| 1 | //=== SemaFunctionEffects.cpp - Sema handling of function effects ---------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements Sema handling of function effects. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/AST/Decl.h" |
| 14 | #include "clang/AST/DeclCXX.h" |
| 15 | #include "clang/AST/DynamicRecursiveASTVisitor.h" |
| 16 | #include "clang/AST/ExprObjC.h" |
| 17 | #include "clang/AST/Stmt.h" |
| 18 | #include "clang/AST/StmtObjC.h" |
| 19 | #include "clang/AST/Type.h" |
| 20 | #include "clang/Basic/SourceManager.h" |
| 21 | #include "clang/Sema/SemaInternal.h" |
| 22 | |
| 23 | #define DEBUG_TYPE "effectanalysis" |
| 24 | |
| 25 | using namespace clang; |
| 26 | |
| 27 | namespace { |
| 28 | |
| 29 | enum class ViolationID : uint8_t { |
| 30 | None = 0, // Sentinel for an empty Violation. |
| 31 | // These first 5 map to a %select{} in one of several FunctionEffects |
| 32 | // diagnostics, e.g. warn_func_effect_violation. |
| 33 | BaseDiagnosticIndex, |
| 34 | AllocatesMemory = BaseDiagnosticIndex, |
| 35 | ThrowsOrCatchesExceptions, |
| 36 | HasStaticLocalVariable, |
| 37 | AccessesThreadLocalVariable, |
| 38 | AccessesObjCMethodOrProperty, |
| 39 | |
| 40 | // These only apply to callees, where the analysis stops at the Decl. |
| 41 | DeclDisallowsInference, |
| 42 | |
| 43 | // These both apply to indirect calls. The difference is that sometimes |
| 44 | // we have an actual Decl (generally a variable) which is the function |
| 45 | // pointer being called, and sometimes, typically due to a cast, we only |
| 46 | // have an expression. |
| 47 | CallsDeclWithoutEffect, |
| 48 | CallsExprWithoutEffect, |
| 49 | }; |
| 50 | |
| 51 | // Information about the AST context in which a violation was found, so |
| 52 | // that diagnostics can point to the correct source. |
| 53 | class ViolationSite { |
| 54 | public: |
| 55 | enum class Kind : uint8_t { |
| 56 | Default, // Function body. |
| 57 | MemberInitializer, |
| 58 | DefaultArgExpr |
| 59 | }; |
| 60 | |
| 61 | private: |
| 62 | llvm::PointerIntPair<CXXDefaultArgExpr *, 2, Kind> Impl; |
| 63 | |
| 64 | public: |
| 65 | ViolationSite() = default; |
| 66 | |
| 67 | explicit ViolationSite(CXXDefaultArgExpr *E) |
| 68 | : Impl(E, Kind::DefaultArgExpr) {} |
| 69 | |
| 70 | Kind kind() const { return static_cast<Kind>(Impl.getInt()); } |
| 71 | CXXDefaultArgExpr *defaultArgExpr() const { return Impl.getPointer(); } |
| 72 | |
| 73 | void setKind(Kind K) { Impl.setPointerAndInt(PtrVal: nullptr, IntVal: K); } |
| 74 | }; |
| 75 | |
| 76 | // Represents a violation of the rules, potentially for the entire duration of |
| 77 | // the analysis phase, in order to refer to it when explaining why a caller has |
| 78 | // been made unsafe by a callee. Can be transformed into either a Diagnostic |
| 79 | // (warning or a note), depending on whether the violation pertains to a |
| 80 | // function failing to be verifed as holding an effect vs. a function failing to |
| 81 | // be inferred as holding that effect. |
| 82 | struct Violation { |
| 83 | FunctionEffect Effect; |
| 84 | std::optional<FunctionEffect> |
| 85 | CalleeEffectPreventingInference; // Only for certain IDs; can be nullopt. |
| 86 | ViolationID ID = ViolationID::None; |
| 87 | ViolationSite Site; |
| 88 | SourceLocation Loc; |
| 89 | const Decl *Callee = |
| 90 | nullptr; // Only valid for ViolationIDs Calls{Decl,Expr}WithoutEffect. |
| 91 | |
| 92 | Violation(FunctionEffect Effect, ViolationID ID, ViolationSite VS, |
| 93 | SourceLocation Loc, const Decl *Callee = nullptr, |
| 94 | std::optional<FunctionEffect> CalleeEffect = std::nullopt) |
| 95 | : Effect(Effect), CalleeEffectPreventingInference(CalleeEffect), ID(ID), |
| 96 | Site(VS), Loc(Loc), Callee(Callee) {} |
| 97 | |
| 98 | unsigned diagnosticSelectIndex() const { |
| 99 | return unsigned(ID) - unsigned(ViolationID::BaseDiagnosticIndex); |
| 100 | } |
| 101 | }; |
| 102 | |
| 103 | enum class SpecialFuncType : uint8_t { None, OperatorNew, OperatorDelete }; |
| 104 | enum class CallableType : uint8_t { |
| 105 | // Unknown: probably function pointer. |
| 106 | Unknown, |
| 107 | Function, |
| 108 | Virtual, |
| 109 | Block |
| 110 | }; |
| 111 | |
| 112 | // Return whether a function's effects CAN be verified. |
| 113 | // The question of whether it SHOULD be verified is independent. |
| 114 | static bool functionIsVerifiable(const FunctionDecl *FD) { |
| 115 | if (FD->isTrivial()) { |
| 116 | // Otherwise `struct x { int a; };` would have an unverifiable default |
| 117 | // constructor. |
| 118 | return true; |
| 119 | } |
| 120 | return FD->hasBody(); |
| 121 | } |
| 122 | |
| 123 | static bool isNoexcept(const FunctionDecl *FD) { |
| 124 | const auto *FPT = FD->getType()->getAs<FunctionProtoType>(); |
| 125 | return FPT && (FPT->isNothrow() || FD->hasAttr<NoThrowAttr>()); |
| 126 | } |
| 127 | |
| 128 | // This list is probably incomplete. |
| 129 | // FIXME: Investigate: |
| 130 | // __builtin_eh_return? |
| 131 | // __builtin_allow_runtime_check? |
| 132 | // __builtin_unwind_init and other similar things that sound exception-related. |
| 133 | // va_copy? |
| 134 | // coroutines? |
| 135 | static FunctionEffectKindSet getBuiltinFunctionEffects(unsigned BuiltinID) { |
| 136 | FunctionEffectKindSet Result; |
| 137 | |
| 138 | switch (BuiltinID) { |
| 139 | case 0: // Not builtin. |
| 140 | default: // By default, builtins have no known effects. |
| 141 | break; |
| 142 | |
| 143 | // These allocate/deallocate heap memory. |
| 144 | case Builtin::ID::BI__builtin_calloc: |
| 145 | case Builtin::ID::BI__builtin_malloc: |
| 146 | case Builtin::ID::BI__builtin_realloc: |
| 147 | case Builtin::ID::BI__builtin_free: |
| 148 | case Builtin::ID::BI__builtin_operator_delete: |
| 149 | case Builtin::ID::BI__builtin_operator_new: |
| 150 | case Builtin::ID::BIaligned_alloc: |
| 151 | case Builtin::ID::BIcalloc: |
| 152 | case Builtin::ID::BImalloc: |
| 153 | case Builtin::ID::BImemalign: |
| 154 | case Builtin::ID::BIrealloc: |
| 155 | case Builtin::ID::BIfree: |
| 156 | |
| 157 | case Builtin::ID::BIfopen: |
| 158 | case Builtin::ID::BIpthread_create: |
| 159 | case Builtin::ID::BI_Block_object_dispose: |
| 160 | Result.insert(Effect: FunctionEffect(FunctionEffect::Kind::Allocating)); |
| 161 | break; |
| 162 | |
| 163 | // These block in some other way than allocating memory. |
| 164 | // longjmp() and friends are presumed unsafe because they are the moral |
| 165 | // equivalent of throwing a C++ exception, which is unsafe. |
| 166 | case Builtin::ID::BIlongjmp: |
| 167 | case Builtin::ID::BI_longjmp: |
| 168 | case Builtin::ID::BIsiglongjmp: |
| 169 | case Builtin::ID::BI__builtin_longjmp: |
| 170 | case Builtin::ID::BIobjc_exception_throw: |
| 171 | |
| 172 | // Objective-C runtime. |
| 173 | case Builtin::ID::BIobjc_msgSend: |
| 174 | case Builtin::ID::BIobjc_msgSend_fpret: |
| 175 | case Builtin::ID::BIobjc_msgSend_fp2ret: |
| 176 | case Builtin::ID::BIobjc_msgSend_stret: |
| 177 | case Builtin::ID::BIobjc_msgSendSuper: |
| 178 | case Builtin::ID::BIobjc_getClass: |
| 179 | case Builtin::ID::BIobjc_getMetaClass: |
| 180 | case Builtin::ID::BIobjc_enumerationMutation: |
| 181 | case Builtin::ID::BIobjc_assign_ivar: |
| 182 | case Builtin::ID::BIobjc_assign_global: |
| 183 | case Builtin::ID::BIobjc_sync_enter: |
| 184 | case Builtin::ID::BIobjc_sync_exit: |
| 185 | case Builtin::ID::BINSLog: |
| 186 | case Builtin::ID::BINSLogv: |
| 187 | |
| 188 | // stdio.h |
| 189 | case Builtin::ID::BIfread: |
| 190 | case Builtin::ID::BIfwrite: |
| 191 | |
| 192 | // stdio.h: printf family. |
| 193 | case Builtin::ID::BIprintf: |
| 194 | case Builtin::ID::BI__builtin_printf: |
| 195 | case Builtin::ID::BIfprintf: |
| 196 | case Builtin::ID::BIsnprintf: |
| 197 | case Builtin::ID::BIsprintf: |
| 198 | case Builtin::ID::BIvprintf: |
| 199 | case Builtin::ID::BIvfprintf: |
| 200 | case Builtin::ID::BIvsnprintf: |
| 201 | case Builtin::ID::BIvsprintf: |
| 202 | |
| 203 | // stdio.h: scanf family. |
| 204 | case Builtin::ID::BIscanf: |
| 205 | case Builtin::ID::BIfscanf: |
| 206 | case Builtin::ID::BIsscanf: |
| 207 | case Builtin::ID::BIvscanf: |
| 208 | case Builtin::ID::BIvfscanf: |
| 209 | case Builtin::ID::BIvsscanf: |
| 210 | Result.insert(Effect: FunctionEffect(FunctionEffect::Kind::Blocking)); |
| 211 | break; |
| 212 | } |
| 213 | |
| 214 | return Result; |
| 215 | } |
| 216 | |
| 217 | // Transitory, more extended information about a callable, which can be a |
| 218 | // function, block, or function pointer. |
| 219 | struct CallableInfo { |
| 220 | // CDecl holds the function's definition, if any. |
| 221 | // FunctionDecl if CallableType::Function or Virtual |
| 222 | // BlockDecl if CallableType::Block |
| 223 | const Decl *CDecl; |
| 224 | |
| 225 | // Remember whether the callable is a function, block, virtual method, |
