| 1 | //===--- SemaOverload.cpp - C++ Overloading -------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file provides Sema routines for C++ overloading. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "CheckExprLifetime.h" |
| 14 | #include "clang/AST/ASTContext.h" |
| 15 | #include "clang/AST/CXXInheritance.h" |
| 16 | #include "clang/AST/Decl.h" |
| 17 | #include "clang/AST/DeclCXX.h" |
| 18 | #include "clang/AST/DeclObjC.h" |
| 19 | #include "clang/AST/Expr.h" |
| 20 | #include "clang/AST/ExprCXX.h" |
| 21 | #include "clang/AST/ExprObjC.h" |
| 22 | #include "clang/AST/Type.h" |
| 23 | #include "clang/Basic/Diagnostic.h" |
| 24 | #include "clang/Basic/DiagnosticOptions.h" |
| 25 | #include "clang/Basic/OperatorKinds.h" |
| 26 | #include "clang/Basic/PartialDiagnostic.h" |
| 27 | #include "clang/Basic/SourceManager.h" |
| 28 | #include "clang/Basic/TargetInfo.h" |
| 29 | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
| 30 | #include "clang/Sema/Initialization.h" |
| 31 | #include "clang/Sema/Lookup.h" |
| 32 | #include "clang/Sema/Overload.h" |
| 33 | #include "clang/Sema/SemaARM.h" |
| 34 | #include "clang/Sema/SemaCUDA.h" |
| 35 | #include "clang/Sema/SemaObjC.h" |
| 36 | #include "clang/Sema/Template.h" |
| 37 | #include "clang/Sema/TemplateDeduction.h" |
| 38 | #include "llvm/ADT/DenseSet.h" |
| 39 | #include "llvm/ADT/STLExtras.h" |
| 40 | #include "llvm/ADT/STLForwardCompat.h" |
| 41 | #include "llvm/ADT/ScopeExit.h" |
| 42 | #include "llvm/ADT/SmallPtrSet.h" |
| 43 | #include "llvm/ADT/SmallVector.h" |
| 44 | #include <algorithm> |
| 45 | #include <cassert> |
| 46 | #include <cstddef> |
| 47 | #include <cstdlib> |
| 48 | #include <optional> |
| 49 | |
| 50 | using namespace clang; |
| 51 | using namespace sema; |
| 52 | |
| 53 | using AllowedExplicit = Sema::AllowedExplicit; |
| 54 | |
| 55 | static bool functionHasPassObjectSizeParams(const FunctionDecl *FD) { |
| 56 | return llvm::any_of(Range: FD->parameters(), P: [](const ParmVarDecl *P) { |
| 57 | return P->hasAttr<PassObjectSizeAttr>(); |
| 58 | }); |
| 59 | } |
| 60 | |
| 61 | /// A convenience routine for creating a decayed reference to a function. |
| 62 | static ExprResult CreateFunctionRefExpr( |
| 63 | Sema &S, FunctionDecl *Fn, NamedDecl *FoundDecl, const Expr *Base, |
| 64 | bool HadMultipleCandidates, SourceLocation Loc = SourceLocation(), |
| 65 | const DeclarationNameLoc &LocInfo = DeclarationNameLoc()) { |
| 66 | if (S.DiagnoseUseOfDecl(D: FoundDecl, Locs: Loc)) |
| 67 | return ExprError(); |
| 68 | // If FoundDecl is different from Fn (such as if one is a template |
| 69 | // and the other a specialization), make sure DiagnoseUseOfDecl is |
| 70 | // called on both. |
| 71 | // FIXME: This would be more comprehensively addressed by modifying |
| 72 | // DiagnoseUseOfDecl to accept both the FoundDecl and the decl |
| 73 | // being used. |
| 74 | if (FoundDecl != Fn && S.DiagnoseUseOfDecl(D: Fn, Locs: Loc)) |
| 75 | return ExprError(); |
| 76 | DeclRefExpr *DRE = new (S.Context) |
| 77 | DeclRefExpr(S.Context, Fn, false, Fn->getType(), VK_LValue, Loc, LocInfo); |
| 78 | if (HadMultipleCandidates) |
| 79 | DRE->setHadMultipleCandidates(true); |
| 80 | |
| 81 | S.MarkDeclRefReferenced(E: DRE, Base); |
| 82 | if (auto *FPT = DRE->getType()->getAs<FunctionProtoType>()) { |
| 83 | if (isUnresolvedExceptionSpec(ESpecType: FPT->getExceptionSpecType())) { |
| 84 | S.ResolveExceptionSpec(Loc, FPT); |
| 85 | DRE->setType(Fn->getType()); |
| 86 | } |
| 87 | } |
| 88 | return S.ImpCastExprToType(E: DRE, Type: S.Context.getPointerType(T: DRE->getType()), |
| 89 | CK: CK_FunctionToPointerDecay); |
| 90 | } |
| 91 | |
| 92 | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, |
| 93 | bool InOverloadResolution, |
| 94 | StandardConversionSequence &SCS, |
| 95 | bool CStyle, |
| 96 | bool AllowObjCWritebackConversion); |
| 97 | |
| 98 | static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, |
| 99 | QualType &ToType, |
| 100 | bool InOverloadResolution, |
| 101 | StandardConversionSequence &SCS, |
| 102 | bool CStyle); |
| 103 | static OverloadingResult |
| 104 | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, |
| 105 | UserDefinedConversionSequence& User, |
| 106 | OverloadCandidateSet& Conversions, |
| 107 | AllowedExplicit AllowExplicit, |
| 108 | bool AllowObjCConversionOnExplicit); |
| 109 | |
| 110 | static ImplicitConversionSequence::CompareKind |
| 111 | CompareStandardConversionSequences(Sema &S, SourceLocation Loc, |
| 112 | const StandardConversionSequence& SCS1, |
| 113 | const StandardConversionSequence& SCS2); |
| 114 | |
| 115 | static ImplicitConversionSequence::CompareKind |
| 116 | CompareQualificationConversions(Sema &S, |
| 117 | const StandardConversionSequence& SCS1, |
| 118 | const StandardConversionSequence& SCS2); |
| 119 | |
| 120 | static ImplicitConversionSequence::CompareKind |
| 121 | CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, |
| 122 | const StandardConversionSequence& SCS1, |
| 123 | const StandardConversionSequence& SCS2); |
| 124 | |
| 125 | /// GetConversionRank - Retrieve the implicit conversion rank |
| 126 | /// corresponding to the given implicit conversion kind. |
| 127 | ImplicitConversionRank clang::GetConversionRank(ImplicitConversionKind Kind) { |
| 128 | static const ImplicitConversionRank Rank[] = { |
| 129 | ICR_Exact_Match, |
| 130 | ICR_Exact_Match, |
| 131 | ICR_Exact_Match, |
| 132 | ICR_Exact_Match, |
| 133 | ICR_Exact_Match, |
| 134 | ICR_Exact_Match, |
| 135 | ICR_Promotion, |
| 136 | ICR_Promotion, |
| 137 | ICR_Promotion, |
| 138 | ICR_Conversion, |
| 139 | ICR_Conversion, |
| 140 | ICR_Conversion, |
| 141 | ICR_Conversion, |
| 142 | ICR_Conversion, |
| 143 | ICR_Conversion, |
| 144 | ICR_Conversion, |
| 145 | ICR_Conversion, |
| 146 | ICR_Conversion, |
| 147 | ICR_Conversion, |
| 148 | ICR_Conversion, |
| 149 | ICR_Conversion, |
| 150 | ICR_OCL_Scalar_Widening, |
| 151 | ICR_Complex_Real_Conversion, |
| 152 | ICR_Conversion, |
| 153 | ICR_Conversion, |
| 154 | ICR_Writeback_Conversion, |
| 155 | ICR_Exact_Match, // NOTE(gbiv): This may not be completely right -- |
| 156 | // it was omitted by the patch that added |
| 157 | // ICK_Zero_Event_Conversion |
| 158 | ICR_Exact_Match, // NOTE(ctopper): This may not be completely right -- |
| 159 | // it was omitted by the patch that added |
| 160 | // ICK_Zero_Queue_Conversion |
| 161 | ICR_C_Conversion, |
| 162 | ICR_C_Conversion_Extension, |
| 163 | ICR_Conversion, |
| 164 | ICR_HLSL_Dimension_Reduction, |
| 165 | ICR_Conversion, |
| 166 | ICR_HLSL_Scalar_Widening, |
| 167 | }; |
| 168 | static_assert(std::size(Rank) == (int)ICK_Num_Conversion_Kinds); |
| 169 | return Rank[(int)Kind]; |
| 170 | } |
| 171 | |
| 172 | ImplicitConversionRank |
| 173 | clang::GetDimensionConversionRank(ImplicitConversionRank Base, |
| 174 | ImplicitConversionKind Dimension) { |
| 175 | ImplicitConversionRank Rank = GetConversionRank(Kind: Dimension); |
| 176 | if (Rank == ICR_HLSL_Scalar_Widening) { |
| 177 | if (Base == ICR_Promotion) |
| 178 | return ICR_HLSL_Scalar_Widening_Promotion; |
| 179 | if (Base == ICR_Conversion) |
| 180 | return ICR_HLSL_Scalar_Widening_Conversion; |
| 181 | } |
| 182 | if (Rank == ICR_HLSL_Dimension_Reduction) { |
| 183 | if (Base == ICR_Promotion) |
| 184 | return ICR_HLSL_Dimension_Reduction_Promotion; |
| 185 | if (Base == ICR_Conversion) |
| 186 | return ICR_HLSL_Dimension_Reduction_Conversion; |
| 187 | } |
| 188 | return Rank; |
| 189 | } |
| 190 | |
| 191 | /// GetImplicitConversionName - Return the name of this kind of |
| 192 | /// implicit conversion. |
| 193 | static const char *GetImplicitConversionName(ImplicitConversionKind Kind) { |
| 194 | static const char *const Name[] = { |
| 195 | "No conversion" , |
| 196 | "Lvalue-to-rvalue" , |
| 197 | "Array-to-pointer" , |
| 198 | "Function-to-pointer" , |
| 199 | "Function pointer conversion" , |
| 200 | "Qualification" , |
| 201 | "Integral promotion" , |
| 202 | "Floating point promotion" , |
| 203 | "Complex promotion" , |
| 204 | "Integral conversion" , |
| 205 | "Floating conversion" , |
| 206 | "Complex conversion" , |
| 207 | "Floating-integral conversion" , |
| 208 | "Pointer conversion" , |
| 209 | "Pointer-to-member conversion" , |
| 210 | "Boolean conversion" , |
| 211 | "Compatible-types conversion" , |
| 212 | "Derived-to-base conversion" , |
| 213 | "Vector conversion" , |
| 214 | "SVE Vector conversion" , |
| 215 | "RVV Vector conversion" , |
| 216 | "Vector splat" , |
| 217 | "Complex-real conversion" , |
| 218 | "Block Pointer conversion" , |
| 219 | "Transparent Union Conversion" , |
| 220 | "Writeback conversion" , |
| 221 | "OpenCL Zero Event Conversion" , |
| 222 | "OpenCL Zero Queue Conversion" , |
| 223 | "C specific type conversion" , |
| 224 | "Incompatible pointer conversion" , |
| 225 | "Fixed point conversion" , |
| 226 | "HLSL vector truncation" , |
| 227 | "Non-decaying array conversion" , |
| 228 | "HLSL vector splat" , |
| 229 | }; |
| 230 | static_assert(std::size(Name) == (int)ICK_Num_Conversion_Kinds); |
| 231 | return Name[Kind]; |
| 232 | } |
| 233 | |
| 234 | /// StandardConversionSequence - Set the standard conversion |
| 235 | /// sequence to the identity conversion. |
| 236 | void StandardConversionSequence::setAsIdentityConversion() { |
| 237 | First = ICK_Identity; |
| 238 | Second = ICK_Identity; |
| 239 | Dimension = ICK_Identity; |
| 240 | Third = ICK_Identity; |
| 241 | DeprecatedStringLiteralToCharPtr = false; |
| 242 | QualificationIncludesObjCLifetime = false; |
| 243 | ReferenceBinding = false; |
| 244 | DirectBinding = false; |
| 245 | IsLvalueReference = true; |
| 246 | BindsToFunctionLvalue = false; |
| 247 | BindsToRvalue = false; |
| 248 | BindsImplicitObjectArgumentWithoutRefQualifier = false; |
| 249 | ObjCLifetimeConversionBinding = false; |
| 250 | FromBracedInitList = false; |
| 251 | CopyConstructor = nullptr; |
| 252 | } |
| 253 | |
| 254 | /// getRank - Retrieve the rank of this standard conversion sequence |
| 255 | /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the |
| 256 | /// implicit conversions. |
| 257 | ImplicitConversionRank StandardConversionSequence::getRank() const { |
| 258 | ImplicitConversionRank Rank = ICR_Exact_Match; |
| 259 | if (GetConversionRank(Kind: First) > Rank) |
| 260 | Rank = GetConversionRank(Kind: First); |
| 261 | if (GetConversionRank(Kind: Second) > Rank) |
| 262 | Rank = GetConversionRank(Kind: Second); |
| 263 | if (GetDimensionConversionRank(Base: Rank, Dimension) > Rank) |
| 264 | Rank = GetDimensionConversionRank(Base: Rank, Dimension); |
| 265 | if (GetConversionRank(Kind: Third) > Rank) |
| 266 | Rank = GetConversionRank(Kind: Third); |
| 267 | return Rank; |
| 268 | } |
| 269 | |
| 270 | /// isPointerConversionToBool - Determines whether this conversion is |
| 271 | /// a conversion of a pointer or pointer-to-member to bool. This is |
| 272 | /// used as part of the ranking of standard conversion sequences |
| 273 | /// (C++ 13.3.3.2p4). |
| 274 | bool StandardConversionSequence::isPointerConversionToBool() const { |
| 275 | // Note that FromType has not necessarily been transformed by the |
| 276 | // array-to-pointer or function-to-pointer implicit conversions, so |
| 277 | // check for their presence as well as checking whether FromType is |
| 278 | // a pointer. |
| 279 | if (getToType(Idx: 1)->isBooleanType() && |
| 280 | (getFromType()->isPointerType() || |
| 281 | getFromType()->isMemberPointerType() || |
| 282 | getFromType()->isObjCObjectPointerType() || |
| 283 | getFromType()->isBlockPointerType() || |
| 284 | First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) |
| 285 | return true; |
| 286 | |
| 287 | return false; |
| 288 | } |
| 289 | |
| 290 | /// isPointerConversionToVoidPointer - Determines whether this |
| 291 | /// conversion is a conversion of a pointer to a void pointer. This is |
| 292 | /// used as part of the ranking of standard conversion sequences (C++ |
| 293 | /// 13.3.3.2p4). |
| 294 | bool |
| 295 | StandardConversionSequence:: |
| 296 | isPointerConversionToVoidPointer(ASTContext& Context) const { |
| 297 | QualType FromType = getFromType(); |
| 298 | QualType ToType = getToType(Idx: 1); |
| 299 | |
| 300 | // Note that FromType has not necessarily been transformed by the |
| 301 | // array-to-pointer implicit conversion, so check for its presence |
| 302 | // and redo the conversion to get a pointer. |
| 303 | if (First == ICK_Array_To_Pointer) |
| 304 | FromType = Context.getArrayDecayedType(T: FromType); |
| 305 | |
| 306 | if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) |
| 307 | if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) |
| 308 | return ToPtrType->getPointeeType()->isVoidType(); |
| 309 | |
| 310 | return false; |
| 311 | } |
| 312 | |
| 313 | /// Skip any implicit casts which could be either part of a narrowing conversion |
| 314 | /// or after one in an implicit conversion. |
| 315 | static const Expr *IgnoreNarrowingConversion(ASTContext &Ctx, |
| 316 | const Expr *Converted) { |
| 317 | // We can have cleanups wrapping the converted expression; these need to be |
| 318 | // preserved so that destructors run if necessary. |
| 319 | if (auto *EWC = dyn_cast<ExprWithCleanups>(Val: Converted)) { |
| 320 | Expr *Inner = |
| 321 | const_cast<Expr *>(IgnoreNarrowingConversion(Ctx, Converted: EWC->getSubExpr())); |
| 322 | return ExprWithCleanups::Create(C: Ctx, subexpr: Inner, CleanupsHaveSideEffects: EWC->cleanupsHaveSideEffects(), |
| 323 | objects: EWC->getObjects()); |
| 324 | } |
| 325 | |
| 326 | while (auto *ICE = dyn_cast<ImplicitCastExpr>(Val: Converted)) { |
| 327 | switch (ICE->getCastKind()) { |
| 328 | case CK_NoOp: |
| 329 | case CK_IntegralCast: |
| 330 | case CK_IntegralToBoolean: |
| 331 | case CK_IntegralToFloating: |
| 332 | case CK_BooleanToSignedIntegral: |
| 333 | case CK_FloatingToIntegral: |
| 334 | case CK_FloatingToBoolean: |
| 335 | case CK_FloatingCast: |
| 336 | Converted = ICE->getSubExpr(); |
| 337 | continue; |
| 338 | |
| 339 | default: |
| 340 | return Converted; |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | return Converted; |
| 345 | } |
| 346 | |
| 347 | /// Check if this standard conversion sequence represents a narrowing |
| 348 | /// conversion, according to C++11 [dcl.init.list]p7. |
| 349 | /// |
| 350 | /// \param Ctx The AST context. |
| 351 | /// \param Converted The result of applying this standard conversion sequence. |
| 352 | /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the |
| 353 | /// value of the expression prior to the narrowing conversion. |
| 354 | /// \param ConstantType If this is an NK_Constant_Narrowing conversion, the |
| 355 | /// type of the expression prior to the narrowing conversion. |
| 356 | /// \param IgnoreFloatToIntegralConversion If true type-narrowing conversions |
| 357 | /// from floating point types to integral types should be ignored. |
| 358 | NarrowingKind StandardConversionSequence::getNarrowingKind( |
| 359 | ASTContext &Ctx, const Expr *Converted, APValue &ConstantValue, |
| 360 | QualType &ConstantType, bool IgnoreFloatToIntegralConversion) const { |
| 361 | assert((Ctx.getLangOpts().CPlusPlus || Ctx.getLangOpts().C23) && |
| 362 | "narrowing check outside C++" ); |
| 363 | |
| 364 | // C++11 [dcl.init.list]p7: |
| 365 | // A narrowing conversion is an implicit conversion ... |
| 366 | QualType FromType = getToType(Idx: 0); |
| 367 | QualType ToType = getToType(Idx: 1); |
| 368 | |
| 369 | // A conversion to an enumeration type is narrowing if the conversion to |
| 370 | // the underlying type is narrowing. This only arises for expressions of |
| 371 | // the form 'Enum{init}'. |
| 372 | if (auto *ET = ToType->getAs<EnumType>()) |
| 373 | ToType = ET->getDecl()->getIntegerType(); |
| 374 | |
| 375 | switch (Second) { |
| 376 | // 'bool' is an integral type; dispatch to the right place to handle it. |
| 377 | case ICK_Boolean_Conversion: |
| 378 | if (FromType->isRealFloatingType()) |
| 379 | goto FloatingIntegralConversion; |
| 380 | if (FromType->isIntegralOrUnscopedEnumerationType()) |
| 381 | goto IntegralConversion; |
| 382 | // -- from a pointer type or pointer-to-member type to bool, or |
| 383 | return NK_Type_Narrowing; |
| 384 | |
| 385 | // -- from a floating-point type to an integer type, or |
| 386 | // |
| 387 | // -- from an integer type or unscoped enumeration type to a floating-point |
| 388 | // type, except where the source is a constant expression and the actual |
| 389 | // value after conversion will fit into the target type and will produce |
| 390 | // the original value when converted back to the original type, or |
| 391 | case ICK_Floating_Integral: |
| 392 | FloatingIntegralConversion: |
| 393 | if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { |
| 394 | return NK_Type_Narrowing; |
| 395 | } else if (FromType->isIntegralOrUnscopedEnumerationType() && |
| 396 | ToType->isRealFloatingType()) { |
| 397 | if (IgnoreFloatToIntegralConversion) |
| 398 | return NK_Not_Narrowing; |
| 399 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); |
| 400 | assert(Initializer && "Unknown conversion expression" ); |
| 401 | |
| 402 | // If it's value-dependent, we can't tell whether it's narrowing. |
| 403 | if (Initializer->isValueDependent()) |
| 404 | return NK_Dependent_Narrowing; |
| 405 | |
| 406 | if (std::optional<llvm::APSInt> IntConstantValue = |
| 407 | Initializer->getIntegerConstantExpr(Ctx)) { |
| 408 | // Convert the integer to the floating type. |
| 409 | llvm::APFloat Result(Ctx.getFloatTypeSemantics(T: ToType)); |
| 410 | Result.convertFromAPInt(Input: *IntConstantValue, IsSigned: IntConstantValue->isSigned(), |
| 411 | RM: llvm::APFloat::rmNearestTiesToEven); |
| 412 | // And back. |
| 413 | llvm::APSInt ConvertedValue = *IntConstantValue; |
| 414 | bool ignored; |
| 415 | Result.convertToInteger(Result&: ConvertedValue, |
| 416 | RM: llvm::APFloat::rmTowardZero, IsExact: &ignored); |
| 417 | // If the resulting value is different, this was a narrowing conversion. |
| 418 | if (*IntConstantValue != ConvertedValue) { |
| 419 | ConstantValue = APValue(*IntConstantValue); |
| 420 | ConstantType = Initializer->getType(); |
| 421 | return NK_Constant_Narrowing; |
| 422 | } |
| 423 | } else { |
| 424 | // Variables are always narrowings. |
| 425 | return NK_Variable_Narrowing; |
| 426 | } |
| 427 | } |
| 428 | return NK_Not_Narrowing; |
| 429 | |
| 430 | // -- from long double to double or float, or from double to float, except |
| 431 | // where the source is a constant expression and the actual value after |
| 432 | // conversion is within the range of values that can be represented (even |
| 433 | // if it cannot be represented exactly), or |
| 434 | case ICK_Floating_Conversion: |
| 435 | if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && |
| 436 | Ctx.getFloatingTypeOrder(LHS: FromType, RHS: ToType) == 1) { |
| 437 | // FromType is larger than ToType. |
| 438 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); |
| 439 | |
| 440 | // If it's value-dependent, we can't tell whether it's narrowing. |
| 441 | if (Initializer->isValueDependent()) |
| 442 | return NK_Dependent_Narrowing; |
| 443 | |
| 444 | Expr::EvalResult R; |
| 445 | if ((Ctx.getLangOpts().C23 && Initializer->EvaluateAsRValue(Result&: R, Ctx)) || |
| 446 | Initializer->isCXX11ConstantExpr(Ctx, Result: &ConstantValue)) { |
| 447 | // Constant! |
| 448 | if (Ctx.getLangOpts().C23) |
| 449 | ConstantValue = R.Val; |
| 450 | assert(ConstantValue.isFloat()); |
| 451 | llvm::APFloat FloatVal = ConstantValue.getFloat(); |
| 452 | // Convert the source value into the target type. |
| 453 | bool ignored; |
| 454 | llvm::APFloat Converted = FloatVal; |
| 455 | llvm::APFloat::opStatus ConvertStatus = |
| 456 | Converted.convert(ToSemantics: Ctx.getFloatTypeSemantics(T: ToType), |
| 457 | RM: llvm::APFloat::rmNearestTiesToEven, losesInfo: &ignored); |
| 458 | Converted.convert(ToSemantics: Ctx.getFloatTypeSemantics(T: FromType), |
| 459 | RM: llvm::APFloat::rmNearestTiesToEven, losesInfo: &ignored); |
| 460 | if (Ctx.getLangOpts().C23) { |
| 461 | if (FloatVal.isNaN() && Converted.isNaN() && |
| 462 | !FloatVal.isSignaling() && !Converted.isSignaling()) { |
| 463 | // Quiet NaNs are considered the same value, regardless of |
| 464 | // payloads. |
| 465 | return NK_Not_Narrowing; |
| 466 | } |
| 467 | // For normal values, check exact equality. |
| 468 | if (!Converted.bitwiseIsEqual(RHS: FloatVal)) { |
| 469 | ConstantType = Initializer->getType(); |
| 470 | return NK_Constant_Narrowing; |
| 471 | } |
| 472 | } else { |
| 473 | // If there was no overflow, the source value is within the range of |
| 474 | // values that can be represented. |
| 475 | if (ConvertStatus & llvm::APFloat::opOverflow) { |
| 476 | ConstantType = Initializer->getType(); |
| 477 | return NK_Constant_Narrowing; |
| 478 | } |
| 479 | } |
| 480 | } else { |
| 481 | return NK_Variable_Narrowing; |
| 482 | } |
| 483 | } |
| 484 | return NK_Not_Narrowing; |
| 485 | |
| 486 | // -- from an integer type or unscoped enumeration type to an integer type |
| 487 | // that cannot represent all the values of the original type, except where |
| 488 | // (CWG2627) -- the source is a bit-field whose width w is less than that |
| 489 | // of its type (or, for an enumeration type, its underlying type) and the |
| 490 | // target type can represent all the values of a hypothetical extended |
| 491 | // integer type with width w and with the same signedness as the original |
| 492 | // type or |
| 493 | // -- the source is a constant expression and the actual value after |
| 494 | // conversion will fit into the target type and will produce the original |
| 495 | // value when converted back to the original type. |
| 496 | case ICK_Integral_Conversion: |
| 497 | IntegralConversion: { |
| 498 | assert(FromType->isIntegralOrUnscopedEnumerationType()); |
| 499 | assert(ToType->isIntegralOrUnscopedEnumerationType()); |
| 500 | const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); |
| 501 | unsigned FromWidth = Ctx.getIntWidth(T: FromType); |
| 502 | const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); |
| 503 | const unsigned ToWidth = Ctx.getIntWidth(T: ToType); |
| 504 | |
| 505 | constexpr auto CanRepresentAll = [](bool FromSigned, unsigned FromWidth, |
| 506 | bool ToSigned, unsigned ToWidth) { |
| 507 | return (FromWidth < ToWidth + (FromSigned == ToSigned)) && |
| 508 | !(FromSigned && !ToSigned); |
| 509 | }; |
| 510 | |
| 511 | if (CanRepresentAll(FromSigned, FromWidth, ToSigned, ToWidth)) |
| 512 | return NK_Not_Narrowing; |
| 513 | |
| 514 | // Not all values of FromType can be represented in ToType. |
| 515 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); |
| 516 | |
| 517 | bool DependentBitField = false; |
| 518 | if (const FieldDecl *BitField = Initializer->getSourceBitField()) { |
| 519 | if (BitField->getBitWidth()->isValueDependent()) |
| 520 | DependentBitField = true; |
| 521 | else if (unsigned BitFieldWidth = BitField->getBitWidthValue(); |
| 522 | BitFieldWidth < FromWidth) { |
| 523 | if (CanRepresentAll(FromSigned, BitFieldWidth, ToSigned, ToWidth)) |
| 524 | return NK_Not_Narrowing; |
| 525 | |
| 526 | // The initializer will be truncated to the bit-field width |
| 527 | FromWidth = BitFieldWidth; |
| 528 | } |
| 529 | } |
| 530 | |
| 531 | // If it's value-dependent, we can't tell whether it's narrowing. |
| 532 | if (Initializer->isValueDependent()) |
| 533 | return NK_Dependent_Narrowing; |
| 534 | |
| 535 | std::optional<llvm::APSInt> OptInitializerValue = |
| 536 | Initializer->getIntegerConstantExpr(Ctx); |
| 537 | if (!OptInitializerValue) { |
| 538 | // If the bit-field width was dependent, it might end up being small |
| 539 | // enough to fit in the target type (unless the target type is unsigned |
| 540 | // and the source type is signed, in which case it will never fit) |
| 541 | if (DependentBitField && !(FromSigned && !ToSigned)) |
| 542 | return NK_Dependent_Narrowing; |
| 543 | |
| 544 | // Otherwise, such a conversion is always narrowing |
| 545 | return NK_Variable_Narrowing; |
| 546 | } |
| 547 | llvm::APSInt &InitializerValue = *OptInitializerValue; |
| 548 | bool Narrowing = false; |
| 549 | if (FromWidth < ToWidth) { |
| 550 | // Negative -> unsigned is narrowing. Otherwise, more bits is never |
| 551 | // narrowing. |
| 552 | if (InitializerValue.isSigned() && InitializerValue.isNegative()) |
| 553 | Narrowing = true; |
| 554 | } else { |
| 555 | // Add a bit to the InitializerValue so we don't have to worry about |
| 556 | // signed vs. unsigned comparisons. |
| 557 | InitializerValue = |
| 558 | InitializerValue.extend(width: InitializerValue.getBitWidth() + 1); |
| 559 | // Convert the initializer to and from the target width and signed-ness. |
| 560 | llvm::APSInt ConvertedValue = InitializerValue; |
| 561 | ConvertedValue = ConvertedValue.trunc(width: ToWidth); |
| 562 | ConvertedValue.setIsSigned(ToSigned); |
| 563 | ConvertedValue = ConvertedValue.extend(width: InitializerValue.getBitWidth()); |
| 564 | ConvertedValue.setIsSigned(InitializerValue.isSigned()); |
| 565 | // If the result is different, this was a narrowing conversion. |
| 566 | if (ConvertedValue != InitializerValue) |
| 567 | Narrowing = true; |
| 568 | } |
| 569 | if (Narrowing) { |
| 570 | ConstantType = Initializer->getType(); |
| 571 | ConstantValue = APValue(InitializerValue); |
| 572 | return NK_Constant_Narrowing; |
| 573 | } |
| 574 | |
| 575 | return NK_Not_Narrowing; |
| 576 | } |
| 577 | case ICK_Complex_Real: |
| 578 | if (FromType->isComplexType() && !ToType->isComplexType()) |
| 579 | return NK_Type_Narrowing; |
| 580 | return NK_Not_Narrowing; |
| 581 | |
| 582 | case ICK_Floating_Promotion: |
| 583 | if (Ctx.getLangOpts().C23) { |
| 584 | const Expr *Initializer = IgnoreNarrowingConversion(Ctx, Converted); |
| 585 | Expr::EvalResult R; |
| 586 | if (Initializer->EvaluateAsRValue(Result&: R, Ctx)) { |
| 587 | ConstantValue = R.Val; |
| 588 | assert(ConstantValue.isFloat()); |
| 589 | llvm::APFloat FloatVal = ConstantValue.getFloat(); |
| 590 | // C23 6.7.3p6 If the initializer has real type and a signaling NaN |
| 591 | // value, the unqualified versions of the type of the initializer and |
| 592 | // the corresponding real type of the object declared shall be |
| 593 | // compatible. |
| 594 | if (FloatVal.isNaN() && FloatVal.isSignaling()) { |
| 595 | ConstantType = Initializer->getType(); |
| 596 | return NK_Constant_Narrowing; |
| 597 | } |
| 598 | } |
| 599 | } |
| 600 | return NK_Not_Narrowing; |
| 601 | default: |
| 602 | // Other kinds of conversions are not narrowings. |
| 603 | return NK_Not_Narrowing; |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | /// dump - Print this standard conversion sequence to standard |
| 608 | /// error. Useful for debugging overloading issues. |
| 609 | LLVM_DUMP_METHOD void StandardConversionSequence::dump() const { |
| 610 | raw_ostream &OS = llvm::errs(); |
| 611 | bool PrintedSomething = false; |
| 612 | if (First != ICK_Identity) { |
| 613 | OS << GetImplicitConversionName(Kind: First); |
| 614 | PrintedSomething = true; |
| 615 | } |
| 616 | |
| 617 | if (Second != ICK_Identity) { |
| 618 | if (PrintedSomething) { |
| 619 | OS << " -> " ; |
| 620 | } |
| 621 | OS << GetImplicitConversionName(Kind: Second); |
| 622 | |
| 623 | if (CopyConstructor) { |
| 624 | OS << " (by copy constructor)" ; |
| 625 | } else if (DirectBinding) { |
| 626 | OS << " (direct reference binding)" ; |
| 627 | } else if (ReferenceBinding) { |
| 628 | OS << " (reference binding)" ; |
| 629 | } |
| 630 | PrintedSomething = true; |
| 631 | } |
| 632 | |
| 633 | if (Third != ICK_Identity) { |
| 634 | if (PrintedSomething) { |
| 635 | OS << " -> " ; |
| 636 | } |
| 637 | OS << GetImplicitConversionName(Kind: Third); |
| 638 | PrintedSomething = true; |
| 639 | } |
| 640 | |
| 641 | if (!PrintedSomething) { |
| 642 | OS << "No conversions required" ; |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | /// dump - Print this user-defined conversion sequence to standard |
| 647 | /// error. Useful for debugging overloading issues. |
| 648 | void UserDefinedConversionSequence::dump() const { |
| 649 | raw_ostream &OS = llvm::errs(); |
| 650 | if (Before.First || Before.Second || Before.Third) { |
| 651 | Before.dump(); |
| 652 | OS << " -> " ; |
| 653 | } |
| 654 | if (ConversionFunction) |
| 655 | OS << '\'' << *ConversionFunction << '\''; |
| 656 | else |
| 657 | OS << "aggregate initialization" ; |
| 658 | if (After.First || After.Second || After.Third) { |
| 659 | OS << " -> " ; |
| 660 | After.dump(); |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | /// dump - Print this implicit conversion sequence to standard |
| 665 | /// error. Useful for debugging overloading issues. |
| 666 | void ImplicitConversionSequence::dump() const { |
| 667 | raw_ostream &OS = llvm::errs(); |
| 668 | if (hasInitializerListContainerType()) |
| 669 | OS << "Worst list element conversion: " ; |
| 670 | switch (ConversionKind) { |
| 671 | case StandardConversion: |
| 672 | OS << "Standard conversion: " ; |
| 673 | Standard.dump(); |
| 674 | break; |
| 675 | case UserDefinedConversion: |
| 676 | OS << "User-defined conversion: " ; |
| 677 | UserDefined.dump(); |
| 678 | break; |
| 679 | case EllipsisConversion: |
| 680 | OS << "Ellipsis conversion" ; |
| 681 | break; |
| 682 | case AmbiguousConversion: |
| 683 | OS << "Ambiguous conversion" ; |
| 684 | break; |
| 685 | case BadConversion: |
| 686 | OS << "Bad conversion" ; |
| 687 | break; |
| 688 | } |
| 689 | |
| 690 | OS << "\n" ; |
| 691 | } |
| 692 | |
| 693 | void AmbiguousConversionSequence::construct() { |
| 694 | new (&conversions()) ConversionSet(); |
| 695 | } |
| 696 | |
| 697 | void AmbiguousConversionSequence::destruct() { |
| 698 | conversions().~ConversionSet(); |
| 699 | } |
| 700 | |
| 701 | void |
| 702 | AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { |
| 703 | FromTypePtr = O.FromTypePtr; |
| 704 | ToTypePtr = O.ToTypePtr; |
| 705 | new (&conversions()) ConversionSet(O.conversions()); |
| 706 | } |
| 707 | |
| 708 | namespace { |
| 709 | // Structure used by DeductionFailureInfo to store |
| 710 | // template argument information. |
| 711 | struct DFIArguments { |
| 712 | TemplateArgument FirstArg; |
| 713 | TemplateArgument SecondArg; |
| 714 | }; |
| 715 | // Structure used by DeductionFailureInfo to store |
| 716 | // template parameter and template argument information. |
| 717 | struct DFIParamWithArguments : DFIArguments { |
| 718 | TemplateParameter Param; |
| 719 | }; |
| 720 | // Structure used by DeductionFailureInfo to store template argument |
| 721 | // information and the index of the problematic call argument. |
| 722 | struct DFIDeducedMismatchArgs : DFIArguments { |
| 723 | TemplateArgumentList *TemplateArgs; |
| 724 | unsigned CallArgIndex; |
| 725 | }; |
| 726 | // Structure used by DeductionFailureInfo to store information about |
| 727 | // unsatisfied constraints. |
| 728 | struct CNSInfo { |
| 729 | TemplateArgumentList *TemplateArgs; |
| 730 | ConstraintSatisfaction Satisfaction; |
| 731 | }; |
| 732 | } |
| 733 | |
| 734 | /// Convert from Sema's representation of template deduction information |
| 735 | /// to the form used in overload-candidate information. |
| 736 | DeductionFailureInfo |
| 737 | clang::MakeDeductionFailureInfo(ASTContext &Context, |
| 738 | TemplateDeductionResult TDK, |
| 739 | TemplateDeductionInfo &Info) { |
| 740 | DeductionFailureInfo Result; |
| 741 | Result.Result = static_cast<unsigned>(TDK); |
| 742 | Result.HasDiagnostic = false; |
| 743 | switch (TDK) { |
| 744 | case TemplateDeductionResult::Invalid: |
| 745 | case TemplateDeductionResult::InstantiationDepth: |
| 746 | case TemplateDeductionResult::TooManyArguments: |
| 747 | case TemplateDeductionResult::TooFewArguments: |
| 748 | case TemplateDeductionResult::MiscellaneousDeductionFailure: |
| 749 | case TemplateDeductionResult::CUDATargetMismatch: |
| 750 | Result.Data = nullptr; |
| 751 | break; |
| 752 | |
| 753 | case TemplateDeductionResult::Incomplete: |
| 754 | case TemplateDeductionResult::InvalidExplicitArguments: |
| 755 | Result.Data = Info.Param.getOpaqueValue(); |
| 756 | break; |
| 757 | |
| 758 | case TemplateDeductionResult::DeducedMismatch: |
| 759 | case TemplateDeductionResult::DeducedMismatchNested: { |
| 760 | // FIXME: Should allocate from normal heap so that we can free this later. |
| 761 | auto *Saved = new (Context) DFIDeducedMismatchArgs; |
| 762 | Saved->FirstArg = Info.FirstArg; |
| 763 | Saved->SecondArg = Info.SecondArg; |
| 764 | Saved->TemplateArgs = Info.takeSugared(); |
| 765 | Saved->CallArgIndex = Info.CallArgIndex; |
| 766 | Result.Data = Saved; |
| 767 | break; |
| 768 | } |
| 769 | |
| 770 | case TemplateDeductionResult::NonDeducedMismatch: { |
| 771 | // FIXME: Should allocate from normal heap so that we can free this later. |
| 772 | DFIArguments *Saved = new (Context) DFIArguments; |
| 773 | Saved->FirstArg = Info.FirstArg; |
| 774 | Saved->SecondArg = Info.SecondArg; |
| 775 | Result.Data = Saved; |
| 776 | break; |
| 777 | } |
| 778 | |
| 779 | case TemplateDeductionResult::IncompletePack: |
| 780 | // FIXME: It's slightly wasteful to allocate two TemplateArguments for this. |
| 781 | case TemplateDeductionResult::Inconsistent: |
| 782 | case TemplateDeductionResult::Underqualified: { |
| 783 | // FIXME: Should allocate from normal heap so that we can free this later. |
| 784 | DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; |
| 785 | Saved->Param = Info.Param; |
| 786 | Saved->FirstArg = Info.FirstArg; |
| 787 | Saved->SecondArg = Info.SecondArg; |
| 788 | Result.Data = Saved; |
| 789 | break; |
| 790 | } |
| 791 | |
| 792 | case TemplateDeductionResult::SubstitutionFailure: |
| 793 | Result.Data = Info.takeSugared(); |
| 794 | if (Info.hasSFINAEDiagnostic()) { |
| 795 | PartialDiagnosticAt *Diag = new (Result.Diagnostic) PartialDiagnosticAt( |
| 796 | SourceLocation(), PartialDiagnostic::NullDiagnostic()); |
| 797 | Info.takeSFINAEDiagnostic(PD&: *Diag); |
| 798 | Result.HasDiagnostic = true; |
| 799 | } |
| 800 | break; |
| 801 | |
| 802 | case TemplateDeductionResult::ConstraintsNotSatisfied: { |
| 803 | CNSInfo *Saved = new (Context) CNSInfo; |
| 804 | Saved->TemplateArgs = Info.takeSugared(); |
| 805 | Saved->Satisfaction = Info.AssociatedConstraintsSatisfaction; |
| 806 | Result.Data = Saved; |
| 807 | break; |
| 808 | } |
| 809 | |
| 810 | case TemplateDeductionResult::Success: |
| 811 | case TemplateDeductionResult::NonDependentConversionFailure: |
| 812 | case TemplateDeductionResult::AlreadyDiagnosed: |
| 813 | llvm_unreachable("not a deduction failure" ); |
| 814 | } |
| 815 | |
| 816 | return Result; |
| 817 | } |
| 818 | |
| 819 | void DeductionFailureInfo::Destroy() { |
| 820 | switch (static_cast<TemplateDeductionResult>(Result)) { |
| 821 | case TemplateDeductionResult::Success: |
| 822 | case TemplateDeductionResult::Invalid: |
| 823 | case TemplateDeductionResult::InstantiationDepth: |
| 824 | case TemplateDeductionResult::Incomplete: |
| 825 | case TemplateDeductionResult::TooManyArguments: |
| 826 | case TemplateDeductionResult::TooFewArguments: |
| 827 | case TemplateDeductionResult::InvalidExplicitArguments: |
| 828 | case TemplateDeductionResult::CUDATargetMismatch: |
| 829 | case TemplateDeductionResult::NonDependentConversionFailure: |
| 830 | break; |
| 831 | |
| 832 | case TemplateDeductionResult::IncompletePack: |
| 833 | case TemplateDeductionResult::Inconsistent: |
| 834 | case TemplateDeductionResult::Underqualified: |
| 835 | case TemplateDeductionResult::DeducedMismatch: |
| 836 | case TemplateDeductionResult::DeducedMismatchNested: |
| 837 | case TemplateDeductionResult::NonDeducedMismatch: |
| 838 | // FIXME: Destroy the data? |
| 839 | Data = nullptr; |
| 840 | break; |
| 841 | |
| 842 | case TemplateDeductionResult::SubstitutionFailure: |
| 843 | // FIXME: Destroy the template argument list? |
| 844 | Data = nullptr; |
| 845 | if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { |
| 846 | Diag->~PartialDiagnosticAt(); |
| 847 | HasDiagnostic = false; |
| 848 | } |
| 849 | break; |
| 850 | |
| 851 | case TemplateDeductionResult::ConstraintsNotSatisfied: |
| 852 | // FIXME: Destroy the template argument list? |
| 853 | Data = nullptr; |
| 854 | if (PartialDiagnosticAt *Diag = getSFINAEDiagnostic()) { |
| 855 | Diag->~PartialDiagnosticAt(); |
| 856 | HasDiagnostic = false; |
| 857 | } |
| 858 | break; |
| 859 | |
| 860 | // Unhandled |
| 861 | case TemplateDeductionResult::MiscellaneousDeductionFailure: |
| 862 | case TemplateDeductionResult::AlreadyDiagnosed: |
| 863 | break; |
| 864 | } |
| 865 | } |
| 866 | |
| 867 | PartialDiagnosticAt *DeductionFailureInfo::getSFINAEDiagnostic() { |
| 868 | if (HasDiagnostic) |
| 869 | return static_cast<PartialDiagnosticAt*>(static_cast<void*>(Diagnostic)); |
| 870 | return nullptr; |
| 871 | } |
| 872 | |
| 873 | TemplateParameter DeductionFailureInfo::getTemplateParameter() { |
| 874 | switch (static_cast<TemplateDeductionResult>(Result)) { |
| 875 | case TemplateDeductionResult::Success: |
| 876 | case TemplateDeductionResult::Invalid: |
| 877 | case TemplateDeductionResult::InstantiationDepth: |
| 878 | case TemplateDeductionResult::TooManyArguments: |
| 879 | case TemplateDeductionResult::TooFewArguments: |
| 880 | case TemplateDeductionResult::SubstitutionFailure: |
| 881 | case TemplateDeductionResult::DeducedMismatch: |
| 882 | case TemplateDeductionResult::DeducedMismatchNested: |
| 883 | case TemplateDeductionResult::NonDeducedMismatch: |
| 884 | case TemplateDeductionResult::CUDATargetMismatch: |
| 885 | case TemplateDeductionResult::NonDependentConversionFailure: |
| 886 | case TemplateDeductionResult::ConstraintsNotSatisfied: |
| 887 | return TemplateParameter(); |
| 888 | |
| 889 | case TemplateDeductionResult::Incomplete: |
| 890 | case TemplateDeductionResult::InvalidExplicitArguments: |
| 891 | return TemplateParameter::getFromOpaqueValue(VP: Data); |
| 892 | |
| 893 | case TemplateDeductionResult::IncompletePack: |
| 894 | case TemplateDeductionResult::Inconsistent: |
| 895 | case TemplateDeductionResult::Underqualified: |
| 896 | return static_cast<DFIParamWithArguments*>(Data)->Param; |
| 897 | |
| 898 | // Unhandled |
| 899 | case TemplateDeductionResult::MiscellaneousDeductionFailure: |
| 900 | case TemplateDeductionResult::AlreadyDiagnosed: |
| 901 | break; |
| 902 | } |
| 903 | |
| 904 | return TemplateParameter(); |
| 905 | } |
| 906 | |
| 907 | TemplateArgumentList *DeductionFailureInfo::getTemplateArgumentList() { |
| 908 | switch (static_cast<TemplateDeductionResult>(Result)) { |
| 909 | case TemplateDeductionResult::Success: |
| 910 | case TemplateDeductionResult::Invalid: |
| 911 | case TemplateDeductionResult::InstantiationDepth: |
| 912 | case TemplateDeductionResult::TooManyArguments: |
| 913 | case TemplateDeductionResult::TooFewArguments: |
| 914 | case TemplateDeductionResult::Incomplete: |
| 915 | case TemplateDeductionResult::IncompletePack: |
| 916 | case TemplateDeductionResult::InvalidExplicitArguments: |
| 917 | case TemplateDeductionResult::Inconsistent: |
| 918 | case TemplateDeductionResult::Underqualified: |
| 919 | case TemplateDeductionResult::NonDeducedMismatch: |
| 920 | case TemplateDeductionResult::CUDATargetMismatch: |
| 921 | case TemplateDeductionResult::NonDependentConversionFailure: |
| 922 | return nullptr; |
| 923 | |
| 924 | case TemplateDeductionResult::DeducedMismatch: |
| 925 | case TemplateDeductionResult::DeducedMismatchNested: |
| 926 | return static_cast<DFIDeducedMismatchArgs*>(Data)->TemplateArgs; |
| 927 | |
| 928 | case TemplateDeductionResult::SubstitutionFailure: |
| 929 | return static_cast<TemplateArgumentList*>(Data); |
| 930 | |
| 931 | case TemplateDeductionResult::ConstraintsNotSatisfied: |
| 932 | return static_cast<CNSInfo*>(Data)->TemplateArgs; |
| 933 | |
| 934 | // Unhandled |
| 935 | case TemplateDeductionResult::MiscellaneousDeductionFailure: |
| 936 | case TemplateDeductionResult::AlreadyDiagnosed: |
| 937 | break; |
| 938 | } |
| 939 | |
| 940 | return nullptr; |
| 941 | } |
| 942 | |
| 943 | const TemplateArgument *DeductionFailureInfo::getFirstArg() { |
| 944 | switch (static_cast<TemplateDeductionResult>(Result)) { |
| 945 | case TemplateDeductionResult::Success: |
| 946 | case TemplateDeductionResult::Invalid: |
| 947 | case TemplateDeductionResult::InstantiationDepth: |
| 948 | case TemplateDeductionResult::Incomplete: |
| 949 | case TemplateDeductionResult::TooManyArguments: |
| 950 | case TemplateDeductionResult::TooFewArguments: |
| 951 | case TemplateDeductionResult::InvalidExplicitArguments: |
| 952 | case TemplateDeductionResult::SubstitutionFailure: |
| 953 | case TemplateDeductionResult::CUDATargetMismatch: |
| 954 | case TemplateDeductionResult::NonDependentConversionFailure: |
| 955 | case TemplateDeductionResult::ConstraintsNotSatisfied: |
| 956 | return nullptr; |
| 957 | |
| 958 | case TemplateDeductionResult::IncompletePack: |
| 959 | case TemplateDeductionResult::Inconsistent: |
| 960 | case TemplateDeductionResult::Underqualified: |
| 961 | case TemplateDeductionResult::DeducedMismatch: |
| 962 | case TemplateDeductionResult::DeducedMismatchNested: |
| 963 | case TemplateDeductionResult::NonDeducedMismatch: |
| 964 | return &static_cast<DFIArguments*>(Data)->FirstArg; |
| 965 | |
| 966 | // Unhandled |
| 967 | case TemplateDeductionResult::MiscellaneousDeductionFailure: |
| 968 | case TemplateDeductionResult::AlreadyDiagnosed: |
| 969 | break; |
| 970 | } |
| 971 | |
| 972 | return nullptr; |
| 973 | } |
| 974 | |
| 975 | const TemplateArgument *DeductionFailureInfo::getSecondArg() { |
| 976 | switch (static_cast<TemplateDeductionResult>(Result)) { |
| 977 | case TemplateDeductionResult::Success: |
| 978 | case TemplateDeductionResult::Invalid: |
| 979 | case TemplateDeductionResult::InstantiationDepth: |
| 980 | case TemplateDeductionResult::Incomplete: |
| 981 | case TemplateDeductionResult::IncompletePack: |
| 982 | case TemplateDeductionResult::TooManyArguments: |
| 983 | case TemplateDeductionResult::TooFewArguments: |
| 984 | case TemplateDeductionResult::InvalidExplicitArguments: |
| 985 | case TemplateDeductionResult::SubstitutionFailure: |
| 986 | case TemplateDeductionResult::CUDATargetMismatch: |
| 987 | case TemplateDeductionResult::NonDependentConversionFailure: |
| 988 | case TemplateDeductionResult::ConstraintsNotSatisfied: |
| 989 | return nullptr; |
| 990 | |
| 991 | case TemplateDeductionResult::Inconsistent: |
| 992 | case TemplateDeductionResult::Underqualified: |
| 993 | case TemplateDeductionResult::DeducedMismatch: |
| 994 | case TemplateDeductionResult::DeducedMismatchNested: |
| 995 | case TemplateDeductionResult::NonDeducedMismatch: |
| 996 | return &static_cast<DFIArguments*>(Data)->SecondArg; |
| 997 | |
| 998 | // Unhandled |
| 999 | case TemplateDeductionResult::MiscellaneousDeductionFailure: |
| 1000 | case TemplateDeductionResult::AlreadyDiagnosed: |
| 1001 | break; |
| 1002 | } |
| 1003 | |
| 1004 | return nullptr; |
| 1005 | } |
| 1006 | |
| 1007 | UnsignedOrNone DeductionFailureInfo::getCallArgIndex() { |
| 1008 | switch (static_cast<TemplateDeductionResult>(Result)) { |
| 1009 | case TemplateDeductionResult::DeducedMismatch: |
| 1010 | case TemplateDeductionResult::DeducedMismatchNested: |
| 1011 | return static_cast<DFIDeducedMismatchArgs*>(Data)->CallArgIndex; |
| 1012 | |
| 1013 | default: |
| 1014 | return std::nullopt; |
| 1015 | } |
| 1016 | } |
| 1017 | |
| 1018 | static bool FunctionsCorrespond(ASTContext &Ctx, const FunctionDecl *X, |
| 1019 | const FunctionDecl *Y) { |
| 1020 | if (!X || !Y) |
| 1021 | return false; |
| 1022 | if (X->getNumParams() != Y->getNumParams()) |
| 1023 | return false; |
| 1024 | // FIXME: when do rewritten comparison operators |
| 1025 | // with explicit object parameters correspond? |
| 1026 | // https://cplusplus.github.io/CWG/issues/2797.html |
| 1027 | for (unsigned I = 0; I < X->getNumParams(); ++I) |
| 1028 | if (!Ctx.hasSameUnqualifiedType(T1: X->getParamDecl(i: I)->getType(), |
| 1029 | T2: Y->getParamDecl(i: I)->getType())) |
| 1030 | return false; |
| 1031 | if (auto *FTX = X->getDescribedFunctionTemplate()) { |
| 1032 | auto *FTY = Y->getDescribedFunctionTemplate(); |
| 1033 | if (!FTY) |
| 1034 | return false; |
| 1035 | if (!Ctx.isSameTemplateParameterList(X: FTX->getTemplateParameters(), |
| 1036 | Y: FTY->getTemplateParameters())) |
| 1037 | return false; |
| 1038 | } |
| 1039 | return true; |
| 1040 | } |
| 1041 | |
| 1042 | static bool shouldAddReversedEqEq(Sema &S, SourceLocation OpLoc, |
| 1043 | Expr *FirstOperand, FunctionDecl *EqFD) { |
| 1044 | assert(EqFD->getOverloadedOperator() == |
| 1045 | OverloadedOperatorKind::OO_EqualEqual); |
| 1046 | // C++2a [over.match.oper]p4: |
| 1047 | // A non-template function or function template F named operator== is a |
| 1048 | // rewrite target with first operand o unless a search for the name operator!= |
| 1049 | // in the scope S from the instantiation context of the operator expression |
| 1050 | // finds a function or function template that would correspond |
| 1051 | // ([basic.scope.scope]) to F if its name were operator==, where S is the |
| 1052 | // scope of the class type of o if F is a class member, and the namespace |
| 1053 | // scope of which F is a member otherwise. A function template specialization |
| 1054 | // named operator== is a rewrite target if its function template is a rewrite |
| 1055 | // target. |
| 1056 | DeclarationName NotEqOp = S.Context.DeclarationNames.getCXXOperatorName( |
| 1057 | Op: OverloadedOperatorKind::OO_ExclaimEqual); |
| 1058 | if (isa<CXXMethodDecl>(Val: EqFD)) { |
| 1059 | // If F is a class member, search scope is class type of first operand. |
| 1060 | QualType RHS = FirstOperand->getType(); |
| 1061 | auto *RHSRec = RHS->getAs<RecordType>(); |
| 1062 | if (!RHSRec) |
| 1063 | return true; |
| 1064 | LookupResult Members(S, NotEqOp, OpLoc, |
| 1065 | Sema::LookupNameKind::LookupMemberName); |
| 1066 | S.LookupQualifiedName(R&: Members, LookupCtx: RHSRec->getDecl()); |
| 1067 | Members.suppressAccessDiagnostics(); |
| 1068 | for (NamedDecl *Op : Members) |
| 1069 | if (FunctionsCorrespond(Ctx&: S.Context, X: EqFD, Y: Op->getAsFunction())) |
| 1070 | return false; |
| 1071 | return true; |
| 1072 | } |
| 1073 | // Otherwise the search scope is the namespace scope of which F is a member. |
| 1074 | for (NamedDecl *Op : EqFD->getEnclosingNamespaceContext()->lookup(Name: NotEqOp)) { |
| 1075 | auto *NotEqFD = Op->getAsFunction(); |
| 1076 | if (auto *UD = dyn_cast<UsingShadowDecl>(Val: Op)) |
| 1077 | NotEqFD = UD->getUnderlyingDecl()->getAsFunction(); |
| 1078 | if (FunctionsCorrespond(Ctx&: S.Context, X: EqFD, Y: NotEqFD) && S.isVisible(D: NotEqFD) && |
| 1079 | declaresSameEntity(D1: cast<Decl>(Val: EqFD->getEnclosingNamespaceContext()), |
| 1080 | D2: cast<Decl>(Val: Op->getLexicalDeclContext()))) |
| 1081 | return false; |
| 1082 | } |
| 1083 | return true; |
| 1084 | } |
| 1085 | |
| 1086 | bool OverloadCandidateSet::OperatorRewriteInfo::allowsReversed( |
| 1087 | OverloadedOperatorKind Op) { |
| 1088 | if (!AllowRewrittenCandidates) |
| 1089 | return false; |
| 1090 | return Op == OO_EqualEqual || Op == OO_Spaceship; |
| 1091 | } |
| 1092 | |
| 1093 | bool OverloadCandidateSet::OperatorRewriteInfo::shouldAddReversed( |
| 1094 | Sema &S, ArrayRef<Expr *> OriginalArgs, FunctionDecl *FD) { |
| 1095 | auto Op = FD->getOverloadedOperator(); |
| 1096 | if (!allowsReversed(Op)) |
| 1097 | return false; |
| 1098 | if (Op == OverloadedOperatorKind::OO_EqualEqual) { |
| 1099 | assert(OriginalArgs.size() == 2); |
| 1100 | if (!shouldAddReversedEqEq( |
| 1101 | S, OpLoc, /*FirstOperand in reversed args*/ FirstOperand: OriginalArgs[1], EqFD: FD)) |
| 1102 | return false; |
| 1103 | } |
| 1104 | // Don't bother adding a reversed candidate that can never be a better |
| 1105 | // match than the non-reversed version. |
| 1106 | return FD->getNumNonObjectParams() != 2 || |
| 1107 | !S.Context.hasSameUnqualifiedType(T1: FD->getParamDecl(i: 0)->getType(), |
| 1108 | T2: FD->getParamDecl(i: 1)->getType()) || |
| 1109 | FD->hasAttr<EnableIfAttr>(); |
| 1110 | } |
| 1111 | |
| 1112 | void OverloadCandidateSet::destroyCandidates() { |
| 1113 | for (iterator i = Candidates.begin(), e = Candidates.end(); i != e; ++i) { |
| 1114 | for (auto &C : i->Conversions) |
| 1115 | C.~ImplicitConversionSequence(); |
| 1116 | if (!i->Viable && i->FailureKind == ovl_fail_bad_deduction) |
| 1117 | i->DeductionFailure.Destroy(); |
| 1118 | } |
| 1119 | } |
| 1120 | |
| 1121 | void OverloadCandidateSet::clear(CandidateSetKind CSK) { |
| 1122 | destroyCandidates(); |
| 1123 | SlabAllocator.Reset(); |
| 1124 | NumInlineBytesUsed = 0; |
| 1125 | Candidates.clear(); |
| 1126 | Functions.clear(); |
| 1127 | Kind = CSK; |
| 1128 | FirstDeferredCandidate = nullptr; |
| 1129 | DeferredCandidatesCount = 0; |
| 1130 | HasDeferredTemplateConstructors = false; |
| 1131 | ResolutionByPerfectCandidateIsDisabled = false; |
| 1132 | } |
| 1133 | |
| 1134 | namespace { |
| 1135 | class UnbridgedCastsSet { |
| 1136 | struct Entry { |
| 1137 | Expr **Addr; |
| 1138 | Expr *Saved; |
| 1139 | }; |
| 1140 | SmallVector<Entry, 2> Entries; |
| 1141 | |
| 1142 | public: |
| 1143 | void save(Sema &S, Expr *&E) { |
| 1144 | assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); |
| 1145 | Entry entry = { .Addr: &E, .Saved: E }; |
| 1146 | Entries.push_back(Elt: entry); |
| 1147 | E = S.ObjC().stripARCUnbridgedCast(e: E); |
| 1148 | } |
| 1149 | |
| 1150 | void restore() { |
| 1151 | for (SmallVectorImpl<Entry>::iterator |
| 1152 | i = Entries.begin(), e = Entries.end(); i != e; ++i) |
| 1153 | *i->Addr = i->Saved; |
| 1154 | } |
| 1155 | }; |
| 1156 | } |
| 1157 | |
| 1158 | /// checkPlaceholderForOverload - Do any interesting placeholder-like |
| 1159 | /// preprocessing on the given expression. |
| 1160 | /// |
| 1161 | /// \param unbridgedCasts a collection to which to add unbridged casts; |
| 1162 | /// without this, they will be immediately diagnosed as errors |
| 1163 | /// |
| 1164 | /// Return true on unrecoverable error. |
| 1165 | static bool |
| 1166 | checkPlaceholderForOverload(Sema &S, Expr *&E, |
| 1167 | UnbridgedCastsSet *unbridgedCasts = nullptr) { |
| 1168 | if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { |
| 1169 | // We can't handle overloaded expressions here because overload |
| 1170 | // resolution might reasonably tweak them. |
| 1171 | if (placeholder->getKind() == BuiltinType::Overload) return false; |
| 1172 | |
| 1173 | // If the context potentially accepts unbridged ARC casts, strip |
| 1174 | // the unbridged cast and add it to the collection for later restoration. |
| 1175 | if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && |
| 1176 | unbridgedCasts) { |
| 1177 | unbridgedCasts->save(S, E); |
| 1178 | return false; |
| 1179 | } |
| 1180 | |
| 1181 | // Go ahead and check everything else. |
| 1182 | ExprResult result = S.CheckPlaceholderExpr(E); |
| 1183 | if (result.isInvalid()) |
| 1184 | return true; |
| 1185 | |
| 1186 | E = result.get(); |
| 1187 | return false; |
| 1188 | } |
| 1189 | |
| 1190 | // Nothing to do. |
| 1191 | return false; |
| 1192 | } |
| 1193 | |
| 1194 | /// checkArgPlaceholdersForOverload - Check a set of call operands for |
| 1195 | /// placeholders. |
| 1196 | static bool checkArgPlaceholdersForOverload(Sema &S, MultiExprArg Args, |
| 1197 | UnbridgedCastsSet &unbridged) { |
| 1198 | for (unsigned i = 0, e = Args.size(); i != e; ++i) |
| 1199 | if (checkPlaceholderForOverload(S, E&: Args[i], unbridgedCasts: &unbridged)) |
| 1200 | return true; |
| 1201 | |
| 1202 | return false; |
| 1203 | } |
| 1204 | |
| 1205 | OverloadKind Sema::CheckOverload(Scope *S, FunctionDecl *New, |
| 1206 | const LookupResult &Old, NamedDecl *&Match, |
| 1207 | bool NewIsUsingDecl) { |
| 1208 | for (LookupResult::iterator I = Old.begin(), E = Old.end(); |
| 1209 | I != E; ++I) { |
| 1210 | NamedDecl *OldD = *I; |
| 1211 | |
| 1212 | bool OldIsUsingDecl = false; |
| 1213 | if (isa<UsingShadowDecl>(Val: OldD)) { |
| 1214 | OldIsUsingDecl = true; |
| 1215 | |
| 1216 | // We can always introduce two using declarations into the same |
| 1217 | // context, even if they have identical signatures. |
| 1218 | if (NewIsUsingDecl) continue; |
| 1219 | |
| 1220 | OldD = cast<UsingShadowDecl>(Val: OldD)->getTargetDecl(); |
| 1221 | } |
| 1222 | |
| 1223 | // A using-declaration does not conflict with another declaration |
| 1224 | // if one of them is hidden. |
| 1225 | if ((OldIsUsingDecl || NewIsUsingDecl) && !isVisible(D: *I)) |
| 1226 | continue; |
| 1227 | |
| 1228 | // If either declaration was introduced by a using declaration, |
| 1229 | // we'll need to use slightly different rules for matching. |
| 1230 | // Essentially, these rules are the normal rules, except that |
| 1231 | // function templates hide function templates with different |
| 1232 | // return types or template parameter lists. |
| 1233 | bool UseMemberUsingDeclRules = |
| 1234 | (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord() && |
| 1235 | !New->getFriendObjectKind(); |
| 1236 | |
| 1237 | if (FunctionDecl *OldF = OldD->getAsFunction()) { |
| 1238 | if (!IsOverload(New, Old: OldF, UseMemberUsingDeclRules)) { |
| 1239 | if (UseMemberUsingDeclRules && OldIsUsingDecl) { |
| 1240 | HideUsingShadowDecl(S, Shadow: cast<UsingShadowDecl>(Val: *I)); |
| 1241 | continue; |
| 1242 | } |
| 1243 | |
| 1244 | if (!isa<FunctionTemplateDecl>(Val: OldD) && |
| 1245 | !shouldLinkPossiblyHiddenDecl(Old: *I, New)) |
| 1246 | continue; |
| 1247 | |
| 1248 | Match = *I; |
| 1249 | return OverloadKind::Match; |
| 1250 | } |
| 1251 | |
| 1252 | // Builtins that have custom typechecking or have a reference should |
| 1253 | // not be overloadable or redeclarable. |
| 1254 | if (!getASTContext().canBuiltinBeRedeclared(OldF)) { |
| 1255 | Match = *I; |
| 1256 | return OverloadKind::NonFunction; |
| 1257 | } |
| 1258 | } else if (isa<UsingDecl>(Val: OldD) || isa<UsingPackDecl>(Val: OldD)) { |
| 1259 | // We can overload with these, which can show up when doing |
| 1260 | // redeclaration checks for UsingDecls. |
| 1261 | assert(Old.getLookupKind() == LookupUsingDeclName); |
| 1262 | } else if (isa<TagDecl>(Val: OldD)) { |
| 1263 | // We can always overload with tags by hiding them. |
| 1264 | } else if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(Val: OldD)) { |
| 1265 | // Optimistically assume that an unresolved using decl will |
| 1266 | // overload; if it doesn't, we'll have to diagnose during |
| 1267 | // template instantiation. |
| 1268 | // |
| 1269 | // Exception: if the scope is dependent and this is not a class |
| 1270 | // member, the using declaration can only introduce an enumerator. |
| 1271 | if (UUD->getQualifier()->isDependent() && !UUD->isCXXClassMember()) { |
| 1272 | Match = *I; |
| 1273 | return OverloadKind::NonFunction; |
| 1274 | } |
| 1275 | } else { |
| 1276 | // (C++ 13p1): |
| 1277 | // Only function declarations can be overloaded; object and type |
| 1278 | // declarations cannot be overloaded. |
| 1279 | Match = *I; |
| 1280 | return OverloadKind::NonFunction; |
| 1281 | } |
| 1282 | } |
| 1283 | |
| 1284 | // C++ [temp.friend]p1: |
| 1285 | // For a friend function declaration that is not a template declaration: |
| 1286 | // -- if the name of the friend is a qualified or unqualified template-id, |
| 1287 | // [...], otherwise |
| 1288 | // -- if the name of the friend is a qualified-id and a matching |
| 1289 | // non-template function is found in the specified class or namespace, |
| 1290 | // the friend declaration refers to that function, otherwise, |
| 1291 | // -- if the name of the friend is a qualified-id and a matching function |
| 1292 | // template is found in the specified class or namespace, the friend |
| 1293 | // declaration refers to the deduced specialization of that function |
| 1294 | // template, otherwise |
| 1295 | // -- the name shall be an unqualified-id [...] |
| 1296 | // If we get here for a qualified friend declaration, we've just reached the |
| 1297 | // third bullet. If the type of the friend is dependent, skip this lookup |
| 1298 | // until instantiation. |
| 1299 | if (New->getFriendObjectKind() && New->getQualifier() && |
| 1300 | !New->getDescribedFunctionTemplate() && |
| 1301 | !New->getDependentSpecializationInfo() && |
| 1302 | !New->getType()->isDependentType()) { |
| 1303 | LookupResult TemplateSpecResult(LookupResult::Temporary, Old); |
| 1304 | TemplateSpecResult.addAllDecls(Other: Old); |
| 1305 | if (CheckFunctionTemplateSpecialization(FD: New, ExplicitTemplateArgs: nullptr, Previous&: TemplateSpecResult, |
| 1306 | /*QualifiedFriend*/true)) { |
| 1307 | New->setInvalidDecl(); |
| 1308 | return OverloadKind::Overload; |
| 1309 | } |
| 1310 | |
| 1311 | Match = TemplateSpecResult.getAsSingle<FunctionDecl>(); |
| 1312 | return OverloadKind::Match; |
| 1313 | } |
| 1314 | |
| 1315 | return OverloadKind::Overload; |
| 1316 | } |
| 1317 | |
| 1318 | template <typename AttrT> static bool hasExplicitAttr(const FunctionDecl *D) { |
| 1319 | assert(D && "function decl should not be null" ); |
| 1320 | if (auto *A = D->getAttr<AttrT>()) |
| 1321 | return !A->isImplicit(); |
| 1322 | return false; |
| 1323 | } |
| 1324 | |
| 1325 | static bool IsOverloadOrOverrideImpl(Sema &SemaRef, FunctionDecl *New, |
| 1326 | FunctionDecl *Old, |
| 1327 | bool UseMemberUsingDeclRules, |
| 1328 | bool ConsiderCudaAttrs, |
| 1329 | bool UseOverrideRules = false) { |
| 1330 | // C++ [basic.start.main]p2: This function shall not be overloaded. |
| 1331 | if (New->isMain()) |
| 1332 | return false; |
| 1333 | |
| 1334 | // MSVCRT user defined entry points cannot be overloaded. |
| 1335 | if (New->isMSVCRTEntryPoint()) |
| 1336 | return false; |
| 1337 | |
| 1338 | NamedDecl *OldDecl = Old; |
| 1339 | NamedDecl *NewDecl = New; |
| 1340 | FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); |
| 1341 | FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); |
| 1342 | |
| 1343 | // C++ [temp.fct]p2: |
| 1344 | // A function template can be overloaded with other function templates |
| 1345 | // and with normal (non-template) functions. |
| 1346 | if ((OldTemplate == nullptr) != (NewTemplate == nullptr)) |
| 1347 | return true; |
| 1348 | |
| 1349 | // Is the function New an overload of the function Old? |
| 1350 | QualType OldQType = SemaRef.Context.getCanonicalType(T: Old->getType()); |
| 1351 | QualType NewQType = SemaRef.Context.getCanonicalType(T: New->getType()); |
| 1352 | |
| 1353 | // Compare the signatures (C++ 1.3.10) of the two functions to |
| 1354 | // determine whether they are overloads. If we find any mismatch |
| 1355 | // in the signature, they are overloads. |
| 1356 | |
| 1357 | // If either of these functions is a K&R-style function (no |
| 1358 | // prototype), then we consider them to have matching signatures. |
| 1359 | if (isa<FunctionNoProtoType>(Val: OldQType.getTypePtr()) || |
| 1360 | isa<FunctionNoProtoType>(Val: NewQType.getTypePtr())) |
| 1361 | return false; |
| 1362 | |
| 1363 | const auto *OldType = cast<FunctionProtoType>(Val&: OldQType); |
| 1364 | const auto *NewType = cast<FunctionProtoType>(Val&: NewQType); |
| 1365 | |
| 1366 | // The signature of a function includes the types of its |
| 1367 | // parameters (C++ 1.3.10), which includes the presence or absence |
| 1368 | // of the ellipsis; see C++ DR 357). |
| 1369 | if (OldQType != NewQType && OldType->isVariadic() != NewType->isVariadic()) |
| 1370 | return true; |
| 1371 | |
| 1372 | // For member-like friends, the enclosing class is part of the signature. |
| 1373 | if ((New->isMemberLikeConstrainedFriend() || |
| 1374 | Old->isMemberLikeConstrainedFriend()) && |
| 1375 | !New->getLexicalDeclContext()->Equals(DC: Old->getLexicalDeclContext())) |
| 1376 | return true; |
| 1377 | |
| 1378 | // Compare the parameter lists. |
| 1379 | // This can only be done once we have establish that friend functions |
| 1380 | // inhabit the same context, otherwise we might tried to instantiate |
| 1381 | // references to non-instantiated entities during constraint substitution. |
| 1382 | // GH78101. |
| 1383 | if (NewTemplate) { |
| 1384 | OldDecl = OldTemplate; |
| 1385 | NewDecl = NewTemplate; |
| 1386 | // C++ [temp.over.link]p4: |
| 1387 | // The signature of a function template consists of its function |
| 1388 | // signature, its return type and its template parameter list. The names |
