| 1 | //===--- SemaOpenACCClause.cpp - Semantic Analysis for OpenACC clause -----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// \file |
| 9 | /// This file implements semantic analysis for OpenACC clauses. |
| 10 | /// |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/AST/DeclCXX.h" |
| 14 | #include "clang/AST/ExprCXX.h" |
| 15 | #include "clang/AST/OpenACCClause.h" |
| 16 | #include "clang/Basic/DiagnosticSema.h" |
| 17 | #include "clang/Basic/OpenACCKinds.h" |
| 18 | #include "clang/Sema/SemaOpenACC.h" |
| 19 | |
| 20 | using namespace clang; |
| 21 | |
| 22 | namespace { |
| 23 | bool checkValidAfterDeviceType( |
| 24 | SemaOpenACC &S, const OpenACCDeviceTypeClause &DeviceTypeClause, |
| 25 | const SemaOpenACC::OpenACCParsedClause &NewClause) { |
| 26 | // OpenACC3.3: Section 2.4: Clauses that precede any device_type clause are |
| 27 | // default clauses. Clauses that follow a device_type clause up to the end of |
| 28 | // the directive or up to the next device_type clause are device-specific |
| 29 | // clauses for the device types specified in the device_type argument. |
| 30 | // |
| 31 | // The above implies that despite what the individual text says, these are |
| 32 | // valid. |
| 33 | if (NewClause.getClauseKind() == OpenACCClauseKind::DType || |
| 34 | NewClause.getClauseKind() == OpenACCClauseKind::DeviceType) |
| 35 | return false; |
| 36 | |
| 37 | // Implement check from OpenACC3.3: section 2.5.4: |
| 38 | // Only the async, wait, num_gangs, num_workers, and vector_length clauses may |
| 39 | // follow a device_type clause. |
| 40 | if (isOpenACCComputeDirectiveKind(K: NewClause.getDirectiveKind())) { |
| 41 | switch (NewClause.getClauseKind()) { |
| 42 | case OpenACCClauseKind::Async: |
| 43 | case OpenACCClauseKind::Wait: |
| 44 | case OpenACCClauseKind::NumGangs: |
| 45 | case OpenACCClauseKind::NumWorkers: |
| 46 | case OpenACCClauseKind::VectorLength: |
| 47 | return false; |
| 48 | default: |
| 49 | break; |
| 50 | } |
| 51 | } else if (NewClause.getDirectiveKind() == OpenACCDirectiveKind::Loop) { |
| 52 | // Implement check from OpenACC3.3: section 2.9: |
| 53 | // Only the collapse, gang, worker, vector, seq, independent, auto, and tile |
| 54 | // clauses may follow a device_type clause. |
| 55 | switch (NewClause.getClauseKind()) { |
| 56 | case OpenACCClauseKind::Collapse: |
| 57 | case OpenACCClauseKind::Gang: |
| 58 | case OpenACCClauseKind::Worker: |
| 59 | case OpenACCClauseKind::Vector: |
| 60 | case OpenACCClauseKind::Seq: |
| 61 | case OpenACCClauseKind::Independent: |
| 62 | case OpenACCClauseKind::Auto: |
| 63 | case OpenACCClauseKind::Tile: |
| 64 | return false; |
| 65 | default: |
| 66 | break; |
| 67 | } |
| 68 | } else if (isOpenACCCombinedDirectiveKind(K: NewClause.getDirectiveKind())) { |
| 69 | // This seems like it should be the union of 2.9 and 2.5.4 from above. |
| 70 | switch (NewClause.getClauseKind()) { |
| 71 | case OpenACCClauseKind::Async: |
| 72 | case OpenACCClauseKind::Wait: |
| 73 | case OpenACCClauseKind::NumGangs: |
| 74 | case OpenACCClauseKind::NumWorkers: |
| 75 | case OpenACCClauseKind::VectorLength: |
| 76 | case OpenACCClauseKind::Collapse: |
| 77 | case OpenACCClauseKind::Gang: |
| 78 | case OpenACCClauseKind::Worker: |
| 79 | case OpenACCClauseKind::Vector: |
| 80 | case OpenACCClauseKind::Seq: |
| 81 | case OpenACCClauseKind::Independent: |
| 82 | case OpenACCClauseKind::Auto: |
| 83 | case OpenACCClauseKind::Tile: |
| 84 | return false; |
| 85 | default: |
| 86 | break; |
| 87 | } |
| 88 | } else if (NewClause.getDirectiveKind() == OpenACCDirectiveKind::Data) { |
| 89 | // OpenACC3.3 section 2.6.5: Only the async and wait clauses may follow a |
| 90 | // device_type clause. |
| 91 | switch (NewClause.getClauseKind()) { |
| 92 | case OpenACCClauseKind::Async: |
| 93 | case OpenACCClauseKind::Wait: |
| 94 | return false; |
| 95 | default: |
| 96 | break; |
| 97 | } |
| 98 | } else if (NewClause.getDirectiveKind() == OpenACCDirectiveKind::Set || |
| 99 | NewClause.getDirectiveKind() == OpenACCDirectiveKind::Init || |
| 100 | NewClause.getDirectiveKind() == OpenACCDirectiveKind::Shutdown) { |
| 101 | // There are no restrictions on 'set', 'init', or 'shutdown'. |
| 102 | return false; |
| 103 | } else if (NewClause.getDirectiveKind() == OpenACCDirectiveKind::Update) { |
| 104 | // OpenACC3.3 section 2.14.4: Only the async and wait clauses may follow a |
| 105 | // device_type clause. |
| 106 | switch (NewClause.getClauseKind()) { |
| 107 | case OpenACCClauseKind::Async: |
| 108 | case OpenACCClauseKind::Wait: |
| 109 | return false; |
| 110 | default: |
| 111 | break; |
| 112 | } |
| 113 | } else if (NewClause.getDirectiveKind() == OpenACCDirectiveKind::Routine) { |
| 114 | // OpenACC 3.3 section 2.15: Only the 'gang', 'worker', 'vector', 'seq', and |
| 115 | // 'bind' clauses may follow a device_type clause. |
| 116 | switch (NewClause.getClauseKind()) { |
| 117 | case OpenACCClauseKind::Gang: |
| 118 | case OpenACCClauseKind::Worker: |
| 119 | case OpenACCClauseKind::Vector: |
| 120 | case OpenACCClauseKind::Seq: |
| 121 | case OpenACCClauseKind::Bind: |
| 122 | return false; |
| 123 | default: |
| 124 | break; |
| 125 | } |
| 126 | } |
| 127 | S.Diag(Loc: NewClause.getBeginLoc(), DiagID: diag::err_acc_clause_after_device_type) |
| 128 | << NewClause.getClauseKind() << DeviceTypeClause.getClauseKind() |
| 129 | << NewClause.getDirectiveKind(); |
| 130 | S.Diag(Loc: DeviceTypeClause.getBeginLoc(), |
| 131 | DiagID: diag::note_acc_active_applies_clause_here) |
| 132 | << diag::ACCDeviceTypeApp::Active << DeviceTypeClause.getClauseKind(); |
| 133 | return true; |
| 134 | } |
| 135 | |
| 136 | // GCC looks through linkage specs, but not the other transparent declaration |
| 137 | // contexts for 'declare' restrictions, so this helper function helps get us |
| 138 | // through that. |
| 139 | const DeclContext *removeLinkageSpecDC(const DeclContext *DC) { |
| 140 | while (isa<LinkageSpecDecl>(Val: DC)) |
| 141 | DC = DC->getParent(); |
| 142 | |
| 143 | return DC; |
| 144 | } |
| 145 | |
| 146 | class SemaOpenACCClauseVisitor { |
| 147 | SemaOpenACC &SemaRef; |
| 148 | ASTContext &Ctx; |
| 149 | ArrayRef<const OpenACCClause *> ExistingClauses; |
| 150 | |
| 151 | // OpenACC 3.3 2.9: |
| 152 | // A 'gang', 'worker', or 'vector' clause may not appear if a 'seq' clause |
| 153 | // appears. |
| 154 | bool |
| 155 | DiagGangWorkerVectorSeqConflict(SemaOpenACC::OpenACCParsedClause &Clause) { |
| 156 | if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Loop && |
| 157 | !isOpenACCCombinedDirectiveKind(K: Clause.getDirectiveKind())) |
| 158 | return false; |
| 159 | assert(Clause.getClauseKind() == OpenACCClauseKind::Gang || |
| 160 | Clause.getClauseKind() == OpenACCClauseKind::Worker || |
| 161 | Clause.getClauseKind() == OpenACCClauseKind::Vector); |
| 162 | const auto *Itr = |
| 163 | llvm::find_if(Range&: ExistingClauses, P: llvm::IsaPred<OpenACCSeqClause>); |
| 164 | |
| 165 | if (Itr != ExistingClauses.end()) { |
| 166 | SemaRef.Diag(Loc: Clause.getBeginLoc(), DiagID: diag::err_acc_clause_cannot_combine) |
| 167 | << Clause.getClauseKind() << (*Itr)->getClauseKind() |
| 168 | << Clause.getDirectiveKind(); |
| 169 | SemaRef.Diag(Loc: (*Itr)->getBeginLoc(), DiagID: diag::note_acc_previous_clause_here) |
| 170 | << (*Itr)->getClauseKind(); |
| 171 | |
| 172 | return true; |
| 173 | } |
| 174 | return false; |
| 175 | } |
| 176 | |
| 177 | OpenACCModifierKind |
| 178 | CheckModifierList(SemaOpenACC::OpenACCParsedClause &Clause, |
| 179 | OpenACCModifierKind Mods) { |
| 180 | auto CheckSingle = [=](OpenACCModifierKind CurMods, |
| 181 | OpenACCModifierKind ValidKinds, |
| 182 | OpenACCModifierKind Bit) { |
| 183 | if (!isOpenACCModifierBitSet(List: CurMods, Bit) || |
| 184 | isOpenACCModifierBitSet(List: ValidKinds, Bit)) |
| 185 | return CurMods; |
| 186 | |
| 187 | SemaRef.Diag(Loc: Clause.getLParenLoc(), DiagID: diag::err_acc_invalid_modifier) |
| 188 | << Bit << Clause.getClauseKind(); |
| 189 | |
| 190 | return CurMods ^ Bit; |
| 191 | }; |
| 192 | auto Check = [&](OpenACCModifierKind ValidKinds) { |
| 193 | if ((Mods | ValidKinds) == ValidKinds) |
| 194 | return Mods; |
| 195 | |
| 196 | Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::Always); |
| 197 | Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::AlwaysIn); |
| 198 | Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::AlwaysOut); |
| 199 | Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::Readonly); |
| 200 | Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::Zero); |
| 201 | Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::Capture); |
| 202 | return Mods; |
| 203 | }; |
| 204 | |
| 205 | // The 'capture' modifier is only valid on copyin, copyout, and create on |
| 206 | // structured data or compute constructs (which also includes combined). |
| 207 | bool IsStructuredDataOrCompute = |
| 208 | Clause.getDirectiveKind() == OpenACCDirectiveKind::Data || |
| 209 | isOpenACCComputeDirectiveKind(K: Clause.getDirectiveKind()) || |
| 210 | isOpenACCCombinedDirectiveKind(K: Clause.getDirectiveKind()); |
| 211 | |
| 212 | switch (Clause.getClauseKind()) { |
| 213 | default: |
| 214 | llvm_unreachable("Only for copy, copyin, copyout, create" ); |
| 215 | case OpenACCClauseKind::Copy: |
| 216 | case OpenACCClauseKind::PCopy: |
| 217 | case OpenACCClauseKind::PresentOrCopy: |
| 218 | // COPY: Capture always |
| 219 | return Check(OpenACCModifierKind::Always | OpenACCModifierKind::AlwaysIn | |
| 220 | OpenACCModifierKind::AlwaysOut | |
| 221 | OpenACCModifierKind::Capture); |
| 222 | case OpenACCClauseKind::CopyIn: |
| 223 | case OpenACCClauseKind::PCopyIn: |
| 224 | case OpenACCClauseKind::PresentOrCopyIn: |
| 225 | // COPYIN: Capture only struct.data & compute |
| 226 | return Check(OpenACCModifierKind::Always | OpenACCModifierKind::AlwaysIn | |
| 227 | OpenACCModifierKind::Readonly | |
| 228 | (IsStructuredDataOrCompute ? OpenACCModifierKind::Capture |
| 229 | : OpenACCModifierKind::Invalid)); |
| 230 | case OpenACCClauseKind::CopyOut: |
| 231 | case OpenACCClauseKind::PCopyOut: |
| 232 | case OpenACCClauseKind::PresentOrCopyOut: |
| 233 | // COPYOUT: Capture only struct.data & compute |
| 234 | return Check(OpenACCModifierKind::Always | |
| 235 | OpenACCModifierKind::AlwaysOut | OpenACCModifierKind::Zero | |
| 236 | (IsStructuredDataOrCompute ? OpenACCModifierKind::Capture |
| 237 | : OpenACCModifierKind::Invalid)); |
| 238 | case OpenACCClauseKind::Create: |
| 239 | case OpenACCClauseKind::PCreate: |
| 240 | case OpenACCClauseKind::PresentOrCreate: |
| 241 | // CREATE: Capture only struct.data & compute |
| 242 | return Check(OpenACCModifierKind::Zero | |
| 243 | (IsStructuredDataOrCompute ? OpenACCModifierKind::Capture |
| 244 | : OpenACCModifierKind::Invalid)); |
| 245 | } |
| 246 | llvm_unreachable("didn't return from switch above?" ); |
| 247 | } |
| 248 | |
| 249 | // Helper for the 'routine' checks during 'new' clause addition. Precondition |
| 250 | // is that we already know the new clause is one of the prohbiited ones. |
| 251 | template <typename Pred> |
| 252 | bool |
| 253 | CheckValidRoutineNewClauseHelper(Pred HasPredicate, |
| 254 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 255 | if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Routine) |
| 256 | return false; |
| 257 | |
| 258 | auto *FirstDeviceType = |
| 259 | llvm::find_if(Range&: ExistingClauses, P: llvm::IsaPred<OpenACCDeviceTypeClause>); |
| 260 | |
| 261 | if (FirstDeviceType == ExistingClauses.end()) { |
| 262 | // If there isn't a device type yet, ANY duplicate is wrong. |
| 263 | |
| 264 | auto *ExistingProhibitedClause = |
| 265 | llvm::find_if(ExistingClauses, HasPredicate); |
| 266 | |
| 267 | if (ExistingProhibitedClause == ExistingClauses.end()) |
| 268 | return false; |
| 269 | |
| 270 | SemaRef.Diag(Loc: Clause.getBeginLoc(), DiagID: diag::err_acc_clause_cannot_combine) |
| 271 | << Clause.getClauseKind() |
| 272 | << (*ExistingProhibitedClause)->getClauseKind() |
| 273 | << Clause.getDirectiveKind(); |
| 274 | SemaRef.Diag((*ExistingProhibitedClause)->getBeginLoc(), |
| 275 | diag::note_acc_previous_clause_here) |
| 276 | << (*ExistingProhibitedClause)->getClauseKind(); |
| 277 | return true; |
| 278 | } |
| 279 | |
| 280 | // At this point we know that this is 'after' a device type. So this is an |
| 281 | // error if: 1- there is one BEFORE the 'device_type' 2- there is one |
| 282 | // between this and the previous 'device_type'. |
| 283 | |
| 284 | auto *BeforeDeviceType = |
| 285 | std::find_if(ExistingClauses.begin(), FirstDeviceType, HasPredicate); |
| 286 | // If there is one before the device_type (and we know we are after a |
| 287 | // device_type), than this is ill-formed. |
| 288 | if (BeforeDeviceType != FirstDeviceType) { |
| 289 | SemaRef.Diag( |
| 290 | Loc: Clause.getBeginLoc(), |
| 291 | DiagID: diag::err_acc_clause_routine_cannot_combine_before_device_type) |
| 292 | << Clause.getClauseKind() << (*BeforeDeviceType)->getClauseKind(); |
| 293 | SemaRef.Diag((*BeforeDeviceType)->getBeginLoc(), |
| 294 | diag::note_acc_previous_clause_here) |
| 295 | << (*BeforeDeviceType)->getClauseKind(); |
| 296 | SemaRef.Diag(Loc: (*FirstDeviceType)->getBeginLoc(), |
| 297 | DiagID: diag::note_acc_active_applies_clause_here) |
| 298 | << diag::ACCDeviceTypeApp::Active |
| 299 | << (*FirstDeviceType)->getClauseKind(); |
| 300 | return true; |
| 301 | } |
| 302 | |
| 303 | auto LastDeviceTypeItr = |
| 304 | std::find_if(first: ExistingClauses.rbegin(), last: ExistingClauses.rend(), |
| 305 | pred: llvm::IsaPred<OpenACCDeviceTypeClause>); |
| 306 | |
| 307 | // We already know there is one in the list, so it is nonsensical to not |
| 308 | // have one. |
| 309 | assert(LastDeviceTypeItr != ExistingClauses.rend()); |