| 226 | // or (presumed) function pointer. |
| 227 | CallableType CType = CallableType::Unknown; |
| 228 | |
| 229 | // Remember whether the callable is an operator new or delete function, |
| 230 | // so that calls to them are reported more meaningfully, as memory |
| 231 | // allocations. |
| 232 | SpecialFuncType FuncType = SpecialFuncType::None; |
| 233 | |
| 234 | // We inevitably want to know the callable's declared effects, so cache them. |
| 235 | FunctionEffectKindSet Effects; |
| 236 | |
| 237 | CallableInfo(const Decl &CD, SpecialFuncType FT = SpecialFuncType::None) |
| 238 | : CDecl(&CD), FuncType(FT) { |
| 239 | FunctionEffectsRef DeclEffects; |
| 240 | if (auto *FD = dyn_cast<FunctionDecl>(Val: CDecl)) { |
| 241 | // Use the function's definition, if any. |
| 242 | if (const FunctionDecl *Def = FD->getDefinition()) |
| 243 | CDecl = FD = Def; |
| 244 | CType = CallableType::Function; |
| 245 | if (auto *Method = dyn_cast<CXXMethodDecl>(Val: FD); |
| 246 | Method && Method->isVirtual()) |
| 247 | CType = CallableType::Virtual; |
| 248 | DeclEffects = FD->getFunctionEffects(); |
| 249 | } else if (auto *BD = dyn_cast<BlockDecl>(Val: CDecl)) { |
| 250 | CType = CallableType::Block; |
| 251 | DeclEffects = BD->getFunctionEffects(); |
| 252 | } else if (auto *VD = dyn_cast<ValueDecl>(Val: CDecl)) { |
| 253 | // ValueDecl is function, enum, or variable, so just look at its type. |
| 254 | DeclEffects = FunctionEffectsRef::get(QT: VD->getType()); |
| 255 | } |
| 256 | Effects = FunctionEffectKindSet(DeclEffects); |
| 257 | } |
| 258 | |
| 259 | CallableType type() const { return CType; } |
| 260 | |
| 261 | bool isCalledDirectly() const { |
| 262 | return CType == CallableType::Function || CType == CallableType::Block; |
| 263 | } |
| 264 | |
| 265 | bool isVerifiable() const { |
| 266 | switch (CType) { |
| 267 | case CallableType::Unknown: |
| 268 | case CallableType::Virtual: |
| 269 | return false; |
| 270 | case CallableType::Block: |
| 271 | return true; |
| 272 | case CallableType::Function: |
| 273 | return functionIsVerifiable(FD: dyn_cast<FunctionDecl>(Val: CDecl)); |
| 274 | } |
| 275 | llvm_unreachable("undefined CallableType" ); |
| 276 | } |
| 277 | |
| 278 | /// Generate a name for logging and diagnostics. |
| 279 | std::string getNameForDiagnostic(Sema &S) const { |
| 280 | std::string Name; |
| 281 | llvm::raw_string_ostream OS(Name); |
| 282 | |
| 283 | if (auto *FD = dyn_cast<FunctionDecl>(Val: CDecl)) |
| 284 | FD->getNameForDiagnostic(OS, Policy: S.getPrintingPolicy(), |
| 285 | /*Qualified=*/true); |
| 286 | else if (auto *BD = dyn_cast<BlockDecl>(Val: CDecl)) |
| 287 | OS << "(block " << BD->getBlockManglingNumber() << ")" ; |
| 288 | else if (auto *VD = dyn_cast<NamedDecl>(Val: CDecl)) |
| 289 | VD->printQualifiedName(OS); |
| 290 | return Name; |
| 291 | } |
| 292 | }; |
| 293 | |
| 294 | // ---------- |
| 295 | // Map effects to single Violations, to hold the first (of potentially many) |
| 296 | // violations pertaining to an effect, per function. |
| 297 | class EffectToViolationMap { |
| 298 | // Since we currently only have a tiny number of effects (typically no more |
| 299 | // than 1), use a SmallVector with an inline capacity of 1. Since it |
| 300 | // is often empty, use a unique_ptr to the SmallVector. |
| 301 | // Note that Violation itself contains a FunctionEffect which is the key. |
| 302 | // FIXME: Is there a way to simplify this using existing data structures? |
| 303 | using ImplVec = llvm::SmallVector<Violation, 1>; |
| 304 | std::unique_ptr<ImplVec> Impl; |
| 305 | |
| 306 | public: |
| 307 | // Insert a new Violation if we do not already have one for its effect. |
| 308 | void maybeInsert(const Violation &Viol) { |
| 309 | if (Impl == nullptr) |
| 310 | Impl = std::make_unique<ImplVec>(); |
| 311 | else if (lookup(Key: Viol.Effect) != nullptr) |
| 312 | return; |
| 313 | |
| 314 | Impl->push_back(Elt: Viol); |
| 315 | } |
| 316 | |
| 317 | const Violation *lookup(FunctionEffect Key) { |
| 318 | if (Impl == nullptr) |
| 319 | return nullptr; |
| 320 | |
| 321 | auto *Iter = llvm::find_if( |
| 322 | Range&: *Impl, P: [&](const auto &Item) { return Item.Effect == Key; }); |
| 323 | return Iter != Impl->end() ? &*Iter : nullptr; |
| 324 | } |
| 325 | |
| 326 | size_t size() const { return Impl ? Impl->size() : 0; } |
| 327 | }; |
| 328 | |
| 329 | // ---------- |
| 330 | // State pertaining to a function whose AST is walked and whose effect analysis |
| 331 | // is dependent on a subsequent analysis of other functions. |
| 332 | class PendingFunctionAnalysis { |
| 333 | friend class CompleteFunctionAnalysis; |
| 334 | |
| 335 | public: |
| 336 | struct DirectCall { |
| 337 | const Decl *Callee; |
| 338 | SourceLocation CallLoc; |
| 339 | // Not all recursive calls are detected, just enough |
| 340 | // to break cycles. |
| 341 | bool Recursed = false; |
| 342 | ViolationSite VSite; |
| 343 | |
| 344 | DirectCall(const Decl *D, SourceLocation CallLoc, ViolationSite VSite) |
| 345 | : Callee(D), CallLoc(CallLoc), VSite(VSite) {} |
| 346 | }; |
| 347 | |
| 348 | // We always have two disjoint sets of effects to verify: |
| 349 | // 1. Effects declared explicitly by this function. |
| 350 | // 2. All other inferrable effects needing verification. |
| 351 | FunctionEffectKindSet DeclaredVerifiableEffects; |
| 352 | FunctionEffectKindSet EffectsToInfer; |
| 353 | |
| 354 | private: |
| 355 | // Violations pertaining to the function's explicit effects. |
| 356 | SmallVector<Violation, 0> ViolationsForExplicitEffects; |
| 357 | |
| 358 | // Violations pertaining to other, non-explicit, inferrable effects. |
| 359 | EffectToViolationMap InferrableEffectToFirstViolation; |
| 360 | |
| 361 | // These unverified direct calls are what keeps the analysis "pending", |
| 362 | // until the callees can be verified. |
| 363 | SmallVector<DirectCall, 0> UnverifiedDirectCalls; |
| 364 | |
| 365 | public: |
| 366 | PendingFunctionAnalysis(Sema &S, const CallableInfo &CInfo, |
| 367 | FunctionEffectKindSet AllInferrableEffectsToVerify) |
| 368 | : DeclaredVerifiableEffects(CInfo.Effects) { |
| 369 | // Check for effects we are not allowed to infer. |
| 370 | FunctionEffectKindSet InferrableEffects; |
| 371 | |
| 372 | for (FunctionEffect effect : AllInferrableEffectsToVerify) { |
| 373 | std::optional<FunctionEffect> ProblemCalleeEffect = |
| 374 | effect.effectProhibitingInference(Callee: *CInfo.CDecl, CalleeFX: CInfo.Effects); |
| 375 | if (!ProblemCalleeEffect) |
| 376 | InferrableEffects.insert(Effect: effect); |
| 377 | else { |
| 378 | // Add a Violation for this effect if a caller were to |
| 379 | // try to infer it. |
| 380 | InferrableEffectToFirstViolation.maybeInsert(Viol: Violation( |
| 381 | effect, ViolationID::DeclDisallowsInference, ViolationSite{}, |
| 382 | CInfo.CDecl->getLocation(), nullptr, ProblemCalleeEffect)); |
| 383 | } |
| 384 | } |
| 385 | // InferrableEffects is now the set of inferrable effects which are not |
| 386 | // prohibited. |
| 387 | EffectsToInfer = FunctionEffectKindSet::difference( |
| 388 | LHS: InferrableEffects, RHS: DeclaredVerifiableEffects); |
| 389 | } |
| 390 | |
| 391 | // Hide the way that Violations for explicitly required effects vs. inferred |
| 392 | // ones are handled differently. |
| 393 | void checkAddViolation(bool Inferring, const Violation &NewViol) { |
| 394 | if (!Inferring) |
| 395 | ViolationsForExplicitEffects.push_back(Elt: NewViol); |
| 396 | else |
| 397 | InferrableEffectToFirstViolation.maybeInsert(Viol: NewViol); |
| 398 | } |
| 399 | |
| 400 | void addUnverifiedDirectCall(const Decl *D, SourceLocation CallLoc, |
| 401 | ViolationSite VSite) { |
| 402 | UnverifiedDirectCalls.emplace_back(Args&: D, Args&: CallLoc, Args&: VSite); |
| 403 | } |
| 404 | |
| 405 | // Analysis is complete when there are no unverified direct calls. |
| 406 | bool isComplete() const { return UnverifiedDirectCalls.empty(); } |
| 407 | |
| 408 | const Violation *violationForInferrableEffect(FunctionEffect effect) { |
| 409 | return InferrableEffectToFirstViolation.lookup(Key: effect); |
| 410 | } |
| 411 | |
| 412 | // Mutable because caller may need to set a DirectCall's Recursing flag. |
| 413 | MutableArrayRef<DirectCall> unverifiedCalls() { |
| 414 | assert(!isComplete()); |
| 415 | return UnverifiedDirectCalls; |
| 416 | } |
| 417 | |
| 418 | ArrayRef<Violation> getSortedViolationsForExplicitEffects(SourceManager &SM) { |
| 419 | if (!ViolationsForExplicitEffects.empty()) |
| 420 | llvm::sort(C&: ViolationsForExplicitEffects, |
| 421 | Comp: [&SM](const Violation &LHS, const Violation &RHS) { |
| 422 | return SM.isBeforeInTranslationUnit(LHS: LHS.Loc, RHS: RHS.Loc); |
| 423 | }); |
| 424 | return ViolationsForExplicitEffects; |
| 425 | } |
| 426 | |