| 1389 | // of the template parameters are significant only for establishing the |
| 1390 | // relationship between the template parameters and the rest of the |
| 1391 | // signature. |
| 1392 | // |
| 1393 | // We check the return type and template parameter lists for function |
| 1394 | // templates first; the remaining checks follow. |
| 1395 | bool SameTemplateParameterList = SemaRef.TemplateParameterListsAreEqual( |
| 1396 | NewInstFrom: NewTemplate, New: NewTemplate->getTemplateParameters(), OldInstFrom: OldTemplate, |
| 1397 | Old: OldTemplate->getTemplateParameters(), Complain: false, Kind: Sema::TPL_TemplateMatch); |
| 1398 | bool SameReturnType = SemaRef.Context.hasSameType( |
| 1399 | T1: Old->getDeclaredReturnType(), T2: New->getDeclaredReturnType()); |
| 1400 | // FIXME(GH58571): Match template parameter list even for non-constrained |
| 1401 | // template heads. This currently ensures that the code prior to C++20 is |
| 1402 | // not newly broken. |
| 1403 | bool ConstraintsInTemplateHead = |
| 1404 | NewTemplate->getTemplateParameters()->hasAssociatedConstraints() || |
| 1405 | OldTemplate->getTemplateParameters()->hasAssociatedConstraints(); |
| 1406 | // C++ [namespace.udecl]p11: |
| 1407 | // The set of declarations named by a using-declarator that inhabits a |
| 1408 | // class C does not include member functions and member function |
| 1409 | // templates of a base class that "correspond" to (and thus would |
| 1410 | // conflict with) a declaration of a function or function template in |
| 1411 | // C. |
| 1412 | // Comparing return types is not required for the "correspond" check to |
| 1413 | // decide whether a member introduced by a shadow declaration is hidden. |
| 1414 | if (UseMemberUsingDeclRules && ConstraintsInTemplateHead && |
| 1415 | !SameTemplateParameterList) |
| 1416 | return true; |
| 1417 | if (!UseMemberUsingDeclRules && |
| 1418 | (!SameTemplateParameterList || !SameReturnType)) |
| 1419 | return true; |
| 1420 | } |
| 1421 | |
| 1422 | const auto *OldMethod = dyn_cast<CXXMethodDecl>(Val: Old); |
| 1423 | const auto *NewMethod = dyn_cast<CXXMethodDecl>(Val: New); |
| 1424 | |
| 1425 | int OldParamsOffset = 0; |
| 1426 | int NewParamsOffset = 0; |
| 1427 | |
| 1428 | // When determining if a method is an overload from a base class, act as if |
| 1429 | // the implicit object parameter are of the same type. |
| 1430 | |
| 1431 | auto NormalizeQualifiers = [&](const CXXMethodDecl *M, Qualifiers Q) { |
| 1432 | if (M->isExplicitObjectMemberFunction()) { |
| 1433 | auto ThisType = M->getFunctionObjectParameterReferenceType(); |
| 1434 | if (ThisType.isConstQualified()) |
| 1435 | Q.removeConst(); |
| 1436 | return Q; |
| 1437 | } |
| 1438 | |
| 1439 | // We do not allow overloading based off of '__restrict'. |
| 1440 | Q.removeRestrict(); |
| 1441 | |
| 1442 | // We may not have applied the implicit const for a constexpr member |
| 1443 | // function yet (because we haven't yet resolved whether this is a static |
| 1444 | // or non-static member function). Add it now, on the assumption that this |
| 1445 | // is a redeclaration of OldMethod. |
| 1446 | if (!SemaRef.getLangOpts().CPlusPlus14 && |
| 1447 | (M->isConstexpr() || M->isConsteval()) && |
| 1448 | !isa<CXXConstructorDecl>(Val: NewMethod)) |
| 1449 | Q.addConst(); |
| 1450 | return Q; |
| 1451 | }; |
| 1452 | |
| 1453 | auto AreQualifiersEqual = [&](SplitQualType BS, SplitQualType DS) { |
| 1454 | BS.Quals = NormalizeQualifiers(OldMethod, BS.Quals); |
| 1455 | DS.Quals = NormalizeQualifiers(NewMethod, DS.Quals); |
| 1456 | |
| 1457 | if (OldMethod->isExplicitObjectMemberFunction()) { |
| 1458 | BS.Quals.removeVolatile(); |
| 1459 | DS.Quals.removeVolatile(); |
| 1460 | } |
| 1461 | |
| 1462 | return BS.Quals == DS.Quals; |
| 1463 | }; |
| 1464 | |
| 1465 | auto CompareType = [&](QualType Base, QualType D) { |
| 1466 | auto BS = Base.getNonReferenceType().getCanonicalType().split(); |
| 1467 | auto DS = D.getNonReferenceType().getCanonicalType().split(); |
| 1468 | |
| 1469 | if (!AreQualifiersEqual(BS, DS)) |
| 1470 | return false; |
| 1471 | |
| 1472 | if (OldMethod->isImplicitObjectMemberFunction() && |
| 1473 | OldMethod->getParent() != NewMethod->getParent()) { |
| 1474 | QualType ParentType = |
| 1475 | SemaRef.Context.getTypeDeclType(Decl: OldMethod->getParent()) |
| 1476 | .getCanonicalType(); |
| 1477 | if (ParentType.getTypePtr() != BS.Ty) |
| 1478 | return false; |
| 1479 | BS.Ty = DS.Ty; |
| 1480 | } |
| 1481 | |
| 1482 | // FIXME: should we ignore some type attributes here? |
| 1483 | if (BS.Ty != DS.Ty) |
| 1484 | return false; |
| 1485 | |
| 1486 | if (Base->isLValueReferenceType()) |
| 1487 | return D->isLValueReferenceType(); |
| 1488 | return Base->isRValueReferenceType() == D->isRValueReferenceType(); |
| 1489 | }; |
| 1490 | |
| 1491 | // If the function is a class member, its signature includes the |
| 1492 | // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. |
| 1493 | auto DiagnoseInconsistentRefQualifiers = [&]() { |
| 1494 | if (SemaRef.LangOpts.CPlusPlus23 && !UseOverrideRules) |
| 1495 | return false; |
| 1496 | if (OldMethod->getRefQualifier() == NewMethod->getRefQualifier()) |
| 1497 | return false; |
| 1498 | if (OldMethod->isExplicitObjectMemberFunction() || |
| 1499 | NewMethod->isExplicitObjectMemberFunction()) |
| 1500 | return false; |
| 1501 | if (!UseMemberUsingDeclRules && (OldMethod->getRefQualifier() == RQ_None || |
| 1502 | NewMethod->getRefQualifier() == RQ_None)) { |
| 1503 | SemaRef.Diag(Loc: NewMethod->getLocation(), DiagID: diag::err_ref_qualifier_overload) |
| 1504 | << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); |
| 1505 | SemaRef.Diag(Loc: OldMethod->getLocation(), DiagID: diag::note_previous_declaration); |
| 1506 | return true; |
| 1507 | } |
| 1508 | return false; |
| 1509 | }; |
| 1510 | |
| 1511 | if (OldMethod && OldMethod->isExplicitObjectMemberFunction()) |
| 1512 | OldParamsOffset++; |
| 1513 | if (NewMethod && NewMethod->isExplicitObjectMemberFunction()) |
| 1514 | NewParamsOffset++; |
| 1515 | |
| 1516 | if (OldType->getNumParams() - OldParamsOffset != |
| 1517 | NewType->getNumParams() - NewParamsOffset || |
| 1518 | !SemaRef.FunctionParamTypesAreEqual( |
| 1519 | Old: {OldType->param_type_begin() + OldParamsOffset, |
| 1520 | OldType->param_type_end()}, |
| 1521 | New: {NewType->param_type_begin() + NewParamsOffset, |
| 1522 | NewType->param_type_end()}, |
| 1523 | ArgPos: nullptr)) { |
| 1524 | return true; |
| 1525 | } |
| 1526 | |
| 1527 | if (OldMethod && NewMethod && !OldMethod->isStatic() && |
| 1528 | !NewMethod->isStatic()) { |
| 1529 | bool HaveCorrespondingObjectParameters = [&](const CXXMethodDecl *Old, |
| 1530 | const CXXMethodDecl *New) { |
| 1531 | auto NewObjectType = New->getFunctionObjectParameterReferenceType(); |
| 1532 | auto OldObjectType = Old->getFunctionObjectParameterReferenceType(); |
| 1533 | |
| 1534 | auto IsImplicitWithNoRefQual = [](const CXXMethodDecl *F) { |
| 1535 | return F->getRefQualifier() == RQ_None && |
| 1536 | !F->isExplicitObjectMemberFunction(); |
| 1537 | }; |
| 1538 | |
| 1539 | if (IsImplicitWithNoRefQual(Old) != IsImplicitWithNoRefQual(New) && |
| 1540 | CompareType(OldObjectType.getNonReferenceType(), |
| 1541 | NewObjectType.getNonReferenceType())) |
| 1542 | return true; |
| 1543 | return CompareType(OldObjectType, NewObjectType); |
| 1544 | }(OldMethod, NewMethod); |
| 1545 | |
| 1546 | if (!HaveCorrespondingObjectParameters) { |
| 1547 | if (DiagnoseInconsistentRefQualifiers()) |
| 1548 | return true; |
| 1549 | // CWG2554 |
| 1550 | // and, if at least one is an explicit object member function, ignoring |
| 1551 | // object parameters |
| 1552 | if (!UseOverrideRules || (!NewMethod->isExplicitObjectMemberFunction() && |
| 1553 | !OldMethod->isExplicitObjectMemberFunction())) |
| 1554 | return true; |
| 1555 | } |
| 1556 | } |
| 1557 | |
| 1558 | if (!UseOverrideRules && |
| 1559 | New->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) { |
| 1560 | AssociatedConstraint NewRC = New->getTrailingRequiresClause(), |
| 1561 | OldRC = Old->getTrailingRequiresClause(); |
| 1562 | if (!NewRC != !OldRC) |
| 1563 | return true; |
| 1564 | if (NewRC.ArgPackSubstIndex != OldRC.ArgPackSubstIndex) |
| 1565 | return true; |
| 1566 | if (NewRC && |
| 1567 | !SemaRef.AreConstraintExpressionsEqual(Old: OldDecl, OldConstr: OldRC.ConstraintExpr, |
| 1568 | New: NewDecl, NewConstr: NewRC.ConstraintExpr)) |
| 1569 | return true; |
| 1570 | } |
| 1571 | |
| 1572 | if (NewMethod && OldMethod && OldMethod->isImplicitObjectMemberFunction() && |
| 1573 | NewMethod->isImplicitObjectMemberFunction()) { |
| 1574 | if (DiagnoseInconsistentRefQualifiers()) |
| 1575 | return true; |
| 1576 | } |
| 1577 | |
| 1578 | // Though pass_object_size is placed on parameters and takes an argument, we |
| 1579 | // consider it to be a function-level modifier for the sake of function |
| 1580 | // identity. Either the function has one or more parameters with |
| 1581 | // pass_object_size or it doesn't. |
| 1582 | if (functionHasPassObjectSizeParams(FD: New) != |
| 1583 | functionHasPassObjectSizeParams(FD: Old)) |
| 1584 | return true; |
| 1585 | |
| 1586 | // enable_if attributes are an order-sensitive part of the signature. |
| 1587 | for (specific_attr_iterator<EnableIfAttr> |
| 1588 | NewI = New->specific_attr_begin<EnableIfAttr>(), |
| 1589 | NewE = New->specific_attr_end<EnableIfAttr>(), |
| 1590 | OldI = Old->specific_attr_begin<EnableIfAttr>(), |
| 1591 | OldE = Old->specific_attr_end<EnableIfAttr>(); |
| 1592 | NewI != NewE || OldI != OldE; ++NewI, ++OldI) { |
| 1593 | if (NewI == NewE || OldI == OldE) |
| 1594 | return true; |
| 1595 | llvm::FoldingSetNodeID NewID, OldID; |
| 1596 | NewI->getCond()->Profile(ID&: NewID, Context: SemaRef.Context, Canonical: true); |
| 1597 | OldI->getCond()->Profile(ID&: OldID, Context: SemaRef.Context, Canonical: true); |
| 1598 | if (NewID != OldID) |
| 1599 | return true; |
| 1600 | } |
| 1601 | |
| 1602 | // At this point, it is known that the two functions have the same signature. |
| 1603 | if (SemaRef.getLangOpts().CUDA && ConsiderCudaAttrs) { |
| 1604 | // Don't allow overloading of destructors. (In theory we could, but it |
| 1605 | // would be a giant change to clang.) |
| 1606 | if (!isa<CXXDestructorDecl>(Val: New)) { |
| 1607 | CUDAFunctionTarget NewTarget = SemaRef.CUDA().IdentifyTarget(D: New), |
| 1608 | OldTarget = SemaRef.CUDA().IdentifyTarget(D: Old); |
| 1609 | if (NewTarget != CUDAFunctionTarget::InvalidTarget) { |
| 1610 | assert((OldTarget != CUDAFunctionTarget::InvalidTarget) && |
| 1611 | "Unexpected invalid target." ); |
| 1612 | |
| 1613 | // Allow overloading of functions with same signature and different CUDA |
| 1614 | // target attributes. |
| 1615 | if (NewTarget != OldTarget) { |
| 1616 | // Special case: non-constexpr function is allowed to override |
| 1617 | // constexpr virtual function |
| 1618 | if (OldMethod && NewMethod && OldMethod->isVirtual() && |
| 1619 | OldMethod->isConstexpr() && !NewMethod->isConstexpr() && |
| 1620 | !hasExplicitAttr<CUDAHostAttr>(D: Old) && |
| 1621 | !hasExplicitAttr<CUDADeviceAttr>(D: Old) && |
| 1622 | !hasExplicitAttr<CUDAHostAttr>(D: New) && |
| 1623 | !hasExplicitAttr<CUDADeviceAttr>(D: New)) { |
| 1624 | return false; |
| 1625 | } |
| 1626 | return true; |
| 1627 | } |
| 1628 | } |
| 1629 | } |
| 1630 | } |
| 1631 | |
| 1632 | // The signatures match; this is not an overload. |
| 1633 | return false; |
| 1634 | } |
| 1635 | |
| 1636 | bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, |
| 1637 | bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) { |
| 1638 | return IsOverloadOrOverrideImpl(SemaRef&: *this, New, Old, UseMemberUsingDeclRules, |
| 1639 | ConsiderCudaAttrs); |
| 1640 | } |
| 1641 | |
| 1642 | bool Sema::IsOverride(FunctionDecl *MD, FunctionDecl *BaseMD, |
| 1643 | bool UseMemberUsingDeclRules, bool ConsiderCudaAttrs) { |
| 1644 | return IsOverloadOrOverrideImpl(SemaRef&: *this, New: MD, Old: BaseMD, |
| 1645 | /*UseMemberUsingDeclRules=*/false, |
| 1646 | /*ConsiderCudaAttrs=*/true, |
| 1647 | /*UseOverrideRules=*/true); |
| 1648 | } |
| 1649 | |
| 1650 | /// Tries a user-defined conversion from From to ToType. |
| 1651 | /// |
| 1652 | /// Produces an implicit conversion sequence for when a standard conversion |
| 1653 | /// is not an option. See TryImplicitConversion for more information. |
| 1654 | static ImplicitConversionSequence |
| 1655 | TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, |
| 1656 | bool SuppressUserConversions, |
| 1657 | AllowedExplicit AllowExplicit, |
| 1658 | bool InOverloadResolution, |
| 1659 | bool CStyle, |
| 1660 | bool AllowObjCWritebackConversion, |
| 1661 | bool AllowObjCConversionOnExplicit) { |
| 1662 | ImplicitConversionSequence ICS; |
| 1663 | |
| 1664 | if (SuppressUserConversions) { |
| 1665 | // We're not in the case above, so there is no conversion that |
| 1666 | // we can perform. |
| 1667 | ICS.setBad(Failure: BadConversionSequence::no_conversion, FromExpr: From, ToType); |
| 1668 | return ICS; |
| 1669 | } |
| 1670 | |
| 1671 | // Attempt user-defined conversion. |
| 1672 | OverloadCandidateSet Conversions(From->getExprLoc(), |
| 1673 | OverloadCandidateSet::CSK_Normal); |
| 1674 | switch (IsUserDefinedConversion(S, From, ToType, User&: ICS.UserDefined, |
| 1675 | Conversions, AllowExplicit, |
| 1676 | AllowObjCConversionOnExplicit)) { |
| 1677 | case OR_Success: |
| 1678 | case OR_Deleted: |
| 1679 | ICS.setUserDefined(); |
| 1680 | // C++ [over.ics.user]p4: |
| 1681 | // A conversion of an expression of class type to the same class |
| 1682 | // type is given Exact Match rank, and a conversion of an |
| 1683 | // expression of class type to a base class of that type is |
| 1684 | // given Conversion rank, in spite of the fact that a copy |
| 1685 | // constructor (i.e., a user-defined conversion function) is |
| 1686 | // called for those cases. |
| 1687 | if (CXXConstructorDecl *Constructor |
| 1688 | = dyn_cast<CXXConstructorDecl>(Val: ICS.UserDefined.ConversionFunction)) { |
| 1689 | QualType FromType; |
| 1690 | SourceLocation FromLoc; |
| 1691 | // C++11 [over.ics.list]p6, per DR2137: |
| 1692 | // C++17 [over.ics.list]p6: |
| 1693 | // If C is not an initializer-list constructor and the initializer list |
| 1694 | // has a single element of type cv U, where U is X or a class derived |
| 1695 | // from X, the implicit conversion sequence has Exact Match rank if U is |
| 1696 | // X, or Conversion rank if U is derived from X. |
| 1697 | bool FromListInit = false; |
| 1698 | if (const auto *InitList = dyn_cast<InitListExpr>(Val: From); |
| 1699 | InitList && InitList->getNumInits() == 1 && |
| 1700 | !S.isInitListConstructor(Ctor: Constructor)) { |
| 1701 | const Expr *SingleInit = InitList->getInit(Init: 0); |
| 1702 | FromType = SingleInit->getType(); |
| 1703 | FromLoc = SingleInit->getBeginLoc(); |
| 1704 | FromListInit = true; |
| 1705 | } else { |
| 1706 | FromType = From->getType(); |
| 1707 | FromLoc = From->getBeginLoc(); |
| 1708 | } |
| 1709 | QualType FromCanon = |
| 1710 | S.Context.getCanonicalType(T: FromType.getUnqualifiedType()); |
| 1711 | QualType ToCanon |
| 1712 | = S.Context.getCanonicalType(T: ToType).getUnqualifiedType(); |
| 1713 | if ((FromCanon == ToCanon || |
| 1714 | S.IsDerivedFrom(Loc: FromLoc, Derived: FromCanon, Base: ToCanon))) { |
| 1715 | // Turn this into a "standard" conversion sequence, so that it |
| 1716 | // gets ranked with standard conversion sequences. |
| 1717 | DeclAccessPair Found = ICS.UserDefined.FoundConversionFunction; |
| 1718 | ICS.setStandard(); |
| 1719 | ICS.Standard.setAsIdentityConversion(); |
| 1720 | ICS.Standard.setFromType(FromType); |
| 1721 | ICS.Standard.setAllToTypes(ToType); |
| 1722 | ICS.Standard.FromBracedInitList = FromListInit; |
| 1723 | ICS.Standard.CopyConstructor = Constructor; |
| 1724 | ICS.Standard.FoundCopyConstructor = Found; |
| 1725 | if (ToCanon != FromCanon) |
| 1726 | ICS.Standard.Second = ICK_Derived_To_Base; |
| 1727 | } |
| 1728 | } |
| 1729 | break; |
| 1730 | |
| 1731 | case OR_Ambiguous: |
| 1732 | ICS.setAmbiguous(); |
| 1733 | ICS.Ambiguous.setFromType(From->getType()); |
| 1734 | ICS.Ambiguous.setToType(ToType); |
| 1735 | for (OverloadCandidateSet::iterator Cand = Conversions.begin(); |
| 1736 | Cand != Conversions.end(); ++Cand) |
| 1737 | if (Cand->Best) |
| 1738 | ICS.Ambiguous.addConversion(Found: Cand->FoundDecl, D: Cand->Function); |
| 1739 | break; |
| 1740 | |
| 1741 | // Fall through. |
| 1742 | case OR_No_Viable_Function: |
| 1743 | ICS.setBad(Failure: BadConversionSequence::no_conversion, FromExpr: From, ToType); |
| 1744 | break; |
| 1745 | } |
| 1746 | |
| 1747 | return ICS; |
| 1748 | } |
| 1749 | |
| 1750 | /// TryImplicitConversion - Attempt to perform an implicit conversion |
| 1751 | /// from the given expression (Expr) to the given type (ToType). This |
| 1752 | /// function returns an implicit conversion sequence that can be used |
| 1753 | /// to perform the initialization. Given |
| 1754 | /// |
| 1755 | /// void f(float f); |
| 1756 | /// void g(int i) { f(i); } |
| 1757 | /// |
| 1758 | /// this routine would produce an implicit conversion sequence to |
| 1759 | /// describe the initialization of f from i, which will be a standard |
| 1760 | /// conversion sequence containing an lvalue-to-rvalue conversion (C++ |
| 1761 | /// 4.1) followed by a floating-integral conversion (C++ 4.9). |
| 1762 | // |
| 1763 | /// Note that this routine only determines how the conversion can be |
| 1764 | /// performed; it does not actually perform the conversion. As such, |
| 1765 | /// it will not produce any diagnostics if no conversion is available, |
| 1766 | /// but will instead return an implicit conversion sequence of kind |
| 1767 | /// "BadConversion". |
| 1768 | /// |
| 1769 | /// If @p SuppressUserConversions, then user-defined conversions are |
| 1770 | /// not permitted. |
| 1771 | /// If @p AllowExplicit, then explicit user-defined conversions are |
| 1772 | /// permitted. |
| 1773 | /// |
| 1774 | /// \param AllowObjCWritebackConversion Whether we allow the Objective-C |
| 1775 | /// writeback conversion, which allows __autoreleasing id* parameters to |
| 1776 | /// be initialized with __strong id* or __weak id* arguments. |
| 1777 | static ImplicitConversionSequence |
| 1778 | TryImplicitConversion(Sema &S, Expr *From, QualType ToType, |
| 1779 | bool SuppressUserConversions, |
| 1780 | AllowedExplicit AllowExplicit, |
| 1781 | bool InOverloadResolution, |
| 1782 | bool CStyle, |
| 1783 | bool AllowObjCWritebackConversion, |
| 1784 | bool AllowObjCConversionOnExplicit) { |
| 1785 | ImplicitConversionSequence ICS; |
| 1786 | if (IsStandardConversion(S, From, ToType, InOverloadResolution, |
| 1787 | SCS&: ICS.Standard, CStyle, AllowObjCWritebackConversion)){ |
| 1788 | ICS.setStandard(); |
| 1789 | return ICS; |
| 1790 | } |
| 1791 | |
| 1792 | if (!S.getLangOpts().CPlusPlus) { |
| 1793 | ICS.setBad(Failure: BadConversionSequence::no_conversion, FromExpr: From, ToType); |
| 1794 | return ICS; |
| 1795 | } |
| 1796 | |
| 1797 | // C++ [over.ics.user]p4: |
| 1798 | // A conversion of an expression of class type to the same class |
| 1799 | // type is given Exact Match rank, and a conversion of an |
| 1800 | // expression of class type to a base class of that type is |
| 1801 | // given Conversion rank, in spite of the fact that a copy/move |
| 1802 | // constructor (i.e., a user-defined conversion function) is |
| 1803 | // called for those cases. |
| 1804 | QualType FromType = From->getType(); |
| 1805 | if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && |
| 1806 | (S.Context.hasSameUnqualifiedType(T1: FromType, T2: ToType) || |
| 1807 | S.IsDerivedFrom(Loc: From->getBeginLoc(), Derived: FromType, Base: ToType))) { |
| 1808 | ICS.setStandard(); |
| 1809 | ICS.Standard.setAsIdentityConversion(); |
| 1810 | ICS.Standard.setFromType(FromType); |
| 1811 | ICS.Standard.setAllToTypes(ToType); |
| 1812 | |
| 1813 | // We don't actually check at this point whether there is a valid |
| 1814 | // copy/move constructor, since overloading just assumes that it |
| 1815 | // exists. When we actually perform initialization, we'll find the |
| 1816 | // appropriate constructor to copy the returned object, if needed. |
| 1817 | ICS.Standard.CopyConstructor = nullptr; |
| 1818 | |
| 1819 | // Determine whether this is considered a derived-to-base conversion. |
| 1820 | if (!S.Context.hasSameUnqualifiedType(T1: FromType, T2: ToType)) |
| 1821 | ICS.Standard.Second = ICK_Derived_To_Base; |
| 1822 | |
| 1823 | return ICS; |
| 1824 | } |
| 1825 | |
| 1826 | if (S.getLangOpts().HLSL && ToType->isHLSLAttributedResourceType() && |
| 1827 | FromType->isHLSLAttributedResourceType()) { |
| 1828 | auto *ToResType = cast<HLSLAttributedResourceType>(Val&: ToType); |
| 1829 | auto *FromResType = cast<HLSLAttributedResourceType>(Val&: FromType); |
| 1830 | if (S.Context.hasSameUnqualifiedType(T1: ToResType->getWrappedType(), |
| 1831 | T2: FromResType->getWrappedType()) && |
| 1832 | S.Context.hasSameUnqualifiedType(T1: ToResType->getContainedType(), |
| 1833 | T2: FromResType->getContainedType()) && |
| 1834 | ToResType->getAttrs() == FromResType->getAttrs()) { |
| 1835 | ICS.setStandard(); |
| 1836 | ICS.Standard.setAsIdentityConversion(); |
| 1837 | ICS.Standard.setFromType(FromType); |
| 1838 | ICS.Standard.setAllToTypes(ToType); |
| 1839 | return ICS; |
| 1840 | } |
| 1841 | } |
| 1842 | |
| 1843 | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, |
| 1844 | AllowExplicit, InOverloadResolution, CStyle, |
| 1845 | AllowObjCWritebackConversion, |
| 1846 | AllowObjCConversionOnExplicit); |
| 1847 | } |
| 1848 | |
| 1849 | ImplicitConversionSequence |
| 1850 | Sema::TryImplicitConversion(Expr *From, QualType ToType, |
| 1851 | bool SuppressUserConversions, |
| 1852 | AllowedExplicit AllowExplicit, |
| 1853 | bool InOverloadResolution, |
| 1854 | bool CStyle, |
| 1855 | bool AllowObjCWritebackConversion) { |
| 1856 | return ::TryImplicitConversion(S&: *this, From, ToType, SuppressUserConversions, |
| 1857 | AllowExplicit, InOverloadResolution, CStyle, |
| 1858 | AllowObjCWritebackConversion, |
| 1859 | /*AllowObjCConversionOnExplicit=*/false); |
| 1860 | } |
| 1861 | |
| 1862 | ExprResult Sema::PerformImplicitConversion(Expr *From, QualType ToType, |
| 1863 | AssignmentAction Action, |
| 1864 | bool AllowExplicit) { |
| 1865 | if (checkPlaceholderForOverload(S&: *this, E&: From)) |
| 1866 | return ExprError(); |
| 1867 | |
| 1868 | // Objective-C ARC: Determine whether we will allow the writeback conversion. |
| 1869 | bool AllowObjCWritebackConversion = |
| 1870 | getLangOpts().ObjCAutoRefCount && (Action == AssignmentAction::Passing || |
| 1871 | Action == AssignmentAction::Sending); |
| 1872 | if (getLangOpts().ObjC) |
| 1873 | ObjC().CheckObjCBridgeRelatedConversions(Loc: From->getBeginLoc(), DestType: ToType, |
| 1874 | SrcType: From->getType(), SrcExpr&: From); |
| 1875 | ImplicitConversionSequence ICS = ::TryImplicitConversion( |
| 1876 | S&: *this, From, ToType, |
| 1877 | /*SuppressUserConversions=*/false, |
| 1878 | AllowExplicit: AllowExplicit ? AllowedExplicit::All : AllowedExplicit::None, |
| 1879 | /*InOverloadResolution=*/false, |
| 1880 | /*CStyle=*/false, AllowObjCWritebackConversion, |
| 1881 | /*AllowObjCConversionOnExplicit=*/false); |
| 1882 | return PerformImplicitConversion(From, ToType, ICS, Action); |
| 1883 | } |
| 1884 | |
| 1885 | bool Sema::TryFunctionConversion(QualType FromType, QualType ToType, |
| 1886 | QualType &ResultTy) const { |
| 1887 | bool Changed = IsFunctionConversion(FromType, ToType); |
| 1888 | if (Changed) |
| 1889 | ResultTy = ToType; |
| 1890 | return Changed; |
| 1891 | } |
| 1892 | |
| 1893 | bool Sema::IsFunctionConversion(QualType FromType, QualType ToType, |
| 1894 | bool *DiscardingCFIUncheckedCallee, |
| 1895 | bool *AddingCFIUncheckedCallee) const { |
| 1896 | if (DiscardingCFIUncheckedCallee) |
| 1897 | *DiscardingCFIUncheckedCallee = false; |
| 1898 | if (AddingCFIUncheckedCallee) |
| 1899 | *AddingCFIUncheckedCallee = false; |
| 1900 | |
| 1901 | if (Context.hasSameUnqualifiedType(T1: FromType, T2: ToType)) |
| 1902 | return false; |
| 1903 | |
| 1904 | // Permit the conversion F(t __attribute__((noreturn))) -> F(t) |
| 1905 | // or F(t noexcept) -> F(t) |
| 1906 | // where F adds one of the following at most once: |
| 1907 | // - a pointer |
| 1908 | // - a member pointer |
| 1909 | // - a block pointer |
| 1910 | // Changes here need matching changes in FindCompositePointerType. |
| 1911 | CanQualType CanTo = Context.getCanonicalType(T: ToType); |
| 1912 | CanQualType CanFrom = Context.getCanonicalType(T: FromType); |
| 1913 | Type::TypeClass TyClass = CanTo->getTypeClass(); |
| 1914 | if (TyClass != CanFrom->getTypeClass()) return false; |
| 1915 | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { |
| 1916 | if (TyClass == Type::Pointer) { |
| 1917 | CanTo = CanTo.castAs<PointerType>()->getPointeeType(); |
| 1918 | CanFrom = CanFrom.castAs<PointerType>()->getPointeeType(); |
| 1919 | } else if (TyClass == Type::BlockPointer) { |
| 1920 | CanTo = CanTo.castAs<BlockPointerType>()->getPointeeType(); |
| 1921 | CanFrom = CanFrom.castAs<BlockPointerType>()->getPointeeType(); |
| 1922 | } else if (TyClass == Type::MemberPointer) { |
| 1923 | auto ToMPT = CanTo.castAs<MemberPointerType>(); |
| 1924 | auto FromMPT = CanFrom.castAs<MemberPointerType>(); |
| 1925 | // A function pointer conversion cannot change the class of the function. |
| 1926 | if (!declaresSameEntity(D1: ToMPT->getMostRecentCXXRecordDecl(), |
| 1927 | D2: FromMPT->getMostRecentCXXRecordDecl())) |
| 1928 | return false; |
| 1929 | CanTo = ToMPT->getPointeeType(); |
| 1930 | CanFrom = FromMPT->getPointeeType(); |
| 1931 | } else { |
| 1932 | return false; |
| 1933 | } |
| 1934 | |
| 1935 | TyClass = CanTo->getTypeClass(); |
| 1936 | if (TyClass != CanFrom->getTypeClass()) return false; |
| 1937 | if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) |
| 1938 | return false; |
| 1939 | } |
| 1940 | |
| 1941 | const auto *FromFn = cast<FunctionType>(Val&: CanFrom); |
| 1942 | FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo(); |
| 1943 | |
| 1944 | const auto *ToFn = cast<FunctionType>(Val&: CanTo); |
| 1945 | FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo(); |
| 1946 | |
| 1947 | bool Changed = false; |
| 1948 | |
| 1949 | // Drop 'noreturn' if not present in target type. |
| 1950 | if (FromEInfo.getNoReturn() && !ToEInfo.getNoReturn()) { |
| 1951 | FromFn = Context.adjustFunctionType(Fn: FromFn, EInfo: FromEInfo.withNoReturn(noReturn: false)); |
| 1952 | Changed = true; |
| 1953 | } |
| 1954 | |
| 1955 | const auto *FromFPT = dyn_cast<FunctionProtoType>(Val: FromFn); |
| 1956 | const auto *ToFPT = dyn_cast<FunctionProtoType>(Val: ToFn); |
| 1957 | |
| 1958 | if (FromFPT && ToFPT) { |
| 1959 | if (FromFPT->hasCFIUncheckedCallee() && !ToFPT->hasCFIUncheckedCallee()) { |
| 1960 | QualType NewTy = Context.getFunctionType( |
| 1961 | ResultTy: FromFPT->getReturnType(), Args: FromFPT->getParamTypes(), |
| 1962 | EPI: FromFPT->getExtProtoInfo().withCFIUncheckedCallee(CFIUncheckedCallee: false)); |
| 1963 | FromFPT = cast<FunctionProtoType>(Val: NewTy.getTypePtr()); |
| 1964 | FromFn = FromFPT; |
| 1965 | Changed = true; |
| 1966 | if (DiscardingCFIUncheckedCallee) |
| 1967 | *DiscardingCFIUncheckedCallee = true; |
| 1968 | } else if (!FromFPT->hasCFIUncheckedCallee() && |
| 1969 | ToFPT->hasCFIUncheckedCallee()) { |
| 1970 | QualType NewTy = Context.getFunctionType( |
| 1971 | ResultTy: FromFPT->getReturnType(), Args: FromFPT->getParamTypes(), |
| 1972 | EPI: FromFPT->getExtProtoInfo().withCFIUncheckedCallee(CFIUncheckedCallee: true)); |
| 1973 | FromFPT = cast<FunctionProtoType>(Val: NewTy.getTypePtr()); |
| 1974 | FromFn = FromFPT; |
| 1975 | Changed = true; |
| 1976 | if (AddingCFIUncheckedCallee) |
| 1977 | *AddingCFIUncheckedCallee = true; |
| 1978 | } |
| 1979 | } |
| 1980 | |
| 1981 | // Drop 'noexcept' if not present in target type. |
| 1982 | if (FromFPT) { |
| 1983 | if (FromFPT->isNothrow() && !ToFPT->isNothrow()) { |
| 1984 | FromFn = cast<FunctionType>( |
| 1985 | Val: Context.getFunctionTypeWithExceptionSpec(Orig: QualType(FromFPT, 0), |
| 1986 | ESI: EST_None) |
| 1987 | .getTypePtr()); |
| 1988 | Changed = true; |
| 1989 | } |
| 1990 | |
| 1991 | // Convert FromFPT's ExtParameterInfo if necessary. The conversion is valid |
| 1992 | // only if the ExtParameterInfo lists of the two function prototypes can be |
| 1993 | // merged and the merged list is identical to ToFPT's ExtParameterInfo list. |
| 1994 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; |
| 1995 | bool CanUseToFPT, CanUseFromFPT; |
| 1996 | if (Context.mergeExtParameterInfo(FirstFnType: ToFPT, SecondFnType: FromFPT, CanUseFirst&: CanUseToFPT, |
| 1997 | CanUseSecond&: CanUseFromFPT, NewParamInfos) && |
| 1998 | CanUseToFPT && !CanUseFromFPT) { |
| 1999 | FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo(); |
| 2000 | ExtInfo.ExtParameterInfos = |
| 2001 | NewParamInfos.empty() ? nullptr : NewParamInfos.data(); |
| 2002 | QualType QT = Context.getFunctionType(ResultTy: FromFPT->getReturnType(), |
| 2003 | Args: FromFPT->getParamTypes(), EPI: ExtInfo); |
| 2004 | FromFn = QT->getAs<FunctionType>(); |
| 2005 | Changed = true; |
| 2006 | } |
| 2007 | |
| 2008 | // For C, when called from checkPointerTypesForAssignment, |
| 2009 | // we need to not alter FromFn, or else even an innocuous cast |
| 2010 | // like dropping effects will fail. In C++ however we do want to |
| 2011 | // alter FromFn (because of the way PerformImplicitConversion works). |
| 2012 | if (Context.hasAnyFunctionEffects() && getLangOpts().CPlusPlus) { |
| 2013 | FromFPT = cast<FunctionProtoType>(Val: FromFn); // in case FromFn changed above |
| 2014 | |
| 2015 | // Transparently add/drop effects; here we are concerned with |
| 2016 | // language rules/canonicalization. Adding/dropping effects is a warning. |
| 2017 | const auto FromFX = FromFPT->getFunctionEffects(); |
| 2018 | const auto ToFX = ToFPT->getFunctionEffects(); |
| 2019 | if (FromFX != ToFX) { |
| 2020 | FunctionProtoType::ExtProtoInfo ExtInfo = FromFPT->getExtProtoInfo(); |
| 2021 | ExtInfo.FunctionEffects = ToFX; |
| 2022 | QualType QT = Context.getFunctionType( |
| 2023 | ResultTy: FromFPT->getReturnType(), Args: FromFPT->getParamTypes(), EPI: ExtInfo); |
| 2024 | FromFn = QT->getAs<FunctionType>(); |
| 2025 | Changed = true; |
| 2026 | } |
| 2027 | } |
| 2028 | } |
| 2029 | |
| 2030 | if (!Changed) |
| 2031 | return false; |
| 2032 | |
| 2033 | assert(QualType(FromFn, 0).isCanonical()); |
| 2034 | if (QualType(FromFn, 0) != CanTo) return false; |
| 2035 | |
| 2036 | return true; |
| 2037 | } |
| 2038 | |
| 2039 | /// Determine whether the conversion from FromType to ToType is a valid |
| 2040 | /// floating point conversion. |
| 2041 | /// |
| 2042 | static bool IsFloatingPointConversion(Sema &S, QualType FromType, |
| 2043 | QualType ToType) { |
| 2044 | if (!FromType->isRealFloatingType() || !ToType->isRealFloatingType()) |
| 2045 | return false; |
| 2046 | // FIXME: disable conversions between long double, __ibm128 and __float128 |
| 2047 | // if their representation is different until there is back end support |
| 2048 | // We of course allow this conversion if long double is really double. |
| 2049 | |
| 2050 | // Conversions between bfloat16 and float16 are currently not supported. |
| 2051 | if ((FromType->isBFloat16Type() && |
| 2052 | (ToType->isFloat16Type() || ToType->isHalfType())) || |
| 2053 | (ToType->isBFloat16Type() && |
| 2054 | (FromType->isFloat16Type() || FromType->isHalfType()))) |
| 2055 | return false; |
| 2056 | |
| 2057 | // Conversions between IEEE-quad and IBM-extended semantics are not |
| 2058 | // permitted. |
| 2059 | const llvm::fltSemantics &FromSem = S.Context.getFloatTypeSemantics(T: FromType); |
| 2060 | const llvm::fltSemantics &ToSem = S.Context.getFloatTypeSemantics(T: ToType); |
| 2061 | if ((&FromSem == &llvm::APFloat::PPCDoubleDouble() && |
| 2062 | &ToSem == &llvm::APFloat::IEEEquad()) || |
| 2063 | (&FromSem == &llvm::APFloat::IEEEquad() && |
| 2064 | &ToSem == &llvm::APFloat::PPCDoubleDouble())) |
| 2065 | return false; |
| 2066 | return true; |
| 2067 | } |
| 2068 | |
| 2069 | static bool IsVectorElementConversion(Sema &S, QualType FromType, |
| 2070 | QualType ToType, |
| 2071 | ImplicitConversionKind &ICK, Expr *From) { |
| 2072 | if (S.Context.hasSameUnqualifiedType(T1: FromType, T2: ToType)) |
| 2073 | return true; |
| 2074 | |
| 2075 | if (S.IsFloatingPointPromotion(FromType, ToType)) { |
| 2076 | ICK = ICK_Floating_Promotion; |
| 2077 | return true; |
| 2078 | } |
| 2079 | |
| 2080 | if (IsFloatingPointConversion(S, FromType, ToType)) { |
| 2081 | ICK = ICK_Floating_Conversion; |
| 2082 | return true; |
| 2083 | } |
| 2084 | |
| 2085 | if (ToType->isBooleanType() && FromType->isArithmeticType()) { |
| 2086 | ICK = ICK_Boolean_Conversion; |
| 2087 | return true; |
| 2088 | } |
| 2089 | |
| 2090 | if ((FromType->isRealFloatingType() && ToType->isIntegralType(Ctx: S.Context)) || |
| 2091 | (FromType->isIntegralOrUnscopedEnumerationType() && |
| 2092 | ToType->isRealFloatingType())) { |
| 2093 | ICK = ICK_Floating_Integral; |
| 2094 | return true; |
| 2095 | } |
| 2096 | |
| 2097 | if (S.IsIntegralPromotion(From, FromType, ToType)) { |
| 2098 | ICK = ICK_Integral_Promotion; |
| 2099 | return true; |
| 2100 | } |
| 2101 | |
| 2102 | if (FromType->isIntegralOrUnscopedEnumerationType() && |
| 2103 | ToType->isIntegralType(Ctx: S.Context)) { |
| 2104 | ICK = ICK_Integral_Conversion; |
| 2105 | return true; |
| 2106 | } |
| 2107 | |
| 2108 | return false; |
| 2109 | } |
| 2110 | |
| 2111 | /// Determine whether the conversion from FromType to ToType is a valid |
| 2112 | /// vector conversion. |
| 2113 | /// |
| 2114 | /// \param ICK Will be set to the vector conversion kind, if this is a vector |
| 2115 | /// conversion. |
| 2116 | static bool IsVectorConversion(Sema &S, QualType FromType, QualType ToType, |
| 2117 | ImplicitConversionKind &ICK, |
| 2118 | ImplicitConversionKind &ElConv, Expr *From, |
| 2119 | bool InOverloadResolution, bool CStyle) { |
| 2120 | // We need at least one of these types to be a vector type to have a vector |
| 2121 | // conversion. |
| 2122 | if (!ToType->isVectorType() && !FromType->isVectorType()) |
| 2123 | return false; |
| 2124 | |
| 2125 | // Identical types require no conversions. |
| 2126 | if (S.Context.hasSameUnqualifiedType(T1: FromType, T2: ToType)) |
| 2127 | return false; |
| 2128 | |
| 2129 | // HLSL allows implicit truncation of vector types. |
| 2130 | if (S.getLangOpts().HLSL) { |
| 2131 | auto *ToExtType = ToType->getAs<ExtVectorType>(); |
| 2132 | auto *FromExtType = FromType->getAs<ExtVectorType>(); |
| 2133 | |
| 2134 | // If both arguments are vectors, handle possible vector truncation and |
| 2135 | // element conversion. |
| 2136 | if (ToExtType && FromExtType) { |
| 2137 | unsigned FromElts = FromExtType->getNumElements(); |
| 2138 | unsigned ToElts = ToExtType->getNumElements(); |
| 2139 | if (FromElts < ToElts) |
| 2140 | return false; |
| 2141 | if (FromElts == ToElts) |
| 2142 | ElConv = ICK_Identity; |
| 2143 | else |
| 2144 | ElConv = ICK_HLSL_Vector_Truncation; |
| 2145 | |
| 2146 | QualType FromElTy = FromExtType->getElementType(); |
| 2147 | QualType ToElTy = ToExtType->getElementType(); |
| 2148 | if (S.Context.hasSameUnqualifiedType(T1: FromElTy, T2: ToElTy)) |
| 2149 | return true; |
| 2150 | return IsVectorElementConversion(S, FromType: FromElTy, ToType: ToElTy, ICK, From); |
| 2151 | } |
| 2152 | if (FromExtType && !ToExtType) { |
| 2153 | ElConv = ICK_HLSL_Vector_Truncation; |
| 2154 | QualType FromElTy = FromExtType->getElementType(); |
| 2155 | if (S.Context.hasSameUnqualifiedType(T1: FromElTy, T2: ToType)) |
| 2156 | return true; |
| 2157 | return IsVectorElementConversion(S, FromType: FromElTy, ToType, ICK, From); |
| 2158 | } |
| 2159 | // Fallthrough for the case where ToType is a vector and FromType is not. |
| 2160 | } |
| 2161 | |
| 2162 | // There are no conversions between extended vector types, only identity. |
| 2163 | if (auto *ToExtType = ToType->getAs<ExtVectorType>()) { |
| 2164 | if (FromType->getAs<ExtVectorType>()) { |
| 2165 | // There are no conversions between extended vector types other than the |
| 2166 | // identity conversion. |
| 2167 | return false; |
| 2168 | } |
| 2169 | |
| 2170 | // Vector splat from any arithmetic type to a vector. |
| 2171 | if (FromType->isArithmeticType()) { |
| 2172 | if (S.getLangOpts().HLSL) { |
| 2173 | ElConv = ICK_HLSL_Vector_Splat; |
| 2174 | QualType ToElTy = ToExtType->getElementType(); |
| 2175 | return IsVectorElementConversion(S, FromType, ToType: ToElTy, ICK, From); |
| 2176 | } |
| 2177 | ICK = ICK_Vector_Splat; |
| 2178 | return true; |
| 2179 | } |
| 2180 | } |
| 2181 | |
| 2182 | if (ToType->isSVESizelessBuiltinType() || |
| 2183 | FromType->isSVESizelessBuiltinType()) |
| 2184 | if (S.ARM().areCompatibleSveTypes(FirstType: FromType, SecondType: ToType) || |
| 2185 | S.ARM().areLaxCompatibleSveTypes(FirstType: FromType, SecondType: ToType)) { |
| 2186 | ICK = ICK_SVE_Vector_Conversion; |
| 2187 | return true; |
| 2188 | } |
| 2189 | |
| 2190 | if (ToType->isRVVSizelessBuiltinType() || |
| 2191 | FromType->isRVVSizelessBuiltinType()) |
| 2192 | if (S.Context.areCompatibleRVVTypes(FirstType: FromType, SecondType: ToType) || |
| 2193 | S.Context.areLaxCompatibleRVVTypes(FirstType: FromType, SecondType: ToType)) { |
| 2194 | ICK = ICK_RVV_Vector_Conversion; |
| 2195 | return true; |
| 2196 | } |
| 2197 | |
| 2198 | // We can perform the conversion between vector types in the following cases: |
| 2199 | // 1)vector types are equivalent AltiVec and GCC vector types |
| 2200 | // 2)lax vector conversions are permitted and the vector types are of the |
| 2201 | // same size |
| 2202 | // 3)the destination type does not have the ARM MVE strict-polymorphism |
| 2203 | // attribute, which inhibits lax vector conversion for overload resolution |
| 2204 | // only |
| 2205 | if (ToType->isVectorType() && FromType->isVectorType()) { |
| 2206 | if (S.Context.areCompatibleVectorTypes(FirstVec: FromType, SecondVec: ToType) || |
| 2207 | (S.isLaxVectorConversion(srcType: FromType, destType: ToType) && |
| 2208 | !ToType->hasAttr(AK: attr::ArmMveStrictPolymorphism))) { |
| 2209 | if (S.getASTContext().getTargetInfo().getTriple().isPPC() && |
| 2210 | S.isLaxVectorConversion(srcType: FromType, destType: ToType) && |
| 2211 | S.anyAltivecTypes(srcType: FromType, destType: ToType) && |
| 2212 | !S.Context.areCompatibleVectorTypes(FirstVec: FromType, SecondVec: ToType) && |
| 2213 | !InOverloadResolution && !CStyle) { |
| 2214 | S.Diag(Loc: From->getBeginLoc(), DiagID: diag::warn_deprecated_lax_vec_conv_all) |
| 2215 | << FromType << ToType; |
| 2216 | } |
| 2217 | ICK = ICK_Vector_Conversion; |
| 2218 | return true; |
| 2219 | } |
| 2220 | } |
| 2221 | |
| 2222 | return false; |
| 2223 | } |
| 2224 | |
| 2225 | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, |
| 2226 | bool InOverloadResolution, |
| 2227 | StandardConversionSequence &SCS, |
| 2228 | bool CStyle); |
| 2229 | |
| 2230 | /// IsStandardConversion - Determines whether there is a standard |
| 2231 | /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the |
| 2232 | /// expression From to the type ToType. Standard conversion sequences |
| 2233 | /// only consider non-class types; for conversions that involve class |
| 2234 | /// types, use TryImplicitConversion. If a conversion exists, SCS will |
| 2235 | /// contain the standard conversion sequence required to perform this |
| 2236 | /// conversion and this routine will return true. Otherwise, this |
| 2237 | /// routine will return false and the value of SCS is unspecified. |
| 2238 | static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, |
| 2239 | bool InOverloadResolution, |
| 2240 | StandardConversionSequence &SCS, |
| 2241 | bool CStyle, |
| 2242 | bool AllowObjCWritebackConversion) { |
| 2243 | QualType FromType = From->getType(); |
| 2244 | |
| 2245 | // Standard conversions (C++ [conv]) |
| 2246 | SCS.setAsIdentityConversion(); |
| 2247 | SCS.IncompatibleObjC = false; |
| 2248 | SCS.setFromType(FromType); |
| 2249 | SCS.CopyConstructor = nullptr; |
| 2250 | |
| 2251 | // There are no standard conversions for class types in C++, so |
| 2252 | // abort early. When overloading in C, however, we do permit them. |
| 2253 | if (S.getLangOpts().CPlusPlus && |
| 2254 | (FromType->isRecordType() || ToType->isRecordType())) |
| 2255 | return false; |
| 2256 | |
| 2257 | // The first conversion can be an lvalue-to-rvalue conversion, |
| 2258 | // array-to-pointer conversion, or function-to-pointer conversion |
| 2259 | // (C++ 4p1). |
| 2260 | |
| 2261 | if (FromType == S.Context.OverloadTy) { |
| 2262 | DeclAccessPair AccessPair; |
| 2263 | if (FunctionDecl *Fn |
| 2264 | = S.ResolveAddressOfOverloadedFunction(AddressOfExpr: From, TargetType: ToType, Complain: false, |
| 2265 | Found&: AccessPair)) { |
| 2266 | // We were able to resolve the address of the overloaded function, |
| 2267 | // so we can convert to the type of that function. |
| 2268 | FromType = Fn->getType(); |
| 2269 | SCS.setFromType(FromType); |
| 2270 | |
| 2271 | // we can sometimes resolve &foo<int> regardless of ToType, so check |
| 2272 | // if the type matches (identity) or we are converting to bool |
| 2273 | if (!S.Context.hasSameUnqualifiedType( |
| 2274 | T1: S.ExtractUnqualifiedFunctionType(PossiblyAFunctionType: ToType), T2: FromType)) { |
| 2275 | // if the function type matches except for [[noreturn]], it's ok |
| 2276 | if (!S.IsFunctionConversion(FromType, |
| 2277 | ToType: S.ExtractUnqualifiedFunctionType(PossiblyAFunctionType: ToType))) |
| 2278 | // otherwise, only a boolean conversion is standard |
| 2279 | if (!ToType->isBooleanType()) |
| 2280 | return false; |
| 2281 | } |
| 2282 | |
| 2283 | // Check if the "from" expression is taking the address of an overloaded |
| 2284 | // function and recompute the FromType accordingly. Take advantage of the |
| 2285 | // fact that non-static member functions *must* have such an address-of |
| 2286 | // expression. |
| 2287 | CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: Fn); |
| 2288 | if (Method && !Method->isStatic() && |
| 2289 | !Method->isExplicitObjectMemberFunction()) { |
| 2290 | assert(isa<UnaryOperator>(From->IgnoreParens()) && |
| 2291 | "Non-unary operator on non-static member address" ); |
| 2292 | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() |
| 2293 | == UO_AddrOf && |
| 2294 | "Non-address-of operator on non-static member address" ); |
| 2295 | FromType = S.Context.getMemberPointerType( |
| 2296 | T: FromType, /*Qualifier=*/nullptr, Cls: Method->getParent()); |
| 2297 | } else if (isa<UnaryOperator>(Val: From->IgnoreParens())) { |
| 2298 | assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == |
| 2299 | UO_AddrOf && |
| 2300 | "Non-address-of operator for overloaded function expression" ); |
| 2301 | FromType = S.Context.getPointerType(T: FromType); |
| 2302 | } |
| 2303 | } else { |
| 2304 | return false; |
| 2305 | } |
| 2306 | } |
| 2307 | |
| 2308 | bool argIsLValue = From->isGLValue(); |
| 2309 | // To handle conversion from ArrayParameterType to ConstantArrayType |
| 2310 | // this block must be above the one below because Array parameters |
| 2311 | // do not decay and when handling HLSLOutArgExprs and |
| 2312 | // the From expression is an LValue. |
| 2313 | if (S.getLangOpts().HLSL && FromType->isConstantArrayType() && |
| 2314 | ToType->isConstantArrayType()) { |
| 2315 | // HLSL constant array parameters do not decay, so if the argument is a |
| 2316 | // constant array and the parameter is an ArrayParameterType we have special |
| 2317 | // handling here. |
| 2318 | if (ToType->isArrayParameterType()) { |
| 2319 | FromType = S.Context.getArrayParameterType(Ty: FromType); |
| 2320 | } else if (FromType->isArrayParameterType()) { |
| 2321 | const ArrayParameterType *APT = cast<ArrayParameterType>(Val&: FromType); |
| 2322 | FromType = APT->getConstantArrayType(Ctx: S.Context); |
| 2323 | } |
| 2324 | |
| 2325 | SCS.First = ICK_HLSL_Array_RValue; |
| 2326 | |
| 2327 | // Don't consider qualifiers, which include things like address spaces |
| 2328 | if (FromType.getCanonicalType().getUnqualifiedType() != |
| 2329 | ToType.getCanonicalType().getUnqualifiedType()) |
| 2330 | return false; |
| 2331 | |
| 2332 | SCS.setAllToTypes(ToType); |
| 2333 | return true; |
| 2334 | } else if (argIsLValue && !FromType->canDecayToPointerType() && |
| 2335 | S.Context.getCanonicalType(T: FromType) != S.Context.OverloadTy) { |
| 2336 | // Lvalue-to-rvalue conversion (C++11 4.1): |
| 2337 | // A glvalue (3.10) of a non-function, non-array type T can |
| 2338 | // be converted to a prvalue. |
| 2339 | |
| 2340 | SCS.First = ICK_Lvalue_To_Rvalue; |
| 2341 | |
| 2342 | // C11 6.3.2.1p2: |
| 2343 | // ... if the lvalue has atomic type, the value has the non-atomic version |
| 2344 | // of the type of the lvalue ... |
| 2345 | if (const AtomicType *Atomic = FromType->getAs<AtomicType>()) |
| 2346 | FromType = Atomic->getValueType(); |
| 2347 | |
| 2348 | // If T is a non-class type, the type of the rvalue is the |
| 2349 | // cv-unqualified version of T. Otherwise, the type of the rvalue |
| 2350 | // is T (C++ 4.1p1). C++ can't get here with class types; in C, we |
| 2351 | // just strip the qualifiers because they don't matter. |
| 2352 | FromType = FromType.getUnqualifiedType(); |
| 2353 | } else if (FromType->isArrayType()) { |
| 2354 | // Array-to-pointer conversion (C++ 4.2) |
| 2355 | SCS.First = ICK_Array_To_Pointer; |
| 2356 | |
| 2357 | // An lvalue or rvalue of type "array of N T" or "array of unknown |
| 2358 | // bound of T" can be converted to an rvalue of type "pointer to |
| 2359 | // T" (C++ 4.2p1). |
| 2360 | FromType = S.Context.getArrayDecayedType(T: FromType); |
| 2361 | |
| 2362 | if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { |
| 2363 | // This conversion is deprecated in C++03 (D.4) |
| 2364 | SCS.DeprecatedStringLiteralToCharPtr = true; |
| 2365 | |
| 2366 | // For the purpose of ranking in overload resolution |
| 2367 | // (13.3.3.1.1), this conversion is considered an |
| 2368 | // array-to-pointer conversion followed by a qualification |
| 2369 | // conversion (4.4). (C++ 4.2p2) |
| 2370 | SCS.Second = ICK_Identity; |
| 2371 | SCS.Third = ICK_Qualification; |
| 2372 | SCS.QualificationIncludesObjCLifetime = false; |
| 2373 | SCS.setAllToTypes(FromType); |
| 2374 | return true; |
| 2375 | } |
| 2376 | } else if (FromType->isFunctionType() && argIsLValue) { |
| 2377 | // Function-to-pointer conversion (C++ 4.3). |
| 2378 | SCS.First = ICK_Function_To_Pointer; |
| 2379 | |
| 2380 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: From->IgnoreParenCasts())) |
| 2381 | if (auto *FD = dyn_cast<FunctionDecl>(Val: DRE->getDecl())) |
| 2382 | if (!S.checkAddressOfFunctionIsAvailable(Function: FD)) |
| 2383 | return false; |
| 2384 | |
| 2385 | // An lvalue of function type T can be converted to an rvalue of |
| 2386 | // type "pointer to T." The result is a pointer to the |
| 2387 | // function. (C++ 4.3p1). |
| 2388 | FromType = S.Context.getPointerType(T: FromType); |
| 2389 | } else { |
| 2390 | // We don't require any conversions for the first step. |
| 2391 | SCS.First = ICK_Identity; |
| 2392 | } |
| 2393 | SCS.setToType(Idx: 0, T: FromType); |
| 2394 | |
| 2395 | // The second conversion can be an integral promotion, floating |
| 2396 | // point promotion, integral conversion, floating point conversion, |
| 2397 | // floating-integral conversion, pointer conversion, |
| 2398 | // pointer-to-member conversion, or boolean conversion (C++ 4p1). |
| 2399 | // For overloading in C, this can also be a "compatible-type" |
| 2400 | // conversion. |
| 2401 | bool IncompatibleObjC = false; |
| 2402 | ImplicitConversionKind SecondICK = ICK_Identity; |
| 2403 | ImplicitConversionKind DimensionICK = ICK_Identity; |
| 2404 | if (S.Context.hasSameUnqualifiedType(T1: FromType, T2: ToType)) { |
| 2405 | // The unqualified versions of the types are the same: there's no |
| 2406 | // conversion to do. |
| 2407 | SCS.Second = ICK_Identity; |
| 2408 | } else if (S.IsIntegralPromotion(From, FromType, ToType)) { |
| 2409 | // Integral promotion (C++ 4.5). |
| 2410 | SCS.Second = ICK_Integral_Promotion; |
| 2411 | FromType = ToType.getUnqualifiedType(); |
| 2412 | } else if (S.IsFloatingPointPromotion(FromType, ToType)) { |
| 2413 | // Floating point promotion (C++ 4.6). |
| 2414 | SCS.Second = ICK_Floating_Promotion; |
| 2415 | FromType = ToType.getUnqualifiedType(); |
| 2416 | } else if (S.IsComplexPromotion(FromType, ToType)) { |
| 2417 | // Complex promotion (Clang extension) |
| 2418 | SCS.Second = ICK_Complex_Promotion; |
| 2419 | FromType = ToType.getUnqualifiedType(); |
| 2420 | } else if (ToType->isBooleanType() && |
| 2421 | (FromType->isArithmeticType() || |
| 2422 | FromType->isAnyPointerType() || |
| 2423 | FromType->isBlockPointerType() || |
| 2424 | FromType->isMemberPointerType())) { |
| 2425 | // Boolean conversions (C++ 4.12). |
| 2426 | SCS.Second = ICK_Boolean_Conversion; |
| 2427 | FromType = S.Context.BoolTy; |
| 2428 | } else if (FromType->isIntegralOrUnscopedEnumerationType() && |
| 2429 | ToType->isIntegralType(Ctx: S.Context)) { |
| 2430 | // Integral conversions (C++ 4.7). |
| 2431 | SCS.Second = ICK_Integral_Conversion; |
| 2432 | FromType = ToType.getUnqualifiedType(); |
| 2433 | } else if (FromType->isAnyComplexType() && ToType->isAnyComplexType()) { |
| 2434 | // Complex conversions (C99 6.3.1.6) |
| 2435 | SCS.Second = ICK_Complex_Conversion; |
| 2436 | FromType = ToType.getUnqualifiedType(); |
| 2437 | } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || |
| 2438 | (ToType->isAnyComplexType() && FromType->isArithmeticType())) { |
| 2439 | // Complex-real conversions (C99 6.3.1.7) |
| 2440 | SCS.Second = ICK_Complex_Real; |
| 2441 | FromType = ToType.getUnqualifiedType(); |
| 2442 | } else if (IsFloatingPointConversion(S, FromType, ToType)) { |
| 2443 | // Floating point conversions (C++ 4.8). |
| 2444 | SCS.Second = ICK_Floating_Conversion; |
| 2445 | FromType = ToType.getUnqualifiedType(); |
| 2446 | } else if ((FromType->isRealFloatingType() && |
| 2447 | ToType->isIntegralType(Ctx: S.Context)) || |
| 2448 | (FromType->isIntegralOrUnscopedEnumerationType() && |
| 2449 | ToType->isRealFloatingType())) { |
| 2450 | |
| 2451 | // Floating-integral conversions (C++ 4.9). |
| 2452 | SCS.Second = ICK_Floating_Integral; |
| 2453 | FromType = ToType.getUnqualifiedType(); |
| 2454 | } else if (S.IsBlockPointerConversion(FromType, ToType, ConvertedType&: FromType)) { |
| 2455 | SCS.Second = ICK_Block_Pointer_Conversion; |
| 2456 | } else if (AllowObjCWritebackConversion && |
| 2457 | S.ObjC().isObjCWritebackConversion(FromType, ToType, ConvertedType&: FromType)) { |
| 2458 | SCS.Second = ICK_Writeback_Conversion; |
| 2459 | } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, |
| 2460 | ConvertedType&: FromType, IncompatibleObjC)) { |
| 2461 | // Pointer conversions (C++ 4.10). |
| 2462 | SCS.Second = ICK_Pointer_Conversion; |
| 2463 | SCS.IncompatibleObjC = IncompatibleObjC; |
| 2464 | FromType = FromType.getUnqualifiedType(); |
| 2465 | } else if (S.IsMemberPointerConversion(From, FromType, ToType, |
| 2466 | InOverloadResolution, ConvertedType&: FromType)) { |
| 2467 | // Pointer to member conversions (4.11). |
| 2468 | SCS.Second = ICK_Pointer_Member; |
| 2469 | } else if (IsVectorConversion(S, FromType, ToType, ICK&: SecondICK, ElConv&: DimensionICK, |
| 2470 | From, InOverloadResolution, CStyle)) { |
| 2471 | SCS.Second = SecondICK; |
| 2472 | SCS.Dimension = DimensionICK; |
| 2473 | FromType = ToType.getUnqualifiedType(); |
| 2474 | } else if (!S.getLangOpts().CPlusPlus && |
| 2475 | S.Context.typesAreCompatible(T1: ToType, T2: FromType)) { |
| 2476 | // Compatible conversions (Clang extension for C function overloading) |
| 2477 | SCS.Second = ICK_Compatible_Conversion; |
| 2478 | FromType = ToType.getUnqualifiedType(); |
| 2479 | } else if (IsTransparentUnionStandardConversion( |
| 2480 | S, From, ToType, InOverloadResolution, SCS, CStyle)) { |
| 2481 | SCS.Second = ICK_TransparentUnionConversion; |
| 2482 | FromType = ToType; |
| 2483 | } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS, |
| 2484 | CStyle)) { |
| 2485 | // tryAtomicConversion has updated the standard conversion sequence |
| 2486 | // appropriately. |
| 2487 | return true; |
| 2488 | } else if (ToType->isEventT() && |
| 2489 | From->isIntegerConstantExpr(Ctx: S.getASTContext()) && |
| 2490 | From->EvaluateKnownConstInt(Ctx: S.getASTContext()) == 0) { |
| 2491 | SCS.Second = ICK_Zero_Event_Conversion; |
| 2492 | FromType = ToType; |
| 2493 | } else if (ToType->isQueueT() && |
| 2494 | From->isIntegerConstantExpr(Ctx: S.getASTContext()) && |
| 2495 | (From->EvaluateKnownConstInt(Ctx: S.getASTContext()) == 0)) { |
| 2496 | SCS.Second = ICK_Zero_Queue_Conversion; |
| 2497 | FromType = ToType; |
| 2498 | } else if (ToType->isSamplerT() && |
| 2499 | From->isIntegerConstantExpr(Ctx: S.getASTContext())) { |
| 2500 | SCS.Second = ICK_Compatible_Conversion; |
| 2501 | FromType = ToType; |
| 2502 | } else if ((ToType->isFixedPointType() && |
| 2503 | FromType->isConvertibleToFixedPointType()) || |
| 2504 | (FromType->isFixedPointType() && |
| 2505 | ToType->isConvertibleToFixedPointType())) { |
| 2506 | SCS.Second = ICK_Fixed_Point_Conversion; |
| 2507 | FromType = ToType; |
| 2508 | } else { |
| 2509 | // No second conversion required. |
| 2510 | SCS.Second = ICK_Identity; |
| 2511 | } |
| 2512 | SCS.setToType(Idx: 1, T: FromType); |
| 2513 | |
| 2514 | // The third conversion can be a function pointer conversion or a |
| 2515 | // qualification conversion (C++ [conv.fctptr], [conv.qual]). |
| 2516 | bool ObjCLifetimeConversion; |
| 2517 | if (S.TryFunctionConversion(FromType, ToType, ResultTy&: FromType)) { |
| 2518 | // Function pointer conversions (removing 'noexcept') including removal of |
| 2519 | // 'noreturn' (Clang extension). |
| 2520 | SCS.Third = ICK_Function_Conversion; |
| 2521 | } else if (S.IsQualificationConversion(FromType, ToType, CStyle, |
| 2522 | ObjCLifetimeConversion)) { |
| 2523 | SCS.Third = ICK_Qualification; |
| 2524 | SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; |
| 2525 | FromType = ToType; |
| 2526 | } else { |
| 2527 | // No conversion required |
| 2528 | SCS.Third = ICK_Identity; |
| 2529 | } |
| 2530 | |
| 2531 | // C++ [over.best.ics]p6: |
| 2532 | // [...] Any difference in top-level cv-qualification is |
| 2533 | // subsumed by the initialization itself and does not constitute |
| 2534 | // a conversion. [...] |
| 2535 | QualType CanonFrom = S.Context.getCanonicalType(T: FromType); |
| 2536 | QualType CanonTo = S.Context.getCanonicalType(T: ToType); |
| 2537 | if (CanonFrom.getLocalUnqualifiedType() |
| 2538 | == CanonTo.getLocalUnqualifiedType() && |
| 2539 | CanonFrom.getLocalQualifiers() != CanonTo.getLocalQualifiers()) { |
| 2540 | FromType = ToType; |
| 2541 | CanonFrom = CanonTo; |
| 2542 | } |
| 2543 | |
| 2544 | SCS.setToType(Idx: 2, T: FromType); |
| 2545 | |
| 2546 | // If we have not converted the argument type to the parameter type, |
| 2547 | // this is a bad conversion sequence, unless we're resolving an overload in C. |
| 2548 | // |
| 2549 | // Permit conversions from a function without `cfi_unchecked_callee` to a |
| 2550 | // function with `cfi_unchecked_callee`. |
| 2551 | if (CanonFrom == CanonTo || S.AddingCFIUncheckedCallee(From: CanonFrom, To: CanonTo)) |
| 2552 | return true; |
| 2553 | |
| 2554 | if ((S.getLangOpts().CPlusPlus || !InOverloadResolution)) |
| 2555 | return false; |
| 2556 | |
| 2557 | ExprResult ER = ExprResult{From}; |
| 2558 | AssignConvertType Conv = |
| 2559 | S.CheckSingleAssignmentConstraints(LHSType: ToType, RHS&: ER, |
| 2560 | /*Diagnose=*/false, |
| 2561 | /*DiagnoseCFAudited=*/false, |
| 2562 | /*ConvertRHS=*/false); |
| 2563 | ImplicitConversionKind SecondConv; |
| 2564 | switch (Conv) { |
| 2565 | case AssignConvertType::Compatible: |
| 2566 | case AssignConvertType:: |
| 2567 | CompatibleVoidPtrToNonVoidPtr: // __attribute__((overloadable)) |
| 2568 | SecondConv = ICK_C_Only_Conversion; |
| 2569 | break; |
| 2570 | // For our purposes, discarding qualifiers is just as bad as using an |
| 2571 | // incompatible pointer. Note that an IncompatiblePointer conversion can drop |
| 2572 | // qualifiers, as well. |
| 2573 | case AssignConvertType::CompatiblePointerDiscardsQualifiers: |
| 2574 | case AssignConvertType::IncompatiblePointer: |
| 2575 | case AssignConvertType::IncompatiblePointerSign: |
| 2576 | SecondConv = ICK_Incompatible_Pointer_Conversion; |
| 2577 | break; |
| 2578 | default: |
| 2579 | return false; |
| 2580 | } |
| 2581 | |
| 2582 | // First can only be an lvalue conversion, so we pretend that this was the |
| 2583 | // second conversion. First should already be valid from earlier in the |
| 2584 | // function. |
| 2585 | SCS.Second = SecondConv; |
| 2586 | SCS.setToType(Idx: 1, T: ToType); |
| 2587 | |
| 2588 | // Third is Identity, because Second should rank us worse than any other |
| 2589 | // conversion. This could also be ICK_Qualification, but it's simpler to just |
| 2590 | // lump everything in with the second conversion, and we don't gain anything |
| 2591 | // from making this ICK_Qualification. |
| 2592 | SCS.Third = ICK_Identity; |
| 2593 | SCS.setToType(Idx: 2, T: ToType); |
| 2594 | return true; |
| 2595 | } |
| 2596 | |
| 2597 | static bool |
| 2598 | IsTransparentUnionStandardConversion(Sema &S, Expr* From, |
| 2599 | QualType &ToType, |
| 2600 | bool InOverloadResolution, |
| 2601 | StandardConversionSequence &SCS, |
| 2602 | bool CStyle) { |
| 2603 | |
| 2604 | const RecordType *UT = ToType->getAsUnionType(); |
| 2605 | if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) |
| 2606 | return false; |
| 2607 | // The field to initialize within the transparent union. |
| 2608 | RecordDecl *UD = UT->getDecl(); |
| 2609 | // It's compatible if the expression matches any of the fields. |
| 2610 | for (const auto *it : UD->fields()) { |
| 2611 | if (IsStandardConversion(S, From, ToType: it->getType(), InOverloadResolution, SCS, |
| 2612 | CStyle, /*AllowObjCWritebackConversion=*/false)) { |
| 2613 | ToType = it->getType(); |
| 2614 | return true; |
| 2615 | } |
| 2616 | } |
| 2617 | return false; |
| 2618 | } |
| 2619 | |
| 2620 | bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { |
| 2621 | const BuiltinType *To = ToType->getAs<BuiltinType>(); |
| 2622 | // All integers are built-in. |
| 2623 | if (!To) { |
| 2624 | return false; |
| 2625 | } |
| 2626 | |
| 2627 | // An rvalue of type char, signed char, unsigned char, short int, or |
| 2628 | // unsigned short int can be converted to an rvalue of type int if |
| 2629 | // int can represent all the values of the source type; otherwise, |
| 2630 | // the source rvalue can be converted to an rvalue of type unsigned |
| 2631 | // int (C++ 4.5p1). |
| 2632 | if (Context.isPromotableIntegerType(T: FromType) && !FromType->isBooleanType() && |
| 2633 | !FromType->isEnumeralType()) { |
| 2634 | if ( // We can promote any signed, promotable integer type to an int |
| 2635 | (FromType->isSignedIntegerType() || |
| 2636 | // We can promote any unsigned integer type whose size is |
| 2637 | // less than int to an int. |
| 2638 | Context.getTypeSize(T: FromType) < Context.getTypeSize(T: ToType))) { |
| 2639 | return To->getKind() == BuiltinType::Int; |
| 2640 | } |
| 2641 | |
| 2642 | return To->getKind() == BuiltinType::UInt; |
| 2643 | } |
| 2644 | |
| 2645 | // C++11 [conv.prom]p3: |
| 2646 | // A prvalue of an unscoped enumeration type whose underlying type is not |
| 2647 | // fixed (7.2) can be converted to an rvalue a prvalue of the first of the |
| 2648 | // following types that can represent all the values of the enumeration |
| 2649 | // (i.e., the values in the range bmin to bmax as described in 7.2): int, |
| 2650 | // unsigned int, long int, unsigned long int, long long int, or unsigned |
| 2651 | // long long int. If none of the types in that list can represent all the |
| 2652 | // values of the enumeration, an rvalue a prvalue of an unscoped enumeration |
| 2653 | // type can be converted to an rvalue a prvalue of the extended integer type |