| 310 | |
| 311 | // Get the device-type from-the-front (not reverse) iterator from the |
| 312 | // reverse iterator. |
| 313 | auto *LastDeviceType = LastDeviceTypeItr.base() - 1; |
| 314 | |
| 315 | auto *ExistingProhibitedSinceLastDevice = |
| 316 | std::find_if(LastDeviceType, ExistingClauses.end(), HasPredicate); |
| 317 | |
| 318 | // No prohibited ones since the last device-type. |
| 319 | if (ExistingProhibitedSinceLastDevice == ExistingClauses.end()) |
| 320 | return false; |
| 321 | |
| 322 | SemaRef.Diag(Loc: Clause.getBeginLoc(), |
| 323 | DiagID: diag::err_acc_clause_routine_cannot_combine_same_device_type) |
| 324 | << Clause.getClauseKind() |
| 325 | << (*ExistingProhibitedSinceLastDevice)->getClauseKind(); |
| 326 | SemaRef.Diag((*ExistingProhibitedSinceLastDevice)->getBeginLoc(), |
| 327 | diag::note_acc_previous_clause_here) |
| 328 | << (*ExistingProhibitedSinceLastDevice)->getClauseKind(); |
| 329 | SemaRef.Diag(Loc: (*LastDeviceType)->getBeginLoc(), |
| 330 | DiagID: diag::note_acc_active_applies_clause_here) |
| 331 | << diag::ACCDeviceTypeApp::Active << (*LastDeviceType)->getClauseKind(); |
| 332 | return true; |
| 333 | } |
| 334 | |
| 335 | // Routine has a pretty complicated set of rules for how device_type and the |
| 336 | // gang, worker, vector, and seq clauses work. So diagnose some of it here. |
| 337 | bool CheckValidRoutineGangWorkerVectorSeqNewClause( |
| 338 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 339 | |
| 340 | if (Clause.getClauseKind() != OpenACCClauseKind::Gang && |
| 341 | Clause.getClauseKind() != OpenACCClauseKind::Vector && |
| 342 | Clause.getClauseKind() != OpenACCClauseKind::Worker && |
| 343 | Clause.getClauseKind() != OpenACCClauseKind::Seq) |
| 344 | return false; |
| 345 | auto ProhibitedPred = llvm::IsaPred<OpenACCGangClause, OpenACCWorkerClause, |
| 346 | OpenACCVectorClause, OpenACCSeqClause>; |
| 347 | |
| 348 | return CheckValidRoutineNewClauseHelper(HasPredicate: ProhibitedPred, Clause); |
| 349 | } |
| 350 | |
| 351 | // Bind should have similar rules on a routine as gang/worker/vector/seq, |
| 352 | // except there is no 'must have 1' rule, so we can get all the checking done |
| 353 | // here. |
| 354 | bool |
| 355 | CheckValidRoutineBindNewClause(SemaOpenACC::OpenACCParsedClause &Clause) { |
| 356 | |
| 357 | if (Clause.getClauseKind() != OpenACCClauseKind::Bind) |
| 358 | return false; |
| 359 | |
| 360 | auto HasBindPred = llvm::IsaPred<OpenACCBindClause>; |
| 361 | return CheckValidRoutineNewClauseHelper(HasPredicate: HasBindPred, Clause); |
| 362 | } |
| 363 | |
| 364 | // For 'tile' and 'collapse', only allow 1 per 'device_type'. |
| 365 | // Also applies to num_worker, num_gangs, vector_length, and async. |
| 366 | // This does introspection into the actual device-types to prevent duplicates |
| 367 | // across device types as well. |
| 368 | template <typename TheClauseTy> |
| 369 | bool DisallowSinceLastDeviceType(SemaOpenACC::OpenACCParsedClause &Clause) { |
| 370 | auto LastDeviceTypeItr = |
| 371 | std::find_if(first: ExistingClauses.rbegin(), last: ExistingClauses.rend(), |
| 372 | pred: llvm::IsaPred<OpenACCDeviceTypeClause>); |
| 373 | |
| 374 | auto LastSinceDevTy = |
| 375 | std::find_if(ExistingClauses.rbegin(), LastDeviceTypeItr, |
| 376 | llvm::IsaPred<TheClauseTy>); |
| 377 | |
| 378 | // In this case there is a duplicate since the last device_type/lack of a |
| 379 | // device_type. Diagnose these as duplicates. |
| 380 | if (LastSinceDevTy != LastDeviceTypeItr) { |
| 381 | SemaRef.Diag(Loc: Clause.getBeginLoc(), |
| 382 | DiagID: diag::err_acc_clause_since_last_device_type) |
| 383 | << Clause.getClauseKind() << Clause.getDirectiveKind() |
| 384 | << (LastDeviceTypeItr != ExistingClauses.rend()); |
| 385 | |
| 386 | SemaRef.Diag((*LastSinceDevTy)->getBeginLoc(), |
| 387 | diag::note_acc_previous_clause_here) |
| 388 | << (*LastSinceDevTy)->getClauseKind(); |
| 389 | |
| 390 | // Mention the last device_type as well. |
| 391 | if (LastDeviceTypeItr != ExistingClauses.rend()) |
| 392 | SemaRef.Diag(Loc: (*LastDeviceTypeItr)->getBeginLoc(), |
| 393 | DiagID: diag::note_acc_active_applies_clause_here) |
| 394 | << diag::ACCDeviceTypeApp::Active |
| 395 | << (*LastDeviceTypeItr)->getClauseKind(); |
| 396 | return true; |
| 397 | } |
| 398 | |
| 399 | // If this isn't in a device_type, and we didn't diagnose that there are |
| 400 | // dupes above, just give up, no sense in searching for previous device_type |
| 401 | // regions as they don't exist. |
| 402 | if (LastDeviceTypeItr == ExistingClauses.rend()) |
| 403 | return false; |
| 404 | |
| 405 | // The device-type that is active for us, so we can compare to the previous |
| 406 | // ones. |
| 407 | const auto &ActiveDeviceTypeClause = |
| 408 | cast<OpenACCDeviceTypeClause>(Val: **LastDeviceTypeItr); |
| 409 | |
| 410 | auto PrevDeviceTypeItr = LastDeviceTypeItr; |
| 411 | auto CurDevTypeItr = LastDeviceTypeItr; |
| 412 | |
| 413 | while ((CurDevTypeItr = std::find_if( |
| 414 | first: std::next(x: PrevDeviceTypeItr), last: ExistingClauses.rend(), |
| 415 | pred: llvm::IsaPred<OpenACCDeviceTypeClause>)) != |
| 416 | ExistingClauses.rend()) { |
| 417 | // At this point, we know that we have a region between two device_types, |
| 418 | // as specified by CurDevTypeItr and PrevDeviceTypeItr. |
| 419 | |
| 420 | auto CurClauseKindItr = std::find_if(PrevDeviceTypeItr, CurDevTypeItr, |
| 421 | llvm::IsaPred<TheClauseTy>); |
| 422 | |
| 423 | // There are no clauses of the current kind between these device_types, so |
| 424 | // continue. |
| 425 | if (CurClauseKindItr == CurDevTypeItr) { |
| 426 | PrevDeviceTypeItr = CurDevTypeItr; |
| 427 | continue; |
| 428 | } |
| 429 | |
| 430 | // At this point, we know that this device_type region has a collapse. So |
| 431 | // diagnose if the two device_types have any overlap in their |
| 432 | // architectures. |
| 433 | const auto &CurDeviceTypeClause = |
| 434 | cast<OpenACCDeviceTypeClause>(Val: **CurDevTypeItr); |
| 435 | |
| 436 | for (const DeviceTypeArgument &arg : |
| 437 | ActiveDeviceTypeClause.getArchitectures()) { |
| 438 | for (const DeviceTypeArgument &prevArg : |
| 439 | CurDeviceTypeClause.getArchitectures()) { |
| 440 | |
| 441 | // This should catch duplicates * regions, duplicate same-text (thanks |
| 442 | // to identifier equiv.) and case insensitive dupes. |
| 443 | if (arg.getIdentifierInfo() == prevArg.getIdentifierInfo() || |
| 444 | (arg.getIdentifierInfo() && prevArg.getIdentifierInfo() && |
| 445 | StringRef{arg.getIdentifierInfo()->getName()}.equals_insensitive( |
| 446 | RHS: prevArg.getIdentifierInfo()->getName()))) { |
| 447 | SemaRef.Diag(Loc: Clause.getBeginLoc(), |
| 448 | DiagID: diag::err_acc_clause_conflicts_prev_dev_type) |
| 449 | << Clause.getClauseKind() |
| 450 | << (arg.getIdentifierInfo() ? arg.getIdentifierInfo()->getName() |
| 451 | : "*" ); |
| 452 | // mention the active device type. |
| 453 | SemaRef.Diag(Loc: ActiveDeviceTypeClause.getBeginLoc(), |
| 454 | DiagID: diag::note_acc_active_applies_clause_here) |
| 455 | << diag::ACCDeviceTypeApp::Active |
| 456 | << ActiveDeviceTypeClause.getClauseKind(); |
| 457 | // mention the previous clause. |
| 458 | SemaRef.Diag((*CurClauseKindItr)->getBeginLoc(), |
| 459 | diag::note_acc_previous_clause_here) |
| 460 | << (*CurClauseKindItr)->getClauseKind(); |
| 461 | // mention the previous device type. |
| 462 | SemaRef.Diag(Loc: CurDeviceTypeClause.getBeginLoc(), |
| 463 | DiagID: diag::note_acc_active_applies_clause_here) |
| 464 | << diag::ACCDeviceTypeApp::Applies |
| 465 | << CurDeviceTypeClause.getClauseKind(); |
| 466 | return true; |
| 467 | } |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | PrevDeviceTypeItr = CurDevTypeItr; |
| 472 | } |
| 473 | return false; |
| 474 | } |
| 475 | |
| 476 | public: |
| 477 | SemaOpenACCClauseVisitor(SemaOpenACC &S, |
| 478 | ArrayRef<const OpenACCClause *> ExistingClauses) |
| 479 | : SemaRef(S), Ctx(S.getASTContext()), ExistingClauses(ExistingClauses) {} |
| 480 | |
| 481 | OpenACCClause *Visit(SemaOpenACC::OpenACCParsedClause &Clause) { |
| 482 | |
| 483 | if (SemaRef.DiagnoseAllowedOnceClauses( |
| 484 | DK: Clause.getDirectiveKind(), CK: Clause.getClauseKind(), |
| 485 | ClauseLoc: Clause.getBeginLoc(), Clauses: ExistingClauses) || |
| 486 | SemaRef.DiagnoseExclusiveClauses(DK: Clause.getDirectiveKind(), |
| 487 | CK: Clause.getClauseKind(), |
| 488 | ClauseLoc: Clause.getBeginLoc(), Clauses: ExistingClauses)) |
| 489 | return nullptr; |
| 490 | if (CheckValidRoutineGangWorkerVectorSeqNewClause(Clause) || |
| 491 | CheckValidRoutineBindNewClause(Clause)) |
| 492 | return nullptr; |
| 493 | |
| 494 | switch (Clause.getClauseKind()) { |
| 495 | case OpenACCClauseKind::Shortloop: |
| 496 | llvm_unreachable("Shortloop shouldn't be generated in clang" ); |
| 497 | case OpenACCClauseKind::Invalid: |
| 498 | return nullptr; |
| 499 | #define VISIT_CLAUSE(CLAUSE_NAME) \ |
| 500 | case OpenACCClauseKind::CLAUSE_NAME: \ |
| 501 | return Visit##CLAUSE_NAME##Clause(Clause); |
| 502 | #define CLAUSE_ALIAS(ALIAS, CLAUSE_NAME, DEPRECATED) \ |
| 503 | case OpenACCClauseKind::ALIAS: \ |
| 504 | if (DEPRECATED) \ |
| 505 | SemaRef.Diag(Clause.getBeginLoc(), diag::warn_acc_deprecated_alias_name) \ |
| 506 | << Clause.getClauseKind() << OpenACCClauseKind::CLAUSE_NAME; \ |
| 507 | return Visit##CLAUSE_NAME##Clause(Clause); |
| 508 | #include "clang/Basic/OpenACCClauses.def" |
| 509 | } |
| 510 | llvm_unreachable("Invalid clause kind" ); |
| 511 | } |
| 512 | |
| 513 | #define VISIT_CLAUSE(CLAUSE_NAME) \ |
| 514 | OpenACCClause *Visit##CLAUSE_NAME##Clause( \ |
| 515 | SemaOpenACC::OpenACCParsedClause &Clause); |
| 516 | #include "clang/Basic/OpenACCClauses.def" |
| 517 | }; |
| 518 | |
| 519 | OpenACCClause *SemaOpenACCClauseVisitor::VisitDefaultClause( |
| 520 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 521 | // Don't add an invalid clause to the AST. |
| 522 | if (Clause.getDefaultClauseKind() == OpenACCDefaultClauseKind::Invalid) |
| 523 | return nullptr; |
| 524 | |
| 525 | return OpenACCDefaultClause::Create( |
| 526 | C: Ctx, K: Clause.getDefaultClauseKind(), BeginLoc: Clause.getBeginLoc(), |
| 527 | LParenLoc: Clause.getLParenLoc(), EndLoc: Clause.getEndLoc()); |
| 528 | } |
| 529 | |
| 530 | OpenACCClause *SemaOpenACCClauseVisitor::VisitTileClause( |
| 531 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 532 | |
| 533 | if (DisallowSinceLastDeviceType<OpenACCTileClause>(Clause)) |
| 534 | return nullptr; |
| 535 | |
| 536 | llvm::SmallVector<Expr *> NewSizeExprs; |
| 537 | |
| 538 | // Make sure these are all positive constant expressions or *. |
| 539 | for (Expr *E : Clause.getIntExprs()) { |
| 540 | ExprResult Res = SemaRef.CheckTileSizeExpr(SizeExpr: E); |
| 541 | |
| 542 | if (!Res.isUsable()) |
| 543 | return nullptr; |
| 544 | |
| 545 | NewSizeExprs.push_back(Elt: Res.get()); |
| 546 | } |
| 547 | |
| 548 | return OpenACCTileClause::Create(C: Ctx, BeginLoc: Clause.getBeginLoc(), |
| 549 | LParenLoc: Clause.getLParenLoc(), SizeExprs: NewSizeExprs, |
| 550 | EndLoc: Clause.getEndLoc()); |
| 551 | } |
| 552 | |
| 553 | OpenACCClause *SemaOpenACCClauseVisitor::VisitIfClause( |
| 554 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 555 | |
| 556 | // The parser has ensured that we have a proper condition expr, so there |
| 557 | // isn't really much to do here. |
| 558 | |
| 559 | // If the 'if' clause is true, it makes the 'self' clause have no effect, |
| 560 | // diagnose that here. This only applies on compute/combined constructs. |
| 561 | if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Update) { |
| 562 | const auto *Itr = |
| 563 | llvm::find_if(Range&: ExistingClauses, P: llvm::IsaPred<OpenACCSelfClause>); |
| 564 | if (Itr != ExistingClauses.end()) { |
| 565 | SemaRef.Diag(Loc: Clause.getBeginLoc(), DiagID: diag::warn_acc_if_self_conflict); |
| 566 | SemaRef.Diag(Loc: (*Itr)->getBeginLoc(), DiagID: diag::note_acc_previous_clause_here) |
| 567 | << (*Itr)->getClauseKind(); |
| 568 | } |
| 569 | } |
| 570 | |
| 571 | return OpenACCIfClause::Create(C: Ctx, BeginLoc: Clause.getBeginLoc(), |
| 572 | LParenLoc: Clause.getLParenLoc(), |
| 573 | ConditionExpr: Clause.getConditionExpr(), EndLoc: Clause.getEndLoc()); |
| 574 | } |
| 575 | |
| 576 | OpenACCClause *SemaOpenACCClauseVisitor::VisitSelfClause( |
| 577 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 578 | |
| 579 | // If the 'if' clause is true, it makes the 'self' clause have no effect, |
| 580 | // diagnose that here. This only applies on compute/combined constructs. |
| 581 | if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Update) |
| 582 | return OpenACCSelfClause::Create(C: Ctx, BeginLoc: Clause.getBeginLoc(), |
| 583 | LParenLoc: Clause.getLParenLoc(), ConditionExpr: Clause.getVarList(), |
| 584 | EndLoc: Clause.getEndLoc()); |
| 585 | |
| 586 | const auto *Itr = |
| 587 | llvm::find_if(Range&: ExistingClauses, P: llvm::IsaPred<OpenACCIfClause>); |
| 588 | if (Itr != ExistingClauses.end()) { |
| 589 | SemaRef.Diag(Loc: Clause.getBeginLoc(), DiagID: diag::warn_acc_if_self_conflict); |
| 590 | SemaRef.Diag(Loc: (*Itr)->getBeginLoc(), DiagID: diag::note_acc_previous_clause_here) |
| 591 | << (*Itr)->getClauseKind(); |
| 592 | } |
| 593 | return OpenACCSelfClause::Create( |
| 594 | C: Ctx, BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), |
| 595 | ConditionExpr: Clause.getConditionExpr(), EndLoc: Clause.getEndLoc()); |
| 596 | } |
| 597 | |
| 598 | OpenACCClause *SemaOpenACCClauseVisitor::VisitNumGangsClause( |
| 599 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 600 | |
| 601 | if (DisallowSinceLastDeviceType<OpenACCNumGangsClause>(Clause)) |
| 602 | return nullptr; |
| 603 | |