| 427 | void dump(Sema &SemaRef, llvm::raw_ostream &OS) const { |
| 428 | OS << "Pending: Declared " ; |
| 429 | DeclaredVerifiableEffects.dump(OS); |
| 430 | OS << ", " << ViolationsForExplicitEffects.size() << " violations; " ; |
| 431 | OS << " Infer " ; |
| 432 | EffectsToInfer.dump(OS); |
| 433 | OS << ", " << InferrableEffectToFirstViolation.size() << " violations" ; |
| 434 | if (!UnverifiedDirectCalls.empty()) { |
| 435 | OS << "; Calls: " ; |
| 436 | for (const DirectCall &Call : UnverifiedDirectCalls) { |
| 437 | CallableInfo CI(*Call.Callee); |
| 438 | OS << " " << CI.getNameForDiagnostic(S&: SemaRef); |
| 439 | } |
| 440 | } |
| 441 | OS << "\n" ; |
| 442 | } |
| 443 | }; |
| 444 | |
| 445 | // ---------- |
| 446 | class CompleteFunctionAnalysis { |
| 447 | // Current size: 2 pointers |
| 448 | public: |
| 449 | // Has effects which are both the declared ones -- not to be inferred -- plus |
| 450 | // ones which have been successfully inferred. These are all considered |
| 451 | // "verified" for the purposes of callers; any issue with verifying declared |
| 452 | // effects has already been reported and is not the problem of any caller. |
| 453 | FunctionEffectKindSet VerifiedEffects; |
| 454 | |
| 455 | private: |
| 456 | // This is used to generate notes about failed inference. |
| 457 | EffectToViolationMap InferrableEffectToFirstViolation; |
| 458 | |
| 459 | public: |
| 460 | // The incoming Pending analysis is consumed (member(s) are moved-from). |
| 461 | CompleteFunctionAnalysis(ASTContext &Ctx, PendingFunctionAnalysis &&Pending, |
| 462 | FunctionEffectKindSet DeclaredEffects, |
| 463 | FunctionEffectKindSet AllInferrableEffectsToVerify) |
| 464 | : VerifiedEffects(DeclaredEffects) { |
| 465 | for (FunctionEffect effect : AllInferrableEffectsToVerify) |
| 466 | if (Pending.violationForInferrableEffect(effect) == nullptr) |
| 467 | VerifiedEffects.insert(Effect: effect); |
| 468 | |
| 469 | InferrableEffectToFirstViolation = |
| 470 | std::move(Pending.InferrableEffectToFirstViolation); |
| 471 | } |
| 472 | |
| 473 | const Violation *firstViolationForEffect(FunctionEffect Effect) { |
| 474 | return InferrableEffectToFirstViolation.lookup(Key: Effect); |
| 475 | } |
| 476 | |
| 477 | void dump(llvm::raw_ostream &OS) const { |
| 478 | OS << "Complete: Verified " ; |
| 479 | VerifiedEffects.dump(OS); |
| 480 | OS << "; Infer " ; |
| 481 | OS << InferrableEffectToFirstViolation.size() << " violations\n" ; |
| 482 | } |
| 483 | }; |
| 484 | |
| 485 | // ========== |
| 486 | class Analyzer { |
| 487 | Sema &S; |
| 488 | |
| 489 | // Subset of Sema.AllEffectsToVerify |
| 490 | FunctionEffectKindSet AllInferrableEffectsToVerify; |
| 491 | |
| 492 | using FuncAnalysisPtr = |
| 493 | llvm::PointerUnion<PendingFunctionAnalysis *, CompleteFunctionAnalysis *>; |
| 494 | |
| 495 | // Map all Decls analyzed to FuncAnalysisPtr. Pending state is larger |
| 496 | // than complete state, so use different objects to represent them. |
| 497 | // The state pointers are owned by the container. |
| 498 | class AnalysisMap : llvm::DenseMap<const Decl *, FuncAnalysisPtr> { |
| 499 | using Base = llvm::DenseMap<const Decl *, FuncAnalysisPtr>; |
| 500 | |
| 501 | public: |
| 502 | ~AnalysisMap(); |
| 503 | |
| 504 | // Use non-public inheritance in order to maintain the invariant |
| 505 | // that lookups and insertions are via the canonical Decls. |
| 506 | |
| 507 | FuncAnalysisPtr lookup(const Decl *Key) const { |
| 508 | return Base::lookup(Val: Key->getCanonicalDecl()); |
| 509 | } |
| 510 | |
| 511 | FuncAnalysisPtr &operator[](const Decl *Key) { |
| 512 | return Base::operator[](Key: Key->getCanonicalDecl()); |
| 513 | } |
| 514 | |
| 515 | /// Shortcut for the case where we only care about completed analysis. |
| 516 | CompleteFunctionAnalysis *completedAnalysisForDecl(const Decl *D) const { |
| 517 | if (FuncAnalysisPtr AP = lookup(Key: D); |
| 518 | isa_and_nonnull<CompleteFunctionAnalysis *>(Val: AP)) |
| 519 | return cast<CompleteFunctionAnalysis *>(Val&: AP); |
| 520 | return nullptr; |
| 521 | } |
| 522 | |
| 523 | void dump(Sema &SemaRef, llvm::raw_ostream &OS) { |
| 524 | OS << "\nAnalysisMap:\n" ; |
| 525 | for (const auto &item : *this) { |
| 526 | CallableInfo CI(*item.first); |
| 527 | const auto AP = item.second; |
| 528 | OS << item.first << " " << CI.getNameForDiagnostic(S&: SemaRef) << " : " ; |
| 529 | if (AP.isNull()) { |
| 530 | OS << "null\n" ; |
| 531 | } else if (auto *CFA = dyn_cast<CompleteFunctionAnalysis *>(Val: AP)) { |
| 532 | OS << CFA << " " ; |
| 533 | CFA->dump(OS); |
| 534 | } else if (auto *PFA = dyn_cast<PendingFunctionAnalysis *>(Val: AP)) { |
| 535 | OS << PFA << " " ; |
| 536 | PFA->dump(SemaRef, OS); |
| 537 | } else |
| 538 | llvm_unreachable("never" ); |
| 539 | } |
| 540 | OS << "---\n" ; |
| 541 | } |
| 542 | }; |
| 543 | AnalysisMap DeclAnalysis; |
| 544 | |
| 545 | public: |
| 546 | Analyzer(Sema &S) : S(S) {} |
| 547 | |
| 548 | void run(const TranslationUnitDecl &TU) { |
| 549 | // Gather all of the effects to be verified to see what operations need to |
| 550 | // be checked, and to see which ones are inferrable. |
| 551 | for (FunctionEffect Effect : S.AllEffectsToVerify) { |
| 552 | const FunctionEffect::Flags Flags = Effect.flags(); |
| 553 | if (Flags & FunctionEffect::FE_InferrableOnCallees) |
| 554 | AllInferrableEffectsToVerify.insert(Effect); |
| 555 | } |
| 556 | LLVM_DEBUG(llvm::dbgs() << "AllInferrableEffectsToVerify: " ; |
| 557 | AllInferrableEffectsToVerify.dump(llvm::dbgs()); |
| 558 | llvm::dbgs() << "\n" ;); |
| 559 | |
| 560 | // We can use DeclsWithEffectsToVerify as a stack for a |
| 561 | // depth-first traversal; there's no need for a second container. But first, |
| 562 | // reverse it, so when working from the end, Decls are verified in the order |
| 563 | // they are declared. |
| 564 | SmallVector<const Decl *> &VerificationQueue = S.DeclsWithEffectsToVerify; |
| 565 | std::reverse(first: VerificationQueue.begin(), last: VerificationQueue.end()); |
| 566 | |
| 567 | while (!VerificationQueue.empty()) { |
| 568 | const Decl *D = VerificationQueue.back(); |
| 569 | if (FuncAnalysisPtr AP = DeclAnalysis.lookup(Key: D)) { |
| 570 | if (auto *Pending = dyn_cast<PendingFunctionAnalysis *>(Val&: AP)) { |
| 571 | // All children have been traversed; finish analysis. |
| 572 | finishPendingAnalysis(D, Pending); |
| 573 | } |
| 574 | VerificationQueue.pop_back(); |
| 575 | continue; |
| 576 | } |
| 577 | |
| 578 | // Not previously visited; begin a new analysis for this Decl. |
| 579 | PendingFunctionAnalysis *Pending = verifyDecl(D); |
| 580 | if (Pending == nullptr) { |
| 581 | // Completed now. |
| 582 | VerificationQueue.pop_back(); |
| 583 | continue; |
| 584 | } |
| 585 | |
| 586 | // Analysis remains pending because there are direct callees to be |
| 587 | // verified first. Push them onto the queue. |
| 588 | for (PendingFunctionAnalysis::DirectCall &Call : |
| 589 | Pending->unverifiedCalls()) { |
| 590 | FuncAnalysisPtr AP = DeclAnalysis.lookup(Key: Call.Callee); |
| 591 | if (AP.isNull()) { |
| 592 | VerificationQueue.push_back(Elt: Call.Callee); |
| 593 | continue; |
| 594 | } |
| 595 | |
| 596 | // This indicates recursion (not necessarily direct). For the |
| 597 | // purposes of effect analysis, we can just ignore it since |
| 598 | // no effects forbid recursion. |
| 599 | assert(isa<PendingFunctionAnalysis *>(AP)); |
| 600 | Call.Recursed = true; |
| 601 | } |
| 602 | } |
| 603 | } |
| 604 | |
| 605 | private: |
| 606 | // Verify a single Decl. Return the pending structure if that was the result, |
| 607 | // else null. This method must not recurse. |
| 608 | PendingFunctionAnalysis *verifyDecl(const Decl *D) { |
| 609 | CallableInfo CInfo(*D); |
| 610 | bool isExternC = false; |
| 611 | |
| 612 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) |
| 613 | isExternC = FD->getCanonicalDecl()->isExternCContext(); |
| 614 | |
| 615 | // For C++, with non-extern "C" linkage only - if any of the Decl's declared |
| 616 | // effects forbid throwing (e.g. nonblocking) then the function should also |
| 617 | // be declared noexcept. |
| 618 | if (S.getLangOpts().CPlusPlus && !isExternC) { |
| 619 | for (FunctionEffect Effect : CInfo.Effects) { |
| 620 | if (!(Effect.flags() & FunctionEffect::FE_ExcludeThrow)) |
| 621 | continue; |
| 622 | |
| 623 | bool IsNoexcept = false; |
| 624 | if (auto *FD = D->getAsFunction()) { |
| 625 | IsNoexcept = isNoexcept(FD); |
| 626 | } else if (auto *BD = dyn_cast<BlockDecl>(Val: D)) { |
| 627 | if (auto *TSI = BD->getSignatureAsWritten()) { |
| 628 | auto *FPT = TSI->getType()->castAs<FunctionProtoType>(); |
| 629 | IsNoexcept = FPT->isNothrow() || BD->hasAttr<NoThrowAttr>(); |
| 630 | } |
| 631 | } |
| 632 | if (!IsNoexcept) |