| 2654 | // with lowest integer conversion rank (4.13) greater than the rank of long |
| 2655 | // long in which all the values of the enumeration can be represented. If |
| 2656 | // there are two such extended types, the signed one is chosen. |
| 2657 | // C++11 [conv.prom]p4: |
| 2658 | // A prvalue of an unscoped enumeration type whose underlying type is fixed |
| 2659 | // can be converted to a prvalue of its underlying type. Moreover, if |
| 2660 | // integral promotion can be applied to its underlying type, a prvalue of an |
| 2661 | // unscoped enumeration type whose underlying type is fixed can also be |
| 2662 | // converted to a prvalue of the promoted underlying type. |
| 2663 | if (const EnumType * = FromType->getAs<EnumType>()) { |
| 2664 | // C++0x 7.2p9: Note that this implicit enum to int conversion is not |
| 2665 | // provided for a scoped enumeration. |
| 2666 | if (FromEnumType->getDecl()->isScoped()) |
| 2667 | return false; |
| 2668 | |
| 2669 | // We can perform an integral promotion to the underlying type of the enum, |
| 2670 | // even if that's not the promoted type. Note that the check for promoting |
| 2671 | // the underlying type is based on the type alone, and does not consider |
| 2672 | // the bitfield-ness of the actual source expression. |
| 2673 | if (FromEnumType->getDecl()->isFixed()) { |
| 2674 | QualType Underlying = FromEnumType->getDecl()->getIntegerType(); |
| 2675 | return Context.hasSameUnqualifiedType(T1: Underlying, T2: ToType) || |
| 2676 | IsIntegralPromotion(From: nullptr, FromType: Underlying, ToType); |
| 2677 | } |
| 2678 | |
| 2679 | // We have already pre-calculated the promotion type, so this is trivial. |
| 2680 | if (ToType->isIntegerType() && |
| 2681 | isCompleteType(Loc: From->getBeginLoc(), T: FromType)) |
| 2682 | return Context.hasSameUnqualifiedType( |
| 2683 | T1: ToType, T2: FromEnumType->getDecl()->getPromotionType()); |
| 2684 | |
| 2685 | // C++ [conv.prom]p5: |
| 2686 | // If the bit-field has an enumerated type, it is treated as any other |
| 2687 | // value of that type for promotion purposes. |
| 2688 | // |
| 2689 | // ... so do not fall through into the bit-field checks below in C++. |
| 2690 | if (getLangOpts().CPlusPlus) |
| 2691 | return false; |
| 2692 | } |
| 2693 | |
| 2694 | // C++0x [conv.prom]p2: |
| 2695 | // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted |
| 2696 | // to an rvalue a prvalue of the first of the following types that can |
| 2697 | // represent all the values of its underlying type: int, unsigned int, |
| 2698 | // long int, unsigned long int, long long int, or unsigned long long int. |
| 2699 | // If none of the types in that list can represent all the values of its |
| 2700 | // underlying type, an rvalue a prvalue of type char16_t, char32_t, |
| 2701 | // or wchar_t can be converted to an rvalue a prvalue of its underlying |
| 2702 | // type. |
| 2703 | if (FromType->isAnyCharacterType() && !FromType->isCharType() && |
| 2704 | ToType->isIntegerType()) { |
| 2705 | // Determine whether the type we're converting from is signed or |
| 2706 | // unsigned. |
| 2707 | bool FromIsSigned = FromType->isSignedIntegerType(); |
| 2708 | uint64_t FromSize = Context.getTypeSize(T: FromType); |
| 2709 | |
| 2710 | // The types we'll try to promote to, in the appropriate |
| 2711 | // order. Try each of these types. |
| 2712 | QualType PromoteTypes[6] = { |
| 2713 | Context.IntTy, Context.UnsignedIntTy, |
| 2714 | Context.LongTy, Context.UnsignedLongTy , |
| 2715 | Context.LongLongTy, Context.UnsignedLongLongTy |
| 2716 | }; |
| 2717 | for (int Idx = 0; Idx < 6; ++Idx) { |
| 2718 | uint64_t ToSize = Context.getTypeSize(T: PromoteTypes[Idx]); |
| 2719 | if (FromSize < ToSize || |
| 2720 | (FromSize == ToSize && |
| 2721 | FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { |
| 2722 | // We found the type that we can promote to. If this is the |
| 2723 | // type we wanted, we have a promotion. Otherwise, no |
| 2724 | // promotion. |
| 2725 | return Context.hasSameUnqualifiedType(T1: ToType, T2: PromoteTypes[Idx]); |
| 2726 | } |
| 2727 | } |
| 2728 | } |
| 2729 | |
| 2730 | // An rvalue for an integral bit-field (9.6) can be converted to an |
| 2731 | // rvalue of type int if int can represent all the values of the |
| 2732 | // bit-field; otherwise, it can be converted to unsigned int if |
| 2733 | // unsigned int can represent all the values of the bit-field. If |
| 2734 | // the bit-field is larger yet, no integral promotion applies to |
| 2735 | // it. If the bit-field has an enumerated type, it is treated as any |
| 2736 | // other value of that type for promotion purposes (C++ 4.5p3). |
| 2737 | // FIXME: We should delay checking of bit-fields until we actually perform the |
| 2738 | // conversion. |
| 2739 | // |
| 2740 | // FIXME: In C, only bit-fields of types _Bool, int, or unsigned int may be |
| 2741 | // promoted, per C11 6.3.1.1/2. We promote all bit-fields (including enum |
| 2742 | // bit-fields and those whose underlying type is larger than int) for GCC |
| 2743 | // compatibility. |
| 2744 | if (From) { |
| 2745 | if (FieldDecl *MemberDecl = From->getSourceBitField()) { |
| 2746 | std::optional<llvm::APSInt> BitWidth; |
| 2747 | if (FromType->isIntegralType(Ctx: Context) && |
| 2748 | (BitWidth = |
| 2749 | MemberDecl->getBitWidth()->getIntegerConstantExpr(Ctx: Context))) { |
| 2750 | llvm::APSInt ToSize(BitWidth->getBitWidth(), BitWidth->isUnsigned()); |
| 2751 | ToSize = Context.getTypeSize(T: ToType); |
| 2752 | |
| 2753 | // Are we promoting to an int from a bitfield that fits in an int? |
| 2754 | if (*BitWidth < ToSize || |
| 2755 | (FromType->isSignedIntegerType() && *BitWidth <= ToSize)) { |
| 2756 | return To->getKind() == BuiltinType::Int; |
| 2757 | } |
| 2758 | |
| 2759 | // Are we promoting to an unsigned int from an unsigned bitfield |
| 2760 | // that fits into an unsigned int? |
| 2761 | if (FromType->isUnsignedIntegerType() && *BitWidth <= ToSize) { |
| 2762 | return To->getKind() == BuiltinType::UInt; |
| 2763 | } |
| 2764 | |
| 2765 | return false; |
| 2766 | } |
| 2767 | } |
| 2768 | } |
| 2769 | |
| 2770 | // An rvalue of type bool can be converted to an rvalue of type int, |
| 2771 | // with false becoming zero and true becoming one (C++ 4.5p4). |
| 2772 | if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { |
| 2773 | return true; |
| 2774 | } |
| 2775 | |
| 2776 | // In HLSL an rvalue of integral type can be promoted to an rvalue of a larger |
| 2777 | // integral type. |
| 2778 | if (Context.getLangOpts().HLSL && FromType->isIntegerType() && |
| 2779 | ToType->isIntegerType()) |
| 2780 | return Context.getTypeSize(T: FromType) < Context.getTypeSize(T: ToType); |
| 2781 | |
| 2782 | return false; |
| 2783 | } |
| 2784 | |
| 2785 | bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { |
| 2786 | if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) |
| 2787 | if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { |
| 2788 | /// An rvalue of type float can be converted to an rvalue of type |
| 2789 | /// double. (C++ 4.6p1). |
| 2790 | if (FromBuiltin->getKind() == BuiltinType::Float && |
| 2791 | ToBuiltin->getKind() == BuiltinType::Double) |
| 2792 | return true; |
| 2793 | |
| 2794 | // C99 6.3.1.5p1: |
| 2795 | // When a float is promoted to double or long double, or a |
| 2796 | // double is promoted to long double [...]. |
| 2797 | if (!getLangOpts().CPlusPlus && |
| 2798 | (FromBuiltin->getKind() == BuiltinType::Float || |
| 2799 | FromBuiltin->getKind() == BuiltinType::Double) && |
| 2800 | (ToBuiltin->getKind() == BuiltinType::LongDouble || |
| 2801 | ToBuiltin->getKind() == BuiltinType::Float128 || |
| 2802 | ToBuiltin->getKind() == BuiltinType::Ibm128)) |
| 2803 | return true; |
| 2804 | |
| 2805 | // In HLSL, `half` promotes to `float` or `double`, regardless of whether |
| 2806 | // or not native half types are enabled. |
| 2807 | if (getLangOpts().HLSL && FromBuiltin->getKind() == BuiltinType::Half && |
| 2808 | (ToBuiltin->getKind() == BuiltinType::Float || |
| 2809 | ToBuiltin->getKind() == BuiltinType::Double)) |
| 2810 | return true; |
| 2811 | |
| 2812 | // Half can be promoted to float. |
| 2813 | if (!getLangOpts().NativeHalfType && |
| 2814 | FromBuiltin->getKind() == BuiltinType::Half && |
| 2815 | ToBuiltin->getKind() == BuiltinType::Float) |
| 2816 | return true; |
| 2817 | } |
| 2818 | |
| 2819 | return false; |
| 2820 | } |
| 2821 | |
| 2822 | bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { |
| 2823 | const ComplexType *FromComplex = FromType->getAs<ComplexType>(); |
| 2824 | if (!FromComplex) |
| 2825 | return false; |
| 2826 | |
| 2827 | const ComplexType *ToComplex = ToType->getAs<ComplexType>(); |
| 2828 | if (!ToComplex) |
| 2829 | return false; |
| 2830 | |
| 2831 | return IsFloatingPointPromotion(FromType: FromComplex->getElementType(), |
| 2832 | ToType: ToComplex->getElementType()) || |
| 2833 | IsIntegralPromotion(From: nullptr, FromType: FromComplex->getElementType(), |
| 2834 | ToType: ToComplex->getElementType()); |
| 2835 | } |
| 2836 | |
| 2837 | /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from |
| 2838 | /// the pointer type FromPtr to a pointer to type ToPointee, with the |
| 2839 | /// same type qualifiers as FromPtr has on its pointee type. ToType, |
| 2840 | /// if non-empty, will be a pointer to ToType that may or may not have |
| 2841 | /// the right set of qualifiers on its pointee. |
| 2842 | /// |
| 2843 | static QualType |
| 2844 | BuildSimilarlyQualifiedPointerType(const Type *FromPtr, |
| 2845 | QualType ToPointee, QualType ToType, |
| 2846 | ASTContext &Context, |
| 2847 | bool StripObjCLifetime = false) { |
| 2848 | assert((FromPtr->getTypeClass() == Type::Pointer || |
| 2849 | FromPtr->getTypeClass() == Type::ObjCObjectPointer) && |
| 2850 | "Invalid similarly-qualified pointer type" ); |
| 2851 | |
| 2852 | /// Conversions to 'id' subsume cv-qualifier conversions. |
| 2853 | if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) |
| 2854 | return ToType.getUnqualifiedType(); |
| 2855 | |
| 2856 | QualType CanonFromPointee |
| 2857 | = Context.getCanonicalType(T: FromPtr->getPointeeType()); |
| 2858 | QualType CanonToPointee = Context.getCanonicalType(T: ToPointee); |
| 2859 | Qualifiers Quals = CanonFromPointee.getQualifiers(); |
| 2860 | |
| 2861 | if (StripObjCLifetime) |
| 2862 | Quals.removeObjCLifetime(); |
| 2863 | |
| 2864 | // Exact qualifier match -> return the pointer type we're converting to. |
| 2865 | if (CanonToPointee.getLocalQualifiers() == Quals) { |
| 2866 | // ToType is exactly what we need. Return it. |
| 2867 | if (!ToType.isNull()) |
| 2868 | return ToType.getUnqualifiedType(); |
| 2869 | |
| 2870 | // Build a pointer to ToPointee. It has the right qualifiers |
| 2871 | // already. |
| 2872 | if (isa<ObjCObjectPointerType>(Val: ToType)) |
| 2873 | return Context.getObjCObjectPointerType(OIT: ToPointee); |
| 2874 | return Context.getPointerType(T: ToPointee); |
| 2875 | } |
| 2876 | |
| 2877 | // Just build a canonical type that has the right qualifiers. |
| 2878 | QualType QualifiedCanonToPointee |
| 2879 | = Context.getQualifiedType(T: CanonToPointee.getLocalUnqualifiedType(), Qs: Quals); |
| 2880 | |
| 2881 | if (isa<ObjCObjectPointerType>(Val: ToType)) |
| 2882 | return Context.getObjCObjectPointerType(OIT: QualifiedCanonToPointee); |
| 2883 | return Context.getPointerType(T: QualifiedCanonToPointee); |
| 2884 | } |
| 2885 | |
| 2886 | static bool isNullPointerConstantForConversion(Expr *Expr, |
| 2887 | bool InOverloadResolution, |
| 2888 | ASTContext &Context) { |
| 2889 | // Handle value-dependent integral null pointer constants correctly. |
| 2890 | // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 |
| 2891 | if (Expr->isValueDependent() && !Expr->isTypeDependent() && |
| 2892 | Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) |
| 2893 | return !InOverloadResolution; |
| 2894 | |
| 2895 | return Expr->isNullPointerConstant(Ctx&: Context, |
| 2896 | NPC: InOverloadResolution? Expr::NPC_ValueDependentIsNotNull |
| 2897 | : Expr::NPC_ValueDependentIsNull); |
| 2898 | } |
| 2899 | |
| 2900 | bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, |
| 2901 | bool InOverloadResolution, |
| 2902 | QualType& ConvertedType, |
| 2903 | bool &IncompatibleObjC) { |
| 2904 | IncompatibleObjC = false; |
| 2905 | if (isObjCPointerConversion(FromType, ToType, ConvertedType, |
| 2906 | IncompatibleObjC)) |
| 2907 | return true; |
| 2908 | |
| 2909 | // Conversion from a null pointer constant to any Objective-C pointer type. |
| 2910 | if (ToType->isObjCObjectPointerType() && |
| 2911 | isNullPointerConstantForConversion(Expr: From, InOverloadResolution, Context)) { |
| 2912 | ConvertedType = ToType; |
| 2913 | return true; |
| 2914 | } |
| 2915 | |
| 2916 | // Blocks: Block pointers can be converted to void*. |
| 2917 | if (FromType->isBlockPointerType() && ToType->isPointerType() && |
| 2918 | ToType->castAs<PointerType>()->getPointeeType()->isVoidType()) { |
| 2919 | ConvertedType = ToType; |
| 2920 | return true; |
| 2921 | } |
| 2922 | // Blocks: A null pointer constant can be converted to a block |
| 2923 | // pointer type. |
| 2924 | if (ToType->isBlockPointerType() && |
| 2925 | isNullPointerConstantForConversion(Expr: From, InOverloadResolution, Context)) { |
| 2926 | ConvertedType = ToType; |
| 2927 | return true; |
| 2928 | } |
| 2929 | |
| 2930 | // If the left-hand-side is nullptr_t, the right side can be a null |
| 2931 | // pointer constant. |
| 2932 | if (ToType->isNullPtrType() && |
| 2933 | isNullPointerConstantForConversion(Expr: From, InOverloadResolution, Context)) { |
| 2934 | ConvertedType = ToType; |
| 2935 | return true; |
| 2936 | } |
| 2937 | |
| 2938 | const PointerType* ToTypePtr = ToType->getAs<PointerType>(); |
| 2939 | if (!ToTypePtr) |
| 2940 | return false; |
| 2941 | |
| 2942 | // A null pointer constant can be converted to a pointer type (C++ 4.10p1). |
| 2943 | if (isNullPointerConstantForConversion(Expr: From, InOverloadResolution, Context)) { |
| 2944 | ConvertedType = ToType; |
| 2945 | return true; |
| 2946 | } |
| 2947 | |
| 2948 | // Beyond this point, both types need to be pointers |
| 2949 | // , including objective-c pointers. |
| 2950 | QualType ToPointeeType = ToTypePtr->getPointeeType(); |
| 2951 | if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && |
| 2952 | !getLangOpts().ObjCAutoRefCount) { |
| 2953 | ConvertedType = BuildSimilarlyQualifiedPointerType( |
| 2954 | FromPtr: FromType->castAs<ObjCObjectPointerType>(), ToPointee: ToPointeeType, ToType, |
| 2955 | Context); |
| 2956 | return true; |
| 2957 | } |
| 2958 | const PointerType *FromTypePtr = FromType->getAs<PointerType>(); |
| 2959 | if (!FromTypePtr) |
| 2960 | return false; |
| 2961 | |
| 2962 | QualType FromPointeeType = FromTypePtr->getPointeeType(); |
| 2963 | |
| 2964 | // If the unqualified pointee types are the same, this can't be a |
| 2965 | // pointer conversion, so don't do all of the work below. |
| 2966 | if (Context.hasSameUnqualifiedType(T1: FromPointeeType, T2: ToPointeeType)) |
| 2967 | return false; |
| 2968 | |
| 2969 | // An rvalue of type "pointer to cv T," where T is an object type, |
| 2970 | // can be converted to an rvalue of type "pointer to cv void" (C++ |
| 2971 | // 4.10p2). |
| 2972 | if (FromPointeeType->isIncompleteOrObjectType() && |
| 2973 | ToPointeeType->isVoidType()) { |
| 2974 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromPtr: FromTypePtr, |
| 2975 | ToPointee: ToPointeeType, |
| 2976 | ToType, Context, |
| 2977 | /*StripObjCLifetime=*/true); |
| 2978 | return true; |
| 2979 | } |
| 2980 | |
| 2981 | // MSVC allows implicit function to void* type conversion. |
| 2982 | if (getLangOpts().MSVCCompat && FromPointeeType->isFunctionType() && |
| 2983 | ToPointeeType->isVoidType()) { |
| 2984 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromPtr: FromTypePtr, |
| 2985 | ToPointee: ToPointeeType, |
| 2986 | ToType, Context); |
| 2987 | return true; |
| 2988 | } |
| 2989 | |
| 2990 | // When we're overloading in C, we allow a special kind of pointer |
| 2991 | // conversion for compatible-but-not-identical pointee types. |
| 2992 | if (!getLangOpts().CPlusPlus && |
| 2993 | Context.typesAreCompatible(T1: FromPointeeType, T2: ToPointeeType)) { |
| 2994 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromPtr: FromTypePtr, |
| 2995 | ToPointee: ToPointeeType, |
| 2996 | ToType, Context); |
| 2997 | return true; |
| 2998 | } |
| 2999 | |
| 3000 | // C++ [conv.ptr]p3: |
| 3001 | // |
| 3002 | // An rvalue of type "pointer to cv D," where D is a class type, |
| 3003 | // can be converted to an rvalue of type "pointer to cv B," where |
| 3004 | // B is a base class (clause 10) of D. If B is an inaccessible |
| 3005 | // (clause 11) or ambiguous (10.2) base class of D, a program that |
| 3006 | // necessitates this conversion is ill-formed. The result of the |
| 3007 | // conversion is a pointer to the base class sub-object of the |
| 3008 | // derived class object. The null pointer value is converted to |
| 3009 | // the null pointer value of the destination type. |
| 3010 | // |
| 3011 | // Note that we do not check for ambiguity or inaccessibility |
| 3012 | // here. That is handled by CheckPointerConversion. |
| 3013 | if (getLangOpts().CPlusPlus && FromPointeeType->isRecordType() && |
| 3014 | ToPointeeType->isRecordType() && |
| 3015 | !Context.hasSameUnqualifiedType(T1: FromPointeeType, T2: ToPointeeType) && |
| 3016 | IsDerivedFrom(Loc: From->getBeginLoc(), Derived: FromPointeeType, Base: ToPointeeType)) { |
| 3017 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromPtr: FromTypePtr, |
| 3018 | ToPointee: ToPointeeType, |
| 3019 | ToType, Context); |
| 3020 | return true; |
| 3021 | } |
| 3022 | |
| 3023 | if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && |
| 3024 | Context.areCompatibleVectorTypes(FirstVec: FromPointeeType, SecondVec: ToPointeeType)) { |
| 3025 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromPtr: FromTypePtr, |
| 3026 | ToPointee: ToPointeeType, |
| 3027 | ToType, Context); |
| 3028 | return true; |
| 3029 | } |
| 3030 | |
| 3031 | return false; |
| 3032 | } |
| 3033 | |
| 3034 | /// Adopt the given qualifiers for the given type. |
| 3035 | static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ |
| 3036 | Qualifiers TQs = T.getQualifiers(); |
| 3037 | |
| 3038 | // Check whether qualifiers already match. |
| 3039 | if (TQs == Qs) |
| 3040 | return T; |
| 3041 | |
| 3042 | if (Qs.compatiblyIncludes(other: TQs, Ctx: Context)) |
| 3043 | return Context.getQualifiedType(T, Qs); |
| 3044 | |
| 3045 | return Context.getQualifiedType(T: T.getUnqualifiedType(), Qs); |
| 3046 | } |
| 3047 | |
| 3048 | bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, |
| 3049 | QualType& ConvertedType, |
| 3050 | bool &IncompatibleObjC) { |
| 3051 | if (!getLangOpts().ObjC) |
| 3052 | return false; |
| 3053 | |
| 3054 | // The set of qualifiers on the type we're converting from. |
| 3055 | Qualifiers FromQualifiers = FromType.getQualifiers(); |
| 3056 | |
| 3057 | // First, we handle all conversions on ObjC object pointer types. |
| 3058 | const ObjCObjectPointerType* ToObjCPtr = |
| 3059 | ToType->getAs<ObjCObjectPointerType>(); |
| 3060 | const ObjCObjectPointerType *FromObjCPtr = |
| 3061 | FromType->getAs<ObjCObjectPointerType>(); |
| 3062 | |
| 3063 | if (ToObjCPtr && FromObjCPtr) { |
| 3064 | // If the pointee types are the same (ignoring qualifications), |
| 3065 | // then this is not a pointer conversion. |
| 3066 | if (Context.hasSameUnqualifiedType(T1: ToObjCPtr->getPointeeType(), |
| 3067 | T2: FromObjCPtr->getPointeeType())) |
| 3068 | return false; |
| 3069 | |
| 3070 | // Conversion between Objective-C pointers. |
| 3071 | if (Context.canAssignObjCInterfaces(LHSOPT: ToObjCPtr, RHSOPT: FromObjCPtr)) { |
| 3072 | const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); |
| 3073 | const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); |
| 3074 | if (getLangOpts().CPlusPlus && LHS && RHS && |
| 3075 | !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( |
| 3076 | other: FromObjCPtr->getPointeeType(), Ctx: getASTContext())) |
| 3077 | return false; |
| 3078 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromPtr: FromObjCPtr, |
| 3079 | ToPointee: ToObjCPtr->getPointeeType(), |
| 3080 | ToType, Context); |
| 3081 | ConvertedType = AdoptQualifiers(Context, T: ConvertedType, Qs: FromQualifiers); |
| 3082 | return true; |
| 3083 | } |
| 3084 | |
| 3085 | if (Context.canAssignObjCInterfaces(LHSOPT: FromObjCPtr, RHSOPT: ToObjCPtr)) { |
| 3086 | // Okay: this is some kind of implicit downcast of Objective-C |
| 3087 | // interfaces, which is permitted. However, we're going to |
| 3088 | // complain about it. |
| 3089 | IncompatibleObjC = true; |
| 3090 | ConvertedType = BuildSimilarlyQualifiedPointerType(FromPtr: FromObjCPtr, |
| 3091 | ToPointee: ToObjCPtr->getPointeeType(), |
| 3092 | ToType, Context); |
| 3093 | ConvertedType = AdoptQualifiers(Context, T: ConvertedType, Qs: FromQualifiers); |
| 3094 | return true; |
| 3095 | } |
| 3096 | } |
| 3097 | // Beyond this point, both types need to be C pointers or block pointers. |
| 3098 | QualType ToPointeeType; |
| 3099 | if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) |
| 3100 | ToPointeeType = ToCPtr->getPointeeType(); |
| 3101 | else if (const BlockPointerType *ToBlockPtr = |
| 3102 | ToType->getAs<BlockPointerType>()) { |
| 3103 | // Objective C++: We're able to convert from a pointer to any object |
| 3104 | // to a block pointer type. |
| 3105 | if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { |
| 3106 | ConvertedType = AdoptQualifiers(Context, T: ToType, Qs: FromQualifiers); |
| 3107 | return true; |
| 3108 | } |
| 3109 | ToPointeeType = ToBlockPtr->getPointeeType(); |
| 3110 | } |
| 3111 | else if (FromType->getAs<BlockPointerType>() && |
| 3112 | ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { |
| 3113 | // Objective C++: We're able to convert from a block pointer type to a |
| 3114 | // pointer to any object. |
| 3115 | ConvertedType = AdoptQualifiers(Context, T: ToType, Qs: FromQualifiers); |
| 3116 | return true; |
| 3117 | } |
| 3118 | else |
| 3119 | return false; |
| 3120 | |
| 3121 | QualType FromPointeeType; |
| 3122 | if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) |
| 3123 | FromPointeeType = FromCPtr->getPointeeType(); |
| 3124 | else if (const BlockPointerType *FromBlockPtr = |
| 3125 | FromType->getAs<BlockPointerType>()) |
| 3126 | FromPointeeType = FromBlockPtr->getPointeeType(); |
| 3127 | else |
| 3128 | return false; |
| 3129 | |
| 3130 | // If we have pointers to pointers, recursively check whether this |
| 3131 | // is an Objective-C conversion. |
| 3132 | if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && |
| 3133 | isObjCPointerConversion(FromType: FromPointeeType, ToType: ToPointeeType, ConvertedType, |
| 3134 | IncompatibleObjC)) { |
| 3135 | // We always complain about this conversion. |
| 3136 | IncompatibleObjC = true; |
| 3137 | ConvertedType = Context.getPointerType(T: ConvertedType); |
| 3138 | ConvertedType = AdoptQualifiers(Context, T: ConvertedType, Qs: FromQualifiers); |
| 3139 | return true; |
| 3140 | } |
| 3141 | // Allow conversion of pointee being objective-c pointer to another one; |
| 3142 | // as in I* to id. |
| 3143 | if (FromPointeeType->getAs<ObjCObjectPointerType>() && |
| 3144 | ToPointeeType->getAs<ObjCObjectPointerType>() && |
| 3145 | isObjCPointerConversion(FromType: FromPointeeType, ToType: ToPointeeType, ConvertedType, |
| 3146 | IncompatibleObjC)) { |
| 3147 | |
| 3148 | ConvertedType = Context.getPointerType(T: ConvertedType); |
| 3149 | ConvertedType = AdoptQualifiers(Context, T: ConvertedType, Qs: FromQualifiers); |
| 3150 | return true; |
| 3151 | } |
| 3152 | |
| 3153 | // If we have pointers to functions or blocks, check whether the only |
| 3154 | // differences in the argument and result types are in Objective-C |
| 3155 | // pointer conversions. If so, we permit the conversion (but |
| 3156 | // complain about it). |
| 3157 | const FunctionProtoType *FromFunctionType |
| 3158 | = FromPointeeType->getAs<FunctionProtoType>(); |
| 3159 | const FunctionProtoType *ToFunctionType |
| 3160 | = ToPointeeType->getAs<FunctionProtoType>(); |
| 3161 | if (FromFunctionType && ToFunctionType) { |
| 3162 | // If the function types are exactly the same, this isn't an |
| 3163 | // Objective-C pointer conversion. |
| 3164 | if (Context.getCanonicalType(T: FromPointeeType) |
| 3165 | == Context.getCanonicalType(T: ToPointeeType)) |
| 3166 | return false; |
| 3167 | |
| 3168 | // Perform the quick checks that will tell us whether these |
| 3169 | // function types are obviously different. |
| 3170 | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || |
| 3171 | FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || |
| 3172 | FromFunctionType->getMethodQuals() != ToFunctionType->getMethodQuals()) |
| 3173 | return false; |
| 3174 | |
| 3175 | bool HasObjCConversion = false; |
| 3176 | if (Context.getCanonicalType(T: FromFunctionType->getReturnType()) == |
| 3177 | Context.getCanonicalType(T: ToFunctionType->getReturnType())) { |
| 3178 | // Okay, the types match exactly. Nothing to do. |
| 3179 | } else if (isObjCPointerConversion(FromType: FromFunctionType->getReturnType(), |
| 3180 | ToType: ToFunctionType->getReturnType(), |
| 3181 | ConvertedType, IncompatibleObjC)) { |
| 3182 | // Okay, we have an Objective-C pointer conversion. |
| 3183 | HasObjCConversion = true; |
| 3184 | } else { |
| 3185 | // Function types are too different. Abort. |
| 3186 | return false; |
| 3187 | } |
| 3188 | |
| 3189 | // Check argument types. |
| 3190 | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); |
| 3191 | ArgIdx != NumArgs; ++ArgIdx) { |
| 3192 | QualType FromArgType = FromFunctionType->getParamType(i: ArgIdx); |
| 3193 | QualType ToArgType = ToFunctionType->getParamType(i: ArgIdx); |
| 3194 | if (Context.getCanonicalType(T: FromArgType) |
| 3195 | == Context.getCanonicalType(T: ToArgType)) { |
| 3196 | // Okay, the types match exactly. Nothing to do. |
| 3197 | } else if (isObjCPointerConversion(FromType: FromArgType, ToType: ToArgType, |
| 3198 | ConvertedType, IncompatibleObjC)) { |
| 3199 | // Okay, we have an Objective-C pointer conversion. |
| 3200 | HasObjCConversion = true; |
| 3201 | } else { |
| 3202 | // Argument types are too different. Abort. |
| 3203 | return false; |
| 3204 | } |
| 3205 | } |
| 3206 | |
| 3207 | if (HasObjCConversion) { |
| 3208 | // We had an Objective-C conversion. Allow this pointer |
| 3209 | // conversion, but complain about it. |
| 3210 | ConvertedType = AdoptQualifiers(Context, T: ToType, Qs: FromQualifiers); |
| 3211 | IncompatibleObjC = true; |
| 3212 | return true; |
| 3213 | } |
| 3214 | } |
| 3215 | |
| 3216 | return false; |
| 3217 | } |
| 3218 | |
| 3219 | bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, |
| 3220 | QualType& ConvertedType) { |
| 3221 | QualType ToPointeeType; |
| 3222 | if (const BlockPointerType *ToBlockPtr = |
| 3223 | ToType->getAs<BlockPointerType>()) |
| 3224 | ToPointeeType = ToBlockPtr->getPointeeType(); |
| 3225 | else |
| 3226 | return false; |
| 3227 | |
| 3228 | QualType FromPointeeType; |
| 3229 | if (const BlockPointerType *FromBlockPtr = |
| 3230 | FromType->getAs<BlockPointerType>()) |
| 3231 | FromPointeeType = FromBlockPtr->getPointeeType(); |
| 3232 | else |
| 3233 | return false; |
| 3234 | // We have pointer to blocks, check whether the only |
| 3235 | // differences in the argument and result types are in Objective-C |
| 3236 | // pointer conversions. If so, we permit the conversion. |
| 3237 | |
| 3238 | const FunctionProtoType *FromFunctionType |
| 3239 | = FromPointeeType->getAs<FunctionProtoType>(); |
| 3240 | const FunctionProtoType *ToFunctionType |
| 3241 | = ToPointeeType->getAs<FunctionProtoType>(); |
| 3242 | |
| 3243 | if (!FromFunctionType || !ToFunctionType) |
| 3244 | return false; |
| 3245 | |
| 3246 | if (Context.hasSameType(T1: FromPointeeType, T2: ToPointeeType)) |
| 3247 | return true; |
| 3248 | |
| 3249 | // Perform the quick checks that will tell us whether these |
| 3250 | // function types are obviously different. |
| 3251 | if (FromFunctionType->getNumParams() != ToFunctionType->getNumParams() || |
| 3252 | FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) |
| 3253 | return false; |
| 3254 | |
| 3255 | FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); |
| 3256 | FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); |
| 3257 | if (FromEInfo != ToEInfo) |
| 3258 | return false; |
| 3259 | |
| 3260 | bool IncompatibleObjC = false; |
| 3261 | if (Context.hasSameType(T1: FromFunctionType->getReturnType(), |
| 3262 | T2: ToFunctionType->getReturnType())) { |
| 3263 | // Okay, the types match exactly. Nothing to do. |
| 3264 | } else { |
| 3265 | QualType RHS = FromFunctionType->getReturnType(); |
| 3266 | QualType LHS = ToFunctionType->getReturnType(); |
| 3267 | if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) && |
| 3268 | !RHS.hasQualifiers() && LHS.hasQualifiers()) |
| 3269 | LHS = LHS.getUnqualifiedType(); |
| 3270 | |
| 3271 | if (Context.hasSameType(T1: RHS,T2: LHS)) { |
| 3272 | // OK exact match. |
| 3273 | } else if (isObjCPointerConversion(FromType: RHS, ToType: LHS, |
| 3274 | ConvertedType, IncompatibleObjC)) { |
| 3275 | if (IncompatibleObjC) |
| 3276 | return false; |
| 3277 | // Okay, we have an Objective-C pointer conversion. |
| 3278 | } |
| 3279 | else |
| 3280 | return false; |
| 3281 | } |
| 3282 | |
| 3283 | // Check argument types. |
| 3284 | for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumParams(); |
| 3285 | ArgIdx != NumArgs; ++ArgIdx) { |
| 3286 | IncompatibleObjC = false; |
| 3287 | QualType FromArgType = FromFunctionType->getParamType(i: ArgIdx); |
| 3288 | QualType ToArgType = ToFunctionType->getParamType(i: ArgIdx); |
| 3289 | if (Context.hasSameType(T1: FromArgType, T2: ToArgType)) { |
| 3290 | // Okay, the types match exactly. Nothing to do. |
| 3291 | } else if (isObjCPointerConversion(FromType: ToArgType, ToType: FromArgType, |
| 3292 | ConvertedType, IncompatibleObjC)) { |
| 3293 | if (IncompatibleObjC) |
| 3294 | return false; |
| 3295 | // Okay, we have an Objective-C pointer conversion. |
| 3296 | } else |
| 3297 | // Argument types are too different. Abort. |
| 3298 | return false; |
| 3299 | } |
| 3300 | |
| 3301 | SmallVector<FunctionProtoType::ExtParameterInfo, 4> NewParamInfos; |
| 3302 | bool CanUseToFPT, CanUseFromFPT; |
| 3303 | if (!Context.mergeExtParameterInfo(FirstFnType: ToFunctionType, SecondFnType: FromFunctionType, |
| 3304 | CanUseFirst&: CanUseToFPT, CanUseSecond&: CanUseFromFPT, |
| 3305 | NewParamInfos)) |
| 3306 | return false; |
| 3307 | |
| 3308 | ConvertedType = ToType; |
| 3309 | return true; |
| 3310 | } |
| 3311 | |
| 3312 | enum { |
| 3313 | ft_default, |
| 3314 | ft_different_class, |
| 3315 | ft_parameter_arity, |
| 3316 | ft_parameter_mismatch, |
| 3317 | ft_return_type, |
| 3318 | ft_qualifer_mismatch, |
| 3319 | ft_noexcept |
| 3320 | }; |
| 3321 | |
| 3322 | /// Attempts to get the FunctionProtoType from a Type. Handles |
| 3323 | /// MemberFunctionPointers properly. |
| 3324 | static const FunctionProtoType *tryGetFunctionProtoType(QualType FromType) { |
| 3325 | if (auto *FPT = FromType->getAs<FunctionProtoType>()) |
| 3326 | return FPT; |
| 3327 | |
| 3328 | if (auto *MPT = FromType->getAs<MemberPointerType>()) |
| 3329 | return MPT->getPointeeType()->getAs<FunctionProtoType>(); |
| 3330 | |
| 3331 | return nullptr; |
| 3332 | } |
| 3333 | |
| 3334 | void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, |
| 3335 | QualType FromType, QualType ToType) { |
| 3336 | // If either type is not valid, include no extra info. |
| 3337 | if (FromType.isNull() || ToType.isNull()) { |
| 3338 | PDiag << ft_default; |
| 3339 | return; |
| 3340 | } |
| 3341 | |
| 3342 | // Get the function type from the pointers. |
| 3343 | if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { |
| 3344 | const auto *FromMember = FromType->castAs<MemberPointerType>(), |
| 3345 | *ToMember = ToType->castAs<MemberPointerType>(); |
| 3346 | if (!declaresSameEntity(D1: FromMember->getMostRecentCXXRecordDecl(), |
| 3347 | D2: ToMember->getMostRecentCXXRecordDecl())) { |
| 3348 | PDiag << ft_different_class; |
| 3349 | if (ToMember->isSugared()) |
| 3350 | PDiag << Context.getTypeDeclType( |
| 3351 | Decl: ToMember->getMostRecentCXXRecordDecl()); |
| 3352 | else |
| 3353 | PDiag << ToMember->getQualifier(); |
| 3354 | if (FromMember->isSugared()) |
| 3355 | PDiag << Context.getTypeDeclType( |
| 3356 | Decl: FromMember->getMostRecentCXXRecordDecl()); |
| 3357 | else |
| 3358 | PDiag << FromMember->getQualifier(); |
| 3359 | return; |
| 3360 | } |
| 3361 | FromType = FromMember->getPointeeType(); |
| 3362 | ToType = ToMember->getPointeeType(); |
| 3363 | } |
| 3364 | |
| 3365 | if (FromType->isPointerType()) |
| 3366 | FromType = FromType->getPointeeType(); |
| 3367 | if (ToType->isPointerType()) |
| 3368 | ToType = ToType->getPointeeType(); |
| 3369 | |
| 3370 | // Remove references. |
| 3371 | FromType = FromType.getNonReferenceType(); |
| 3372 | ToType = ToType.getNonReferenceType(); |
| 3373 | |
| 3374 | // Don't print extra info for non-specialized template functions. |
| 3375 | if (FromType->isInstantiationDependentType() && |
| 3376 | !FromType->getAs<TemplateSpecializationType>()) { |
| 3377 | PDiag << ft_default; |
| 3378 | return; |
| 3379 | } |
| 3380 | |
| 3381 | // No extra info for same types. |
| 3382 | if (Context.hasSameType(T1: FromType, T2: ToType)) { |
| 3383 | PDiag << ft_default; |
| 3384 | return; |
| 3385 | } |
| 3386 | |
| 3387 | const FunctionProtoType *FromFunction = tryGetFunctionProtoType(FromType), |
| 3388 | *ToFunction = tryGetFunctionProtoType(FromType: ToType); |
| 3389 | |
| 3390 | // Both types need to be function types. |
| 3391 | if (!FromFunction || !ToFunction) { |
| 3392 | PDiag << ft_default; |
| 3393 | return; |
| 3394 | } |
| 3395 | |
| 3396 | if (FromFunction->getNumParams() != ToFunction->getNumParams()) { |
| 3397 | PDiag << ft_parameter_arity << ToFunction->getNumParams() |
| 3398 | << FromFunction->getNumParams(); |
| 3399 | return; |
| 3400 | } |
| 3401 | |
| 3402 | // Handle different parameter types. |
| 3403 | unsigned ArgPos; |
| 3404 | if (!FunctionParamTypesAreEqual(OldType: FromFunction, NewType: ToFunction, ArgPos: &ArgPos)) { |
| 3405 | PDiag << ft_parameter_mismatch << ArgPos + 1 |
| 3406 | << ToFunction->getParamType(i: ArgPos) |
| 3407 | << FromFunction->getParamType(i: ArgPos); |
| 3408 | return; |
| 3409 | } |
| 3410 | |
| 3411 | // Handle different return type. |
| 3412 | if (!Context.hasSameType(T1: FromFunction->getReturnType(), |
| 3413 | T2: ToFunction->getReturnType())) { |
| 3414 | PDiag << ft_return_type << ToFunction->getReturnType() |
| 3415 | << FromFunction->getReturnType(); |
| 3416 | return; |
| 3417 | } |
| 3418 | |
| 3419 | if (FromFunction->getMethodQuals() != ToFunction->getMethodQuals()) { |
| 3420 | PDiag << ft_qualifer_mismatch << ToFunction->getMethodQuals() |
| 3421 | << FromFunction->getMethodQuals(); |
| 3422 | return; |
| 3423 | } |
| 3424 | |
| 3425 | // Handle exception specification differences on canonical type (in C++17 |
| 3426 | // onwards). |
| 3427 | if (cast<FunctionProtoType>(Val: FromFunction->getCanonicalTypeUnqualified()) |
| 3428 | ->isNothrow() != |
| 3429 | cast<FunctionProtoType>(Val: ToFunction->getCanonicalTypeUnqualified()) |
| 3430 | ->isNothrow()) { |
| 3431 | PDiag << ft_noexcept; |
| 3432 | return; |
| 3433 | } |
| 3434 | |
| 3435 | // Unable to find a difference, so add no extra info. |
| 3436 | PDiag << ft_default; |
| 3437 | } |
| 3438 | |
| 3439 | bool Sema::FunctionParamTypesAreEqual(ArrayRef<QualType> Old, |
| 3440 | ArrayRef<QualType> New, unsigned *ArgPos, |
| 3441 | bool Reversed) { |
| 3442 | assert(llvm::size(Old) == llvm::size(New) && |
| 3443 | "Can't compare parameters of functions with different number of " |
| 3444 | "parameters!" ); |
| 3445 | |
| 3446 | for (auto &&[Idx, Type] : llvm::enumerate(First&: Old)) { |
| 3447 | // Reverse iterate over the parameters of `OldType` if `Reversed` is true. |
| 3448 | size_t J = Reversed ? (llvm::size(Range&: New) - Idx - 1) : Idx; |
| 3449 | |
| 3450 | // Ignore address spaces in pointee type. This is to disallow overloading |
| 3451 | // on __ptr32/__ptr64 address spaces. |
| 3452 | QualType OldType = |
| 3453 | Context.removePtrSizeAddrSpace(T: Type.getUnqualifiedType()); |
| 3454 | QualType NewType = |
| 3455 | Context.removePtrSizeAddrSpace(T: (New.begin() + J)->getUnqualifiedType()); |
| 3456 | |
| 3457 | if (!Context.hasSameType(T1: OldType, T2: NewType)) { |
| 3458 | if (ArgPos) |
| 3459 | *ArgPos = Idx; |
| 3460 | return false; |
| 3461 | } |
| 3462 | } |
| 3463 | return true; |
| 3464 | } |
| 3465 | |
| 3466 | bool Sema::FunctionParamTypesAreEqual(const FunctionProtoType *OldType, |
| 3467 | const FunctionProtoType *NewType, |
| 3468 | unsigned *ArgPos, bool Reversed) { |
| 3469 | return FunctionParamTypesAreEqual(Old: OldType->param_types(), |
| 3470 | New: NewType->param_types(), ArgPos, Reversed); |
| 3471 | } |
| 3472 | |
| 3473 | bool Sema::FunctionNonObjectParamTypesAreEqual(const FunctionDecl *OldFunction, |
| 3474 | const FunctionDecl *NewFunction, |
| 3475 | unsigned *ArgPos, |
| 3476 | bool Reversed) { |
| 3477 | |
| 3478 | if (OldFunction->getNumNonObjectParams() != |
| 3479 | NewFunction->getNumNonObjectParams()) |
| 3480 | return false; |
| 3481 | |
| 3482 | unsigned OldIgnore = |
| 3483 | unsigned(OldFunction->hasCXXExplicitFunctionObjectParameter()); |
| 3484 | unsigned NewIgnore = |
| 3485 | unsigned(NewFunction->hasCXXExplicitFunctionObjectParameter()); |
| 3486 | |
| 3487 | auto *OldPT = cast<FunctionProtoType>(Val: OldFunction->getFunctionType()); |
| 3488 | auto *NewPT = cast<FunctionProtoType>(Val: NewFunction->getFunctionType()); |
| 3489 | |
| 3490 | return FunctionParamTypesAreEqual(Old: OldPT->param_types().slice(N: OldIgnore), |
| 3491 | New: NewPT->param_types().slice(N: NewIgnore), |
| 3492 | ArgPos, Reversed); |
| 3493 | } |
| 3494 | |
| 3495 | bool Sema::CheckPointerConversion(Expr *From, QualType ToType, |
| 3496 | CastKind &Kind, |
| 3497 | CXXCastPath& BasePath, |
| 3498 | bool IgnoreBaseAccess, |
| 3499 | bool Diagnose) { |
| 3500 | QualType FromType = From->getType(); |
| 3501 | bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; |
| 3502 | |
| 3503 | Kind = CK_BitCast; |
| 3504 | |
| 3505 | if (Diagnose && !IsCStyleOrFunctionalCast && !FromType->isAnyPointerType() && |
| 3506 | From->isNullPointerConstant(Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNotNull) == |
| 3507 | Expr::NPCK_ZeroExpression) { |
| 3508 | if (Context.hasSameUnqualifiedType(T1: From->getType(), T2: Context.BoolTy)) |
| 3509 | DiagRuntimeBehavior(Loc: From->getExprLoc(), Statement: From, |
| 3510 | PD: PDiag(DiagID: diag::warn_impcast_bool_to_null_pointer) |
| 3511 | << ToType << From->getSourceRange()); |
| 3512 | else if (!isUnevaluatedContext()) |
| 3513 | Diag(Loc: From->getExprLoc(), DiagID: diag::warn_non_literal_null_pointer) |
| 3514 | << ToType << From->getSourceRange(); |
| 3515 | } |
| 3516 | if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { |
| 3517 | if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { |
| 3518 | QualType FromPointeeType = FromPtrType->getPointeeType(), |
| 3519 | ToPointeeType = ToPtrType->getPointeeType(); |
| 3520 | |
| 3521 | if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && |
| 3522 | !Context.hasSameUnqualifiedType(T1: FromPointeeType, T2: ToPointeeType)) { |
| 3523 | // We must have a derived-to-base conversion. Check an |
| 3524 | // ambiguous or inaccessible conversion. |
| 3525 | unsigned InaccessibleID = 0; |
| 3526 | unsigned AmbiguousID = 0; |
| 3527 | if (Diagnose) { |
| 3528 | InaccessibleID = diag::err_upcast_to_inaccessible_base; |
| 3529 | AmbiguousID = diag::err_ambiguous_derived_to_base_conv; |
| 3530 | } |
| 3531 | if (CheckDerivedToBaseConversion( |
| 3532 | Derived: FromPointeeType, Base: ToPointeeType, InaccessibleBaseID: InaccessibleID, AmbiguousBaseConvID: AmbiguousID, |
| 3533 | Loc: From->getExprLoc(), Range: From->getSourceRange(), Name: DeclarationName(), |
| 3534 | BasePath: &BasePath, IgnoreAccess: IgnoreBaseAccess)) |
| 3535 | return true; |
| 3536 | |
| 3537 | // The conversion was successful. |
| 3538 | Kind = CK_DerivedToBase; |
| 3539 | } |
| 3540 | |
| 3541 | if (Diagnose && !IsCStyleOrFunctionalCast && |
| 3542 | FromPointeeType->isFunctionType() && ToPointeeType->isVoidType()) { |
| 3543 | assert(getLangOpts().MSVCCompat && |
| 3544 | "this should only be possible with MSVCCompat!" ); |
| 3545 | Diag(Loc: From->getExprLoc(), DiagID: diag::ext_ms_impcast_fn_obj) |
| 3546 | << From->getSourceRange(); |
| 3547 | } |
| 3548 | } |
| 3549 | } else if (const ObjCObjectPointerType *ToPtrType = |
| 3550 | ToType->getAs<ObjCObjectPointerType>()) { |
| 3551 | if (const ObjCObjectPointerType *FromPtrType = |
| 3552 | FromType->getAs<ObjCObjectPointerType>()) { |
| 3553 | // Objective-C++ conversions are always okay. |
| 3554 | // FIXME: We should have a different class of conversions for the |
| 3555 | // Objective-C++ implicit conversions. |
| 3556 | if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) |
| 3557 | return false; |
| 3558 | } else if (FromType->isBlockPointerType()) { |
| 3559 | Kind = CK_BlockPointerToObjCPointerCast; |
| 3560 | } else { |
| 3561 | Kind = CK_CPointerToObjCPointerCast; |
| 3562 | } |
| 3563 | } else if (ToType->isBlockPointerType()) { |
| 3564 | if (!FromType->isBlockPointerType()) |
| 3565 | Kind = CK_AnyPointerToBlockPointerCast; |
| 3566 | } |
| 3567 | |
| 3568 | // We shouldn't fall into this case unless it's valid for other |
| 3569 | // reasons. |
| 3570 | if (From->isNullPointerConstant(Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNull)) |
| 3571 | Kind = CK_NullToPointer; |
| 3572 | |
| 3573 | return false; |
| 3574 | } |
| 3575 | |
| 3576 | bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, |
| 3577 | QualType ToType, |
| 3578 | bool InOverloadResolution, |
| 3579 | QualType &ConvertedType) { |
| 3580 | const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); |
| 3581 | if (!ToTypePtr) |
| 3582 | return false; |
| 3583 | |
| 3584 | // A null pointer constant can be converted to a member pointer (C++ 4.11p1) |
| 3585 | if (From->isNullPointerConstant(Ctx&: Context, |
| 3586 | NPC: InOverloadResolution? Expr::NPC_ValueDependentIsNotNull |
| 3587 | : Expr::NPC_ValueDependentIsNull)) { |
| 3588 | ConvertedType = ToType; |
| 3589 | return true; |
| 3590 | } |
| 3591 | |
| 3592 | // Otherwise, both types have to be member pointers. |
| 3593 | const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); |
| 3594 | if (!FromTypePtr) |
| 3595 | return false; |
| 3596 | |
| 3597 | // A pointer to member of B can be converted to a pointer to member of D, |
| 3598 | // where D is derived from B (C++ 4.11p2). |
| 3599 | CXXRecordDecl *FromClass = FromTypePtr->getMostRecentCXXRecordDecl(); |
| 3600 | CXXRecordDecl *ToClass = ToTypePtr->getMostRecentCXXRecordDecl(); |
| 3601 | |
| 3602 | if (!declaresSameEntity(D1: FromClass, D2: ToClass) && |
| 3603 | IsDerivedFrom(Loc: From->getBeginLoc(), Derived: ToClass, Base: FromClass)) { |
| 3604 | ConvertedType = Context.getMemberPointerType( |
| 3605 | T: FromTypePtr->getPointeeType(), Qualifier: FromTypePtr->getQualifier(), Cls: ToClass); |
| 3606 | return true; |
| 3607 | } |
| 3608 | |
| 3609 | return false; |
| 3610 | } |
| 3611 | |
| 3612 | Sema::MemberPointerConversionResult Sema::CheckMemberPointerConversion( |
| 3613 | QualType FromType, const MemberPointerType *ToPtrType, CastKind &Kind, |
| 3614 | CXXCastPath &BasePath, SourceLocation CheckLoc, SourceRange OpRange, |
| 3615 | bool IgnoreBaseAccess, MemberPointerConversionDirection Direction) { |
| 3616 | // Lock down the inheritance model right now in MS ABI, whether or not the |
| 3617 | // pointee types are the same. |
| 3618 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
| 3619 | (void)isCompleteType(Loc: CheckLoc, T: FromType); |
| 3620 | (void)isCompleteType(Loc: CheckLoc, T: QualType(ToPtrType, 0)); |
| 3621 | } |
| 3622 | |
| 3623 | const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); |
| 3624 | if (!FromPtrType) { |
| 3625 | // This must be a null pointer to member pointer conversion |
| 3626 | Kind = CK_NullToMemberPointer; |
| 3627 | return MemberPointerConversionResult::Success; |
| 3628 | } |
| 3629 | |
| 3630 | // T == T, modulo cv |
| 3631 | if (Direction == MemberPointerConversionDirection::Upcast && |
| 3632 | !Context.hasSameUnqualifiedType(T1: FromPtrType->getPointeeType(), |
| 3633 | T2: ToPtrType->getPointeeType())) |
| 3634 | return MemberPointerConversionResult::DifferentPointee; |
| 3635 | |
| 3636 | CXXRecordDecl *FromClass = FromPtrType->getMostRecentCXXRecordDecl(), |
| 3637 | *ToClass = ToPtrType->getMostRecentCXXRecordDecl(); |
| 3638 | |
| 3639 | auto DiagCls = [](PartialDiagnostic &PD, NestedNameSpecifier *Qual, |
| 3640 | const CXXRecordDecl *Cls) { |
| 3641 | if (declaresSameEntity(D1: Qual->getAsRecordDecl(), D2: Cls)) |
| 3642 | PD << Qual; |
| 3643 | else |
| 3644 | PD << QualType(Cls->getTypeForDecl(), 0); |
| 3645 | }; |
| 3646 | auto DiagFromTo = [&](PartialDiagnostic &PD) -> PartialDiagnostic & { |
| 3647 | DiagCls(PD, FromPtrType->getQualifier(), FromClass); |
| 3648 | DiagCls(PD, ToPtrType->getQualifier(), ToClass); |
| 3649 | return PD; |
| 3650 | }; |
| 3651 | |
| 3652 | CXXRecordDecl *Base = FromClass, *Derived = ToClass; |
| 3653 | if (Direction == MemberPointerConversionDirection::Upcast) |
| 3654 | std::swap(a&: Base, b&: Derived); |
| 3655 | |
| 3656 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| 3657 | /*DetectVirtual=*/true); |
| 3658 | if (!IsDerivedFrom(Loc: OpRange.getBegin(), Derived, Base, Paths)) |
| 3659 | return MemberPointerConversionResult::NotDerived; |
| 3660 | |
| 3661 | if (Paths.isAmbiguous( |
| 3662 | BaseType: Base->getTypeForDecl()->getCanonicalTypeUnqualified())) { |
| 3663 | PartialDiagnostic PD = PDiag(DiagID: diag::err_ambiguous_memptr_conv); |
| 3664 | PD << int(Direction); |
| 3665 | DiagFromTo(PD) << getAmbiguousPathsDisplayString(Paths) << OpRange; |
| 3666 | Diag(Loc: CheckLoc, PD); |
| 3667 | return MemberPointerConversionResult::Ambiguous; |
| 3668 | } |
| 3669 | |
| 3670 | if (const RecordType *VBase = Paths.getDetectedVirtual()) { |
| 3671 | PartialDiagnostic PD = PDiag(DiagID: diag::err_memptr_conv_via_virtual); |
| 3672 | DiagFromTo(PD) << QualType(VBase, 0) << OpRange; |
| 3673 | Diag(Loc: CheckLoc, PD); |
| 3674 | return MemberPointerConversionResult::Virtual; |
| 3675 | } |
| 3676 | |
| 3677 | // Must be a base to derived member conversion. |
| 3678 | BuildBasePathArray(Paths, BasePath); |
| 3679 | Kind = Direction == MemberPointerConversionDirection::Upcast |
| 3680 | ? CK_DerivedToBaseMemberPointer |
| 3681 | : CK_BaseToDerivedMemberPointer; |
| 3682 | |
| 3683 | if (!IgnoreBaseAccess) |
| 3684 | switch (CheckBaseClassAccess( |
| 3685 | AccessLoc: CheckLoc, Base, Derived, Path: Paths.front(), |
| 3686 | DiagID: Direction == MemberPointerConversionDirection::Upcast |
| 3687 | ? diag::err_upcast_to_inaccessible_base |
| 3688 | : diag::err_downcast_from_inaccessible_base, |
| 3689 | SetupPDiag: [&](PartialDiagnostic &PD) { |
| 3690 | NestedNameSpecifier *BaseQual = FromPtrType->getQualifier(), |
| 3691 | *DerivedQual = ToPtrType->getQualifier(); |
| 3692 | if (Direction == MemberPointerConversionDirection::Upcast) |
| 3693 | std::swap(a&: BaseQual, b&: DerivedQual); |
| 3694 | DiagCls(PD, DerivedQual, Derived); |
| 3695 | DiagCls(PD, BaseQual, Base); |
| 3696 | })) { |
| 3697 | case Sema::AR_accessible: |
| 3698 | case Sema::AR_delayed: |
| 3699 | case Sema::AR_dependent: |
| 3700 | // Optimistically assume that the delayed and dependent cases |
| 3701 | // will work out. |
| 3702 | break; |
| 3703 | |
| 3704 | case Sema::AR_inaccessible: |
| 3705 | return MemberPointerConversionResult::Inaccessible; |
| 3706 | } |
| 3707 | |
| 3708 | return MemberPointerConversionResult::Success; |
| 3709 | } |
| 3710 | |
| 3711 | /// Determine whether the lifetime conversion between the two given |
| 3712 | /// qualifiers sets is nontrivial. |
| 3713 | static bool isNonTrivialObjCLifetimeConversion(Qualifiers FromQuals, |
| 3714 | Qualifiers ToQuals) { |
| 3715 | // Converting anything to const __unsafe_unretained is trivial. |
| 3716 | if (ToQuals.hasConst() && |
| 3717 | ToQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone) |
| 3718 | return false; |
| 3719 | |
| 3720 | return true; |
| 3721 | } |
| 3722 | |
| 3723 | /// Perform a single iteration of the loop for checking if a qualification |
| 3724 | /// conversion is valid. |
| 3725 | /// |
| 3726 | /// Specifically, check whether any change between the qualifiers of \p |
| 3727 | /// FromType and \p ToType is permissible, given knowledge about whether every |
| 3728 | /// outer layer is const-qualified. |
| 3729 | static bool isQualificationConversionStep(QualType FromType, QualType ToType, |
| 3730 | bool CStyle, bool IsTopLevel, |
| 3731 | bool &PreviousToQualsIncludeConst, |
| 3732 | bool &ObjCLifetimeConversion, |
| 3733 | const ASTContext &Ctx) { |
| 3734 | Qualifiers FromQuals = FromType.getQualifiers(); |
| 3735 | Qualifiers ToQuals = ToType.getQualifiers(); |
| 3736 | |
| 3737 | // Ignore __unaligned qualifier. |
| 3738 | FromQuals.removeUnaligned(); |
| 3739 | |
| 3740 | // Objective-C ARC: |
| 3741 | // Check Objective-C lifetime conversions. |
| 3742 | if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime()) { |
| 3743 | if (ToQuals.compatiblyIncludesObjCLifetime(other: FromQuals)) { |
| 3744 | if (isNonTrivialObjCLifetimeConversion(FromQuals, ToQuals)) |
| 3745 | ObjCLifetimeConversion = true; |
| 3746 | FromQuals.removeObjCLifetime(); |
| 3747 | ToQuals.removeObjCLifetime(); |
| 3748 | } else { |
| 3749 | // Qualification conversions cannot cast between different |
| 3750 | // Objective-C lifetime qualifiers. |
| 3751 | return false; |
| 3752 | } |
| 3753 | } |
| 3754 | |
| 3755 | // Allow addition/removal of GC attributes but not changing GC attributes. |
| 3756 | if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && |
| 3757 | (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { |
| 3758 | FromQuals.removeObjCGCAttr(); |
| 3759 | ToQuals.removeObjCGCAttr(); |
| 3760 | } |
| 3761 | |
| 3762 | // __ptrauth qualifiers must match exactly. |
| 3763 | if (FromQuals.getPointerAuth() != ToQuals.getPointerAuth()) |
| 3764 | return false; |
| 3765 | |
| 3766 | // -- for every j > 0, if const is in cv 1,j then const is in cv |
| 3767 | // 2,j, and similarly for volatile. |
| 3768 | if (!CStyle && !ToQuals.compatiblyIncludes(other: FromQuals, Ctx)) |
| 3769 | return false; |
| 3770 | |
| 3771 | // If address spaces mismatch: |
| 3772 | // - in top level it is only valid to convert to addr space that is a |
| 3773 | // superset in all cases apart from C-style casts where we allow |
| 3774 | // conversions between overlapping address spaces. |
| 3775 | // - in non-top levels it is not a valid conversion. |
| 3776 | if (ToQuals.getAddressSpace() != FromQuals.getAddressSpace() && |
| 3777 | (!IsTopLevel || |
| 3778 | !(ToQuals.isAddressSpaceSupersetOf(other: FromQuals, Ctx) || |
| 3779 | (CStyle && FromQuals.isAddressSpaceSupersetOf(other: ToQuals, Ctx))))) |
| 3780 | return false; |
| 3781 | |
| 3782 | // -- if the cv 1,j and cv 2,j are different, then const is in |
| 3783 | // every cv for 0 < k < j. |
| 3784 | if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() && |
| 3785 | !PreviousToQualsIncludeConst) |
| 3786 | return false; |
| 3787 | |
| 3788 | // The following wording is from C++20, where the result of the conversion |
| 3789 | // is T3, not T2. |
| 3790 | // -- if [...] P1,i [...] is "array of unknown bound of", P3,i is |
| 3791 | // "array of unknown bound of" |
| 3792 | if (FromType->isIncompleteArrayType() && !ToType->isIncompleteArrayType()) |
| 3793 | return false; |
| 3794 | |
| 3795 | // -- if the resulting P3,i is different from P1,i [...], then const is |
| 3796 | // added to every cv 3_k for 0 < k < i. |
| 3797 | if (!CStyle && FromType->isConstantArrayType() && |
| 3798 | ToType->isIncompleteArrayType() && !PreviousToQualsIncludeConst) |
| 3799 | return false; |
| 3800 | |
| 3801 | // Keep track of whether all prior cv-qualifiers in the "to" type |
| 3802 | // include const. |
| 3803 | PreviousToQualsIncludeConst = |
| 3804 | PreviousToQualsIncludeConst && ToQuals.hasConst(); |
| 3805 | return true; |
| 3806 | } |
| 3807 | |
| 3808 | bool |
| 3809 | Sema::IsQualificationConversion(QualType FromType, QualType ToType, |
| 3810 | bool CStyle, bool &ObjCLifetimeConversion) { |
| 3811 | FromType = Context.getCanonicalType(T: FromType); |
| 3812 | ToType = Context.getCanonicalType(T: ToType); |
| 3813 | ObjCLifetimeConversion = false; |
| 3814 | |
| 3815 | // If FromType and ToType are the same type, this is not a |
| 3816 | // qualification conversion. |
| 3817 | if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) |
| 3818 | return false; |
| 3819 | |
| 3820 | // (C++ 4.4p4): |
| 3821 | // A conversion can add cv-qualifiers at levels other than the first |
| 3822 | // in multi-level pointers, subject to the following rules: [...] |
| 3823 | bool PreviousToQualsIncludeConst = true; |
| 3824 | bool UnwrappedAnyPointer = false; |
| 3825 | while (Context.UnwrapSimilarTypes(T1&: FromType, T2&: ToType)) { |
| 3826 | if (!isQualificationConversionStep(FromType, ToType, CStyle, |
| 3827 | IsTopLevel: !UnwrappedAnyPointer, |
| 3828 | PreviousToQualsIncludeConst, |
| 3829 | ObjCLifetimeConversion, Ctx: getASTContext())) |
| 3830 | return false; |
| 3831 | UnwrappedAnyPointer = true; |
| 3832 | } |
| 3833 | |
| 3834 | // We are left with FromType and ToType being the pointee types |
| 3835 | // after unwrapping the original FromType and ToType the same number |
| 3836 | // of times. If we unwrapped any pointers, and if FromType and |
| 3837 | // ToType have the same unqualified type (since we checked |
| 3838 | // qualifiers above), then this is a qualification conversion. |
| 3839 | return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(T1: FromType,T2: ToType); |
| 3840 | } |
| 3841 | |
| 3842 | /// - Determine whether this is a conversion from a scalar type to an |
| 3843 | /// atomic type. |
| 3844 | /// |
| 3845 | /// If successful, updates \c SCS's second and third steps in the conversion |
| 3846 | /// sequence to finish the conversion. |
| 3847 | static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType, |
| 3848 | bool InOverloadResolution, |
| 3849 | StandardConversionSequence &SCS, |
| 3850 | bool CStyle) { |
| 3851 | const AtomicType *ToAtomic = ToType->getAs<AtomicType>(); |
| 3852 | if (!ToAtomic) |
| 3853 | return false; |
| 3854 | |
| 3855 | StandardConversionSequence InnerSCS; |
| 3856 | if (!IsStandardConversion(S, From, ToType: ToAtomic->getValueType(), |
| 3857 | InOverloadResolution, SCS&: InnerSCS, |
| 3858 | CStyle, /*AllowObjCWritebackConversion=*/false)) |
| 3859 | return false; |
| 3860 | |
| 3861 | SCS.Second = InnerSCS.Second; |
| 3862 | SCS.setToType(Idx: 1, T: InnerSCS.getToType(Idx: 1)); |
| 3863 | SCS.Third = InnerSCS.Third; |
| 3864 | SCS.QualificationIncludesObjCLifetime |
| 3865 | = InnerSCS.QualificationIncludesObjCLifetime; |
| 3866 | SCS.setToType(Idx: 2, T: InnerSCS.getToType(Idx: 2)); |
| 3867 | return true; |
| 3868 | } |
| 3869 | |
| 3870 | static bool isFirstArgumentCompatibleWithType(ASTContext &Context, |
| 3871 | CXXConstructorDecl *Constructor, |
| 3872 | QualType Type) { |
| 3873 | const auto *CtorType = Constructor->getType()->castAs<FunctionProtoType>(); |
| 3874 | if (CtorType->getNumParams() > 0) { |
| 3875 | QualType FirstArg = CtorType->getParamType(i: 0); |
| 3876 | if (Context.hasSameUnqualifiedType(T1: Type, T2: FirstArg.getNonReferenceType())) |
| 3877 | return true; |
| 3878 | } |
| 3879 | return false; |
| 3880 | } |
| 3881 | |
| 3882 | static OverloadingResult |
| 3883 | IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType, |
| 3884 | CXXRecordDecl *To, |
| 3885 | UserDefinedConversionSequence &User, |
| 3886 | OverloadCandidateSet &CandidateSet, |
| 3887 | bool AllowExplicit) { |
| 3888 | CandidateSet.clear(CSK: OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
| 3889 | for (auto *D : S.LookupConstructors(Class: To)) { |
| 3890 | auto Info = getConstructorInfo(ND: D); |
| 3891 | if (!Info) |
| 3892 | continue; |
| 3893 | |
| 3894 | bool Usable = !Info.Constructor->isInvalidDecl() && |
| 3895 | S.isInitListConstructor(Ctor: Info.Constructor); |
| 3896 | if (Usable) { |
| 3897 | bool SuppressUserConversions = false; |
| 3898 | if (Info.ConstructorTmpl) |
| 3899 | S.AddTemplateOverloadCandidate(FunctionTemplate: Info.ConstructorTmpl, FoundDecl: Info.FoundDecl, |
| 3900 | /*ExplicitArgs*/ ExplicitTemplateArgs: nullptr, Args: From, |
| 3901 | CandidateSet, SuppressUserConversions, |
| 3902 | /*PartialOverloading*/ false, |
| 3903 | AllowExplicit); |
| 3904 | else |
| 3905 | S.AddOverloadCandidate(Function: Info.Constructor, FoundDecl: Info.FoundDecl, Args: From, |
| 3906 | CandidateSet, SuppressUserConversions, |
| 3907 | /*PartialOverloading*/ false, AllowExplicit); |
| 3908 | } |
| 3909 | } |
| 3910 | |
| 3911 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 3912 | |
| 3913 | OverloadCandidateSet::iterator Best; |
| 3914 | switch (auto Result = |
| 3915 | CandidateSet.BestViableFunction(S, Loc: From->getBeginLoc(), Best)) { |
| 3916 | case OR_Deleted: |
| 3917 | case OR_Success: { |
| 3918 | // Record the standard conversion we used and the conversion function. |
| 3919 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Val: Best->Function); |
| 3920 | QualType ThisType = Constructor->getFunctionObjectParameterType(); |
| 3921 | // Initializer lists don't have conversions as such. |
| 3922 | User.Before.setAsIdentityConversion(); |
| 3923 | User.HadMultipleCandidates = HadMultipleCandidates; |
| 3924 | User.ConversionFunction = Constructor; |
| 3925 | User.FoundConversionFunction = Best->FoundDecl; |
| 3926 | User.After.setAsIdentityConversion(); |
| 3927 | User.After.setFromType(ThisType); |
| 3928 | User.After.setAllToTypes(ToType); |
| 3929 | return Result; |
| 3930 | } |
| 3931 | |
| 3932 | case OR_No_Viable_Function: |
| 3933 | return OR_No_Viable_Function; |
| 3934 | case OR_Ambiguous: |
| 3935 | return OR_Ambiguous; |
| 3936 | } |
| 3937 | |
| 3938 | llvm_unreachable("Invalid OverloadResult!" ); |
| 3939 | } |
| 3940 | |
| 3941 | /// Determines whether there is a user-defined conversion sequence |
| 3942 | /// (C++ [over.ics.user]) that converts expression From to the type |
| 3943 | /// ToType. If such a conversion exists, User will contain the |
| 3944 | /// user-defined conversion sequence that performs such a conversion |
| 3945 | /// and this routine will return true. Otherwise, this routine returns |
| 3946 | /// false and User is unspecified. |
| 3947 | /// |
| 3948 | /// \param AllowExplicit true if the conversion should consider C++0x |
| 3949 | /// "explicit" conversion functions as well as non-explicit conversion |
| 3950 | /// functions (C++0x [class.conv.fct]p2). |
| 3951 | /// |
| 3952 | /// \param AllowObjCConversionOnExplicit true if the conversion should |
| 3953 | /// allow an extra Objective-C pointer conversion on uses of explicit |
| 3954 | /// constructors. Requires \c AllowExplicit to also be set. |
| 3955 | static OverloadingResult |
| 3956 | IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, |
| 3957 | UserDefinedConversionSequence &User, |
| 3958 | OverloadCandidateSet &CandidateSet, |
| 3959 | AllowedExplicit AllowExplicit, |
| 3960 | bool AllowObjCConversionOnExplicit) { |
| 3961 | assert(AllowExplicit != AllowedExplicit::None || |
| 3962 | !AllowObjCConversionOnExplicit); |
| 3963 | CandidateSet.clear(CSK: OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
| 3964 | |
| 3965 | // Whether we will only visit constructors. |
| 3966 | bool ConstructorsOnly = false; |
| 3967 | |
| 3968 | // If the type we are conversion to is a class type, enumerate its |
| 3969 | // constructors. |
| 3970 | if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { |
| 3971 | // C++ [over.match.ctor]p1: |
| 3972 | // When objects of class type are direct-initialized (8.5), or |