| 604 | // num_gangs requires at least 1 int expr in all forms. Diagnose here, but |
| 605 | // allow us to continue, an empty clause might be useful for future |
| 606 | // diagnostics. |
| 607 | if (Clause.getIntExprs().empty()) |
| 608 | SemaRef.Diag(Loc: Clause.getBeginLoc(), DiagID: diag::err_acc_num_gangs_num_args) |
| 609 | << /*NoArgs=*/0; |
| 610 | |
| 611 | unsigned MaxArgs = |
| 612 | (Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel || |
| 613 | Clause.getDirectiveKind() == OpenACCDirectiveKind::ParallelLoop) |
| 614 | ? 3 |
| 615 | : 1; |
| 616 | // The max number of args differs between parallel and other constructs. |
| 617 | // Again, allow us to continue for the purposes of future diagnostics. |
| 618 | if (Clause.getIntExprs().size() > MaxArgs) |
| 619 | SemaRef.Diag(Loc: Clause.getBeginLoc(), DiagID: diag::err_acc_num_gangs_num_args) |
| 620 | << /*NoArgs=*/1 << Clause.getDirectiveKind() << MaxArgs |
| 621 | << Clause.getIntExprs().size(); |
| 622 | |
| 623 | // OpenACC 3.3 Section 2.9.11: A reduction clause may not appear on a loop |
| 624 | // directive that has a gang clause and is within a compute construct that has |
| 625 | // a num_gangs clause with more than one explicit argument. |
| 626 | if (Clause.getIntExprs().size() > 1 && |
| 627 | isOpenACCCombinedDirectiveKind(K: Clause.getDirectiveKind())) { |
| 628 | auto *GangClauseItr = |
| 629 | llvm::find_if(Range&: ExistingClauses, P: llvm::IsaPred<OpenACCGangClause>); |
| 630 | auto *ReductionClauseItr = |
| 631 | llvm::find_if(Range&: ExistingClauses, P: llvm::IsaPred<OpenACCReductionClause>); |
| 632 | |
| 633 | if (GangClauseItr != ExistingClauses.end() && |
| 634 | ReductionClauseItr != ExistingClauses.end()) { |
| 635 | SemaRef.Diag(Loc: Clause.getBeginLoc(), |
| 636 | DiagID: diag::err_acc_gang_reduction_numgangs_conflict) |
| 637 | << OpenACCClauseKind::Reduction << OpenACCClauseKind::Gang |
| 638 | << Clause.getDirectiveKind() << /*is on combined directive=*/1; |
| 639 | SemaRef.Diag(Loc: (*ReductionClauseItr)->getBeginLoc(), |
| 640 | DiagID: diag::note_acc_previous_clause_here) |
| 641 | << (*ReductionClauseItr)->getClauseKind(); |
| 642 | SemaRef.Diag(Loc: (*GangClauseItr)->getBeginLoc(), |
| 643 | DiagID: diag::note_acc_previous_clause_here) |
| 644 | << (*GangClauseItr)->getClauseKind(); |
| 645 | return nullptr; |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | // OpenACC 3.3 Section 2.5.4: |
| 650 | // A reduction clause may not appear on a parallel construct with a |
| 651 | // num_gangs clause that has more than one argument. |
| 652 | if ((Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel || |
| 653 | Clause.getDirectiveKind() == OpenACCDirectiveKind::ParallelLoop) && |
| 654 | Clause.getIntExprs().size() > 1) { |
| 655 | auto *Parallel = |
| 656 | llvm::find_if(Range&: ExistingClauses, P: llvm::IsaPred<OpenACCReductionClause>); |
| 657 | |
| 658 | if (Parallel != ExistingClauses.end()) { |
| 659 | SemaRef.Diag(Loc: Clause.getBeginLoc(), |
| 660 | DiagID: diag::err_acc_reduction_num_gangs_conflict) |
| 661 | << /*>1 arg in first loc=*/1 << Clause.getClauseKind() |
| 662 | << Clause.getDirectiveKind() << OpenACCClauseKind::Reduction; |
| 663 | SemaRef.Diag(Loc: (*Parallel)->getBeginLoc(), |
| 664 | DiagID: diag::note_acc_previous_clause_here) |
| 665 | << (*Parallel)->getClauseKind(); |
| 666 | return nullptr; |
| 667 | } |
| 668 | } |
| 669 | |
| 670 | // OpenACC 3.3 Section 2.9.2: |
| 671 | // An argument with no keyword or with the 'num' keyword is allowed only when |
| 672 | // the 'num_gangs' does not appear on the 'kernel' construct. |
| 673 | if (Clause.getDirectiveKind() == OpenACCDirectiveKind::KernelsLoop) { |
| 674 | auto GangClauses = llvm::make_filter_range( |
| 675 | Range&: ExistingClauses, Pred: llvm::IsaPred<OpenACCGangClause>); |
| 676 | |
| 677 | for (auto *GC : GangClauses) { |
| 678 | if (cast<OpenACCGangClause>(Val: GC)->hasExprOfKind(GK: OpenACCGangKind::Num)) { |
| 679 | SemaRef.Diag(Loc: Clause.getBeginLoc(), |
| 680 | DiagID: diag::err_acc_num_arg_conflict_reverse) |
| 681 | << OpenACCClauseKind::NumGangs << OpenACCClauseKind::Gang |
| 682 | << /*Num argument*/ 1; |
| 683 | SemaRef.Diag(Loc: GC->getBeginLoc(), DiagID: diag::note_acc_previous_clause_here) |
| 684 | << GC->getClauseKind(); |
| 685 | return nullptr; |
| 686 | } |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | return OpenACCNumGangsClause::Create( |
| 691 | C: Ctx, BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), IntExprs: Clause.getIntExprs(), |
| 692 | EndLoc: Clause.getEndLoc()); |
| 693 | } |
| 694 | |
| 695 | OpenACCClause *SemaOpenACCClauseVisitor::VisitNumWorkersClause( |
| 696 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 697 | |
| 698 | if (DisallowSinceLastDeviceType<OpenACCNumWorkersClause>(Clause)) |
| 699 | return nullptr; |
| 700 | |
| 701 | // OpenACC 3.3 Section 2.9.2: |
| 702 | // An argument is allowed only when the 'num_workers' does not appear on the |
| 703 | // kernels construct. |
| 704 | if (Clause.getDirectiveKind() == OpenACCDirectiveKind::KernelsLoop) { |
| 705 | auto WorkerClauses = llvm::make_filter_range( |
| 706 | Range&: ExistingClauses, Pred: llvm::IsaPred<OpenACCWorkerClause>); |
| 707 | |
| 708 | for (auto *WC : WorkerClauses) { |
| 709 | if (cast<OpenACCWorkerClause>(Val: WC)->hasIntExpr()) { |
| 710 | SemaRef.Diag(Loc: Clause.getBeginLoc(), |
| 711 | DiagID: diag::err_acc_num_arg_conflict_reverse) |
| 712 | << OpenACCClauseKind::NumWorkers << OpenACCClauseKind::Worker |
| 713 | << /*num argument*/ 0; |
| 714 | SemaRef.Diag(Loc: WC->getBeginLoc(), DiagID: diag::note_acc_previous_clause_here) |
| 715 | << WC->getClauseKind(); |
| 716 | return nullptr; |
| 717 | } |
| 718 | } |
| 719 | } |
| 720 | |
| 721 | assert(Clause.getIntExprs().size() == 1 && |
| 722 | "Invalid number of expressions for NumWorkers" ); |
| 723 | return OpenACCNumWorkersClause::Create( |
| 724 | C: Ctx, BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), IntExpr: Clause.getIntExprs()[0], |
| 725 | EndLoc: Clause.getEndLoc()); |
| 726 | } |
| 727 | |
| 728 | OpenACCClause *SemaOpenACCClauseVisitor::VisitVectorLengthClause( |
| 729 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 730 | |
| 731 | if (DisallowSinceLastDeviceType<OpenACCVectorLengthClause>(Clause)) |
| 732 | return nullptr; |
| 733 | |
| 734 | // OpenACC 3.3 Section 2.9.4: |
| 735 | // An argument is allowed only when the 'vector_length' does not appear on the |
| 736 | // 'kernels' construct. |
| 737 | if (Clause.getDirectiveKind() == OpenACCDirectiveKind::KernelsLoop) { |
| 738 | auto VectorClauses = llvm::make_filter_range( |
| 739 | Range&: ExistingClauses, Pred: llvm::IsaPred<OpenACCVectorClause>); |
| 740 | |
| 741 | for (auto *VC : VectorClauses) { |
| 742 | if (cast<OpenACCVectorClause>(Val: VC)->hasIntExpr()) { |
| 743 | SemaRef.Diag(Loc: Clause.getBeginLoc(), |
| 744 | DiagID: diag::err_acc_num_arg_conflict_reverse) |
| 745 | << OpenACCClauseKind::VectorLength << OpenACCClauseKind::Vector |
| 746 | << /*num argument*/ 0; |
| 747 | SemaRef.Diag(Loc: VC->getBeginLoc(), DiagID: diag::note_acc_previous_clause_here) |
| 748 | << VC->getClauseKind(); |
| 749 | return nullptr; |
| 750 | } |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | assert(Clause.getIntExprs().size() == 1 && |
| 755 | "Invalid number of expressions for NumWorkers" ); |
| 756 | return OpenACCVectorLengthClause::Create( |
| 757 | C: Ctx, BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), IntExpr: Clause.getIntExprs()[0], |
| 758 | EndLoc: Clause.getEndLoc()); |
| 759 | } |
| 760 | |
| 761 | OpenACCClause *SemaOpenACCClauseVisitor::VisitAsyncClause( |
| 762 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 763 | if (DisallowSinceLastDeviceType<OpenACCAsyncClause>(Clause)) |
| 764 | return nullptr; |
| 765 | |
| 766 | assert(Clause.getNumIntExprs() < 2 && |
| 767 | "Invalid number of expressions for Async" ); |
| 768 | return OpenACCAsyncClause::Create( |
| 769 | C: Ctx, BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), |
| 770 | IntExpr: Clause.getNumIntExprs() != 0 ? Clause.getIntExprs()[0] : nullptr, |
| 771 | EndLoc: Clause.getEndLoc()); |
| 772 | } |
| 773 | |
| 774 | OpenACCClause *SemaOpenACCClauseVisitor::VisitDeviceNumClause( |
| 775 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 776 | assert(Clause.getNumIntExprs() == 1 && |
| 777 | "Invalid number of expressions for device_num" ); |
| 778 | return OpenACCDeviceNumClause::Create( |
| 779 | C: Ctx, BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), IntExpr: Clause.getIntExprs()[0], |
| 780 | EndLoc: Clause.getEndLoc()); |
| 781 | } |
| 782 | |
| 783 | OpenACCClause *SemaOpenACCClauseVisitor::VisitDefaultAsyncClause( |
| 784 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 785 | assert(Clause.getNumIntExprs() == 1 && |
| 786 | "Invalid number of expressions for default_async" ); |
| 787 | return OpenACCDefaultAsyncClause::Create( |
| 788 | C: Ctx, BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), IntExpr: Clause.getIntExprs()[0], |
| 789 | EndLoc: Clause.getEndLoc()); |
| 790 | } |
| 791 | |
| 792 | OpenACCClause *SemaOpenACCClauseVisitor::VisitPrivateClause( |
| 793 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 794 | // ActOnVar ensured that everything is a valid variable reference, so there |
| 795 | // really isn't anything to do here. GCC does some duplicate-finding, though |
| 796 | // it isn't apparent in the standard where this is justified. |
| 797 | |
| 798 | return OpenACCPrivateClause::Create(C: Ctx, BeginLoc: Clause.getBeginLoc(), |
| 799 | LParenLoc: Clause.getLParenLoc(), |
| 800 | VarList: Clause.getVarList(), EndLoc: Clause.getEndLoc()); |
| 801 | } |
| 802 | |
| 803 | OpenACCClause *SemaOpenACCClauseVisitor::VisitFirstPrivateClause( |
| 804 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 805 | // ActOnVar ensured that everything is a valid variable reference, so there |
| 806 | // really isn't anything to do here. GCC does some duplicate-finding, though |
| 807 | // it isn't apparent in the standard where this is justified. |
| 808 | |
| 809 | return OpenACCFirstPrivateClause::Create( |
| 810 | C: Ctx, BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), VarList: Clause.getVarList(), |
| 811 | EndLoc: Clause.getEndLoc()); |
| 812 | } |
| 813 | |
| 814 | OpenACCClause *SemaOpenACCClauseVisitor::VisitNoCreateClause( |
| 815 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 816 | // ActOnVar ensured that everything is a valid variable reference, so there |
| 817 | // really isn't anything to do here. GCC does some duplicate-finding, though |
| 818 | // it isn't apparent in the standard where this is justified. |
| 819 | |
| 820 | return OpenACCNoCreateClause::Create(C: Ctx, BeginLoc: Clause.getBeginLoc(), |
| 821 | LParenLoc: Clause.getLParenLoc(), |
| 822 | VarList: Clause.getVarList(), EndLoc: Clause.getEndLoc()); |
| 823 | } |
| 824 | |
| 825 | OpenACCClause *SemaOpenACCClauseVisitor::VisitPresentClause( |
| 826 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 827 | // ActOnVar ensured that everything is a valid variable reference, so there |
| 828 | // really isn't anything to do here. GCC does some duplicate-finding, though |
| 829 | // it isn't apparent in the standard where this is justified. |
| 830 | |
| 831 | // 'declare' has some restrictions that need to be enforced separately, so |
| 832 | // check it here. |
| 833 | if (SemaRef.CheckDeclareClause(Clause, Mods: OpenACCModifierKind::Invalid)) |
| 834 | return nullptr; |
| 835 | |
| 836 | return OpenACCPresentClause::Create(C: Ctx, BeginLoc: Clause.getBeginLoc(), |
| 837 | LParenLoc: Clause.getLParenLoc(), |
| 838 | VarList: Clause.getVarList(), EndLoc: Clause.getEndLoc()); |
| 839 | } |
| 840 | |
| 841 | OpenACCClause *SemaOpenACCClauseVisitor::VisitHostClause( |
| 842 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 843 | // ActOnVar ensured that everything is a valid variable reference, so there |
| 844 | // really isn't anything to do here. GCC does some duplicate-finding, though |
| 845 | // it isn't apparent in the standard where this is justified. |
| 846 | |
| 847 | return OpenACCHostClause::Create(C: Ctx, BeginLoc: Clause.getBeginLoc(), |
| 848 | LParenLoc: Clause.getLParenLoc(), VarList: Clause.getVarList(), |
| 849 | EndLoc: Clause.getEndLoc()); |
| 850 | } |
| 851 | |
| 852 | OpenACCClause *SemaOpenACCClauseVisitor::VisitDeviceClause( |
| 853 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 854 | // ActOnVar ensured that everything is a valid variable reference, so there |
| 855 | // really isn't anything to do here. GCC does some duplicate-finding, though |
| 856 | // it isn't apparent in the standard where this is justified. |
| 857 | |
| 858 | return OpenACCDeviceClause::Create(C: Ctx, BeginLoc: Clause.getBeginLoc(), |
| 859 | LParenLoc: Clause.getLParenLoc(), VarList: Clause.getVarList(), |
| 860 | EndLoc: Clause.getEndLoc()); |
| 861 | } |
| 862 | |
| 863 | OpenACCClause *SemaOpenACCClauseVisitor::VisitCopyClause( |
| 864 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 865 | // ActOnVar ensured that everything is a valid variable reference, so there |
| 866 | // really isn't anything to do here. GCC does some duplicate-finding, though |
| 867 | // it isn't apparent in the standard where this is justified. |
| 868 | |
| 869 | OpenACCModifierKind NewMods = |
| 870 | CheckModifierList(Clause, Mods: Clause.getModifierList()); |
| 871 | |
| 872 | // 'declare' has some restrictions that need to be enforced separately, so |
| 873 | // check it here. |
| 874 | if (SemaRef.CheckDeclareClause(Clause, Mods: NewMods)) |
| 875 | return nullptr; |
| 876 | |
| 877 | return OpenACCCopyClause::Create( |
| 878 | C: Ctx, Spelling: Clause.getClauseKind(), BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), |