| 633 | S.Diag(Loc: D->getBeginLoc(), DiagID: diag::warn_perf_constraint_implies_noexcept) |
| 634 | << GetCallableDeclKind(D, V: nullptr) << Effect.name(); |
| 635 | break; |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | // Build a PendingFunctionAnalysis on the stack. If it turns out to be |
| 640 | // complete, we'll have avoided a heap allocation; if it's incomplete, it's |
| 641 | // a fairly trivial move to a heap-allocated object. |
| 642 | PendingFunctionAnalysis FAnalysis(S, CInfo, AllInferrableEffectsToVerify); |
| 643 | |
| 644 | LLVM_DEBUG(llvm::dbgs() |
| 645 | << "\nVerifying " << CInfo.getNameForDiagnostic(S) << " " ; |
| 646 | FAnalysis.dump(S, llvm::dbgs());); |
| 647 | |
| 648 | FunctionBodyASTVisitor Visitor(*this, FAnalysis, CInfo); |
| 649 | |
| 650 | Visitor.run(); |
| 651 | if (FAnalysis.isComplete()) { |
| 652 | completeAnalysis(CInfo, Pending: std::move(FAnalysis)); |
| 653 | return nullptr; |
| 654 | } |
| 655 | // Move the pending analysis to the heap and save it in the map. |
| 656 | PendingFunctionAnalysis *PendingPtr = |
| 657 | new PendingFunctionAnalysis(std::move(FAnalysis)); |
| 658 | DeclAnalysis[D] = PendingPtr; |
| 659 | LLVM_DEBUG(llvm::dbgs() << "inserted pending " << PendingPtr << "\n" ; |
| 660 | DeclAnalysis.dump(S, llvm::dbgs());); |
| 661 | return PendingPtr; |
| 662 | } |
| 663 | |
| 664 | // Consume PendingFunctionAnalysis, create with it a CompleteFunctionAnalysis, |
| 665 | // inserted in the container. |
| 666 | void completeAnalysis(const CallableInfo &CInfo, |
| 667 | PendingFunctionAnalysis &&Pending) { |
| 668 | if (ArrayRef<Violation> Viols = |
| 669 | Pending.getSortedViolationsForExplicitEffects(SM&: S.getSourceManager()); |
| 670 | !Viols.empty()) |
| 671 | emitDiagnostics(Viols, CInfo); |
| 672 | |
| 673 | CompleteFunctionAnalysis *CompletePtr = new CompleteFunctionAnalysis( |
| 674 | S.getASTContext(), std::move(Pending), CInfo.Effects, |
| 675 | AllInferrableEffectsToVerify); |
| 676 | DeclAnalysis[CInfo.CDecl] = CompletePtr; |
| 677 | LLVM_DEBUG(llvm::dbgs() << "inserted complete " << CompletePtr << "\n" ; |
| 678 | DeclAnalysis.dump(S, llvm::dbgs());); |
| 679 | } |
| 680 | |
| 681 | // Called after all direct calls requiring inference have been found -- or |
| 682 | // not. Repeats calls to FunctionBodyASTVisitor::followCall() but without |
| 683 | // the possibility of inference. Deletes Pending. |
| 684 | void finishPendingAnalysis(const Decl *D, PendingFunctionAnalysis *Pending) { |
| 685 | CallableInfo Caller(*D); |
| 686 | LLVM_DEBUG(llvm::dbgs() << "finishPendingAnalysis for " |
| 687 | << Caller.getNameForDiagnostic(S) << " : " ; |
| 688 | Pending->dump(S, llvm::dbgs()); llvm::dbgs() << "\n" ;); |
| 689 | for (const PendingFunctionAnalysis::DirectCall &Call : |
| 690 | Pending->unverifiedCalls()) { |
| 691 | if (Call.Recursed) |
| 692 | continue; |
| 693 | |
| 694 | CallableInfo Callee(*Call.Callee); |
| 695 | followCall(Caller, PFA&: *Pending, Callee, CallLoc: Call.CallLoc, |
| 696 | /*AssertNoFurtherInference=*/true, VSite: Call.VSite); |
| 697 | } |
| 698 | completeAnalysis(CInfo: Caller, Pending: std::move(*Pending)); |
| 699 | delete Pending; |
| 700 | } |
| 701 | |
| 702 | // Here we have a call to a Decl, either explicitly via a CallExpr or some |
| 703 | // other AST construct. PFA pertains to the caller. |
| 704 | void followCall(const CallableInfo &Caller, PendingFunctionAnalysis &PFA, |
| 705 | const CallableInfo &Callee, SourceLocation CallLoc, |
| 706 | bool AssertNoFurtherInference, ViolationSite VSite) { |
| 707 | const bool DirectCall = Callee.isCalledDirectly(); |
| 708 | |
| 709 | // Initially, the declared effects; inferred effects will be added. |
| 710 | FunctionEffectKindSet CalleeEffects = Callee.Effects; |
| 711 | |
| 712 | bool IsInferencePossible = DirectCall; |
| 713 | |
| 714 | if (DirectCall) |
| 715 | if (CompleteFunctionAnalysis *CFA = |
| 716 | DeclAnalysis.completedAnalysisForDecl(D: Callee.CDecl)) { |
| 717 | // Combine declared effects with those which may have been inferred. |
| 718 | CalleeEffects.insert(Set: CFA->VerifiedEffects); |
| 719 | IsInferencePossible = false; // We've already traversed it. |
| 720 | } |
| 721 | |
| 722 | if (AssertNoFurtherInference) { |
| 723 | assert(!IsInferencePossible); |
| 724 | } |
| 725 | |
| 726 | if (!Callee.isVerifiable()) |
| 727 | IsInferencePossible = false; |
| 728 | |
| 729 | LLVM_DEBUG(llvm::dbgs() |
| 730 | << "followCall from " << Caller.getNameForDiagnostic(S) |
| 731 | << " to " << Callee.getNameForDiagnostic(S) |
| 732 | << "; verifiable: " << Callee.isVerifiable() << "; callee " ; |
| 733 | CalleeEffects.dump(llvm::dbgs()); llvm::dbgs() << "\n" ; |
| 734 | llvm::dbgs() << " callee " << Callee.CDecl << " canonical " |
| 735 | << Callee.CDecl->getCanonicalDecl() << "\n" ;); |
| 736 | |
| 737 | auto Check1Effect = [&](FunctionEffect Effect, bool Inferring) { |
| 738 | if (!Effect.shouldDiagnoseFunctionCall(Direct: DirectCall, CalleeFX: CalleeEffects)) |
| 739 | return; |
| 740 | |
| 741 | // If inference is not allowed, or the target is indirect (virtual |
| 742 | // method/function ptr?), generate a Violation now. |
| 743 | if (!IsInferencePossible || |
| 744 | !(Effect.flags() & FunctionEffect::FE_InferrableOnCallees)) { |
| 745 | if (Callee.FuncType == SpecialFuncType::None) |
| 746 | PFA.checkAddViolation(Inferring, |
| 747 | NewViol: {Effect, ViolationID::CallsDeclWithoutEffect, |
| 748 | VSite, CallLoc, Callee.CDecl}); |
| 749 | else |
| 750 | PFA.checkAddViolation( |
| 751 | Inferring, |
| 752 | NewViol: {Effect, ViolationID::AllocatesMemory, VSite, CallLoc}); |
| 753 | } else { |
| 754 | // Inference is allowed and necessary; defer it. |
| 755 | PFA.addUnverifiedDirectCall(D: Callee.CDecl, CallLoc, VSite); |
| 756 | } |
| 757 | }; |
| 758 | |
| 759 | for (FunctionEffect Effect : PFA.DeclaredVerifiableEffects) |
| 760 | Check1Effect(Effect, false); |
| 761 | |
| 762 | for (FunctionEffect Effect : PFA.EffectsToInfer) |
| 763 | Check1Effect(Effect, true); |
| 764 | } |
| 765 | |
| 766 | // Describe a callable Decl for a diagnostic. |
| 767 | // (Not an enum class because the value is always converted to an integer for |
| 768 | // use in a diagnostic.) |
| 769 | enum CallableDeclKind { |
| 770 | CDK_Function, |
| 771 | CDK_Constructor, |
| 772 | CDK_Destructor, |
| 773 | CDK_Lambda, |
| 774 | CDK_Block, |
| 775 | CDK_MemberInitializer, |
| 776 | }; |
| 777 | |
| 778 | // Describe a call site or target using an enum mapping to a %select{} |
| 779 | // in a diagnostic, e.g. warn_func_effect_violation, |
| 780 | // warn_perf_constraint_implies_noexcept, and others. |
| 781 | static CallableDeclKind GetCallableDeclKind(const Decl *D, |
| 782 | const Violation *V) { |
| 783 | if (V != nullptr && |
| 784 | V->Site.kind() == ViolationSite::Kind::MemberInitializer) |
| 785 | return CDK_MemberInitializer; |
| 786 | if (isa<BlockDecl>(Val: D)) |
| 787 | return CDK_Block; |
| 788 | if (auto *Method = dyn_cast<CXXMethodDecl>(Val: D)) { |
| 789 | if (isa<CXXConstructorDecl>(Val: D)) |
| 790 | return CDK_Constructor; |
| 791 | if (isa<CXXDestructorDecl>(Val: D)) |
| 792 | return CDK_Destructor; |
| 793 | const CXXRecordDecl *Rec = Method->getParent(); |
| 794 | if (Rec->isLambda()) |
| 795 | return CDK_Lambda; |
| 796 | } |
| 797 | return CDK_Function; |
| 798 | }; |
| 799 | |
| 800 | // Should only be called when function's analysis is determined to be |
| 801 | // complete. |
| 802 | void emitDiagnostics(ArrayRef<Violation> Viols, const CallableInfo &CInfo) { |
| 803 | if (Viols.empty()) |
| 804 | return; |
| 805 | |
| 806 | auto MaybeAddTemplateNote = [&](const Decl *D) { |
| 807 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) { |
| 808 | while (FD != nullptr && FD->isTemplateInstantiation() && |
| 809 | FD->getPointOfInstantiation().isValid()) { |
| 810 | S.Diag(Loc: FD->getPointOfInstantiation(), |
| 811 | DiagID: diag::note_func_effect_from_template); |
| 812 | FD = FD->getTemplateInstantiationPattern(); |
| 813 | } |
| 814 | } |
| 815 | }; |
| 816 | |
| 817 | // For note_func_effect_call_indirect. |
| 818 | enum { Indirect_VirtualMethod, Indirect_FunctionPtr }; |
| 819 | |
| 820 | auto MaybeAddSiteContext = [&](const Decl *D, const Violation &V) { |
| 821 | // If a violation site is a member initializer, add a note pointing to |
| 822 | // the constructor which invoked it. |
| 823 | if (V.Site.kind() == ViolationSite::Kind::MemberInitializer) { |
| 824 | unsigned ImplicitCtor = 0; |
| 825 | if (auto *Ctor = dyn_cast<CXXConstructorDecl>(Val: D); |
| 826 | Ctor && Ctor->isImplicit()) |
| 827 | ImplicitCtor = 1; |
| 828 | S.Diag(Loc: D->getLocation(), DiagID: diag::note_func_effect_in_constructor) |
| 829 | << ImplicitCtor; |
| 830 | } |
| 831 | |
| 832 | // If a violation site is a default argument expression, add a note |