| 3973 | // copy-initialized from an expression of the same or a |
| 3974 | // derived class type (8.5), overload resolution selects the |
| 3975 | // constructor. [...] For copy-initialization, the candidate |
| 3976 | // functions are all the converting constructors (12.3.1) of |
| 3977 | // that class. The argument list is the expression-list within |
| 3978 | // the parentheses of the initializer. |
| 3979 | if (S.Context.hasSameUnqualifiedType(T1: ToType, T2: From->getType()) || |
| 3980 | (From->getType()->getAs<RecordType>() && |
| 3981 | S.IsDerivedFrom(Loc: From->getBeginLoc(), Derived: From->getType(), Base: ToType))) |
| 3982 | ConstructorsOnly = true; |
| 3983 | |
| 3984 | if (!S.isCompleteType(Loc: From->getExprLoc(), T: ToType)) { |
| 3985 | // We're not going to find any constructors. |
| 3986 | } else if (CXXRecordDecl *ToRecordDecl |
| 3987 | = dyn_cast<CXXRecordDecl>(Val: ToRecordType->getDecl())) { |
| 3988 | |
| 3989 | Expr **Args = &From; |
| 3990 | unsigned NumArgs = 1; |
| 3991 | bool ListInitializing = false; |
| 3992 | if (InitListExpr *InitList = dyn_cast<InitListExpr>(Val: From)) { |
| 3993 | // But first, see if there is an init-list-constructor that will work. |
| 3994 | OverloadingResult Result = IsInitializerListConstructorConversion( |
| 3995 | S, From, ToType, To: ToRecordDecl, User, CandidateSet, |
| 3996 | AllowExplicit: AllowExplicit == AllowedExplicit::All); |
| 3997 | if (Result != OR_No_Viable_Function) |
| 3998 | return Result; |
| 3999 | // Never mind. |
| 4000 | CandidateSet.clear( |
| 4001 | CSK: OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
| 4002 | |
| 4003 | // If we're list-initializing, we pass the individual elements as |
| 4004 | // arguments, not the entire list. |
| 4005 | Args = InitList->getInits(); |
| 4006 | NumArgs = InitList->getNumInits(); |
| 4007 | ListInitializing = true; |
| 4008 | } |
| 4009 | |
| 4010 | for (auto *D : S.LookupConstructors(Class: ToRecordDecl)) { |
| 4011 | auto Info = getConstructorInfo(ND: D); |
| 4012 | if (!Info) |
| 4013 | continue; |
| 4014 | |
| 4015 | bool Usable = !Info.Constructor->isInvalidDecl(); |
| 4016 | if (!ListInitializing) |
| 4017 | Usable = Usable && Info.Constructor->isConvertingConstructor( |
| 4018 | /*AllowExplicit*/ true); |
| 4019 | if (Usable) { |
| 4020 | bool SuppressUserConversions = !ConstructorsOnly; |
| 4021 | // C++20 [over.best.ics.general]/4.5: |
| 4022 | // if the target is the first parameter of a constructor [of class |
| 4023 | // X] and the constructor [...] is a candidate by [...] the second |
| 4024 | // phase of [over.match.list] when the initializer list has exactly |
| 4025 | // one element that is itself an initializer list, [...] and the |
| 4026 | // conversion is to X or reference to cv X, user-defined conversion |
| 4027 | // sequences are not considered. |
| 4028 | if (SuppressUserConversions && ListInitializing) { |
| 4029 | SuppressUserConversions = |
| 4030 | NumArgs == 1 && isa<InitListExpr>(Val: Args[0]) && |
| 4031 | isFirstArgumentCompatibleWithType(Context&: S.Context, Constructor: Info.Constructor, |
| 4032 | Type: ToType); |
| 4033 | } |
| 4034 | if (Info.ConstructorTmpl) |
| 4035 | S.AddTemplateOverloadCandidate( |
| 4036 | FunctionTemplate: Info.ConstructorTmpl, FoundDecl: Info.FoundDecl, |
| 4037 | /*ExplicitArgs*/ ExplicitTemplateArgs: nullptr, Args: llvm::ArrayRef(Args, NumArgs), |
| 4038 | CandidateSet, SuppressUserConversions, |
| 4039 | /*PartialOverloading*/ false, |
| 4040 | AllowExplicit: AllowExplicit == AllowedExplicit::All); |
| 4041 | else |
| 4042 | // Allow one user-defined conversion when user specifies a |
| 4043 | // From->ToType conversion via an static cast (c-style, etc). |
| 4044 | S.AddOverloadCandidate(Function: Info.Constructor, FoundDecl: Info.FoundDecl, |
| 4045 | Args: llvm::ArrayRef(Args, NumArgs), CandidateSet, |
| 4046 | SuppressUserConversions, |
| 4047 | /*PartialOverloading*/ false, |
| 4048 | AllowExplicit: AllowExplicit == AllowedExplicit::All); |
| 4049 | } |
| 4050 | } |
| 4051 | } |
| 4052 | } |
| 4053 | |
| 4054 | // Enumerate conversion functions, if we're allowed to. |
| 4055 | if (ConstructorsOnly || isa<InitListExpr>(Val: From)) { |
| 4056 | } else if (!S.isCompleteType(Loc: From->getBeginLoc(), T: From->getType())) { |
| 4057 | // No conversion functions from incomplete types. |
| 4058 | } else if (const RecordType *FromRecordType = |
| 4059 | From->getType()->getAs<RecordType>()) { |
| 4060 | if (CXXRecordDecl *FromRecordDecl |
| 4061 | = dyn_cast<CXXRecordDecl>(Val: FromRecordType->getDecl())) { |
| 4062 | // Add all of the conversion functions as candidates. |
| 4063 | const auto &Conversions = FromRecordDecl->getVisibleConversionFunctions(); |
| 4064 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
| 4065 | DeclAccessPair FoundDecl = I.getPair(); |
| 4066 | NamedDecl *D = FoundDecl.getDecl(); |
| 4067 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Val: D->getDeclContext()); |
| 4068 | if (isa<UsingShadowDecl>(Val: D)) |
| 4069 | D = cast<UsingShadowDecl>(Val: D)->getTargetDecl(); |
| 4070 | |
| 4071 | CXXConversionDecl *Conv; |
| 4072 | FunctionTemplateDecl *ConvTemplate; |
| 4073 | if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(Val: D))) |
| 4074 | Conv = cast<CXXConversionDecl>(Val: ConvTemplate->getTemplatedDecl()); |
| 4075 | else |
| 4076 | Conv = cast<CXXConversionDecl>(Val: D); |
| 4077 | |
| 4078 | if (ConvTemplate) |
| 4079 | S.AddTemplateConversionCandidate( |
| 4080 | FunctionTemplate: ConvTemplate, FoundDecl, ActingContext, From, ToType, |
| 4081 | CandidateSet, AllowObjCConversionOnExplicit, |
| 4082 | AllowExplicit: AllowExplicit != AllowedExplicit::None); |
| 4083 | else |
| 4084 | S.AddConversionCandidate(Conversion: Conv, FoundDecl, ActingContext, From, ToType, |
| 4085 | CandidateSet, AllowObjCConversionOnExplicit, |
| 4086 | AllowExplicit: AllowExplicit != AllowedExplicit::None); |
| 4087 | } |
| 4088 | } |
| 4089 | } |
| 4090 | |
| 4091 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 4092 | |
| 4093 | OverloadCandidateSet::iterator Best; |
| 4094 | switch (auto Result = |
| 4095 | CandidateSet.BestViableFunction(S, Loc: From->getBeginLoc(), Best)) { |
| 4096 | case OR_Success: |
| 4097 | case OR_Deleted: |
| 4098 | // Record the standard conversion we used and the conversion function. |
| 4099 | if (CXXConstructorDecl *Constructor |
| 4100 | = dyn_cast<CXXConstructorDecl>(Val: Best->Function)) { |
| 4101 | // C++ [over.ics.user]p1: |
| 4102 | // If the user-defined conversion is specified by a |
| 4103 | // constructor (12.3.1), the initial standard conversion |
| 4104 | // sequence converts the source type to the type required by |
| 4105 | // the argument of the constructor. |
| 4106 | // |
| 4107 | if (isa<InitListExpr>(Val: From)) { |
| 4108 | // Initializer lists don't have conversions as such. |
| 4109 | User.Before.setAsIdentityConversion(); |
| 4110 | User.Before.FromBracedInitList = true; |
| 4111 | } else { |
| 4112 | if (Best->Conversions[0].isEllipsis()) |
| 4113 | User.EllipsisConversion = true; |
| 4114 | else { |
| 4115 | User.Before = Best->Conversions[0].Standard; |
| 4116 | User.EllipsisConversion = false; |
| 4117 | } |
| 4118 | } |
| 4119 | User.HadMultipleCandidates = HadMultipleCandidates; |
| 4120 | User.ConversionFunction = Constructor; |
| 4121 | User.FoundConversionFunction = Best->FoundDecl; |
| 4122 | User.After.setAsIdentityConversion(); |
| 4123 | User.After.setFromType(Constructor->getFunctionObjectParameterType()); |
| 4124 | User.After.setAllToTypes(ToType); |
| 4125 | return Result; |
| 4126 | } |
| 4127 | if (CXXConversionDecl *Conversion |
| 4128 | = dyn_cast<CXXConversionDecl>(Val: Best->Function)) { |
| 4129 | |
| 4130 | assert(Best->HasFinalConversion); |
| 4131 | |
| 4132 | // C++ [over.ics.user]p1: |
| 4133 | // |
| 4134 | // [...] If the user-defined conversion is specified by a |
| 4135 | // conversion function (12.3.2), the initial standard |
| 4136 | // conversion sequence converts the source type to the |
| 4137 | // implicit object parameter of the conversion function. |
| 4138 | User.Before = Best->Conversions[0].Standard; |
| 4139 | User.HadMultipleCandidates = HadMultipleCandidates; |
| 4140 | User.ConversionFunction = Conversion; |
| 4141 | User.FoundConversionFunction = Best->FoundDecl; |
| 4142 | User.EllipsisConversion = false; |
| 4143 | |
| 4144 | // C++ [over.ics.user]p2: |
| 4145 | // The second standard conversion sequence converts the |
| 4146 | // result of the user-defined conversion to the target type |
| 4147 | // for the sequence. Since an implicit conversion sequence |
| 4148 | // is an initialization, the special rules for |
| 4149 | // initialization by user-defined conversion apply when |
| 4150 | // selecting the best user-defined conversion for a |
| 4151 | // user-defined conversion sequence (see 13.3.3 and |
| 4152 | // 13.3.3.1). |
| 4153 | User.After = Best->FinalConversion; |
| 4154 | return Result; |
| 4155 | } |
| 4156 | llvm_unreachable("Not a constructor or conversion function?" ); |
| 4157 | |
| 4158 | case OR_No_Viable_Function: |
| 4159 | return OR_No_Viable_Function; |
| 4160 | |
| 4161 | case OR_Ambiguous: |
| 4162 | return OR_Ambiguous; |
| 4163 | } |
| 4164 | |
| 4165 | llvm_unreachable("Invalid OverloadResult!" ); |
| 4166 | } |
| 4167 | |
| 4168 | bool |
| 4169 | Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { |
| 4170 | ImplicitConversionSequence ICS; |
| 4171 | OverloadCandidateSet CandidateSet(From->getExprLoc(), |
| 4172 | OverloadCandidateSet::CSK_Normal); |
| 4173 | OverloadingResult OvResult = |
| 4174 | IsUserDefinedConversion(S&: *this, From, ToType, User&: ICS.UserDefined, |
| 4175 | CandidateSet, AllowExplicit: AllowedExplicit::None, AllowObjCConversionOnExplicit: false); |
| 4176 | |
| 4177 | if (!(OvResult == OR_Ambiguous || |
| 4178 | (OvResult == OR_No_Viable_Function && !CandidateSet.empty()))) |
| 4179 | return false; |
| 4180 | |
| 4181 | auto Cands = CandidateSet.CompleteCandidates( |
| 4182 | S&: *this, |
| 4183 | OCD: OvResult == OR_Ambiguous ? OCD_AmbiguousCandidates : OCD_AllCandidates, |
| 4184 | Args: From); |
| 4185 | if (OvResult == OR_Ambiguous) |
| 4186 | Diag(Loc: From->getBeginLoc(), DiagID: diag::err_typecheck_ambiguous_condition) |
| 4187 | << From->getType() << ToType << From->getSourceRange(); |
| 4188 | else { // OR_No_Viable_Function && !CandidateSet.empty() |
| 4189 | if (!RequireCompleteType(Loc: From->getBeginLoc(), T: ToType, |
| 4190 | DiagID: diag::err_typecheck_nonviable_condition_incomplete, |
| 4191 | Args: From->getType(), Args: From->getSourceRange())) |
| 4192 | Diag(Loc: From->getBeginLoc(), DiagID: diag::err_typecheck_nonviable_condition) |
| 4193 | << false << From->getType() << From->getSourceRange() << ToType; |
| 4194 | } |
| 4195 | |
| 4196 | CandidateSet.NoteCandidates( |
| 4197 | S&: *this, Args: From, Cands); |
| 4198 | return true; |
| 4199 | } |
| 4200 | |
| 4201 | // Helper for compareConversionFunctions that gets the FunctionType that the |
| 4202 | // conversion-operator return value 'points' to, or nullptr. |
| 4203 | static const FunctionType * |
| 4204 | getConversionOpReturnTyAsFunction(CXXConversionDecl *Conv) { |
| 4205 | const FunctionType *ConvFuncTy = Conv->getType()->castAs<FunctionType>(); |
| 4206 | const PointerType *RetPtrTy = |
| 4207 | ConvFuncTy->getReturnType()->getAs<PointerType>(); |
| 4208 | |
| 4209 | if (!RetPtrTy) |
| 4210 | return nullptr; |
| 4211 | |
| 4212 | return RetPtrTy->getPointeeType()->getAs<FunctionType>(); |
| 4213 | } |
| 4214 | |
| 4215 | /// Compare the user-defined conversion functions or constructors |
| 4216 | /// of two user-defined conversion sequences to determine whether any ordering |
| 4217 | /// is possible. |
| 4218 | static ImplicitConversionSequence::CompareKind |
| 4219 | compareConversionFunctions(Sema &S, FunctionDecl *Function1, |
| 4220 | FunctionDecl *Function2) { |
| 4221 | CXXConversionDecl *Conv1 = dyn_cast_or_null<CXXConversionDecl>(Val: Function1); |
| 4222 | CXXConversionDecl *Conv2 = dyn_cast_or_null<CXXConversionDecl>(Val: Function2); |
| 4223 | if (!Conv1 || !Conv2) |
| 4224 | return ImplicitConversionSequence::Indistinguishable; |
| 4225 | |
| 4226 | if (!Conv1->getParent()->isLambda() || !Conv2->getParent()->isLambda()) |
| 4227 | return ImplicitConversionSequence::Indistinguishable; |
| 4228 | |
| 4229 | // Objective-C++: |
| 4230 | // If both conversion functions are implicitly-declared conversions from |
| 4231 | // a lambda closure type to a function pointer and a block pointer, |
| 4232 | // respectively, always prefer the conversion to a function pointer, |
| 4233 | // because the function pointer is more lightweight and is more likely |
| 4234 | // to keep code working. |
| 4235 | if (S.getLangOpts().ObjC && S.getLangOpts().CPlusPlus11) { |
| 4236 | bool Block1 = Conv1->getConversionType()->isBlockPointerType(); |
| 4237 | bool Block2 = Conv2->getConversionType()->isBlockPointerType(); |
| 4238 | if (Block1 != Block2) |
| 4239 | return Block1 ? ImplicitConversionSequence::Worse |
| 4240 | : ImplicitConversionSequence::Better; |
| 4241 | } |
| 4242 | |
| 4243 | // In order to support multiple calling conventions for the lambda conversion |
| 4244 | // operator (such as when the free and member function calling convention is |
| 4245 | // different), prefer the 'free' mechanism, followed by the calling-convention |
| 4246 | // of operator(). The latter is in place to support the MSVC-like solution of |
| 4247 | // defining ALL of the possible conversions in regards to calling-convention. |
| 4248 | const FunctionType *Conv1FuncRet = getConversionOpReturnTyAsFunction(Conv: Conv1); |
| 4249 | const FunctionType *Conv2FuncRet = getConversionOpReturnTyAsFunction(Conv: Conv2); |
| 4250 | |
| 4251 | if (Conv1FuncRet && Conv2FuncRet && |
| 4252 | Conv1FuncRet->getCallConv() != Conv2FuncRet->getCallConv()) { |
| 4253 | CallingConv Conv1CC = Conv1FuncRet->getCallConv(); |
| 4254 | CallingConv Conv2CC = Conv2FuncRet->getCallConv(); |
| 4255 | |
| 4256 | CXXMethodDecl *CallOp = Conv2->getParent()->getLambdaCallOperator(); |
| 4257 | const auto *CallOpProto = CallOp->getType()->castAs<FunctionProtoType>(); |
| 4258 | |
| 4259 | CallingConv CallOpCC = |
| 4260 | CallOp->getType()->castAs<FunctionType>()->getCallConv(); |
| 4261 | CallingConv DefaultFree = S.Context.getDefaultCallingConvention( |
| 4262 | IsVariadic: CallOpProto->isVariadic(), /*IsCXXMethod=*/false); |
| 4263 | CallingConv DefaultMember = S.Context.getDefaultCallingConvention( |
| 4264 | IsVariadic: CallOpProto->isVariadic(), /*IsCXXMethod=*/true); |
| 4265 | |
| 4266 | CallingConv PrefOrder[] = {DefaultFree, DefaultMember, CallOpCC}; |
| 4267 | for (CallingConv CC : PrefOrder) { |
| 4268 | if (Conv1CC == CC) |
| 4269 | return ImplicitConversionSequence::Better; |
| 4270 | if (Conv2CC == CC) |
| 4271 | return ImplicitConversionSequence::Worse; |
| 4272 | } |
| 4273 | } |
| 4274 | |
| 4275 | return ImplicitConversionSequence::Indistinguishable; |
| 4276 | } |
| 4277 | |
| 4278 | static bool hasDeprecatedStringLiteralToCharPtrConversion( |
| 4279 | const ImplicitConversionSequence &ICS) { |
| 4280 | return (ICS.isStandard() && ICS.Standard.DeprecatedStringLiteralToCharPtr) || |
| 4281 | (ICS.isUserDefined() && |
| 4282 | ICS.UserDefined.Before.DeprecatedStringLiteralToCharPtr); |
| 4283 | } |
| 4284 | |
| 4285 | /// CompareImplicitConversionSequences - Compare two implicit |
| 4286 | /// conversion sequences to determine whether one is better than the |
| 4287 | /// other or if they are indistinguishable (C++ 13.3.3.2). |
| 4288 | static ImplicitConversionSequence::CompareKind |
| 4289 | CompareImplicitConversionSequences(Sema &S, SourceLocation Loc, |
| 4290 | const ImplicitConversionSequence& ICS1, |
| 4291 | const ImplicitConversionSequence& ICS2) |
| 4292 | { |
| 4293 | // (C++ 13.3.3.2p2): When comparing the basic forms of implicit |
| 4294 | // conversion sequences (as defined in 13.3.3.1) |
| 4295 | // -- a standard conversion sequence (13.3.3.1.1) is a better |
| 4296 | // conversion sequence than a user-defined conversion sequence or |
| 4297 | // an ellipsis conversion sequence, and |
| 4298 | // -- a user-defined conversion sequence (13.3.3.1.2) is a better |
| 4299 | // conversion sequence than an ellipsis conversion sequence |
| 4300 | // (13.3.3.1.3). |
| 4301 | // |
| 4302 | // C++0x [over.best.ics]p10: |
| 4303 | // For the purpose of ranking implicit conversion sequences as |
| 4304 | // described in 13.3.3.2, the ambiguous conversion sequence is |
| 4305 | // treated as a user-defined sequence that is indistinguishable |
| 4306 | // from any other user-defined conversion sequence. |
| 4307 | |
| 4308 | // String literal to 'char *' conversion has been deprecated in C++03. It has |
| 4309 | // been removed from C++11. We still accept this conversion, if it happens at |
| 4310 | // the best viable function. Otherwise, this conversion is considered worse |
| 4311 | // than ellipsis conversion. Consider this as an extension; this is not in the |
| 4312 | // standard. For example: |
| 4313 | // |
| 4314 | // int &f(...); // #1 |
| 4315 | // void f(char*); // #2 |
| 4316 | // void g() { int &r = f("foo"); } |
| 4317 | // |
| 4318 | // In C++03, we pick #2 as the best viable function. |
| 4319 | // In C++11, we pick #1 as the best viable function, because ellipsis |
| 4320 | // conversion is better than string-literal to char* conversion (since there |
| 4321 | // is no such conversion in C++11). If there was no #1 at all or #1 couldn't |
| 4322 | // convert arguments, #2 would be the best viable function in C++11. |
| 4323 | // If the best viable function has this conversion, a warning will be issued |
| 4324 | // in C++03, or an ExtWarn (+SFINAE failure) will be issued in C++11. |
| 4325 | |
| 4326 | if (S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && |
| 4327 | hasDeprecatedStringLiteralToCharPtrConversion(ICS: ICS1) != |
| 4328 | hasDeprecatedStringLiteralToCharPtrConversion(ICS: ICS2) && |
| 4329 | // Ill-formedness must not differ |
| 4330 | ICS1.isBad() == ICS2.isBad()) |
| 4331 | return hasDeprecatedStringLiteralToCharPtrConversion(ICS: ICS1) |
| 4332 | ? ImplicitConversionSequence::Worse |
| 4333 | : ImplicitConversionSequence::Better; |
| 4334 | |
| 4335 | if (ICS1.getKindRank() < ICS2.getKindRank()) |
| 4336 | return ImplicitConversionSequence::Better; |
| 4337 | if (ICS2.getKindRank() < ICS1.getKindRank()) |
| 4338 | return ImplicitConversionSequence::Worse; |
| 4339 | |
| 4340 | // The following checks require both conversion sequences to be of |
| 4341 | // the same kind. |
| 4342 | if (ICS1.getKind() != ICS2.getKind()) |
| 4343 | return ImplicitConversionSequence::Indistinguishable; |
| 4344 | |
| 4345 | ImplicitConversionSequence::CompareKind Result = |
| 4346 | ImplicitConversionSequence::Indistinguishable; |
| 4347 | |
| 4348 | // Two implicit conversion sequences of the same form are |
| 4349 | // indistinguishable conversion sequences unless one of the |
| 4350 | // following rules apply: (C++ 13.3.3.2p3): |
| 4351 | |
| 4352 | // List-initialization sequence L1 is a better conversion sequence than |
| 4353 | // list-initialization sequence L2 if: |
| 4354 | // - L1 converts to std::initializer_list<X> for some X and L2 does not, or, |
| 4355 | // if not that, |
| 4356 | // — L1 and L2 convert to arrays of the same element type, and either the |
| 4357 | // number of elements n_1 initialized by L1 is less than the number of |
| 4358 | // elements n_2 initialized by L2, or (C++20) n_1 = n_2 and L2 converts to |
| 4359 | // an array of unknown bound and L1 does not, |
| 4360 | // even if one of the other rules in this paragraph would otherwise apply. |
| 4361 | if (!ICS1.isBad()) { |
| 4362 | bool StdInit1 = false, StdInit2 = false; |
| 4363 | if (ICS1.hasInitializerListContainerType()) |
| 4364 | StdInit1 = S.isStdInitializerList(Ty: ICS1.getInitializerListContainerType(), |
| 4365 | Element: nullptr); |
| 4366 | if (ICS2.hasInitializerListContainerType()) |
| 4367 | StdInit2 = S.isStdInitializerList(Ty: ICS2.getInitializerListContainerType(), |
| 4368 | Element: nullptr); |
| 4369 | if (StdInit1 != StdInit2) |
| 4370 | return StdInit1 ? ImplicitConversionSequence::Better |
| 4371 | : ImplicitConversionSequence::Worse; |
| 4372 | |
| 4373 | if (ICS1.hasInitializerListContainerType() && |
| 4374 | ICS2.hasInitializerListContainerType()) |
| 4375 | if (auto *CAT1 = S.Context.getAsConstantArrayType( |
| 4376 | T: ICS1.getInitializerListContainerType())) |
| 4377 | if (auto *CAT2 = S.Context.getAsConstantArrayType( |
| 4378 | T: ICS2.getInitializerListContainerType())) { |
| 4379 | if (S.Context.hasSameUnqualifiedType(T1: CAT1->getElementType(), |
| 4380 | T2: CAT2->getElementType())) { |
| 4381 | // Both to arrays of the same element type |
| 4382 | if (CAT1->getSize() != CAT2->getSize()) |
| 4383 | // Different sized, the smaller wins |
| 4384 | return CAT1->getSize().ult(RHS: CAT2->getSize()) |
| 4385 | ? ImplicitConversionSequence::Better |
| 4386 | : ImplicitConversionSequence::Worse; |
| 4387 | if (ICS1.isInitializerListOfIncompleteArray() != |
| 4388 | ICS2.isInitializerListOfIncompleteArray()) |
| 4389 | // One is incomplete, it loses |
| 4390 | return ICS2.isInitializerListOfIncompleteArray() |
| 4391 | ? ImplicitConversionSequence::Better |
| 4392 | : ImplicitConversionSequence::Worse; |
| 4393 | } |
| 4394 | } |
| 4395 | } |
| 4396 | |
| 4397 | if (ICS1.isStandard()) |
| 4398 | // Standard conversion sequence S1 is a better conversion sequence than |
| 4399 | // standard conversion sequence S2 if [...] |
| 4400 | Result = CompareStandardConversionSequences(S, Loc, |
| 4401 | SCS1: ICS1.Standard, SCS2: ICS2.Standard); |
| 4402 | else if (ICS1.isUserDefined()) { |
| 4403 | // User-defined conversion sequence U1 is a better conversion |
| 4404 | // sequence than another user-defined conversion sequence U2 if |
| 4405 | // they contain the same user-defined conversion function or |
| 4406 | // constructor and if the second standard conversion sequence of |
| 4407 | // U1 is better than the second standard conversion sequence of |
| 4408 | // U2 (C++ 13.3.3.2p3). |
| 4409 | if (ICS1.UserDefined.ConversionFunction == |
| 4410 | ICS2.UserDefined.ConversionFunction) |
| 4411 | Result = CompareStandardConversionSequences(S, Loc, |
| 4412 | SCS1: ICS1.UserDefined.After, |
| 4413 | SCS2: ICS2.UserDefined.After); |
| 4414 | else |
| 4415 | Result = compareConversionFunctions(S, |
| 4416 | Function1: ICS1.UserDefined.ConversionFunction, |
| 4417 | Function2: ICS2.UserDefined.ConversionFunction); |
| 4418 | } |
| 4419 | |
| 4420 | return Result; |
| 4421 | } |
| 4422 | |
| 4423 | // Per 13.3.3.2p3, compare the given standard conversion sequences to |
| 4424 | // determine if one is a proper subset of the other. |
| 4425 | static ImplicitConversionSequence::CompareKind |
| 4426 | compareStandardConversionSubsets(ASTContext &Context, |
| 4427 | const StandardConversionSequence& SCS1, |
| 4428 | const StandardConversionSequence& SCS2) { |
| 4429 | ImplicitConversionSequence::CompareKind Result |
| 4430 | = ImplicitConversionSequence::Indistinguishable; |
| 4431 | |
| 4432 | // the identity conversion sequence is considered to be a subsequence of |
| 4433 | // any non-identity conversion sequence |
| 4434 | if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) |
| 4435 | return ImplicitConversionSequence::Better; |
| 4436 | else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) |
| 4437 | return ImplicitConversionSequence::Worse; |
| 4438 | |
| 4439 | if (SCS1.Second != SCS2.Second) { |
| 4440 | if (SCS1.Second == ICK_Identity) |
| 4441 | Result = ImplicitConversionSequence::Better; |
| 4442 | else if (SCS2.Second == ICK_Identity) |
| 4443 | Result = ImplicitConversionSequence::Worse; |
| 4444 | else |
| 4445 | return ImplicitConversionSequence::Indistinguishable; |
| 4446 | } else if (!Context.hasSimilarType(T1: SCS1.getToType(Idx: 1), T2: SCS2.getToType(Idx: 1))) |
| 4447 | return ImplicitConversionSequence::Indistinguishable; |
| 4448 | |
| 4449 | if (SCS1.Third == SCS2.Third) { |
| 4450 | return Context.hasSameType(T1: SCS1.getToType(Idx: 2), T2: SCS2.getToType(Idx: 2))? Result |
| 4451 | : ImplicitConversionSequence::Indistinguishable; |
| 4452 | } |
| 4453 | |
| 4454 | if (SCS1.Third == ICK_Identity) |
| 4455 | return Result == ImplicitConversionSequence::Worse |
| 4456 | ? ImplicitConversionSequence::Indistinguishable |
| 4457 | : ImplicitConversionSequence::Better; |
| 4458 | |
| 4459 | if (SCS2.Third == ICK_Identity) |
| 4460 | return Result == ImplicitConversionSequence::Better |
| 4461 | ? ImplicitConversionSequence::Indistinguishable |
| 4462 | : ImplicitConversionSequence::Worse; |
| 4463 | |
| 4464 | return ImplicitConversionSequence::Indistinguishable; |
| 4465 | } |
| 4466 | |
| 4467 | /// Determine whether one of the given reference bindings is better |
| 4468 | /// than the other based on what kind of bindings they are. |
| 4469 | static bool |
| 4470 | isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, |
| 4471 | const StandardConversionSequence &SCS2) { |
| 4472 | // C++0x [over.ics.rank]p3b4: |
| 4473 | // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an |
| 4474 | // implicit object parameter of a non-static member function declared |
| 4475 | // without a ref-qualifier, and *either* S1 binds an rvalue reference |
| 4476 | // to an rvalue and S2 binds an lvalue reference *or S1 binds an |
| 4477 | // lvalue reference to a function lvalue and S2 binds an rvalue |
| 4478 | // reference*. |
| 4479 | // |
| 4480 | // FIXME: Rvalue references. We're going rogue with the above edits, |
| 4481 | // because the semantics in the current C++0x working paper (N3225 at the |
| 4482 | // time of this writing) break the standard definition of std::forward |
| 4483 | // and std::reference_wrapper when dealing with references to functions. |
| 4484 | // Proposed wording changes submitted to CWG for consideration. |
| 4485 | if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || |
| 4486 | SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) |
| 4487 | return false; |
| 4488 | |
| 4489 | return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && |
| 4490 | SCS2.IsLvalueReference) || |
| 4491 | (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && |
| 4492 | !SCS2.IsLvalueReference && SCS2.BindsToFunctionLvalue); |
| 4493 | } |
| 4494 | |
| 4495 | enum class FixedEnumPromotion { |
| 4496 | None, |
| 4497 | ToUnderlyingType, |
| 4498 | ToPromotedUnderlyingType |
| 4499 | }; |
| 4500 | |
| 4501 | /// Returns kind of fixed enum promotion the \a SCS uses. |
| 4502 | static FixedEnumPromotion |
| 4503 | getFixedEnumPromtion(Sema &S, const StandardConversionSequence &SCS) { |
| 4504 | |
| 4505 | if (SCS.Second != ICK_Integral_Promotion) |
| 4506 | return FixedEnumPromotion::None; |
| 4507 | |
| 4508 | QualType FromType = SCS.getFromType(); |
| 4509 | if (!FromType->isEnumeralType()) |
| 4510 | return FixedEnumPromotion::None; |
| 4511 | |
| 4512 | EnumDecl *Enum = FromType->castAs<EnumType>()->getDecl(); |
| 4513 | if (!Enum->isFixed()) |
| 4514 | return FixedEnumPromotion::None; |
| 4515 | |
| 4516 | QualType UnderlyingType = Enum->getIntegerType(); |
| 4517 | if (S.Context.hasSameType(T1: SCS.getToType(Idx: 1), T2: UnderlyingType)) |
| 4518 | return FixedEnumPromotion::ToUnderlyingType; |
| 4519 | |
| 4520 | return FixedEnumPromotion::ToPromotedUnderlyingType; |
| 4521 | } |
| 4522 | |
| 4523 | /// CompareStandardConversionSequences - Compare two standard |
| 4524 | /// conversion sequences to determine whether one is better than the |
| 4525 | /// other or if they are indistinguishable (C++ 13.3.3.2p3). |
| 4526 | static ImplicitConversionSequence::CompareKind |
| 4527 | CompareStandardConversionSequences(Sema &S, SourceLocation Loc, |
| 4528 | const StandardConversionSequence& SCS1, |
| 4529 | const StandardConversionSequence& SCS2) |
| 4530 | { |
| 4531 | // Standard conversion sequence S1 is a better conversion sequence |
| 4532 | // than standard conversion sequence S2 if (C++ 13.3.3.2p3): |
| 4533 | |
| 4534 | // -- S1 is a proper subsequence of S2 (comparing the conversion |
| 4535 | // sequences in the canonical form defined by 13.3.3.1.1, |
| 4536 | // excluding any Lvalue Transformation; the identity conversion |
| 4537 | // sequence is considered to be a subsequence of any |
| 4538 | // non-identity conversion sequence) or, if not that, |
| 4539 | if (ImplicitConversionSequence::CompareKind CK |
| 4540 | = compareStandardConversionSubsets(Context&: S.Context, SCS1, SCS2)) |
| 4541 | return CK; |
| 4542 | |
| 4543 | // -- the rank of S1 is better than the rank of S2 (by the rules |
| 4544 | // defined below), or, if not that, |
| 4545 | ImplicitConversionRank Rank1 = SCS1.getRank(); |
| 4546 | ImplicitConversionRank Rank2 = SCS2.getRank(); |
| 4547 | if (Rank1 < Rank2) |
| 4548 | return ImplicitConversionSequence::Better; |
| 4549 | else if (Rank2 < Rank1) |
| 4550 | return ImplicitConversionSequence::Worse; |
| 4551 | |
| 4552 | // (C++ 13.3.3.2p4): Two conversion sequences with the same rank |
| 4553 | // are indistinguishable unless one of the following rules |
| 4554 | // applies: |
| 4555 | |
| 4556 | // A conversion that is not a conversion of a pointer, or |
| 4557 | // pointer to member, to bool is better than another conversion |
| 4558 | // that is such a conversion. |
| 4559 | if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) |
| 4560 | return SCS2.isPointerConversionToBool() |
| 4561 | ? ImplicitConversionSequence::Better |
| 4562 | : ImplicitConversionSequence::Worse; |
| 4563 | |
| 4564 | // C++14 [over.ics.rank]p4b2: |
| 4565 | // This is retroactively applied to C++11 by CWG 1601. |
| 4566 | // |
| 4567 | // A conversion that promotes an enumeration whose underlying type is fixed |
| 4568 | // to its underlying type is better than one that promotes to the promoted |
| 4569 | // underlying type, if the two are different. |
| 4570 | FixedEnumPromotion FEP1 = getFixedEnumPromtion(S, SCS: SCS1); |
| 4571 | FixedEnumPromotion FEP2 = getFixedEnumPromtion(S, SCS: SCS2); |
| 4572 | if (FEP1 != FixedEnumPromotion::None && FEP2 != FixedEnumPromotion::None && |
| 4573 | FEP1 != FEP2) |
| 4574 | return FEP1 == FixedEnumPromotion::ToUnderlyingType |
| 4575 | ? ImplicitConversionSequence::Better |
| 4576 | : ImplicitConversionSequence::Worse; |
| 4577 | |
| 4578 | // C++ [over.ics.rank]p4b2: |
| 4579 | // |
| 4580 | // If class B is derived directly or indirectly from class A, |
| 4581 | // conversion of B* to A* is better than conversion of B* to |
| 4582 | // void*, and conversion of A* to void* is better than conversion |
| 4583 | // of B* to void*. |
| 4584 | bool SCS1ConvertsToVoid |
| 4585 | = SCS1.isPointerConversionToVoidPointer(Context&: S.Context); |
| 4586 | bool SCS2ConvertsToVoid |
| 4587 | = SCS2.isPointerConversionToVoidPointer(Context&: S.Context); |
| 4588 | if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { |
| 4589 | // Exactly one of the conversion sequences is a conversion to |
| 4590 | // a void pointer; it's the worse conversion. |
| 4591 | return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better |
| 4592 | : ImplicitConversionSequence::Worse; |
| 4593 | } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { |
| 4594 | // Neither conversion sequence converts to a void pointer; compare |
| 4595 | // their derived-to-base conversions. |
| 4596 | if (ImplicitConversionSequence::CompareKind DerivedCK |
| 4597 | = CompareDerivedToBaseConversions(S, Loc, SCS1, SCS2)) |
| 4598 | return DerivedCK; |
| 4599 | } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && |
| 4600 | !S.Context.hasSameType(T1: SCS1.getFromType(), T2: SCS2.getFromType())) { |
| 4601 | // Both conversion sequences are conversions to void |
| 4602 | // pointers. Compare the source types to determine if there's an |
| 4603 | // inheritance relationship in their sources. |
| 4604 | QualType FromType1 = SCS1.getFromType(); |
| 4605 | QualType FromType2 = SCS2.getFromType(); |
| 4606 | |
| 4607 | // Adjust the types we're converting from via the array-to-pointer |
| 4608 | // conversion, if we need to. |
| 4609 | if (SCS1.First == ICK_Array_To_Pointer) |
| 4610 | FromType1 = S.Context.getArrayDecayedType(T: FromType1); |
| 4611 | if (SCS2.First == ICK_Array_To_Pointer) |
| 4612 | FromType2 = S.Context.getArrayDecayedType(T: FromType2); |
| 4613 | |
| 4614 | QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); |
| 4615 | QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); |
| 4616 | |
| 4617 | if (S.IsDerivedFrom(Loc, Derived: FromPointee2, Base: FromPointee1)) |
| 4618 | return ImplicitConversionSequence::Better; |
| 4619 | else if (S.IsDerivedFrom(Loc, Derived: FromPointee1, Base: FromPointee2)) |
| 4620 | return ImplicitConversionSequence::Worse; |
| 4621 | |
| 4622 | // Objective-C++: If one interface is more specific than the |
| 4623 | // other, it is the better one. |
| 4624 | const ObjCObjectPointerType* FromObjCPtr1 |
| 4625 | = FromType1->getAs<ObjCObjectPointerType>(); |
| 4626 | const ObjCObjectPointerType* FromObjCPtr2 |
| 4627 | = FromType2->getAs<ObjCObjectPointerType>(); |
| 4628 | if (FromObjCPtr1 && FromObjCPtr2) { |
| 4629 | bool AssignLeft = S.Context.canAssignObjCInterfaces(LHSOPT: FromObjCPtr1, |
| 4630 | RHSOPT: FromObjCPtr2); |
| 4631 | bool AssignRight = S.Context.canAssignObjCInterfaces(LHSOPT: FromObjCPtr2, |
| 4632 | RHSOPT: FromObjCPtr1); |
| 4633 | if (AssignLeft != AssignRight) { |
| 4634 | return AssignLeft? ImplicitConversionSequence::Better |
| 4635 | : ImplicitConversionSequence::Worse; |
| 4636 | } |
| 4637 | } |
| 4638 | } |
| 4639 | |
| 4640 | if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { |
| 4641 | // Check for a better reference binding based on the kind of bindings. |
| 4642 | if (isBetterReferenceBindingKind(SCS1, SCS2)) |
| 4643 | return ImplicitConversionSequence::Better; |
| 4644 | else if (isBetterReferenceBindingKind(SCS1: SCS2, SCS2: SCS1)) |
| 4645 | return ImplicitConversionSequence::Worse; |
| 4646 | } |
| 4647 | |
| 4648 | // Compare based on qualification conversions (C++ 13.3.3.2p3, |
| 4649 | // bullet 3). |
| 4650 | if (ImplicitConversionSequence::CompareKind QualCK |
| 4651 | = CompareQualificationConversions(S, SCS1, SCS2)) |
| 4652 | return QualCK; |
| 4653 | |
| 4654 | if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { |
| 4655 | // C++ [over.ics.rank]p3b4: |
| 4656 | // -- S1 and S2 are reference bindings (8.5.3), and the types to |
| 4657 | // which the references refer are the same type except for |
| 4658 | // top-level cv-qualifiers, and the type to which the reference |
| 4659 | // initialized by S2 refers is more cv-qualified than the type |
| 4660 | // to which the reference initialized by S1 refers. |
| 4661 | QualType T1 = SCS1.getToType(Idx: 2); |
| 4662 | QualType T2 = SCS2.getToType(Idx: 2); |
| 4663 | T1 = S.Context.getCanonicalType(T: T1); |
| 4664 | T2 = S.Context.getCanonicalType(T: T2); |
| 4665 | Qualifiers T1Quals, T2Quals; |
| 4666 | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T: T1, Quals&: T1Quals); |
| 4667 | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T: T2, Quals&: T2Quals); |
| 4668 | if (UnqualT1 == UnqualT2) { |
| 4669 | // Objective-C++ ARC: If the references refer to objects with different |
| 4670 | // lifetimes, prefer bindings that don't change lifetime. |
| 4671 | if (SCS1.ObjCLifetimeConversionBinding != |
| 4672 | SCS2.ObjCLifetimeConversionBinding) { |
| 4673 | return SCS1.ObjCLifetimeConversionBinding |
| 4674 | ? ImplicitConversionSequence::Worse |
| 4675 | : ImplicitConversionSequence::Better; |
| 4676 | } |
| 4677 | |
| 4678 | // If the type is an array type, promote the element qualifiers to the |
| 4679 | // type for comparison. |
| 4680 | if (isa<ArrayType>(Val: T1) && T1Quals) |
| 4681 | T1 = S.Context.getQualifiedType(T: UnqualT1, Qs: T1Quals); |
| 4682 | if (isa<ArrayType>(Val: T2) && T2Quals) |
| 4683 | T2 = S.Context.getQualifiedType(T: UnqualT2, Qs: T2Quals); |
| 4684 | if (T2.isMoreQualifiedThan(other: T1, Ctx: S.getASTContext())) |
| 4685 | return ImplicitConversionSequence::Better; |
| 4686 | if (T1.isMoreQualifiedThan(other: T2, Ctx: S.getASTContext())) |
| 4687 | return ImplicitConversionSequence::Worse; |
| 4688 | } |
| 4689 | } |
| 4690 | |
| 4691 | // In Microsoft mode (below 19.28), prefer an integral conversion to a |
| 4692 | // floating-to-integral conversion if the integral conversion |
| 4693 | // is between types of the same size. |
| 4694 | // For example: |
| 4695 | // void f(float); |
| 4696 | // void f(int); |
| 4697 | // int main { |
| 4698 | // long a; |
| 4699 | // f(a); |
| 4700 | // } |
| 4701 | // Here, MSVC will call f(int) instead of generating a compile error |
| 4702 | // as clang will do in standard mode. |
| 4703 | if (S.getLangOpts().MSVCCompat && |
| 4704 | !S.getLangOpts().isCompatibleWithMSVC(MajorVersion: LangOptions::MSVC2019_8) && |
| 4705 | SCS1.Second == ICK_Integral_Conversion && |
| 4706 | SCS2.Second == ICK_Floating_Integral && |
| 4707 | S.Context.getTypeSize(T: SCS1.getFromType()) == |
| 4708 | S.Context.getTypeSize(T: SCS1.getToType(Idx: 2))) |
| 4709 | return ImplicitConversionSequence::Better; |
| 4710 | |
| 4711 | // Prefer a compatible vector conversion over a lax vector conversion |
| 4712 | // For example: |
| 4713 | // |
| 4714 | // typedef float __v4sf __attribute__((__vector_size__(16))); |
| 4715 | // void f(vector float); |
| 4716 | // void f(vector signed int); |
| 4717 | // int main() { |
| 4718 | // __v4sf a; |
| 4719 | // f(a); |
| 4720 | // } |
| 4721 | // Here, we'd like to choose f(vector float) and not |
| 4722 | // report an ambiguous call error |
| 4723 | if (SCS1.Second == ICK_Vector_Conversion && |
| 4724 | SCS2.Second == ICK_Vector_Conversion) { |
| 4725 | bool SCS1IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( |
| 4726 | FirstVec: SCS1.getFromType(), SecondVec: SCS1.getToType(Idx: 2)); |
| 4727 | bool SCS2IsCompatibleVectorConversion = S.Context.areCompatibleVectorTypes( |
| 4728 | FirstVec: SCS2.getFromType(), SecondVec: SCS2.getToType(Idx: 2)); |
| 4729 | |
| 4730 | if (SCS1IsCompatibleVectorConversion != SCS2IsCompatibleVectorConversion) |
| 4731 | return SCS1IsCompatibleVectorConversion |
| 4732 | ? ImplicitConversionSequence::Better |
| 4733 | : ImplicitConversionSequence::Worse; |
| 4734 | } |
| 4735 | |
| 4736 | if (SCS1.Second == ICK_SVE_Vector_Conversion && |
| 4737 | SCS2.Second == ICK_SVE_Vector_Conversion) { |
| 4738 | bool SCS1IsCompatibleSVEVectorConversion = |
| 4739 | S.ARM().areCompatibleSveTypes(FirstType: SCS1.getFromType(), SecondType: SCS1.getToType(Idx: 2)); |
| 4740 | bool SCS2IsCompatibleSVEVectorConversion = |
| 4741 | S.ARM().areCompatibleSveTypes(FirstType: SCS2.getFromType(), SecondType: SCS2.getToType(Idx: 2)); |
| 4742 | |
| 4743 | if (SCS1IsCompatibleSVEVectorConversion != |
| 4744 | SCS2IsCompatibleSVEVectorConversion) |
| 4745 | return SCS1IsCompatibleSVEVectorConversion |
| 4746 | ? ImplicitConversionSequence::Better |
| 4747 | : ImplicitConversionSequence::Worse; |
| 4748 | } |
| 4749 | |
| 4750 | if (SCS1.Second == ICK_RVV_Vector_Conversion && |
| 4751 | SCS2.Second == ICK_RVV_Vector_Conversion) { |
| 4752 | bool SCS1IsCompatibleRVVVectorConversion = |
| 4753 | S.Context.areCompatibleRVVTypes(FirstType: SCS1.getFromType(), SecondType: SCS1.getToType(Idx: 2)); |
| 4754 | bool SCS2IsCompatibleRVVVectorConversion = |
| 4755 | S.Context.areCompatibleRVVTypes(FirstType: SCS2.getFromType(), SecondType: SCS2.getToType(Idx: 2)); |
| 4756 | |
| 4757 | if (SCS1IsCompatibleRVVVectorConversion != |
| 4758 | SCS2IsCompatibleRVVVectorConversion) |
| 4759 | return SCS1IsCompatibleRVVVectorConversion |
| 4760 | ? ImplicitConversionSequence::Better |
| 4761 | : ImplicitConversionSequence::Worse; |
| 4762 | } |
| 4763 | return ImplicitConversionSequence::Indistinguishable; |
| 4764 | } |
| 4765 | |
| 4766 | /// CompareQualificationConversions - Compares two standard conversion |
| 4767 | /// sequences to determine whether they can be ranked based on their |
| 4768 | /// qualification conversions (C++ 13.3.3.2p3 bullet 3). |
| 4769 | static ImplicitConversionSequence::CompareKind |
| 4770 | CompareQualificationConversions(Sema &S, |
| 4771 | const StandardConversionSequence& SCS1, |
| 4772 | const StandardConversionSequence& SCS2) { |
| 4773 | // C++ [over.ics.rank]p3: |
| 4774 | // -- S1 and S2 differ only in their qualification conversion and |
| 4775 | // yield similar types T1 and T2 (C++ 4.4), respectively, [...] |
| 4776 | // [C++98] |
| 4777 | // [...] and the cv-qualification signature of type T1 is a proper subset |
| 4778 | // of the cv-qualification signature of type T2, and S1 is not the |
| 4779 | // deprecated string literal array-to-pointer conversion (4.2). |
| 4780 | // [C++2a] |
| 4781 | // [...] where T1 can be converted to T2 by a qualification conversion. |
| 4782 | if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || |
| 4783 | SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) |
| 4784 | return ImplicitConversionSequence::Indistinguishable; |
| 4785 | |
| 4786 | // FIXME: the example in the standard doesn't use a qualification |
| 4787 | // conversion (!) |
| 4788 | QualType T1 = SCS1.getToType(Idx: 2); |
| 4789 | QualType T2 = SCS2.getToType(Idx: 2); |
| 4790 | T1 = S.Context.getCanonicalType(T: T1); |
| 4791 | T2 = S.Context.getCanonicalType(T: T2); |
| 4792 | assert(!T1->isReferenceType() && !T2->isReferenceType()); |
| 4793 | Qualifiers T1Quals, T2Quals; |
| 4794 | QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T: T1, Quals&: T1Quals); |
| 4795 | QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T: T2, Quals&: T2Quals); |
| 4796 | |
| 4797 | // If the types are the same, we won't learn anything by unwrapping |
| 4798 | // them. |
| 4799 | if (UnqualT1 == UnqualT2) |
| 4800 | return ImplicitConversionSequence::Indistinguishable; |
| 4801 | |
| 4802 | // Don't ever prefer a standard conversion sequence that uses the deprecated |
| 4803 | // string literal array to pointer conversion. |
| 4804 | bool CanPick1 = !SCS1.DeprecatedStringLiteralToCharPtr; |
| 4805 | bool CanPick2 = !SCS2.DeprecatedStringLiteralToCharPtr; |
| 4806 | |
| 4807 | // Objective-C++ ARC: |
| 4808 | // Prefer qualification conversions not involving a change in lifetime |
| 4809 | // to qualification conversions that do change lifetime. |
| 4810 | if (SCS1.QualificationIncludesObjCLifetime && |
| 4811 | !SCS2.QualificationIncludesObjCLifetime) |
| 4812 | CanPick1 = false; |
| 4813 | if (SCS2.QualificationIncludesObjCLifetime && |
| 4814 | !SCS1.QualificationIncludesObjCLifetime) |
| 4815 | CanPick2 = false; |
| 4816 | |
| 4817 | bool ObjCLifetimeConversion; |
| 4818 | if (CanPick1 && |
| 4819 | !S.IsQualificationConversion(FromType: T1, ToType: T2, CStyle: false, ObjCLifetimeConversion)) |
| 4820 | CanPick1 = false; |
| 4821 | // FIXME: In Objective-C ARC, we can have qualification conversions in both |
| 4822 | // directions, so we can't short-cut this second check in general. |
| 4823 | if (CanPick2 && |
| 4824 | !S.IsQualificationConversion(FromType: T2, ToType: T1, CStyle: false, ObjCLifetimeConversion)) |
| 4825 | CanPick2 = false; |
| 4826 | |
| 4827 | if (CanPick1 != CanPick2) |
| 4828 | return CanPick1 ? ImplicitConversionSequence::Better |
| 4829 | : ImplicitConversionSequence::Worse; |
| 4830 | return ImplicitConversionSequence::Indistinguishable; |
| 4831 | } |
| 4832 | |
| 4833 | /// CompareDerivedToBaseConversions - Compares two standard conversion |
| 4834 | /// sequences to determine whether they can be ranked based on their |
| 4835 | /// various kinds of derived-to-base conversions (C++ |
| 4836 | /// [over.ics.rank]p4b3). As part of these checks, we also look at |
| 4837 | /// conversions between Objective-C interface types. |
| 4838 | static ImplicitConversionSequence::CompareKind |
| 4839 | CompareDerivedToBaseConversions(Sema &S, SourceLocation Loc, |
| 4840 | const StandardConversionSequence& SCS1, |
| 4841 | const StandardConversionSequence& SCS2) { |
| 4842 | QualType FromType1 = SCS1.getFromType(); |
| 4843 | QualType ToType1 = SCS1.getToType(Idx: 1); |
| 4844 | QualType FromType2 = SCS2.getFromType(); |
| 4845 | QualType ToType2 = SCS2.getToType(Idx: 1); |
| 4846 | |
| 4847 | // Adjust the types we're converting from via the array-to-pointer |
| 4848 | // conversion, if we need to. |
| 4849 | if (SCS1.First == ICK_Array_To_Pointer) |
| 4850 | FromType1 = S.Context.getArrayDecayedType(T: FromType1); |
| 4851 | if (SCS2.First == ICK_Array_To_Pointer) |
| 4852 | FromType2 = S.Context.getArrayDecayedType(T: FromType2); |
| 4853 | |
| 4854 | // Canonicalize all of the types. |
| 4855 | FromType1 = S.Context.getCanonicalType(T: FromType1); |
| 4856 | ToType1 = S.Context.getCanonicalType(T: ToType1); |
| 4857 | FromType2 = S.Context.getCanonicalType(T: FromType2); |
| 4858 | ToType2 = S.Context.getCanonicalType(T: ToType2); |
| 4859 | |
| 4860 | // C++ [over.ics.rank]p4b3: |
| 4861 | // |
| 4862 | // If class B is derived directly or indirectly from class A and |
| 4863 | // class C is derived directly or indirectly from B, |
| 4864 | // |
| 4865 | // Compare based on pointer conversions. |
| 4866 | if (SCS1.Second == ICK_Pointer_Conversion && |
| 4867 | SCS2.Second == ICK_Pointer_Conversion && |
| 4868 | /*FIXME: Remove if Objective-C id conversions get their own rank*/ |
| 4869 | FromType1->isPointerType() && FromType2->isPointerType() && |
| 4870 | ToType1->isPointerType() && ToType2->isPointerType()) { |
| 4871 | QualType FromPointee1 = |
| 4872 | FromType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| 4873 | QualType ToPointee1 = |
| 4874 | ToType1->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| 4875 | QualType FromPointee2 = |
| 4876 | FromType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| 4877 | QualType ToPointee2 = |
| 4878 | ToType2->castAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| 4879 | |
| 4880 | // -- conversion of C* to B* is better than conversion of C* to A*, |
| 4881 | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { |
| 4882 | if (S.IsDerivedFrom(Loc, Derived: ToPointee1, Base: ToPointee2)) |
| 4883 | return ImplicitConversionSequence::Better; |
| 4884 | else if (S.IsDerivedFrom(Loc, Derived: ToPointee2, Base: ToPointee1)) |
| 4885 | return ImplicitConversionSequence::Worse; |
| 4886 | } |
| 4887 | |
| 4888 | // -- conversion of B* to A* is better than conversion of C* to A*, |
| 4889 | if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { |
| 4890 | if (S.IsDerivedFrom(Loc, Derived: FromPointee2, Base: FromPointee1)) |
| 4891 | return ImplicitConversionSequence::Better; |
| 4892 | else if (S.IsDerivedFrom(Loc, Derived: FromPointee1, Base: FromPointee2)) |
| 4893 | return ImplicitConversionSequence::Worse; |
| 4894 | } |
| 4895 | } else if (SCS1.Second == ICK_Pointer_Conversion && |
| 4896 | SCS2.Second == ICK_Pointer_Conversion) { |
| 4897 | const ObjCObjectPointerType *FromPtr1 |
| 4898 | = FromType1->getAs<ObjCObjectPointerType>(); |
| 4899 | const ObjCObjectPointerType *FromPtr2 |
| 4900 | = FromType2->getAs<ObjCObjectPointerType>(); |
| 4901 | const ObjCObjectPointerType *ToPtr1 |
| 4902 | = ToType1->getAs<ObjCObjectPointerType>(); |
| 4903 | const ObjCObjectPointerType *ToPtr2 |
| 4904 | = ToType2->getAs<ObjCObjectPointerType>(); |
| 4905 | |
| 4906 | if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { |
| 4907 | // Apply the same conversion ranking rules for Objective-C pointer types |
| 4908 | // that we do for C++ pointers to class types. However, we employ the |
| 4909 | // Objective-C pseudo-subtyping relationship used for assignment of |
| 4910 | // Objective-C pointer types. |
| 4911 | bool FromAssignLeft |
| 4912 | = S.Context.canAssignObjCInterfaces(LHSOPT: FromPtr1, RHSOPT: FromPtr2); |
| 4913 | bool FromAssignRight |
| 4914 | = S.Context.canAssignObjCInterfaces(LHSOPT: FromPtr2, RHSOPT: FromPtr1); |
| 4915 | bool ToAssignLeft |
| 4916 | = S.Context.canAssignObjCInterfaces(LHSOPT: ToPtr1, RHSOPT: ToPtr2); |
| 4917 | bool ToAssignRight |
| 4918 | = S.Context.canAssignObjCInterfaces(LHSOPT: ToPtr2, RHSOPT: ToPtr1); |
| 4919 | |
| 4920 | // A conversion to an a non-id object pointer type or qualified 'id' |
| 4921 | // type is better than a conversion to 'id'. |
| 4922 | if (ToPtr1->isObjCIdType() && |
| 4923 | (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) |
| 4924 | return ImplicitConversionSequence::Worse; |
| 4925 | if (ToPtr2->isObjCIdType() && |
| 4926 | (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) |
| 4927 | return ImplicitConversionSequence::Better; |
| 4928 | |
| 4929 | // A conversion to a non-id object pointer type is better than a |
| 4930 | // conversion to a qualified 'id' type |
| 4931 | if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) |
| 4932 | return ImplicitConversionSequence::Worse; |
| 4933 | if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) |
| 4934 | return ImplicitConversionSequence::Better; |
| 4935 | |
| 4936 | // A conversion to an a non-Class object pointer type or qualified 'Class' |
| 4937 | // type is better than a conversion to 'Class'. |
| 4938 | if (ToPtr1->isObjCClassType() && |
| 4939 | (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) |
| 4940 | return ImplicitConversionSequence::Worse; |
| 4941 | if (ToPtr2->isObjCClassType() && |
| 4942 | (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) |
| 4943 | return ImplicitConversionSequence::Better; |
| 4944 | |
| 4945 | // A conversion to a non-Class object pointer type is better than a |
| 4946 | // conversion to a qualified 'Class' type. |
| 4947 | if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) |
| 4948 | return ImplicitConversionSequence::Worse; |
| 4949 | if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) |
| 4950 | return ImplicitConversionSequence::Better; |
| 4951 | |
| 4952 | // -- "conversion of C* to B* is better than conversion of C* to A*," |
| 4953 | if (S.Context.hasSameType(T1: FromType1, T2: FromType2) && |
| 4954 | !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && |
| 4955 | (ToAssignLeft != ToAssignRight)) { |
| 4956 | if (FromPtr1->isSpecialized()) { |
| 4957 | // "conversion of B<A> * to B * is better than conversion of B * to |
| 4958 | // C *. |
| 4959 | bool IsFirstSame = |
| 4960 | FromPtr1->getInterfaceDecl() == ToPtr1->getInterfaceDecl(); |
| 4961 | bool IsSecondSame = |
| 4962 | FromPtr1->getInterfaceDecl() == ToPtr2->getInterfaceDecl(); |
| 4963 | if (IsFirstSame) { |
| 4964 | if (!IsSecondSame) |
| 4965 | return ImplicitConversionSequence::Better; |
| 4966 | } else if (IsSecondSame) |
| 4967 | return ImplicitConversionSequence::Worse; |
| 4968 | } |
| 4969 | return ToAssignLeft? ImplicitConversionSequence::Worse |
| 4970 | : ImplicitConversionSequence::Better; |
| 4971 | } |
| 4972 | |
| 4973 | // -- "conversion of B* to A* is better than conversion of C* to A*," |
| 4974 | if (S.Context.hasSameUnqualifiedType(T1: ToType1, T2: ToType2) && |
| 4975 | (FromAssignLeft != FromAssignRight)) |
| 4976 | return FromAssignLeft? ImplicitConversionSequence::Better |
| 4977 | : ImplicitConversionSequence::Worse; |
| 4978 | } |
| 4979 | } |
| 4980 | |
| 4981 | // Ranking of member-pointer types. |
| 4982 | if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && |
| 4983 | FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && |
| 4984 | ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { |
| 4985 | const auto *FromMemPointer1 = FromType1->castAs<MemberPointerType>(); |
| 4986 | const auto *ToMemPointer1 = ToType1->castAs<MemberPointerType>(); |
| 4987 | const auto *FromMemPointer2 = FromType2->castAs<MemberPointerType>(); |
| 4988 | const auto *ToMemPointer2 = ToType2->castAs<MemberPointerType>(); |
| 4989 | CXXRecordDecl *FromPointee1 = FromMemPointer1->getMostRecentCXXRecordDecl(); |
| 4990 | CXXRecordDecl *ToPointee1 = ToMemPointer1->getMostRecentCXXRecordDecl(); |
| 4991 | CXXRecordDecl *FromPointee2 = FromMemPointer2->getMostRecentCXXRecordDecl(); |
| 4992 | CXXRecordDecl *ToPointee2 = ToMemPointer2->getMostRecentCXXRecordDecl(); |
| 4993 | // conversion of A::* to B::* is better than conversion of A::* to C::*, |
| 4994 | if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { |
| 4995 | if (S.IsDerivedFrom(Loc, Derived: ToPointee1, Base: ToPointee2)) |
| 4996 | return ImplicitConversionSequence::Worse; |
| 4997 | else if (S.IsDerivedFrom(Loc, Derived: ToPointee2, Base: ToPointee1)) |
| 4998 | return ImplicitConversionSequence::Better; |
| 4999 | } |
| 5000 | // conversion of B::* to C::* is better than conversion of A::* to C::* |
| 5001 | if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { |
| 5002 | if (S.IsDerivedFrom(Loc, Derived: FromPointee1, Base: FromPointee2)) |
| 5003 | return ImplicitConversionSequence::Better; |
| 5004 | else if (S.IsDerivedFrom(Loc, Derived: FromPointee2, Base: FromPointee1)) |
| 5005 | return ImplicitConversionSequence::Worse; |
| 5006 | } |
| 5007 | } |
| 5008 | |
| 5009 | if (SCS1.Second == ICK_Derived_To_Base) { |
| 5010 | // -- conversion of C to B is better than conversion of C to A, |
| 5011 | // -- binding of an expression of type C to a reference of type |
| 5012 | // B& is better than binding an expression of type C to a |
| 5013 | // reference of type A&, |
| 5014 | if (S.Context.hasSameUnqualifiedType(T1: FromType1, T2: FromType2) && |
| 5015 | !S.Context.hasSameUnqualifiedType(T1: ToType1, T2: ToType2)) { |
| 5016 | if (S.IsDerivedFrom(Loc, Derived: ToType1, Base: ToType2)) |
| 5017 | return ImplicitConversionSequence::Better; |
| 5018 | else if (S.IsDerivedFrom(Loc, Derived: ToType2, Base: ToType1)) |
| 5019 | return ImplicitConversionSequence::Worse; |
| 5020 | } |
| 5021 | |
| 5022 | // -- conversion of B to A is better than conversion of C to A. |
| 5023 | // -- binding of an expression of type B to a reference of type |
| 5024 | // A& is better than binding an expression of type C to a |
| 5025 | // reference of type A&, |
| 5026 | if (!S.Context.hasSameUnqualifiedType(T1: FromType1, T2: FromType2) && |
| 5027 | S.Context.hasSameUnqualifiedType(T1: ToType1, T2: ToType2)) { |
| 5028 | if (S.IsDerivedFrom(Loc, Derived: FromType2, Base: FromType1)) |
| 5029 | return ImplicitConversionSequence::Better; |
| 5030 | else if (S.IsDerivedFrom(Loc, Derived: FromType1, Base: FromType2)) |
| 5031 | return ImplicitConversionSequence::Worse; |
| 5032 | } |
| 5033 | } |
| 5034 | |
| 5035 | return ImplicitConversionSequence::Indistinguishable; |
| 5036 | } |
| 5037 | |
| 5038 | static QualType withoutUnaligned(ASTContext &Ctx, QualType T) { |
| 5039 | if (!T.getQualifiers().hasUnaligned()) |
| 5040 | return T; |
| 5041 | |
| 5042 | Qualifiers Q; |
| 5043 | T = Ctx.getUnqualifiedArrayType(T, Quals&: Q); |
| 5044 | Q.removeUnaligned(); |
| 5045 | return Ctx.getQualifiedType(T, Qs: Q); |
| 5046 | } |
| 5047 | |
| 5048 | Sema::ReferenceCompareResult |
| 5049 | Sema::CompareReferenceRelationship(SourceLocation Loc, |
| 5050 | QualType OrigT1, QualType OrigT2, |
| 5051 | ReferenceConversions *ConvOut) { |
| 5052 | assert(!OrigT1->isReferenceType() && |
| 5053 | "T1 must be the pointee type of the reference type" ); |
| 5054 | assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type" ); |
| 5055 | |
| 5056 | QualType T1 = Context.getCanonicalType(T: OrigT1); |
| 5057 | QualType T2 = Context.getCanonicalType(T: OrigT2); |
| 5058 | Qualifiers T1Quals, T2Quals; |
| 5059 | QualType UnqualT1 = Context.getUnqualifiedArrayType(T: T1, Quals&: T1Quals); |
| 5060 | QualType UnqualT2 = Context.getUnqualifiedArrayType(T: T2, Quals&: T2Quals); |
| 5061 | |
| 5062 | ReferenceConversions ConvTmp; |
| 5063 | ReferenceConversions &Conv = ConvOut ? *ConvOut : ConvTmp; |
| 5064 | Conv = ReferenceConversions(); |
| 5065 | |
| 5066 | // C++2a [dcl.init.ref]p4: |
| 5067 | // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is |
| 5068 | // reference-related to "cv2 T2" if T1 is similar to T2, or |
| 5069 | // T1 is a base class of T2. |
| 5070 | // "cv1 T1" is reference-compatible with "cv2 T2" if |
| 5071 | // a prvalue of type "pointer to cv2 T2" can be converted to the type |
| 5072 | // "pointer to cv1 T1" via a standard conversion sequence. |
| 5073 | |
| 5074 | // Check for standard conversions we can apply to pointers: derived-to-base |
| 5075 | // conversions, ObjC pointer conversions, and function pointer conversions. |
| 5076 | // (Qualification conversions are checked last.) |
| 5077 | if (UnqualT1 == UnqualT2) { |
| 5078 | // Nothing to do. |
| 5079 | } else if (isCompleteType(Loc, T: OrigT2) && |
| 5080 | IsDerivedFrom(Loc, Derived: UnqualT2, Base: UnqualT1)) |
| 5081 | Conv |= ReferenceConversions::DerivedToBase; |
| 5082 | else if (UnqualT1->isObjCObjectOrInterfaceType() && |
| 5083 | UnqualT2->isObjCObjectOrInterfaceType() && |
| 5084 | Context.canBindObjCObjectType(To: UnqualT1, From: UnqualT2)) |
| 5085 | Conv |= ReferenceConversions::ObjC; |
| 5086 | else if (UnqualT2->isFunctionType() && |
| 5087 | IsFunctionConversion(FromType: UnqualT2, ToType: UnqualT1)) { |
| 5088 | Conv |= ReferenceConversions::Function; |
| 5089 | // No need to check qualifiers; function types don't have them. |
| 5090 | return Ref_Compatible; |
| 5091 | } |
| 5092 | bool ConvertedReferent = Conv != 0; |
| 5093 | |
| 5094 | // We can have a qualification conversion. Compute whether the types are |
| 5095 | // similar at the same time. |
| 5096 | bool PreviousToQualsIncludeConst = true; |
| 5097 | bool TopLevel = true; |
| 5098 | do { |
| 5099 | if (T1 == T2) |
| 5100 | break; |
| 5101 | |
| 5102 | // We will need a qualification conversion. |
| 5103 | Conv |= ReferenceConversions::Qualification; |
| 5104 | |
| 5105 | // Track whether we performed a qualification conversion anywhere other |
| 5106 | // than the top level. This matters for ranking reference bindings in |
| 5107 | // overload resolution. |
| 5108 | if (!TopLevel) |
| 5109 | Conv |= ReferenceConversions::NestedQualification; |
| 5110 | |
| 5111 | // MS compiler ignores __unaligned qualifier for references; do the same. |
| 5112 | T1 = withoutUnaligned(Ctx&: Context, T: T1); |
| 5113 | T2 = withoutUnaligned(Ctx&: Context, T: T2); |
| 5114 | |
| 5115 | // If we find a qualifier mismatch, the types are not reference-compatible, |
| 5116 | // but are still be reference-related if they're similar. |
| 5117 | bool ObjCLifetimeConversion = false; |
| 5118 | if (!isQualificationConversionStep(FromType: T2, ToType: T1, /*CStyle=*/false, IsTopLevel: TopLevel, |
| 5119 | PreviousToQualsIncludeConst, |
| 5120 | ObjCLifetimeConversion, Ctx: getASTContext())) |
| 5121 | return (ConvertedReferent || Context.hasSimilarType(T1, T2)) |
| 5122 | ? Ref_Related |
| 5123 | : Ref_Incompatible; |
| 5124 | |
| 5125 | // FIXME: Should we track this for any level other than the first? |
| 5126 | if (ObjCLifetimeConversion) |
| 5127 | Conv |= ReferenceConversions::ObjCLifetime; |
| 5128 | |
| 5129 | TopLevel = false; |
| 5130 | } while (Context.UnwrapSimilarTypes(T1, T2)); |
| 5131 | |
| 5132 | // At this point, if the types are reference-related, we must either have the |
| 5133 | // same inner type (ignoring qualifiers), or must have already worked out how |
| 5134 | // to convert the referent. |
| 5135 | return (ConvertedReferent || Context.hasSameUnqualifiedType(T1, T2)) |
| 5136 | ? Ref_Compatible |
| 5137 | : Ref_Incompatible; |
| 5138 | } |
| 5139 | |
| 5140 | /// Look for a user-defined conversion to a value reference-compatible |
| 5141 | /// with DeclType. Return true if something definite is found. |
| 5142 | static bool |
| 5143 | FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, |
| 5144 | QualType DeclType, SourceLocation DeclLoc, |
| 5145 | Expr *Init, QualType T2, bool AllowRvalues, |
| 5146 | bool AllowExplicit) { |
| 5147 | assert(T2->isRecordType() && "Can only find conversions of record types." ); |
| 5148 | auto *T2RecordDecl = cast<CXXRecordDecl>(Val: T2->castAs<RecordType>()->getDecl()); |
| 5149 | |
| 5150 | OverloadCandidateSet CandidateSet( |
| 5151 | DeclLoc, OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
| 5152 | const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); |
| 5153 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
| 5154 | NamedDecl *D = *I; |
| 5155 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Val: D->getDeclContext()); |
| 5156 | if (isa<UsingShadowDecl>(Val: D)) |
| 5157 | D = cast<UsingShadowDecl>(Val: D)->getTargetDecl(); |
| 5158 | |
| 5159 | FunctionTemplateDecl *ConvTemplate |