| 879 | Mods: Clause.getModifierList(), VarList: Clause.getVarList(), EndLoc: Clause.getEndLoc()); |
| 880 | } |
| 881 | |
| 882 | OpenACCClause *SemaOpenACCClauseVisitor::VisitLinkClause( |
| 883 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 884 | // 'declare' has some restrictions that need to be enforced separately, so |
| 885 | // check it here. |
| 886 | if (SemaRef.CheckDeclareClause(Clause, Mods: OpenACCModifierKind::Invalid)) |
| 887 | return nullptr; |
| 888 | |
| 889 | Clause.setVarListDetails(VarList: SemaRef.CheckLinkClauseVarList(VarExpr: Clause.getVarList()), |
| 890 | ModKind: OpenACCModifierKind::Invalid); |
| 891 | |
| 892 | return OpenACCLinkClause::Create(C: Ctx, BeginLoc: Clause.getBeginLoc(), |
| 893 | LParenLoc: Clause.getLParenLoc(), VarList: Clause.getVarList(), |
| 894 | EndLoc: Clause.getEndLoc()); |
| 895 | } |
| 896 | |
| 897 | OpenACCClause *SemaOpenACCClauseVisitor::VisitDeviceResidentClause( |
| 898 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 899 | // 'declare' has some restrictions that need to be enforced separately, so |
| 900 | // check it here. |
| 901 | if (SemaRef.CheckDeclareClause(Clause, Mods: OpenACCModifierKind::Invalid)) |
| 902 | return nullptr; |
| 903 | |
| 904 | return OpenACCDeviceResidentClause::Create( |
| 905 | C: Ctx, BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), VarList: Clause.getVarList(), |
| 906 | EndLoc: Clause.getEndLoc()); |
| 907 | } |
| 908 | |
| 909 | OpenACCClause *SemaOpenACCClauseVisitor::VisitCopyInClause( |
| 910 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 911 | // ActOnVar ensured that everything is a valid variable reference, so there |
| 912 | // really isn't anything to do here. GCC does some duplicate-finding, though |
| 913 | // it isn't apparent in the standard where this is justified. |
| 914 | |
| 915 | OpenACCModifierKind NewMods = |
| 916 | CheckModifierList(Clause, Mods: Clause.getModifierList()); |
| 917 | |
| 918 | // 'declare' has some restrictions that need to be enforced separately, so |
| 919 | // check it here. |
| 920 | if (SemaRef.CheckDeclareClause(Clause, Mods: NewMods)) |
| 921 | return nullptr; |
| 922 | |
| 923 | return OpenACCCopyInClause::Create( |
| 924 | C: Ctx, Spelling: Clause.getClauseKind(), BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), |
| 925 | Mods: Clause.getModifierList(), VarList: Clause.getVarList(), EndLoc: Clause.getEndLoc()); |
| 926 | } |
| 927 | |
| 928 | OpenACCClause *SemaOpenACCClauseVisitor::VisitCopyOutClause( |
| 929 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 930 | // ActOnVar ensured that everything is a valid variable reference, so there |
| 931 | // really isn't anything to do here. GCC does some duplicate-finding, though |
| 932 | // it isn't apparent in the standard where this is justified. |
| 933 | |
| 934 | OpenACCModifierKind NewMods = |
| 935 | CheckModifierList(Clause, Mods: Clause.getModifierList()); |
| 936 | |
| 937 | // 'declare' has some restrictions that need to be enforced separately, so |
| 938 | // check it here. |
| 939 | if (SemaRef.CheckDeclareClause(Clause, Mods: NewMods)) |
| 940 | return nullptr; |
| 941 | |
| 942 | return OpenACCCopyOutClause::Create( |
| 943 | C: Ctx, Spelling: Clause.getClauseKind(), BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), |
| 944 | Mods: Clause.getModifierList(), VarList: Clause.getVarList(), EndLoc: Clause.getEndLoc()); |
| 945 | } |
| 946 | |
| 947 | OpenACCClause *SemaOpenACCClauseVisitor::VisitCreateClause( |
| 948 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 949 | // ActOnVar ensured that everything is a valid variable reference, so there |
| 950 | // really isn't anything to do here. GCC does some duplicate-finding, though |
| 951 | // it isn't apparent in the standard where this is justified. |
| 952 | |
| 953 | OpenACCModifierKind NewMods = |
| 954 | CheckModifierList(Clause, Mods: Clause.getModifierList()); |
| 955 | |
| 956 | // 'declare' has some restrictions that need to be enforced separately, so |
| 957 | // check it here. |
| 958 | if (SemaRef.CheckDeclareClause(Clause, Mods: NewMods)) |
| 959 | return nullptr; |
| 960 | |
| 961 | return OpenACCCreateClause::Create( |
| 962 | C: Ctx, Spelling: Clause.getClauseKind(), BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), |
| 963 | Mods: Clause.getModifierList(), VarList: Clause.getVarList(), EndLoc: Clause.getEndLoc()); |
| 964 | } |
| 965 | |
| 966 | OpenACCClause *SemaOpenACCClauseVisitor::VisitAttachClause( |
| 967 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 968 | // ActOnVar ensured that everything is a valid variable reference, but we |
| 969 | // still have to make sure it is a pointer type. |
| 970 | llvm::SmallVector<Expr *> VarList{Clause.getVarList()}; |
| 971 | llvm::erase_if(C&: VarList, P: [&](Expr *E) { |
| 972 | return SemaRef.CheckVarIsPointerType(ClauseKind: OpenACCClauseKind::Attach, VarExpr: E); |
| 973 | }); |
| 974 | Clause.setVarListDetails(VarList, ModKind: OpenACCModifierKind::Invalid); |
| 975 | return OpenACCAttachClause::Create(C: Ctx, BeginLoc: Clause.getBeginLoc(), |
| 976 | LParenLoc: Clause.getLParenLoc(), VarList: Clause.getVarList(), |
| 977 | EndLoc: Clause.getEndLoc()); |
| 978 | } |
| 979 | |
| 980 | OpenACCClause *SemaOpenACCClauseVisitor::VisitDetachClause( |
| 981 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 982 | // ActOnVar ensured that everything is a valid variable reference, but we |
| 983 | // still have to make sure it is a pointer type. |
| 984 | llvm::SmallVector<Expr *> VarList{Clause.getVarList()}; |
| 985 | llvm::erase_if(C&: VarList, P: [&](Expr *E) { |
| 986 | return SemaRef.CheckVarIsPointerType(ClauseKind: OpenACCClauseKind::Detach, VarExpr: E); |
| 987 | }); |
| 988 | Clause.setVarListDetails(VarList, ModKind: OpenACCModifierKind::Invalid); |
| 989 | return OpenACCDetachClause::Create(C: Ctx, BeginLoc: Clause.getBeginLoc(), |
| 990 | LParenLoc: Clause.getLParenLoc(), VarList: Clause.getVarList(), |
| 991 | EndLoc: Clause.getEndLoc()); |
| 992 | } |
| 993 | |
| 994 | OpenACCClause *SemaOpenACCClauseVisitor::VisitDeleteClause( |
| 995 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 996 | // ActOnVar ensured that everything is a valid variable reference, so there |
| 997 | // really isn't anything to do here. GCC does some duplicate-finding, though |
| 998 | // it isn't apparent in the standard where this is justified. |
| 999 | return OpenACCDeleteClause::Create(C: Ctx, BeginLoc: Clause.getBeginLoc(), |
| 1000 | LParenLoc: Clause.getLParenLoc(), VarList: Clause.getVarList(), |
| 1001 | EndLoc: Clause.getEndLoc()); |
| 1002 | } |
| 1003 | |
| 1004 | OpenACCClause *SemaOpenACCClauseVisitor::VisitUseDeviceClause( |
| 1005 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 1006 | // ActOnVar ensured that everything is a valid variable or array, so nothing |
| 1007 | // left to do here. |
| 1008 | return OpenACCUseDeviceClause::Create( |
| 1009 | C: Ctx, BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), VarList: Clause.getVarList(), |
| 1010 | EndLoc: Clause.getEndLoc()); |
| 1011 | } |
| 1012 | |
| 1013 | OpenACCClause *SemaOpenACCClauseVisitor::VisitDevicePtrClause( |
| 1014 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 1015 | // ActOnVar ensured that everything is a valid variable reference, but we |
| 1016 | // still have to make sure it is a pointer type. |
| 1017 | llvm::SmallVector<Expr *> VarList{Clause.getVarList()}; |
| 1018 | llvm::erase_if(C&: VarList, P: [&](Expr *E) { |
| 1019 | return SemaRef.CheckVarIsPointerType(ClauseKind: OpenACCClauseKind::DevicePtr, VarExpr: E); |
| 1020 | }); |
| 1021 | Clause.setVarListDetails(VarList, ModKind: OpenACCModifierKind::Invalid); |
| 1022 | |
| 1023 | // 'declare' has some restrictions that need to be enforced separately, so |
| 1024 | // check it here. |
| 1025 | if (SemaRef.CheckDeclareClause(Clause, Mods: OpenACCModifierKind::Invalid)) |
| 1026 | return nullptr; |
| 1027 | |
| 1028 | return OpenACCDevicePtrClause::Create( |
| 1029 | C: Ctx, BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), VarList: Clause.getVarList(), |
| 1030 | EndLoc: Clause.getEndLoc()); |
| 1031 | } |
| 1032 | |
| 1033 | OpenACCClause *SemaOpenACCClauseVisitor::VisitWaitClause( |
| 1034 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 1035 | return OpenACCWaitClause::Create( |
| 1036 | C: Ctx, BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), DevNumExpr: Clause.getDevNumExpr(), |
| 1037 | QueuesLoc: Clause.getQueuesLoc(), QueueIdExprs: Clause.getQueueIdExprs(), EndLoc: Clause.getEndLoc()); |
| 1038 | } |
| 1039 | |
| 1040 | OpenACCClause *SemaOpenACCClauseVisitor::VisitDeviceTypeClause( |
| 1041 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 1042 | |
| 1043 | // Based on discussions, having more than 1 'architecture' on a 'set' is |
| 1044 | // nonsensical, so we're going to fix the standard to reflect this. Implement |
| 1045 | // the limitation, since the Dialect requires this. |
| 1046 | if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Set && |
| 1047 | Clause.getDeviceTypeArchitectures().size() > 1) { |
| 1048 | SemaRef.Diag(Loc: Clause.getDeviceTypeArchitectures()[1].getLoc(), |
| 1049 | DiagID: diag::err_acc_device_type_multiple_archs); |
| 1050 | return nullptr; |
| 1051 | } |
| 1052 | |
| 1053 | // The list of valid device_type values. Flang also has these hardcoded in |
| 1054 | // openacc_parsers.cpp, as there does not seem to be a reliable backend |
| 1055 | // source. The list below is sourced from Flang, though NVC++ supports only |
| 1056 | // 'nvidia', 'host', 'multicore', and 'default'. |
| 1057 | const std::array<llvm::StringLiteral, 6> ValidValues{ |
| 1058 | "default" , "nvidia" , "acc_device_nvidia" , "radeon" , "host" , "multicore" }; |
| 1059 | // As an optimization, we have a manually maintained list of valid values |
| 1060 | // below, rather than trying to calculate from above. These should be kept in |
| 1061 | // sync if/when the above list ever changes. |
| 1062 | std::string ValidValuesString = |
| 1063 | "'default', 'nvidia', 'acc_device_nvidia', 'radeon', 'host', 'multicore'" ; |
| 1064 | |
| 1065 | llvm::SmallVector<DeviceTypeArgument> Architectures{ |
| 1066 | Clause.getDeviceTypeArchitectures()}; |
| 1067 | |
| 1068 | // The parser has ensured that we either have a single entry of just '*' |
| 1069 | // (represented by a nullptr IdentifierInfo), or a list. |
| 1070 | |
| 1071 | bool Diagnosed = false; |
| 1072 | auto FilterPred = [&](const DeviceTypeArgument &Arch) { |
| 1073 | // The '*' case. |
| 1074 | if (!Arch.getIdentifierInfo()) |
| 1075 | return false; |
| 1076 | return llvm::find_if(Range: ValidValues, P: [&](StringRef RHS) { |
| 1077 | return Arch.getIdentifierInfo()->getName().equals_insensitive(RHS); |
| 1078 | }) == ValidValues.end(); |
| 1079 | }; |
| 1080 | |
| 1081 | auto Diagnose = [&](const DeviceTypeArgument &Arch) { |
| 1082 | Diagnosed = SemaRef.Diag(Loc: Arch.getLoc(), DiagID: diag::err_acc_invalid_default_type) |
| 1083 | << Arch.getIdentifierInfo() << Clause.getClauseKind() |
| 1084 | << ValidValuesString; |
| 1085 | }; |
| 1086 | |
| 1087 | // There aren't stable enumertor versions of 'for-each-then-erase', so do it |
| 1088 | // here. We DO keep track of whether we diagnosed something to make sure we |
| 1089 | // don't do the 'erase_if' in the event that the first list didn't find |
| 1090 | // anything. |
| 1091 | llvm::for_each(Range: llvm::make_filter_range(Range&: Architectures, Pred: FilterPred), F: Diagnose); |
| 1092 | if (Diagnosed) |
| 1093 | llvm::erase_if(C&: Architectures, P: FilterPred); |
| 1094 | |
| 1095 | return OpenACCDeviceTypeClause::Create( |
| 1096 | C: Ctx, K: Clause.getClauseKind(), BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), |
| 1097 | Archs: Architectures, EndLoc: Clause.getEndLoc()); |
| 1098 | } |
| 1099 | |
| 1100 | OpenACCClause *SemaOpenACCClauseVisitor::VisitAutoClause( |
| 1101 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 1102 | |
| 1103 | return OpenACCAutoClause::Create(Ctx, BeginLoc: Clause.getBeginLoc(), |
| 1104 | EndLoc: Clause.getEndLoc()); |
| 1105 | } |
| 1106 | |
| 1107 | OpenACCClause *SemaOpenACCClauseVisitor::VisitNoHostClause( |
| 1108 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 1109 | return OpenACCNoHostClause::Create(Ctx, BeginLoc: Clause.getBeginLoc(), |
| 1110 | EndLoc: Clause.getEndLoc()); |
| 1111 | } |
| 1112 | |
| 1113 | OpenACCClause *SemaOpenACCClauseVisitor::VisitIndependentClause( |
| 1114 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 1115 | |
| 1116 | return OpenACCIndependentClause::Create(Ctx, BeginLoc: Clause.getBeginLoc(), |
| 1117 | EndLoc: Clause.getEndLoc()); |
| 1118 | } |
| 1119 | |
| 1120 | ExprResult CheckGangStaticExpr(SemaOpenACC &S, Expr *E) { |
| 1121 | if (isa<OpenACCAsteriskSizeExpr>(Val: E)) |
| 1122 | return E; |
| 1123 | return S.ActOnIntExpr(DK: OpenACCDirectiveKind::Invalid, CK: OpenACCClauseKind::Gang, |
| 1124 | Loc: E->getBeginLoc(), IntExpr: E); |
| 1125 | } |
| 1126 | |
| 1127 | bool IsOrphanLoop(OpenACCDirectiveKind DK, OpenACCDirectiveKind AssocKind) { |
| 1128 | return DK == OpenACCDirectiveKind::Loop && |
| 1129 | AssocKind == OpenACCDirectiveKind::Invalid; |
| 1130 | } |
| 1131 | |
| 1132 | bool HasAssocKind(OpenACCDirectiveKind DK, OpenACCDirectiveKind AssocKind) { |
| 1133 | return DK == OpenACCDirectiveKind::Loop && |
| 1134 | AssocKind != OpenACCDirectiveKind::Invalid; |
| 1135 | } |
| 1136 | |
| 1137 | ExprResult DiagIntArgInvalid(SemaOpenACC &S, Expr *E, OpenACCGangKind GK, |
| 1138 | OpenACCClauseKind CK, OpenACCDirectiveKind DK, |
| 1139 | OpenACCDirectiveKind AssocKind) { |
| 1140 | S.Diag(Loc: E->getBeginLoc(), DiagID: diag::err_acc_int_arg_invalid) |