| 833 | // pointing to the call site using the default argument. |
| 834 | else if (V.Site.kind() == ViolationSite::Kind::DefaultArgExpr) |
| 835 | S.Diag(Loc: V.Site.defaultArgExpr()->getUsedLocation(), |
| 836 | DiagID: diag::note_in_evaluating_default_argument); |
| 837 | }; |
| 838 | |
| 839 | // Top-level violations are warnings. |
| 840 | for (const Violation &Viol1 : Viols) { |
| 841 | StringRef effectName = Viol1.Effect.name(); |
| 842 | switch (Viol1.ID) { |
| 843 | case ViolationID::None: |
| 844 | case ViolationID::DeclDisallowsInference: // Shouldn't happen |
| 845 | // here. |
| 846 | llvm_unreachable("Unexpected violation kind" ); |
| 847 | break; |
| 848 | case ViolationID::AllocatesMemory: |
| 849 | case ViolationID::ThrowsOrCatchesExceptions: |
| 850 | case ViolationID::HasStaticLocalVariable: |
| 851 | case ViolationID::AccessesThreadLocalVariable: |
| 852 | case ViolationID::AccessesObjCMethodOrProperty: |
| 853 | S.Diag(Loc: Viol1.Loc, DiagID: diag::warn_func_effect_violation) |
| 854 | << GetCallableDeclKind(D: CInfo.CDecl, V: &Viol1) << effectName |
| 855 | << Viol1.diagnosticSelectIndex(); |
| 856 | MaybeAddSiteContext(CInfo.CDecl, Viol1); |
| 857 | MaybeAddTemplateNote(CInfo.CDecl); |
| 858 | break; |
| 859 | case ViolationID::CallsExprWithoutEffect: |
| 860 | S.Diag(Loc: Viol1.Loc, DiagID: diag::warn_func_effect_calls_expr_without_effect) |
| 861 | << GetCallableDeclKind(D: CInfo.CDecl, V: &Viol1) << effectName; |
| 862 | MaybeAddSiteContext(CInfo.CDecl, Viol1); |
| 863 | MaybeAddTemplateNote(CInfo.CDecl); |
| 864 | break; |
| 865 | |
| 866 | case ViolationID::CallsDeclWithoutEffect: { |
| 867 | CallableInfo CalleeInfo(*Viol1.Callee); |
| 868 | std::string CalleeName = CalleeInfo.getNameForDiagnostic(S); |
| 869 | |
| 870 | S.Diag(Loc: Viol1.Loc, DiagID: diag::warn_func_effect_calls_func_without_effect) |
| 871 | << GetCallableDeclKind(D: CInfo.CDecl, V: &Viol1) << effectName |
| 872 | << GetCallableDeclKind(D: CalleeInfo.CDecl, V: nullptr) << CalleeName; |
| 873 | MaybeAddSiteContext(CInfo.CDecl, Viol1); |
| 874 | MaybeAddTemplateNote(CInfo.CDecl); |
| 875 | |
| 876 | // Emit notes explaining the transitive chain of inferences: Why isn't |
| 877 | // the callee safe? |
| 878 | for (const Decl *Callee = Viol1.Callee; Callee != nullptr;) { |
| 879 | std::optional<CallableInfo> MaybeNextCallee; |
| 880 | CompleteFunctionAnalysis *Completed = |
| 881 | DeclAnalysis.completedAnalysisForDecl(D: CalleeInfo.CDecl); |
| 882 | if (Completed == nullptr) { |
| 883 | // No result - could be |
| 884 | // - non-inline and extern |
| 885 | // - indirect (virtual or through function pointer) |
| 886 | // - effect has been explicitly disclaimed (e.g. "blocking") |
| 887 | |
| 888 | CallableType CType = CalleeInfo.type(); |
| 889 | if (CType == CallableType::Virtual) |
| 890 | S.Diag(Loc: Callee->getLocation(), |
| 891 | DiagID: diag::note_func_effect_call_indirect) |
| 892 | << Indirect_VirtualMethod << effectName; |
| 893 | else if (CType == CallableType::Unknown) |
| 894 | S.Diag(Loc: Callee->getLocation(), |
| 895 | DiagID: diag::note_func_effect_call_indirect) |
| 896 | << Indirect_FunctionPtr << effectName; |
| 897 | else if (CalleeInfo.Effects.contains(EK: Viol1.Effect.oppositeKind())) |
| 898 | S.Diag(Loc: Callee->getLocation(), |
| 899 | DiagID: diag::note_func_effect_call_disallows_inference) |
| 900 | << GetCallableDeclKind(D: CInfo.CDecl, V: nullptr) << effectName |
| 901 | << FunctionEffect(Viol1.Effect.oppositeKind()).name(); |
| 902 | else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: Callee); |
| 903 | FD == nullptr || FD->getBuiltinID() == 0) { |
| 904 | // A builtin callee generally doesn't have a useful source |
| 905 | // location at which to insert a note. |
| 906 | S.Diag(Loc: Callee->getLocation(), DiagID: diag::note_func_effect_call_extern) |
| 907 | << effectName; |
| 908 | } |
| 909 | break; |
| 910 | } |
| 911 | const Violation *PtrViol2 = |
| 912 | Completed->firstViolationForEffect(Effect: Viol1.Effect); |
| 913 | if (PtrViol2 == nullptr) |
| 914 | break; |
| 915 | |
| 916 | const Violation &Viol2 = *PtrViol2; |
| 917 | switch (Viol2.ID) { |
| 918 | case ViolationID::None: |
| 919 | llvm_unreachable("Unexpected violation kind" ); |
| 920 | break; |
| 921 | case ViolationID::DeclDisallowsInference: |
| 922 | S.Diag(Loc: Viol2.Loc, DiagID: diag::note_func_effect_call_disallows_inference) |
| 923 | << GetCallableDeclKind(D: CalleeInfo.CDecl, V: nullptr) << effectName |
| 924 | << Viol2.CalleeEffectPreventingInference->name(); |
| 925 | break; |
| 926 | case ViolationID::CallsExprWithoutEffect: |
| 927 | S.Diag(Loc: Viol2.Loc, DiagID: diag::note_func_effect_call_indirect) |
| 928 | << Indirect_FunctionPtr << effectName; |
| 929 | break; |
| 930 | case ViolationID::AllocatesMemory: |
| 931 | case ViolationID::ThrowsOrCatchesExceptions: |
| 932 | case ViolationID::HasStaticLocalVariable: |
| 933 | case ViolationID::AccessesThreadLocalVariable: |
| 934 | case ViolationID::AccessesObjCMethodOrProperty: |
| 935 | S.Diag(Loc: Viol2.Loc, DiagID: diag::note_func_effect_violation) |
| 936 | << GetCallableDeclKind(D: CalleeInfo.CDecl, V: &Viol2) << effectName |
| 937 | << Viol2.diagnosticSelectIndex(); |
| 938 | MaybeAddSiteContext(CalleeInfo.CDecl, Viol2); |
| 939 | break; |
| 940 | case ViolationID::CallsDeclWithoutEffect: |
| 941 | MaybeNextCallee.emplace(args: *Viol2.Callee); |
| 942 | S.Diag(Loc: Viol2.Loc, DiagID: diag::note_func_effect_calls_func_without_effect) |
| 943 | << GetCallableDeclKind(D: CalleeInfo.CDecl, V: &Viol2) << effectName |
| 944 | << GetCallableDeclKind(D: Viol2.Callee, V: nullptr) |
| 945 | << MaybeNextCallee->getNameForDiagnostic(S); |
| 946 | break; |
| 947 | } |
| 948 | MaybeAddTemplateNote(Callee); |
| 949 | Callee = Viol2.Callee; |
| 950 | if (MaybeNextCallee) { |
| 951 | CalleeInfo = *MaybeNextCallee; |
| 952 | CalleeName = CalleeInfo.getNameForDiagnostic(S); |
| 953 | } |
| 954 | } |
| 955 | } break; |
| 956 | } |
| 957 | } |
| 958 | } |
| 959 | |
| 960 | // ---------- |
| 961 | // This AST visitor is used to traverse the body of a function during effect |
| 962 | // verification. This happens in 2 situations: |
| 963 | // [1] The function has declared effects which need to be validated. |
| 964 | // [2] The function has not explicitly declared an effect in question, and is |
| 965 | // being checked for implicit conformance. |
| 966 | // |
| 967 | // Violations are always routed to a PendingFunctionAnalysis. |
| 968 | struct FunctionBodyASTVisitor : DynamicRecursiveASTVisitor { |
| 969 | Analyzer &Outer; |
| 970 | PendingFunctionAnalysis &CurrentFunction; |
| 971 | CallableInfo &CurrentCaller; |
| 972 | ViolationSite VSite; |
| 973 | const Expr *TrailingRequiresClause = nullptr; |
| 974 | const Expr *NoexceptExpr = nullptr; |
| 975 | |
| 976 | FunctionBodyASTVisitor(Analyzer &Outer, |
| 977 | PendingFunctionAnalysis &CurrentFunction, |
| 978 | CallableInfo &CurrentCaller) |
| 979 | : Outer(Outer), CurrentFunction(CurrentFunction), |
| 980 | CurrentCaller(CurrentCaller) { |
| 981 | ShouldVisitImplicitCode = true; |
| 982 | ShouldWalkTypesOfTypeLocs = false; |
| 983 | } |
| 984 | |
| 985 | // -- Entry point -- |
| 986 | void run() { |
| 987 | // The target function may have implicit code paths beyond the |
| 988 | // body: member and base destructors. Visit these first. |
| 989 | if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Val: CurrentCaller.CDecl)) |
| 990 | followDestructor(Rec: dyn_cast<CXXRecordDecl>(Val: Dtor->getParent()), Dtor); |
| 991 | |
| 992 | if (auto *FD = dyn_cast<FunctionDecl>(Val: CurrentCaller.CDecl)) { |
| 993 | TrailingRequiresClause = FD->getTrailingRequiresClause().ConstraintExpr; |
| 994 | |
| 995 | // Note that FD->getType->getAs<FunctionProtoType>() can yield a |
| 996 | // noexcept Expr which has been boiled down to a constant expression. |
| 997 | // Going through the TypeSourceInfo obtains the actual expression which |
| 998 | // will be traversed as part of the function -- unless we capture it |
| 999 | // here and have TraverseStmt skip it. |
| 1000 | if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) { |
| 1001 | if (FunctionProtoTypeLoc TL = |
| 1002 | TSI->getTypeLoc().getAs<FunctionProtoTypeLoc>()) |
| 1003 | if (const FunctionProtoType *FPT = TL.getTypePtr()) |
| 1004 | NoexceptExpr = FPT->getNoexceptExpr(); |
| 1005 | } |
| 1006 | } |
| 1007 | |
| 1008 | // Do an AST traversal of the function/block body |
| 1009 | TraverseDecl(D: const_cast<Decl *>(CurrentCaller.CDecl)); |
| 1010 | } |
| 1011 | |
| 1012 | // -- Methods implementing common logic -- |
| 1013 | |
| 1014 | // Handle a language construct forbidden by some effects. Only effects whose |
| 1015 | // flags include the specified flag receive a violation. \p Flag describes |
| 1016 | // the construct. |