| 5160 | = dyn_cast<FunctionTemplateDecl>(Val: D); |
| 5161 | CXXConversionDecl *Conv; |
| 5162 | if (ConvTemplate) |
| 5163 | Conv = cast<CXXConversionDecl>(Val: ConvTemplate->getTemplatedDecl()); |
| 5164 | else |
| 5165 | Conv = cast<CXXConversionDecl>(Val: D); |
| 5166 | |
| 5167 | if (AllowRvalues) { |
| 5168 | // If we are initializing an rvalue reference, don't permit conversion |
| 5169 | // functions that return lvalues. |
| 5170 | if (!ConvTemplate && DeclType->isRValueReferenceType()) { |
| 5171 | const ReferenceType *RefType |
| 5172 | = Conv->getConversionType()->getAs<LValueReferenceType>(); |
| 5173 | if (RefType && !RefType->getPointeeType()->isFunctionType()) |
| 5174 | continue; |
| 5175 | } |
| 5176 | |
| 5177 | if (!ConvTemplate && |
| 5178 | S.CompareReferenceRelationship( |
| 5179 | Loc: DeclLoc, |
| 5180 | OrigT1: Conv->getConversionType() |
| 5181 | .getNonReferenceType() |
| 5182 | .getUnqualifiedType(), |
| 5183 | OrigT2: DeclType.getNonReferenceType().getUnqualifiedType()) == |
| 5184 | Sema::Ref_Incompatible) |
| 5185 | continue; |
| 5186 | } else { |
| 5187 | // If the conversion function doesn't return a reference type, |
| 5188 | // it can't be considered for this conversion. An rvalue reference |
| 5189 | // is only acceptable if its referencee is a function type. |
| 5190 | |
| 5191 | const ReferenceType *RefType = |
| 5192 | Conv->getConversionType()->getAs<ReferenceType>(); |
| 5193 | if (!RefType || |
| 5194 | (!RefType->isLValueReferenceType() && |
| 5195 | !RefType->getPointeeType()->isFunctionType())) |
| 5196 | continue; |
| 5197 | } |
| 5198 | |
| 5199 | if (ConvTemplate) |
| 5200 | S.AddTemplateConversionCandidate( |
| 5201 | FunctionTemplate: ConvTemplate, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Init, ToType: DeclType, CandidateSet, |
| 5202 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); |
| 5203 | else |
| 5204 | S.AddConversionCandidate( |
| 5205 | Conversion: Conv, FoundDecl: I.getPair(), ActingContext: ActingDC, From: Init, ToType: DeclType, CandidateSet, |
| 5206 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicit); |
| 5207 | } |
| 5208 | |
| 5209 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 5210 | |
| 5211 | OverloadCandidateSet::iterator Best; |
| 5212 | switch (CandidateSet.BestViableFunction(S, Loc: DeclLoc, Best)) { |
| 5213 | case OR_Success: |
| 5214 | |
| 5215 | assert(Best->HasFinalConversion); |
| 5216 | |
| 5217 | // C++ [over.ics.ref]p1: |
| 5218 | // |
| 5219 | // [...] If the parameter binds directly to the result of |
| 5220 | // applying a conversion function to the argument |
| 5221 | // expression, the implicit conversion sequence is a |
| 5222 | // user-defined conversion sequence (13.3.3.1.2), with the |
| 5223 | // second standard conversion sequence either an identity |
| 5224 | // conversion or, if the conversion function returns an |
| 5225 | // entity of a type that is a derived class of the parameter |
| 5226 | // type, a derived-to-base Conversion. |
| 5227 | if (!Best->FinalConversion.DirectBinding) |
| 5228 | return false; |
| 5229 | |
| 5230 | ICS.setUserDefined(); |
| 5231 | ICS.UserDefined.Before = Best->Conversions[0].Standard; |
| 5232 | ICS.UserDefined.After = Best->FinalConversion; |
| 5233 | ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; |
| 5234 | ICS.UserDefined.ConversionFunction = Best->Function; |
| 5235 | ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; |
| 5236 | ICS.UserDefined.EllipsisConversion = false; |
| 5237 | assert(ICS.UserDefined.After.ReferenceBinding && |
| 5238 | ICS.UserDefined.After.DirectBinding && |
| 5239 | "Expected a direct reference binding!" ); |
| 5240 | return true; |
| 5241 | |
| 5242 | case OR_Ambiguous: |
| 5243 | ICS.setAmbiguous(); |
| 5244 | for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); |
| 5245 | Cand != CandidateSet.end(); ++Cand) |
| 5246 | if (Cand->Best) |
| 5247 | ICS.Ambiguous.addConversion(Found: Cand->FoundDecl, D: Cand->Function); |
| 5248 | return true; |
| 5249 | |
| 5250 | case OR_No_Viable_Function: |
| 5251 | case OR_Deleted: |
| 5252 | // There was no suitable conversion, or we found a deleted |
| 5253 | // conversion; continue with other checks. |
| 5254 | return false; |
| 5255 | } |
| 5256 | |
| 5257 | llvm_unreachable("Invalid OverloadResult!" ); |
| 5258 | } |
| 5259 | |
| 5260 | /// Compute an implicit conversion sequence for reference |
| 5261 | /// initialization. |
| 5262 | static ImplicitConversionSequence |
| 5263 | TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, |
| 5264 | SourceLocation DeclLoc, |
| 5265 | bool SuppressUserConversions, |
| 5266 | bool AllowExplicit) { |
| 5267 | assert(DeclType->isReferenceType() && "Reference init needs a reference" ); |
| 5268 | |
| 5269 | // Most paths end in a failed conversion. |
| 5270 | ImplicitConversionSequence ICS; |
| 5271 | ICS.setBad(Failure: BadConversionSequence::no_conversion, FromExpr: Init, ToType: DeclType); |
| 5272 | |
| 5273 | QualType T1 = DeclType->castAs<ReferenceType>()->getPointeeType(); |
| 5274 | QualType T2 = Init->getType(); |
| 5275 | |
| 5276 | // If the initializer is the address of an overloaded function, try |
| 5277 | // to resolve the overloaded function. If all goes well, T2 is the |
| 5278 | // type of the resulting function. |
| 5279 | if (S.Context.getCanonicalType(T: T2) == S.Context.OverloadTy) { |
| 5280 | DeclAccessPair Found; |
| 5281 | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(AddressOfExpr: Init, TargetType: DeclType, |
| 5282 | Complain: false, Found)) |
| 5283 | T2 = Fn->getType(); |
| 5284 | } |
| 5285 | |
| 5286 | // Compute some basic properties of the types and the initializer. |
| 5287 | bool isRValRef = DeclType->isRValueReferenceType(); |
| 5288 | Expr::Classification InitCategory = Init->Classify(Ctx&: S.Context); |
| 5289 | |
| 5290 | Sema::ReferenceConversions RefConv; |
| 5291 | Sema::ReferenceCompareResult RefRelationship = |
| 5292 | S.CompareReferenceRelationship(Loc: DeclLoc, OrigT1: T1, OrigT2: T2, ConvOut: &RefConv); |
| 5293 | |
| 5294 | auto SetAsReferenceBinding = [&](bool BindsDirectly) { |
| 5295 | ICS.setStandard(); |
| 5296 | ICS.Standard.First = ICK_Identity; |
| 5297 | // FIXME: A reference binding can be a function conversion too. We should |
| 5298 | // consider that when ordering reference-to-function bindings. |
| 5299 | ICS.Standard.Second = (RefConv & Sema::ReferenceConversions::DerivedToBase) |
| 5300 | ? ICK_Derived_To_Base |
| 5301 | : (RefConv & Sema::ReferenceConversions::ObjC) |
| 5302 | ? ICK_Compatible_Conversion |
| 5303 | : ICK_Identity; |
| 5304 | ICS.Standard.Dimension = ICK_Identity; |
| 5305 | // FIXME: As a speculative fix to a defect introduced by CWG2352, we rank |
| 5306 | // a reference binding that performs a non-top-level qualification |
| 5307 | // conversion as a qualification conversion, not as an identity conversion. |
| 5308 | ICS.Standard.Third = (RefConv & |
| 5309 | Sema::ReferenceConversions::NestedQualification) |
| 5310 | ? ICK_Qualification |
| 5311 | : ICK_Identity; |
| 5312 | ICS.Standard.setFromType(T2); |
| 5313 | ICS.Standard.setToType(Idx: 0, T: T2); |
| 5314 | ICS.Standard.setToType(Idx: 1, T: T1); |
| 5315 | ICS.Standard.setToType(Idx: 2, T: T1); |
| 5316 | ICS.Standard.ReferenceBinding = true; |
| 5317 | ICS.Standard.DirectBinding = BindsDirectly; |
| 5318 | ICS.Standard.IsLvalueReference = !isRValRef; |
| 5319 | ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); |
| 5320 | ICS.Standard.BindsToRvalue = InitCategory.isRValue(); |
| 5321 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
| 5322 | ICS.Standard.ObjCLifetimeConversionBinding = |
| 5323 | (RefConv & Sema::ReferenceConversions::ObjCLifetime) != 0; |
| 5324 | ICS.Standard.FromBracedInitList = false; |
| 5325 | ICS.Standard.CopyConstructor = nullptr; |
| 5326 | ICS.Standard.DeprecatedStringLiteralToCharPtr = false; |
| 5327 | }; |
| 5328 | |
| 5329 | // C++0x [dcl.init.ref]p5: |
| 5330 | // A reference to type "cv1 T1" is initialized by an expression |
| 5331 | // of type "cv2 T2" as follows: |
| 5332 | |
| 5333 | // -- If reference is an lvalue reference and the initializer expression |
| 5334 | if (!isRValRef) { |
| 5335 | // -- is an lvalue (but is not a bit-field), and "cv1 T1" is |
| 5336 | // reference-compatible with "cv2 T2," or |
| 5337 | // |
| 5338 | // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. |
| 5339 | if (InitCategory.isLValue() && RefRelationship == Sema::Ref_Compatible) { |
| 5340 | // C++ [over.ics.ref]p1: |
| 5341 | // When a parameter of reference type binds directly (8.5.3) |
| 5342 | // to an argument expression, the implicit conversion sequence |
| 5343 | // is the identity conversion, unless the argument expression |
| 5344 | // has a type that is a derived class of the parameter type, |
| 5345 | // in which case the implicit conversion sequence is a |
| 5346 | // derived-to-base Conversion (13.3.3.1). |
| 5347 | SetAsReferenceBinding(/*BindsDirectly=*/true); |
| 5348 | |
| 5349 | // Nothing more to do: the inaccessibility/ambiguity check for |
| 5350 | // derived-to-base conversions is suppressed when we're |
| 5351 | // computing the implicit conversion sequence (C++ |
| 5352 | // [over.best.ics]p2). |
| 5353 | return ICS; |
| 5354 | } |
| 5355 | |
| 5356 | // -- has a class type (i.e., T2 is a class type), where T1 is |
| 5357 | // not reference-related to T2, and can be implicitly |
| 5358 | // converted to an lvalue of type "cv3 T3," where "cv1 T1" |
| 5359 | // is reference-compatible with "cv3 T3" 92) (this |
| 5360 | // conversion is selected by enumerating the applicable |
| 5361 | // conversion functions (13.3.1.6) and choosing the best |
| 5362 | // one through overload resolution (13.3)), |
| 5363 | if (!SuppressUserConversions && T2->isRecordType() && |
| 5364 | S.isCompleteType(Loc: DeclLoc, T: T2) && |
| 5365 | RefRelationship == Sema::Ref_Incompatible) { |
| 5366 | if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, |
| 5367 | Init, T2, /*AllowRvalues=*/false, |
| 5368 | AllowExplicit)) |
| 5369 | return ICS; |
| 5370 | } |
| 5371 | } |
| 5372 | |
| 5373 | // -- Otherwise, the reference shall be an lvalue reference to a |
| 5374 | // non-volatile const type (i.e., cv1 shall be const), or the reference |
| 5375 | // shall be an rvalue reference. |
| 5376 | if (!isRValRef && (!T1.isConstQualified() || T1.isVolatileQualified())) { |
| 5377 | if (InitCategory.isRValue() && RefRelationship != Sema::Ref_Incompatible) |
| 5378 | ICS.setBad(Failure: BadConversionSequence::lvalue_ref_to_rvalue, FromExpr: Init, ToType: DeclType); |
| 5379 | return ICS; |
| 5380 | } |
| 5381 | |
| 5382 | // -- If the initializer expression |
| 5383 | // |
| 5384 | // -- is an xvalue, class prvalue, array prvalue or function |
| 5385 | // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or |
| 5386 | if (RefRelationship == Sema::Ref_Compatible && |
| 5387 | (InitCategory.isXValue() || |
| 5388 | (InitCategory.isPRValue() && |
| 5389 | (T2->isRecordType() || T2->isArrayType())) || |
| 5390 | (InitCategory.isLValue() && T2->isFunctionType()))) { |
| 5391 | // In C++11, this is always a direct binding. In C++98/03, it's a direct |
| 5392 | // binding unless we're binding to a class prvalue. |
| 5393 | // Note: Although xvalues wouldn't normally show up in C++98/03 code, we |
| 5394 | // allow the use of rvalue references in C++98/03 for the benefit of |
| 5395 | // standard library implementors; therefore, we need the xvalue check here. |
| 5396 | SetAsReferenceBinding(/*BindsDirectly=*/S.getLangOpts().CPlusPlus11 || |
| 5397 | !(InitCategory.isPRValue() || T2->isRecordType())); |
| 5398 | return ICS; |
| 5399 | } |
| 5400 | |
| 5401 | // -- has a class type (i.e., T2 is a class type), where T1 is not |
| 5402 | // reference-related to T2, and can be implicitly converted to |
| 5403 | // an xvalue, class prvalue, or function lvalue of type |
| 5404 | // "cv3 T3", where "cv1 T1" is reference-compatible with |
| 5405 | // "cv3 T3", |
| 5406 | // |
| 5407 | // then the reference is bound to the value of the initializer |
| 5408 | // expression in the first case and to the result of the conversion |
| 5409 | // in the second case (or, in either case, to an appropriate base |
| 5410 | // class subobject). |
| 5411 | if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && |
| 5412 | T2->isRecordType() && S.isCompleteType(Loc: DeclLoc, T: T2) && |
| 5413 | FindConversionForRefInit(S, ICS, DeclType, DeclLoc, |
| 5414 | Init, T2, /*AllowRvalues=*/true, |
| 5415 | AllowExplicit)) { |
| 5416 | // In the second case, if the reference is an rvalue reference |
| 5417 | // and the second standard conversion sequence of the |
| 5418 | // user-defined conversion sequence includes an lvalue-to-rvalue |
| 5419 | // conversion, the program is ill-formed. |
| 5420 | if (ICS.isUserDefined() && isRValRef && |
| 5421 | ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) |
| 5422 | ICS.setBad(Failure: BadConversionSequence::no_conversion, FromExpr: Init, ToType: DeclType); |
| 5423 | |
| 5424 | return ICS; |
| 5425 | } |
| 5426 | |
| 5427 | // A temporary of function type cannot be created; don't even try. |
| 5428 | if (T1->isFunctionType()) |
| 5429 | return ICS; |
| 5430 | |
| 5431 | // -- Otherwise, a temporary of type "cv1 T1" is created and |
| 5432 | // initialized from the initializer expression using the |
| 5433 | // rules for a non-reference copy initialization (8.5). The |
| 5434 | // reference is then bound to the temporary. If T1 is |
| 5435 | // reference-related to T2, cv1 must be the same |
| 5436 | // cv-qualification as, or greater cv-qualification than, |
| 5437 | // cv2; otherwise, the program is ill-formed. |
| 5438 | if (RefRelationship == Sema::Ref_Related) { |
| 5439 | // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then |
| 5440 | // we would be reference-compatible or reference-compatible with |
| 5441 | // added qualification. But that wasn't the case, so the reference |
| 5442 | // initialization fails. |
| 5443 | // |
| 5444 | // Note that we only want to check address spaces and cvr-qualifiers here. |
| 5445 | // ObjC GC, lifetime and unaligned qualifiers aren't important. |
| 5446 | Qualifiers T1Quals = T1.getQualifiers(); |
| 5447 | Qualifiers T2Quals = T2.getQualifiers(); |
| 5448 | T1Quals.removeObjCGCAttr(); |
| 5449 | T1Quals.removeObjCLifetime(); |
| 5450 | T2Quals.removeObjCGCAttr(); |
| 5451 | T2Quals.removeObjCLifetime(); |
| 5452 | // MS compiler ignores __unaligned qualifier for references; do the same. |
| 5453 | T1Quals.removeUnaligned(); |
| 5454 | T2Quals.removeUnaligned(); |
| 5455 | if (!T1Quals.compatiblyIncludes(other: T2Quals, Ctx: S.getASTContext())) |
| 5456 | return ICS; |
| 5457 | } |
| 5458 | |
| 5459 | // If at least one of the types is a class type, the types are not |
| 5460 | // related, and we aren't allowed any user conversions, the |
| 5461 | // reference binding fails. This case is important for breaking |
| 5462 | // recursion, since TryImplicitConversion below will attempt to |
| 5463 | // create a temporary through the use of a copy constructor. |
| 5464 | if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && |
| 5465 | (T1->isRecordType() || T2->isRecordType())) |
| 5466 | return ICS; |
| 5467 | |
| 5468 | // If T1 is reference-related to T2 and the reference is an rvalue |
| 5469 | // reference, the initializer expression shall not be an lvalue. |
| 5470 | if (RefRelationship >= Sema::Ref_Related && isRValRef && |
| 5471 | Init->Classify(Ctx&: S.Context).isLValue()) { |
| 5472 | ICS.setBad(Failure: BadConversionSequence::rvalue_ref_to_lvalue, FromExpr: Init, ToType: DeclType); |
| 5473 | return ICS; |
| 5474 | } |
| 5475 | |
| 5476 | // C++ [over.ics.ref]p2: |
| 5477 | // When a parameter of reference type is not bound directly to |
| 5478 | // an argument expression, the conversion sequence is the one |
| 5479 | // required to convert the argument expression to the |
| 5480 | // underlying type of the reference according to |
| 5481 | // 13.3.3.1. Conceptually, this conversion sequence corresponds |
| 5482 | // to copy-initializing a temporary of the underlying type with |
| 5483 | // the argument expression. Any difference in top-level |
| 5484 | // cv-qualification is subsumed by the initialization itself |
| 5485 | // and does not constitute a conversion. |
| 5486 | ICS = TryImplicitConversion(S, From: Init, ToType: T1, SuppressUserConversions, |
| 5487 | AllowExplicit: AllowedExplicit::None, |
| 5488 | /*InOverloadResolution=*/false, |
| 5489 | /*CStyle=*/false, |
| 5490 | /*AllowObjCWritebackConversion=*/false, |
| 5491 | /*AllowObjCConversionOnExplicit=*/false); |
| 5492 | |
| 5493 | // Of course, that's still a reference binding. |
| 5494 | if (ICS.isStandard()) { |
| 5495 | ICS.Standard.ReferenceBinding = true; |
| 5496 | ICS.Standard.IsLvalueReference = !isRValRef; |
| 5497 | ICS.Standard.BindsToFunctionLvalue = false; |
| 5498 | ICS.Standard.BindsToRvalue = true; |
| 5499 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
| 5500 | ICS.Standard.ObjCLifetimeConversionBinding = false; |
| 5501 | } else if (ICS.isUserDefined()) { |
| 5502 | const ReferenceType *LValRefType = |
| 5503 | ICS.UserDefined.ConversionFunction->getReturnType() |
| 5504 | ->getAs<LValueReferenceType>(); |
| 5505 | |
| 5506 | // C++ [over.ics.ref]p3: |
| 5507 | // Except for an implicit object parameter, for which see 13.3.1, a |
| 5508 | // standard conversion sequence cannot be formed if it requires [...] |
| 5509 | // binding an rvalue reference to an lvalue other than a function |
| 5510 | // lvalue. |
| 5511 | // Note that the function case is not possible here. |
| 5512 | if (isRValRef && LValRefType) { |
| 5513 | ICS.setBad(Failure: BadConversionSequence::no_conversion, FromExpr: Init, ToType: DeclType); |
| 5514 | return ICS; |
| 5515 | } |
| 5516 | |
| 5517 | ICS.UserDefined.After.ReferenceBinding = true; |
| 5518 | ICS.UserDefined.After.IsLvalueReference = !isRValRef; |
| 5519 | ICS.UserDefined.After.BindsToFunctionLvalue = false; |
| 5520 | ICS.UserDefined.After.BindsToRvalue = !LValRefType; |
| 5521 | ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
| 5522 | ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; |
| 5523 | ICS.UserDefined.After.FromBracedInitList = false; |
| 5524 | } |
| 5525 | |
| 5526 | return ICS; |
| 5527 | } |
| 5528 | |
| 5529 | static ImplicitConversionSequence |
| 5530 | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, |
| 5531 | bool SuppressUserConversions, |
| 5532 | bool InOverloadResolution, |
| 5533 | bool AllowObjCWritebackConversion, |
| 5534 | bool AllowExplicit = false); |
| 5535 | |
| 5536 | /// TryListConversion - Try to copy-initialize a value of type ToType from the |
| 5537 | /// initializer list From. |
| 5538 | static ImplicitConversionSequence |
| 5539 | TryListConversion(Sema &S, InitListExpr *From, QualType ToType, |
| 5540 | bool SuppressUserConversions, |
| 5541 | bool InOverloadResolution, |
| 5542 | bool AllowObjCWritebackConversion) { |
| 5543 | // C++11 [over.ics.list]p1: |
| 5544 | // When an argument is an initializer list, it is not an expression and |
| 5545 | // special rules apply for converting it to a parameter type. |
| 5546 | |
| 5547 | ImplicitConversionSequence Result; |
| 5548 | Result.setBad(Failure: BadConversionSequence::no_conversion, FromExpr: From, ToType); |
| 5549 | |
| 5550 | // We need a complete type for what follows. With one C++20 exception, |
| 5551 | // incomplete types can never be initialized from init lists. |
| 5552 | QualType InitTy = ToType; |
| 5553 | const ArrayType *AT = S.Context.getAsArrayType(T: ToType); |
| 5554 | if (AT && S.getLangOpts().CPlusPlus20) |
| 5555 | if (const auto *IAT = dyn_cast<IncompleteArrayType>(Val: AT)) |
| 5556 | // C++20 allows list initialization of an incomplete array type. |
| 5557 | InitTy = IAT->getElementType(); |
| 5558 | if (!S.isCompleteType(Loc: From->getBeginLoc(), T: InitTy)) |
| 5559 | return Result; |
| 5560 | |
| 5561 | // C++20 [over.ics.list]/2: |
| 5562 | // If the initializer list is a designated-initializer-list, a conversion |
| 5563 | // is only possible if the parameter has an aggregate type |
| 5564 | // |
| 5565 | // FIXME: The exception for reference initialization here is not part of the |
| 5566 | // language rules, but follow other compilers in adding it as a tentative DR |
| 5567 | // resolution. |
| 5568 | bool IsDesignatedInit = From->hasDesignatedInit(); |
| 5569 | if (!ToType->isAggregateType() && !ToType->isReferenceType() && |
| 5570 | IsDesignatedInit) |
| 5571 | return Result; |
| 5572 | |
| 5573 | // Per DR1467 and DR2137: |
| 5574 | // If the parameter type is an aggregate class X and the initializer list |
| 5575 | // has a single element of type cv U, where U is X or a class derived from |
| 5576 | // X, the implicit conversion sequence is the one required to convert the |
| 5577 | // element to the parameter type. |
| 5578 | // |
| 5579 | // Otherwise, if the parameter type is a character array [... ] |
| 5580 | // and the initializer list has a single element that is an |
| 5581 | // appropriately-typed string literal (8.5.2 [dcl.init.string]), the |
| 5582 | // implicit conversion sequence is the identity conversion. |
| 5583 | if (From->getNumInits() == 1 && !IsDesignatedInit) { |
| 5584 | if (ToType->isRecordType() && ToType->isAggregateType()) { |
| 5585 | QualType InitType = From->getInit(Init: 0)->getType(); |
| 5586 | if (S.Context.hasSameUnqualifiedType(T1: InitType, T2: ToType) || |
| 5587 | S.IsDerivedFrom(Loc: From->getBeginLoc(), Derived: InitType, Base: ToType)) |
| 5588 | return TryCopyInitialization(S, From: From->getInit(Init: 0), ToType, |
| 5589 | SuppressUserConversions, |
| 5590 | InOverloadResolution, |
| 5591 | AllowObjCWritebackConversion); |
| 5592 | } |
| 5593 | |
| 5594 | if (AT && S.IsStringInit(Init: From->getInit(Init: 0), AT)) { |
| 5595 | InitializedEntity Entity = |
| 5596 | InitializedEntity::InitializeParameter(Context&: S.Context, Type: ToType, |
| 5597 | /*Consumed=*/false); |
| 5598 | if (S.CanPerformCopyInitialization(Entity, Init: From)) { |
| 5599 | Result.setStandard(); |
| 5600 | Result.Standard.setAsIdentityConversion(); |
| 5601 | Result.Standard.setFromType(ToType); |
| 5602 | Result.Standard.setAllToTypes(ToType); |
| 5603 | return Result; |
| 5604 | } |
| 5605 | } |
| 5606 | } |
| 5607 | |
| 5608 | // C++14 [over.ics.list]p2: Otherwise, if the parameter type [...] (below). |
| 5609 | // C++11 [over.ics.list]p2: |
| 5610 | // If the parameter type is std::initializer_list<X> or "array of X" and |
| 5611 | // all the elements can be implicitly converted to X, the implicit |
| 5612 | // conversion sequence is the worst conversion necessary to convert an |
| 5613 | // element of the list to X. |
| 5614 | // |
| 5615 | // C++14 [over.ics.list]p3: |
| 5616 | // Otherwise, if the parameter type is "array of N X", if the initializer |
| 5617 | // list has exactly N elements or if it has fewer than N elements and X is |
| 5618 | // default-constructible, and if all the elements of the initializer list |
| 5619 | // can be implicitly converted to X, the implicit conversion sequence is |
| 5620 | // the worst conversion necessary to convert an element of the list to X. |
| 5621 | if ((AT || S.isStdInitializerList(Ty: ToType, Element: &InitTy)) && !IsDesignatedInit) { |
| 5622 | unsigned e = From->getNumInits(); |
| 5623 | ImplicitConversionSequence DfltElt; |
| 5624 | DfltElt.setBad(Failure: BadConversionSequence::no_conversion, FromType: QualType(), |
| 5625 | ToType: QualType()); |
| 5626 | QualType ContTy = ToType; |
| 5627 | bool IsUnbounded = false; |
| 5628 | if (AT) { |
| 5629 | InitTy = AT->getElementType(); |
| 5630 | if (ConstantArrayType const *CT = dyn_cast<ConstantArrayType>(Val: AT)) { |
| 5631 | if (CT->getSize().ult(RHS: e)) { |
| 5632 | // Too many inits, fatally bad |
| 5633 | Result.setBad(Failure: BadConversionSequence::too_many_initializers, FromExpr: From, |
| 5634 | ToType); |
| 5635 | Result.setInitializerListContainerType(T: ContTy, IA: IsUnbounded); |
| 5636 | return Result; |
| 5637 | } |
| 5638 | if (CT->getSize().ugt(RHS: e)) { |
| 5639 | // Need an init from empty {}, is there one? |
| 5640 | InitListExpr EmptyList(S.Context, From->getEndLoc(), {}, |
| 5641 | From->getEndLoc()); |
| 5642 | EmptyList.setType(S.Context.VoidTy); |
| 5643 | DfltElt = TryListConversion( |
| 5644 | S, From: &EmptyList, ToType: InitTy, SuppressUserConversions, |
| 5645 | InOverloadResolution, AllowObjCWritebackConversion); |
| 5646 | if (DfltElt.isBad()) { |
| 5647 | // No {} init, fatally bad |
| 5648 | Result.setBad(Failure: BadConversionSequence::too_few_initializers, FromExpr: From, |
| 5649 | ToType); |
| 5650 | Result.setInitializerListContainerType(T: ContTy, IA: IsUnbounded); |
| 5651 | return Result; |
| 5652 | } |
| 5653 | } |
| 5654 | } else { |
| 5655 | assert(isa<IncompleteArrayType>(AT) && "Expected incomplete array" ); |
| 5656 | IsUnbounded = true; |
| 5657 | if (!e) { |
| 5658 | // Cannot convert to zero-sized. |
| 5659 | Result.setBad(Failure: BadConversionSequence::too_few_initializers, FromExpr: From, |
| 5660 | ToType); |
| 5661 | Result.setInitializerListContainerType(T: ContTy, IA: IsUnbounded); |
| 5662 | return Result; |
| 5663 | } |
| 5664 | llvm::APInt Size(S.Context.getTypeSize(T: S.Context.getSizeType()), e); |
| 5665 | ContTy = S.Context.getConstantArrayType(EltTy: InitTy, ArySize: Size, SizeExpr: nullptr, |
| 5666 | ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 5667 | } |
| 5668 | } |
| 5669 | |
| 5670 | Result.setStandard(); |
| 5671 | Result.Standard.setAsIdentityConversion(); |
| 5672 | Result.Standard.setFromType(InitTy); |
| 5673 | Result.Standard.setAllToTypes(InitTy); |
| 5674 | for (unsigned i = 0; i < e; ++i) { |
| 5675 | Expr *Init = From->getInit(Init: i); |
| 5676 | ImplicitConversionSequence ICS = TryCopyInitialization( |
| 5677 | S, From: Init, ToType: InitTy, SuppressUserConversions, InOverloadResolution, |
| 5678 | AllowObjCWritebackConversion); |
| 5679 | |
| 5680 | // Keep the worse conversion seen so far. |
| 5681 | // FIXME: Sequences are not totally ordered, so 'worse' can be |
| 5682 | // ambiguous. CWG has been informed. |
| 5683 | if (CompareImplicitConversionSequences(S, Loc: From->getBeginLoc(), ICS1: ICS, |
| 5684 | ICS2: Result) == |
| 5685 | ImplicitConversionSequence::Worse) { |
| 5686 | Result = ICS; |
| 5687 | // Bail as soon as we find something unconvertible. |
| 5688 | if (Result.isBad()) { |
| 5689 | Result.setInitializerListContainerType(T: ContTy, IA: IsUnbounded); |
| 5690 | return Result; |
| 5691 | } |
| 5692 | } |
| 5693 | } |
| 5694 | |
| 5695 | // If we needed any implicit {} initialization, compare that now. |
| 5696 | // over.ics.list/6 indicates we should compare that conversion. Again CWG |
| 5697 | // has been informed that this might not be the best thing. |
| 5698 | if (!DfltElt.isBad() && CompareImplicitConversionSequences( |
| 5699 | S, Loc: From->getEndLoc(), ICS1: DfltElt, ICS2: Result) == |
| 5700 | ImplicitConversionSequence::Worse) |
| 5701 | Result = DfltElt; |
| 5702 | // Record the type being initialized so that we may compare sequences |
| 5703 | Result.setInitializerListContainerType(T: ContTy, IA: IsUnbounded); |
| 5704 | return Result; |
| 5705 | } |
| 5706 | |
| 5707 | // C++14 [over.ics.list]p4: |
| 5708 | // C++11 [over.ics.list]p3: |
| 5709 | // Otherwise, if the parameter is a non-aggregate class X and overload |
| 5710 | // resolution chooses a single best constructor [...] the implicit |
| 5711 | // conversion sequence is a user-defined conversion sequence. If multiple |
| 5712 | // constructors are viable but none is better than the others, the |
| 5713 | // implicit conversion sequence is a user-defined conversion sequence. |
| 5714 | if (ToType->isRecordType() && !ToType->isAggregateType()) { |
| 5715 | // This function can deal with initializer lists. |
| 5716 | return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, |
| 5717 | AllowExplicit: AllowedExplicit::None, |
| 5718 | InOverloadResolution, /*CStyle=*/false, |
| 5719 | AllowObjCWritebackConversion, |
| 5720 | /*AllowObjCConversionOnExplicit=*/false); |
| 5721 | } |
| 5722 | |
| 5723 | // C++14 [over.ics.list]p5: |
| 5724 | // C++11 [over.ics.list]p4: |
| 5725 | // Otherwise, if the parameter has an aggregate type which can be |
| 5726 | // initialized from the initializer list [...] the implicit conversion |
| 5727 | // sequence is a user-defined conversion sequence. |
| 5728 | if (ToType->isAggregateType()) { |
| 5729 | // Type is an aggregate, argument is an init list. At this point it comes |
| 5730 | // down to checking whether the initialization works. |
| 5731 | // FIXME: Find out whether this parameter is consumed or not. |
| 5732 | InitializedEntity Entity = |
| 5733 | InitializedEntity::InitializeParameter(Context&: S.Context, Type: ToType, |
| 5734 | /*Consumed=*/false); |
| 5735 | if (S.CanPerformAggregateInitializationForOverloadResolution(Entity, |
| 5736 | From)) { |
| 5737 | Result.setUserDefined(); |
| 5738 | Result.UserDefined.Before.setAsIdentityConversion(); |
| 5739 | // Initializer lists don't have a type. |
| 5740 | Result.UserDefined.Before.setFromType(QualType()); |
| 5741 | Result.UserDefined.Before.setAllToTypes(QualType()); |
| 5742 | |
| 5743 | Result.UserDefined.After.setAsIdentityConversion(); |
| 5744 | Result.UserDefined.After.setFromType(ToType); |
| 5745 | Result.UserDefined.After.setAllToTypes(ToType); |
| 5746 | Result.UserDefined.ConversionFunction = nullptr; |
| 5747 | } |
| 5748 | return Result; |
| 5749 | } |
| 5750 | |
| 5751 | // C++14 [over.ics.list]p6: |
| 5752 | // C++11 [over.ics.list]p5: |
| 5753 | // Otherwise, if the parameter is a reference, see 13.3.3.1.4. |
| 5754 | if (ToType->isReferenceType()) { |
| 5755 | // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't |
| 5756 | // mention initializer lists in any way. So we go by what list- |
| 5757 | // initialization would do and try to extrapolate from that. |
| 5758 | |
| 5759 | QualType T1 = ToType->castAs<ReferenceType>()->getPointeeType(); |
| 5760 | |
| 5761 | // If the initializer list has a single element that is reference-related |
| 5762 | // to the parameter type, we initialize the reference from that. |
| 5763 | if (From->getNumInits() == 1 && !IsDesignatedInit) { |
| 5764 | Expr *Init = From->getInit(Init: 0); |
| 5765 | |
| 5766 | QualType T2 = Init->getType(); |
| 5767 | |
| 5768 | // If the initializer is the address of an overloaded function, try |
| 5769 | // to resolve the overloaded function. If all goes well, T2 is the |
| 5770 | // type of the resulting function. |
| 5771 | if (S.Context.getCanonicalType(T: T2) == S.Context.OverloadTy) { |
| 5772 | DeclAccessPair Found; |
| 5773 | if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( |
| 5774 | AddressOfExpr: Init, TargetType: ToType, Complain: false, Found)) |
| 5775 | T2 = Fn->getType(); |
| 5776 | } |
| 5777 | |
| 5778 | // Compute some basic properties of the types and the initializer. |
| 5779 | Sema::ReferenceCompareResult RefRelationship = |
| 5780 | S.CompareReferenceRelationship(Loc: From->getBeginLoc(), OrigT1: T1, OrigT2: T2); |
| 5781 | |
| 5782 | if (RefRelationship >= Sema::Ref_Related) { |
| 5783 | return TryReferenceInit(S, Init, DeclType: ToType, /*FIXME*/ DeclLoc: From->getBeginLoc(), |
| 5784 | SuppressUserConversions, |
| 5785 | /*AllowExplicit=*/false); |
| 5786 | } |
| 5787 | } |
| 5788 | |
| 5789 | // Otherwise, we bind the reference to a temporary created from the |
| 5790 | // initializer list. |
| 5791 | Result = TryListConversion(S, From, ToType: T1, SuppressUserConversions, |
| 5792 | InOverloadResolution, |
| 5793 | AllowObjCWritebackConversion); |
| 5794 | if (Result.isFailure()) |
| 5795 | return Result; |
| 5796 | assert(!Result.isEllipsis() && |
| 5797 | "Sub-initialization cannot result in ellipsis conversion." ); |
| 5798 | |
| 5799 | // Can we even bind to a temporary? |
| 5800 | if (ToType->isRValueReferenceType() || |
| 5801 | (T1.isConstQualified() && !T1.isVolatileQualified())) { |
| 5802 | StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : |
| 5803 | Result.UserDefined.After; |
| 5804 | SCS.ReferenceBinding = true; |
| 5805 | SCS.IsLvalueReference = ToType->isLValueReferenceType(); |
| 5806 | SCS.BindsToRvalue = true; |
| 5807 | SCS.BindsToFunctionLvalue = false; |
| 5808 | SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
| 5809 | SCS.ObjCLifetimeConversionBinding = false; |
| 5810 | SCS.FromBracedInitList = false; |
| 5811 | |
| 5812 | } else |
| 5813 | Result.setBad(Failure: BadConversionSequence::lvalue_ref_to_rvalue, |
| 5814 | FromExpr: From, ToType); |
| 5815 | return Result; |
| 5816 | } |
| 5817 | |
| 5818 | // C++14 [over.ics.list]p7: |
| 5819 | // C++11 [over.ics.list]p6: |
| 5820 | // Otherwise, if the parameter type is not a class: |
| 5821 | if (!ToType->isRecordType()) { |
| 5822 | // - if the initializer list has one element that is not itself an |
| 5823 | // initializer list, the implicit conversion sequence is the one |
| 5824 | // required to convert the element to the parameter type. |
| 5825 | // Bail out on EmbedExpr as well since we never create EmbedExpr for a |
| 5826 | // single integer. |
| 5827 | unsigned NumInits = From->getNumInits(); |
| 5828 | if (NumInits == 1 && !isa<InitListExpr>(Val: From->getInit(Init: 0)) && |
| 5829 | !isa<EmbedExpr>(Val: From->getInit(Init: 0))) { |
| 5830 | Result = TryCopyInitialization( |
| 5831 | S, From: From->getInit(Init: 0), ToType, SuppressUserConversions, |
| 5832 | InOverloadResolution, AllowObjCWritebackConversion); |
| 5833 | if (Result.isStandard()) |
| 5834 | Result.Standard.FromBracedInitList = true; |
| 5835 | } |
| 5836 | // - if the initializer list has no elements, the implicit conversion |
| 5837 | // sequence is the identity conversion. |
| 5838 | else if (NumInits == 0) { |
| 5839 | Result.setStandard(); |
| 5840 | Result.Standard.setAsIdentityConversion(); |
| 5841 | Result.Standard.setFromType(ToType); |
| 5842 | Result.Standard.setAllToTypes(ToType); |
| 5843 | } |
| 5844 | return Result; |
| 5845 | } |
| 5846 | |
| 5847 | // C++14 [over.ics.list]p8: |
| 5848 | // C++11 [over.ics.list]p7: |
| 5849 | // In all cases other than those enumerated above, no conversion is possible |
| 5850 | return Result; |
| 5851 | } |
| 5852 | |
| 5853 | /// TryCopyInitialization - Try to copy-initialize a value of type |
| 5854 | /// ToType from the expression From. Return the implicit conversion |
| 5855 | /// sequence required to pass this argument, which may be a bad |
| 5856 | /// conversion sequence (meaning that the argument cannot be passed to |
| 5857 | /// a parameter of this type). If @p SuppressUserConversions, then we |
| 5858 | /// do not permit any user-defined conversion sequences. |
| 5859 | static ImplicitConversionSequence |
| 5860 | TryCopyInitialization(Sema &S, Expr *From, QualType ToType, |
| 5861 | bool SuppressUserConversions, |
| 5862 | bool InOverloadResolution, |
| 5863 | bool AllowObjCWritebackConversion, |
| 5864 | bool AllowExplicit) { |
| 5865 | if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(Val: From)) |
| 5866 | return TryListConversion(S, From: FromInitList, ToType, SuppressUserConversions, |
| 5867 | InOverloadResolution,AllowObjCWritebackConversion); |
| 5868 | |
| 5869 | if (ToType->isReferenceType()) |
| 5870 | return TryReferenceInit(S, Init: From, DeclType: ToType, |
| 5871 | /*FIXME:*/ DeclLoc: From->getBeginLoc(), |
| 5872 | SuppressUserConversions, AllowExplicit); |
| 5873 | |
| 5874 | return TryImplicitConversion(S, From, ToType, |
| 5875 | SuppressUserConversions, |
| 5876 | AllowExplicit: AllowedExplicit::None, |
| 5877 | InOverloadResolution, |
| 5878 | /*CStyle=*/false, |
| 5879 | AllowObjCWritebackConversion, |
| 5880 | /*AllowObjCConversionOnExplicit=*/false); |
| 5881 | } |
| 5882 | |
| 5883 | static bool TryCopyInitialization(const CanQualType FromQTy, |
| 5884 | const CanQualType ToQTy, |
| 5885 | Sema &S, |
| 5886 | SourceLocation Loc, |
| 5887 | ExprValueKind FromVK) { |
| 5888 | OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); |
| 5889 | ImplicitConversionSequence ICS = |
| 5890 | TryCopyInitialization(S, From: &TmpExpr, ToType: ToQTy, SuppressUserConversions: true, InOverloadResolution: true, AllowObjCWritebackConversion: false); |
| 5891 | |
| 5892 | return !ICS.isBad(); |
| 5893 | } |
| 5894 | |
| 5895 | /// TryObjectArgumentInitialization - Try to initialize the object |
| 5896 | /// parameter of the given member function (@c Method) from the |
| 5897 | /// expression @p From. |
| 5898 | static ImplicitConversionSequence TryObjectArgumentInitialization( |
| 5899 | Sema &S, SourceLocation Loc, QualType FromType, |
| 5900 | Expr::Classification FromClassification, CXXMethodDecl *Method, |
| 5901 | const CXXRecordDecl *ActingContext, bool InOverloadResolution = false, |
| 5902 | QualType ExplicitParameterType = QualType(), |
| 5903 | bool SuppressUserConversion = false) { |
| 5904 | |
| 5905 | // We need to have an object of class type. |
| 5906 | if (const auto *PT = FromType->getAs<PointerType>()) { |
| 5907 | FromType = PT->getPointeeType(); |
| 5908 | |
| 5909 | // When we had a pointer, it's implicitly dereferenced, so we |
| 5910 | // better have an lvalue. |
| 5911 | assert(FromClassification.isLValue()); |
| 5912 | } |
| 5913 | |
| 5914 | auto ValueKindFromClassification = [](Expr::Classification C) { |
| 5915 | if (C.isPRValue()) |
| 5916 | return clang::VK_PRValue; |
| 5917 | if (C.isXValue()) |
| 5918 | return VK_XValue; |
| 5919 | return clang::VK_LValue; |
| 5920 | }; |
| 5921 | |
| 5922 | if (Method->isExplicitObjectMemberFunction()) { |
| 5923 | if (ExplicitParameterType.isNull()) |
| 5924 | ExplicitParameterType = Method->getFunctionObjectParameterReferenceType(); |
| 5925 | OpaqueValueExpr TmpExpr(Loc, FromType.getNonReferenceType(), |
| 5926 | ValueKindFromClassification(FromClassification)); |
| 5927 | ImplicitConversionSequence ICS = TryCopyInitialization( |
| 5928 | S, From: &TmpExpr, ToType: ExplicitParameterType, SuppressUserConversions: SuppressUserConversion, |
| 5929 | /*InOverloadResolution=*/true, AllowObjCWritebackConversion: false); |
| 5930 | if (ICS.isBad()) |
| 5931 | ICS.Bad.FromExpr = nullptr; |
| 5932 | return ICS; |
| 5933 | } |
| 5934 | |
| 5935 | assert(FromType->isRecordType()); |
| 5936 | |
| 5937 | QualType ClassType = S.Context.getTypeDeclType(Decl: ActingContext); |
| 5938 | // C++98 [class.dtor]p2: |
| 5939 | // A destructor can be invoked for a const, volatile or const volatile |
| 5940 | // object. |
| 5941 | // C++98 [over.match.funcs]p4: |
| 5942 | // For static member functions, the implicit object parameter is considered |
| 5943 | // to match any object (since if the function is selected, the object is |
| 5944 | // discarded). |
| 5945 | Qualifiers Quals = Method->getMethodQualifiers(); |
| 5946 | if (isa<CXXDestructorDecl>(Val: Method) || Method->isStatic()) { |
| 5947 | Quals.addConst(); |
| 5948 | Quals.addVolatile(); |
| 5949 | } |
| 5950 | |
| 5951 | QualType ImplicitParamType = S.Context.getQualifiedType(T: ClassType, Qs: Quals); |
| 5952 | |
| 5953 | // Set up the conversion sequence as a "bad" conversion, to allow us |
| 5954 | // to exit early. |
| 5955 | ImplicitConversionSequence ICS; |
| 5956 | |
| 5957 | // C++0x [over.match.funcs]p4: |
| 5958 | // For non-static member functions, the type of the implicit object |
| 5959 | // parameter is |
| 5960 | // |
| 5961 | // - "lvalue reference to cv X" for functions declared without a |
| 5962 | // ref-qualifier or with the & ref-qualifier |
| 5963 | // - "rvalue reference to cv X" for functions declared with the && |
| 5964 | // ref-qualifier |
| 5965 | // |
| 5966 | // where X is the class of which the function is a member and cv is the |
| 5967 | // cv-qualification on the member function declaration. |
| 5968 | // |
| 5969 | // However, when finding an implicit conversion sequence for the argument, we |
| 5970 | // are not allowed to perform user-defined conversions |
| 5971 | // (C++ [over.match.funcs]p5). We perform a simplified version of |
| 5972 | // reference binding here, that allows class rvalues to bind to |
| 5973 | // non-constant references. |
| 5974 | |
| 5975 | // First check the qualifiers. |
| 5976 | QualType FromTypeCanon = S.Context.getCanonicalType(T: FromType); |
| 5977 | // MSVC ignores __unaligned qualifier for overload candidates; do the same. |
| 5978 | if (ImplicitParamType.getCVRQualifiers() != |
| 5979 | FromTypeCanon.getLocalCVRQualifiers() && |
| 5980 | !ImplicitParamType.isAtLeastAsQualifiedAs( |
| 5981 | other: withoutUnaligned(Ctx&: S.Context, T: FromTypeCanon), Ctx: S.getASTContext())) { |
| 5982 | ICS.setBad(Failure: BadConversionSequence::bad_qualifiers, |
| 5983 | FromType, ToType: ImplicitParamType); |
| 5984 | return ICS; |
| 5985 | } |
| 5986 | |
| 5987 | if (FromTypeCanon.hasAddressSpace()) { |
| 5988 | Qualifiers QualsImplicitParamType = ImplicitParamType.getQualifiers(); |
| 5989 | Qualifiers QualsFromType = FromTypeCanon.getQualifiers(); |
| 5990 | if (!QualsImplicitParamType.isAddressSpaceSupersetOf(other: QualsFromType, |
| 5991 | Ctx: S.getASTContext())) { |
| 5992 | ICS.setBad(Failure: BadConversionSequence::bad_qualifiers, |
| 5993 | FromType, ToType: ImplicitParamType); |
| 5994 | return ICS; |
| 5995 | } |
| 5996 | } |
| 5997 | |
| 5998 | // Check that we have either the same type or a derived type. It |
| 5999 | // affects the conversion rank. |
| 6000 | QualType ClassTypeCanon = S.Context.getCanonicalType(T: ClassType); |
| 6001 | ImplicitConversionKind SecondKind; |
| 6002 | if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { |
| 6003 | SecondKind = ICK_Identity; |
| 6004 | } else if (S.IsDerivedFrom(Loc, Derived: FromType, Base: ClassType)) { |
| 6005 | SecondKind = ICK_Derived_To_Base; |
| 6006 | } else if (!Method->isExplicitObjectMemberFunction()) { |
| 6007 | ICS.setBad(Failure: BadConversionSequence::unrelated_class, |
| 6008 | FromType, ToType: ImplicitParamType); |
| 6009 | return ICS; |
| 6010 | } |
| 6011 | |
| 6012 | // Check the ref-qualifier. |
| 6013 | switch (Method->getRefQualifier()) { |
| 6014 | case RQ_None: |
| 6015 | // Do nothing; we don't care about lvalueness or rvalueness. |
| 6016 | break; |
| 6017 | |
| 6018 | case RQ_LValue: |
| 6019 | if (!FromClassification.isLValue() && !Quals.hasOnlyConst()) { |
| 6020 | // non-const lvalue reference cannot bind to an rvalue |
| 6021 | ICS.setBad(Failure: BadConversionSequence::lvalue_ref_to_rvalue, FromType, |
| 6022 | ToType: ImplicitParamType); |
| 6023 | return ICS; |
| 6024 | } |
| 6025 | break; |
| 6026 | |
| 6027 | case RQ_RValue: |
| 6028 | if (!FromClassification.isRValue()) { |
| 6029 | // rvalue reference cannot bind to an lvalue |
| 6030 | ICS.setBad(Failure: BadConversionSequence::rvalue_ref_to_lvalue, FromType, |
| 6031 | ToType: ImplicitParamType); |
| 6032 | return ICS; |
| 6033 | } |
| 6034 | break; |
| 6035 | } |
| 6036 | |
| 6037 | // Success. Mark this as a reference binding. |
| 6038 | ICS.setStandard(); |
| 6039 | ICS.Standard.setAsIdentityConversion(); |
| 6040 | ICS.Standard.Second = SecondKind; |
| 6041 | ICS.Standard.setFromType(FromType); |
| 6042 | ICS.Standard.setAllToTypes(ImplicitParamType); |
| 6043 | ICS.Standard.ReferenceBinding = true; |
| 6044 | ICS.Standard.DirectBinding = true; |
| 6045 | ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; |
| 6046 | ICS.Standard.BindsToFunctionLvalue = false; |
| 6047 | ICS.Standard.BindsToRvalue = FromClassification.isRValue(); |
| 6048 | ICS.Standard.FromBracedInitList = false; |
| 6049 | ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier |
| 6050 | = (Method->getRefQualifier() == RQ_None); |
| 6051 | return ICS; |
| 6052 | } |
| 6053 | |
| 6054 | /// PerformObjectArgumentInitialization - Perform initialization of |
| 6055 | /// the implicit object parameter for the given Method with the given |
| 6056 | /// expression. |
| 6057 | ExprResult Sema::PerformImplicitObjectArgumentInitialization( |
| 6058 | Expr *From, NestedNameSpecifier *Qualifier, NamedDecl *FoundDecl, |
| 6059 | CXXMethodDecl *Method) { |
| 6060 | QualType FromRecordType, DestType; |
| 6061 | QualType ImplicitParamRecordType = Method->getFunctionObjectParameterType(); |
| 6062 | |
| 6063 | Expr::Classification FromClassification; |
| 6064 | if (const PointerType *PT = From->getType()->getAs<PointerType>()) { |
| 6065 | FromRecordType = PT->getPointeeType(); |
| 6066 | DestType = Method->getThisType(); |
| 6067 | FromClassification = Expr::Classification::makeSimpleLValue(); |
| 6068 | } else { |
| 6069 | FromRecordType = From->getType(); |
| 6070 | DestType = ImplicitParamRecordType; |
| 6071 | FromClassification = From->Classify(Ctx&: Context); |
| 6072 | |
| 6073 | // CWG2813 [expr.call]p6: |
| 6074 | // If the function is an implicit object member function, the object |
| 6075 | // expression of the class member access shall be a glvalue [...] |
| 6076 | if (From->isPRValue()) { |
| 6077 | From = CreateMaterializeTemporaryExpr(T: FromRecordType, Temporary: From, |
| 6078 | BoundToLvalueReference: Method->getRefQualifier() != |
| 6079 | RefQualifierKind::RQ_RValue); |
| 6080 | } |
| 6081 | } |
| 6082 | |
| 6083 | // Note that we always use the true parent context when performing |
| 6084 | // the actual argument initialization. |
| 6085 | ImplicitConversionSequence ICS = TryObjectArgumentInitialization( |
| 6086 | S&: *this, Loc: From->getBeginLoc(), FromType: From->getType(), FromClassification, Method, |
| 6087 | ActingContext: Method->getParent()); |
| 6088 | if (ICS.isBad()) { |
| 6089 | switch (ICS.Bad.Kind) { |
| 6090 | case BadConversionSequence::bad_qualifiers: { |
| 6091 | Qualifiers FromQs = FromRecordType.getQualifiers(); |
| 6092 | Qualifiers ToQs = DestType.getQualifiers(); |
| 6093 | unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); |
| 6094 | if (CVR) { |
| 6095 | Diag(Loc: From->getBeginLoc(), DiagID: diag::err_member_function_call_bad_cvr) |
| 6096 | << Method->getDeclName() << FromRecordType << (CVR - 1) |
| 6097 | << From->getSourceRange(); |
| 6098 | Diag(Loc: Method->getLocation(), DiagID: diag::note_previous_decl) |
| 6099 | << Method->getDeclName(); |
| 6100 | return ExprError(); |
| 6101 | } |
| 6102 | break; |
| 6103 | } |
| 6104 | |
| 6105 | case BadConversionSequence::lvalue_ref_to_rvalue: |
| 6106 | case BadConversionSequence::rvalue_ref_to_lvalue: { |
| 6107 | bool IsRValueQualified = |
| 6108 | Method->getRefQualifier() == RefQualifierKind::RQ_RValue; |
| 6109 | Diag(Loc: From->getBeginLoc(), DiagID: diag::err_member_function_call_bad_ref) |
| 6110 | << Method->getDeclName() << FromClassification.isRValue() |
| 6111 | << IsRValueQualified; |
| 6112 | Diag(Loc: Method->getLocation(), DiagID: diag::note_previous_decl) |
| 6113 | << Method->getDeclName(); |
| 6114 | return ExprError(); |
| 6115 | } |
| 6116 | |
| 6117 | case BadConversionSequence::no_conversion: |
| 6118 | case BadConversionSequence::unrelated_class: |
| 6119 | break; |
| 6120 | |
| 6121 | case BadConversionSequence::too_few_initializers: |
| 6122 | case BadConversionSequence::too_many_initializers: |
| 6123 | llvm_unreachable("Lists are not objects" ); |
| 6124 | } |
| 6125 | |
| 6126 | return Diag(Loc: From->getBeginLoc(), DiagID: diag::err_member_function_call_bad_type) |
| 6127 | << ImplicitParamRecordType << FromRecordType |
| 6128 | << From->getSourceRange(); |
| 6129 | } |
| 6130 | |
| 6131 | if (ICS.Standard.Second == ICK_Derived_To_Base) { |
| 6132 | ExprResult FromRes = |
| 6133 | PerformObjectMemberConversion(From, Qualifier, FoundDecl, Member: Method); |
| 6134 | if (FromRes.isInvalid()) |
| 6135 | return ExprError(); |
| 6136 | From = FromRes.get(); |
| 6137 | } |
| 6138 | |
| 6139 | if (!Context.hasSameType(T1: From->getType(), T2: DestType)) { |
| 6140 | CastKind CK; |
| 6141 | QualType PteeTy = DestType->getPointeeType(); |
| 6142 | LangAS DestAS = |
| 6143 | PteeTy.isNull() ? DestType.getAddressSpace() : PteeTy.getAddressSpace(); |
| 6144 | if (FromRecordType.getAddressSpace() != DestAS) |
| 6145 | CK = CK_AddressSpaceConversion; |
| 6146 | else |
| 6147 | CK = CK_NoOp; |
| 6148 | From = ImpCastExprToType(E: From, Type: DestType, CK, VK: From->getValueKind()).get(); |
| 6149 | } |
| 6150 | return From; |
| 6151 | } |
| 6152 | |
| 6153 | /// TryContextuallyConvertToBool - Attempt to contextually convert the |
| 6154 | /// expression From to bool (C++0x [conv]p3). |
| 6155 | static ImplicitConversionSequence |
| 6156 | TryContextuallyConvertToBool(Sema &S, Expr *From) { |
| 6157 | // C++ [dcl.init]/17.8: |
| 6158 | // - Otherwise, if the initialization is direct-initialization, the source |
| 6159 | // type is std::nullptr_t, and the destination type is bool, the initial |
| 6160 | // value of the object being initialized is false. |
| 6161 | if (From->getType()->isNullPtrType()) |
| 6162 | return ImplicitConversionSequence::getNullptrToBool(SourceType: From->getType(), |
| 6163 | DestType: S.Context.BoolTy, |
| 6164 | NeedLValToRVal: From->isGLValue()); |
| 6165 | |
| 6166 | // All other direct-initialization of bool is equivalent to an implicit |
| 6167 | // conversion to bool in which explicit conversions are permitted. |
| 6168 | return TryImplicitConversion(S, From, ToType: S.Context.BoolTy, |
| 6169 | /*SuppressUserConversions=*/false, |
| 6170 | AllowExplicit: AllowedExplicit::Conversions, |
| 6171 | /*InOverloadResolution=*/false, |
| 6172 | /*CStyle=*/false, |
| 6173 | /*AllowObjCWritebackConversion=*/false, |
| 6174 | /*AllowObjCConversionOnExplicit=*/false); |
| 6175 | } |
| 6176 | |
| 6177 | ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { |
| 6178 | if (checkPlaceholderForOverload(S&: *this, E&: From)) |
| 6179 | return ExprError(); |
| 6180 | |
| 6181 | ImplicitConversionSequence ICS = TryContextuallyConvertToBool(S&: *this, From); |
| 6182 | if (!ICS.isBad()) |
| 6183 | return PerformImplicitConversion(From, ToType: Context.BoolTy, ICS, |
| 6184 | Action: AssignmentAction::Converting); |
| 6185 | |
| 6186 | if (!DiagnoseMultipleUserDefinedConversion(From, ToType: Context.BoolTy)) |
| 6187 | return Diag(Loc: From->getBeginLoc(), DiagID: diag::err_typecheck_bool_condition) |
| 6188 | << From->getType() << From->getSourceRange(); |
| 6189 | return ExprError(); |
| 6190 | } |
| 6191 | |
| 6192 | /// Check that the specified conversion is permitted in a converted constant |
| 6193 | /// expression, according to C++11 [expr.const]p3. Return true if the conversion |
| 6194 | /// is acceptable. |
| 6195 | static bool CheckConvertedConstantConversions(Sema &S, |
| 6196 | StandardConversionSequence &SCS) { |
| 6197 | // Since we know that the target type is an integral or unscoped enumeration |
| 6198 | // type, most conversion kinds are impossible. All possible First and Third |
| 6199 | // conversions are fine. |
| 6200 | switch (SCS.Second) { |
| 6201 | case ICK_Identity: |
| 6202 | case ICK_Integral_Promotion: |
| 6203 | case ICK_Integral_Conversion: // Narrowing conversions are checked elsewhere. |
| 6204 | case ICK_Zero_Queue_Conversion: |
| 6205 | return true; |
| 6206 | |
| 6207 | case ICK_Boolean_Conversion: |
| 6208 | // Conversion from an integral or unscoped enumeration type to bool is |
| 6209 | // classified as ICK_Boolean_Conversion, but it's also arguably an integral |
| 6210 | // conversion, so we allow it in a converted constant expression. |
| 6211 | // |
| 6212 | // FIXME: Per core issue 1407, we should not allow this, but that breaks |
| 6213 | // a lot of popular code. We should at least add a warning for this |
| 6214 | // (non-conforming) extension. |
| 6215 | return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && |
| 6216 | SCS.getToType(Idx: 2)->isBooleanType(); |
| 6217 | |
| 6218 | case ICK_Pointer_Conversion: |
| 6219 | case ICK_Pointer_Member: |
| 6220 | // C++1z: null pointer conversions and null member pointer conversions are |
| 6221 | // only permitted if the source type is std::nullptr_t. |
| 6222 | return SCS.getFromType()->isNullPtrType(); |
| 6223 | |
| 6224 | case ICK_Floating_Promotion: |
| 6225 | case ICK_Complex_Promotion: |
| 6226 | case ICK_Floating_Conversion: |
| 6227 | case ICK_Complex_Conversion: |
| 6228 | case ICK_Floating_Integral: |
| 6229 | case ICK_Compatible_Conversion: |
| 6230 | case ICK_Derived_To_Base: |
| 6231 | case ICK_Vector_Conversion: |
| 6232 | case ICK_SVE_Vector_Conversion: |
| 6233 | case ICK_RVV_Vector_Conversion: |
| 6234 | case ICK_HLSL_Vector_Splat: |
| 6235 | case ICK_Vector_Splat: |
| 6236 | case ICK_Complex_Real: |
| 6237 | case ICK_Block_Pointer_Conversion: |
| 6238 | case ICK_TransparentUnionConversion: |
| 6239 | case ICK_Writeback_Conversion: |
| 6240 | case ICK_Zero_Event_Conversion: |
| 6241 | case ICK_C_Only_Conversion: |
| 6242 | case ICK_Incompatible_Pointer_Conversion: |
| 6243 | case ICK_Fixed_Point_Conversion: |
| 6244 | case ICK_HLSL_Vector_Truncation: |
| 6245 | return false; |
| 6246 | |
| 6247 | case ICK_Lvalue_To_Rvalue: |
| 6248 | case ICK_Array_To_Pointer: |
| 6249 | case ICK_Function_To_Pointer: |
| 6250 | case ICK_HLSL_Array_RValue: |
| 6251 | llvm_unreachable("found a first conversion kind in Second" ); |
| 6252 | |
| 6253 | case ICK_Function_Conversion: |
| 6254 | case ICK_Qualification: |
| 6255 | llvm_unreachable("found a third conversion kind in Second" ); |
| 6256 | |
| 6257 | case ICK_Num_Conversion_Kinds: |
| 6258 | break; |
| 6259 | } |
| 6260 | |
| 6261 | llvm_unreachable("unknown conversion kind" ); |
| 6262 | } |
| 6263 | |
| 6264 | /// BuildConvertedConstantExpression - Check that the expression From is a |
| 6265 | /// converted constant expression of type T, perform the conversion but |
| 6266 | /// does not evaluate the expression |
| 6267 | static ExprResult BuildConvertedConstantExpression(Sema &S, Expr *From, |
| 6268 | QualType T, CCEKind CCE, |
| 6269 | NamedDecl *Dest, |
| 6270 | APValue &PreNarrowingValue) { |
| 6271 | assert((S.getLangOpts().CPlusPlus11 || CCE == CCEKind::TempArgStrict) && |
| 6272 | "converted constant expression outside C++11 or TTP matching" ); |
| 6273 | |
| 6274 | if (checkPlaceholderForOverload(S, E&: From)) |
| 6275 | return ExprError(); |
| 6276 | |
| 6277 | // C++1z [expr.const]p3: |
| 6278 | // A converted constant expression of type T is an expression, |
| 6279 | // implicitly converted to type T, where the converted |
| 6280 | // expression is a constant expression and the implicit conversion |
| 6281 | // sequence contains only [... list of conversions ...]. |
| 6282 | ImplicitConversionSequence ICS = |
| 6283 | (CCE == CCEKind::ExplicitBool || CCE == CCEKind::Noexcept) |
| 6284 | ? TryContextuallyConvertToBool(S, From) |
| 6285 | : TryCopyInitialization(S, From, ToType: T, |
| 6286 | /*SuppressUserConversions=*/false, |
| 6287 | /*InOverloadResolution=*/false, |
| 6288 | /*AllowObjCWritebackConversion=*/false, |
| 6289 | /*AllowExplicit=*/false); |
| 6290 | StandardConversionSequence *SCS = nullptr; |
| 6291 | switch (ICS.getKind()) { |
| 6292 | case ImplicitConversionSequence::StandardConversion: |
| 6293 | SCS = &ICS.Standard; |
| 6294 | break; |
| 6295 | case ImplicitConversionSequence::UserDefinedConversion: |
| 6296 | if (T->isRecordType()) |
| 6297 | SCS = &ICS.UserDefined.Before; |
| 6298 | else |
| 6299 | SCS = &ICS.UserDefined.After; |
| 6300 | break; |
| 6301 | case ImplicitConversionSequence::AmbiguousConversion: |
| 6302 | case ImplicitConversionSequence::BadConversion: |
| 6303 | if (!S.DiagnoseMultipleUserDefinedConversion(From, ToType: T)) |
| 6304 | return S.Diag(Loc: From->getBeginLoc(), |
| 6305 | DiagID: diag::err_typecheck_converted_constant_expression) |
| 6306 | << From->getType() << From->getSourceRange() << T; |
| 6307 | return ExprError(); |
| 6308 | |
| 6309 | case ImplicitConversionSequence::EllipsisConversion: |
| 6310 | case ImplicitConversionSequence::StaticObjectArgumentConversion: |
| 6311 | llvm_unreachable("bad conversion in converted constant expression" ); |
| 6312 | } |
| 6313 | |
| 6314 | // Check that we would only use permitted conversions. |
| 6315 | if (!CheckConvertedConstantConversions(S, SCS&: *SCS)) { |
| 6316 | return S.Diag(Loc: From->getBeginLoc(), |
| 6317 | DiagID: diag::err_typecheck_converted_constant_expression_disallowed) |
| 6318 | << From->getType() << From->getSourceRange() << T; |
| 6319 | } |
| 6320 | // [...] and where the reference binding (if any) binds directly. |
| 6321 | if (SCS->ReferenceBinding && !SCS->DirectBinding) { |
| 6322 | return S.Diag(Loc: From->getBeginLoc(), |
| 6323 | DiagID: diag::err_typecheck_converted_constant_expression_indirect) |
| 6324 | << From->getType() << From->getSourceRange() << T; |
| 6325 | } |
| 6326 | // 'TryCopyInitialization' returns incorrect info for attempts to bind |
| 6327 | // a reference to a bit-field due to C++ [over.ics.ref]p4. Namely, |
| 6328 | // 'SCS->DirectBinding' occurs to be set to 'true' despite it is not |
| 6329 | // the direct binding according to C++ [dcl.init.ref]p5. Hence, check this |
| 6330 | // case explicitly. |
| 6331 | if (From->refersToBitField() && T.getTypePtr()->isReferenceType()) { |
| 6332 | return S.Diag(Loc: From->getBeginLoc(), |
| 6333 | DiagID: diag::err_reference_bind_to_bitfield_in_cce) |
| 6334 | << From->getSourceRange(); |
| 6335 | } |
| 6336 | |
| 6337 | // Usually we can simply apply the ImplicitConversionSequence we formed |
| 6338 | // earlier, but that's not guaranteed to work when initializing an object of |
| 6339 | // class type. |
| 6340 | ExprResult Result; |
| 6341 | bool IsTemplateArgument = |
| 6342 | CCE == CCEKind::TemplateArg || CCE == CCEKind::TempArgStrict; |
| 6343 | if (T->isRecordType()) { |
| 6344 | assert(IsTemplateArgument && |
| 6345 | "unexpected class type converted constant expr" ); |
| 6346 | Result = S.PerformCopyInitialization( |
| 6347 | Entity: InitializedEntity::InitializeTemplateParameter( |
| 6348 | T, Param: cast<NonTypeTemplateParmDecl>(Val: Dest)), |
| 6349 | EqualLoc: SourceLocation(), Init: From); |
| 6350 | } else { |
| 6351 | Result = |
| 6352 | S.PerformImplicitConversion(From, ToType: T, ICS, Action: AssignmentAction::Converting); |
| 6353 | } |
| 6354 | if (Result.isInvalid()) |
| 6355 | return Result; |
| 6356 | |
| 6357 | // C++2a [intro.execution]p5: |
| 6358 | // A full-expression is [...] a constant-expression [...] |
| 6359 | Result = S.ActOnFinishFullExpr(Expr: Result.get(), CC: From->getExprLoc(), |
| 6360 | /*DiscardedValue=*/false, /*IsConstexpr=*/true, |
| 6361 | IsTemplateArgument); |
| 6362 | if (Result.isInvalid()) |
| 6363 | return Result; |
| 6364 | |
| 6365 | // Check for a narrowing implicit conversion. |
| 6366 | bool ReturnPreNarrowingValue = false; |
| 6367 | QualType PreNarrowingType; |
| 6368 | switch (SCS->getNarrowingKind(Ctx&: S.Context, Converted: Result.get(), ConstantValue&: PreNarrowingValue, |
| 6369 | ConstantType&: PreNarrowingType)) { |
| 6370 | case NK_Variable_Narrowing: |
| 6371 | // Implicit conversion to a narrower type, and the value is not a constant |
| 6372 | // expression. We'll diagnose this in a moment. |
| 6373 | case NK_Not_Narrowing: |
| 6374 | break; |
| 6375 | |
| 6376 | case NK_Constant_Narrowing: |
| 6377 | if (CCE == CCEKind::ArrayBound && |
| 6378 | PreNarrowingType->isIntegralOrEnumerationType() && |
| 6379 | PreNarrowingValue.isInt()) { |
| 6380 | // Don't diagnose array bound narrowing here; we produce more precise |
| 6381 | // errors by allowing the un-narrowed value through. |
| 6382 | ReturnPreNarrowingValue = true; |
| 6383 | break; |
| 6384 | } |
| 6385 | S.Diag(Loc: From->getBeginLoc(), DiagID: diag::ext_cce_narrowing) |
| 6386 | << CCE << /*Constant*/ 1 |
| 6387 | << PreNarrowingValue.getAsString(Ctx: S.Context, Ty: PreNarrowingType) << T; |
| 6388 | break; |
| 6389 | |
| 6390 | case NK_Dependent_Narrowing: |
| 6391 | // Implicit conversion to a narrower type, but the expression is |
| 6392 | // value-dependent so we can't tell whether it's actually narrowing. |
| 6393 | // For matching the parameters of a TTP, the conversion is ill-formed |
| 6394 | // if it may narrow. |
| 6395 | if (CCE != CCEKind::TempArgStrict) |
| 6396 | break; |
| 6397 | [[fallthrough]]; |
| 6398 | case NK_Type_Narrowing: |
| 6399 | // FIXME: It would be better to diagnose that the expression is not a |
| 6400 | // constant expression. |
| 6401 | S.Diag(Loc: From->getBeginLoc(), DiagID: diag::ext_cce_narrowing) |
| 6402 | << CCE << /*Constant*/ 0 << From->getType() << T; |
| 6403 | break; |
| 6404 | } |
| 6405 | if (!ReturnPreNarrowingValue) |