| 1141 | << GK << CK << IsOrphanLoop(DK, AssocKind) << DK |
| 1142 | << HasAssocKind(DK, AssocKind) << AssocKind; |
| 1143 | return ExprError(); |
| 1144 | } |
| 1145 | ExprResult DiagIntArgInvalid(SemaOpenACC &S, Expr *E, StringRef TagKind, |
| 1146 | OpenACCClauseKind CK, OpenACCDirectiveKind DK, |
| 1147 | OpenACCDirectiveKind AssocKind) { |
| 1148 | S.Diag(Loc: E->getBeginLoc(), DiagID: diag::err_acc_int_arg_invalid) |
| 1149 | << TagKind << CK << IsOrphanLoop(DK, AssocKind) << DK |
| 1150 | << HasAssocKind(DK, AssocKind) << AssocKind; |
| 1151 | return ExprError(); |
| 1152 | } |
| 1153 | |
| 1154 | ExprResult CheckGangDimExpr(SemaOpenACC &S, Expr *E) { |
| 1155 | // OpenACC 3.3 2.9.2: When the parent compute construct is a parallel |
| 1156 | // construct, or an orphaned loop construct, the gang clause behaves as |
| 1157 | // follows. ... The dim argument must be a constant positive integer value |
| 1158 | // 1, 2, or 3. |
| 1159 | // -also- |
| 1160 | // OpenACC 3.3 2.15: The 'dim' argument must be a constant positive integer |
| 1161 | // with value 1, 2, or 3. |
| 1162 | if (!E) |
| 1163 | return ExprError(); |
| 1164 | ExprResult Res = S.ActOnIntExpr(DK: OpenACCDirectiveKind::Invalid, |
| 1165 | CK: OpenACCClauseKind::Gang, Loc: E->getBeginLoc(), IntExpr: E); |
| 1166 | |
| 1167 | if (!Res.isUsable()) |
| 1168 | return Res; |
| 1169 | |
| 1170 | if (Res.get()->isInstantiationDependent()) |
| 1171 | return Res; |
| 1172 | |
| 1173 | std::optional<llvm::APSInt> ICE = |
| 1174 | Res.get()->getIntegerConstantExpr(Ctx: S.getASTContext()); |
| 1175 | |
| 1176 | if (!ICE || *ICE <= 0 || ICE > 3) { |
| 1177 | S.Diag(Loc: Res.get()->getBeginLoc(), DiagID: diag::err_acc_gang_dim_value) |
| 1178 | << ICE.has_value() << ICE.value_or(u: llvm::APSInt{}).getExtValue(); |
| 1179 | return ExprError(); |
| 1180 | } |
| 1181 | |
| 1182 | return ExprResult{ |
| 1183 | ConstantExpr::Create(Context: S.getASTContext(), E: Res.get(), Result: APValue{*ICE})}; |
| 1184 | } |
| 1185 | |
| 1186 | ExprResult CheckGangParallelExpr(SemaOpenACC &S, OpenACCDirectiveKind DK, |
| 1187 | OpenACCDirectiveKind AssocKind, |
| 1188 | OpenACCGangKind GK, Expr *E) { |
| 1189 | switch (GK) { |
| 1190 | case OpenACCGangKind::Static: |
| 1191 | return CheckGangStaticExpr(S, E); |
| 1192 | case OpenACCGangKind::Num: |
| 1193 | // OpenACC 3.3 2.9.2: When the parent compute construct is a parallel |
| 1194 | // construct, or an orphaned loop construct, the gang clause behaves as |
| 1195 | // follows. ... The num argument is not allowed. |
| 1196 | return DiagIntArgInvalid(S, E, GK, CK: OpenACCClauseKind::Gang, DK, AssocKind); |
| 1197 | case OpenACCGangKind::Dim: |
| 1198 | return CheckGangDimExpr(S, E); |
| 1199 | } |
| 1200 | llvm_unreachable("Unknown gang kind in gang parallel check" ); |
| 1201 | } |
| 1202 | |
| 1203 | ExprResult CheckGangKernelsExpr(SemaOpenACC &S, |
| 1204 | ArrayRef<const OpenACCClause *> ExistingClauses, |
| 1205 | OpenACCDirectiveKind DK, |
| 1206 | OpenACCDirectiveKind AssocKind, |
| 1207 | OpenACCGangKind GK, Expr *E) { |
| 1208 | switch (GK) { |
| 1209 | // OpenACC 3.3 2.9.2: When the parent compute construct is a kernels |
| 1210 | // construct, the gang clause behaves as follows. ... The dim argument is |
| 1211 | // not allowed. |
| 1212 | case OpenACCGangKind::Dim: |
| 1213 | return DiagIntArgInvalid(S, E, GK, CK: OpenACCClauseKind::Gang, DK, AssocKind); |
| 1214 | case OpenACCGangKind::Num: { |
| 1215 | // OpenACC 3.3 2.9.2: When the parent compute construct is a kernels |
| 1216 | // construct, the gang clause behaves as follows. ... An argument with no |
| 1217 | // keyword or with num keyword is only allowed when num_gangs does not |
| 1218 | // appear on the kernels construct. ... The region of a loop with the gang |
| 1219 | // clause may not contain another loop with a gang clause unless within a |
| 1220 | // nested compute region. |
| 1221 | |
| 1222 | // If this is a 'combined' construct, search the list of existing clauses. |
| 1223 | // Else we need to search the containing 'kernel'. |
| 1224 | auto Collection = isOpenACCCombinedDirectiveKind(K: DK) |
| 1225 | ? ExistingClauses |
| 1226 | : S.getActiveComputeConstructInfo().Clauses; |
| 1227 | |
| 1228 | const auto *Itr = |
| 1229 | llvm::find_if(Range&: Collection, P: llvm::IsaPred<OpenACCNumGangsClause>); |
| 1230 | |
| 1231 | if (Itr != Collection.end()) { |
| 1232 | S.Diag(Loc: E->getBeginLoc(), DiagID: diag::err_acc_num_arg_conflict) |
| 1233 | << "num" << OpenACCClauseKind::Gang << DK |
| 1234 | << HasAssocKind(DK, AssocKind) << AssocKind |
| 1235 | << OpenACCClauseKind::NumGangs; |
| 1236 | |
| 1237 | S.Diag(Loc: (*Itr)->getBeginLoc(), DiagID: diag::note_acc_previous_clause_here) |
| 1238 | << (*Itr)->getClauseKind(); |
| 1239 | return ExprError(); |
| 1240 | } |
| 1241 | return ExprResult{E}; |
| 1242 | } |
| 1243 | case OpenACCGangKind::Static: |
| 1244 | return CheckGangStaticExpr(S, E); |
| 1245 | } |
| 1246 | llvm_unreachable("Unknown gang kind in gang kernels check" ); |
| 1247 | } |
| 1248 | |
| 1249 | ExprResult CheckGangSerialExpr(SemaOpenACC &S, OpenACCDirectiveKind DK, |
| 1250 | OpenACCDirectiveKind AssocKind, |
| 1251 | OpenACCGangKind GK, Expr *E) { |
| 1252 | switch (GK) { |
| 1253 | // 'dim' and 'num' don't really make sense on serial, and GCC rejects them |
| 1254 | // too, so we disallow them too. |
| 1255 | case OpenACCGangKind::Dim: |
| 1256 | case OpenACCGangKind::Num: |
| 1257 | return DiagIntArgInvalid(S, E, GK, CK: OpenACCClauseKind::Gang, DK, AssocKind); |
| 1258 | case OpenACCGangKind::Static: |
| 1259 | return CheckGangStaticExpr(S, E); |
| 1260 | } |
| 1261 | llvm_unreachable("Unknown gang kind in gang serial check" ); |
| 1262 | } |
| 1263 | |
| 1264 | ExprResult CheckGangRoutineExpr(SemaOpenACC &S, OpenACCDirectiveKind DK, |
| 1265 | OpenACCDirectiveKind AssocKind, |
| 1266 | OpenACCGangKind GK, Expr *E) { |
| 1267 | switch (GK) { |
| 1268 | // Only 'dim' is allowed on a routine, so diallow num and static. |
| 1269 | case OpenACCGangKind::Num: |
| 1270 | case OpenACCGangKind::Static: |
| 1271 | return DiagIntArgInvalid(S, E, GK, CK: OpenACCClauseKind::Gang, DK, AssocKind); |
| 1272 | case OpenACCGangKind::Dim: |
| 1273 | return CheckGangDimExpr(S, E); |
| 1274 | } |
| 1275 | llvm_unreachable("Unknown gang kind in gang serial check" ); |
| 1276 | } |
| 1277 | |
| 1278 | OpenACCClause *SemaOpenACCClauseVisitor::VisitVectorClause( |
| 1279 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 1280 | if (DiagGangWorkerVectorSeqConflict(Clause)) |
| 1281 | return nullptr; |
| 1282 | |
| 1283 | Expr *IntExpr = |
| 1284 | Clause.getNumIntExprs() != 0 ? Clause.getIntExprs()[0] : nullptr; |
| 1285 | if (IntExpr) { |
| 1286 | switch (Clause.getDirectiveKind()) { |
| 1287 | default: |
| 1288 | llvm_unreachable("Invalid directive kind for this clause" ); |
| 1289 | case OpenACCDirectiveKind::Loop: |
| 1290 | switch (SemaRef.getActiveComputeConstructInfo().Kind) { |
| 1291 | case OpenACCDirectiveKind::Invalid: |
| 1292 | case OpenACCDirectiveKind::Parallel: |
| 1293 | case OpenACCDirectiveKind::ParallelLoop: |
| 1294 | // No restriction on when 'parallel' can contain an argument. |
| 1295 | break; |
| 1296 | case OpenACCDirectiveKind::Serial: |
| 1297 | case OpenACCDirectiveKind::SerialLoop: |
| 1298 | // GCC disallows this, and there is no real good reason for us to permit |
| 1299 | // it, so disallow until we come up with a use case that makes sense. |
| 1300 | DiagIntArgInvalid(S&: SemaRef, E: IntExpr, TagKind: "length" , CK: OpenACCClauseKind::Vector, |
| 1301 | DK: Clause.getDirectiveKind(), |
| 1302 | AssocKind: SemaRef.getActiveComputeConstructInfo().Kind); |
| 1303 | IntExpr = nullptr; |
| 1304 | break; |
| 1305 | case OpenACCDirectiveKind::Kernels: |
| 1306 | case OpenACCDirectiveKind::KernelsLoop: { |
| 1307 | const auto *Itr = |
| 1308 | llvm::find_if(Range&: SemaRef.getActiveComputeConstructInfo().Clauses, |
| 1309 | P: llvm::IsaPred<OpenACCVectorLengthClause>); |
| 1310 | if (Itr != SemaRef.getActiveComputeConstructInfo().Clauses.end()) { |
| 1311 | SemaRef.Diag(Loc: IntExpr->getBeginLoc(), DiagID: diag::err_acc_num_arg_conflict) |
| 1312 | << "length" << OpenACCClauseKind::Vector |
| 1313 | << Clause.getDirectiveKind() |
| 1314 | << HasAssocKind(DK: Clause.getDirectiveKind(), |
| 1315 | AssocKind: SemaRef.getActiveComputeConstructInfo().Kind) |
| 1316 | << SemaRef.getActiveComputeConstructInfo().Kind |
| 1317 | << OpenACCClauseKind::VectorLength; |
| 1318 | SemaRef.Diag(Loc: (*Itr)->getBeginLoc(), |
| 1319 | DiagID: diag::note_acc_previous_clause_here) |
| 1320 | << (*Itr)->getClauseKind(); |
| 1321 | |
| 1322 | IntExpr = nullptr; |
| 1323 | } |
| 1324 | break; |
| 1325 | } |
| 1326 | default: |
| 1327 | llvm_unreachable("Non compute construct in active compute construct" ); |
| 1328 | } |
| 1329 | break; |
| 1330 | case OpenACCDirectiveKind::KernelsLoop: { |
| 1331 | const auto *Itr = llvm::find_if(Range&: ExistingClauses, |
| 1332 | P: llvm::IsaPred<OpenACCVectorLengthClause>); |
| 1333 | if (Itr != ExistingClauses.end()) { |
| 1334 | SemaRef.Diag(Loc: IntExpr->getBeginLoc(), DiagID: diag::err_acc_num_arg_conflict) |
| 1335 | << "length" << OpenACCClauseKind::Vector |
| 1336 | << Clause.getDirectiveKind() |
| 1337 | << HasAssocKind(DK: Clause.getDirectiveKind(), |
| 1338 | AssocKind: SemaRef.getActiveComputeConstructInfo().Kind) |
| 1339 | << SemaRef.getActiveComputeConstructInfo().Kind |
| 1340 | << OpenACCClauseKind::VectorLength; |
| 1341 | SemaRef.Diag(Loc: (*Itr)->getBeginLoc(), DiagID: diag::note_acc_previous_clause_here) |
| 1342 | << (*Itr)->getClauseKind(); |
| 1343 | |
| 1344 | IntExpr = nullptr; |
| 1345 | } |
| 1346 | break; |
| 1347 | } |
| 1348 | case OpenACCDirectiveKind::SerialLoop: |
| 1349 | case OpenACCDirectiveKind::Routine: |
| 1350 | DiagIntArgInvalid(S&: SemaRef, E: IntExpr, TagKind: "length" , CK: OpenACCClauseKind::Vector, |
| 1351 | DK: Clause.getDirectiveKind(), |
| 1352 | AssocKind: SemaRef.getActiveComputeConstructInfo().Kind); |
| 1353 | IntExpr = nullptr; |
| 1354 | break; |
| 1355 | case OpenACCDirectiveKind::ParallelLoop: |
| 1356 | break; |
| 1357 | case OpenACCDirectiveKind::Invalid: |
| 1358 | // This can happen when the directive was not recognized, but we continued |
| 1359 | // anyway. Since there is a lot of stuff that can happen (including |
| 1360 | // 'allow anything' in the parallel loop case), just skip all checking and |
| 1361 | // continue. |
| 1362 | break; |
| 1363 | } |
| 1364 | } |
| 1365 | |
| 1366 | if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop) { |
| 1367 | // OpenACC 3.3 2.9.4: The region of a loop with a 'vector' clause may not |
| 1368 | // contain a loop with a gang, worker, or vector clause unless within a |
| 1369 | // nested compute region. |
| 1370 | if (SemaRef.LoopVectorClauseLoc.isValid()) { |
| 1371 | // This handles the 'inner loop' diagnostic, but we cannot set that we're |
| 1372 | // on one of these until we get to the end of the construct. |
| 1373 | SemaRef.Diag(Loc: Clause.getBeginLoc(), DiagID: diag::err_acc_clause_in_clause_region) |
| 1374 | << OpenACCClauseKind::Vector << OpenACCClauseKind::Vector |
| 1375 | << /*skip kernels construct info*/ 0; |
| 1376 | SemaRef.Diag(Loc: SemaRef.LoopVectorClauseLoc, |
| 1377 | DiagID: diag::note_acc_previous_clause_here) |
| 1378 | << "vector" ; |
| 1379 | return nullptr; |
| 1380 | } |
| 1381 | } |
| 1382 | |
| 1383 | return OpenACCVectorClause::Create(Ctx, BeginLoc: Clause.getBeginLoc(), |
| 1384 | LParenLoc: Clause.getLParenLoc(), IntExpr, |
| 1385 | EndLoc: Clause.getEndLoc()); |
| 1386 | } |
| 1387 | |
| 1388 | OpenACCClause *SemaOpenACCClauseVisitor::VisitWorkerClause( |
| 1389 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 1390 | if (DiagGangWorkerVectorSeqConflict(Clause)) |
| 1391 | return nullptr; |
| 1392 | |
| 1393 | Expr *IntExpr = |
| 1394 | Clause.getNumIntExprs() != 0 ? Clause.getIntExprs()[0] : nullptr; |
| 1395 | |
| 1396 | if (IntExpr) { |
| 1397 | switch (Clause.getDirectiveKind()) { |
| 1398 | default: |
| 1399 | llvm_unreachable("Invalid directive kind for this clause" ); |
| 1400 | case OpenACCDirectiveKind::Invalid: |
| 1401 | // This can happen in cases where the directive was not recognized but we |
| 1402 | // continued anyway. Kernels allows kind of any integer argument, so we |
| 1403 | // can assume it is that (rather than marking the argument invalid like |
| 1404 | // with parallel/serial/routine), and just continue as if nothing |
| 1405 | // happened. We'll skip the 'kernels' checking vs num-workers, since this |
| 1406 | // MIGHT be something else. |
| 1407 | break; |
| 1408 | case OpenACCDirectiveKind::Loop: |
| 1409 | switch (SemaRef.getActiveComputeConstructInfo().Kind) { |
| 1410 | case OpenACCDirectiveKind::Invalid: |
| 1411 | case OpenACCDirectiveKind::ParallelLoop: |
| 1412 | case OpenACCDirectiveKind::SerialLoop: |
| 1413 | case OpenACCDirectiveKind::Parallel: |
| 1414 | case OpenACCDirectiveKind::Serial: |
| 1415 | DiagIntArgInvalid(S&: SemaRef, E: IntExpr, GK: OpenACCGangKind::Num, |
| 1416 | CK: OpenACCClauseKind::Worker, DK: Clause.getDirectiveKind(), |
| 1417 | AssocKind: SemaRef.getActiveComputeConstructInfo().Kind); |
| 1418 | IntExpr = nullptr; |
| 1419 | break; |
| 1420 | case OpenACCDirectiveKind::KernelsLoop: |
| 1421 | case OpenACCDirectiveKind::Kernels: { |
| 1422 | const auto *Itr = |
| 1423 | llvm::find_if(Range&: SemaRef.getActiveComputeConstructInfo().Clauses, |
| 1424 | P: llvm::IsaPred<OpenACCNumWorkersClause>); |
| 1425 | if (Itr != SemaRef.getActiveComputeConstructInfo().Clauses.end()) { |
| 1426 | SemaRef.Diag(Loc: IntExpr->getBeginLoc(), DiagID: diag::err_acc_num_arg_conflict) |
| 1427 | << "num" << OpenACCClauseKind::Worker << Clause.getDirectiveKind() |