| 1017 | void diagnoseLanguageConstruct(FunctionEffect::FlagBit Flag, |
| 1018 | ViolationID VID, SourceLocation Loc, |
| 1019 | const Decl *Callee = nullptr) { |
| 1020 | // If there are any declared verifiable effects which forbid the construct |
| 1021 | // represented by the flag, store just one violation. |
| 1022 | for (FunctionEffect Effect : CurrentFunction.DeclaredVerifiableEffects) { |
| 1023 | if (Effect.flags() & Flag) { |
| 1024 | addViolation(/*inferring=*/Inferring: false, Effect, VID, Loc, Callee); |
| 1025 | break; |
| 1026 | } |
| 1027 | } |
| 1028 | // For each inferred effect which forbids the construct, store a |
| 1029 | // violation, if we don't already have a violation for that effect. |
| 1030 | for (FunctionEffect Effect : CurrentFunction.EffectsToInfer) |
| 1031 | if (Effect.flags() & Flag) |
| 1032 | addViolation(/*inferring=*/Inferring: true, Effect, VID, Loc, Callee); |
| 1033 | } |
| 1034 | |
| 1035 | void addViolation(bool Inferring, FunctionEffect Effect, ViolationID VID, |
| 1036 | SourceLocation Loc, const Decl *Callee = nullptr) { |
| 1037 | CurrentFunction.checkAddViolation( |
| 1038 | Inferring, NewViol: Violation(Effect, VID, VSite, Loc, Callee)); |
| 1039 | } |
| 1040 | |
| 1041 | // Here we have a call to a Decl, either explicitly via a CallExpr or some |
| 1042 | // other AST construct. CallableInfo pertains to the callee. |
| 1043 | void followCall(CallableInfo &CI, SourceLocation CallLoc) { |
| 1044 | // Check for a call to a builtin function, whose effects are |
| 1045 | // handled specially. |
| 1046 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: CI.CDecl)) { |
| 1047 | if (unsigned BuiltinID = FD->getBuiltinID()) { |
| 1048 | CI.Effects = getBuiltinFunctionEffects(BuiltinID); |
| 1049 | if (CI.Effects.empty()) { |
| 1050 | // A builtin with no known effects is assumed safe. |
| 1051 | return; |
| 1052 | } |
| 1053 | // A builtin WITH effects doesn't get any special treatment for |
| 1054 | // being noreturn/noexcept, e.g. longjmp(), so we skip the check |
| 1055 | // below. |
| 1056 | } else { |
| 1057 | // If the callee is both `noreturn` and `noexcept`, it presumably |
| 1058 | // terminates. Ignore it for the purposes of effect analysis. |
| 1059 | // If not C++, `noreturn` alone is sufficient. |
| 1060 | if (FD->isNoReturn() && |
| 1061 | (!Outer.S.getLangOpts().CPlusPlus || isNoexcept(FD))) |
| 1062 | return; |
| 1063 | } |
| 1064 | } |
| 1065 | |
| 1066 | Outer.followCall(Caller: CurrentCaller, PFA&: CurrentFunction, Callee: CI, CallLoc, |
| 1067 | /*AssertNoFurtherInference=*/false, VSite); |
| 1068 | } |
| 1069 | |
| 1070 | void checkIndirectCall(CallExpr *Call, QualType CalleeType) { |
| 1071 | FunctionEffectKindSet CalleeEffects; |
| 1072 | if (FunctionEffectsRef Effects = FunctionEffectsRef::get(QT: CalleeType); |
| 1073 | !Effects.empty()) |
| 1074 | CalleeEffects.insert(FX: Effects); |
| 1075 | |
| 1076 | auto Check1Effect = [&](FunctionEffect Effect, bool Inferring) { |
| 1077 | if (Effect.shouldDiagnoseFunctionCall( |
| 1078 | /*direct=*/Direct: false, CalleeFX: CalleeEffects)) |
| 1079 | addViolation(Inferring, Effect, VID: ViolationID::CallsExprWithoutEffect, |
| 1080 | Loc: Call->getBeginLoc()); |
| 1081 | }; |
| 1082 | |
| 1083 | for (FunctionEffect Effect : CurrentFunction.DeclaredVerifiableEffects) |
| 1084 | Check1Effect(Effect, false); |
| 1085 | |
| 1086 | for (FunctionEffect Effect : CurrentFunction.EffectsToInfer) |
| 1087 | Check1Effect(Effect, true); |
| 1088 | } |
| 1089 | |
| 1090 | // This destructor's body should be followed by the caller, but here we |
| 1091 | // follow the field and base destructors. |
| 1092 | void followDestructor(const CXXRecordDecl *Rec, |
| 1093 | const CXXDestructorDecl *Dtor) { |
| 1094 | SourceLocation DtorLoc = Dtor->getLocation(); |
| 1095 | for (const FieldDecl *Field : Rec->fields()) |
| 1096 | followTypeDtor(QT: Field->getType(), CallSite: DtorLoc); |
| 1097 | |
| 1098 | if (const auto *Class = dyn_cast<CXXRecordDecl>(Val: Rec)) |
| 1099 | for (const CXXBaseSpecifier &Base : Class->bases()) |
| 1100 | followTypeDtor(QT: Base.getType(), CallSite: DtorLoc); |
| 1101 | } |
| 1102 | |
| 1103 | void followTypeDtor(QualType QT, SourceLocation CallSite) { |
| 1104 | const Type *Ty = QT.getTypePtr(); |
| 1105 | while (Ty->isArrayType()) { |
| 1106 | const ArrayType *Arr = Ty->getAsArrayTypeUnsafe(); |
| 1107 | QT = Arr->getElementType(); |
| 1108 | Ty = QT.getTypePtr(); |
| 1109 | } |
| 1110 | |
| 1111 | if (Ty->isRecordType()) { |
| 1112 | if (const CXXRecordDecl *Class = Ty->getAsCXXRecordDecl()) { |
| 1113 | if (CXXDestructorDecl *Dtor = Class->getDestructor(); |
| 1114 | Dtor && !Dtor->isDeleted()) { |
| 1115 | CallableInfo CI(*Dtor); |
| 1116 | followCall(CI, CallLoc: CallSite); |
| 1117 | } |
| 1118 | } |
| 1119 | } |
| 1120 | } |
| 1121 | |
| 1122 | // -- Methods for use of RecursiveASTVisitor -- |
| 1123 | |
| 1124 | bool VisitCXXThrowExpr(CXXThrowExpr *Throw) override { |
| 1125 | diagnoseLanguageConstruct(Flag: FunctionEffect::FE_ExcludeThrow, |
| 1126 | VID: ViolationID::ThrowsOrCatchesExceptions, |
| 1127 | Loc: Throw->getThrowLoc()); |
| 1128 | return true; |
| 1129 | } |
| 1130 | |
| 1131 | bool VisitCXXCatchStmt(CXXCatchStmt *Catch) override { |
| 1132 | diagnoseLanguageConstruct(Flag: FunctionEffect::FE_ExcludeCatch, |
| 1133 | VID: ViolationID::ThrowsOrCatchesExceptions, |
| 1134 | Loc: Catch->getCatchLoc()); |
| 1135 | return true; |
| 1136 | } |
| 1137 | |
| 1138 | bool VisitObjCAtThrowStmt(ObjCAtThrowStmt *Throw) override { |
| 1139 | diagnoseLanguageConstruct(Flag: FunctionEffect::FE_ExcludeThrow, |
| 1140 | VID: ViolationID::ThrowsOrCatchesExceptions, |
| 1141 | Loc: Throw->getThrowLoc()); |
| 1142 | return true; |
| 1143 | } |
| 1144 | |
| 1145 | bool VisitObjCAtCatchStmt(ObjCAtCatchStmt *Catch) override { |
| 1146 | diagnoseLanguageConstruct(Flag: FunctionEffect::FE_ExcludeCatch, |
| 1147 | VID: ViolationID::ThrowsOrCatchesExceptions, |
| 1148 | Loc: Catch->getAtCatchLoc()); |
| 1149 | return true; |
| 1150 | } |
| 1151 | |
| 1152 | bool VisitObjCAtFinallyStmt(ObjCAtFinallyStmt *Finally) override { |
| 1153 | diagnoseLanguageConstruct(Flag: FunctionEffect::FE_ExcludeCatch, |
| 1154 | VID: ViolationID::ThrowsOrCatchesExceptions, |
| 1155 | Loc: Finally->getAtFinallyLoc()); |
| 1156 | return true; |
| 1157 | } |
| 1158 | |
| 1159 | bool VisitObjCMessageExpr(ObjCMessageExpr *Msg) override { |
| 1160 | diagnoseLanguageConstruct(Flag: FunctionEffect::FE_ExcludeObjCMessageSend, |
| 1161 | VID: ViolationID::AccessesObjCMethodOrProperty, |
| 1162 | Loc: Msg->getBeginLoc()); |
| 1163 | return true; |
| 1164 | } |
| 1165 | |
| 1166 | bool VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *ARP) override { |
| 1167 | // Under the hood, @autorelease (potentially?) allocates memory and |
| 1168 | // invokes ObjC methods. We don't currently have memory allocation as |
| 1169 | // a "language construct" but we do have ObjC messaging, so diagnose that. |
| 1170 | diagnoseLanguageConstruct(Flag: FunctionEffect::FE_ExcludeObjCMessageSend, |
| 1171 | VID: ViolationID::AccessesObjCMethodOrProperty, |
| 1172 | Loc: ARP->getBeginLoc()); |
| 1173 | return true; |
| 1174 | } |
| 1175 | |
| 1176 | bool VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *Sync) override { |
| 1177 | // Under the hood, this calls objc_sync_enter and objc_sync_exit, wrapped |
| 1178 | // in a @try/@finally block. Diagnose this generically as "ObjC |
| 1179 | // messaging". |
| 1180 | diagnoseLanguageConstruct(Flag: FunctionEffect::FE_ExcludeObjCMessageSend, |
| 1181 | VID: ViolationID::AccessesObjCMethodOrProperty, |
| 1182 | Loc: Sync->getBeginLoc()); |
| 1183 | return true; |
| 1184 | } |
| 1185 | |
| 1186 | bool VisitSEHExceptStmt(SEHExceptStmt *Exc) override { |
| 1187 | diagnoseLanguageConstruct(Flag: FunctionEffect::FE_ExcludeCatch, |
| 1188 | VID: ViolationID::ThrowsOrCatchesExceptions, |
| 1189 | Loc: Exc->getExceptLoc()); |
| 1190 | return true; |
| 1191 | } |
| 1192 | |
| 1193 | bool VisitCallExpr(CallExpr *Call) override { |
| 1194 | LLVM_DEBUG(llvm::dbgs() |
| 1195 | << "VisitCallExpr : " |
| 1196 | << Call->getBeginLoc().printToString(Outer.S.SourceMgr) |
| 1197 | << "\n" ;); |
| 1198 | |
| 1199 | Expr *CalleeExpr = Call->getCallee(); |
| 1200 | if (const Decl *Callee = CalleeExpr->getReferencedDeclOfCallee()) { |
| 1201 | CallableInfo CI(*Callee); |
| 1202 | followCall(CI, CallLoc: Call->getBeginLoc()); |
| 1203 | return true; |
| 1204 | } |
| 1205 | |
| 1206 | if (isa<CXXPseudoDestructorExpr>(Val: CalleeExpr)) { |
| 1207 | // Just destroying a scalar, fine. |
| 1208 | return true; |
| 1209 | } |
| 1210 | |
| 1211 | // No Decl, just an Expr. Just check based on its type. |
| 1212 | checkIndirectCall(Call, CalleeType: CalleeExpr->getType()); |
| 1213 | |