| 6406 | PreNarrowingValue = {}; |
| 6407 | |
| 6408 | return Result; |
| 6409 | } |
| 6410 | |
| 6411 | /// CheckConvertedConstantExpression - Check that the expression From is a |
| 6412 | /// converted constant expression of type T, perform the conversion and produce |
| 6413 | /// the converted expression, per C++11 [expr.const]p3. |
| 6414 | static ExprResult CheckConvertedConstantExpression(Sema &S, Expr *From, |
| 6415 | QualType T, APValue &Value, |
| 6416 | CCEKind CCE, bool RequireInt, |
| 6417 | NamedDecl *Dest) { |
| 6418 | |
| 6419 | APValue PreNarrowingValue; |
| 6420 | ExprResult Result = BuildConvertedConstantExpression(S, From, T, CCE, Dest, |
| 6421 | PreNarrowingValue); |
| 6422 | if (Result.isInvalid() || Result.get()->isValueDependent()) { |
| 6423 | Value = APValue(); |
| 6424 | return Result; |
| 6425 | } |
| 6426 | return S.EvaluateConvertedConstantExpression(E: Result.get(), T, Value, CCE, |
| 6427 | RequireInt, PreNarrowingValue); |
| 6428 | } |
| 6429 | |
| 6430 | ExprResult Sema::BuildConvertedConstantExpression(Expr *From, QualType T, |
| 6431 | CCEKind CCE, |
| 6432 | NamedDecl *Dest) { |
| 6433 | APValue PreNarrowingValue; |
| 6434 | return ::BuildConvertedConstantExpression(S&: *this, From, T, CCE, Dest, |
| 6435 | PreNarrowingValue); |
| 6436 | } |
| 6437 | |
| 6438 | ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, |
| 6439 | APValue &Value, CCEKind CCE, |
| 6440 | NamedDecl *Dest) { |
| 6441 | return ::CheckConvertedConstantExpression(S&: *this, From, T, Value, CCE, RequireInt: false, |
| 6442 | Dest); |
| 6443 | } |
| 6444 | |
| 6445 | ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, |
| 6446 | llvm::APSInt &Value, |
| 6447 | CCEKind CCE) { |
| 6448 | assert(T->isIntegralOrEnumerationType() && "unexpected converted const type" ); |
| 6449 | |
| 6450 | APValue V; |
| 6451 | auto R = ::CheckConvertedConstantExpression(S&: *this, From, T, Value&: V, CCE, RequireInt: true, |
| 6452 | /*Dest=*/nullptr); |
| 6453 | if (!R.isInvalid() && !R.get()->isValueDependent()) |
| 6454 | Value = V.getInt(); |
| 6455 | return R; |
| 6456 | } |
| 6457 | |
| 6458 | ExprResult |
| 6459 | Sema::EvaluateConvertedConstantExpression(Expr *E, QualType T, APValue &Value, |
| 6460 | CCEKind CCE, bool RequireInt, |
| 6461 | const APValue &PreNarrowingValue) { |
| 6462 | |
| 6463 | ExprResult Result = E; |
| 6464 | // Check the expression is a constant expression. |
| 6465 | SmallVector<PartialDiagnosticAt, 8> Notes; |
| 6466 | Expr::EvalResult Eval; |
| 6467 | Eval.Diag = &Notes; |
| 6468 | |
| 6469 | assert(CCE != CCEKind::TempArgStrict && "unnexpected CCE Kind" ); |
| 6470 | |
| 6471 | ConstantExprKind Kind; |
| 6472 | if (CCE == CCEKind::TemplateArg && T->isRecordType()) |
| 6473 | Kind = ConstantExprKind::ClassTemplateArgument; |
| 6474 | else if (CCE == CCEKind::TemplateArg) |
| 6475 | Kind = ConstantExprKind::NonClassTemplateArgument; |
| 6476 | else |
| 6477 | Kind = ConstantExprKind::Normal; |
| 6478 | |
| 6479 | if (!E->EvaluateAsConstantExpr(Result&: Eval, Ctx: Context, Kind) || |
| 6480 | (RequireInt && !Eval.Val.isInt())) { |
| 6481 | // The expression can't be folded, so we can't keep it at this position in |
| 6482 | // the AST. |
| 6483 | Result = ExprError(); |
| 6484 | } else { |
| 6485 | Value = Eval.Val; |
| 6486 | |
| 6487 | if (Notes.empty()) { |
| 6488 | // It's a constant expression. |
| 6489 | Expr *E = Result.get(); |
| 6490 | if (const auto *CE = dyn_cast<ConstantExpr>(Val: E)) { |
| 6491 | // We expect a ConstantExpr to have a value associated with it |
| 6492 | // by this point. |
| 6493 | assert(CE->getResultStorageKind() != ConstantResultStorageKind::None && |
| 6494 | "ConstantExpr has no value associated with it" ); |
| 6495 | (void)CE; |
| 6496 | } else { |
| 6497 | E = ConstantExpr::Create(Context, E: Result.get(), Result: Value); |
| 6498 | } |
| 6499 | if (!PreNarrowingValue.isAbsent()) |
| 6500 | Value = std::move(PreNarrowingValue); |
| 6501 | return E; |
| 6502 | } |
| 6503 | } |
| 6504 | |
| 6505 | // It's not a constant expression. Produce an appropriate diagnostic. |
| 6506 | if (Notes.size() == 1 && |
| 6507 | Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) { |
| 6508 | Diag(Loc: Notes[0].first, DiagID: diag::err_expr_not_cce) << CCE; |
| 6509 | } else if (!Notes.empty() && Notes[0].second.getDiagID() == |
| 6510 | diag::note_constexpr_invalid_template_arg) { |
| 6511 | Notes[0].second.setDiagID(diag::err_constexpr_invalid_template_arg); |
| 6512 | for (unsigned I = 0; I < Notes.size(); ++I) |
| 6513 | Diag(Loc: Notes[I].first, PD: Notes[I].second); |
| 6514 | } else { |
| 6515 | Diag(Loc: E->getBeginLoc(), DiagID: diag::err_expr_not_cce) |
| 6516 | << CCE << E->getSourceRange(); |
| 6517 | for (unsigned I = 0; I < Notes.size(); ++I) |
| 6518 | Diag(Loc: Notes[I].first, PD: Notes[I].second); |
| 6519 | } |
| 6520 | return ExprError(); |
| 6521 | } |
| 6522 | |
| 6523 | /// dropPointerConversions - If the given standard conversion sequence |
| 6524 | /// involves any pointer conversions, remove them. This may change |
| 6525 | /// the result type of the conversion sequence. |
| 6526 | static void dropPointerConversion(StandardConversionSequence &SCS) { |
| 6527 | if (SCS.Second == ICK_Pointer_Conversion) { |
| 6528 | SCS.Second = ICK_Identity; |
| 6529 | SCS.Dimension = ICK_Identity; |
| 6530 | SCS.Third = ICK_Identity; |
| 6531 | SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; |
| 6532 | } |
| 6533 | } |
| 6534 | |
| 6535 | /// TryContextuallyConvertToObjCPointer - Attempt to contextually |
| 6536 | /// convert the expression From to an Objective-C pointer type. |
| 6537 | static ImplicitConversionSequence |
| 6538 | TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { |
| 6539 | // Do an implicit conversion to 'id'. |
| 6540 | QualType Ty = S.Context.getObjCIdType(); |
| 6541 | ImplicitConversionSequence ICS |
| 6542 | = TryImplicitConversion(S, From, ToType: Ty, |
| 6543 | // FIXME: Are these flags correct? |
| 6544 | /*SuppressUserConversions=*/false, |
| 6545 | AllowExplicit: AllowedExplicit::Conversions, |
| 6546 | /*InOverloadResolution=*/false, |
| 6547 | /*CStyle=*/false, |
| 6548 | /*AllowObjCWritebackConversion=*/false, |
| 6549 | /*AllowObjCConversionOnExplicit=*/true); |
| 6550 | |
| 6551 | // Strip off any final conversions to 'id'. |
| 6552 | switch (ICS.getKind()) { |
| 6553 | case ImplicitConversionSequence::BadConversion: |
| 6554 | case ImplicitConversionSequence::AmbiguousConversion: |
| 6555 | case ImplicitConversionSequence::EllipsisConversion: |
| 6556 | case ImplicitConversionSequence::StaticObjectArgumentConversion: |
| 6557 | break; |
| 6558 | |
| 6559 | case ImplicitConversionSequence::UserDefinedConversion: |
| 6560 | dropPointerConversion(SCS&: ICS.UserDefined.After); |
| 6561 | break; |
| 6562 | |
| 6563 | case ImplicitConversionSequence::StandardConversion: |
| 6564 | dropPointerConversion(SCS&: ICS.Standard); |
| 6565 | break; |
| 6566 | } |
| 6567 | |
| 6568 | return ICS; |
| 6569 | } |
| 6570 | |
| 6571 | ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { |
| 6572 | if (checkPlaceholderForOverload(S&: *this, E&: From)) |
| 6573 | return ExprError(); |
| 6574 | |
| 6575 | QualType Ty = Context.getObjCIdType(); |
| 6576 | ImplicitConversionSequence ICS = |
| 6577 | TryContextuallyConvertToObjCPointer(S&: *this, From); |
| 6578 | if (!ICS.isBad()) |
| 6579 | return PerformImplicitConversion(From, ToType: Ty, ICS, |
| 6580 | Action: AssignmentAction::Converting); |
| 6581 | return ExprResult(); |
| 6582 | } |
| 6583 | |
| 6584 | static QualType GetExplicitObjectType(Sema &S, const Expr *MemExprE) { |
| 6585 | const Expr *Base = nullptr; |
| 6586 | assert((isa<UnresolvedMemberExpr, MemberExpr>(MemExprE)) && |
| 6587 | "expected a member expression" ); |
| 6588 | |
| 6589 | if (const auto M = dyn_cast<UnresolvedMemberExpr>(Val: MemExprE); |
| 6590 | M && !M->isImplicitAccess()) |
| 6591 | Base = M->getBase(); |
| 6592 | else if (const auto M = dyn_cast<MemberExpr>(Val: MemExprE); |
| 6593 | M && !M->isImplicitAccess()) |
| 6594 | Base = M->getBase(); |
| 6595 | |
| 6596 | QualType T = Base ? Base->getType() : S.getCurrentThisType(); |
| 6597 | |
| 6598 | if (T->isPointerType()) |
| 6599 | T = T->getPointeeType(); |
| 6600 | |
| 6601 | return T; |
| 6602 | } |
| 6603 | |
| 6604 | static Expr *GetExplicitObjectExpr(Sema &S, Expr *Obj, |
| 6605 | const FunctionDecl *Fun) { |
| 6606 | QualType ObjType = Obj->getType(); |
| 6607 | if (ObjType->isPointerType()) { |
| 6608 | ObjType = ObjType->getPointeeType(); |
| 6609 | Obj = UnaryOperator::Create(C: S.getASTContext(), input: Obj, opc: UO_Deref, type: ObjType, |
| 6610 | VK: VK_LValue, OK: OK_Ordinary, l: SourceLocation(), |
| 6611 | /*CanOverflow=*/false, FPFeatures: FPOptionsOverride()); |
| 6612 | } |
| 6613 | return Obj; |
| 6614 | } |
| 6615 | |
| 6616 | ExprResult Sema::InitializeExplicitObjectArgument(Sema &S, Expr *Obj, |
| 6617 | FunctionDecl *Fun) { |
| 6618 | Obj = GetExplicitObjectExpr(S, Obj, Fun); |
| 6619 | return S.PerformCopyInitialization( |
| 6620 | Entity: InitializedEntity::InitializeParameter(Context&: S.Context, Parm: Fun->getParamDecl(i: 0)), |
| 6621 | EqualLoc: Obj->getExprLoc(), Init: Obj); |
| 6622 | } |
| 6623 | |
| 6624 | static bool PrepareExplicitObjectArgument(Sema &S, CXXMethodDecl *Method, |
| 6625 | Expr *Object, MultiExprArg &Args, |
| 6626 | SmallVectorImpl<Expr *> &NewArgs) { |
| 6627 | assert(Method->isExplicitObjectMemberFunction() && |
| 6628 | "Method is not an explicit member function" ); |
| 6629 | assert(NewArgs.empty() && "NewArgs should be empty" ); |
| 6630 | |
| 6631 | NewArgs.reserve(N: Args.size() + 1); |
| 6632 | Expr *This = GetExplicitObjectExpr(S, Obj: Object, Fun: Method); |
| 6633 | NewArgs.push_back(Elt: This); |
| 6634 | NewArgs.append(in_start: Args.begin(), in_end: Args.end()); |
| 6635 | Args = NewArgs; |
| 6636 | return S.DiagnoseInvalidExplicitObjectParameterInLambda( |
| 6637 | Method, CallLoc: Object->getBeginLoc()); |
| 6638 | } |
| 6639 | |
| 6640 | /// Determine whether the provided type is an integral type, or an enumeration |
| 6641 | /// type of a permitted flavor. |
| 6642 | bool Sema::ICEConvertDiagnoser::match(QualType T) { |
| 6643 | return AllowScopedEnumerations ? T->isIntegralOrEnumerationType() |
| 6644 | : T->isIntegralOrUnscopedEnumerationType(); |
| 6645 | } |
| 6646 | |
| 6647 | static ExprResult |
| 6648 | diagnoseAmbiguousConversion(Sema &SemaRef, SourceLocation Loc, Expr *From, |
| 6649 | Sema::ContextualImplicitConverter &Converter, |
| 6650 | QualType T, UnresolvedSetImpl &ViableConversions) { |
| 6651 | |
| 6652 | if (Converter.Suppress) |
| 6653 | return ExprError(); |
| 6654 | |
| 6655 | Converter.diagnoseAmbiguous(S&: SemaRef, Loc, T) << From->getSourceRange(); |
| 6656 | for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { |
| 6657 | CXXConversionDecl *Conv = |
| 6658 | cast<CXXConversionDecl>(Val: ViableConversions[I]->getUnderlyingDecl()); |
| 6659 | QualType ConvTy = Conv->getConversionType().getNonReferenceType(); |
| 6660 | Converter.noteAmbiguous(S&: SemaRef, Conv, ConvTy); |
| 6661 | } |
| 6662 | return From; |
| 6663 | } |
| 6664 | |
| 6665 | static bool |
| 6666 | diagnoseNoViableConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, |
| 6667 | Sema::ContextualImplicitConverter &Converter, |
| 6668 | QualType T, bool HadMultipleCandidates, |
| 6669 | UnresolvedSetImpl &ExplicitConversions) { |
| 6670 | if (ExplicitConversions.size() == 1 && !Converter.Suppress) { |
| 6671 | DeclAccessPair Found = ExplicitConversions[0]; |
| 6672 | CXXConversionDecl *Conversion = |
| 6673 | cast<CXXConversionDecl>(Val: Found->getUnderlyingDecl()); |
| 6674 | |
| 6675 | // The user probably meant to invoke the given explicit |
| 6676 | // conversion; use it. |
| 6677 | QualType ConvTy = Conversion->getConversionType().getNonReferenceType(); |
| 6678 | std::string TypeStr; |
| 6679 | ConvTy.getAsStringInternal(Str&: TypeStr, Policy: SemaRef.getPrintingPolicy()); |
| 6680 | |
| 6681 | Converter.diagnoseExplicitConv(S&: SemaRef, Loc, T, ConvTy) |
| 6682 | << FixItHint::CreateInsertion(InsertionLoc: From->getBeginLoc(), |
| 6683 | Code: "static_cast<" + TypeStr + ">(" ) |
| 6684 | << FixItHint::CreateInsertion( |
| 6685 | InsertionLoc: SemaRef.getLocForEndOfToken(Loc: From->getEndLoc()), Code: ")" ); |
| 6686 | Converter.noteExplicitConv(S&: SemaRef, Conv: Conversion, ConvTy); |
| 6687 | |
| 6688 | // If we aren't in a SFINAE context, build a call to the |
| 6689 | // explicit conversion function. |
| 6690 | if (SemaRef.isSFINAEContext()) |
| 6691 | return true; |
| 6692 | |
| 6693 | SemaRef.CheckMemberOperatorAccess(Loc: From->getExprLoc(), ObjectExpr: From, ArgExpr: nullptr, FoundDecl: Found); |
| 6694 | ExprResult Result = SemaRef.BuildCXXMemberCallExpr(Exp: From, FoundDecl: Found, Method: Conversion, |
| 6695 | HadMultipleCandidates); |
| 6696 | if (Result.isInvalid()) |
| 6697 | return true; |
| 6698 | |
| 6699 | // Replace the conversion with a RecoveryExpr, so we don't try to |
| 6700 | // instantiate it later, but can further diagnose here. |
| 6701 | Result = SemaRef.CreateRecoveryExpr(Begin: From->getBeginLoc(), End: From->getEndLoc(), |
| 6702 | SubExprs: From, T: Result.get()->getType()); |
| 6703 | if (Result.isInvalid()) |
| 6704 | return true; |
| 6705 | From = Result.get(); |
| 6706 | } |
| 6707 | return false; |
| 6708 | } |
| 6709 | |
| 6710 | static bool recordConversion(Sema &SemaRef, SourceLocation Loc, Expr *&From, |
| 6711 | Sema::ContextualImplicitConverter &Converter, |
| 6712 | QualType T, bool HadMultipleCandidates, |
| 6713 | DeclAccessPair &Found) { |
| 6714 | CXXConversionDecl *Conversion = |
| 6715 | cast<CXXConversionDecl>(Val: Found->getUnderlyingDecl()); |
| 6716 | SemaRef.CheckMemberOperatorAccess(Loc: From->getExprLoc(), ObjectExpr: From, ArgExpr: nullptr, FoundDecl: Found); |
| 6717 | |
| 6718 | QualType ToType = Conversion->getConversionType().getNonReferenceType(); |
| 6719 | if (!Converter.SuppressConversion) { |
| 6720 | if (SemaRef.isSFINAEContext()) |
| 6721 | return true; |
| 6722 | |
| 6723 | Converter.diagnoseConversion(S&: SemaRef, Loc, T, ConvTy: ToType) |
| 6724 | << From->getSourceRange(); |
| 6725 | } |
| 6726 | |
| 6727 | ExprResult Result = SemaRef.BuildCXXMemberCallExpr(Exp: From, FoundDecl: Found, Method: Conversion, |
| 6728 | HadMultipleCandidates); |
| 6729 | if (Result.isInvalid()) |
| 6730 | return true; |
| 6731 | // Record usage of conversion in an implicit cast. |
| 6732 | From = ImplicitCastExpr::Create(Context: SemaRef.Context, T: Result.get()->getType(), |
| 6733 | Kind: CK_UserDefinedConversion, Operand: Result.get(), |
| 6734 | BasePath: nullptr, Cat: Result.get()->getValueKind(), |
| 6735 | FPO: SemaRef.CurFPFeatureOverrides()); |
| 6736 | return false; |
| 6737 | } |
| 6738 | |
| 6739 | static ExprResult finishContextualImplicitConversion( |
| 6740 | Sema &SemaRef, SourceLocation Loc, Expr *From, |
| 6741 | Sema::ContextualImplicitConverter &Converter) { |
| 6742 | if (!Converter.match(T: From->getType()) && !Converter.Suppress) |
| 6743 | Converter.diagnoseNoMatch(S&: SemaRef, Loc, T: From->getType()) |
| 6744 | << From->getSourceRange(); |
| 6745 | |
| 6746 | return SemaRef.DefaultLvalueConversion(E: From); |
| 6747 | } |
| 6748 | |
| 6749 | static void |
| 6750 | collectViableConversionCandidates(Sema &SemaRef, Expr *From, QualType ToType, |
| 6751 | UnresolvedSetImpl &ViableConversions, |
| 6752 | OverloadCandidateSet &CandidateSet) { |
| 6753 | for (const DeclAccessPair &FoundDecl : ViableConversions.pairs()) { |
| 6754 | NamedDecl *D = FoundDecl.getDecl(); |
| 6755 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Val: D->getDeclContext()); |
| 6756 | if (isa<UsingShadowDecl>(Val: D)) |
| 6757 | D = cast<UsingShadowDecl>(Val: D)->getTargetDecl(); |
| 6758 | |
| 6759 | if (auto *ConvTemplate = dyn_cast<FunctionTemplateDecl>(Val: D)) { |
| 6760 | SemaRef.AddTemplateConversionCandidate( |
| 6761 | FunctionTemplate: ConvTemplate, FoundDecl, ActingContext, From, ToType, CandidateSet, |
| 6762 | /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit=*/true); |
| 6763 | continue; |
| 6764 | } |
| 6765 | CXXConversionDecl *Conv = cast<CXXConversionDecl>(Val: D); |
| 6766 | SemaRef.AddConversionCandidate( |
| 6767 | Conversion: Conv, FoundDecl, ActingContext, From, ToType, CandidateSet, |
| 6768 | /*AllowObjCConversionOnExplicit=*/false, /*AllowExplicit=*/true); |
| 6769 | } |
| 6770 | } |
| 6771 | |
| 6772 | /// Attempt to convert the given expression to a type which is accepted |
| 6773 | /// by the given converter. |
| 6774 | /// |
| 6775 | /// This routine will attempt to convert an expression of class type to a |
| 6776 | /// type accepted by the specified converter. In C++11 and before, the class |
| 6777 | /// must have a single non-explicit conversion function converting to a matching |
| 6778 | /// type. In C++1y, there can be multiple such conversion functions, but only |
| 6779 | /// one target type. |
| 6780 | /// |
| 6781 | /// \param Loc The source location of the construct that requires the |
| 6782 | /// conversion. |
| 6783 | /// |
| 6784 | /// \param From The expression we're converting from. |
| 6785 | /// |
| 6786 | /// \param Converter Used to control and diagnose the conversion process. |
| 6787 | /// |
| 6788 | /// \returns The expression, converted to an integral or enumeration type if |
| 6789 | /// successful. |
| 6790 | ExprResult Sema::PerformContextualImplicitConversion( |
| 6791 | SourceLocation Loc, Expr *From, ContextualImplicitConverter &Converter) { |
| 6792 | // We can't perform any more checking for type-dependent expressions. |
| 6793 | if (From->isTypeDependent()) |
| 6794 | return From; |
| 6795 | |
| 6796 | // Process placeholders immediately. |
| 6797 | if (From->hasPlaceholderType()) { |
| 6798 | ExprResult result = CheckPlaceholderExpr(E: From); |
| 6799 | if (result.isInvalid()) |
| 6800 | return result; |
| 6801 | From = result.get(); |
| 6802 | } |
| 6803 | |
| 6804 | // Try converting the expression to an Lvalue first, to get rid of qualifiers. |
| 6805 | ExprResult Converted = DefaultLvalueConversion(E: From); |
| 6806 | QualType T = Converted.isUsable() ? Converted.get()->getType() : QualType(); |
| 6807 | // If the expression already has a matching type, we're golden. |
| 6808 | if (Converter.match(T)) |
| 6809 | return Converted; |
| 6810 | |
| 6811 | // FIXME: Check for missing '()' if T is a function type? |
| 6812 | |
| 6813 | // We can only perform contextual implicit conversions on objects of class |
| 6814 | // type. |
| 6815 | const RecordType *RecordTy = T->getAs<RecordType>(); |
| 6816 | if (!RecordTy || !getLangOpts().CPlusPlus) { |
| 6817 | if (!Converter.Suppress) |
| 6818 | Converter.diagnoseNoMatch(S&: *this, Loc, T) << From->getSourceRange(); |
| 6819 | return From; |
| 6820 | } |
| 6821 | |
| 6822 | // We must have a complete class type. |
| 6823 | struct TypeDiagnoserPartialDiag : TypeDiagnoser { |
| 6824 | ContextualImplicitConverter &Converter; |
| 6825 | Expr *From; |
| 6826 | |
| 6827 | TypeDiagnoserPartialDiag(ContextualImplicitConverter &Converter, Expr *From) |
| 6828 | : Converter(Converter), From(From) {} |
| 6829 | |
| 6830 | void diagnose(Sema &S, SourceLocation Loc, QualType T) override { |
| 6831 | Converter.diagnoseIncomplete(S, Loc, T) << From->getSourceRange(); |
| 6832 | } |
| 6833 | } IncompleteDiagnoser(Converter, From); |
| 6834 | |
| 6835 | if (Converter.Suppress ? !isCompleteType(Loc, T) |
| 6836 | : RequireCompleteType(Loc, T, Diagnoser&: IncompleteDiagnoser)) |
| 6837 | return From; |
| 6838 | |
| 6839 | // Look for a conversion to an integral or enumeration type. |
| 6840 | UnresolvedSet<4> |
| 6841 | ViableConversions; // These are *potentially* viable in C++1y. |
| 6842 | UnresolvedSet<4> ExplicitConversions; |
| 6843 | const auto &Conversions = |
| 6844 | cast<CXXRecordDecl>(Val: RecordTy->getDecl())->getVisibleConversionFunctions(); |
| 6845 | |
| 6846 | bool HadMultipleCandidates = |
| 6847 | (std::distance(first: Conversions.begin(), last: Conversions.end()) > 1); |
| 6848 | |
| 6849 | // To check that there is only one target type, in C++1y: |
| 6850 | QualType ToType; |
| 6851 | bool HasUniqueTargetType = true; |
| 6852 | |
| 6853 | // Collect explicit or viable (potentially in C++1y) conversions. |
| 6854 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
| 6855 | NamedDecl *D = (*I)->getUnderlyingDecl(); |
| 6856 | CXXConversionDecl *Conversion; |
| 6857 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(Val: D); |
| 6858 | if (ConvTemplate) { |
| 6859 | if (getLangOpts().CPlusPlus14) |
| 6860 | Conversion = cast<CXXConversionDecl>(Val: ConvTemplate->getTemplatedDecl()); |
| 6861 | else |
| 6862 | continue; // C++11 does not consider conversion operator templates(?). |
| 6863 | } else |
| 6864 | Conversion = cast<CXXConversionDecl>(Val: D); |
| 6865 | |
| 6866 | assert((!ConvTemplate || getLangOpts().CPlusPlus14) && |
| 6867 | "Conversion operator templates are considered potentially " |
| 6868 | "viable in C++1y" ); |
| 6869 | |
| 6870 | QualType CurToType = Conversion->getConversionType().getNonReferenceType(); |
| 6871 | if (Converter.match(T: CurToType) || ConvTemplate) { |
| 6872 | |
| 6873 | if (Conversion->isExplicit()) { |
| 6874 | // FIXME: For C++1y, do we need this restriction? |
| 6875 | // cf. diagnoseNoViableConversion() |
| 6876 | if (!ConvTemplate) |
| 6877 | ExplicitConversions.addDecl(D: I.getDecl(), AS: I.getAccess()); |
| 6878 | } else { |
| 6879 | if (!ConvTemplate && getLangOpts().CPlusPlus14) { |
| 6880 | if (ToType.isNull()) |
| 6881 | ToType = CurToType.getUnqualifiedType(); |
| 6882 | else if (HasUniqueTargetType && |
| 6883 | (CurToType.getUnqualifiedType() != ToType)) |
| 6884 | HasUniqueTargetType = false; |
| 6885 | } |
| 6886 | ViableConversions.addDecl(D: I.getDecl(), AS: I.getAccess()); |
| 6887 | } |
| 6888 | } |
| 6889 | } |
| 6890 | |
| 6891 | if (getLangOpts().CPlusPlus14) { |
| 6892 | // C++1y [conv]p6: |
| 6893 | // ... An expression e of class type E appearing in such a context |
| 6894 | // is said to be contextually implicitly converted to a specified |
| 6895 | // type T and is well-formed if and only if e can be implicitly |
| 6896 | // converted to a type T that is determined as follows: E is searched |
| 6897 | // for conversion functions whose return type is cv T or reference to |
| 6898 | // cv T such that T is allowed by the context. There shall be |
| 6899 | // exactly one such T. |
| 6900 | |
| 6901 | // If no unique T is found: |
| 6902 | if (ToType.isNull()) { |
| 6903 | if (diagnoseNoViableConversion(SemaRef&: *this, Loc, From, Converter, T, |
| 6904 | HadMultipleCandidates, |
| 6905 | ExplicitConversions)) |
| 6906 | return ExprError(); |
| 6907 | return finishContextualImplicitConversion(SemaRef&: *this, Loc, From, Converter); |
| 6908 | } |
| 6909 | |
| 6910 | // If more than one unique Ts are found: |
| 6911 | if (!HasUniqueTargetType) |
| 6912 | return diagnoseAmbiguousConversion(SemaRef&: *this, Loc, From, Converter, T, |
| 6913 | ViableConversions); |
| 6914 | |
| 6915 | // If one unique T is found: |
| 6916 | // First, build a candidate set from the previously recorded |
| 6917 | // potentially viable conversions. |
| 6918 | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); |
| 6919 | collectViableConversionCandidates(SemaRef&: *this, From, ToType, ViableConversions, |
| 6920 | CandidateSet); |
| 6921 | |
| 6922 | // Then, perform overload resolution over the candidate set. |
| 6923 | OverloadCandidateSet::iterator Best; |
| 6924 | switch (CandidateSet.BestViableFunction(S&: *this, Loc, Best)) { |
| 6925 | case OR_Success: { |
| 6926 | // Apply this conversion. |
| 6927 | DeclAccessPair Found = |
| 6928 | DeclAccessPair::make(D: Best->Function, AS: Best->FoundDecl.getAccess()); |
| 6929 | if (recordConversion(SemaRef&: *this, Loc, From, Converter, T, |
| 6930 | HadMultipleCandidates, Found)) |
| 6931 | return ExprError(); |
| 6932 | break; |
| 6933 | } |
| 6934 | case OR_Ambiguous: |
| 6935 | return diagnoseAmbiguousConversion(SemaRef&: *this, Loc, From, Converter, T, |
| 6936 | ViableConversions); |
| 6937 | case OR_No_Viable_Function: |
| 6938 | if (diagnoseNoViableConversion(SemaRef&: *this, Loc, From, Converter, T, |
| 6939 | HadMultipleCandidates, |
| 6940 | ExplicitConversions)) |
| 6941 | return ExprError(); |
| 6942 | [[fallthrough]]; |
| 6943 | case OR_Deleted: |
| 6944 | // We'll complain below about a non-integral condition type. |
| 6945 | break; |
| 6946 | } |
| 6947 | } else { |
| 6948 | switch (ViableConversions.size()) { |
| 6949 | case 0: { |
| 6950 | if (diagnoseNoViableConversion(SemaRef&: *this, Loc, From, Converter, T, |
| 6951 | HadMultipleCandidates, |
| 6952 | ExplicitConversions)) |
| 6953 | return ExprError(); |
| 6954 | |
| 6955 | // We'll complain below about a non-integral condition type. |
| 6956 | break; |
| 6957 | } |
| 6958 | case 1: { |
| 6959 | // Apply this conversion. |
| 6960 | DeclAccessPair Found = ViableConversions[0]; |
| 6961 | if (recordConversion(SemaRef&: *this, Loc, From, Converter, T, |
| 6962 | HadMultipleCandidates, Found)) |
| 6963 | return ExprError(); |
| 6964 | break; |
| 6965 | } |
| 6966 | default: |
| 6967 | return diagnoseAmbiguousConversion(SemaRef&: *this, Loc, From, Converter, T, |
| 6968 | ViableConversions); |
| 6969 | } |
| 6970 | } |
| 6971 | |
| 6972 | return finishContextualImplicitConversion(SemaRef&: *this, Loc, From, Converter); |
| 6973 | } |
| 6974 | |
| 6975 | /// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is |
| 6976 | /// an acceptable non-member overloaded operator for a call whose |
| 6977 | /// arguments have types T1 (and, if non-empty, T2). This routine |
| 6978 | /// implements the check in C++ [over.match.oper]p3b2 concerning |
| 6979 | /// enumeration types. |
| 6980 | static bool IsAcceptableNonMemberOperatorCandidate(ASTContext &Context, |
| 6981 | FunctionDecl *Fn, |
| 6982 | ArrayRef<Expr *> Args) { |
| 6983 | QualType T1 = Args[0]->getType(); |
| 6984 | QualType T2 = Args.size() > 1 ? Args[1]->getType() : QualType(); |
| 6985 | |
| 6986 | if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType())) |
| 6987 | return true; |
| 6988 | |
| 6989 | if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType())) |
| 6990 | return true; |
| 6991 | |
| 6992 | const auto *Proto = Fn->getType()->castAs<FunctionProtoType>(); |
| 6993 | if (Proto->getNumParams() < 1) |
| 6994 | return false; |
| 6995 | |
| 6996 | if (T1->isEnumeralType()) { |
| 6997 | QualType ArgType = Proto->getParamType(i: 0).getNonReferenceType(); |
| 6998 | if (Context.hasSameUnqualifiedType(T1, T2: ArgType)) |
| 6999 | return true; |
| 7000 | } |
| 7001 | |
| 7002 | if (Proto->getNumParams() < 2) |
| 7003 | return false; |
| 7004 | |
| 7005 | if (!T2.isNull() && T2->isEnumeralType()) { |
| 7006 | QualType ArgType = Proto->getParamType(i: 1).getNonReferenceType(); |
| 7007 | if (Context.hasSameUnqualifiedType(T1: T2, T2: ArgType)) |
| 7008 | return true; |
| 7009 | } |
| 7010 | |
| 7011 | return false; |
| 7012 | } |
| 7013 | |
| 7014 | static bool isNonViableMultiVersionOverload(FunctionDecl *FD) { |
| 7015 | if (FD->isTargetMultiVersionDefault()) |
| 7016 | return false; |
| 7017 | |
| 7018 | if (!FD->getASTContext().getTargetInfo().getTriple().isAArch64()) |
| 7019 | return FD->isTargetMultiVersion(); |
| 7020 | |
| 7021 | if (!FD->isMultiVersion()) |
| 7022 | return false; |
| 7023 | |
| 7024 | // Among multiple target versions consider either the default, |
| 7025 | // or the first non-default in the absence of default version. |
| 7026 | unsigned SeenAt = 0; |
| 7027 | unsigned I = 0; |
| 7028 | bool HasDefault = false; |
| 7029 | FD->getASTContext().forEachMultiversionedFunctionVersion( |
| 7030 | FD, Pred: [&](const FunctionDecl *CurFD) { |
| 7031 | if (FD == CurFD) |
| 7032 | SeenAt = I; |
| 7033 | else if (CurFD->isTargetMultiVersionDefault()) |
| 7034 | HasDefault = true; |
| 7035 | ++I; |
| 7036 | }); |
| 7037 | return HasDefault || SeenAt != 0; |
| 7038 | } |
| 7039 | |
| 7040 | void Sema::AddOverloadCandidate( |
| 7041 | FunctionDecl *Function, DeclAccessPair FoundDecl, ArrayRef<Expr *> Args, |
| 7042 | OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, |
| 7043 | bool PartialOverloading, bool AllowExplicit, bool AllowExplicitConversions, |
| 7044 | ADLCallKind IsADLCandidate, ConversionSequenceList EarlyConversions, |
| 7045 | OverloadCandidateParamOrder PO, bool AggregateCandidateDeduction, |
| 7046 | bool StrictPackMatch) { |
| 7047 | const FunctionProtoType *Proto |
| 7048 | = dyn_cast<FunctionProtoType>(Val: Function->getType()->getAs<FunctionType>()); |
| 7049 | assert(Proto && "Functions without a prototype cannot be overloaded" ); |
| 7050 | assert(!Function->getDescribedFunctionTemplate() && |
| 7051 | "Use AddTemplateOverloadCandidate for function templates" ); |
| 7052 | |
| 7053 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: Function)) { |
| 7054 | if (!isa<CXXConstructorDecl>(Val: Method)) { |
| 7055 | // If we get here, it's because we're calling a member function |
| 7056 | // that is named without a member access expression (e.g., |
| 7057 | // "this->f") that was either written explicitly or created |
| 7058 | // implicitly. This can happen with a qualified call to a member |
| 7059 | // function, e.g., X::f(). We use an empty type for the implied |
| 7060 | // object argument (C++ [over.call.func]p3), and the acting context |
| 7061 | // is irrelevant. |
| 7062 | AddMethodCandidate(Method, FoundDecl, ActingContext: Method->getParent(), ObjectType: QualType(), |
| 7063 | ObjectClassification: Expr::Classification::makeSimpleLValue(), Args, |
| 7064 | CandidateSet, SuppressUserConversions, |
| 7065 | PartialOverloading, EarlyConversions, PO, |
| 7066 | StrictPackMatch); |
| 7067 | return; |
| 7068 | } |
| 7069 | // We treat a constructor like a non-member function, since its object |
| 7070 | // argument doesn't participate in overload resolution. |
| 7071 | } |
| 7072 | |
| 7073 | if (!CandidateSet.isNewCandidate(F: Function, PO)) |
| 7074 | return; |
| 7075 | |
| 7076 | // C++11 [class.copy]p11: [DR1402] |
| 7077 | // A defaulted move constructor that is defined as deleted is ignored by |
| 7078 | // overload resolution. |
| 7079 | CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Val: Function); |
| 7080 | if (Constructor && Constructor->isDefaulted() && Constructor->isDeleted() && |
| 7081 | Constructor->isMoveConstructor()) |
| 7082 | return; |
| 7083 | |
| 7084 | // Overload resolution is always an unevaluated context. |
| 7085 | EnterExpressionEvaluationContext Unevaluated( |
| 7086 | *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| 7087 | |
| 7088 | // C++ [over.match.oper]p3: |
| 7089 | // if no operand has a class type, only those non-member functions in the |
| 7090 | // lookup set that have a first parameter of type T1 or "reference to |
| 7091 | // (possibly cv-qualified) T1", when T1 is an enumeration type, or (if there |
| 7092 | // is a right operand) a second parameter of type T2 or "reference to |
| 7093 | // (possibly cv-qualified) T2", when T2 is an enumeration type, are |
| 7094 | // candidate functions. |
| 7095 | if (CandidateSet.getKind() == OverloadCandidateSet::CSK_Operator && |
| 7096 | !IsAcceptableNonMemberOperatorCandidate(Context, Fn: Function, Args)) |
| 7097 | return; |
| 7098 | |
| 7099 | // Add this candidate |
| 7100 | OverloadCandidate &Candidate = |
| 7101 | CandidateSet.addCandidate(NumConversions: Args.size(), Conversions: EarlyConversions); |
| 7102 | Candidate.FoundDecl = FoundDecl; |
| 7103 | Candidate.Function = Function; |
| 7104 | Candidate.Viable = true; |
| 7105 | Candidate.RewriteKind = |
| 7106 | CandidateSet.getRewriteInfo().getRewriteKind(FD: Function, PO); |
| 7107 | Candidate.IsADLCandidate = llvm::to_underlying(E: IsADLCandidate); |
| 7108 | Candidate.ExplicitCallArguments = Args.size(); |
| 7109 | Candidate.StrictPackMatch = StrictPackMatch; |
| 7110 | |
| 7111 | // Explicit functions are not actually candidates at all if we're not |
| 7112 | // allowing them in this context, but keep them around so we can point |
| 7113 | // to them in diagnostics. |
| 7114 | if (!AllowExplicit && ExplicitSpecifier::getFromDecl(Function).isExplicit()) { |
| 7115 | Candidate.Viable = false; |
| 7116 | Candidate.FailureKind = ovl_fail_explicit; |
| 7117 | return; |
| 7118 | } |
| 7119 | |
| 7120 | // Functions with internal linkage are only viable in the same module unit. |
| 7121 | if (getLangOpts().CPlusPlusModules && Function->isInAnotherModuleUnit()) { |
| 7122 | /// FIXME: Currently, the semantics of linkage in clang is slightly |
| 7123 | /// different from the semantics in C++ spec. In C++ spec, only names |
| 7124 | /// have linkage. So that all entities of the same should share one |
| 7125 | /// linkage. But in clang, different entities of the same could have |
| 7126 | /// different linkage. |
| 7127 | const NamedDecl *ND = Function; |
| 7128 | bool IsImplicitlyInstantiated = false; |
| 7129 | if (auto *SpecInfo = Function->getTemplateSpecializationInfo()) { |
| 7130 | ND = SpecInfo->getTemplate(); |
| 7131 | IsImplicitlyInstantiated = SpecInfo->getTemplateSpecializationKind() == |
| 7132 | TSK_ImplicitInstantiation; |
| 7133 | } |
| 7134 | |
| 7135 | /// Don't remove inline functions with internal linkage from the overload |
| 7136 | /// set if they are declared in a GMF, in violation of C++ [basic.link]p17. |
| 7137 | /// However: |
| 7138 | /// - Inline functions with internal linkage are a common pattern in |
| 7139 | /// headers to avoid ODR issues. |
| 7140 | /// - The global module is meant to be a transition mechanism for C and C++ |
| 7141 | /// headers, and the current rules as written work against that goal. |
| 7142 | const bool IsInlineFunctionInGMF = |
| 7143 | Function->isFromGlobalModule() && |
| 7144 | (IsImplicitlyInstantiated || Function->isInlined()); |
| 7145 | |
| 7146 | if (ND->getFormalLinkage() == Linkage::Internal && !IsInlineFunctionInGMF) { |
| 7147 | Candidate.Viable = false; |
| 7148 | Candidate.FailureKind = ovl_fail_module_mismatched; |
| 7149 | return; |
| 7150 | } |
| 7151 | } |
| 7152 | |
| 7153 | if (isNonViableMultiVersionOverload(FD: Function)) { |
| 7154 | Candidate.Viable = false; |
| 7155 | Candidate.FailureKind = ovl_non_default_multiversion_function; |
| 7156 | return; |
| 7157 | } |
| 7158 | |
| 7159 | if (Constructor) { |
| 7160 | // C++ [class.copy]p3: |
| 7161 | // A member function template is never instantiated to perform the copy |
| 7162 | // of a class object to an object of its class type. |
| 7163 | QualType ClassType = Context.getTypeDeclType(Decl: Constructor->getParent()); |
| 7164 | if (Args.size() == 1 && Constructor->isSpecializationCopyingObject() && |
| 7165 | (Context.hasSameUnqualifiedType(T1: ClassType, T2: Args[0]->getType()) || |
| 7166 | IsDerivedFrom(Loc: Args[0]->getBeginLoc(), Derived: Args[0]->getType(), |
| 7167 | Base: ClassType))) { |
| 7168 | Candidate.Viable = false; |
| 7169 | Candidate.FailureKind = ovl_fail_illegal_constructor; |
| 7170 | return; |
| 7171 | } |
| 7172 | |
| 7173 | // C++ [over.match.funcs]p8: (proposed DR resolution) |
| 7174 | // A constructor inherited from class type C that has a first parameter |
| 7175 | // of type "reference to P" (including such a constructor instantiated |
| 7176 | // from a template) is excluded from the set of candidate functions when |
| 7177 | // constructing an object of type cv D if the argument list has exactly |
| 7178 | // one argument and D is reference-related to P and P is reference-related |
| 7179 | // to C. |
| 7180 | auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(Val: FoundDecl.getDecl()); |
| 7181 | if (Shadow && Args.size() == 1 && Constructor->getNumParams() >= 1 && |
| 7182 | Constructor->getParamDecl(i: 0)->getType()->isReferenceType()) { |
| 7183 | QualType P = Constructor->getParamDecl(i: 0)->getType()->getPointeeType(); |
| 7184 | QualType C = Context.getRecordType(Decl: Constructor->getParent()); |
| 7185 | QualType D = Context.getRecordType(Decl: Shadow->getParent()); |
| 7186 | SourceLocation Loc = Args.front()->getExprLoc(); |
| 7187 | if ((Context.hasSameUnqualifiedType(T1: P, T2: C) || IsDerivedFrom(Loc, Derived: P, Base: C)) && |
| 7188 | (Context.hasSameUnqualifiedType(T1: D, T2: P) || IsDerivedFrom(Loc, Derived: D, Base: P))) { |
| 7189 | Candidate.Viable = false; |
| 7190 | Candidate.FailureKind = ovl_fail_inhctor_slice; |
| 7191 | return; |
| 7192 | } |
| 7193 | } |
| 7194 | |
| 7195 | // Check that the constructor is capable of constructing an object in the |
| 7196 | // destination address space. |
| 7197 | if (!Qualifiers::isAddressSpaceSupersetOf( |
| 7198 | A: Constructor->getMethodQualifiers().getAddressSpace(), |
| 7199 | B: CandidateSet.getDestAS(), Ctx: getASTContext())) { |
| 7200 | Candidate.Viable = false; |
| 7201 | Candidate.FailureKind = ovl_fail_object_addrspace_mismatch; |
| 7202 | } |
| 7203 | } |
| 7204 | |
| 7205 | unsigned NumParams = Proto->getNumParams(); |
| 7206 | |
| 7207 | // (C++ 13.3.2p2): A candidate function having fewer than m |
| 7208 | // parameters is viable only if it has an ellipsis in its parameter |
| 7209 | // list (8.3.5). |
| 7210 | if (TooManyArguments(NumParams, NumArgs: Args.size(), PartialOverloading) && |
| 7211 | !Proto->isVariadic() && |
| 7212 | shouldEnforceArgLimit(PartialOverloading, Function)) { |
| 7213 | Candidate.Viable = false; |
| 7214 | Candidate.FailureKind = ovl_fail_too_many_arguments; |
| 7215 | return; |
| 7216 | } |
| 7217 | |
| 7218 | // (C++ 13.3.2p2): A candidate function having more than m parameters |
| 7219 | // is viable only if the (m+1)st parameter has a default argument |
| 7220 | // (8.3.6). For the purposes of overload resolution, the |
| 7221 | // parameter list is truncated on the right, so that there are |
| 7222 | // exactly m parameters. |
| 7223 | unsigned MinRequiredArgs = Function->getMinRequiredArguments(); |
| 7224 | if (!AggregateCandidateDeduction && Args.size() < MinRequiredArgs && |
| 7225 | !PartialOverloading) { |
| 7226 | // Not enough arguments. |
| 7227 | Candidate.Viable = false; |
| 7228 | Candidate.FailureKind = ovl_fail_too_few_arguments; |
| 7229 | return; |
| 7230 | } |
| 7231 | |
| 7232 | // (CUDA B.1): Check for invalid calls between targets. |
| 7233 | if (getLangOpts().CUDA) { |
| 7234 | const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true); |
| 7235 | // Skip the check for callers that are implicit members, because in this |
| 7236 | // case we may not yet know what the member's target is; the target is |
| 7237 | // inferred for the member automatically, based on the bases and fields of |
| 7238 | // the class. |
| 7239 | if (!(Caller && Caller->isImplicit()) && |
| 7240 | !CUDA().IsAllowedCall(Caller, Callee: Function)) { |
| 7241 | Candidate.Viable = false; |
| 7242 | Candidate.FailureKind = ovl_fail_bad_target; |
| 7243 | return; |
| 7244 | } |
| 7245 | } |
| 7246 | |
| 7247 | if (Function->getTrailingRequiresClause()) { |
| 7248 | ConstraintSatisfaction Satisfaction; |
| 7249 | if (CheckFunctionConstraints(FD: Function, Satisfaction, /*Loc*/ UsageLoc: {}, |
| 7250 | /*ForOverloadResolution*/ true) || |
| 7251 | !Satisfaction.IsSatisfied) { |
| 7252 | Candidate.Viable = false; |
| 7253 | Candidate.FailureKind = ovl_fail_constraints_not_satisfied; |
| 7254 | return; |
| 7255 | } |
| 7256 | } |
| 7257 | |
| 7258 | assert(PO != OverloadCandidateParamOrder::Reversed || Args.size() == 2); |
| 7259 | // Determine the implicit conversion sequences for each of the |
| 7260 | // arguments. |
| 7261 | for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { |
| 7262 | unsigned ConvIdx = |
| 7263 | PO == OverloadCandidateParamOrder::Reversed ? 1 - ArgIdx : ArgIdx; |
| 7264 | if (Candidate.Conversions[ConvIdx].isInitialized()) { |
| 7265 | // We already formed a conversion sequence for this parameter during |
| 7266 | // template argument deduction. |
| 7267 | } else if (ArgIdx < NumParams) { |
| 7268 | // (C++ 13.3.2p3): for F to be a viable function, there shall |
| 7269 | // exist for each argument an implicit conversion sequence |
| 7270 | // (13.3.3.1) that converts that argument to the corresponding |
| 7271 | // parameter of F. |
| 7272 | QualType ParamType = Proto->getParamType(i: ArgIdx); |
| 7273 | auto ParamABI = Proto->getExtParameterInfo(I: ArgIdx).getABI(); |
| 7274 | if (ParamABI == ParameterABI::HLSLOut || |
| 7275 | ParamABI == ParameterABI::HLSLInOut) |
| 7276 | ParamType = ParamType.getNonReferenceType(); |
| 7277 | Candidate.Conversions[ConvIdx] = TryCopyInitialization( |
| 7278 | S&: *this, From: Args[ArgIdx], ToType: ParamType, SuppressUserConversions, |
| 7279 | /*InOverloadResolution=*/true, |
| 7280 | /*AllowObjCWritebackConversion=*/ |
| 7281 | getLangOpts().ObjCAutoRefCount, AllowExplicit: AllowExplicitConversions); |
| 7282 | if (Candidate.Conversions[ConvIdx].isBad()) { |
| 7283 | Candidate.Viable = false; |
| 7284 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 7285 | return; |
| 7286 | } |
| 7287 | } else { |
| 7288 | // (C++ 13.3.2p2): For the purposes of overload resolution, any |
| 7289 | // argument for which there is no corresponding parameter is |
| 7290 | // considered to ""match the ellipsis" (C+ 13.3.3.1.3). |
| 7291 | Candidate.Conversions[ConvIdx].setEllipsis(); |
| 7292 | } |
| 7293 | } |
| 7294 | |
| 7295 | if (EnableIfAttr *FailedAttr = |
| 7296 | CheckEnableIf(Function, CallLoc: CandidateSet.getLocation(), Args)) { |
| 7297 | Candidate.Viable = false; |
| 7298 | Candidate.FailureKind = ovl_fail_enable_if; |
| 7299 | Candidate.DeductionFailure.Data = FailedAttr; |
| 7300 | return; |
| 7301 | } |
| 7302 | } |
| 7303 | |
| 7304 | ObjCMethodDecl * |
| 7305 | Sema::SelectBestMethod(Selector Sel, MultiExprArg Args, bool IsInstance, |
| 7306 | SmallVectorImpl<ObjCMethodDecl *> &Methods) { |
| 7307 | if (Methods.size() <= 1) |
| 7308 | return nullptr; |
| 7309 | |
| 7310 | for (unsigned b = 0, e = Methods.size(); b < e; b++) { |
| 7311 | bool Match = true; |
| 7312 | ObjCMethodDecl *Method = Methods[b]; |
| 7313 | unsigned NumNamedArgs = Sel.getNumArgs(); |
| 7314 | // Method might have more arguments than selector indicates. This is due |
| 7315 | // to addition of c-style arguments in method. |
| 7316 | if (Method->param_size() > NumNamedArgs) |
| 7317 | NumNamedArgs = Method->param_size(); |
| 7318 | if (Args.size() < NumNamedArgs) |
| 7319 | continue; |
| 7320 | |
| 7321 | for (unsigned i = 0; i < NumNamedArgs; i++) { |
| 7322 | // We can't do any type-checking on a type-dependent argument. |
| 7323 | if (Args[i]->isTypeDependent()) { |
| 7324 | Match = false; |
| 7325 | break; |
| 7326 | } |
| 7327 | |
| 7328 | ParmVarDecl *param = Method->parameters()[i]; |
| 7329 | Expr *argExpr = Args[i]; |
| 7330 | assert(argExpr && "SelectBestMethod(): missing expression" ); |
| 7331 | |
| 7332 | // Strip the unbridged-cast placeholder expression off unless it's |
| 7333 | // a consumed argument. |
| 7334 | if (argExpr->hasPlaceholderType(K: BuiltinType::ARCUnbridgedCast) && |
| 7335 | !param->hasAttr<CFConsumedAttr>()) |
| 7336 | argExpr = ObjC().stripARCUnbridgedCast(e: argExpr); |
| 7337 | |
| 7338 | // If the parameter is __unknown_anytype, move on to the next method. |
| 7339 | if (param->getType() == Context.UnknownAnyTy) { |
| 7340 | Match = false; |
| 7341 | break; |
| 7342 | } |
| 7343 | |
| 7344 | ImplicitConversionSequence ConversionState |
| 7345 | = TryCopyInitialization(S&: *this, From: argExpr, ToType: param->getType(), |
| 7346 | /*SuppressUserConversions*/false, |
| 7347 | /*InOverloadResolution=*/true, |
| 7348 | /*AllowObjCWritebackConversion=*/ |
| 7349 | getLangOpts().ObjCAutoRefCount, |
| 7350 | /*AllowExplicit*/false); |
| 7351 | // This function looks for a reasonably-exact match, so we consider |
| 7352 | // incompatible pointer conversions to be a failure here. |
| 7353 | if (ConversionState.isBad() || |
| 7354 | (ConversionState.isStandard() && |
| 7355 | ConversionState.Standard.Second == |
| 7356 | ICK_Incompatible_Pointer_Conversion)) { |
| 7357 | Match = false; |
| 7358 | break; |
| 7359 | } |
| 7360 | } |
| 7361 | // Promote additional arguments to variadic methods. |
| 7362 | if (Match && Method->isVariadic()) { |
| 7363 | for (unsigned i = NumNamedArgs, e = Args.size(); i < e; ++i) { |
| 7364 | if (Args[i]->isTypeDependent()) { |
| 7365 | Match = false; |
| 7366 | break; |
| 7367 | } |
| 7368 | ExprResult Arg = DefaultVariadicArgumentPromotion( |
| 7369 | E: Args[i], CT: VariadicCallType::Method, FDecl: nullptr); |
| 7370 | if (Arg.isInvalid()) { |
| 7371 | Match = false; |
| 7372 | break; |
| 7373 | } |
| 7374 | } |
| 7375 | } else { |
| 7376 | // Check for extra arguments to non-variadic methods. |
| 7377 | if (Args.size() != NumNamedArgs) |
| 7378 | Match = false; |
| 7379 | else if (Match && NumNamedArgs == 0 && Methods.size() > 1) { |
| 7380 | // Special case when selectors have no argument. In this case, select |
| 7381 | // one with the most general result type of 'id'. |
| 7382 | for (unsigned b = 0, e = Methods.size(); b < e; b++) { |
| 7383 | QualType ReturnT = Methods[b]->getReturnType(); |
| 7384 | if (ReturnT->isObjCIdType()) |
| 7385 | return Methods[b]; |
| 7386 | } |
| 7387 | } |
| 7388 | } |
| 7389 | |
| 7390 | if (Match) |
| 7391 | return Method; |
| 7392 | } |
| 7393 | return nullptr; |
| 7394 | } |
| 7395 | |
| 7396 | static bool convertArgsForAvailabilityChecks( |
| 7397 | Sema &S, FunctionDecl *Function, Expr *ThisArg, SourceLocation CallLoc, |
| 7398 | ArrayRef<Expr *> Args, Sema::SFINAETrap &Trap, bool MissingImplicitThis, |
| 7399 | Expr *&ConvertedThis, SmallVectorImpl<Expr *> &ConvertedArgs) { |
| 7400 | if (ThisArg) { |
| 7401 | CXXMethodDecl *Method = cast<CXXMethodDecl>(Val: Function); |
| 7402 | assert(!isa<CXXConstructorDecl>(Method) && |
| 7403 | "Shouldn't have `this` for ctors!" ); |
| 7404 | assert(!Method->isStatic() && "Shouldn't have `this` for static methods!" ); |
| 7405 | ExprResult R = S.PerformImplicitObjectArgumentInitialization( |
| 7406 | From: ThisArg, /*Qualifier=*/nullptr, FoundDecl: Method, Method); |
| 7407 | if (R.isInvalid()) |
| 7408 | return false; |
| 7409 | ConvertedThis = R.get(); |
| 7410 | } else { |
| 7411 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: Function)) { |
| 7412 | (void)MD; |
| 7413 | assert((MissingImplicitThis || MD->isStatic() || |
| 7414 | isa<CXXConstructorDecl>(MD)) && |
| 7415 | "Expected `this` for non-ctor instance methods" ); |
| 7416 | } |
| 7417 | ConvertedThis = nullptr; |
| 7418 | } |
| 7419 | |
| 7420 | // Ignore any variadic arguments. Converting them is pointless, since the |
| 7421 | // user can't refer to them in the function condition. |
| 7422 | unsigned ArgSizeNoVarargs = std::min(a: Function->param_size(), b: Args.size()); |
| 7423 | |
| 7424 | // Convert the arguments. |
| 7425 | for (unsigned I = 0; I != ArgSizeNoVarargs; ++I) { |
| 7426 | ExprResult R; |
| 7427 | R = S.PerformCopyInitialization(Entity: InitializedEntity::InitializeParameter( |
| 7428 | Context&: S.Context, Parm: Function->getParamDecl(i: I)), |
| 7429 | EqualLoc: SourceLocation(), Init: Args[I]); |
| 7430 | |
| 7431 | if (R.isInvalid()) |
| 7432 | return false; |
| 7433 | |
| 7434 | ConvertedArgs.push_back(Elt: R.get()); |
| 7435 | } |
| 7436 | |
| 7437 | if (Trap.hasErrorOccurred()) |
| 7438 | return false; |
| 7439 | |
| 7440 | // Push default arguments if needed. |
| 7441 | if (!Function->isVariadic() && Args.size() < Function->getNumParams()) { |
| 7442 | for (unsigned i = Args.size(), e = Function->getNumParams(); i != e; ++i) { |
| 7443 | ParmVarDecl *P = Function->getParamDecl(i); |
| 7444 | if (!P->hasDefaultArg()) |
| 7445 | return false; |
| 7446 | ExprResult R = S.BuildCXXDefaultArgExpr(CallLoc, FD: Function, Param: P); |
| 7447 | if (R.isInvalid()) |
| 7448 | return false; |
| 7449 | ConvertedArgs.push_back(Elt: R.get()); |
| 7450 | } |
| 7451 | |
| 7452 | if (Trap.hasErrorOccurred()) |
| 7453 | return false; |
| 7454 | } |
| 7455 | return true; |
| 7456 | } |
| 7457 | |
| 7458 | EnableIfAttr *Sema::CheckEnableIf(FunctionDecl *Function, |
| 7459 | SourceLocation CallLoc, |
| 7460 | ArrayRef<Expr *> Args, |
| 7461 | bool MissingImplicitThis) { |
| 7462 | auto EnableIfAttrs = Function->specific_attrs<EnableIfAttr>(); |
| 7463 | if (EnableIfAttrs.begin() == EnableIfAttrs.end()) |
| 7464 | return nullptr; |
| 7465 | |
| 7466 | SFINAETrap Trap(*this); |
| 7467 | SmallVector<Expr *, 16> ConvertedArgs; |
| 7468 | // FIXME: We should look into making enable_if late-parsed. |
| 7469 | Expr *DiscardedThis; |
| 7470 | if (!convertArgsForAvailabilityChecks( |
| 7471 | S&: *this, Function, /*ThisArg=*/nullptr, CallLoc, Args, Trap, |
| 7472 | /*MissingImplicitThis=*/true, ConvertedThis&: DiscardedThis, ConvertedArgs)) |
| 7473 | return *EnableIfAttrs.begin(); |
| 7474 | |
| 7475 | for (auto *EIA : EnableIfAttrs) { |
| 7476 | APValue Result; |
| 7477 | // FIXME: This doesn't consider value-dependent cases, because doing so is |
| 7478 | // very difficult. Ideally, we should handle them more gracefully. |
| 7479 | if (EIA->getCond()->isValueDependent() || |
| 7480 | !EIA->getCond()->EvaluateWithSubstitution( |
| 7481 | Value&: Result, Ctx&: Context, Callee: Function, Args: llvm::ArrayRef(ConvertedArgs))) |
| 7482 | return EIA; |
| 7483 | |
| 7484 | if (!Result.isInt() || !Result.getInt().getBoolValue()) |
| 7485 | return EIA; |
| 7486 | } |
| 7487 | return nullptr; |
| 7488 | } |
| 7489 | |
| 7490 | template <typename CheckFn> |
| 7491 | static bool diagnoseDiagnoseIfAttrsWith(Sema &S, const NamedDecl *ND, |
| 7492 | bool ArgDependent, SourceLocation Loc, |
| 7493 | CheckFn &&IsSuccessful) { |
| 7494 | SmallVector<const DiagnoseIfAttr *, 8> Attrs; |
| 7495 | for (const auto *DIA : ND->specific_attrs<DiagnoseIfAttr>()) { |
| 7496 | if (ArgDependent == DIA->getArgDependent()) |
| 7497 | Attrs.push_back(Elt: DIA); |
| 7498 | } |
| 7499 | |
| 7500 | // Common case: No diagnose_if attributes, so we can quit early. |
| 7501 | if (Attrs.empty()) |
| 7502 | return false; |
| 7503 | |
| 7504 | auto WarningBegin = std::stable_partition( |
| 7505 | Attrs.begin(), Attrs.end(), [](const DiagnoseIfAttr *DIA) { |
| 7506 | return DIA->getDefaultSeverity() == DiagnoseIfAttr::DS_error && |
| 7507 | DIA->getWarningGroup().empty(); |
| 7508 | }); |
| 7509 | |
| 7510 | // Note that diagnose_if attributes are late-parsed, so they appear in the |
| 7511 | // correct order (unlike enable_if attributes). |
| 7512 | auto ErrAttr = llvm::find_if(llvm::make_range(Attrs.begin(), WarningBegin), |
| 7513 | IsSuccessful); |
| 7514 | if (ErrAttr != WarningBegin) { |
| 7515 | const DiagnoseIfAttr *DIA = *ErrAttr; |
| 7516 | S.Diag(Loc, DiagID: diag::err_diagnose_if_succeeded) << DIA->getMessage(); |
| 7517 | S.Diag(Loc: DIA->getLocation(), DiagID: diag::note_from_diagnose_if) |
| 7518 | << DIA->getParent() << DIA->getCond()->getSourceRange(); |
| 7519 | return true; |
| 7520 | } |
| 7521 | |
| 7522 | auto ToSeverity = [](DiagnoseIfAttr::DefaultSeverity Sev) { |
| 7523 | switch (Sev) { |
| 7524 | case DiagnoseIfAttr::DS_warning: |
| 7525 | return diag::Severity::Warning; |
| 7526 | case DiagnoseIfAttr::DS_error: |
| 7527 | return diag::Severity::Error; |
| 7528 | } |
| 7529 | llvm_unreachable("Fully covered switch above!" ); |
| 7530 | }; |
| 7531 | |
| 7532 | for (const auto *DIA : llvm::make_range(WarningBegin, Attrs.end())) |
| 7533 | if (IsSuccessful(DIA)) { |
| 7534 | if (DIA->getWarningGroup().empty() && |
| 7535 | DIA->getDefaultSeverity() == DiagnoseIfAttr::DS_warning) { |
| 7536 | S.Diag(Loc, DiagID: diag::warn_diagnose_if_succeeded) << DIA->getMessage(); |
| 7537 | S.Diag(DIA->getLocation(), diag::note_from_diagnose_if) |
| 7538 | << DIA->getParent() << DIA->getCond()->getSourceRange(); |
| 7539 | } else { |
| 7540 | auto DiagGroup = S.Diags.getDiagnosticIDs()->getGroupForWarningOption( |
| 7541 | DIA->getWarningGroup()); |
| 7542 | assert(DiagGroup); |
| 7543 | auto DiagID = S.Diags.getDiagnosticIDs()->getCustomDiagID( |
| 7544 | {ToSeverity(DIA->getDefaultSeverity()), "%0" , |
| 7545 | DiagnosticIDs::CLASS_WARNING, false, false, *DiagGroup}); |
| 7546 | S.Diag(Loc, DiagID) << DIA->getMessage(); |
| 7547 | } |
| 7548 | } |
| 7549 | |
| 7550 | return false; |
| 7551 | } |
| 7552 | |
| 7553 | bool Sema::diagnoseArgDependentDiagnoseIfAttrs(const FunctionDecl *Function, |
| 7554 | const Expr *ThisArg, |
| 7555 | ArrayRef<const Expr *> Args, |
| 7556 | SourceLocation Loc) { |
| 7557 | return diagnoseDiagnoseIfAttrsWith( |
| 7558 | S&: *this, ND: Function, /*ArgDependent=*/true, Loc, |
| 7559 | IsSuccessful: [&](const DiagnoseIfAttr *DIA) { |
| 7560 | APValue Result; |
| 7561 | // It's sane to use the same Args for any redecl of this function, since |
| 7562 | // EvaluateWithSubstitution only cares about the position of each |
| 7563 | // argument in the arg list, not the ParmVarDecl* it maps to. |
| 7564 | if (!DIA->getCond()->EvaluateWithSubstitution( |
| 7565 | Value&: Result, Ctx&: Context, Callee: cast<FunctionDecl>(Val: DIA->getParent()), Args, This: ThisArg)) |
| 7566 | return false; |
| 7567 | return Result.isInt() && Result.getInt().getBoolValue(); |
| 7568 | }); |
| 7569 | } |
| 7570 | |
| 7571 | bool Sema::diagnoseArgIndependentDiagnoseIfAttrs(const NamedDecl *ND, |
| 7572 | SourceLocation Loc) { |
| 7573 | return diagnoseDiagnoseIfAttrsWith( |
| 7574 | S&: *this, ND, /*ArgDependent=*/false, Loc, |
| 7575 | IsSuccessful: [&](const DiagnoseIfAttr *DIA) { |
| 7576 | bool Result; |
| 7577 | return DIA->getCond()->EvaluateAsBooleanCondition(Result, Ctx: Context) && |
| 7578 | Result; |
| 7579 | }); |
| 7580 | } |
| 7581 | |
| 7582 | void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, |
| 7583 | ArrayRef<Expr *> Args, |
| 7584 | OverloadCandidateSet &CandidateSet, |
| 7585 | TemplateArgumentListInfo *ExplicitTemplateArgs, |
| 7586 | bool SuppressUserConversions, |
| 7587 | bool PartialOverloading, |
| 7588 | bool FirstArgumentIsBase) { |
| 7589 | for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { |
| 7590 | NamedDecl *D = F.getDecl()->getUnderlyingDecl(); |
| 7591 | ArrayRef<Expr *> FunctionArgs = Args; |
| 7592 | |
| 7593 | FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: D); |
| 7594 | FunctionDecl *FD = |
| 7595 | FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(Val: D); |
| 7596 | |
| 7597 | if (isa<CXXMethodDecl>(Val: FD) && !cast<CXXMethodDecl>(Val: FD)->isStatic()) { |
| 7598 | QualType ObjectType; |
| 7599 | Expr::Classification ObjectClassification; |
| 7600 | if (Args.size() > 0) { |
| 7601 | if (Expr *E = Args[0]) { |
| 7602 | // Use the explicit base to restrict the lookup: |
| 7603 | ObjectType = E->getType(); |
| 7604 | // Pointers in the object arguments are implicitly dereferenced, so we |
| 7605 | // always classify them as l-values. |
| 7606 | if (!ObjectType.isNull() && ObjectType->isPointerType()) |
| 7607 | ObjectClassification = Expr::Classification::makeSimpleLValue(); |
| 7608 | else |
| 7609 | ObjectClassification = E->Classify(Ctx&: Context); |
| 7610 | } // .. else there is an implicit base. |
| 7611 | FunctionArgs = Args.slice(N: 1); |
| 7612 | } |
| 7613 | if (FunTmpl) { |
| 7614 | AddMethodTemplateCandidate( |
| 7615 | MethodTmpl: FunTmpl, FoundDecl: F.getPair(), |
| 7616 | ActingContext: cast<CXXRecordDecl>(Val: FunTmpl->getDeclContext()), |
| 7617 | ExplicitTemplateArgs, ObjectType, ObjectClassification, |
| 7618 | Args: FunctionArgs, CandidateSet, SuppressUserConversions, |
| 7619 | PartialOverloading); |
| 7620 | } else { |
| 7621 | AddMethodCandidate(Method: cast<CXXMethodDecl>(Val: FD), FoundDecl: F.getPair(), |
| 7622 | ActingContext: cast<CXXMethodDecl>(Val: FD)->getParent(), ObjectType, |
| 7623 | ObjectClassification, Args: FunctionArgs, CandidateSet, |
| 7624 | SuppressUserConversions, PartialOverloading); |
| 7625 | } |
| 7626 | } else { |
| 7627 | // This branch handles both standalone functions and static methods. |
| 7628 | |
| 7629 | // Slice the first argument (which is the base) when we access |
| 7630 | // static method as non-static. |
| 7631 | if (Args.size() > 0 && |
| 7632 | (!Args[0] || (FirstArgumentIsBase && isa<CXXMethodDecl>(Val: FD) && |
| 7633 | !isa<CXXConstructorDecl>(Val: FD)))) { |
| 7634 | assert(cast<CXXMethodDecl>(FD)->isStatic()); |
| 7635 | FunctionArgs = Args.slice(N: 1); |
| 7636 | } |
| 7637 | if (FunTmpl) { |
| 7638 | AddTemplateOverloadCandidate(FunctionTemplate: FunTmpl, FoundDecl: F.getPair(), |
| 7639 | ExplicitTemplateArgs, Args: FunctionArgs, |
| 7640 | CandidateSet, SuppressUserConversions, |
| 7641 | PartialOverloading); |
| 7642 | } else { |
| 7643 | AddOverloadCandidate(Function: FD, FoundDecl: F.getPair(), Args: FunctionArgs, CandidateSet, |
| 7644 | SuppressUserConversions, PartialOverloading); |
| 7645 | } |
| 7646 | } |
| 7647 | } |
| 7648 | } |
| 7649 | |
| 7650 | void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, QualType ObjectType, |
| 7651 | Expr::Classification ObjectClassification, |
| 7652 | ArrayRef<Expr *> Args, |
| 7653 | OverloadCandidateSet &CandidateSet, |
| 7654 | bool SuppressUserConversions, |
| 7655 | OverloadCandidateParamOrder PO) { |
| 7656 | NamedDecl *Decl = FoundDecl.getDecl(); |
| 7657 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Val: Decl->getDeclContext()); |
| 7658 | |
| 7659 | if (isa<UsingShadowDecl>(Val: Decl)) |
| 7660 | Decl = cast<UsingShadowDecl>(Val: Decl)->getTargetDecl(); |
| 7661 | |
| 7662 | if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Val: Decl)) { |
| 7663 | assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && |
| 7664 | "Expected a member function template" ); |
| 7665 | AddMethodTemplateCandidate(MethodTmpl: TD, FoundDecl, ActingContext, |
| 7666 | /*ExplicitArgs*/ ExplicitTemplateArgs: nullptr, ObjectType, |
| 7667 | ObjectClassification, Args, CandidateSet, |
| 7668 | SuppressUserConversions, PartialOverloading: false, PO); |
| 7669 | } else { |
| 7670 | AddMethodCandidate(Method: cast<CXXMethodDecl>(Val: Decl), FoundDecl, ActingContext, |
| 7671 | ObjectType, ObjectClassification, Args, CandidateSet, |
| 7672 | SuppressUserConversions, PartialOverloading: false, EarlyConversions: {}, PO); |
| 7673 | } |
| 7674 | } |
| 7675 | |
| 7676 | void Sema::AddMethodCandidate( |
| 7677 | CXXMethodDecl *Method, DeclAccessPair FoundDecl, |
| 7678 | CXXRecordDecl *ActingContext, QualType ObjectType, |
| 7679 | Expr::Classification ObjectClassification, ArrayRef<Expr *> Args, |
| 7680 | OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, |
| 7681 | bool PartialOverloading, ConversionSequenceList EarlyConversions, |
| 7682 | OverloadCandidateParamOrder PO, bool StrictPackMatch) { |
| 7683 | const FunctionProtoType *Proto |
| 7684 | = dyn_cast<FunctionProtoType>(Val: Method->getType()->getAs<FunctionType>()); |
| 7685 | assert(Proto && "Methods without a prototype cannot be overloaded" ); |
| 7686 | assert(!isa<CXXConstructorDecl>(Method) && |
| 7687 | "Use AddOverloadCandidate for constructors" ); |
| 7688 | |
| 7689 | if (!CandidateSet.isNewCandidate(F: Method, PO)) |
| 7690 | return; |
| 7691 | |
| 7692 | // C++11 [class.copy]p23: [DR1402] |
| 7693 | // A defaulted move assignment operator that is defined as deleted is |
| 7694 | // ignored by overload resolution. |
| 7695 | if (Method->isDefaulted() && Method->isDeleted() && |
| 7696 | Method->isMoveAssignmentOperator()) |
| 7697 | return; |
| 7698 | |
| 7699 | // Overload resolution is always an unevaluated context. |
| 7700 | EnterExpressionEvaluationContext Unevaluated( |
| 7701 | *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| 7702 | |
| 7703 | // Add this candidate |
| 7704 | OverloadCandidate &Candidate = |
| 7705 | CandidateSet.addCandidate(NumConversions: Args.size() + 1, Conversions: EarlyConversions); |
| 7706 | Candidate.FoundDecl = FoundDecl; |
| 7707 | Candidate.Function = Method; |
| 7708 | Candidate.RewriteKind = |
| 7709 | CandidateSet.getRewriteInfo().getRewriteKind(FD: Method, PO); |
| 7710 | Candidate.TookAddressOfOverload = |
| 7711 | CandidateSet.getKind() == OverloadCandidateSet::CSK_AddressOfOverloadSet; |
| 7712 | Candidate.ExplicitCallArguments = Args.size(); |
| 7713 | Candidate.StrictPackMatch = StrictPackMatch; |
| 7714 | |
| 7715 | bool IgnoreExplicitObject = |
| 7716 | (Method->isExplicitObjectMemberFunction() && |
| 7717 | CandidateSet.getKind() == |
| 7718 | OverloadCandidateSet::CSK_AddressOfOverloadSet); |
| 7719 | bool ImplicitObjectMethodTreatedAsStatic = |
| 7720 | CandidateSet.getKind() == |
