | // parents. In general, we'll get one pool for the decl spec |
8294 | // and a child pool for each declarator; in a decl group like: |
8295 | // deprecated_typedef foo, *bar, baz(); |
8296 | // only the declarator pops will be passed decls. This is correct; |
8297 | // we really do need to consider delayed diagnostics from the decl spec |
8298 | // for each of the different declarations. |
8299 | const DelayedDiagnosticPool *pool = &poppedPool; |
8300 | do { |
8301 | bool AnyAccessFailures = false; |
8302 | for (DelayedDiagnosticPool::pool_iterator |
8303 | i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) { |
8304 | // This const_cast is a bit lame. Really, Triggered should be mutable. |
8305 | DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i); |
8306 | if (diag.Triggered) |
8307 | continue; |
8308 | |
8309 | switch (diag.Kind) { |
8310 | case DelayedDiagnostic::Availability: |
8311 | // Don't bother giving deprecation/unavailable diagnostics if |
8312 | // the decl is invalid. |
8313 | if (!decl->isInvalidDecl()) |
8314 | handleDelayedAvailabilityCheck(DD&: diag, Ctx: decl); |
8315 | break; |
8316 | |
8317 | case DelayedDiagnostic::Access: |
8318 | // Only produce one access control diagnostic for a structured binding |
8319 | // declaration: we don't need to tell the user that all the fields are |
8320 | // inaccessible one at a time. |
8321 | if (AnyAccessFailures && isa<DecompositionDecl>(Val: decl)) |
8322 | continue; |
8323 | HandleDelayedAccessCheck(DD&: diag, Ctx: decl); |
8324 | if (diag.Triggered) |
8325 | AnyAccessFailures = true; |
8326 | break; |
8327 | |
8328 | case DelayedDiagnostic::ForbiddenType: |
8329 | handleDelayedForbiddenType(S&: *this, DD&: diag, D: decl); |
8330 | break; |
8331 | } |
8332 | } |
8333 | } while ((pool = pool->getParent())); |
8334 | } |
8335 | |
8336 | void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) { |
8337 | DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool(); |
8338 | assert(curPool && "re-emitting in undelayed context not supported" ); |
8339 | curPool->steal(pool); |
8340 | } |
8341 | |