| 1214 | return true; |
| 1215 | } |
| 1216 | |
| 1217 | bool VisitVarDecl(VarDecl *Var) override { |
| 1218 | LLVM_DEBUG(llvm::dbgs() |
| 1219 | << "VisitVarDecl : " |
| 1220 | << Var->getBeginLoc().printToString(Outer.S.SourceMgr) |
| 1221 | << "\n" ;); |
| 1222 | |
| 1223 | if (Var->isStaticLocal()) |
| 1224 | diagnoseLanguageConstruct(Flag: FunctionEffect::FE_ExcludeStaticLocalVars, |
| 1225 | VID: ViolationID::HasStaticLocalVariable, |
| 1226 | Loc: Var->getLocation()); |
| 1227 | |
| 1228 | const QualType::DestructionKind DK = |
| 1229 | Var->needsDestruction(Ctx: Outer.S.getASTContext()); |
| 1230 | if (DK == QualType::DK_cxx_destructor) |
| 1231 | followTypeDtor(QT: Var->getType(), CallSite: Var->getLocation()); |
| 1232 | return true; |
| 1233 | } |
| 1234 | |
| 1235 | bool VisitCXXNewExpr(CXXNewExpr *New) override { |
| 1236 | // RecursiveASTVisitor does not visit the implicit call to operator new. |
| 1237 | if (FunctionDecl *FD = New->getOperatorNew()) { |
| 1238 | CallableInfo CI(*FD, SpecialFuncType::OperatorNew); |
| 1239 | followCall(CI, CallLoc: New->getBeginLoc()); |
| 1240 | } |
| 1241 | |
| 1242 | // It's a bit excessive to check operator delete here, since it's |
| 1243 | // just a fallback for operator new followed by a failed constructor. |
| 1244 | // We could check it via New->getOperatorDelete(). |
| 1245 | |
| 1246 | // It DOES however visit the called constructor |
| 1247 | return true; |
| 1248 | } |
| 1249 | |
| 1250 | bool VisitCXXDeleteExpr(CXXDeleteExpr *Delete) override { |
| 1251 | // RecursiveASTVisitor does not visit the implicit call to operator |
| 1252 | // delete. |
| 1253 | if (FunctionDecl *FD = Delete->getOperatorDelete()) { |
| 1254 | CallableInfo CI(*FD, SpecialFuncType::OperatorDelete); |
| 1255 | followCall(CI, CallLoc: Delete->getBeginLoc()); |
| 1256 | } |
| 1257 | |
| 1258 | // It DOES however visit the called destructor |
| 1259 | |
| 1260 | return true; |
| 1261 | } |
| 1262 | |
| 1263 | bool VisitCXXConstructExpr(CXXConstructExpr *Construct) override { |
| 1264 | LLVM_DEBUG(llvm::dbgs() << "VisitCXXConstructExpr : " |
| 1265 | << Construct->getBeginLoc().printToString( |
| 1266 | Outer.S.SourceMgr) |
| 1267 | << "\n" ;); |
| 1268 | |
| 1269 | // RecursiveASTVisitor does not visit the implicit call to the |
| 1270 | // constructor. |
| 1271 | const CXXConstructorDecl *Ctor = Construct->getConstructor(); |
| 1272 | CallableInfo CI(*Ctor); |
| 1273 | followCall(CI, CallLoc: Construct->getLocation()); |
| 1274 | |
| 1275 | return true; |
| 1276 | } |
| 1277 | |
| 1278 | bool TraverseStmt(Stmt *Statement) override { |
| 1279 | // If this statement is a `requires` clause from the top-level function |
| 1280 | // being traversed, ignore it, since it's not generating runtime code. |
| 1281 | // We skip the traversal of lambdas (beyond their captures, see |
| 1282 | // TraverseLambdaExpr below), so just caching this from our constructor |
| 1283 | // should suffice. |
| 1284 | if (Statement != TrailingRequiresClause && Statement != NoexceptExpr) |
| 1285 | return DynamicRecursiveASTVisitor::TraverseStmt(S: Statement); |
| 1286 | return true; |
| 1287 | } |
| 1288 | |
| 1289 | bool TraverseConstructorInitializer(CXXCtorInitializer *Init) override { |
| 1290 | ViolationSite PrevVS = VSite; |
| 1291 | if (Init->isAnyMemberInitializer()) |
| 1292 | VSite.setKind(ViolationSite::Kind::MemberInitializer); |
| 1293 | bool Result = |
| 1294 | DynamicRecursiveASTVisitor::TraverseConstructorInitializer(Init); |
| 1295 | VSite = PrevVS; |
| 1296 | return Result; |
| 1297 | } |
| 1298 | |
| 1299 | bool TraverseCXXDefaultArgExpr(CXXDefaultArgExpr *E) override { |
| 1300 | LLVM_DEBUG(llvm::dbgs() |
| 1301 | << "TraverseCXXDefaultArgExpr : " |
| 1302 | << E->getUsedLocation().printToString(Outer.S.SourceMgr) |
| 1303 | << "\n" ;); |
| 1304 | |
| 1305 | ViolationSite PrevVS = VSite; |
| 1306 | if (VSite.kind() == ViolationSite::Kind::Default) |
| 1307 | VSite = ViolationSite{E}; |
| 1308 | |
| 1309 | bool Result = DynamicRecursiveASTVisitor::TraverseCXXDefaultArgExpr(S: E); |
| 1310 | VSite = PrevVS; |
| 1311 | return Result; |
| 1312 | } |
| 1313 | |
| 1314 | bool TraverseLambdaExpr(LambdaExpr *Lambda) override { |
| 1315 | // We override this so as to be able to skip traversal of the lambda's |
| 1316 | // body. We have to explicitly traverse the captures. Why not return |
| 1317 | // false from shouldVisitLambdaBody()? Because we need to visit a lambda's |
| 1318 | // body when we are verifying the lambda itself; we only want to skip it |
| 1319 | // in the context of the outer function. |
| 1320 | for (unsigned I = 0, N = Lambda->capture_size(); I < N; ++I) |
| 1321 | TraverseLambdaCapture(LE: Lambda, C: Lambda->capture_begin() + I, |
| 1322 | Init: Lambda->capture_init_begin()[I]); |
| 1323 | |
| 1324 | return true; |
| 1325 | } |
| 1326 | |
| 1327 | bool TraverseBlockExpr(BlockExpr * /*unused*/) override { |
| 1328 | // As with lambdas, don't traverse the block's body. |
| 1329 | // TODO: are the capture expressions (ctor call?) safe? |
| 1330 | return true; |
| 1331 | } |
| 1332 | |
| 1333 | bool VisitDeclRefExpr(DeclRefExpr *E) override { |
| 1334 | const ValueDecl *Val = E->getDecl(); |
| 1335 | if (const auto *Var = dyn_cast<VarDecl>(Val)) { |
| 1336 | if (Var->getTLSKind() != VarDecl::TLS_None) { |
| 1337 | // At least on macOS, thread-local variables are initialized on |
| 1338 | // first access, including a heap allocation. |
| 1339 | diagnoseLanguageConstruct(Flag: FunctionEffect::FE_ExcludeThreadLocalVars, |
| 1340 | VID: ViolationID::AccessesThreadLocalVariable, |
| 1341 | Loc: E->getLocation()); |
| 1342 | } |
| 1343 | } |
| 1344 | return true; |
| 1345 | } |
| 1346 | |
| 1347 | bool TraverseGenericSelectionExpr(GenericSelectionExpr *Node) override { |
| 1348 | return TraverseStmt(Statement: Node->getResultExpr()); |
| 1349 | } |
| 1350 | bool |
| 1351 | TraverseUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *Node) override { |
| 1352 | return true; |
| 1353 | } |
| 1354 | |
| 1355 | bool TraverseTypeOfExprTypeLoc(TypeOfExprTypeLoc Node) override { |
| 1356 | return true; |
| 1357 | } |
| 1358 | |
| 1359 | bool TraverseDecltypeTypeLoc(DecltypeTypeLoc Node) override { return true; } |
| 1360 | |
| 1361 | bool TraverseCXXNoexceptExpr(CXXNoexceptExpr *Node) override { |
| 1362 | return true; |
| 1363 | } |
| 1364 | |
| 1365 | bool TraverseCXXTypeidExpr(CXXTypeidExpr *Node) override { return true; } |
| 1366 | |
| 1367 | // Skip concept requirements since they don't generate code. |
| 1368 | bool TraverseConceptRequirement(concepts::Requirement *R) override { |
| 1369 | return true; |
| 1370 | } |
| 1371 | }; |
| 1372 | }; |
| 1373 | |
| 1374 | Analyzer::AnalysisMap::~AnalysisMap() { |
| 1375 | for (const auto &Item : *this) { |
| 1376 | FuncAnalysisPtr AP = Item.second; |
| 1377 | if (auto *PFA = dyn_cast<PendingFunctionAnalysis *>(Val&: AP)) |
| 1378 | delete PFA; |
| 1379 | else |
| 1380 | delete cast<CompleteFunctionAnalysis *>(Val&: AP); |
| 1381 | } |
| 1382 | } |
| 1383 | |
| 1384 | } // anonymous namespace |
| 1385 | |
| 1386 | namespace clang { |
| 1387 | |
| 1388 | bool Sema::diagnoseConflictingFunctionEffect( |
| 1389 | const FunctionEffectsRef &FX, const FunctionEffectWithCondition &NewEC, |
| 1390 | SourceLocation NewAttrLoc) { |
| 1391 | // If the new effect has a condition, we can't detect conflicts until the |
| 1392 | // condition is resolved. |
| 1393 | if (NewEC.Cond.getCondition() != nullptr) |
| 1394 | return false; |
| 1395 | |
| 1396 | // Diagnose the new attribute as incompatible with a previous one. |
| 1397 | auto Incompatible = [&](const FunctionEffectWithCondition &PrevEC) { |
| 1398 | Diag(Loc: NewAttrLoc, DiagID: diag::err_attributes_are_not_compatible) |
| 1399 | << ("'" + NewEC.description() + "'" ) |
| 1400 | << ("'" + PrevEC.description() + "'" ) << false; |
| 1401 | // We don't necessarily have the location of the previous attribute, |
| 1402 | // so no note. |
| 1403 | return true; |
| 1404 | }; |
| 1405 | |
| 1406 | // Compare against previous attributes. |
| 1407 | FunctionEffect::Kind NewKind = NewEC.Effect.kind(); |
| 1408 | |
| 1409 | for (const FunctionEffectWithCondition &PrevEC : FX) { |
| 1410 | // Again, can't check yet when the effect is conditional. |
| 1411 | if (PrevEC.Cond.getCondition() != nullptr) |
| 1412 | continue; |
| 1413 | |
| 1414 | FunctionEffect::Kind PrevKind = PrevEC.Effect.kind(); |
| 1415 | // Note that we allow PrevKind == NewKind; it's redundant and ignored. |
| 1416 | |
| 1417 | if (PrevEC.Effect.oppositeKind() == NewKind) |
| 1418 | return Incompatible(PrevEC); |
| 1419 | |
| 1420 | // A new allocating is incompatible with a previous nonblocking. |
| 1421 | if (PrevKind == FunctionEffect::Kind::NonBlocking && |
| 1422 | NewKind == FunctionEffect::Kind::Allocating) |