| 7721 | OverloadCandidateSet::CSK_AddressOfOverloadSet && |
| 7722 | Method->isImplicitObjectMemberFunction(); |
| 7723 | |
| 7724 | unsigned ExplicitOffset = |
| 7725 | !IgnoreExplicitObject && Method->isExplicitObjectMemberFunction() ? 1 : 0; |
| 7726 | |
| 7727 | unsigned NumParams = Method->getNumParams() - ExplicitOffset + |
| 7728 | int(ImplicitObjectMethodTreatedAsStatic); |
| 7729 | |
| 7730 | // (C++ 13.3.2p2): A candidate function having fewer than m |
| 7731 | // parameters is viable only if it has an ellipsis in its parameter |
| 7732 | // list (8.3.5). |
| 7733 | if (TooManyArguments(NumParams, NumArgs: Args.size(), PartialOverloading) && |
| 7734 | !Proto->isVariadic() && |
| 7735 | shouldEnforceArgLimit(PartialOverloading, Function: Method)) { |
| 7736 | Candidate.Viable = false; |
| 7737 | Candidate.FailureKind = ovl_fail_too_many_arguments; |
| 7738 | return; |
| 7739 | } |
| 7740 | |
| 7741 | // (C++ 13.3.2p2): A candidate function having more than m parameters |
| 7742 | // is viable only if the (m+1)st parameter has a default argument |
| 7743 | // (8.3.6). For the purposes of overload resolution, the |
| 7744 | // parameter list is truncated on the right, so that there are |
| 7745 | // exactly m parameters. |
| 7746 | unsigned MinRequiredArgs = Method->getMinRequiredArguments() - |
| 7747 | ExplicitOffset + |
| 7748 | int(ImplicitObjectMethodTreatedAsStatic); |
| 7749 | |
| 7750 | if (Args.size() < MinRequiredArgs && !PartialOverloading) { |
| 7751 | // Not enough arguments. |
| 7752 | Candidate.Viable = false; |
| 7753 | Candidate.FailureKind = ovl_fail_too_few_arguments; |
| 7754 | return; |
| 7755 | } |
| 7756 | |
| 7757 | Candidate.Viable = true; |
| 7758 | |
| 7759 | unsigned FirstConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; |
| 7760 | if (ObjectType.isNull()) |
| 7761 | Candidate.IgnoreObjectArgument = true; |
| 7762 | else if (Method->isStatic()) { |
| 7763 | // [over.best.ics.general]p8 |
| 7764 | // When the parameter is the implicit object parameter of a static member |
| 7765 | // function, the implicit conversion sequence is a standard conversion |
| 7766 | // sequence that is neither better nor worse than any other standard |
| 7767 | // conversion sequence. |
| 7768 | // |
| 7769 | // This is a rule that was introduced in C++23 to support static lambdas. We |
| 7770 | // apply it retroactively because we want to support static lambdas as an |
| 7771 | // extension and it doesn't hurt previous code. |
| 7772 | Candidate.Conversions[FirstConvIdx].setStaticObjectArgument(); |
| 7773 | } else { |
| 7774 | // Determine the implicit conversion sequence for the object |
| 7775 | // parameter. |
| 7776 | Candidate.Conversions[FirstConvIdx] = TryObjectArgumentInitialization( |
| 7777 | S&: *this, Loc: CandidateSet.getLocation(), FromType: ObjectType, FromClassification: ObjectClassification, |
| 7778 | Method, ActingContext, /*InOverloadResolution=*/true); |
| 7779 | if (Candidate.Conversions[FirstConvIdx].isBad()) { |
| 7780 | Candidate.Viable = false; |
| 7781 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 7782 | return; |
| 7783 | } |
| 7784 | } |
| 7785 | |
| 7786 | // (CUDA B.1): Check for invalid calls between targets. |
| 7787 | if (getLangOpts().CUDA) |
| 7788 | if (!CUDA().IsAllowedCall(Caller: getCurFunctionDecl(/*AllowLambda=*/true), |
| 7789 | Callee: Method)) { |
| 7790 | Candidate.Viable = false; |
| 7791 | Candidate.FailureKind = ovl_fail_bad_target; |
| 7792 | return; |
| 7793 | } |
| 7794 | |
| 7795 | if (Method->getTrailingRequiresClause()) { |
| 7796 | ConstraintSatisfaction Satisfaction; |
| 7797 | if (CheckFunctionConstraints(FD: Method, Satisfaction, /*Loc*/ UsageLoc: {}, |
| 7798 | /*ForOverloadResolution*/ true) || |
| 7799 | !Satisfaction.IsSatisfied) { |
| 7800 | Candidate.Viable = false; |
| 7801 | Candidate.FailureKind = ovl_fail_constraints_not_satisfied; |
| 7802 | return; |
| 7803 | } |
| 7804 | } |
| 7805 | |
| 7806 | // Determine the implicit conversion sequences for each of the |
| 7807 | // arguments. |
| 7808 | for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) { |
| 7809 | unsigned ConvIdx = |
| 7810 | PO == OverloadCandidateParamOrder::Reversed ? 0 : (ArgIdx + 1); |
| 7811 | if (Candidate.Conversions[ConvIdx].isInitialized()) { |
| 7812 | // We already formed a conversion sequence for this parameter during |
| 7813 | // template argument deduction. |
| 7814 | } else if (ArgIdx < NumParams) { |
| 7815 | // (C++ 13.3.2p3): for F to be a viable function, there shall |
| 7816 | // exist for each argument an implicit conversion sequence |
| 7817 | // (13.3.3.1) that converts that argument to the corresponding |
| 7818 | // parameter of F. |
| 7819 | QualType ParamType; |
| 7820 | if (ImplicitObjectMethodTreatedAsStatic) { |
| 7821 | ParamType = ArgIdx == 0 |
| 7822 | ? Method->getFunctionObjectParameterReferenceType() |
| 7823 | : Proto->getParamType(i: ArgIdx - 1); |
| 7824 | } else { |
| 7825 | ParamType = Proto->getParamType(i: ArgIdx + ExplicitOffset); |
| 7826 | } |
| 7827 | Candidate.Conversions[ConvIdx] |
| 7828 | = TryCopyInitialization(S&: *this, From: Args[ArgIdx], ToType: ParamType, |
| 7829 | SuppressUserConversions, |
| 7830 | /*InOverloadResolution=*/true, |
| 7831 | /*AllowObjCWritebackConversion=*/ |
| 7832 | getLangOpts().ObjCAutoRefCount); |
| 7833 | if (Candidate.Conversions[ConvIdx].isBad()) { |
| 7834 | Candidate.Viable = false; |
| 7835 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 7836 | return; |
| 7837 | } |
| 7838 | } else { |
| 7839 | // (C++ 13.3.2p2): For the purposes of overload resolution, any |
| 7840 | // argument for which there is no corresponding parameter is |
| 7841 | // considered to "match the ellipsis" (C+ 13.3.3.1.3). |
| 7842 | Candidate.Conversions[ConvIdx].setEllipsis(); |
| 7843 | } |
| 7844 | } |
| 7845 | |
| 7846 | if (EnableIfAttr *FailedAttr = |
| 7847 | CheckEnableIf(Function: Method, CallLoc: CandidateSet.getLocation(), Args, MissingImplicitThis: true)) { |
| 7848 | Candidate.Viable = false; |
| 7849 | Candidate.FailureKind = ovl_fail_enable_if; |
| 7850 | Candidate.DeductionFailure.Data = FailedAttr; |
| 7851 | return; |
| 7852 | } |
| 7853 | |
| 7854 | if (isNonViableMultiVersionOverload(FD: Method)) { |
| 7855 | Candidate.Viable = false; |
| 7856 | Candidate.FailureKind = ovl_non_default_multiversion_function; |
| 7857 | } |
| 7858 | } |
| 7859 | |
| 7860 | static void AddMethodTemplateCandidateImmediately( |
| 7861 | Sema &S, OverloadCandidateSet &CandidateSet, |
| 7862 | FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, |
| 7863 | CXXRecordDecl *ActingContext, |
| 7864 | TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType, |
| 7865 | Expr::Classification ObjectClassification, ArrayRef<Expr *> Args, |
| 7866 | bool SuppressUserConversions, bool PartialOverloading, |
| 7867 | OverloadCandidateParamOrder PO) { |
| 7868 | |
| 7869 | // C++ [over.match.funcs]p7: |
| 7870 | // In each case where a candidate is a function template, candidate |
| 7871 | // function template specializations are generated using template argument |
| 7872 | // deduction (14.8.3, 14.8.2). Those candidates are then handled as |
| 7873 | // candidate functions in the usual way.113) A given name can refer to one |
| 7874 | // or more function templates and also to a set of overloaded non-template |
| 7875 | // functions. In such a case, the candidate functions generated from each |
| 7876 | // function template are combined with the set of non-template candidate |
| 7877 | // functions. |
| 7878 | TemplateDeductionInfo Info(CandidateSet.getLocation()); |
| 7879 | FunctionDecl *Specialization = nullptr; |
| 7880 | ConversionSequenceList Conversions; |
| 7881 | if (TemplateDeductionResult Result = S.DeduceTemplateArguments( |
| 7882 | FunctionTemplate: MethodTmpl, ExplicitTemplateArgs, Args, Specialization, Info, |
| 7883 | PartialOverloading, /*AggregateDeductionCandidate=*/false, |
| 7884 | /*PartialOrdering=*/false, ObjectType, ObjectClassification, |
| 7885 | ForOverloadSetAddressResolution: CandidateSet.getKind() == |
| 7886 | clang::OverloadCandidateSet::CSK_AddressOfOverloadSet, |
| 7887 | CheckNonDependent: [&](ArrayRef<QualType> ParamTypes, |
| 7888 | bool OnlyInitializeNonUserDefinedConversions) { |
| 7889 | return S.CheckNonDependentConversions( |
| 7890 | FunctionTemplate: MethodTmpl, ParamTypes, Args, CandidateSet, Conversions, |
| 7891 | UserConversionFlag: Sema::CheckNonDependentConversionsFlag( |
| 7892 | SuppressUserConversions, |
| 7893 | OnlyInitializeNonUserDefinedConversions), |
| 7894 | ActingContext, ObjectType, ObjectClassification, PO); |
| 7895 | }); |
| 7896 | Result != TemplateDeductionResult::Success) { |
| 7897 | OverloadCandidate &Candidate = |
| 7898 | CandidateSet.addCandidate(NumConversions: Conversions.size(), Conversions); |
| 7899 | Candidate.FoundDecl = FoundDecl; |
| 7900 | Candidate.Function = MethodTmpl->getTemplatedDecl(); |
| 7901 | Candidate.Viable = false; |
| 7902 | Candidate.RewriteKind = |
| 7903 | CandidateSet.getRewriteInfo().getRewriteKind(FD: Candidate.Function, PO); |
| 7904 | Candidate.IsSurrogate = false; |
| 7905 | Candidate.IgnoreObjectArgument = |
| 7906 | cast<CXXMethodDecl>(Val: Candidate.Function)->isStatic() || |
| 7907 | ObjectType.isNull(); |
| 7908 | Candidate.ExplicitCallArguments = Args.size(); |
| 7909 | if (Result == TemplateDeductionResult::NonDependentConversionFailure) |
| 7910 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 7911 | else { |
| 7912 | Candidate.FailureKind = ovl_fail_bad_deduction; |
| 7913 | Candidate.DeductionFailure = |
| 7914 | MakeDeductionFailureInfo(Context&: S.Context, TDK: Result, Info); |
| 7915 | } |
| 7916 | return; |
| 7917 | } |
| 7918 | |
| 7919 | // Add the function template specialization produced by template argument |
| 7920 | // deduction as a candidate. |
| 7921 | assert(Specialization && "Missing member function template specialization?" ); |
| 7922 | assert(isa<CXXMethodDecl>(Specialization) && |
| 7923 | "Specialization is not a member function?" ); |
| 7924 | S.AddMethodCandidate( |
| 7925 | Method: cast<CXXMethodDecl>(Val: Specialization), FoundDecl, ActingContext, ObjectType, |
| 7926 | ObjectClassification, Args, CandidateSet, SuppressUserConversions, |
| 7927 | PartialOverloading, EarlyConversions: Conversions, PO, StrictPackMatch: Info.hasStrictPackMatch()); |
| 7928 | } |
| 7929 | |
| 7930 | void Sema::AddMethodTemplateCandidate( |
| 7931 | FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, |
| 7932 | CXXRecordDecl *ActingContext, |
| 7933 | TemplateArgumentListInfo *ExplicitTemplateArgs, QualType ObjectType, |
| 7934 | Expr::Classification ObjectClassification, ArrayRef<Expr *> Args, |
| 7935 | OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, |
| 7936 | bool PartialOverloading, OverloadCandidateParamOrder PO) { |
| 7937 | if (!CandidateSet.isNewCandidate(F: MethodTmpl, PO)) |
| 7938 | return; |
| 7939 | |
| 7940 | if (ExplicitTemplateArgs || |
| 7941 | !CandidateSet.shouldDeferTemplateArgumentDeduction(Opts: getLangOpts())) { |
| 7942 | AddMethodTemplateCandidateImmediately( |
| 7943 | S&: *this, CandidateSet, MethodTmpl, FoundDecl, ActingContext, |
| 7944 | ExplicitTemplateArgs, ObjectType, ObjectClassification, Args, |
| 7945 | SuppressUserConversions, PartialOverloading, PO); |
| 7946 | return; |
| 7947 | } |
| 7948 | |
| 7949 | CandidateSet.AddDeferredMethodTemplateCandidate( |
| 7950 | MethodTmpl, FoundDecl, ActingContext, ObjectType, ObjectClassification, |
| 7951 | Args, SuppressUserConversions, PartialOverloading, PO); |
| 7952 | } |
| 7953 | |
| 7954 | /// Determine whether a given function template has a simple explicit specifier |
| 7955 | /// or a non-value-dependent explicit-specification that evaluates to true. |
| 7956 | static bool isNonDependentlyExplicit(FunctionTemplateDecl *FTD) { |
| 7957 | return ExplicitSpecifier::getFromDecl(Function: FTD->getTemplatedDecl()).isExplicit(); |
| 7958 | } |
| 7959 | |
| 7960 | static bool hasDependentExplicit(FunctionTemplateDecl *FTD) { |
| 7961 | return ExplicitSpecifier::getFromDecl(Function: FTD->getTemplatedDecl()).getKind() == |
| 7962 | ExplicitSpecKind::Unresolved; |
| 7963 | } |
| 7964 | |
| 7965 | static void AddTemplateOverloadCandidateImmediately( |
| 7966 | Sema &S, OverloadCandidateSet &CandidateSet, |
| 7967 | FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, |
| 7968 | TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, |
| 7969 | bool SuppressUserConversions, bool PartialOverloading, bool AllowExplicit, |
| 7970 | Sema::ADLCallKind IsADLCandidate, OverloadCandidateParamOrder PO, |
| 7971 | bool AggregateCandidateDeduction) { |
| 7972 | |
| 7973 | // If the function template has a non-dependent explicit specification, |
| 7974 | // exclude it now if appropriate; we are not permitted to perform deduction |
| 7975 | // and substitution in this case. |
| 7976 | if (!AllowExplicit && isNonDependentlyExplicit(FTD: FunctionTemplate)) { |
| 7977 | OverloadCandidate &Candidate = CandidateSet.addCandidate(); |
| 7978 | Candidate.FoundDecl = FoundDecl; |
| 7979 | Candidate.Function = FunctionTemplate->getTemplatedDecl(); |
| 7980 | Candidate.Viable = false; |
| 7981 | Candidate.FailureKind = ovl_fail_explicit; |
| 7982 | return; |
| 7983 | } |
| 7984 | |
| 7985 | // C++ [over.match.funcs]p7: |
| 7986 | // In each case where a candidate is a function template, candidate |
| 7987 | // function template specializations are generated using template argument |
| 7988 | // deduction (14.8.3, 14.8.2). Those candidates are then handled as |
| 7989 | // candidate functions in the usual way.113) A given name can refer to one |
| 7990 | // or more function templates and also to a set of overloaded non-template |
| 7991 | // functions. In such a case, the candidate functions generated from each |
| 7992 | // function template are combined with the set of non-template candidate |
| 7993 | // functions. |
| 7994 | TemplateDeductionInfo Info(CandidateSet.getLocation(), |
| 7995 | FunctionTemplate->getTemplateDepth()); |
| 7996 | FunctionDecl *Specialization = nullptr; |
| 7997 | ConversionSequenceList Conversions; |
| 7998 | if (TemplateDeductionResult Result = S.DeduceTemplateArguments( |
| 7999 | FunctionTemplate, ExplicitTemplateArgs, Args, Specialization, Info, |
| 8000 | PartialOverloading, AggregateDeductionCandidate: AggregateCandidateDeduction, |
| 8001 | /*PartialOrdering=*/false, |
| 8002 | /*ObjectType=*/QualType(), |
| 8003 | /*ObjectClassification=*/Expr::Classification(), |
| 8004 | ForOverloadSetAddressResolution: CandidateSet.getKind() == |
| 8005 | OverloadCandidateSet::CSK_AddressOfOverloadSet, |
| 8006 | CheckNonDependent: [&](ArrayRef<QualType> ParamTypes, |
| 8007 | bool OnlyInitializeNonUserDefinedConversions) { |
| 8008 | return S.CheckNonDependentConversions( |
| 8009 | FunctionTemplate, ParamTypes, Args, CandidateSet, Conversions, |
| 8010 | UserConversionFlag: Sema::CheckNonDependentConversionsFlag( |
| 8011 | SuppressUserConversions, |
| 8012 | OnlyInitializeNonUserDefinedConversions), |
| 8013 | ActingContext: nullptr, ObjectType: QualType(), ObjectClassification: {}, PO); |
| 8014 | }); |
| 8015 | Result != TemplateDeductionResult::Success) { |
| 8016 | OverloadCandidate &Candidate = |
| 8017 | CandidateSet.addCandidate(NumConversions: Conversions.size(), Conversions); |
| 8018 | Candidate.FoundDecl = FoundDecl; |
| 8019 | Candidate.Function = FunctionTemplate->getTemplatedDecl(); |
| 8020 | Candidate.Viable = false; |
| 8021 | Candidate.RewriteKind = |
| 8022 | CandidateSet.getRewriteInfo().getRewriteKind(FD: Candidate.Function, PO); |
| 8023 | Candidate.IsSurrogate = false; |
| 8024 | Candidate.IsADLCandidate = llvm::to_underlying(E: IsADLCandidate); |
| 8025 | // Ignore the object argument if there is one, since we don't have an object |
| 8026 | // type. |
| 8027 | Candidate.IgnoreObjectArgument = |
| 8028 | isa<CXXMethodDecl>(Val: Candidate.Function) && |
| 8029 | !isa<CXXConstructorDecl>(Val: Candidate.Function); |
| 8030 | Candidate.ExplicitCallArguments = Args.size(); |
| 8031 | if (Result == TemplateDeductionResult::NonDependentConversionFailure) |
| 8032 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 8033 | else { |
| 8034 | Candidate.FailureKind = ovl_fail_bad_deduction; |
| 8035 | Candidate.DeductionFailure = |
| 8036 | MakeDeductionFailureInfo(Context&: S.Context, TDK: Result, Info); |
| 8037 | } |
| 8038 | return; |
| 8039 | } |
| 8040 | |
| 8041 | // Add the function template specialization produced by template argument |
| 8042 | // deduction as a candidate. |
| 8043 | assert(Specialization && "Missing function template specialization?" ); |
| 8044 | S.AddOverloadCandidate( |
| 8045 | Function: Specialization, FoundDecl, Args, CandidateSet, SuppressUserConversions, |
| 8046 | PartialOverloading, AllowExplicit, |
| 8047 | /*AllowExplicitConversions=*/false, IsADLCandidate, EarlyConversions: Conversions, PO, |
| 8048 | AggregateCandidateDeduction: Info.AggregateDeductionCandidateHasMismatchedArity, |
| 8049 | StrictPackMatch: Info.hasStrictPackMatch()); |
| 8050 | } |
| 8051 | |
| 8052 | void Sema::AddTemplateOverloadCandidate( |
| 8053 | FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, |
| 8054 | TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, |
| 8055 | OverloadCandidateSet &CandidateSet, bool SuppressUserConversions, |
| 8056 | bool PartialOverloading, bool AllowExplicit, ADLCallKind IsADLCandidate, |
| 8057 | OverloadCandidateParamOrder PO, bool AggregateCandidateDeduction) { |
| 8058 | if (!CandidateSet.isNewCandidate(F: FunctionTemplate, PO)) |
| 8059 | return; |
| 8060 | |
| 8061 | bool DependentExplicitSpecifier = hasDependentExplicit(FTD: FunctionTemplate); |
| 8062 | |
| 8063 | if (ExplicitTemplateArgs || |
| 8064 | !CandidateSet.shouldDeferTemplateArgumentDeduction(Opts: getLangOpts()) || |
| 8065 | (isa<CXXConstructorDecl>(Val: FunctionTemplate->getTemplatedDecl()) && |
| 8066 | DependentExplicitSpecifier)) { |
| 8067 | |
| 8068 | AddTemplateOverloadCandidateImmediately( |
| 8069 | S&: *this, CandidateSet, FunctionTemplate, FoundDecl, ExplicitTemplateArgs, |
| 8070 | Args, SuppressUserConversions, PartialOverloading, AllowExplicit, |
| 8071 | IsADLCandidate, PO, AggregateCandidateDeduction); |
| 8072 | |
| 8073 | if (DependentExplicitSpecifier) |
| 8074 | CandidateSet.DisableResolutionByPerfectCandidate(); |
| 8075 | return; |
| 8076 | } |
| 8077 | |
| 8078 | CandidateSet.AddDeferredTemplateCandidate( |
| 8079 | FunctionTemplate, FoundDecl, Args, SuppressUserConversions, |
| 8080 | PartialOverloading, AllowExplicit, IsADLCandidate, PO, |
| 8081 | AggregateCandidateDeduction); |
| 8082 | } |
| 8083 | |
| 8084 | bool Sema::CheckNonDependentConversions( |
| 8085 | FunctionTemplateDecl *FunctionTemplate, ArrayRef<QualType> ParamTypes, |
| 8086 | ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet, |
| 8087 | ConversionSequenceList &Conversions, |
| 8088 | CheckNonDependentConversionsFlag UserConversionFlag, |
| 8089 | CXXRecordDecl *ActingContext, QualType ObjectType, |
| 8090 | Expr::Classification ObjectClassification, OverloadCandidateParamOrder PO) { |
| 8091 | // FIXME: The cases in which we allow explicit conversions for constructor |
| 8092 | // arguments never consider calling a constructor template. It's not clear |
| 8093 | // that is correct. |
| 8094 | const bool AllowExplicit = false; |
| 8095 | |
| 8096 | auto *FD = FunctionTemplate->getTemplatedDecl(); |
| 8097 | auto *Method = dyn_cast<CXXMethodDecl>(Val: FD); |
| 8098 | bool HasThisConversion = Method && !isa<CXXConstructorDecl>(Val: Method); |
| 8099 | unsigned ThisConversions = HasThisConversion ? 1 : 0; |
| 8100 | |
| 8101 | if (Conversions.empty()) |
| 8102 | Conversions = |
| 8103 | CandidateSet.allocateConversionSequences(NumConversions: ThisConversions + Args.size()); |
| 8104 | |
| 8105 | // Overload resolution is always an unevaluated context. |
| 8106 | EnterExpressionEvaluationContext Unevaluated( |
| 8107 | *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| 8108 | |
| 8109 | // For a method call, check the 'this' conversion here too. DR1391 doesn't |
| 8110 | // require that, but this check should never result in a hard error, and |
| 8111 | // overload resolution is permitted to sidestep instantiations. |
| 8112 | if (HasThisConversion && !cast<CXXMethodDecl>(Val: FD)->isStatic() && |
| 8113 | !ObjectType.isNull()) { |
| 8114 | unsigned ConvIdx = PO == OverloadCandidateParamOrder::Reversed ? 1 : 0; |
| 8115 | if (!FD->hasCXXExplicitFunctionObjectParameter() || |
| 8116 | !ParamTypes[0]->isDependentType()) { |
| 8117 | Conversions[ConvIdx] = TryObjectArgumentInitialization( |
| 8118 | S&: *this, Loc: CandidateSet.getLocation(), FromType: ObjectType, FromClassification: ObjectClassification, |
| 8119 | Method, ActingContext, /*InOverloadResolution=*/true, |
| 8120 | ExplicitParameterType: FD->hasCXXExplicitFunctionObjectParameter() ? ParamTypes[0] |
| 8121 | : QualType()); |
| 8122 | if (Conversions[ConvIdx].isBad()) |
| 8123 | return true; |
| 8124 | } |
| 8125 | } |
| 8126 | |
| 8127 | // A speculative workaround for self-dependent constraint bugs that manifest |
| 8128 | // after CWG2369. |
| 8129 | // FIXME: Add references to the standard once P3606 is adopted. |
| 8130 | auto MaybeInvolveUserDefinedConversion = [&](QualType ParamType, |
| 8131 | QualType ArgType) { |
| 8132 | ParamType = ParamType.getNonReferenceType(); |
| 8133 | ArgType = ArgType.getNonReferenceType(); |
| 8134 | bool PointerConv = ParamType->isPointerType() && ArgType->isPointerType(); |
| 8135 | if (PointerConv) { |
| 8136 | ParamType = ParamType->getPointeeType(); |
| 8137 | ArgType = ArgType->getPointeeType(); |
| 8138 | } |
| 8139 | |
| 8140 | if (auto *RT = ParamType->getAs<RecordType>()) |
| 8141 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 8142 | RD && RD->hasDefinition()) { |
| 8143 | if (llvm::any_of(Range: LookupConstructors(Class: RD), P: [](NamedDecl *ND) { |
| 8144 | auto Info = getConstructorInfo(ND); |
| 8145 | if (!Info) |
| 8146 | return false; |
| 8147 | CXXConstructorDecl *Ctor = Info.Constructor; |
| 8148 | /// isConvertingConstructor takes copy/move constructors into |
| 8149 | /// account! |
| 8150 | return !Ctor->isCopyOrMoveConstructor() && |
| 8151 | Ctor->isConvertingConstructor( |
| 8152 | /*AllowExplicit=*/true); |
| 8153 | })) |
| 8154 | return true; |
| 8155 | } |
| 8156 | |
| 8157 | if (auto *RT = ArgType->getAs<RecordType>()) |
| 8158 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 8159 | RD && RD->hasDefinition() && |
| 8160 | !RD->getVisibleConversionFunctions().empty()) { |
| 8161 | return true; |
| 8162 | } |
| 8163 | |
| 8164 | return false; |
| 8165 | }; |
| 8166 | |
| 8167 | unsigned Offset = |
| 8168 | Method && Method->hasCXXExplicitFunctionObjectParameter() ? 1 : 0; |
| 8169 | |
| 8170 | for (unsigned I = 0, N = std::min(a: ParamTypes.size() - Offset, b: Args.size()); |
| 8171 | I != N; ++I) { |
| 8172 | QualType ParamType = ParamTypes[I + Offset]; |
| 8173 | if (!ParamType->isDependentType()) { |
| 8174 | unsigned ConvIdx; |
| 8175 | if (PO == OverloadCandidateParamOrder::Reversed) { |
| 8176 | ConvIdx = Args.size() - 1 - I; |
| 8177 | assert(Args.size() + ThisConversions == 2 && |
| 8178 | "number of args (including 'this') must be exactly 2 for " |
| 8179 | "reversed order" ); |
| 8180 | // For members, there would be only one arg 'Args[0]' whose ConvIdx |
| 8181 | // would also be 0. 'this' got ConvIdx = 1 previously. |
| 8182 | assert(!HasThisConversion || (ConvIdx == 0 && I == 0)); |
| 8183 | } else { |
| 8184 | // For members, 'this' got ConvIdx = 0 previously. |
| 8185 | ConvIdx = ThisConversions + I; |
| 8186 | } |
| 8187 | if (Conversions[ConvIdx].isInitialized()) |
| 8188 | continue; |
| 8189 | if (UserConversionFlag.OnlyInitializeNonUserDefinedConversions && |
| 8190 | MaybeInvolveUserDefinedConversion(ParamType, Args[I]->getType())) |
| 8191 | continue; |
| 8192 | Conversions[ConvIdx] = TryCopyInitialization( |
| 8193 | S&: *this, From: Args[I], ToType: ParamType, SuppressUserConversions: UserConversionFlag.SuppressUserConversions, |
| 8194 | /*InOverloadResolution=*/true, |
| 8195 | /*AllowObjCWritebackConversion=*/ |
| 8196 | getLangOpts().ObjCAutoRefCount, AllowExplicit); |
| 8197 | if (Conversions[ConvIdx].isBad()) |
| 8198 | return true; |
| 8199 | } |
| 8200 | } |
| 8201 | |
| 8202 | return false; |
| 8203 | } |
| 8204 | |
| 8205 | /// Determine whether this is an allowable conversion from the result |
| 8206 | /// of an explicit conversion operator to the expected type, per C++ |
| 8207 | /// [over.match.conv]p1 and [over.match.ref]p1. |
| 8208 | /// |
| 8209 | /// \param ConvType The return type of the conversion function. |
| 8210 | /// |
| 8211 | /// \param ToType The type we are converting to. |
| 8212 | /// |
| 8213 | /// \param AllowObjCPointerConversion Allow a conversion from one |
| 8214 | /// Objective-C pointer to another. |
| 8215 | /// |
| 8216 | /// \returns true if the conversion is allowable, false otherwise. |
| 8217 | static bool isAllowableExplicitConversion(Sema &S, |
| 8218 | QualType ConvType, QualType ToType, |
| 8219 | bool AllowObjCPointerConversion) { |
| 8220 | QualType ToNonRefType = ToType.getNonReferenceType(); |
| 8221 | |
| 8222 | // Easy case: the types are the same. |
| 8223 | if (S.Context.hasSameUnqualifiedType(T1: ConvType, T2: ToNonRefType)) |
| 8224 | return true; |
| 8225 | |
| 8226 | // Allow qualification conversions. |
| 8227 | bool ObjCLifetimeConversion; |
| 8228 | if (S.IsQualificationConversion(FromType: ConvType, ToType: ToNonRefType, /*CStyle*/false, |
| 8229 | ObjCLifetimeConversion)) |
| 8230 | return true; |
| 8231 | |
| 8232 | // If we're not allowed to consider Objective-C pointer conversions, |
| 8233 | // we're done. |
| 8234 | if (!AllowObjCPointerConversion) |
| 8235 | return false; |
| 8236 | |
| 8237 | // Is this an Objective-C pointer conversion? |
| 8238 | bool IncompatibleObjC = false; |
| 8239 | QualType ConvertedType; |
| 8240 | return S.isObjCPointerConversion(FromType: ConvType, ToType: ToNonRefType, ConvertedType, |
| 8241 | IncompatibleObjC); |
| 8242 | } |
| 8243 | |
| 8244 | void Sema::AddConversionCandidate( |
| 8245 | CXXConversionDecl *Conversion, DeclAccessPair FoundDecl, |
| 8246 | CXXRecordDecl *ActingContext, Expr *From, QualType ToType, |
| 8247 | OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, |
| 8248 | bool AllowExplicit, bool AllowResultConversion, bool StrictPackMatch) { |
| 8249 | assert(!Conversion->getDescribedFunctionTemplate() && |
| 8250 | "Conversion function templates use AddTemplateConversionCandidate" ); |
| 8251 | QualType ConvType = Conversion->getConversionType().getNonReferenceType(); |
| 8252 | if (!CandidateSet.isNewCandidate(F: Conversion)) |
| 8253 | return; |
| 8254 | |
| 8255 | // If the conversion function has an undeduced return type, trigger its |
| 8256 | // deduction now. |
| 8257 | if (getLangOpts().CPlusPlus14 && ConvType->isUndeducedType()) { |
| 8258 | if (DeduceReturnType(FD: Conversion, Loc: From->getExprLoc())) |
| 8259 | return; |
| 8260 | ConvType = Conversion->getConversionType().getNonReferenceType(); |
| 8261 | } |
| 8262 | |
| 8263 | // If we don't allow any conversion of the result type, ignore conversion |
| 8264 | // functions that don't convert to exactly (possibly cv-qualified) T. |
| 8265 | if (!AllowResultConversion && |
| 8266 | !Context.hasSameUnqualifiedType(T1: Conversion->getConversionType(), T2: ToType)) |
| 8267 | return; |
| 8268 | |
| 8269 | // Per C++ [over.match.conv]p1, [over.match.ref]p1, an explicit conversion |
| 8270 | // operator is only a candidate if its return type is the target type or |
| 8271 | // can be converted to the target type with a qualification conversion. |
| 8272 | // |
| 8273 | // FIXME: Include such functions in the candidate list and explain why we |
| 8274 | // can't select them. |
| 8275 | if (Conversion->isExplicit() && |
| 8276 | !isAllowableExplicitConversion(S&: *this, ConvType, ToType, |
| 8277 | AllowObjCPointerConversion: AllowObjCConversionOnExplicit)) |
| 8278 | return; |
| 8279 | |
| 8280 | // Overload resolution is always an unevaluated context. |
| 8281 | EnterExpressionEvaluationContext Unevaluated( |
| 8282 | *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| 8283 | |
| 8284 | // Add this candidate |
| 8285 | OverloadCandidate &Candidate = CandidateSet.addCandidate(NumConversions: 1); |
| 8286 | Candidate.FoundDecl = FoundDecl; |
| 8287 | Candidate.Function = Conversion; |
| 8288 | Candidate.FinalConversion.setAsIdentityConversion(); |
| 8289 | Candidate.FinalConversion.setFromType(ConvType); |
| 8290 | Candidate.FinalConversion.setAllToTypes(ToType); |
| 8291 | Candidate.HasFinalConversion = true; |
| 8292 | Candidate.Viable = true; |
| 8293 | Candidate.ExplicitCallArguments = 1; |
| 8294 | Candidate.StrictPackMatch = StrictPackMatch; |
| 8295 | |
| 8296 | // Explicit functions are not actually candidates at all if we're not |
| 8297 | // allowing them in this context, but keep them around so we can point |
| 8298 | // to them in diagnostics. |
| 8299 | if (!AllowExplicit && Conversion->isExplicit()) { |
| 8300 | Candidate.Viable = false; |
| 8301 | Candidate.FailureKind = ovl_fail_explicit; |
| 8302 | return; |
| 8303 | } |
| 8304 | |
| 8305 | // C++ [over.match.funcs]p4: |
| 8306 | // For conversion functions, the function is considered to be a member of |
| 8307 | // the class of the implicit implied object argument for the purpose of |
| 8308 | // defining the type of the implicit object parameter. |
| 8309 | // |
| 8310 | // Determine the implicit conversion sequence for the implicit |
| 8311 | // object parameter. |
| 8312 | QualType ObjectType = From->getType(); |
| 8313 | if (const auto *FromPtrType = ObjectType->getAs<PointerType>()) |
| 8314 | ObjectType = FromPtrType->getPointeeType(); |
| 8315 | const auto *ConversionContext = |
| 8316 | cast<CXXRecordDecl>(Val: ObjectType->castAs<RecordType>()->getDecl()); |
| 8317 | |
| 8318 | // C++23 [over.best.ics.general] |
| 8319 | // However, if the target is [...] |
| 8320 | // - the object parameter of a user-defined conversion function |
| 8321 | // [...] user-defined conversion sequences are not considered. |
| 8322 | Candidate.Conversions[0] = TryObjectArgumentInitialization( |
| 8323 | S&: *this, Loc: CandidateSet.getLocation(), FromType: From->getType(), |
| 8324 | FromClassification: From->Classify(Ctx&: Context), Method: Conversion, ActingContext: ConversionContext, |
| 8325 | /*InOverloadResolution*/ false, /*ExplicitParameterType=*/QualType(), |
| 8326 | /*SuppressUserConversion*/ true); |
| 8327 | |
| 8328 | if (Candidate.Conversions[0].isBad()) { |
| 8329 | Candidate.Viable = false; |
| 8330 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 8331 | return; |
| 8332 | } |
| 8333 | |
| 8334 | if (Conversion->getTrailingRequiresClause()) { |
| 8335 | ConstraintSatisfaction Satisfaction; |
| 8336 | if (CheckFunctionConstraints(FD: Conversion, Satisfaction) || |
| 8337 | !Satisfaction.IsSatisfied) { |
| 8338 | Candidate.Viable = false; |
| 8339 | Candidate.FailureKind = ovl_fail_constraints_not_satisfied; |
| 8340 | return; |
| 8341 | } |
| 8342 | } |
| 8343 | |
| 8344 | // We won't go through a user-defined type conversion function to convert a |
| 8345 | // derived to base as such conversions are given Conversion Rank. They only |
| 8346 | // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] |
| 8347 | QualType FromCanon |
| 8348 | = Context.getCanonicalType(T: From->getType().getUnqualifiedType()); |
| 8349 | QualType ToCanon = Context.getCanonicalType(T: ToType).getUnqualifiedType(); |
| 8350 | if (FromCanon == ToCanon || |
| 8351 | IsDerivedFrom(Loc: CandidateSet.getLocation(), Derived: FromCanon, Base: ToCanon)) { |
| 8352 | Candidate.Viable = false; |
| 8353 | Candidate.FailureKind = ovl_fail_trivial_conversion; |
| 8354 | return; |
| 8355 | } |
| 8356 | |
| 8357 | // To determine what the conversion from the result of calling the |
| 8358 | // conversion function to the type we're eventually trying to |
| 8359 | // convert to (ToType), we need to synthesize a call to the |
| 8360 | // conversion function and attempt copy initialization from it. This |
| 8361 | // makes sure that we get the right semantics with respect to |
| 8362 | // lvalues/rvalues and the type. Fortunately, we can allocate this |
| 8363 | // call on the stack and we don't need its arguments to be |
| 8364 | // well-formed. |
| 8365 | DeclRefExpr ConversionRef(Context, Conversion, false, Conversion->getType(), |
| 8366 | VK_LValue, From->getBeginLoc()); |
| 8367 | ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, |
| 8368 | Context.getPointerType(T: Conversion->getType()), |
| 8369 | CK_FunctionToPointerDecay, &ConversionRef, |
| 8370 | VK_PRValue, FPOptionsOverride()); |
| 8371 | |
| 8372 | QualType ConversionType = Conversion->getConversionType(); |
| 8373 | if (!isCompleteType(Loc: From->getBeginLoc(), T: ConversionType)) { |
| 8374 | Candidate.Viable = false; |
| 8375 | Candidate.FailureKind = ovl_fail_bad_final_conversion; |
| 8376 | return; |
| 8377 | } |
| 8378 | |
| 8379 | ExprValueKind VK = Expr::getValueKindForType(T: ConversionType); |
| 8380 | |
| 8381 | QualType CallResultType = ConversionType.getNonLValueExprType(Context); |
| 8382 | |
| 8383 | // Introduce a temporary expression with the right type and value category |
| 8384 | // that we can use for deduction purposes. |
| 8385 | OpaqueValueExpr FakeCall(From->getBeginLoc(), CallResultType, VK); |
| 8386 | |
| 8387 | ImplicitConversionSequence ICS = |
| 8388 | TryCopyInitialization(S&: *this, From: &FakeCall, ToType, |
| 8389 | /*SuppressUserConversions=*/true, |
| 8390 | /*InOverloadResolution=*/false, |
| 8391 | /*AllowObjCWritebackConversion=*/false); |
| 8392 | |
| 8393 | switch (ICS.getKind()) { |
| 8394 | case ImplicitConversionSequence::StandardConversion: |
| 8395 | Candidate.FinalConversion = ICS.Standard; |
| 8396 | Candidate.HasFinalConversion = true; |
| 8397 | |
| 8398 | // C++ [over.ics.user]p3: |
| 8399 | // If the user-defined conversion is specified by a specialization of a |
| 8400 | // conversion function template, the second standard conversion sequence |
| 8401 | // shall have exact match rank. |
| 8402 | if (Conversion->getPrimaryTemplate() && |
| 8403 | GetConversionRank(Kind: ICS.Standard.Second) != ICR_Exact_Match) { |
| 8404 | Candidate.Viable = false; |
| 8405 | Candidate.FailureKind = ovl_fail_final_conversion_not_exact; |
| 8406 | return; |
| 8407 | } |
| 8408 | |
| 8409 | // C++0x [dcl.init.ref]p5: |
| 8410 | // In the second case, if the reference is an rvalue reference and |
| 8411 | // the second standard conversion sequence of the user-defined |
| 8412 | // conversion sequence includes an lvalue-to-rvalue conversion, the |
| 8413 | // program is ill-formed. |
| 8414 | if (ToType->isRValueReferenceType() && |
| 8415 | ICS.Standard.First == ICK_Lvalue_To_Rvalue) { |
| 8416 | Candidate.Viable = false; |
| 8417 | Candidate.FailureKind = ovl_fail_bad_final_conversion; |
| 8418 | return; |
| 8419 | } |
| 8420 | break; |
| 8421 | |
| 8422 | case ImplicitConversionSequence::BadConversion: |
| 8423 | Candidate.Viable = false; |
| 8424 | Candidate.FailureKind = ovl_fail_bad_final_conversion; |
| 8425 | return; |
| 8426 | |
| 8427 | default: |
| 8428 | llvm_unreachable( |
| 8429 | "Can only end up with a standard conversion sequence or failure" ); |
| 8430 | } |
| 8431 | |
| 8432 | if (EnableIfAttr *FailedAttr = |
| 8433 | CheckEnableIf(Function: Conversion, CallLoc: CandidateSet.getLocation(), Args: {})) { |
| 8434 | Candidate.Viable = false; |
| 8435 | Candidate.FailureKind = ovl_fail_enable_if; |
| 8436 | Candidate.DeductionFailure.Data = FailedAttr; |
| 8437 | return; |
| 8438 | } |
| 8439 | |
| 8440 | if (isNonViableMultiVersionOverload(FD: Conversion)) { |
| 8441 | Candidate.Viable = false; |
| 8442 | Candidate.FailureKind = ovl_non_default_multiversion_function; |
| 8443 | } |
| 8444 | } |
| 8445 | |
| 8446 | static void AddTemplateConversionCandidateImmediately( |
| 8447 | Sema &S, OverloadCandidateSet &CandidateSet, |
| 8448 | FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, |
| 8449 | CXXRecordDecl *ActingContext, Expr *From, QualType ToType, |
| 8450 | bool AllowObjCConversionOnExplicit, bool AllowExplicit, |
| 8451 | bool AllowResultConversion) { |
| 8452 | |
| 8453 | // If the function template has a non-dependent explicit specification, |
| 8454 | // exclude it now if appropriate; we are not permitted to perform deduction |
| 8455 | // and substitution in this case. |
| 8456 | if (!AllowExplicit && isNonDependentlyExplicit(FTD: FunctionTemplate)) { |
| 8457 | OverloadCandidate &Candidate = CandidateSet.addCandidate(); |
| 8458 | Candidate.FoundDecl = FoundDecl; |
| 8459 | Candidate.Function = FunctionTemplate->getTemplatedDecl(); |
| 8460 | Candidate.Viable = false; |
| 8461 | Candidate.FailureKind = ovl_fail_explicit; |
| 8462 | return; |
| 8463 | } |
| 8464 | |
| 8465 | QualType ObjectType = From->getType(); |
| 8466 | Expr::Classification ObjectClassification = From->Classify(Ctx&: S.Context); |
| 8467 | |
| 8468 | TemplateDeductionInfo Info(CandidateSet.getLocation()); |
| 8469 | CXXConversionDecl *Specialization = nullptr; |
| 8470 | if (TemplateDeductionResult Result = S.DeduceTemplateArguments( |
| 8471 | FunctionTemplate, ObjectType, ObjectClassification, ToType, |
| 8472 | Specialization, Info); |
| 8473 | Result != TemplateDeductionResult::Success) { |
| 8474 | OverloadCandidate &Candidate = CandidateSet.addCandidate(); |
| 8475 | Candidate.FoundDecl = FoundDecl; |
| 8476 | Candidate.Function = FunctionTemplate->getTemplatedDecl(); |
| 8477 | Candidate.Viable = false; |
| 8478 | Candidate.FailureKind = ovl_fail_bad_deduction; |
| 8479 | Candidate.ExplicitCallArguments = 1; |
| 8480 | Candidate.DeductionFailure = |
| 8481 | MakeDeductionFailureInfo(Context&: S.Context, TDK: Result, Info); |
| 8482 | return; |
| 8483 | } |
| 8484 | |
| 8485 | // Add the conversion function template specialization produced by |
| 8486 | // template argument deduction as a candidate. |
| 8487 | assert(Specialization && "Missing function template specialization?" ); |
| 8488 | S.AddConversionCandidate(Conversion: Specialization, FoundDecl, ActingContext, From, |
| 8489 | ToType, CandidateSet, AllowObjCConversionOnExplicit, |
| 8490 | AllowExplicit, AllowResultConversion, |
| 8491 | StrictPackMatch: Info.hasStrictPackMatch()); |
| 8492 | } |
| 8493 | |
| 8494 | void Sema::AddTemplateConversionCandidate( |
| 8495 | FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, |
| 8496 | CXXRecordDecl *ActingDC, Expr *From, QualType ToType, |
| 8497 | OverloadCandidateSet &CandidateSet, bool AllowObjCConversionOnExplicit, |
| 8498 | bool AllowExplicit, bool AllowResultConversion) { |
| 8499 | assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && |
| 8500 | "Only conversion function templates permitted here" ); |
| 8501 | |
| 8502 | if (!CandidateSet.isNewCandidate(F: FunctionTemplate)) |
| 8503 | return; |
| 8504 | |
| 8505 | if (!CandidateSet.shouldDeferTemplateArgumentDeduction(Opts: getLangOpts()) || |
| 8506 | CandidateSet.getKind() == |
| 8507 | OverloadCandidateSet::CSK_InitByUserDefinedConversion || |
| 8508 | CandidateSet.getKind() == OverloadCandidateSet::CSK_InitByConstructor) { |
| 8509 | AddTemplateConversionCandidateImmediately( |
| 8510 | S&: *this, CandidateSet, FunctionTemplate, FoundDecl, ActingContext: ActingDC, From, |
| 8511 | ToType, AllowObjCConversionOnExplicit, AllowExplicit, |
| 8512 | AllowResultConversion); |
| 8513 | |
| 8514 | CandidateSet.DisableResolutionByPerfectCandidate(); |
| 8515 | return; |
| 8516 | } |
| 8517 | |
| 8518 | CandidateSet.AddDeferredConversionTemplateCandidate( |
| 8519 | FunctionTemplate, FoundDecl, ActingContext: ActingDC, From, ToType, |
| 8520 | AllowObjCConversionOnExplicit, AllowExplicit, AllowResultConversion); |
| 8521 | } |
| 8522 | |
| 8523 | void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, |
| 8524 | DeclAccessPair FoundDecl, |
| 8525 | CXXRecordDecl *ActingContext, |
| 8526 | const FunctionProtoType *Proto, |
| 8527 | Expr *Object, |
| 8528 | ArrayRef<Expr *> Args, |
| 8529 | OverloadCandidateSet& CandidateSet) { |
| 8530 | if (!CandidateSet.isNewCandidate(F: Conversion)) |
| 8531 | return; |
| 8532 | |
| 8533 | // Overload resolution is always an unevaluated context. |
| 8534 | EnterExpressionEvaluationContext Unevaluated( |
| 8535 | *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| 8536 | |
| 8537 | OverloadCandidate &Candidate = CandidateSet.addCandidate(NumConversions: Args.size() + 1); |
| 8538 | Candidate.FoundDecl = FoundDecl; |
| 8539 | Candidate.Function = nullptr; |
| 8540 | Candidate.Surrogate = Conversion; |
| 8541 | Candidate.IsSurrogate = true; |
| 8542 | Candidate.Viable = true; |
| 8543 | Candidate.ExplicitCallArguments = Args.size(); |
| 8544 | |
| 8545 | // Determine the implicit conversion sequence for the implicit |
| 8546 | // object parameter. |
| 8547 | ImplicitConversionSequence ObjectInit; |
| 8548 | if (Conversion->hasCXXExplicitFunctionObjectParameter()) { |
| 8549 | ObjectInit = TryCopyInitialization(S&: *this, From: Object, |
| 8550 | ToType: Conversion->getParamDecl(i: 0)->getType(), |
| 8551 | /*SuppressUserConversions=*/false, |
| 8552 | /*InOverloadResolution=*/true, AllowObjCWritebackConversion: false); |
| 8553 | } else { |
| 8554 | ObjectInit = TryObjectArgumentInitialization( |
| 8555 | S&: *this, Loc: CandidateSet.getLocation(), FromType: Object->getType(), |
| 8556 | FromClassification: Object->Classify(Ctx&: Context), Method: Conversion, ActingContext); |
| 8557 | } |
| 8558 | |
| 8559 | if (ObjectInit.isBad()) { |
| 8560 | Candidate.Viable = false; |
| 8561 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 8562 | Candidate.Conversions[0] = ObjectInit; |
| 8563 | return; |
| 8564 | } |
| 8565 | |
| 8566 | // The first conversion is actually a user-defined conversion whose |
| 8567 | // first conversion is ObjectInit's standard conversion (which is |
| 8568 | // effectively a reference binding). Record it as such. |
| 8569 | Candidate.Conversions[0].setUserDefined(); |
| 8570 | Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; |
| 8571 | Candidate.Conversions[0].UserDefined.EllipsisConversion = false; |
| 8572 | Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false; |
| 8573 | Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; |
| 8574 | Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; |
| 8575 | Candidate.Conversions[0].UserDefined.After |
| 8576 | = Candidate.Conversions[0].UserDefined.Before; |
| 8577 | Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); |
| 8578 | |
| 8579 | // Find the |
| 8580 | unsigned NumParams = Proto->getNumParams(); |
| 8581 | |
| 8582 | // (C++ 13.3.2p2): A candidate function having fewer than m |
| 8583 | // parameters is viable only if it has an ellipsis in its parameter |
| 8584 | // list (8.3.5). |
| 8585 | if (Args.size() > NumParams && !Proto->isVariadic()) { |
| 8586 | Candidate.Viable = false; |
| 8587 | Candidate.FailureKind = ovl_fail_too_many_arguments; |
| 8588 | return; |
| 8589 | } |
| 8590 | |
| 8591 | // Function types don't have any default arguments, so just check if |
| 8592 | // we have enough arguments. |
| 8593 | if (Args.size() < NumParams) { |
| 8594 | // Not enough arguments. |
| 8595 | Candidate.Viable = false; |
| 8596 | Candidate.FailureKind = ovl_fail_too_few_arguments; |
| 8597 | return; |
| 8598 | } |
| 8599 | |
| 8600 | // Determine the implicit conversion sequences for each of the |
| 8601 | // arguments. |
| 8602 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { |
| 8603 | if (ArgIdx < NumParams) { |
| 8604 | // (C++ 13.3.2p3): for F to be a viable function, there shall |
| 8605 | // exist for each argument an implicit conversion sequence |
| 8606 | // (13.3.3.1) that converts that argument to the corresponding |
| 8607 | // parameter of F. |
| 8608 | QualType ParamType = Proto->getParamType(i: ArgIdx); |
| 8609 | Candidate.Conversions[ArgIdx + 1] |
| 8610 | = TryCopyInitialization(S&: *this, From: Args[ArgIdx], ToType: ParamType, |
| 8611 | /*SuppressUserConversions=*/false, |
| 8612 | /*InOverloadResolution=*/false, |
| 8613 | /*AllowObjCWritebackConversion=*/ |
| 8614 | getLangOpts().ObjCAutoRefCount); |
| 8615 | if (Candidate.Conversions[ArgIdx + 1].isBad()) { |
| 8616 | Candidate.Viable = false; |
| 8617 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 8618 | return; |
| 8619 | } |
| 8620 | } else { |
| 8621 | // (C++ 13.3.2p2): For the purposes of overload resolution, any |
| 8622 | // argument for which there is no corresponding parameter is |
| 8623 | // considered to ""match the ellipsis" (C+ 13.3.3.1.3). |
| 8624 | Candidate.Conversions[ArgIdx + 1].setEllipsis(); |
| 8625 | } |
| 8626 | } |
| 8627 | |
| 8628 | if (Conversion->getTrailingRequiresClause()) { |
| 8629 | ConstraintSatisfaction Satisfaction; |
| 8630 | if (CheckFunctionConstraints(FD: Conversion, Satisfaction, /*Loc*/ UsageLoc: {}, |
| 8631 | /*ForOverloadResolution*/ true) || |
| 8632 | !Satisfaction.IsSatisfied) { |
| 8633 | Candidate.Viable = false; |
| 8634 | Candidate.FailureKind = ovl_fail_constraints_not_satisfied; |
| 8635 | return; |
| 8636 | } |
| 8637 | } |
| 8638 | |
| 8639 | if (EnableIfAttr *FailedAttr = |
| 8640 | CheckEnableIf(Function: Conversion, CallLoc: CandidateSet.getLocation(), Args: {})) { |
| 8641 | Candidate.Viable = false; |
| 8642 | Candidate.FailureKind = ovl_fail_enable_if; |
| 8643 | Candidate.DeductionFailure.Data = FailedAttr; |
| 8644 | return; |
| 8645 | } |
| 8646 | } |
| 8647 | |
| 8648 | void Sema::AddNonMemberOperatorCandidates( |
| 8649 | const UnresolvedSetImpl &Fns, ArrayRef<Expr *> Args, |
| 8650 | OverloadCandidateSet &CandidateSet, |
| 8651 | TemplateArgumentListInfo *ExplicitTemplateArgs) { |
| 8652 | for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { |
| 8653 | NamedDecl *D = F.getDecl()->getUnderlyingDecl(); |
| 8654 | ArrayRef<Expr *> FunctionArgs = Args; |
| 8655 | |
| 8656 | FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: D); |
| 8657 | FunctionDecl *FD = |
| 8658 | FunTmpl ? FunTmpl->getTemplatedDecl() : cast<FunctionDecl>(Val: D); |
| 8659 | |
| 8660 | // Don't consider rewritten functions if we're not rewriting. |
| 8661 | if (!CandidateSet.getRewriteInfo().isAcceptableCandidate(FD)) |
| 8662 | continue; |
| 8663 | |
| 8664 | assert(!isa<CXXMethodDecl>(FD) && |
| 8665 | "unqualified operator lookup found a member function" ); |
| 8666 | |
| 8667 | if (FunTmpl) { |
| 8668 | AddTemplateOverloadCandidate(FunctionTemplate: FunTmpl, FoundDecl: F.getPair(), ExplicitTemplateArgs, |
| 8669 | Args: FunctionArgs, CandidateSet); |
| 8670 | if (CandidateSet.getRewriteInfo().shouldAddReversed(S&: *this, OriginalArgs: Args, FD)) { |
| 8671 | |
| 8672 | // As template candidates are not deduced immediately, |
| 8673 | // persist the array in the overload set. |
| 8674 | ArrayRef<Expr *> Reversed = CandidateSet.getPersistentArgsArray( |
| 8675 | Exprs: FunctionArgs[1], Exprs: FunctionArgs[0]); |
| 8676 | AddTemplateOverloadCandidate(FunctionTemplate: FunTmpl, FoundDecl: F.getPair(), ExplicitTemplateArgs, |
| 8677 | Args: Reversed, CandidateSet, SuppressUserConversions: false, PartialOverloading: false, AllowExplicit: true, |
| 8678 | IsADLCandidate: ADLCallKind::NotADL, |
| 8679 | PO: OverloadCandidateParamOrder::Reversed); |
| 8680 | } |
| 8681 | } else { |
| 8682 | if (ExplicitTemplateArgs) |
| 8683 | continue; |
| 8684 | AddOverloadCandidate(Function: FD, FoundDecl: F.getPair(), Args: FunctionArgs, CandidateSet); |
| 8685 | if (CandidateSet.getRewriteInfo().shouldAddReversed(S&: *this, OriginalArgs: Args, FD)) |
| 8686 | AddOverloadCandidate(Function: FD, FoundDecl: F.getPair(), |
| 8687 | Args: {FunctionArgs[1], FunctionArgs[0]}, CandidateSet, |
| 8688 | SuppressUserConversions: false, PartialOverloading: false, AllowExplicit: true, AllowExplicitConversions: false, IsADLCandidate: ADLCallKind::NotADL, EarlyConversions: {}, |
| 8689 | PO: OverloadCandidateParamOrder::Reversed); |
| 8690 | } |
| 8691 | } |
| 8692 | } |
| 8693 | |
| 8694 | void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, |
| 8695 | SourceLocation OpLoc, |
| 8696 | ArrayRef<Expr *> Args, |
| 8697 | OverloadCandidateSet &CandidateSet, |
| 8698 | OverloadCandidateParamOrder PO) { |
| 8699 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| 8700 | |
| 8701 | // C++ [over.match.oper]p3: |
| 8702 | // For a unary operator @ with an operand of a type whose |
| 8703 | // cv-unqualified version is T1, and for a binary operator @ with |
| 8704 | // a left operand of a type whose cv-unqualified version is T1 and |
| 8705 | // a right operand of a type whose cv-unqualified version is T2, |
| 8706 | // three sets of candidate functions, designated member |
| 8707 | // candidates, non-member candidates and built-in candidates, are |
| 8708 | // constructed as follows: |
| 8709 | QualType T1 = Args[0]->getType(); |
| 8710 | |
| 8711 | // -- If T1 is a complete class type or a class currently being |
| 8712 | // defined, the set of member candidates is the result of the |
| 8713 | // qualified lookup of T1::operator@ (13.3.1.1.1); otherwise, |
| 8714 | // the set of member candidates is empty. |
| 8715 | if (const RecordType *T1Rec = T1->getAs<RecordType>()) { |
| 8716 | // Complete the type if it can be completed. |
| 8717 | if (!isCompleteType(Loc: OpLoc, T: T1) && !T1Rec->isBeingDefined()) |
| 8718 | return; |
| 8719 | // If the type is neither complete nor being defined, bail out now. |
| 8720 | if (!T1Rec->getDecl()->getDefinition()) |
| 8721 | return; |
| 8722 | |
| 8723 | LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); |
| 8724 | LookupQualifiedName(R&: Operators, LookupCtx: T1Rec->getDecl()); |
| 8725 | Operators.suppressAccessDiagnostics(); |
| 8726 | |
| 8727 | for (LookupResult::iterator Oper = Operators.begin(), |
| 8728 | OperEnd = Operators.end(); |
| 8729 | Oper != OperEnd; ++Oper) { |
| 8730 | if (Oper->getAsFunction() && |
| 8731 | PO == OverloadCandidateParamOrder::Reversed && |
| 8732 | !CandidateSet.getRewriteInfo().shouldAddReversed( |
| 8733 | S&: *this, OriginalArgs: {Args[1], Args[0]}, FD: Oper->getAsFunction())) |
| 8734 | continue; |
| 8735 | AddMethodCandidate(FoundDecl: Oper.getPair(), ObjectType: Args[0]->getType(), |
| 8736 | ObjectClassification: Args[0]->Classify(Ctx&: Context), Args: Args.slice(N: 1), |
| 8737 | CandidateSet, /*SuppressUserConversion=*/SuppressUserConversions: false, PO); |
| 8738 | } |
| 8739 | } |
| 8740 | } |
| 8741 | |
| 8742 | void Sema::AddBuiltinCandidate(QualType *ParamTys, ArrayRef<Expr *> Args, |
| 8743 | OverloadCandidateSet& CandidateSet, |
| 8744 | bool IsAssignmentOperator, |
| 8745 | unsigned NumContextualBoolArguments) { |
| 8746 | // Overload resolution is always an unevaluated context. |
| 8747 | EnterExpressionEvaluationContext Unevaluated( |
| 8748 | *this, Sema::ExpressionEvaluationContext::Unevaluated); |
| 8749 | |
| 8750 | // Add this candidate |
| 8751 | OverloadCandidate &Candidate = CandidateSet.addCandidate(NumConversions: Args.size()); |
| 8752 | Candidate.FoundDecl = DeclAccessPair::make(D: nullptr, AS: AS_none); |
| 8753 | Candidate.Function = nullptr; |
| 8754 | std::copy(first: ParamTys, last: ParamTys + Args.size(), result: Candidate.BuiltinParamTypes); |
| 8755 | |
| 8756 | // Determine the implicit conversion sequences for each of the |
| 8757 | // arguments. |
| 8758 | Candidate.Viable = true; |
| 8759 | Candidate.ExplicitCallArguments = Args.size(); |
| 8760 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { |
| 8761 | // C++ [over.match.oper]p4: |
| 8762 | // For the built-in assignment operators, conversions of the |
| 8763 | // left operand are restricted as follows: |
| 8764 | // -- no temporaries are introduced to hold the left operand, and |
| 8765 | // -- no user-defined conversions are applied to the left |
| 8766 | // operand to achieve a type match with the left-most |
| 8767 | // parameter of a built-in candidate. |
| 8768 | // |
| 8769 | // We block these conversions by turning off user-defined |
| 8770 | // conversions, since that is the only way that initialization of |
| 8771 | // a reference to a non-class type can occur from something that |
| 8772 | // is not of the same type. |
| 8773 | if (ArgIdx < NumContextualBoolArguments) { |
| 8774 | assert(ParamTys[ArgIdx] == Context.BoolTy && |
| 8775 | "Contextual conversion to bool requires bool type" ); |
| 8776 | Candidate.Conversions[ArgIdx] |
| 8777 | = TryContextuallyConvertToBool(S&: *this, From: Args[ArgIdx]); |
| 8778 | } else { |
| 8779 | Candidate.Conversions[ArgIdx] |
| 8780 | = TryCopyInitialization(S&: *this, From: Args[ArgIdx], ToType: ParamTys[ArgIdx], |
| 8781 | SuppressUserConversions: ArgIdx == 0 && IsAssignmentOperator, |
| 8782 | /*InOverloadResolution=*/false, |
| 8783 | /*AllowObjCWritebackConversion=*/ |
| 8784 | getLangOpts().ObjCAutoRefCount); |
| 8785 | } |
| 8786 | if (Candidate.Conversions[ArgIdx].isBad()) { |
| 8787 | Candidate.Viable = false; |
| 8788 | Candidate.FailureKind = ovl_fail_bad_conversion; |
| 8789 | break; |
| 8790 | } |
| 8791 | } |
| 8792 | } |
| 8793 | |
| 8794 | namespace { |
| 8795 | |
| 8796 | /// BuiltinCandidateTypeSet - A set of types that will be used for the |
| 8797 | /// candidate operator functions for built-in operators (C++ |
| 8798 | /// [over.built]). The types are separated into pointer types and |
| 8799 | /// enumeration types. |
| 8800 | class BuiltinCandidateTypeSet { |
| 8801 | /// TypeSet - A set of types. |
| 8802 | typedef llvm::SmallSetVector<QualType, 8> TypeSet; |
| 8803 | |
| 8804 | /// PointerTypes - The set of pointer types that will be used in the |
| 8805 | /// built-in candidates. |
| 8806 | TypeSet PointerTypes; |
| 8807 | |
| 8808 | /// MemberPointerTypes - The set of member pointer types that will be |
| 8809 | /// used in the built-in candidates. |
| 8810 | TypeSet MemberPointerTypes; |
| 8811 | |
| 8812 | /// EnumerationTypes - The set of enumeration types that will be |
| 8813 | /// used in the built-in candidates. |
| 8814 | TypeSet EnumerationTypes; |
| 8815 | |
| 8816 | /// The set of vector types that will be used in the built-in |
| 8817 | /// candidates. |
| 8818 | TypeSet VectorTypes; |
| 8819 | |
| 8820 | /// The set of matrix types that will be used in the built-in |
| 8821 | /// candidates. |
| 8822 | TypeSet MatrixTypes; |
| 8823 | |
| 8824 | /// The set of _BitInt types that will be used in the built-in candidates. |
| 8825 | TypeSet BitIntTypes; |
| 8826 | |
| 8827 | /// A flag indicating non-record types are viable candidates |
| 8828 | bool HasNonRecordTypes; |
| 8829 | |
| 8830 | /// A flag indicating whether either arithmetic or enumeration types |
| 8831 | /// were present in the candidate set. |
| 8832 | bool HasArithmeticOrEnumeralTypes; |
| 8833 | |
| 8834 | /// A flag indicating whether the nullptr type was present in the |
| 8835 | /// candidate set. |
| 8836 | bool HasNullPtrType; |
| 8837 | |
| 8838 | /// Sema - The semantic analysis instance where we are building the |
| 8839 | /// candidate type set. |
| 8840 | Sema &SemaRef; |
| 8841 | |
| 8842 | /// Context - The AST context in which we will build the type sets. |
| 8843 | ASTContext &Context; |
| 8844 | |
| 8845 | bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, |
| 8846 | const Qualifiers &VisibleQuals); |
| 8847 | bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); |
| 8848 | |
| 8849 | public: |
| 8850 | /// iterator - Iterates through the types that are part of the set. |
| 8851 | typedef TypeSet::iterator iterator; |
| 8852 | |
| 8853 | BuiltinCandidateTypeSet(Sema &SemaRef) |
| 8854 | : HasNonRecordTypes(false), |
| 8855 | HasArithmeticOrEnumeralTypes(false), |
| 8856 | HasNullPtrType(false), |
| 8857 | SemaRef(SemaRef), |
| 8858 | Context(SemaRef.Context) { } |
| 8859 | |
| 8860 | void AddTypesConvertedFrom(QualType Ty, |
| 8861 | SourceLocation Loc, |
| 8862 | bool AllowUserConversions, |
| 8863 | bool AllowExplicitConversions, |
| 8864 | const Qualifiers &VisibleTypeConversionsQuals); |
| 8865 | |
| 8866 | llvm::iterator_range<iterator> pointer_types() { return PointerTypes; } |
| 8867 | llvm::iterator_range<iterator> member_pointer_types() { |
| 8868 | return MemberPointerTypes; |
| 8869 | } |
| 8870 | llvm::iterator_range<iterator> enumeration_types() { |
| 8871 | return EnumerationTypes; |
| 8872 | } |
| 8873 | llvm::iterator_range<iterator> vector_types() { return VectorTypes; } |
| 8874 | llvm::iterator_range<iterator> matrix_types() { return MatrixTypes; } |
| 8875 | llvm::iterator_range<iterator> bitint_types() { return BitIntTypes; } |
| 8876 | |
| 8877 | bool containsMatrixType(QualType Ty) const { return MatrixTypes.count(key: Ty); } |
| 8878 | bool hasNonRecordTypes() { return HasNonRecordTypes; } |
| 8879 | bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } |
| 8880 | bool hasNullPtrType() const { return HasNullPtrType; } |
| 8881 | }; |
| 8882 | |
| 8883 | } // end anonymous namespace |
| 8884 | |
| 8885 | /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to |
| 8886 | /// the set of pointer types along with any more-qualified variants of |
| 8887 | /// that type. For example, if @p Ty is "int const *", this routine |
| 8888 | /// will add "int const *", "int const volatile *", "int const |
| 8889 | /// restrict *", and "int const volatile restrict *" to the set of |
| 8890 | /// pointer types. Returns true if the add of @p Ty itself succeeded, |
| 8891 | /// false otherwise. |
| 8892 | /// |
| 8893 | /// FIXME: what to do about extended qualifiers? |
| 8894 | bool |
| 8895 | BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, |
| 8896 | const Qualifiers &VisibleQuals) { |
| 8897 | |
| 8898 | // Insert this type. |
| 8899 | if (!PointerTypes.insert(X: Ty)) |
| 8900 | return false; |
| 8901 | |
| 8902 | QualType PointeeTy; |
| 8903 | const PointerType *PointerTy = Ty->getAs<PointerType>(); |
| 8904 | bool buildObjCPtr = false; |
| 8905 | if (!PointerTy) { |
| 8906 | const ObjCObjectPointerType *PTy = Ty->castAs<ObjCObjectPointerType>(); |
| 8907 | PointeeTy = PTy->getPointeeType(); |
| 8908 | buildObjCPtr = true; |
| 8909 | } else { |
| 8910 | PointeeTy = PointerTy->getPointeeType(); |
| 8911 | } |
| 8912 | |
| 8913 | // Don't add qualified variants of arrays. For one, they're not allowed |
| 8914 | // (the qualifier would sink to the element type), and for another, the |
| 8915 | // only overload situation where it matters is subscript or pointer +- int, |
| 8916 | // and those shouldn't have qualifier variants anyway. |
| 8917 | if (PointeeTy->isArrayType()) |
| 8918 | return true; |
| 8919 | |
| 8920 | unsigned BaseCVR = PointeeTy.getCVRQualifiers(); |
| 8921 | bool hasVolatile = VisibleQuals.hasVolatile(); |
| 8922 | bool hasRestrict = VisibleQuals.hasRestrict(); |
| 8923 | |
| 8924 | // Iterate through all strict supersets of BaseCVR. |
| 8925 | for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { |
| 8926 | if ((CVR | BaseCVR) != CVR) continue; |
| 8927 | // Skip over volatile if no volatile found anywhere in the types. |
| 8928 | if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; |
| 8929 | |
| 8930 | // Skip over restrict if no restrict found anywhere in the types, or if |
| 8931 | // the type cannot be restrict-qualified. |
| 8932 | if ((CVR & Qualifiers::Restrict) && |
| 8933 | (!hasRestrict || |
| 8934 | (!(PointeeTy->isAnyPointerType() || PointeeTy->isReferenceType())))) |
| 8935 | continue; |
| 8936 | |
| 8937 | // Build qualified pointee type. |
| 8938 | QualType QPointeeTy = Context.getCVRQualifiedType(T: PointeeTy, CVR); |
| 8939 | |
| 8940 | // Build qualified pointer type. |
| 8941 | QualType QPointerTy; |
| 8942 | if (!buildObjCPtr) |
| 8943 | QPointerTy = Context.getPointerType(T: QPointeeTy); |
| 8944 | else |
| 8945 | QPointerTy = Context.getObjCObjectPointerType(OIT: QPointeeTy); |
| 8946 | |
| 8947 | // Insert qualified pointer type. |
| 8948 | PointerTypes.insert(X: QPointerTy); |
| 8949 | } |
| 8950 | |
| 8951 | return true; |
| 8952 | } |
| 8953 | |
| 8954 | /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty |
| 8955 | /// to the set of pointer types along with any more-qualified variants of |
| 8956 | /// that type. For example, if @p Ty is "int const *", this routine |
| 8957 | /// will add "int const *", "int const volatile *", "int const |
| 8958 | /// restrict *", and "int const volatile restrict *" to the set of |