| 1428 | << HasAssocKind(DK: Clause.getDirectiveKind(), |
| 1429 | AssocKind: SemaRef.getActiveComputeConstructInfo().Kind) |
| 1430 | << SemaRef.getActiveComputeConstructInfo().Kind |
| 1431 | << OpenACCClauseKind::NumWorkers; |
| 1432 | SemaRef.Diag(Loc: (*Itr)->getBeginLoc(), |
| 1433 | DiagID: diag::note_acc_previous_clause_here) |
| 1434 | << (*Itr)->getClauseKind(); |
| 1435 | |
| 1436 | IntExpr = nullptr; |
| 1437 | } |
| 1438 | break; |
| 1439 | } |
| 1440 | default: |
| 1441 | llvm_unreachable("Non compute construct in active compute construct" ); |
| 1442 | } |
| 1443 | break; |
| 1444 | case OpenACCDirectiveKind::ParallelLoop: |
| 1445 | case OpenACCDirectiveKind::SerialLoop: |
| 1446 | case OpenACCDirectiveKind::Routine: |
| 1447 | DiagIntArgInvalid(S&: SemaRef, E: IntExpr, GK: OpenACCGangKind::Num, |
| 1448 | CK: OpenACCClauseKind::Worker, DK: Clause.getDirectiveKind(), |
| 1449 | AssocKind: SemaRef.getActiveComputeConstructInfo().Kind); |
| 1450 | IntExpr = nullptr; |
| 1451 | break; |
| 1452 | case OpenACCDirectiveKind::KernelsLoop: { |
| 1453 | const auto *Itr = llvm::find_if(Range&: ExistingClauses, |
| 1454 | P: llvm::IsaPred<OpenACCNumWorkersClause>); |
| 1455 | if (Itr != ExistingClauses.end()) { |
| 1456 | SemaRef.Diag(Loc: IntExpr->getBeginLoc(), DiagID: diag::err_acc_num_arg_conflict) |
| 1457 | << "num" << OpenACCClauseKind::Worker << Clause.getDirectiveKind() |
| 1458 | << HasAssocKind(DK: Clause.getDirectiveKind(), |
| 1459 | AssocKind: SemaRef.getActiveComputeConstructInfo().Kind) |
| 1460 | << SemaRef.getActiveComputeConstructInfo().Kind |
| 1461 | << OpenACCClauseKind::NumWorkers; |
| 1462 | SemaRef.Diag(Loc: (*Itr)->getBeginLoc(), DiagID: diag::note_acc_previous_clause_here) |
| 1463 | << (*Itr)->getClauseKind(); |
| 1464 | |
| 1465 | IntExpr = nullptr; |
| 1466 | } |
| 1467 | } |
| 1468 | } |
| 1469 | } |
| 1470 | |
| 1471 | if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop) { |
| 1472 | // OpenACC 3.3 2.9.3: The region of a loop with a 'worker' clause may not |
| 1473 | // contain a loop with a gang or worker clause unless within a nested |
| 1474 | // compute region. |
| 1475 | if (SemaRef.LoopWorkerClauseLoc.isValid()) { |
| 1476 | // This handles the 'inner loop' diagnostic, but we cannot set that we're |
| 1477 | // on one of these until we get to the end of the construct. |
| 1478 | SemaRef.Diag(Loc: Clause.getBeginLoc(), DiagID: diag::err_acc_clause_in_clause_region) |
| 1479 | << OpenACCClauseKind::Worker << OpenACCClauseKind::Worker |
| 1480 | << /*skip kernels construct info*/ 0; |
| 1481 | SemaRef.Diag(Loc: SemaRef.LoopWorkerClauseLoc, |
| 1482 | DiagID: diag::note_acc_previous_clause_here) |
| 1483 | << "worker" ; |
| 1484 | return nullptr; |
| 1485 | } |
| 1486 | |
| 1487 | // OpenACC 3.3 2.9.4: The region of a loop with a 'vector' clause may not |
| 1488 | // contain a loop with a gang, worker, or vector clause unless within a |
| 1489 | // nested compute region. |
| 1490 | if (SemaRef.LoopVectorClauseLoc.isValid()) { |
| 1491 | // This handles the 'inner loop' diagnostic, but we cannot set that we're |
| 1492 | // on one of these until we get to the end of the construct. |
| 1493 | SemaRef.Diag(Loc: Clause.getBeginLoc(), DiagID: diag::err_acc_clause_in_clause_region) |
| 1494 | << OpenACCClauseKind::Worker << OpenACCClauseKind::Vector |
| 1495 | << /*skip kernels construct info*/ 0; |
| 1496 | SemaRef.Diag(Loc: SemaRef.LoopVectorClauseLoc, |
| 1497 | DiagID: diag::note_acc_previous_clause_here) |
| 1498 | << "vector" ; |
| 1499 | return nullptr; |
| 1500 | } |
| 1501 | } |
| 1502 | |
| 1503 | return OpenACCWorkerClause::Create(Ctx, BeginLoc: Clause.getBeginLoc(), |
| 1504 | LParenLoc: Clause.getLParenLoc(), IntExpr, |
| 1505 | EndLoc: Clause.getEndLoc()); |
| 1506 | } |
| 1507 | |
| 1508 | OpenACCClause *SemaOpenACCClauseVisitor::VisitGangClause( |
| 1509 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 1510 | |
| 1511 | if (DiagGangWorkerVectorSeqConflict(Clause)) |
| 1512 | return nullptr; |
| 1513 | |
| 1514 | // OpenACC 3.3 Section 2.9.11: A reduction clause may not appear on a loop |
| 1515 | // directive that has a gang clause and is within a compute construct that has |
| 1516 | // a num_gangs clause with more than one explicit argument. |
| 1517 | if ((Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop && |
| 1518 | SemaRef.getActiveComputeConstructInfo().Kind != |
| 1519 | OpenACCDirectiveKind::Invalid) || |
| 1520 | isOpenACCCombinedDirectiveKind(K: Clause.getDirectiveKind())) { |
| 1521 | // num_gangs clause on the active compute construct. |
| 1522 | auto ActiveComputeConstructContainer = |
| 1523 | isOpenACCCombinedDirectiveKind(K: Clause.getDirectiveKind()) |
| 1524 | ? ExistingClauses |
| 1525 | : SemaRef.getActiveComputeConstructInfo().Clauses; |
| 1526 | auto *NumGangsClauseItr = llvm::find_if( |
| 1527 | Range&: ActiveComputeConstructContainer, P: llvm::IsaPred<OpenACCNumGangsClause>); |
| 1528 | |
| 1529 | if (NumGangsClauseItr != ActiveComputeConstructContainer.end() && |
| 1530 | cast<OpenACCNumGangsClause>(Val: *NumGangsClauseItr)->getIntExprs().size() > |
| 1531 | 1) { |
| 1532 | auto *ReductionClauseItr = |
| 1533 | llvm::find_if(Range&: ExistingClauses, P: llvm::IsaPred<OpenACCReductionClause>); |
| 1534 | |
| 1535 | if (ReductionClauseItr != ExistingClauses.end()) { |
| 1536 | SemaRef.Diag(Loc: Clause.getBeginLoc(), |
| 1537 | DiagID: diag::err_acc_gang_reduction_numgangs_conflict) |
| 1538 | << OpenACCClauseKind::Gang << OpenACCClauseKind::Reduction |
| 1539 | << Clause.getDirectiveKind() |
| 1540 | << isOpenACCCombinedDirectiveKind(K: Clause.getDirectiveKind()); |
| 1541 | SemaRef.Diag(Loc: (*ReductionClauseItr)->getBeginLoc(), |
| 1542 | DiagID: diag::note_acc_previous_clause_here) |
| 1543 | << (*ReductionClauseItr)->getClauseKind(); |
| 1544 | SemaRef.Diag(Loc: (*NumGangsClauseItr)->getBeginLoc(), |
| 1545 | DiagID: diag::note_acc_previous_clause_here) |
| 1546 | << (*NumGangsClauseItr)->getClauseKind(); |
| 1547 | return nullptr; |
| 1548 | } |
| 1549 | } |
| 1550 | } |
| 1551 | |
| 1552 | llvm::SmallVector<OpenACCGangKind> GangKinds; |
| 1553 | llvm::SmallVector<Expr *> IntExprs; |
| 1554 | |
| 1555 | // Store the existing locations, so we can do duplicate checking. Index is |
| 1556 | // the int-value of the OpenACCGangKind enum. |
| 1557 | SourceLocation ExistingElemLoc[3]; |
| 1558 | |
| 1559 | for (unsigned I = 0; I < Clause.getIntExprs().size(); ++I) { |
| 1560 | OpenACCGangKind GK = Clause.getGangKinds()[I]; |
| 1561 | ExprResult ER = |
| 1562 | SemaRef.CheckGangExpr(ExistingClauses, DK: Clause.getDirectiveKind(), GK, |
| 1563 | E: Clause.getIntExprs()[I]); |
| 1564 | |
| 1565 | if (!ER.isUsable()) |
| 1566 | continue; |
| 1567 | |
| 1568 | // OpenACC 3.3 2.9: 'gang-arg-list' may have at most one num, one dim, and |
| 1569 | // one static argument. |
| 1570 | if (ExistingElemLoc[static_cast<unsigned>(GK)].isValid()) { |
| 1571 | SemaRef.Diag(Loc: ER.get()->getBeginLoc(), DiagID: diag::err_acc_gang_multiple_elt) |
| 1572 | << static_cast<unsigned>(GK); |
| 1573 | SemaRef.Diag(Loc: ExistingElemLoc[static_cast<unsigned>(GK)], |
| 1574 | DiagID: diag::note_acc_previous_expr_here); |
| 1575 | continue; |
| 1576 | } |
| 1577 | |
| 1578 | ExistingElemLoc[static_cast<unsigned>(GK)] = ER.get()->getBeginLoc(); |
| 1579 | GangKinds.push_back(Elt: GK); |
| 1580 | IntExprs.push_back(Elt: ER.get()); |
| 1581 | } |
| 1582 | |
| 1583 | if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop) { |
| 1584 | // OpenACC 3.3 2.9.2: When the parent compute construct is a kernels |
| 1585 | // construct, the gang clause behaves as follows. ... The region of a loop |
| 1586 | // with a gang clause may not contain another loop with a gang clause unless |
| 1587 | // within a nested compute region. |
| 1588 | if (SemaRef.LoopGangClauseOnKernel.Loc.isValid()) { |
| 1589 | // This handles the 'inner loop' diagnostic, but we cannot set that we're |
| 1590 | // on one of these until we get to the end of the construct. |
| 1591 | SemaRef.Diag(Loc: Clause.getBeginLoc(), DiagID: diag::err_acc_clause_in_clause_region) |
| 1592 | << OpenACCClauseKind::Gang << OpenACCClauseKind::Gang |
| 1593 | << /*kernels construct info*/ 1 |
| 1594 | << SemaRef.LoopGangClauseOnKernel.DirKind; |
| 1595 | SemaRef.Diag(Loc: SemaRef.LoopGangClauseOnKernel.Loc, |
| 1596 | DiagID: diag::note_acc_previous_clause_here) |
| 1597 | << "gang" ; |
| 1598 | return nullptr; |
| 1599 | } |
| 1600 | |
| 1601 | // OpenACC 3.3 2.9.3: The region of a loop with a 'worker' clause may not |
| 1602 | // contain a loop with a gang or worker clause unless within a nested |
| 1603 | // compute region. |
| 1604 | if (SemaRef.LoopWorkerClauseLoc.isValid()) { |
| 1605 | // This handles the 'inner loop' diagnostic, but we cannot set that we're |
| 1606 | // on one of these until we get to the end of the construct. |
| 1607 | SemaRef.Diag(Loc: Clause.getBeginLoc(), DiagID: diag::err_acc_clause_in_clause_region) |
| 1608 | << OpenACCClauseKind::Gang << OpenACCClauseKind::Worker |
| 1609 | << /*!kernels construct info*/ 0; |
| 1610 | SemaRef.Diag(Loc: SemaRef.LoopWorkerClauseLoc, |
| 1611 | DiagID: diag::note_acc_previous_clause_here) |
| 1612 | << "worker" ; |
| 1613 | return nullptr; |
| 1614 | } |
| 1615 | |
| 1616 | // OpenACC 3.3 2.9.4: The region of a loop with a 'vector' clause may not |
| 1617 | // contain a loop with a gang, worker, or vector clause unless within a |
| 1618 | // nested compute region. |
| 1619 | if (SemaRef.LoopVectorClauseLoc.isValid()) { |
| 1620 | // This handles the 'inner loop' diagnostic, but we cannot set that we're |
| 1621 | // on one of these until we get to the end of the construct. |
| 1622 | SemaRef.Diag(Loc: Clause.getBeginLoc(), DiagID: diag::err_acc_clause_in_clause_region) |
| 1623 | << OpenACCClauseKind::Gang << OpenACCClauseKind::Vector |
| 1624 | << /*!kernels construct info*/ 0; |
| 1625 | SemaRef.Diag(Loc: SemaRef.LoopVectorClauseLoc, |
| 1626 | DiagID: diag::note_acc_previous_clause_here) |
| 1627 | << "vector" ; |
| 1628 | return nullptr; |
| 1629 | } |
| 1630 | } |
| 1631 | |
| 1632 | return SemaRef.CheckGangClause(DirKind: Clause.getDirectiveKind(), ExistingClauses, |
| 1633 | BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), |
| 1634 | GangKinds, IntExprs, EndLoc: Clause.getEndLoc()); |
| 1635 | } |
| 1636 | |
| 1637 | OpenACCClause *SemaOpenACCClauseVisitor::VisitFinalizeClause( |
| 1638 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 1639 | // There isn't anything to do here, this is only valid on one construct, and |
| 1640 | // has no associated rules. |
| 1641 | return OpenACCFinalizeClause::Create(Ctx, BeginLoc: Clause.getBeginLoc(), |
| 1642 | EndLoc: Clause.getEndLoc()); |
| 1643 | } |
| 1644 | |
| 1645 | OpenACCClause *SemaOpenACCClauseVisitor::VisitIfPresentClause( |
| 1646 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 1647 | // There isn't anything to do here, this is only valid on one construct, and |
| 1648 | // has no associated rules. |
| 1649 | return OpenACCIfPresentClause::Create(Ctx, BeginLoc: Clause.getBeginLoc(), |
| 1650 | EndLoc: Clause.getEndLoc()); |
| 1651 | } |
| 1652 | |
| 1653 | OpenACCClause *SemaOpenACCClauseVisitor::VisitSeqClause( |
| 1654 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 1655 | // OpenACC 3.3 2.9: |
| 1656 | // A 'gang', 'worker', or 'vector' clause may not appear if a 'seq' clause |
| 1657 | // appears. |
| 1658 | if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop || |
| 1659 | isOpenACCCombinedDirectiveKind(K: Clause.getDirectiveKind())) { |
| 1660 | const auto *Itr = llvm::find_if( |
| 1661 | Range&: ExistingClauses, P: llvm::IsaPred<OpenACCGangClause, OpenACCVectorClause, |
| 1662 | OpenACCWorkerClause>); |
| 1663 | if (Itr != ExistingClauses.end()) { |
| 1664 | SemaRef.Diag(Loc: Clause.getBeginLoc(), DiagID: diag::err_acc_clause_cannot_combine) |
| 1665 | << Clause.getClauseKind() << (*Itr)->getClauseKind() |
| 1666 | << Clause.getDirectiveKind(); |
| 1667 | SemaRef.Diag(Loc: (*Itr)->getBeginLoc(), DiagID: diag::note_acc_previous_clause_here) |
| 1668 | << (*Itr)->getClauseKind(); |
| 1669 | return nullptr; |
| 1670 | } |
| 1671 | } |
| 1672 | |
| 1673 | return OpenACCSeqClause::Create(Ctx, BeginLoc: Clause.getBeginLoc(), |
| 1674 | EndLoc: Clause.getEndLoc()); |
| 1675 | } |
| 1676 | |
| 1677 | OpenACCClause *SemaOpenACCClauseVisitor::VisitReductionClause( |
| 1678 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 1679 | // OpenACC 3.3 Section 2.9.11: A reduction clause may not appear on a loop |
| 1680 | // directive that has a gang clause and is within a compute construct that has |
| 1681 | // a num_gangs clause with more than one explicit argument. |
| 1682 | if ((Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop && |
| 1683 | SemaRef.getActiveComputeConstructInfo().Kind != |
| 1684 | OpenACCDirectiveKind::Invalid) || |
| 1685 | isOpenACCCombinedDirectiveKind(K: Clause.getDirectiveKind())) { |
| 1686 | // num_gangs clause on the active compute construct. |
| 1687 | auto ActiveComputeConstructContainer = |
| 1688 | isOpenACCCombinedDirectiveKind(K: Clause.getDirectiveKind()) |
| 1689 | ? ExistingClauses |
| 1690 | : SemaRef.getActiveComputeConstructInfo().Clauses; |
| 1691 | auto *NumGangsClauseItr = llvm::find_if( |
| 1692 | Range&: ActiveComputeConstructContainer, P: llvm::IsaPred<OpenACCNumGangsClause>); |
| 1693 | |
| 1694 | if (NumGangsClauseItr != ActiveComputeConstructContainer.end() && |
| 1695 | cast<OpenACCNumGangsClause>(Val: *NumGangsClauseItr)->getIntExprs().size() > |
| 1696 | 1) { |
| 1697 | auto *GangClauseItr = |
| 1698 | llvm::find_if(Range&: ExistingClauses, P: llvm::IsaPred<OpenACCGangClause>); |
| 1699 | |
| 1700 | if (GangClauseItr != ExistingClauses.end()) { |