| 1423 | return Incompatible(PrevEC); |
| 1424 | |
| 1425 | // A new nonblocking is incompatible with a previous allocating. |
| 1426 | if (PrevKind == FunctionEffect::Kind::Allocating && |
| 1427 | NewKind == FunctionEffect::Kind::NonBlocking) |
| 1428 | return Incompatible(PrevEC); |
| 1429 | } |
| 1430 | |
| 1431 | return false; |
| 1432 | } |
| 1433 | |
| 1434 | void Sema::diagnoseFunctionEffectMergeConflicts( |
| 1435 | const FunctionEffectSet::Conflicts &Errs, SourceLocation NewLoc, |
| 1436 | SourceLocation OldLoc) { |
| 1437 | for (const FunctionEffectSet::Conflict &Conflict : Errs) { |
| 1438 | Diag(Loc: NewLoc, DiagID: diag::warn_conflicting_func_effects) |
| 1439 | << Conflict.Kept.description() << Conflict.Rejected.description(); |
| 1440 | Diag(Loc: OldLoc, DiagID: diag::note_previous_declaration); |
| 1441 | } |
| 1442 | } |
| 1443 | |
| 1444 | // Decl should be a FunctionDecl or BlockDecl. |
| 1445 | void Sema::maybeAddDeclWithEffects(const Decl *D, |
| 1446 | const FunctionEffectsRef &FX) { |
| 1447 | if (!D->hasBody()) { |
| 1448 | if (const auto *FD = D->getAsFunction(); FD && !FD->willHaveBody()) |
| 1449 | return; |
| 1450 | } |
| 1451 | |
| 1452 | if (Diags.getIgnoreAllWarnings() || |
| 1453 | (Diags.getSuppressSystemWarnings() && |
| 1454 | SourceMgr.isInSystemHeader(Loc: D->getLocation()))) |
| 1455 | return; |
| 1456 | |
| 1457 | if (hasUncompilableErrorOccurred()) |
| 1458 | return; |
| 1459 | |
| 1460 | // For code in dependent contexts, we'll do this at instantiation time. |
| 1461 | // Without this check, we would analyze the function based on placeholder |
| 1462 | // template parameters, and potentially generate spurious diagnostics. |
| 1463 | if (cast<DeclContext>(Val: D)->isDependentContext()) |
| 1464 | return; |
| 1465 | |
| 1466 | addDeclWithEffects(D, FX); |
| 1467 | } |
| 1468 | |
| 1469 | void Sema::addDeclWithEffects(const Decl *D, const FunctionEffectsRef &FX) { |
| 1470 | // To avoid the possibility of conflict, don't add effects which are |
| 1471 | // not FE_InferrableOnCallees and therefore not verified; this removes |
| 1472 | // blocking/allocating but keeps nonblocking/nonallocating. |
| 1473 | // Also, ignore any conditions when building the list of effects. |
| 1474 | bool AnyVerifiable = false; |
| 1475 | for (const FunctionEffectWithCondition &EC : FX) |
| 1476 | if (EC.Effect.flags() & FunctionEffect::FE_InferrableOnCallees) { |
| 1477 | AllEffectsToVerify.insert(Effect: EC.Effect); |
| 1478 | AnyVerifiable = true; |
| 1479 | } |
| 1480 | |
| 1481 | // Record the declaration for later analysis. |
| 1482 | if (AnyVerifiable) |
| 1483 | DeclsWithEffectsToVerify.push_back(Elt: D); |
| 1484 | } |
| 1485 | |
| 1486 | void Sema::performFunctionEffectAnalysis(TranslationUnitDecl *TU) { |
| 1487 | if (hasUncompilableErrorOccurred() || Diags.getIgnoreAllWarnings()) |
| 1488 | return; |
| 1489 | if (TU == nullptr) |
| 1490 | return; |
| 1491 | Analyzer{*this}.run(TU: *TU); |
| 1492 | } |
| 1493 | |
| 1494 | Sema::FunctionEffectDiffVector::FunctionEffectDiffVector( |
| 1495 | const FunctionEffectsRef &Old, const FunctionEffectsRef &New) { |
| 1496 | |
| 1497 | FunctionEffectsRef::iterator POld = Old.begin(); |
| 1498 | FunctionEffectsRef::iterator OldEnd = Old.end(); |
| 1499 | FunctionEffectsRef::iterator PNew = New.begin(); |
| 1500 | FunctionEffectsRef::iterator NewEnd = New.end(); |
| 1501 | |
| 1502 | while (true) { |
| 1503 | int cmp = 0; |
| 1504 | if (POld == OldEnd) { |
| 1505 | if (PNew == NewEnd) |
| 1506 | break; |
| 1507 | cmp = 1; |
| 1508 | } else if (PNew == NewEnd) |
| 1509 | cmp = -1; |
| 1510 | else { |
| 1511 | FunctionEffectWithCondition Old = *POld; |
| 1512 | FunctionEffectWithCondition New = *PNew; |
| 1513 | if (Old.Effect.kind() < New.Effect.kind()) |
| 1514 | cmp = -1; |
| 1515 | else if (New.Effect.kind() < Old.Effect.kind()) |
| 1516 | cmp = 1; |
| 1517 | else { |
| 1518 | cmp = 0; |
| 1519 | if (Old.Cond.getCondition() != New.Cond.getCondition()) { |
| 1520 | // FIXME: Cases where the expressions are equivalent but |
| 1521 | // don't have the same identity. |
| 1522 | push_back(Elt: FunctionEffectDiff{ |
| 1523 | .EffectKind: Old.Effect.kind(), .DiffKind: FunctionEffectDiff::Kind::ConditionMismatch, |
| 1524 | .Old: Old, .New: New}); |
| 1525 | } |
| 1526 | } |
| 1527 | } |
| 1528 | |
| 1529 | if (cmp < 0) { |
| 1530 | // removal |
| 1531 | FunctionEffectWithCondition Old = *POld; |
| 1532 | push_back(Elt: FunctionEffectDiff{.EffectKind: Old.Effect.kind(), |
| 1533 | .DiffKind: FunctionEffectDiff::Kind::Removed, .Old: Old, |
| 1534 | .New: std::nullopt}); |
| 1535 | ++POld; |
| 1536 | } else if (cmp > 0) { |
| 1537 | // addition |
| 1538 | FunctionEffectWithCondition New = *PNew; |
| 1539 | push_back(Elt: FunctionEffectDiff{.EffectKind: New.Effect.kind(), |
| 1540 | .DiffKind: FunctionEffectDiff::Kind::Added, |
| 1541 | .Old: std::nullopt, .New: New}); |
| 1542 | ++PNew; |
| 1543 | } else { |
| 1544 | ++POld; |
| 1545 | ++PNew; |
| 1546 | } |
| 1547 | } |
| 1548 | } |
| 1549 | |
| 1550 | bool Sema::FunctionEffectDiff::shouldDiagnoseConversion( |
| 1551 | QualType SrcType, const FunctionEffectsRef &SrcFX, QualType DstType, |
| 1552 | const FunctionEffectsRef &DstFX) const { |
| 1553 | |
| 1554 | switch (EffectKind) { |
| 1555 | case FunctionEffect::Kind::NonAllocating: |
| 1556 | // nonallocating can't be added (spoofed) during a conversion, unless we |
| 1557 | // have nonblocking. |
| 1558 | if (DiffKind == Kind::Added) { |
| 1559 | for (const auto &CFE : SrcFX) { |
| 1560 | if (CFE.Effect.kind() == FunctionEffect::Kind::NonBlocking) |
| 1561 | return false; |
| 1562 | } |
| 1563 | } |
| 1564 | [[fallthrough]]; |
| 1565 | case FunctionEffect::Kind::NonBlocking: |
| 1566 | // nonblocking can't be added (spoofed) during a conversion. |
| 1567 | switch (DiffKind) { |
| 1568 | case Kind::Added: |
| 1569 | return true; |
| 1570 | case Kind::Removed: |
| 1571 | return false; |
| 1572 | case Kind::ConditionMismatch: |
| 1573 | // FIXME: Condition mismatches are too coarse right now -- expressions |
| 1574 | // which are equivalent but don't have the same identity are detected as |
| 1575 | // mismatches. We're going to diagnose those anyhow until expression |
| 1576 | // matching is better. |
| 1577 | return true; |
| 1578 | } |
| 1579 | break; |
| 1580 | case FunctionEffect::Kind::Blocking: |
| 1581 | case FunctionEffect::Kind::Allocating: |
| 1582 | return false; |
| 1583 | } |
| 1584 | llvm_unreachable("unknown effect kind" ); |
| 1585 | } |
| 1586 | |
| 1587 | bool Sema::FunctionEffectDiff::shouldDiagnoseRedeclaration( |
| 1588 | const FunctionDecl &OldFunction, const FunctionEffectsRef &OldFX, |
| 1589 | const FunctionDecl &NewFunction, const FunctionEffectsRef &NewFX) const { |
| 1590 | switch (EffectKind) { |
| 1591 | case FunctionEffect::Kind::NonAllocating: |
| 1592 | case FunctionEffect::Kind::NonBlocking: |
| 1593 | // nonblocking/nonallocating can't be removed in a redeclaration. |
| 1594 | switch (DiffKind) { |
| 1595 | case Kind::Added: |
| 1596 | return false; // No diagnostic. |
| 1597 | case Kind::Removed: |
| 1598 | return true; // Issue diagnostic. |
| 1599 | case Kind::ConditionMismatch: |
| 1600 | // All these forms of mismatches are diagnosed. |
| 1601 | return true; |
| 1602 | } |
| 1603 | break; |
| 1604 | case FunctionEffect::Kind::Blocking: |
| 1605 | case FunctionEffect::Kind::Allocating: |
| 1606 | return false; |
| 1607 | } |
| 1608 | llvm_unreachable("unknown effect kind" ); |
| 1609 | } |
| 1610 | |
| 1611 | Sema::FunctionEffectDiff::OverrideResult |
| 1612 | Sema::FunctionEffectDiff::shouldDiagnoseMethodOverride( |
| 1613 | const CXXMethodDecl &OldMethod, const FunctionEffectsRef &OldFX, |
| 1614 | const CXXMethodDecl &NewMethod, const FunctionEffectsRef &NewFX) const { |
| 1615 | switch (EffectKind) { |
| 1616 | case FunctionEffect::Kind::NonAllocating: |
| 1617 | case FunctionEffect::Kind::NonBlocking: |
| 1618 | switch (DiffKind) { |
| 1619 | |
| 1620 | // If added on an override, that's fine and not diagnosed. |
| 1621 | case Kind::Added: |
| 1622 | return OverrideResult::NoAction; |
| 1623 | |
| 1624 | // If missing from an override (removed), propagate from base to derived. |
| 1625 | case Kind::Removed: |
| 1626 | return OverrideResult::Merge; |
| 1627 | |
| 1628 | // If there's a mismatch involving the effect's polarity or condition, |
| 1629 | // issue a warning. |
| 1630 | case Kind::ConditionMismatch: |
| 1631 | return OverrideResult::Warn; |
| 1632 | } |
| 1633 | break; |
| 1634 | case FunctionEffect::Kind::Blocking: |
| 1635 | case FunctionEffect::Kind::Allocating: |
| 1636 | return OverrideResult::NoAction; |
| 1637 | } |
| 1638 | llvm_unreachable("unknown effect kind" ); |
| 1639 | } |
| 1640 | |
| 1641 | } // namespace clang |
| 1642 | |