| 1701 | SemaRef.Diag(Loc: Clause.getBeginLoc(), |
| 1702 | DiagID: diag::err_acc_gang_reduction_numgangs_conflict) |
| 1703 | << OpenACCClauseKind::Reduction << OpenACCClauseKind::Gang |
| 1704 | << Clause.getDirectiveKind() |
| 1705 | << isOpenACCCombinedDirectiveKind(K: Clause.getDirectiveKind()); |
| 1706 | SemaRef.Diag(Loc: (*GangClauseItr)->getBeginLoc(), |
| 1707 | DiagID: diag::note_acc_previous_clause_here) |
| 1708 | << (*GangClauseItr)->getClauseKind(); |
| 1709 | SemaRef.Diag(Loc: (*NumGangsClauseItr)->getBeginLoc(), |
| 1710 | DiagID: diag::note_acc_previous_clause_here) |
| 1711 | << (*NumGangsClauseItr)->getClauseKind(); |
| 1712 | return nullptr; |
| 1713 | } |
| 1714 | } |
| 1715 | } |
| 1716 | |
| 1717 | // OpenACC3.3 Section 2.9.11: If a variable is involved in a reduction that |
| 1718 | // spans multiple nested loops where two or more of those loops have |
| 1719 | // associated loop directives, a reduction clause containing that variable |
| 1720 | // must appear on each of those loop directives. |
| 1721 | // |
| 1722 | // This can't really be implemented in the CFE, as this requires a level of |
| 1723 | // rechability/useage analysis that we're not really wanting to get into. |
| 1724 | // Additionally, I'm alerted that this restriction is one that the middle-end |
| 1725 | // can just 'figure out' as an extension and isn't really necessary. |
| 1726 | // |
| 1727 | // OpenACC3.3 Section 2.9.11: Every 'var' in a reduction clause appearing on |
| 1728 | // an orphaned loop construct must be private. |
| 1729 | // |
| 1730 | // This again is something we cannot really diagnose, as it requires we see |
| 1731 | // all the uses/scopes of all variables referenced. The middle end/MLIR might |
| 1732 | // be able to diagnose this. |
| 1733 | |
| 1734 | // OpenACC 3.3 Section 2.5.4: |
| 1735 | // A reduction clause may not appear on a parallel construct with a |
| 1736 | // num_gangs clause that has more than one argument. |
| 1737 | if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel || |
| 1738 | Clause.getDirectiveKind() == OpenACCDirectiveKind::ParallelLoop) { |
| 1739 | auto NumGangsClauses = llvm::make_filter_range( |
| 1740 | Range&: ExistingClauses, Pred: llvm::IsaPred<OpenACCNumGangsClause>); |
| 1741 | |
| 1742 | for (auto *NGC : NumGangsClauses) { |
| 1743 | unsigned NumExprs = |
| 1744 | cast<OpenACCNumGangsClause>(Val: NGC)->getIntExprs().size(); |
| 1745 | |
| 1746 | if (NumExprs > 1) { |
| 1747 | SemaRef.Diag(Loc: Clause.getBeginLoc(), |
| 1748 | DiagID: diag::err_acc_reduction_num_gangs_conflict) |
| 1749 | << /*>1 arg in first loc=*/0 << Clause.getClauseKind() |
| 1750 | << Clause.getDirectiveKind() << OpenACCClauseKind::NumGangs; |
| 1751 | SemaRef.Diag(Loc: NGC->getBeginLoc(), DiagID: diag::note_acc_previous_clause_here) |
| 1752 | << NGC->getClauseKind(); |
| 1753 | return nullptr; |
| 1754 | } |
| 1755 | } |
| 1756 | } |
| 1757 | |
| 1758 | SmallVector<Expr *> ValidVars; |
| 1759 | |
| 1760 | for (Expr *Var : Clause.getVarList()) { |
| 1761 | ExprResult Res = SemaRef.CheckReductionVar(DirectiveKind: Clause.getDirectiveKind(), |
| 1762 | ReductionOp: Clause.getReductionOp(), VarExpr: Var); |
| 1763 | |
| 1764 | if (Res.isUsable()) |
| 1765 | ValidVars.push_back(Elt: Res.get()); |
| 1766 | } |
| 1767 | |
| 1768 | return SemaRef.CheckReductionClause( |
| 1769 | ExistingClauses, DirectiveKind: Clause.getDirectiveKind(), BeginLoc: Clause.getBeginLoc(), |
| 1770 | LParenLoc: Clause.getLParenLoc(), ReductionOp: Clause.getReductionOp(), Vars: ValidVars, |
| 1771 | EndLoc: Clause.getEndLoc()); |
| 1772 | } |
| 1773 | |
| 1774 | OpenACCClause *SemaOpenACCClauseVisitor::VisitCollapseClause( |
| 1775 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 1776 | |
| 1777 | if (DisallowSinceLastDeviceType<OpenACCCollapseClause>(Clause)) |
| 1778 | return nullptr; |
| 1779 | |
| 1780 | ExprResult LoopCount = SemaRef.CheckCollapseLoopCount(LoopCount: Clause.getLoopCount()); |
| 1781 | |
| 1782 | if (!LoopCount.isUsable()) |
| 1783 | return nullptr; |
| 1784 | |
| 1785 | return OpenACCCollapseClause::Create(C: Ctx, BeginLoc: Clause.getBeginLoc(), |
| 1786 | LParenLoc: Clause.getLParenLoc(), HasForce: Clause.isForce(), |
| 1787 | LoopCount: LoopCount.get(), EndLoc: Clause.getEndLoc()); |
| 1788 | } |
| 1789 | |
| 1790 | OpenACCClause *SemaOpenACCClauseVisitor::VisitBindClause( |
| 1791 | SemaOpenACC::OpenACCParsedClause &Clause) { |
| 1792 | |
| 1793 | if (std::holds_alternative<StringLiteral *>(v: Clause.getBindDetails())) |
| 1794 | return OpenACCBindClause::Create( |
| 1795 | C: Ctx, BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), |
| 1796 | SL: std::get<StringLiteral *>(v: Clause.getBindDetails()), EndLoc: Clause.getEndLoc()); |
| 1797 | return OpenACCBindClause::Create( |
| 1798 | C: Ctx, BeginLoc: Clause.getBeginLoc(), LParenLoc: Clause.getLParenLoc(), |
| 1799 | ID: std::get<IdentifierInfo *>(v: Clause.getBindDetails()), EndLoc: Clause.getEndLoc()); |
| 1800 | } |
| 1801 | |
| 1802 | // Return true if the two vars refer to the same variable, for the purposes of |
| 1803 | // equality checking. |
| 1804 | bool areVarsEqual(Expr *VarExpr1, Expr *VarExpr2) { |
| 1805 | if (VarExpr1->isInstantiationDependent() || |
| 1806 | VarExpr2->isInstantiationDependent()) |
| 1807 | return false; |
| 1808 | |
| 1809 | VarExpr1 = VarExpr1->IgnoreParenCasts(); |
| 1810 | VarExpr2 = VarExpr2->IgnoreParenCasts(); |
| 1811 | |
| 1812 | // Legal expressions can be: Scalar variable reference, sub-array, array |
| 1813 | // element, or composite variable member. |
| 1814 | |
| 1815 | // Sub-array. |
| 1816 | if (isa<ArraySectionExpr>(Val: VarExpr1)) { |
| 1817 | auto *Expr2AS = dyn_cast<ArraySectionExpr>(Val: VarExpr2); |
| 1818 | if (!Expr2AS) |
| 1819 | return false; |
| 1820 | |
| 1821 | auto *Expr1AS = cast<ArraySectionExpr>(Val: VarExpr1); |
| 1822 | |
| 1823 | if (!areVarsEqual(VarExpr1: Expr1AS->getBase(), VarExpr2: Expr2AS->getBase())) |
| 1824 | return false; |
| 1825 | // We could possibly check to see if the ranges aren't overlapping, but it |
| 1826 | // isn't clear that the rules allow this. |
| 1827 | return true; |
| 1828 | } |
| 1829 | |
| 1830 | // Array-element. |
| 1831 | if (isa<ArraySubscriptExpr>(Val: VarExpr1)) { |
| 1832 | auto *Expr2AS = dyn_cast<ArraySubscriptExpr>(Val: VarExpr2); |
| 1833 | if (!Expr2AS) |
| 1834 | return false; |
| 1835 | |
| 1836 | auto *Expr1AS = cast<ArraySubscriptExpr>(Val: VarExpr1); |
| 1837 | |
| 1838 | if (!areVarsEqual(VarExpr1: Expr1AS->getBase(), VarExpr2: Expr2AS->getBase())) |
| 1839 | return false; |
| 1840 | |
| 1841 | // We could possibly check to see if the elements referenced aren't the |
| 1842 | // same, but it isn't clear by reading of the standard that this is allowed |
| 1843 | // (and that the 'var' refered to isn't the array). |
| 1844 | return true; |
| 1845 | } |
| 1846 | |
| 1847 | // Scalar variable reference, or composite variable. |
| 1848 | if (isa<DeclRefExpr>(Val: VarExpr1)) { |
| 1849 | auto *Expr2DRE = dyn_cast<DeclRefExpr>(Val: VarExpr2); |
| 1850 | if (!Expr2DRE) |
| 1851 | return false; |
| 1852 | |
| 1853 | auto *Expr1DRE = cast<DeclRefExpr>(Val: VarExpr1); |
| 1854 | |
| 1855 | return Expr1DRE->getDecl()->getMostRecentDecl() == |
| 1856 | Expr2DRE->getDecl()->getMostRecentDecl(); |
| 1857 | } |
| 1858 | |
| 1859 | llvm_unreachable("Unknown variable type encountered" ); |
| 1860 | } |
| 1861 | } // namespace |
| 1862 | |
| 1863 | OpenACCClause * |
| 1864 | SemaOpenACC::ActOnClause(ArrayRef<const OpenACCClause *> ExistingClauses, |
| 1865 | OpenACCParsedClause &Clause) { |
| 1866 | if (Clause.getClauseKind() == OpenACCClauseKind::Invalid) |
| 1867 | return nullptr; |
| 1868 | |
| 1869 | if (DiagnoseAllowedClauses(DK: Clause.getDirectiveKind(), CK: Clause.getClauseKind(), |
| 1870 | ClauseLoc: Clause.getBeginLoc())) |
| 1871 | return nullptr; |
| 1872 | //// Diagnose that we don't support this clause on this directive. |
| 1873 | // if (!doesClauseApplyToDirective(Clause.getDirectiveKind(), |
| 1874 | // Clause.getClauseKind())) { |
| 1875 | // Diag(Clause.getBeginLoc(), diag::err_acc_clause_appertainment) |
| 1876 | // << Clause.getDirectiveKind() << Clause.getClauseKind(); |
| 1877 | // return nullptr; |
| 1878 | // } |
| 1879 | |
| 1880 | if (const auto *DevTypeClause = llvm::find_if( |
| 1881 | Range&: ExistingClauses, P: llvm::IsaPred<OpenACCDeviceTypeClause>); |
| 1882 | DevTypeClause != ExistingClauses.end()) { |
| 1883 | if (checkValidAfterDeviceType( |
| 1884 | S&: *this, DeviceTypeClause: *cast<OpenACCDeviceTypeClause>(Val: *DevTypeClause), NewClause: Clause)) |
| 1885 | return nullptr; |
| 1886 | } |
| 1887 | |
| 1888 | SemaOpenACCClauseVisitor Visitor{*this, ExistingClauses}; |
| 1889 | OpenACCClause *Result = Visitor.Visit(Clause); |
| 1890 | assert((!Result || Result->getClauseKind() == Clause.getClauseKind()) && |
| 1891 | "Created wrong clause?" ); |
| 1892 | |
| 1893 | return Result; |
| 1894 | } |
| 1895 | |
| 1896 | /// OpenACC 3.3 section 2.5.15: |
| 1897 | /// At a mininmum, the supported data types include ... the numerical data types |
| 1898 | /// in C, C++, and Fortran. |
| 1899 | /// |
| 1900 | /// If the reduction var is a composite variable, each |
| 1901 | /// member of the composite variable must be a supported datatype for the |
| 1902 | /// reduction operation. |
| 1903 | ExprResult SemaOpenACC::CheckReductionVar(OpenACCDirectiveKind DirectiveKind, |
| 1904 | OpenACCReductionOperator ReductionOp, |
| 1905 | Expr *VarExpr) { |
| 1906 | VarExpr = VarExpr->IgnoreParenCasts(); |
| 1907 | |
| 1908 | auto TypeIsValid = [](QualType Ty) { |
| 1909 | return Ty->isDependentType() || Ty->isScalarType(); |
| 1910 | }; |
| 1911 | |
| 1912 | if (isa<ArraySectionExpr>(Val: VarExpr)) { |
| 1913 | Expr *ASExpr = VarExpr; |
| 1914 | QualType BaseTy = ArraySectionExpr::getBaseOriginalType(Base: ASExpr); |
| 1915 | QualType EltTy = getASTContext().getBaseElementType(QT: BaseTy); |
| 1916 | |
| 1917 | if (!TypeIsValid(EltTy)) { |
| 1918 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_reduction_type) |
| 1919 | << EltTy << /*Sub array base type*/ 1; |
| 1920 | return ExprError(); |
| 1921 | } |
| 1922 | } else if (auto *RD = VarExpr->getType()->getAsRecordDecl()) { |
| 1923 | if (!RD->isStruct() && !RD->isClass()) { |
| 1924 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_reduction_composite_type) |
| 1925 | << /*not class or struct*/ 0 << VarExpr->getType(); |
| 1926 | return ExprError(); |
| 1927 | } |
| 1928 | |
| 1929 | if (!RD->isCompleteDefinition()) { |
| 1930 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_reduction_composite_type) |
| 1931 | << /*incomplete*/ 1 << VarExpr->getType(); |
| 1932 | return ExprError(); |
| 1933 | } |
| 1934 | if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: RD); |
| 1935 | CXXRD && !CXXRD->isAggregate()) { |
| 1936 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_reduction_composite_type) |
| 1937 | << /*aggregate*/ 2 << VarExpr->getType(); |
| 1938 | return ExprError(); |
| 1939 | } |
| 1940 | |
| 1941 | for (FieldDecl *FD : RD->fields()) { |
| 1942 | if (!TypeIsValid(FD->getType())) { |
| 1943 | Diag(Loc: VarExpr->getExprLoc(), |
| 1944 | DiagID: diag::err_acc_reduction_composite_member_type); |
| 1945 | Diag(Loc: FD->getLocation(), DiagID: diag::note_acc_reduction_composite_member_loc); |
| 1946 | return ExprError(); |
| 1947 | } |
| 1948 | } |
| 1949 | } else if (!TypeIsValid(VarExpr->getType())) { |
| 1950 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_acc_reduction_type) |
| 1951 | << VarExpr->getType() << /*Sub array base type*/ 0; |
| 1952 | return ExprError(); |
| 1953 | } |
| 1954 | |
| 1955 | // OpenACC3.3: 2.9.11: Reduction clauses on nested constructs for the same |
| 1956 | // reduction 'var' must have the same reduction operator. |
| 1957 | if (!VarExpr->isInstantiationDependent()) { |
| 1958 | |
| 1959 | for (const OpenACCReductionClause *RClause : ActiveReductionClauses) { |
| 1960 | if (RClause->getReductionOp() == ReductionOp) |
| 1961 | break; |
| 1962 | |
| 1963 | for (Expr *OldVarExpr : RClause->getVarList()) { |
| 1964 | if (OldVarExpr->isInstantiationDependent()) |
| 1965 | continue; |
| 1966 | |
| 1967 | if (areVarsEqual(VarExpr1: VarExpr, VarExpr2: OldVarExpr)) { |
| 1968 | Diag(Loc: VarExpr->getExprLoc(), DiagID: diag::err_reduction_op_mismatch) |
| 1969 | << ReductionOp << RClause->getReductionOp(); |
| 1970 | Diag(Loc: OldVarExpr->getExprLoc(), DiagID: diag::note_acc_previous_clause_here) |
| 1971 | << RClause->getClauseKind(); |
| 1972 | return ExprError(); |
| 1973 | } |
| 1974 | } |
| 1975 | } |
| 1976 | } |
| 1977 | |
| 1978 | return VarExpr; |
| 1979 | } |
| 1980 | |
| 1981 | ExprResult SemaOpenACC::CheckTileSizeExpr(Expr *SizeExpr) { |
| 1982 | if (!SizeExpr) |
| 1983 | return ExprError(); |
| 1984 | |
| 1985 | assert((SizeExpr->isInstantiationDependent() || |
| 1986 | SizeExpr->getType()->isIntegerType()) && |
| 1987 | "size argument non integer?" ); |
| 1988 | |
| 1989 | // If dependent, or an asterisk, the expression is fine. |
| 1990 | if (SizeExpr->isInstantiationDependent() || |
| 1991 | isa<OpenACCAsteriskSizeExpr>(Val: SizeExpr)) |
| 1992 | return ExprResult{SizeExpr}; |
| 1993 | |
| 1994 | std::optional<llvm::APSInt> ICE = |
| 1995 | SizeExpr->getIntegerConstantExpr(Ctx: getASTContext()); |
| 1996 | |
| 1997 | // OpenACC 3.3 2.9.8 |
| 1998 | // where each tile size is a constant positive integer expression or asterisk. |
| 1999 | if (!ICE || *ICE <= 0) { |
| 2000 | Diag(Loc: SizeExpr->getBeginLoc(), DiagID: diag::err_acc_size_expr_value) |
| 2001 | << ICE.has_value() << ICE.value_or(u: llvm::APSInt{}).getExtValue(); |
| 2002 | return ExprError(); |
| 2003 | } |
| 2004 | |
| 2005 | return ExprResult{ |
| 2006 | ConstantExpr::Create(Context: getASTContext(), E: SizeExpr, Result: APValue{*ICE})}; |
| 2007 | } |
| 2008 | |
| 2009 | ExprResult SemaOpenACC::CheckCollapseLoopCount(Expr *LoopCount) { |
| 2010 | if (!LoopCount) |
| 2011 | return ExprError(); |
| 2012 | |
| 2013 | assert((LoopCount->isInstantiationDependent() || |
| 2014 | LoopCount->getType()->isIntegerType()) && |
| 2015 | "Loop argument non integer?" ); |
| 2016 | |
| 2017 | // If this is dependent, there really isn't anything we can check. |
| 2018 | if (LoopCount->isInstantiationDependent()) |
| 2019 | return ExprResult{LoopCount}; |
| 2020 | |
| 2021 | std::optional<llvm::APSInt> ICE = |
| 2022 | LoopCount->getIntegerConstantExpr(Ctx: getASTContext()); |
| 2023 | |
| 2024 | // OpenACC 3.3: 2.9.1 |
| 2025 | // The argument to the collapse clause must be a constant positive integer |
| 2026 | // expression. |
| 2027 | if (!ICE || *ICE <= 0) { |
| 2028 | Diag(Loc: LoopCount->getBeginLoc(), DiagID: diag::err_acc_collapse_loop_count) |
| 2029 | << ICE.has_value() << ICE.value_or(u: llvm::APSInt{}).getExtValue(); |
| 2030 | return ExprError(); |
| 2031 | } |
| 2032 | |
| 2033 | return ExprResult{ |
| 2034 | ConstantExpr::Create(Context: getASTContext(), E: LoopCount, Result: APValue{*ICE})}; |
| 2035 | } |
| 2036 | |
| 2037 | ExprResult |
| 2038 | SemaOpenACC::CheckGangExpr(ArrayRef<const OpenACCClause *> ExistingClauses, |
| 2039 | OpenACCDirectiveKind DK, OpenACCGangKind GK, |
| 2040 | Expr *E) { |
| 2041 | // There are two cases for the enforcement here: the 'current' directive is a |
| 2042 | // 'loop', where we need to check the active compute construct kind, or the |
| 2043 | // current directive is a 'combined' construct, where we have to check the |
| 2044 | // current one. |
| 2045 | switch (DK) { |
| 2046 | case OpenACCDirectiveKind::ParallelLoop: |
| 2047 | return CheckGangParallelExpr(S&: *this, DK, AssocKind: ActiveComputeConstructInfo.Kind, GK, |
| 2048 | E); |
| 2049 | case OpenACCDirectiveKind::SerialLoop: |
| 2050 | return CheckGangSerialExpr(S&: *this, DK, AssocKind: ActiveComputeConstructInfo.Kind, GK, |
| 2051 | E); |
| 2052 | case OpenACCDirectiveKind::KernelsLoop: |
| 2053 | return CheckGangKernelsExpr(S&: *this, ExistingClauses, DK, |
| 2054 | AssocKind: ActiveComputeConstructInfo.Kind, GK, E); |
| 2055 | case OpenACCDirectiveKind::Routine: |
| 2056 | return CheckGangRoutineExpr(S&: *this, DK, AssocKind: ActiveComputeConstructInfo.Kind, GK, |
| 2057 | E); |
| 2058 | case OpenACCDirectiveKind::Loop: |
| 2059 | switch (ActiveComputeConstructInfo.Kind) { |
| 2060 | case OpenACCDirectiveKind::Invalid: |
| 2061 | case OpenACCDirectiveKind::Parallel: |
| 2062 | case OpenACCDirectiveKind::ParallelLoop: |
| 2063 | return CheckGangParallelExpr(S&: *this, DK, AssocKind: ActiveComputeConstructInfo.Kind, |
| 2064 | GK, E); |
| 2065 | case OpenACCDirectiveKind::SerialLoop: |
| 2066 | case OpenACCDirectiveKind::Serial: |
| 2067 | return CheckGangSerialExpr(S&: *this, DK, AssocKind: ActiveComputeConstructInfo.Kind, GK, |
| 2068 | E); |
| 2069 | case OpenACCDirectiveKind::KernelsLoop: |
| 2070 | case OpenACCDirectiveKind::Kernels: |
| 2071 | return CheckGangKernelsExpr(S&: *this, ExistingClauses, DK, |
| 2072 | AssocKind: ActiveComputeConstructInfo.Kind, GK, E); |
| 2073 | default: |
| 2074 | llvm_unreachable("Non compute construct in active compute construct?" ); |
| 2075 | } |
| 2076 | case OpenACCDirectiveKind::Invalid: |
| 2077 | // This can happen in cases where the the directive was not recognized but |
| 2078 | // we continued anyway. Since the validity checking is all-over the place |
| 2079 | // (it can be a star/integer, or a constant expr depending on the tag), we |
| 2080 | // just give up and return an ExprError here. |
| 2081 | return ExprError(); |
| 2082 | default: |
| 2083 | llvm_unreachable("Invalid directive kind for a Gang clause" ); |
| 2084 | } |
| 2085 | llvm_unreachable("Compute construct directive not handled?" ); |
| 2086 | } |
| 2087 | |
| 2088 | OpenACCClause * |
| 2089 | SemaOpenACC::CheckGangClause(OpenACCDirectiveKind DirKind, |
| 2090 | ArrayRef<const OpenACCClause *> ExistingClauses, |
| 2091 | SourceLocation BeginLoc, SourceLocation LParenLoc, |
| 2092 | ArrayRef<OpenACCGangKind> GangKinds, |
| 2093 | ArrayRef<Expr *> IntExprs, SourceLocation EndLoc) { |
| 2094 | // Reduction isn't possible on 'routine' so we don't bother checking it here. |
| 2095 | if (DirKind != OpenACCDirectiveKind::Routine) { |
| 2096 | // OpenACC 3.3 2.9.11: A reduction clause may not appear on a loop directive |
| 2097 | // that has a gang clause with a dim: argument whose value is greater |
| 2098 | // than 1. |
| 2099 | const auto *ReductionItr = |
| 2100 | llvm::find_if(Range&: ExistingClauses, P: llvm::IsaPred<OpenACCReductionClause>); |
| 2101 | |
| 2102 | if (ReductionItr != ExistingClauses.end()) { |
| 2103 | const auto GangZip = llvm::zip_equal(t&: GangKinds, u&: IntExprs); |
| 2104 | const auto GangItr = llvm::find_if(Range: GangZip, P: [](const auto &Tuple) { |
| 2105 | return std::get<0>(Tuple) == OpenACCGangKind::Dim; |
| 2106 | }); |
| 2107 | |
| 2108 | if (GangItr != GangZip.end()) { |
| 2109 | const Expr *DimExpr = std::get<1>(t: *GangItr); |
| 2110 | |
| 2111 | assert((DimExpr->isInstantiationDependent() || |
| 2112 | isa<ConstantExpr>(DimExpr)) && |
| 2113 | "Improperly formed gang argument" ); |
| 2114 | if (const auto *DimVal = dyn_cast<ConstantExpr>(Val: DimExpr); |
| 2115 | DimVal && DimVal->getResultAsAPSInt() > 1) { |
| 2116 | Diag(Loc: DimVal->getBeginLoc(), DiagID: diag::err_acc_gang_reduction_conflict) |
| 2117 | << /*gang/reduction=*/0 << DirKind; |
| 2118 | Diag(Loc: (*ReductionItr)->getBeginLoc(), |
| 2119 | DiagID: diag::note_acc_previous_clause_here) |
| 2120 | << (*ReductionItr)->getClauseKind(); |
| 2121 | return nullptr; |
| 2122 | } |
| 2123 | } |
| 2124 | } |
| 2125 | } |
| 2126 | |
| 2127 | return OpenACCGangClause::Create(Ctx: getASTContext(), BeginLoc, LParenLoc, |
| 2128 | GangKinds, IntExprs, EndLoc); |
| 2129 | } |
| 2130 | |
| 2131 | OpenACCClause *SemaOpenACC::CheckReductionClause( |
| 2132 | ArrayRef<const OpenACCClause *> ExistingClauses, |
| 2133 | OpenACCDirectiveKind DirectiveKind, SourceLocation BeginLoc, |
| 2134 | SourceLocation LParenLoc, OpenACCReductionOperator ReductionOp, |
| 2135 | ArrayRef<Expr *> Vars, SourceLocation EndLoc) { |
| 2136 | if (DirectiveKind == OpenACCDirectiveKind::Loop || |
| 2137 | isOpenACCCombinedDirectiveKind(K: DirectiveKind)) { |
| 2138 | // OpenACC 3.3 2.9.11: A reduction clause may not appear on a loop directive |
| 2139 | // that has a gang clause with a dim: argument whose value is greater |
| 2140 | // than 1. |
| 2141 | const auto GangClauses = llvm::make_filter_range( |
| 2142 | Range&: ExistingClauses, Pred: llvm::IsaPred<OpenACCGangClause>); |
| 2143 | |
| 2144 | for (auto *GC : GangClauses) { |
| 2145 | const auto *GangClause = cast<OpenACCGangClause>(Val: GC); |
| 2146 | for (unsigned I = 0; I < GangClause->getNumExprs(); ++I) { |
| 2147 | std::pair<OpenACCGangKind, const Expr *> EPair = GangClause->getExpr(I); |
| 2148 | if (EPair.first != OpenACCGangKind::Dim) |
| 2149 | continue; |
| 2150 | |
| 2151 | if (const auto *DimVal = dyn_cast<ConstantExpr>(Val: EPair.second); |
| 2152 | DimVal && DimVal->getResultAsAPSInt() > 1) { |
| 2153 | Diag(Loc: BeginLoc, DiagID: diag::err_acc_gang_reduction_conflict) |
| 2154 | << /*reduction/gang=*/1 << DirectiveKind; |
| 2155 | Diag(Loc: GangClause->getBeginLoc(), DiagID: diag::note_acc_previous_clause_here) |
| 2156 | << GangClause->getClauseKind(); |
| 2157 | return nullptr; |
| 2158 | } |
| 2159 | } |
| 2160 | } |
| 2161 | } |
| 2162 | |
| 2163 | auto *Ret = OpenACCReductionClause::Create( |
| 2164 | C: getASTContext(), BeginLoc, LParenLoc, Operator: ReductionOp, VarList: Vars, EndLoc); |
| 2165 | return Ret; |
| 2166 | } |
| 2167 | |
| 2168 | llvm::SmallVector<Expr *> |
| 2169 | SemaOpenACC::CheckLinkClauseVarList(ArrayRef<Expr *> VarExprs) { |
| 2170 | const DeclContext *DC = removeLinkageSpecDC(DC: getCurContext()); |
| 2171 | |
| 2172 | // Link has no special restrictions on its var list unless it is not at NS/TU |
| 2173 | // scope. |
| 2174 | if (isa<NamespaceDecl, TranslationUnitDecl>(Val: DC)) |
| 2175 | return llvm::SmallVector<Expr *>(VarExprs); |
| 2176 | |
| 2177 | llvm::SmallVector<Expr *> NewVarList; |
| 2178 | |
| 2179 | for (Expr *VarExpr : VarExprs) { |
| 2180 | if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(Val: VarExpr)) { |
| 2181 | NewVarList.push_back(Elt: VarExpr); |
| 2182 | continue; |
| 2183 | } |
| 2184 | |
| 2185 | // Field decls can't be global, nor extern, and declare can't refer to |
| 2186 | // non-static fields in class-scope, so this always fails the scope check. |
| 2187 | // BUT for now we add this so it gets diagnosed by the general 'declare' |
| 2188 | // rules. |
| 2189 | if (isa<MemberExpr>(Val: VarExpr)) { |
| 2190 | NewVarList.push_back(Elt: VarExpr); |
| 2191 | continue; |
| 2192 | } |
| 2193 | |
| 2194 | const auto *DRE = cast<DeclRefExpr>(Val: VarExpr); |
| 2195 | const VarDecl *Var = dyn_cast<VarDecl>(Val: DRE->getDecl()); |
| 2196 | |
| 2197 | if (!Var || !Var->hasExternalStorage()) |
| 2198 | Diag(Loc: VarExpr->getBeginLoc(), DiagID: diag::err_acc_link_not_extern); |
| 2199 | else |
| 2200 | NewVarList.push_back(Elt: VarExpr); |
| 2201 | } |
| 2202 | |
| 2203 | return NewVarList; |
| 2204 | } |
| 2205 | bool SemaOpenACC::CheckDeclareClause(SemaOpenACC::OpenACCParsedClause &Clause, |
| 2206 | OpenACCModifierKind Mods) { |
| 2207 | |
| 2208 | if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Declare) |
| 2209 | return false; |
| 2210 | |
| 2211 | const DeclContext *DC = removeLinkageSpecDC(DC: getCurContext()); |
| 2212 | |
| 2213 | // Whether this is 'create', 'copyin', 'deviceptr', 'device_resident', or |
| 2214 | // 'link', which have 2 special rules. |
| 2215 | bool IsSpecialClause = |
| 2216 | Clause.getClauseKind() == OpenACCClauseKind::Create || |
| 2217 | Clause.getClauseKind() == OpenACCClauseKind::CopyIn || |
| 2218 | Clause.getClauseKind() == OpenACCClauseKind::DevicePtr || |
| 2219 | Clause.getClauseKind() == OpenACCClauseKind::DeviceResident || |
| 2220 | Clause.getClauseKind() == OpenACCClauseKind::Link; |
| 2221 | |
| 2222 | // OpenACC 3.3 2.13: |
| 2223 | // In C or C++ global or namespace scope, only 'create', |
| 2224 | // 'copyin', 'deviceptr', 'device_resident', or 'link' clauses are |
| 2225 | // allowed. |
| 2226 | if (!IsSpecialClause && isa<NamespaceDecl, TranslationUnitDecl>(Val: DC)) { |
| 2227 | return Diag(Loc: Clause.getBeginLoc(), DiagID: diag::err_acc_declare_clause_at_global) |
| 2228 | << Clause.getClauseKind(); |
| 2229 | } |
| 2230 | |
| 2231 | llvm::SmallVector<Expr *> FilteredVarList; |
| 2232 | const DeclaratorDecl *CurDecl = nullptr; |
| 2233 | for (Expr *VarExpr : Clause.getVarList()) { |
| 2234 | if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(Val: VarExpr)) { |
| 2235 | // There isn't really anything we can do here, so we add them anyway and |
| 2236 | // we can check them again when we instantiate this. |
| 2237 | } else if (const auto *MemExpr = dyn_cast<MemberExpr>(Val: VarExpr)) { |
| 2238 | FieldDecl *FD = |
| 2239 | cast<FieldDecl>(Val: MemExpr->getMemberDecl()->getCanonicalDecl()); |
| 2240 | CurDecl = FD; |
| 2241 | |
| 2242 | if (removeLinkageSpecDC( |
| 2243 | DC: FD->getLexicalDeclContext()->getPrimaryContext()) != DC) { |
| 2244 | Diag(Loc: MemExpr->getBeginLoc(), DiagID: diag::err_acc_declare_same_scope) |
| 2245 | << Clause.getClauseKind(); |
| 2246 | continue; |
| 2247 | } |
| 2248 | } else { |
| 2249 | const auto *DRE = cast<DeclRefExpr>(Val: VarExpr); |
| 2250 | if (const auto *Var = dyn_cast<VarDecl>(Val: DRE->getDecl())) { |
| 2251 | CurDecl = Var->getCanonicalDecl(); |
| 2252 | |
| 2253 | // OpenACC3.3 2.13: |
| 2254 | // A 'declare' directive must be in the same scope as the declaration of |
| 2255 | // any var that appears in the clauses of the directive or any scope |
| 2256 | // within a C/C++ function. |
| 2257 | // We can't really check 'scope' here, so we check declaration context, |
| 2258 | // which is a reasonable approximation, but misses scopes inside of |
| 2259 | // functions. |
| 2260 | if (removeLinkageSpecDC( |
| 2261 | DC: Var->getLexicalDeclContext()->getPrimaryContext()) != DC) { |
| 2262 | Diag(Loc: VarExpr->getBeginLoc(), DiagID: diag::err_acc_declare_same_scope) |
| 2263 | << Clause.getClauseKind(); |
| 2264 | continue; |
| 2265 | } |
| 2266 | // OpenACC3.3 2.13: |
| 2267 | // C and C++ extern variables may only appear in 'create', |
| 2268 | // 'copyin', 'deviceptr', 'device_resident', or 'link' clauses on a |
| 2269 | // 'declare' directive. |
| 2270 | if (!IsSpecialClause && Var->hasExternalStorage()) { |
| 2271 | Diag(Loc: VarExpr->getBeginLoc(), DiagID: diag::err_acc_declare_extern) |
| 2272 | << Clause.getClauseKind(); |
| 2273 | continue; |
| 2274 | } |
| 2275 | } |
| 2276 | |
| 2277 | // OpenACC3.3 2.13: |
| 2278 | // A var may appear at most once in all the clauses of declare |
| 2279 | // directives for a function, subroutine, program, or module. |
| 2280 | |
| 2281 | if (CurDecl) { |
| 2282 | auto [Itr, Inserted] = DeclareVarReferences.try_emplace(Key: CurDecl); |
| 2283 | if (!Inserted) { |
| 2284 | Diag(Loc: VarExpr->getBeginLoc(), DiagID: diag::err_acc_multiple_references) |
| 2285 | << Clause.getClauseKind(); |
| 2286 | Diag(Loc: Itr->second, DiagID: diag::note_acc_previous_reference); |
| 2287 | continue; |
| 2288 | } else { |
| 2289 | Itr->second = VarExpr->getBeginLoc(); |
| 2290 | } |
| 2291 | } |
| 2292 | } |
| 2293 | FilteredVarList.push_back(Elt: VarExpr); |
| 2294 | } |
| 2295 | |
| 2296 | Clause.setVarListDetails(VarList: FilteredVarList, ModKind: Mods); |
| 2297 | return false; |
| 2298 | } |
| 2299 | |