| 8959 | /// pointer types. Returns true if the add of @p Ty itself succeeded, |
| 8960 | /// false otherwise. |
| 8961 | /// |
| 8962 | /// FIXME: what to do about extended qualifiers? |
| 8963 | bool |
| 8964 | BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( |
| 8965 | QualType Ty) { |
| 8966 | // Insert this type. |
| 8967 | if (!MemberPointerTypes.insert(X: Ty)) |
| 8968 | return false; |
| 8969 | |
| 8970 | const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); |
| 8971 | assert(PointerTy && "type was not a member pointer type!" ); |
| 8972 | |
| 8973 | QualType PointeeTy = PointerTy->getPointeeType(); |
| 8974 | // Don't add qualified variants of arrays. For one, they're not allowed |
| 8975 | // (the qualifier would sink to the element type), and for another, the |
| 8976 | // only overload situation where it matters is subscript or pointer +- int, |
| 8977 | // and those shouldn't have qualifier variants anyway. |
| 8978 | if (PointeeTy->isArrayType()) |
| 8979 | return true; |
| 8980 | CXXRecordDecl *Cls = PointerTy->getMostRecentCXXRecordDecl(); |
| 8981 | |
| 8982 | // Iterate through all strict supersets of the pointee type's CVR |
| 8983 | // qualifiers. |
| 8984 | unsigned BaseCVR = PointeeTy.getCVRQualifiers(); |
| 8985 | for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { |
| 8986 | if ((CVR | BaseCVR) != CVR) continue; |
| 8987 | |
| 8988 | QualType QPointeeTy = Context.getCVRQualifiedType(T: PointeeTy, CVR); |
| 8989 | MemberPointerTypes.insert( |
| 8990 | X: Context.getMemberPointerType(T: QPointeeTy, /*Qualifier=*/nullptr, Cls)); |
| 8991 | } |
| 8992 | |
| 8993 | return true; |
| 8994 | } |
| 8995 | |
| 8996 | /// AddTypesConvertedFrom - Add each of the types to which the type @p |
| 8997 | /// Ty can be implicit converted to the given set of @p Types. We're |
| 8998 | /// primarily interested in pointer types and enumeration types. We also |
| 8999 | /// take member pointer types, for the conditional operator. |
| 9000 | /// AllowUserConversions is true if we should look at the conversion |
| 9001 | /// functions of a class type, and AllowExplicitConversions if we |
| 9002 | /// should also include the explicit conversion functions of a class |
| 9003 | /// type. |
| 9004 | void |
| 9005 | BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, |
| 9006 | SourceLocation Loc, |
| 9007 | bool AllowUserConversions, |
| 9008 | bool AllowExplicitConversions, |
| 9009 | const Qualifiers &VisibleQuals) { |
| 9010 | // Only deal with canonical types. |
| 9011 | Ty = Context.getCanonicalType(T: Ty); |
| 9012 | |
| 9013 | // Look through reference types; they aren't part of the type of an |
| 9014 | // expression for the purposes of conversions. |
| 9015 | if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) |
| 9016 | Ty = RefTy->getPointeeType(); |
| 9017 | |
| 9018 | // If we're dealing with an array type, decay to the pointer. |
| 9019 | if (Ty->isArrayType()) |
| 9020 | Ty = SemaRef.Context.getArrayDecayedType(T: Ty); |
| 9021 | |
| 9022 | // Otherwise, we don't care about qualifiers on the type. |
| 9023 | Ty = Ty.getLocalUnqualifiedType(); |
| 9024 | |
| 9025 | // Flag if we ever add a non-record type. |
| 9026 | const RecordType *TyRec = Ty->getAs<RecordType>(); |
| 9027 | HasNonRecordTypes = HasNonRecordTypes || !TyRec; |
| 9028 | |
| 9029 | // Flag if we encounter an arithmetic type. |
| 9030 | HasArithmeticOrEnumeralTypes = |
| 9031 | HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); |
| 9032 | |
| 9033 | if (Ty->isObjCIdType() || Ty->isObjCClassType()) |
| 9034 | PointerTypes.insert(X: Ty); |
| 9035 | else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { |
| 9036 | // Insert our type, and its more-qualified variants, into the set |
| 9037 | // of types. |
| 9038 | if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) |
| 9039 | return; |
| 9040 | } else if (Ty->isMemberPointerType()) { |
| 9041 | // Member pointers are far easier, since the pointee can't be converted. |
| 9042 | if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) |
| 9043 | return; |
| 9044 | } else if (Ty->isEnumeralType()) { |
| 9045 | HasArithmeticOrEnumeralTypes = true; |
| 9046 | EnumerationTypes.insert(X: Ty); |
| 9047 | } else if (Ty->isBitIntType()) { |
| 9048 | HasArithmeticOrEnumeralTypes = true; |
| 9049 | BitIntTypes.insert(X: Ty); |
| 9050 | } else if (Ty->isVectorType()) { |
| 9051 | // We treat vector types as arithmetic types in many contexts as an |
| 9052 | // extension. |
| 9053 | HasArithmeticOrEnumeralTypes = true; |
| 9054 | VectorTypes.insert(X: Ty); |
| 9055 | } else if (Ty->isMatrixType()) { |
| 9056 | // Similar to vector types, we treat vector types as arithmetic types in |
| 9057 | // many contexts as an extension. |
| 9058 | HasArithmeticOrEnumeralTypes = true; |
| 9059 | MatrixTypes.insert(X: Ty); |
| 9060 | } else if (Ty->isNullPtrType()) { |
| 9061 | HasNullPtrType = true; |
| 9062 | } else if (AllowUserConversions && TyRec) { |
| 9063 | // No conversion functions in incomplete types. |
| 9064 | if (!SemaRef.isCompleteType(Loc, T: Ty)) |
| 9065 | return; |
| 9066 | |
| 9067 | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Val: TyRec->getDecl()); |
| 9068 | for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { |
| 9069 | if (isa<UsingShadowDecl>(Val: D)) |
| 9070 | D = cast<UsingShadowDecl>(Val: D)->getTargetDecl(); |
| 9071 | |
| 9072 | // Skip conversion function templates; they don't tell us anything |
| 9073 | // about which builtin types we can convert to. |
| 9074 | if (isa<FunctionTemplateDecl>(Val: D)) |
| 9075 | continue; |
| 9076 | |
| 9077 | CXXConversionDecl *Conv = cast<CXXConversionDecl>(Val: D); |
| 9078 | if (AllowExplicitConversions || !Conv->isExplicit()) { |
| 9079 | AddTypesConvertedFrom(Ty: Conv->getConversionType(), Loc, AllowUserConversions: false, AllowExplicitConversions: false, |
| 9080 | VisibleQuals); |
| 9081 | } |
| 9082 | } |
| 9083 | } |
| 9084 | } |
| 9085 | /// Helper function for adjusting address spaces for the pointer or reference |
| 9086 | /// operands of builtin operators depending on the argument. |
| 9087 | static QualType AdjustAddressSpaceForBuiltinOperandType(Sema &S, QualType T, |
| 9088 | Expr *Arg) { |
| 9089 | return S.Context.getAddrSpaceQualType(T, AddressSpace: Arg->getType().getAddressSpace()); |
| 9090 | } |
| 9091 | |
| 9092 | /// Helper function for AddBuiltinOperatorCandidates() that adds |
| 9093 | /// the volatile- and non-volatile-qualified assignment operators for the |
| 9094 | /// given type to the candidate set. |
| 9095 | static void AddBuiltinAssignmentOperatorCandidates(Sema &S, |
| 9096 | QualType T, |
| 9097 | ArrayRef<Expr *> Args, |
| 9098 | OverloadCandidateSet &CandidateSet) { |
| 9099 | QualType ParamTypes[2]; |
| 9100 | |
| 9101 | // T& operator=(T&, T) |
| 9102 | ParamTypes[0] = S.Context.getLValueReferenceType( |
| 9103 | T: AdjustAddressSpaceForBuiltinOperandType(S, T, Arg: Args[0])); |
| 9104 | ParamTypes[1] = T; |
| 9105 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet, |
| 9106 | /*IsAssignmentOperator=*/true); |
| 9107 | |
| 9108 | if (!S.Context.getCanonicalType(T).isVolatileQualified()) { |
| 9109 | // volatile T& operator=(volatile T&, T) |
| 9110 | ParamTypes[0] = S.Context.getLValueReferenceType( |
| 9111 | T: AdjustAddressSpaceForBuiltinOperandType(S, T: S.Context.getVolatileType(T), |
| 9112 | Arg: Args[0])); |
| 9113 | ParamTypes[1] = T; |
| 9114 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet, |
| 9115 | /*IsAssignmentOperator=*/true); |
| 9116 | } |
| 9117 | } |
| 9118 | |
| 9119 | /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, |
| 9120 | /// if any, found in visible type conversion functions found in ArgExpr's type. |
| 9121 | static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { |
| 9122 | Qualifiers VRQuals; |
| 9123 | CXXRecordDecl *ClassDecl; |
| 9124 | if (const MemberPointerType *RHSMPType = |
| 9125 | ArgExpr->getType()->getAs<MemberPointerType>()) |
| 9126 | ClassDecl = RHSMPType->getMostRecentCXXRecordDecl(); |
| 9127 | else |
| 9128 | ClassDecl = ArgExpr->getType()->getAsCXXRecordDecl(); |
| 9129 | if (!ClassDecl) { |
| 9130 | // Just to be safe, assume the worst case. |
| 9131 | VRQuals.addVolatile(); |
| 9132 | VRQuals.addRestrict(); |
| 9133 | return VRQuals; |
| 9134 | } |
| 9135 | if (!ClassDecl->hasDefinition()) |
| 9136 | return VRQuals; |
| 9137 | |
| 9138 | for (NamedDecl *D : ClassDecl->getVisibleConversionFunctions()) { |
| 9139 | if (isa<UsingShadowDecl>(Val: D)) |
| 9140 | D = cast<UsingShadowDecl>(Val: D)->getTargetDecl(); |
| 9141 | if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(Val: D)) { |
| 9142 | QualType CanTy = Context.getCanonicalType(T: Conv->getConversionType()); |
| 9143 | if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) |
| 9144 | CanTy = ResTypeRef->getPointeeType(); |
| 9145 | // Need to go down the pointer/mempointer chain and add qualifiers |
| 9146 | // as see them. |
| 9147 | bool done = false; |
| 9148 | while (!done) { |
| 9149 | if (CanTy.isRestrictQualified()) |
| 9150 | VRQuals.addRestrict(); |
| 9151 | if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) |
| 9152 | CanTy = ResTypePtr->getPointeeType(); |
| 9153 | else if (const MemberPointerType *ResTypeMPtr = |
| 9154 | CanTy->getAs<MemberPointerType>()) |
| 9155 | CanTy = ResTypeMPtr->getPointeeType(); |
| 9156 | else |
| 9157 | done = true; |
| 9158 | if (CanTy.isVolatileQualified()) |
| 9159 | VRQuals.addVolatile(); |
| 9160 | if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) |
| 9161 | return VRQuals; |
| 9162 | } |
| 9163 | } |
| 9164 | } |
| 9165 | return VRQuals; |
| 9166 | } |
| 9167 | |
| 9168 | // Note: We're currently only handling qualifiers that are meaningful for the |
| 9169 | // LHS of compound assignment overloading. |
| 9170 | static void forAllQualifierCombinationsImpl( |
| 9171 | QualifiersAndAtomic Available, QualifiersAndAtomic Applied, |
| 9172 | llvm::function_ref<void(QualifiersAndAtomic)> Callback) { |
| 9173 | // _Atomic |
| 9174 | if (Available.hasAtomic()) { |
| 9175 | Available.removeAtomic(); |
| 9176 | forAllQualifierCombinationsImpl(Available, Applied: Applied.withAtomic(), Callback); |
| 9177 | forAllQualifierCombinationsImpl(Available, Applied, Callback); |
| 9178 | return; |
| 9179 | } |
| 9180 | |
| 9181 | // volatile |
| 9182 | if (Available.hasVolatile()) { |
| 9183 | Available.removeVolatile(); |
| 9184 | assert(!Applied.hasVolatile()); |
| 9185 | forAllQualifierCombinationsImpl(Available, Applied: Applied.withVolatile(), |
| 9186 | Callback); |
| 9187 | forAllQualifierCombinationsImpl(Available, Applied, Callback); |
| 9188 | return; |
| 9189 | } |
| 9190 | |
| 9191 | Callback(Applied); |
| 9192 | } |
| 9193 | |
| 9194 | static void forAllQualifierCombinations( |
| 9195 | QualifiersAndAtomic Quals, |
| 9196 | llvm::function_ref<void(QualifiersAndAtomic)> Callback) { |
| 9197 | return forAllQualifierCombinationsImpl(Available: Quals, Applied: QualifiersAndAtomic(), |
| 9198 | Callback); |
| 9199 | } |
| 9200 | |
| 9201 | static QualType makeQualifiedLValueReferenceType(QualType Base, |
| 9202 | QualifiersAndAtomic Quals, |
| 9203 | Sema &S) { |
| 9204 | if (Quals.hasAtomic()) |
| 9205 | Base = S.Context.getAtomicType(T: Base); |
| 9206 | if (Quals.hasVolatile()) |
| 9207 | Base = S.Context.getVolatileType(T: Base); |
| 9208 | return S.Context.getLValueReferenceType(T: Base); |
| 9209 | } |
| 9210 | |
| 9211 | namespace { |
| 9212 | |
| 9213 | /// Helper class to manage the addition of builtin operator overload |
| 9214 | /// candidates. It provides shared state and utility methods used throughout |
| 9215 | /// the process, as well as a helper method to add each group of builtin |
| 9216 | /// operator overloads from the standard to a candidate set. |
| 9217 | class BuiltinOperatorOverloadBuilder { |
| 9218 | // Common instance state available to all overload candidate addition methods. |
| 9219 | Sema &S; |
| 9220 | ArrayRef<Expr *> Args; |
| 9221 | QualifiersAndAtomic VisibleTypeConversionsQuals; |
| 9222 | bool HasArithmeticOrEnumeralCandidateType; |
| 9223 | SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; |
| 9224 | OverloadCandidateSet &CandidateSet; |
| 9225 | |
| 9226 | static constexpr int ArithmeticTypesCap = 26; |
| 9227 | SmallVector<CanQualType, ArithmeticTypesCap> ArithmeticTypes; |
| 9228 | |
| 9229 | // Define some indices used to iterate over the arithmetic types in |
| 9230 | // ArithmeticTypes. The "promoted arithmetic types" are the arithmetic |
| 9231 | // types are that preserved by promotion (C++ [over.built]p2). |
| 9232 | unsigned FirstIntegralType, |
| 9233 | LastIntegralType; |
| 9234 | unsigned FirstPromotedIntegralType, |
| 9235 | LastPromotedIntegralType; |
| 9236 | unsigned FirstPromotedArithmeticType, |
| 9237 | LastPromotedArithmeticType; |
| 9238 | unsigned NumArithmeticTypes; |
| 9239 | |
| 9240 | void InitArithmeticTypes() { |
| 9241 | // Start of promoted types. |
| 9242 | FirstPromotedArithmeticType = 0; |
| 9243 | ArithmeticTypes.push_back(Elt: S.Context.FloatTy); |
| 9244 | ArithmeticTypes.push_back(Elt: S.Context.DoubleTy); |
| 9245 | ArithmeticTypes.push_back(Elt: S.Context.LongDoubleTy); |
| 9246 | if (S.Context.getTargetInfo().hasFloat128Type()) |
| 9247 | ArithmeticTypes.push_back(Elt: S.Context.Float128Ty); |
| 9248 | if (S.Context.getTargetInfo().hasIbm128Type()) |
| 9249 | ArithmeticTypes.push_back(Elt: S.Context.Ibm128Ty); |
| 9250 | |
| 9251 | // Start of integral types. |
| 9252 | FirstIntegralType = ArithmeticTypes.size(); |
| 9253 | FirstPromotedIntegralType = ArithmeticTypes.size(); |
| 9254 | ArithmeticTypes.push_back(Elt: S.Context.IntTy); |
| 9255 | ArithmeticTypes.push_back(Elt: S.Context.LongTy); |
| 9256 | ArithmeticTypes.push_back(Elt: S.Context.LongLongTy); |
| 9257 | if (S.Context.getTargetInfo().hasInt128Type() || |
| 9258 | (S.Context.getAuxTargetInfo() && |
| 9259 | S.Context.getAuxTargetInfo()->hasInt128Type())) |
| 9260 | ArithmeticTypes.push_back(Elt: S.Context.Int128Ty); |
| 9261 | ArithmeticTypes.push_back(Elt: S.Context.UnsignedIntTy); |
| 9262 | ArithmeticTypes.push_back(Elt: S.Context.UnsignedLongTy); |
| 9263 | ArithmeticTypes.push_back(Elt: S.Context.UnsignedLongLongTy); |
| 9264 | if (S.Context.getTargetInfo().hasInt128Type() || |
| 9265 | (S.Context.getAuxTargetInfo() && |
| 9266 | S.Context.getAuxTargetInfo()->hasInt128Type())) |
| 9267 | ArithmeticTypes.push_back(Elt: S.Context.UnsignedInt128Ty); |
| 9268 | |
| 9269 | /// We add candidates for the unique, unqualified _BitInt types present in |
| 9270 | /// the candidate type set. The candidate set already handled ensuring the |
| 9271 | /// type is unqualified and canonical, but because we're adding from N |
| 9272 | /// different sets, we need to do some extra work to unique things. Insert |
| 9273 | /// the candidates into a unique set, then move from that set into the list |
| 9274 | /// of arithmetic types. |
| 9275 | llvm::SmallSetVector<CanQualType, 2> BitIntCandidates; |
| 9276 | for (BuiltinCandidateTypeSet &Candidate : CandidateTypes) { |
| 9277 | for (QualType BitTy : Candidate.bitint_types()) |
| 9278 | BitIntCandidates.insert(X: CanQualType::CreateUnsafe(Other: BitTy)); |
| 9279 | } |
| 9280 | llvm::move(Range&: BitIntCandidates, Out: std::back_inserter(x&: ArithmeticTypes)); |
| 9281 | LastPromotedIntegralType = ArithmeticTypes.size(); |
| 9282 | LastPromotedArithmeticType = ArithmeticTypes.size(); |
| 9283 | // End of promoted types. |
| 9284 | |
| 9285 | ArithmeticTypes.push_back(Elt: S.Context.BoolTy); |
| 9286 | ArithmeticTypes.push_back(Elt: S.Context.CharTy); |
| 9287 | ArithmeticTypes.push_back(Elt: S.Context.WCharTy); |
| 9288 | if (S.Context.getLangOpts().Char8) |
| 9289 | ArithmeticTypes.push_back(Elt: S.Context.Char8Ty); |
| 9290 | ArithmeticTypes.push_back(Elt: S.Context.Char16Ty); |
| 9291 | ArithmeticTypes.push_back(Elt: S.Context.Char32Ty); |
| 9292 | ArithmeticTypes.push_back(Elt: S.Context.SignedCharTy); |
| 9293 | ArithmeticTypes.push_back(Elt: S.Context.ShortTy); |
| 9294 | ArithmeticTypes.push_back(Elt: S.Context.UnsignedCharTy); |
| 9295 | ArithmeticTypes.push_back(Elt: S.Context.UnsignedShortTy); |
| 9296 | LastIntegralType = ArithmeticTypes.size(); |
| 9297 | NumArithmeticTypes = ArithmeticTypes.size(); |
| 9298 | // End of integral types. |
| 9299 | // FIXME: What about complex? What about half? |
| 9300 | |
| 9301 | // We don't know for sure how many bit-precise candidates were involved, so |
| 9302 | // we subtract those from the total when testing whether we're under the |
| 9303 | // cap or not. |
| 9304 | assert(ArithmeticTypes.size() - BitIntCandidates.size() <= |
| 9305 | ArithmeticTypesCap && |
| 9306 | "Enough inline storage for all arithmetic types." ); |
| 9307 | } |
| 9308 | |
| 9309 | /// Helper method to factor out the common pattern of adding overloads |
| 9310 | /// for '++' and '--' builtin operators. |
| 9311 | void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, |
| 9312 | bool HasVolatile, |
| 9313 | bool HasRestrict) { |
| 9314 | QualType ParamTypes[2] = { |
| 9315 | S.Context.getLValueReferenceType(T: CandidateTy), |
| 9316 | S.Context.IntTy |
| 9317 | }; |
| 9318 | |
| 9319 | // Non-volatile version. |
| 9320 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet); |
| 9321 | |
| 9322 | // Use a heuristic to reduce number of builtin candidates in the set: |
| 9323 | // add volatile version only if there are conversions to a volatile type. |
| 9324 | if (HasVolatile) { |
| 9325 | ParamTypes[0] = |
| 9326 | S.Context.getLValueReferenceType( |
| 9327 | T: S.Context.getVolatileType(T: CandidateTy)); |
| 9328 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet); |
| 9329 | } |
| 9330 | |
| 9331 | // Add restrict version only if there are conversions to a restrict type |
| 9332 | // and our candidate type is a non-restrict-qualified pointer. |
| 9333 | if (HasRestrict && CandidateTy->isAnyPointerType() && |
| 9334 | !CandidateTy.isRestrictQualified()) { |
| 9335 | ParamTypes[0] |
| 9336 | = S.Context.getLValueReferenceType( |
| 9337 | T: S.Context.getCVRQualifiedType(T: CandidateTy, CVR: Qualifiers::Restrict)); |
| 9338 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet); |
| 9339 | |
| 9340 | if (HasVolatile) { |
| 9341 | ParamTypes[0] |
| 9342 | = S.Context.getLValueReferenceType( |
| 9343 | T: S.Context.getCVRQualifiedType(T: CandidateTy, |
| 9344 | CVR: (Qualifiers::Volatile | |
| 9345 | Qualifiers::Restrict))); |
| 9346 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet); |
| 9347 | } |
| 9348 | } |
| 9349 | |
| 9350 | } |
| 9351 | |
| 9352 | /// Helper to add an overload candidate for a binary builtin with types \p L |
| 9353 | /// and \p R. |
| 9354 | void AddCandidate(QualType L, QualType R) { |
| 9355 | QualType LandR[2] = {L, R}; |
| 9356 | S.AddBuiltinCandidate(ParamTys: LandR, Args, CandidateSet); |
| 9357 | } |
| 9358 | |
| 9359 | public: |
| 9360 | BuiltinOperatorOverloadBuilder( |
| 9361 | Sema &S, ArrayRef<Expr *> Args, |
| 9362 | QualifiersAndAtomic VisibleTypeConversionsQuals, |
| 9363 | bool HasArithmeticOrEnumeralCandidateType, |
| 9364 | SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, |
| 9365 | OverloadCandidateSet &CandidateSet) |
| 9366 | : S(S), Args(Args), |
| 9367 | VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), |
| 9368 | HasArithmeticOrEnumeralCandidateType( |
| 9369 | HasArithmeticOrEnumeralCandidateType), |
| 9370 | CandidateTypes(CandidateTypes), |
| 9371 | CandidateSet(CandidateSet) { |
| 9372 | |
| 9373 | InitArithmeticTypes(); |
| 9374 | } |
| 9375 | |
| 9376 | // Increment is deprecated for bool since C++17. |
| 9377 | // |
| 9378 | // C++ [over.built]p3: |
| 9379 | // |
| 9380 | // For every pair (T, VQ), where T is an arithmetic type other |
| 9381 | // than bool, and VQ is either volatile or empty, there exist |
| 9382 | // candidate operator functions of the form |
| 9383 | // |
| 9384 | // VQ T& operator++(VQ T&); |
| 9385 | // T operator++(VQ T&, int); |
| 9386 | // |
| 9387 | // C++ [over.built]p4: |
| 9388 | // |
| 9389 | // For every pair (T, VQ), where T is an arithmetic type other |
| 9390 | // than bool, and VQ is either volatile or empty, there exist |
| 9391 | // candidate operator functions of the form |
| 9392 | // |
| 9393 | // VQ T& operator--(VQ T&); |
| 9394 | // T operator--(VQ T&, int); |
| 9395 | void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { |
| 9396 | if (!HasArithmeticOrEnumeralCandidateType) |
| 9397 | return; |
| 9398 | |
| 9399 | for (unsigned Arith = 0; Arith < NumArithmeticTypes; ++Arith) { |
| 9400 | const auto TypeOfT = ArithmeticTypes[Arith]; |
| 9401 | if (TypeOfT == S.Context.BoolTy) { |
| 9402 | if (Op == OO_MinusMinus) |
| 9403 | continue; |
| 9404 | if (Op == OO_PlusPlus && S.getLangOpts().CPlusPlus17) |
| 9405 | continue; |
| 9406 | } |
| 9407 | addPlusPlusMinusMinusStyleOverloads( |
| 9408 | CandidateTy: TypeOfT, |
| 9409 | HasVolatile: VisibleTypeConversionsQuals.hasVolatile(), |
| 9410 | HasRestrict: VisibleTypeConversionsQuals.hasRestrict()); |
| 9411 | } |
| 9412 | } |
| 9413 | |
| 9414 | // C++ [over.built]p5: |
| 9415 | // |
| 9416 | // For every pair (T, VQ), where T is a cv-qualified or |
| 9417 | // cv-unqualified object type, and VQ is either volatile or |
| 9418 | // empty, there exist candidate operator functions of the form |
| 9419 | // |
| 9420 | // T*VQ& operator++(T*VQ&); |
| 9421 | // T*VQ& operator--(T*VQ&); |
| 9422 | // T* operator++(T*VQ&, int); |
| 9423 | // T* operator--(T*VQ&, int); |
| 9424 | void addPlusPlusMinusMinusPointerOverloads() { |
| 9425 | for (QualType PtrTy : CandidateTypes[0].pointer_types()) { |
| 9426 | // Skip pointer types that aren't pointers to object types. |
| 9427 | if (!PtrTy->getPointeeType()->isObjectType()) |
| 9428 | continue; |
| 9429 | |
| 9430 | addPlusPlusMinusMinusStyleOverloads( |
| 9431 | CandidateTy: PtrTy, |
| 9432 | HasVolatile: (!PtrTy.isVolatileQualified() && |
| 9433 | VisibleTypeConversionsQuals.hasVolatile()), |
| 9434 | HasRestrict: (!PtrTy.isRestrictQualified() && |
| 9435 | VisibleTypeConversionsQuals.hasRestrict())); |
| 9436 | } |
| 9437 | } |
| 9438 | |
| 9439 | // C++ [over.built]p6: |
| 9440 | // For every cv-qualified or cv-unqualified object type T, there |
| 9441 | // exist candidate operator functions of the form |
| 9442 | // |
| 9443 | // T& operator*(T*); |
| 9444 | // |
| 9445 | // C++ [over.built]p7: |
| 9446 | // For every function type T that does not have cv-qualifiers or a |
| 9447 | // ref-qualifier, there exist candidate operator functions of the form |
| 9448 | // T& operator*(T*); |
| 9449 | void addUnaryStarPointerOverloads() { |
| 9450 | for (QualType ParamTy : CandidateTypes[0].pointer_types()) { |
| 9451 | QualType PointeeTy = ParamTy->getPointeeType(); |
| 9452 | if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) |
| 9453 | continue; |
| 9454 | |
| 9455 | if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) |
| 9456 | if (Proto->getMethodQuals() || Proto->getRefQualifier()) |
| 9457 | continue; |
| 9458 | |
| 9459 | S.AddBuiltinCandidate(ParamTys: &ParamTy, Args, CandidateSet); |
| 9460 | } |
| 9461 | } |
| 9462 | |
| 9463 | // C++ [over.built]p9: |
| 9464 | // For every promoted arithmetic type T, there exist candidate |
| 9465 | // operator functions of the form |
| 9466 | // |
| 9467 | // T operator+(T); |
| 9468 | // T operator-(T); |
| 9469 | void addUnaryPlusOrMinusArithmeticOverloads() { |
| 9470 | if (!HasArithmeticOrEnumeralCandidateType) |
| 9471 | return; |
| 9472 | |
| 9473 | for (unsigned Arith = FirstPromotedArithmeticType; |
| 9474 | Arith < LastPromotedArithmeticType; ++Arith) { |
| 9475 | QualType ArithTy = ArithmeticTypes[Arith]; |
| 9476 | S.AddBuiltinCandidate(ParamTys: &ArithTy, Args, CandidateSet); |
| 9477 | } |
| 9478 | |
| 9479 | // Extension: We also add these operators for vector types. |
| 9480 | for (QualType VecTy : CandidateTypes[0].vector_types()) |
| 9481 | S.AddBuiltinCandidate(ParamTys: &VecTy, Args, CandidateSet); |
| 9482 | } |
| 9483 | |
| 9484 | // C++ [over.built]p8: |
| 9485 | // For every type T, there exist candidate operator functions of |
| 9486 | // the form |
| 9487 | // |
| 9488 | // T* operator+(T*); |
| 9489 | void addUnaryPlusPointerOverloads() { |
| 9490 | for (QualType ParamTy : CandidateTypes[0].pointer_types()) |
| 9491 | S.AddBuiltinCandidate(ParamTys: &ParamTy, Args, CandidateSet); |
| 9492 | } |
| 9493 | |
| 9494 | // C++ [over.built]p10: |
| 9495 | // For every promoted integral type T, there exist candidate |
| 9496 | // operator functions of the form |
| 9497 | // |
| 9498 | // T operator~(T); |
| 9499 | void addUnaryTildePromotedIntegralOverloads() { |
| 9500 | if (!HasArithmeticOrEnumeralCandidateType) |
| 9501 | return; |
| 9502 | |
| 9503 | for (unsigned Int = FirstPromotedIntegralType; |
| 9504 | Int < LastPromotedIntegralType; ++Int) { |
| 9505 | QualType IntTy = ArithmeticTypes[Int]; |
| 9506 | S.AddBuiltinCandidate(ParamTys: &IntTy, Args, CandidateSet); |
| 9507 | } |
| 9508 | |
| 9509 | // Extension: We also add this operator for vector types. |
| 9510 | for (QualType VecTy : CandidateTypes[0].vector_types()) |
| 9511 | S.AddBuiltinCandidate(ParamTys: &VecTy, Args, CandidateSet); |
| 9512 | } |
| 9513 | |
| 9514 | // C++ [over.match.oper]p16: |
| 9515 | // For every pointer to member type T or type std::nullptr_t, there |
| 9516 | // exist candidate operator functions of the form |
| 9517 | // |
| 9518 | // bool operator==(T,T); |
| 9519 | // bool operator!=(T,T); |
| 9520 | void addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads() { |
| 9521 | /// Set of (canonical) types that we've already handled. |
| 9522 | llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| 9523 | |
| 9524 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { |
| 9525 | for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { |
| 9526 | // Don't add the same builtin candidate twice. |
| 9527 | if (!AddedTypes.insert(Ptr: S.Context.getCanonicalType(T: MemPtrTy)).second) |
| 9528 | continue; |
| 9529 | |
| 9530 | QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; |
| 9531 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet); |
| 9532 | } |
| 9533 | |
| 9534 | if (CandidateTypes[ArgIdx].hasNullPtrType()) { |
| 9535 | CanQualType NullPtrTy = S.Context.getCanonicalType(T: S.Context.NullPtrTy); |
| 9536 | if (AddedTypes.insert(Ptr: NullPtrTy).second) { |
| 9537 | QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; |
| 9538 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet); |
| 9539 | } |
| 9540 | } |
| 9541 | } |
| 9542 | } |
| 9543 | |
| 9544 | // C++ [over.built]p15: |
| 9545 | // |
| 9546 | // For every T, where T is an enumeration type or a pointer type, |
| 9547 | // there exist candidate operator functions of the form |
| 9548 | // |
| 9549 | // bool operator<(T, T); |
| 9550 | // bool operator>(T, T); |
| 9551 | // bool operator<=(T, T); |
| 9552 | // bool operator>=(T, T); |
| 9553 | // bool operator==(T, T); |
| 9554 | // bool operator!=(T, T); |
| 9555 | // R operator<=>(T, T) |
| 9556 | void addGenericBinaryPointerOrEnumeralOverloads(bool IsSpaceship) { |
| 9557 | // C++ [over.match.oper]p3: |
| 9558 | // [...]the built-in candidates include all of the candidate operator |
| 9559 | // functions defined in 13.6 that, compared to the given operator, [...] |
| 9560 | // do not have the same parameter-type-list as any non-template non-member |
| 9561 | // candidate. |
| 9562 | // |
| 9563 | // Note that in practice, this only affects enumeration types because there |
| 9564 | // aren't any built-in candidates of record type, and a user-defined operator |
| 9565 | // must have an operand of record or enumeration type. Also, the only other |
| 9566 | // overloaded operator with enumeration arguments, operator=, |
| 9567 | // cannot be overloaded for enumeration types, so this is the only place |
| 9568 | // where we must suppress candidates like this. |
| 9569 | llvm::DenseSet<std::pair<CanQualType, CanQualType> > |
| 9570 | UserDefinedBinaryOperators; |
| 9571 | |
| 9572 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { |
| 9573 | if (!CandidateTypes[ArgIdx].enumeration_types().empty()) { |
| 9574 | for (OverloadCandidateSet::iterator C = CandidateSet.begin(), |
| 9575 | CEnd = CandidateSet.end(); |
| 9576 | C != CEnd; ++C) { |
| 9577 | if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) |
| 9578 | continue; |
| 9579 | |
| 9580 | if (C->Function->isFunctionTemplateSpecialization()) |
| 9581 | continue; |
| 9582 | |
| 9583 | // We interpret "same parameter-type-list" as applying to the |
| 9584 | // "synthesized candidate, with the order of the two parameters |
| 9585 | // reversed", not to the original function. |
| 9586 | bool Reversed = C->isReversed(); |
| 9587 | QualType FirstParamType = C->Function->getParamDecl(i: Reversed ? 1 : 0) |
| 9588 | ->getType() |
| 9589 | .getUnqualifiedType(); |
| 9590 | QualType SecondParamType = C->Function->getParamDecl(i: Reversed ? 0 : 1) |
| 9591 | ->getType() |
| 9592 | .getUnqualifiedType(); |
| 9593 | |
| 9594 | // Skip if either parameter isn't of enumeral type. |
| 9595 | if (!FirstParamType->isEnumeralType() || |
| 9596 | !SecondParamType->isEnumeralType()) |
| 9597 | continue; |
| 9598 | |
| 9599 | // Add this operator to the set of known user-defined operators. |
| 9600 | UserDefinedBinaryOperators.insert( |
| 9601 | V: std::make_pair(x: S.Context.getCanonicalType(T: FirstParamType), |
| 9602 | y: S.Context.getCanonicalType(T: SecondParamType))); |
| 9603 | } |
| 9604 | } |
| 9605 | } |
| 9606 | |
| 9607 | /// Set of (canonical) types that we've already handled. |
| 9608 | llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| 9609 | |
| 9610 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { |
| 9611 | for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { |
| 9612 | // Don't add the same builtin candidate twice. |
| 9613 | if (!AddedTypes.insert(Ptr: S.Context.getCanonicalType(T: PtrTy)).second) |
| 9614 | continue; |
| 9615 | if (IsSpaceship && PtrTy->isFunctionPointerType()) |
| 9616 | continue; |
| 9617 | |
| 9618 | QualType ParamTypes[2] = {PtrTy, PtrTy}; |
| 9619 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet); |
| 9620 | } |
| 9621 | for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { |
| 9622 | CanQualType CanonType = S.Context.getCanonicalType(T: EnumTy); |
| 9623 | |
| 9624 | // Don't add the same builtin candidate twice, or if a user defined |
| 9625 | // candidate exists. |
| 9626 | if (!AddedTypes.insert(Ptr: CanonType).second || |
| 9627 | UserDefinedBinaryOperators.count(V: std::make_pair(x&: CanonType, |
| 9628 | y&: CanonType))) |
| 9629 | continue; |
| 9630 | QualType ParamTypes[2] = {EnumTy, EnumTy}; |
| 9631 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet); |
| 9632 | } |
| 9633 | } |
| 9634 | } |
| 9635 | |
| 9636 | // C++ [over.built]p13: |
| 9637 | // |
| 9638 | // For every cv-qualified or cv-unqualified object type T |
| 9639 | // there exist candidate operator functions of the form |
| 9640 | // |
| 9641 | // T* operator+(T*, ptrdiff_t); |
| 9642 | // T& operator[](T*, ptrdiff_t); [BELOW] |
| 9643 | // T* operator-(T*, ptrdiff_t); |
| 9644 | // T* operator+(ptrdiff_t, T*); |
| 9645 | // T& operator[](ptrdiff_t, T*); [BELOW] |
| 9646 | // |
| 9647 | // C++ [over.built]p14: |
| 9648 | // |
| 9649 | // For every T, where T is a pointer to object type, there |
| 9650 | // exist candidate operator functions of the form |
| 9651 | // |
| 9652 | // ptrdiff_t operator-(T, T); |
| 9653 | void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { |
| 9654 | /// Set of (canonical) types that we've already handled. |
| 9655 | llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| 9656 | |
| 9657 | for (int Arg = 0; Arg < 2; ++Arg) { |
| 9658 | QualType AsymmetricParamTypes[2] = { |
| 9659 | S.Context.getPointerDiffType(), |
| 9660 | S.Context.getPointerDiffType(), |
| 9661 | }; |
| 9662 | for (QualType PtrTy : CandidateTypes[Arg].pointer_types()) { |
| 9663 | QualType PointeeTy = PtrTy->getPointeeType(); |
| 9664 | if (!PointeeTy->isObjectType()) |
| 9665 | continue; |
| 9666 | |
| 9667 | AsymmetricParamTypes[Arg] = PtrTy; |
| 9668 | if (Arg == 0 || Op == OO_Plus) { |
| 9669 | // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) |
| 9670 | // T* operator+(ptrdiff_t, T*); |
| 9671 | S.AddBuiltinCandidate(ParamTys: AsymmetricParamTypes, Args, CandidateSet); |
| 9672 | } |
| 9673 | if (Op == OO_Minus) { |
| 9674 | // ptrdiff_t operator-(T, T); |
| 9675 | if (!AddedTypes.insert(Ptr: S.Context.getCanonicalType(T: PtrTy)).second) |
| 9676 | continue; |
| 9677 | |
| 9678 | QualType ParamTypes[2] = {PtrTy, PtrTy}; |
| 9679 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet); |
| 9680 | } |
| 9681 | } |
| 9682 | } |
| 9683 | } |
| 9684 | |
| 9685 | // C++ [over.built]p12: |
| 9686 | // |
| 9687 | // For every pair of promoted arithmetic types L and R, there |
| 9688 | // exist candidate operator functions of the form |
| 9689 | // |
| 9690 | // LR operator*(L, R); |
| 9691 | // LR operator/(L, R); |
| 9692 | // LR operator+(L, R); |
| 9693 | // LR operator-(L, R); |
| 9694 | // bool operator<(L, R); |
| 9695 | // bool operator>(L, R); |
| 9696 | // bool operator<=(L, R); |
| 9697 | // bool operator>=(L, R); |
| 9698 | // bool operator==(L, R); |
| 9699 | // bool operator!=(L, R); |
| 9700 | // |
| 9701 | // where LR is the result of the usual arithmetic conversions |
| 9702 | // between types L and R. |
| 9703 | // |
| 9704 | // C++ [over.built]p24: |
| 9705 | // |
| 9706 | // For every pair of promoted arithmetic types L and R, there exist |
| 9707 | // candidate operator functions of the form |
| 9708 | // |
| 9709 | // LR operator?(bool, L, R); |
| 9710 | // |
| 9711 | // where LR is the result of the usual arithmetic conversions |
| 9712 | // between types L and R. |
| 9713 | // Our candidates ignore the first parameter. |
| 9714 | void addGenericBinaryArithmeticOverloads() { |
| 9715 | if (!HasArithmeticOrEnumeralCandidateType) |
| 9716 | return; |
| 9717 | |
| 9718 | for (unsigned Left = FirstPromotedArithmeticType; |
| 9719 | Left < LastPromotedArithmeticType; ++Left) { |
| 9720 | for (unsigned Right = FirstPromotedArithmeticType; |
| 9721 | Right < LastPromotedArithmeticType; ++Right) { |
| 9722 | QualType LandR[2] = { ArithmeticTypes[Left], |
| 9723 | ArithmeticTypes[Right] }; |
| 9724 | S.AddBuiltinCandidate(ParamTys: LandR, Args, CandidateSet); |
| 9725 | } |
| 9726 | } |
| 9727 | |
| 9728 | // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the |
| 9729 | // conditional operator for vector types. |
| 9730 | for (QualType Vec1Ty : CandidateTypes[0].vector_types()) |
| 9731 | for (QualType Vec2Ty : CandidateTypes[1].vector_types()) { |
| 9732 | QualType LandR[2] = {Vec1Ty, Vec2Ty}; |
| 9733 | S.AddBuiltinCandidate(ParamTys: LandR, Args, CandidateSet); |
| 9734 | } |
| 9735 | } |
| 9736 | |
| 9737 | /// Add binary operator overloads for each candidate matrix type M1, M2: |
| 9738 | /// * (M1, M1) -> M1 |
| 9739 | /// * (M1, M1.getElementType()) -> M1 |
| 9740 | /// * (M2.getElementType(), M2) -> M2 |
| 9741 | /// * (M2, M2) -> M2 // Only if M2 is not part of CandidateTypes[0]. |
| 9742 | void addMatrixBinaryArithmeticOverloads() { |
| 9743 | if (!HasArithmeticOrEnumeralCandidateType) |
| 9744 | return; |
| 9745 | |
| 9746 | for (QualType M1 : CandidateTypes[0].matrix_types()) { |
| 9747 | AddCandidate(L: M1, R: cast<MatrixType>(Val&: M1)->getElementType()); |
| 9748 | AddCandidate(L: M1, R: M1); |
| 9749 | } |
| 9750 | |
| 9751 | for (QualType M2 : CandidateTypes[1].matrix_types()) { |
| 9752 | AddCandidate(L: cast<MatrixType>(Val&: M2)->getElementType(), R: M2); |
| 9753 | if (!CandidateTypes[0].containsMatrixType(Ty: M2)) |
| 9754 | AddCandidate(L: M2, R: M2); |
| 9755 | } |
| 9756 | } |
| 9757 | |
| 9758 | // C++2a [over.built]p14: |
| 9759 | // |
| 9760 | // For every integral type T there exists a candidate operator function |
| 9761 | // of the form |
| 9762 | // |
| 9763 | // std::strong_ordering operator<=>(T, T) |
| 9764 | // |
| 9765 | // C++2a [over.built]p15: |
| 9766 | // |
| 9767 | // For every pair of floating-point types L and R, there exists a candidate |
| 9768 | // operator function of the form |
| 9769 | // |
| 9770 | // std::partial_ordering operator<=>(L, R); |
| 9771 | // |
| 9772 | // FIXME: The current specification for integral types doesn't play nice with |
| 9773 | // the direction of p0946r0, which allows mixed integral and unscoped-enum |
| 9774 | // comparisons. Under the current spec this can lead to ambiguity during |
| 9775 | // overload resolution. For example: |
| 9776 | // |
| 9777 | // enum A : int {a}; |
| 9778 | // auto x = (a <=> (long)42); |
| 9779 | // |
| 9780 | // error: call is ambiguous for arguments 'A' and 'long'. |
| 9781 | // note: candidate operator<=>(int, int) |
| 9782 | // note: candidate operator<=>(long, long) |
| 9783 | // |
| 9784 | // To avoid this error, this function deviates from the specification and adds |
| 9785 | // the mixed overloads `operator<=>(L, R)` where L and R are promoted |
| 9786 | // arithmetic types (the same as the generic relational overloads). |
| 9787 | // |
| 9788 | // For now this function acts as a placeholder. |
| 9789 | void addThreeWayArithmeticOverloads() { |
| 9790 | addGenericBinaryArithmeticOverloads(); |
| 9791 | } |
| 9792 | |
| 9793 | // C++ [over.built]p17: |
| 9794 | // |
| 9795 | // For every pair of promoted integral types L and R, there |
| 9796 | // exist candidate operator functions of the form |
| 9797 | // |
| 9798 | // LR operator%(L, R); |
| 9799 | // LR operator&(L, R); |
| 9800 | // LR operator^(L, R); |
| 9801 | // LR operator|(L, R); |
| 9802 | // L operator<<(L, R); |
| 9803 | // L operator>>(L, R); |
| 9804 | // |
| 9805 | // where LR is the result of the usual arithmetic conversions |
| 9806 | // between types L and R. |
| 9807 | void addBinaryBitwiseArithmeticOverloads() { |
| 9808 | if (!HasArithmeticOrEnumeralCandidateType) |
| 9809 | return; |
| 9810 | |
| 9811 | for (unsigned Left = FirstPromotedIntegralType; |
| 9812 | Left < LastPromotedIntegralType; ++Left) { |
| 9813 | for (unsigned Right = FirstPromotedIntegralType; |
| 9814 | Right < LastPromotedIntegralType; ++Right) { |
| 9815 | QualType LandR[2] = { ArithmeticTypes[Left], |
| 9816 | ArithmeticTypes[Right] }; |
| 9817 | S.AddBuiltinCandidate(ParamTys: LandR, Args, CandidateSet); |
| 9818 | } |
| 9819 | } |
| 9820 | } |
| 9821 | |
| 9822 | // C++ [over.built]p20: |
| 9823 | // |
| 9824 | // For every pair (T, VQ), where T is an enumeration or |
| 9825 | // pointer to member type and VQ is either volatile or |
| 9826 | // empty, there exist candidate operator functions of the form |
| 9827 | // |
| 9828 | // VQ T& operator=(VQ T&, T); |
| 9829 | void addAssignmentMemberPointerOrEnumeralOverloads() { |
| 9830 | /// Set of (canonical) types that we've already handled. |
| 9831 | llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| 9832 | |
| 9833 | for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { |
| 9834 | for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { |
| 9835 | if (!AddedTypes.insert(Ptr: S.Context.getCanonicalType(T: EnumTy)).second) |
| 9836 | continue; |
| 9837 | |
| 9838 | AddBuiltinAssignmentOperatorCandidates(S, T: EnumTy, Args, CandidateSet); |
| 9839 | } |
| 9840 | |
| 9841 | for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { |
| 9842 | if (!AddedTypes.insert(Ptr: S.Context.getCanonicalType(T: MemPtrTy)).second) |
| 9843 | continue; |
| 9844 | |
| 9845 | AddBuiltinAssignmentOperatorCandidates(S, T: MemPtrTy, Args, CandidateSet); |
| 9846 | } |
| 9847 | } |
| 9848 | } |
| 9849 | |
| 9850 | // C++ [over.built]p19: |
| 9851 | // |
| 9852 | // For every pair (T, VQ), where T is any type and VQ is either |
| 9853 | // volatile or empty, there exist candidate operator functions |
| 9854 | // of the form |
| 9855 | // |
| 9856 | // T*VQ& operator=(T*VQ&, T*); |
| 9857 | // |
| 9858 | // C++ [over.built]p21: |
| 9859 | // |
| 9860 | // For every pair (T, VQ), where T is a cv-qualified or |
| 9861 | // cv-unqualified object type and VQ is either volatile or |
| 9862 | // empty, there exist candidate operator functions of the form |
| 9863 | // |
| 9864 | // T*VQ& operator+=(T*VQ&, ptrdiff_t); |
| 9865 | // T*VQ& operator-=(T*VQ&, ptrdiff_t); |
| 9866 | void addAssignmentPointerOverloads(bool isEqualOp) { |
| 9867 | /// Set of (canonical) types that we've already handled. |
| 9868 | llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| 9869 | |
| 9870 | for (QualType PtrTy : CandidateTypes[0].pointer_types()) { |
| 9871 | // If this is operator=, keep track of the builtin candidates we added. |
| 9872 | if (isEqualOp) |
| 9873 | AddedTypes.insert(Ptr: S.Context.getCanonicalType(T: PtrTy)); |
| 9874 | else if (!PtrTy->getPointeeType()->isObjectType()) |
| 9875 | continue; |
| 9876 | |
| 9877 | // non-volatile version |
| 9878 | QualType ParamTypes[2] = { |
| 9879 | S.Context.getLValueReferenceType(T: PtrTy), |
| 9880 | isEqualOp ? PtrTy : S.Context.getPointerDiffType(), |
| 9881 | }; |
| 9882 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet, |
| 9883 | /*IsAssignmentOperator=*/ isEqualOp); |
| 9884 | |
| 9885 | bool NeedVolatile = !PtrTy.isVolatileQualified() && |
| 9886 | VisibleTypeConversionsQuals.hasVolatile(); |
| 9887 | if (NeedVolatile) { |
| 9888 | // volatile version |
| 9889 | ParamTypes[0] = |
| 9890 | S.Context.getLValueReferenceType(T: S.Context.getVolatileType(T: PtrTy)); |
| 9891 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet, |
| 9892 | /*IsAssignmentOperator=*/isEqualOp); |
| 9893 | } |
| 9894 | |
| 9895 | if (!PtrTy.isRestrictQualified() && |
| 9896 | VisibleTypeConversionsQuals.hasRestrict()) { |
| 9897 | // restrict version |
| 9898 | ParamTypes[0] = |
| 9899 | S.Context.getLValueReferenceType(T: S.Context.getRestrictType(T: PtrTy)); |
| 9900 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet, |
| 9901 | /*IsAssignmentOperator=*/isEqualOp); |
| 9902 | |
| 9903 | if (NeedVolatile) { |
| 9904 | // volatile restrict version |
| 9905 | ParamTypes[0] = |
| 9906 | S.Context.getLValueReferenceType(T: S.Context.getCVRQualifiedType( |
| 9907 | T: PtrTy, CVR: (Qualifiers::Volatile | Qualifiers::Restrict))); |
| 9908 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet, |
| 9909 | /*IsAssignmentOperator=*/isEqualOp); |
| 9910 | } |
| 9911 | } |
| 9912 | } |
| 9913 | |
| 9914 | if (isEqualOp) { |
| 9915 | for (QualType PtrTy : CandidateTypes[1].pointer_types()) { |
| 9916 | // Make sure we don't add the same candidate twice. |
| 9917 | if (!AddedTypes.insert(Ptr: S.Context.getCanonicalType(T: PtrTy)).second) |
| 9918 | continue; |
| 9919 | |
| 9920 | QualType ParamTypes[2] = { |
| 9921 | S.Context.getLValueReferenceType(T: PtrTy), |
| 9922 | PtrTy, |
| 9923 | }; |
| 9924 | |
| 9925 | // non-volatile version |
| 9926 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet, |
| 9927 | /*IsAssignmentOperator=*/true); |
| 9928 | |
| 9929 | bool NeedVolatile = !PtrTy.isVolatileQualified() && |
| 9930 | VisibleTypeConversionsQuals.hasVolatile(); |
| 9931 | if (NeedVolatile) { |
| 9932 | // volatile version |
| 9933 | ParamTypes[0] = S.Context.getLValueReferenceType( |
| 9934 | T: S.Context.getVolatileType(T: PtrTy)); |
| 9935 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet, |
| 9936 | /*IsAssignmentOperator=*/true); |
| 9937 | } |
| 9938 | |
| 9939 | if (!PtrTy.isRestrictQualified() && |
| 9940 | VisibleTypeConversionsQuals.hasRestrict()) { |
| 9941 | // restrict version |
| 9942 | ParamTypes[0] = S.Context.getLValueReferenceType( |
| 9943 | T: S.Context.getRestrictType(T: PtrTy)); |
| 9944 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet, |
| 9945 | /*IsAssignmentOperator=*/true); |
| 9946 | |
| 9947 | if (NeedVolatile) { |
| 9948 | // volatile restrict version |
| 9949 | ParamTypes[0] = |
| 9950 | S.Context.getLValueReferenceType(T: S.Context.getCVRQualifiedType( |
| 9951 | T: PtrTy, CVR: (Qualifiers::Volatile | Qualifiers::Restrict))); |
| 9952 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet, |
| 9953 | /*IsAssignmentOperator=*/true); |
| 9954 | } |
| 9955 | } |
| 9956 | } |
| 9957 | } |
| 9958 | } |
| 9959 | |
| 9960 | // C++ [over.built]p18: |
| 9961 | // |
| 9962 | // For every triple (L, VQ, R), where L is an arithmetic type, |
| 9963 | // VQ is either volatile or empty, and R is a promoted |
| 9964 | // arithmetic type, there exist candidate operator functions of |
| 9965 | // the form |
| 9966 | // |
| 9967 | // VQ L& operator=(VQ L&, R); |
| 9968 | // VQ L& operator*=(VQ L&, R); |
| 9969 | // VQ L& operator/=(VQ L&, R); |
| 9970 | // VQ L& operator+=(VQ L&, R); |
| 9971 | // VQ L& operator-=(VQ L&, R); |
| 9972 | void addAssignmentArithmeticOverloads(bool isEqualOp) { |
| 9973 | if (!HasArithmeticOrEnumeralCandidateType) |
| 9974 | return; |
| 9975 | |
| 9976 | for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { |
| 9977 | for (unsigned Right = FirstPromotedArithmeticType; |
| 9978 | Right < LastPromotedArithmeticType; ++Right) { |
| 9979 | QualType ParamTypes[2]; |
| 9980 | ParamTypes[1] = ArithmeticTypes[Right]; |
| 9981 | auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( |
| 9982 | S, T: ArithmeticTypes[Left], Arg: Args[0]); |
| 9983 | |
| 9984 | forAllQualifierCombinations( |
| 9985 | Quals: VisibleTypeConversionsQuals, Callback: [&](QualifiersAndAtomic Quals) { |
| 9986 | ParamTypes[0] = |
| 9987 | makeQualifiedLValueReferenceType(Base: LeftBaseTy, Quals, S); |
| 9988 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet, |
| 9989 | /*IsAssignmentOperator=*/isEqualOp); |
| 9990 | }); |
| 9991 | } |
| 9992 | } |
| 9993 | |
| 9994 | // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. |
| 9995 | for (QualType Vec1Ty : CandidateTypes[0].vector_types()) |
| 9996 | for (QualType Vec2Ty : CandidateTypes[0].vector_types()) { |
| 9997 | QualType ParamTypes[2]; |
| 9998 | ParamTypes[1] = Vec2Ty; |
| 9999 | // Add this built-in operator as a candidate (VQ is empty). |
| 10000 | ParamTypes[0] = S.Context.getLValueReferenceType(T: Vec1Ty); |
| 10001 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet, |
| 10002 | /*IsAssignmentOperator=*/isEqualOp); |
| 10003 | |
| 10004 | // Add this built-in operator as a candidate (VQ is 'volatile'). |
| 10005 | if (VisibleTypeConversionsQuals.hasVolatile()) { |
| 10006 | ParamTypes[0] = S.Context.getVolatileType(T: Vec1Ty); |
| 10007 | ParamTypes[0] = S.Context.getLValueReferenceType(T: ParamTypes[0]); |
| 10008 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet, |
| 10009 | /*IsAssignmentOperator=*/isEqualOp); |
| 10010 | } |
| 10011 | } |
| 10012 | } |
| 10013 | |
| 10014 | // C++ [over.built]p22: |
| 10015 | // |
| 10016 | // For every triple (L, VQ, R), where L is an integral type, VQ |
| 10017 | // is either volatile or empty, and R is a promoted integral |
| 10018 | // type, there exist candidate operator functions of the form |
| 10019 | // |
| 10020 | // VQ L& operator%=(VQ L&, R); |
| 10021 | // VQ L& operator<<=(VQ L&, R); |
| 10022 | // VQ L& operator>>=(VQ L&, R); |
| 10023 | // VQ L& operator&=(VQ L&, R); |
| 10024 | // VQ L& operator^=(VQ L&, R); |
| 10025 | // VQ L& operator|=(VQ L&, R); |
| 10026 | void addAssignmentIntegralOverloads() { |
| 10027 | if (!HasArithmeticOrEnumeralCandidateType) |
| 10028 | return; |
| 10029 | |
| 10030 | for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { |
| 10031 | for (unsigned Right = FirstPromotedIntegralType; |
| 10032 | Right < LastPromotedIntegralType; ++Right) { |
| 10033 | QualType ParamTypes[2]; |
| 10034 | ParamTypes[1] = ArithmeticTypes[Right]; |
| 10035 | auto LeftBaseTy = AdjustAddressSpaceForBuiltinOperandType( |
| 10036 | S, T: ArithmeticTypes[Left], Arg: Args[0]); |
| 10037 | |
| 10038 | forAllQualifierCombinations( |
| 10039 | Quals: VisibleTypeConversionsQuals, Callback: [&](QualifiersAndAtomic Quals) { |
| 10040 | ParamTypes[0] = |
| 10041 | makeQualifiedLValueReferenceType(Base: LeftBaseTy, Quals, S); |
| 10042 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet); |
| 10043 | }); |
| 10044 | } |
| 10045 | } |
| 10046 | } |
| 10047 | |
| 10048 | // C++ [over.operator]p23: |
| 10049 | // |
| 10050 | // There also exist candidate operator functions of the form |
| 10051 | // |
| 10052 | // bool operator!(bool); |
| 10053 | // bool operator&&(bool, bool); |
| 10054 | // bool operator||(bool, bool); |
| 10055 | void addExclaimOverload() { |
| 10056 | QualType ParamTy = S.Context.BoolTy; |
| 10057 | S.AddBuiltinCandidate(ParamTys: &ParamTy, Args, CandidateSet, |
| 10058 | /*IsAssignmentOperator=*/false, |
| 10059 | /*NumContextualBoolArguments=*/1); |
| 10060 | } |
| 10061 | void addAmpAmpOrPipePipeOverload() { |
| 10062 | QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; |
| 10063 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet, |
| 10064 | /*IsAssignmentOperator=*/false, |
| 10065 | /*NumContextualBoolArguments=*/2); |
| 10066 | } |
| 10067 | |
| 10068 | // C++ [over.built]p13: |
| 10069 | // |
| 10070 | // For every cv-qualified or cv-unqualified object type T there |
| 10071 | // exist candidate operator functions of the form |
| 10072 | // |
| 10073 | // T* operator+(T*, ptrdiff_t); [ABOVE] |
| 10074 | // T& operator[](T*, ptrdiff_t); |
| 10075 | // T* operator-(T*, ptrdiff_t); [ABOVE] |
| 10076 | // T* operator+(ptrdiff_t, T*); [ABOVE] |
| 10077 | // T& operator[](ptrdiff_t, T*); |
| 10078 | void addSubscriptOverloads() { |
| 10079 | for (QualType PtrTy : CandidateTypes[0].pointer_types()) { |
| 10080 | QualType ParamTypes[2] = {PtrTy, S.Context.getPointerDiffType()}; |
| 10081 | QualType PointeeType = PtrTy->getPointeeType(); |
| 10082 | if (!PointeeType->isObjectType()) |
| 10083 | continue; |
| 10084 | |
| 10085 | // T& operator[](T*, ptrdiff_t) |
| 10086 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet); |
| 10087 | } |
| 10088 | |
| 10089 | for (QualType PtrTy : CandidateTypes[1].pointer_types()) { |
| 10090 | QualType ParamTypes[2] = {S.Context.getPointerDiffType(), PtrTy}; |
| 10091 | QualType PointeeType = PtrTy->getPointeeType(); |
| 10092 | if (!PointeeType->isObjectType()) |
| 10093 | continue; |
| 10094 | |
| 10095 | // T& operator[](ptrdiff_t, T*) |
| 10096 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet); |
| 10097 | } |
| 10098 | } |
| 10099 | |
| 10100 | // C++ [over.built]p11: |
| 10101 | // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, |
| 10102 | // C1 is the same type as C2 or is a derived class of C2, T is an object |
| 10103 | // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, |
| 10104 | // there exist candidate operator functions of the form |
| 10105 | // |
| 10106 | // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); |
| 10107 | // |
| 10108 | // where CV12 is the union of CV1 and CV2. |
| 10109 | void addArrowStarOverloads() { |
| 10110 | for (QualType PtrTy : CandidateTypes[0].pointer_types()) { |
| 10111 | QualType C1Ty = PtrTy; |
| 10112 | QualType C1; |
| 10113 | QualifierCollector Q1; |
| 10114 | C1 = QualType(Q1.strip(type: C1Ty->getPointeeType()), 0); |
| 10115 | if (!isa<RecordType>(Val: C1)) |
| 10116 | continue; |
| 10117 | // heuristic to reduce number of builtin candidates in the set. |
| 10118 | // Add volatile/restrict version only if there are conversions to a |
| 10119 | // volatile/restrict type. |
| 10120 | if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) |
| 10121 | continue; |
| 10122 | if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) |
| 10123 | continue; |
| 10124 | for (QualType MemPtrTy : CandidateTypes[1].member_pointer_types()) { |
| 10125 | const MemberPointerType *mptr = cast<MemberPointerType>(Val&: MemPtrTy); |
| 10126 | CXXRecordDecl *D1 = C1->getAsCXXRecordDecl(), |
| 10127 | *D2 = mptr->getMostRecentCXXRecordDecl(); |
| 10128 | if (!declaresSameEntity(D1, D2) && |
| 10129 | !S.IsDerivedFrom(Loc: CandidateSet.getLocation(), Derived: D1, Base: D2)) |
| 10130 | break; |
| 10131 | QualType ParamTypes[2] = {PtrTy, MemPtrTy}; |
| 10132 | // build CV12 T& |
| 10133 | QualType T = mptr->getPointeeType(); |
| 10134 | if (!VisibleTypeConversionsQuals.hasVolatile() && |
| 10135 | T.isVolatileQualified()) |
| 10136 | continue; |
| 10137 | if (!VisibleTypeConversionsQuals.hasRestrict() && |
| 10138 | T.isRestrictQualified()) |
| 10139 | continue; |
| 10140 | T = Q1.apply(Context: S.Context, QT: T); |
| 10141 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet); |
| 10142 | } |
| 10143 | } |
| 10144 | } |
| 10145 | |
| 10146 | // Note that we don't consider the first argument, since it has been |
| 10147 | // contextually converted to bool long ago. The candidates below are |
| 10148 | // therefore added as binary. |
| 10149 | // |
| 10150 | // C++ [over.built]p25: |
| 10151 | // For every type T, where T is a pointer, pointer-to-member, or scoped |
| 10152 | // enumeration type, there exist candidate operator functions of the form |
| 10153 | // |
| 10154 | // T operator?(bool, T, T); |
| 10155 | // |
| 10156 | void addConditionalOperatorOverloads() { |
| 10157 | /// Set of (canonical) types that we've already handled. |
| 10158 | llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| 10159 | |
| 10160 | for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { |
| 10161 | for (QualType PtrTy : CandidateTypes[ArgIdx].pointer_types()) { |
| 10162 | if (!AddedTypes.insert(Ptr: S.Context.getCanonicalType(T: PtrTy)).second) |
| 10163 | continue; |
| 10164 | |
| 10165 | QualType ParamTypes[2] = {PtrTy, PtrTy}; |
| 10166 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet); |
| 10167 | } |
| 10168 | |
| 10169 | for (QualType MemPtrTy : CandidateTypes[ArgIdx].member_pointer_types()) { |
| 10170 | if (!AddedTypes.insert(Ptr: S.Context.getCanonicalType(T: MemPtrTy)).second) |
| 10171 | continue; |
| 10172 | |
| 10173 | QualType ParamTypes[2] = {MemPtrTy, MemPtrTy}; |
| 10174 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet); |
| 10175 | } |
| 10176 | |
| 10177 | if (S.getLangOpts().CPlusPlus11) { |
| 10178 | for (QualType EnumTy : CandidateTypes[ArgIdx].enumeration_types()) { |
| 10179 | if (!EnumTy->castAs<EnumType>()->getDecl()->isScoped()) |
| 10180 | continue; |
| 10181 | |
| 10182 | if (!AddedTypes.insert(Ptr: S.Context.getCanonicalType(T: EnumTy)).second) |
| 10183 | continue; |
| 10184 | |
| 10185 | QualType ParamTypes[2] = {EnumTy, EnumTy}; |
| 10186 | S.AddBuiltinCandidate(ParamTys: ParamTypes, Args, CandidateSet); |
| 10187 | } |
| 10188 | } |
| 10189 | } |
| 10190 | } |
| 10191 | }; |
| 10192 | |
| 10193 | } // end anonymous namespace |
| 10194 | |
| 10195 | void Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, |
| 10196 | SourceLocation OpLoc, |
| 10197 | ArrayRef<Expr *> Args, |
| 10198 | OverloadCandidateSet &CandidateSet) { |
| 10199 | // Find all of the types that the arguments can convert to, but only |
| 10200 | // if the operator we're looking at has built-in operator candidates |
| 10201 | // that make use of these types. Also record whether we encounter non-record |
| 10202 | // candidate types or either arithmetic or enumeral candidate types. |
| 10203 | QualifiersAndAtomic VisibleTypeConversionsQuals; |
| 10204 | VisibleTypeConversionsQuals.addConst(); |
| 10205 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { |
| 10206 | VisibleTypeConversionsQuals += CollectVRQualifiers(Context, ArgExpr: Args[ArgIdx]); |
| 10207 | if (Args[ArgIdx]->getType()->isAtomicType()) |
| 10208 | VisibleTypeConversionsQuals.addAtomic(); |
| 10209 | } |
| 10210 | |
| 10211 | bool HasNonRecordCandidateType = false; |
| 10212 | bool HasArithmeticOrEnumeralCandidateType = false; |
| 10213 | SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; |
| 10214 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { |
| 10215 | CandidateTypes.emplace_back(Args&: *this); |
| 10216 | CandidateTypes[ArgIdx].AddTypesConvertedFrom(Ty: Args[ArgIdx]->getType(), |
| 10217 | Loc: OpLoc, |
| 10218 | AllowUserConversions: true, |
| 10219 | AllowExplicitConversions: (Op == OO_Exclaim || |
| 10220 | Op == OO_AmpAmp || |
| 10221 | Op == OO_PipePipe), |
| 10222 | VisibleQuals: VisibleTypeConversionsQuals); |
| 10223 | HasNonRecordCandidateType = HasNonRecordCandidateType || |
| 10224 | CandidateTypes[ArgIdx].hasNonRecordTypes(); |
| 10225 | HasArithmeticOrEnumeralCandidateType = |
| 10226 | HasArithmeticOrEnumeralCandidateType || |
| 10227 | CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); |
| 10228 | } |
| 10229 | |
| 10230 | // Exit early when no non-record types have been added to the candidate set |
| 10231 | // for any of the arguments to the operator. |
| 10232 | // |
| 10233 | // We can't exit early for !, ||, or &&, since there we have always have |
| 10234 | // 'bool' overloads. |
| 10235 | if (!HasNonRecordCandidateType && |
| 10236 | !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)) |
| 10237 | return; |
| 10238 | |
| 10239 | // Setup an object to manage the common state for building overloads. |
| 10240 | BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, |
| 10241 | VisibleTypeConversionsQuals, |
| 10242 | HasArithmeticOrEnumeralCandidateType, |
| 10243 | CandidateTypes, CandidateSet); |
| 10244 | |
| 10245 | // Dispatch over the operation to add in only those overloads which apply. |
| 10246 | switch (Op) { |
| 10247 | case OO_None: |
| 10248 | case NUM_OVERLOADED_OPERATORS: |
| 10249 | llvm_unreachable("Expected an overloaded operator" ); |
| 10250 | |
| 10251 | case OO_New: |
| 10252 | case OO_Delete: |
| 10253 | case OO_Array_New: |
| 10254 | case OO_Array_Delete: |
| 10255 | case OO_Call: |
| 10256 | llvm_unreachable( |
| 10257 | "Special operators don't use AddBuiltinOperatorCandidates" ); |
| 10258 | |
| 10259 | case OO_Comma: |
| 10260 | case OO_Arrow: |
| 10261 | case OO_Coawait: |
| 10262 | // C++ [over.match.oper]p3: |
| 10263 | // -- For the operator ',', the unary operator '&', the |
| 10264 | // operator '->', or the operator 'co_await', the |
| 10265 | // built-in candidates set is empty. |
| 10266 | break; |
| 10267 | |
| 10268 | case OO_Plus: // '+' is either unary or binary |
| 10269 | if (Args.size() == 1) |
| 10270 | OpBuilder.addUnaryPlusPointerOverloads(); |
| 10271 | [[fallthrough]]; |
| 10272 | |
| 10273 | case OO_Minus: // '-' is either unary or binary |
| 10274 | if (Args.size() == 1) { |
| 10275 | OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); |
| 10276 | } else { |
| 10277 | OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); |
| 10278 | OpBuilder.addGenericBinaryArithmeticOverloads(); |
| 10279 | OpBuilder.addMatrixBinaryArithmeticOverloads(); |
| 10280 | } |
| 10281 | break; |
| 10282 | |
| 10283 | case OO_Star: // '*' is either unary or binary |
| 10284 | if (Args.size() == 1) |
| 10285 | OpBuilder.addUnaryStarPointerOverloads(); |
| 10286 | else { |
| 10287 | OpBuilder.addGenericBinaryArithmeticOverloads(); |
| 10288 | OpBuilder.addMatrixBinaryArithmeticOverloads(); |
| 10289 | } |
| 10290 | break; |
| 10291 | |
| 10292 | case OO_Slash: |
| 10293 | OpBuilder.addGenericBinaryArithmeticOverloads(); |
| 10294 | break; |
| 10295 | |
| 10296 | case OO_PlusPlus: |
| 10297 | case OO_MinusMinus: |
| 10298 | OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); |
| 10299 | OpBuilder.addPlusPlusMinusMinusPointerOverloads(); |
| 10300 | break; |
| 10301 | |
| 10302 | case OO_EqualEqual: |
| 10303 | case OO_ExclaimEqual: |
| 10304 | OpBuilder.addEqualEqualOrNotEqualMemberPointerOrNullptrOverloads(); |
| 10305 | OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); |
| 10306 | OpBuilder.addGenericBinaryArithmeticOverloads(); |
| 10307 | break; |
| 10308 | |
| 10309 | case OO_Less: |
| 10310 | case OO_Greater: |
| 10311 | case OO_LessEqual: |
| 10312 | case OO_GreaterEqual: |
| 10313 | OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/false); |
| 10314 | OpBuilder.addGenericBinaryArithmeticOverloads(); |
| 10315 | break; |
| 10316 | |
| 10317 | case OO_Spaceship: |
| 10318 | OpBuilder.addGenericBinaryPointerOrEnumeralOverloads(/*IsSpaceship=*/true); |
| 10319 | OpBuilder.addThreeWayArithmeticOverloads(); |
| 10320 | break; |
| 10321 | |
| 10322 | case OO_Percent: |
| 10323 | case OO_Caret: |
| 10324 | case OO_Pipe: |
| 10325 | case OO_LessLess: |
| 10326 | case OO_GreaterGreater: |
| 10327 | OpBuilder.addBinaryBitwiseArithmeticOverloads(); |
| 10328 | break; |
| 10329 | |
| 10330 | case OO_Amp: // '&' is either unary or binary |
| 10331 | if (Args.size() == 1) |
| 10332 | // C++ [over.match.oper]p3: |
| 10333 | // -- For the operator ',', the unary operator '&', or the |
| 10334 | // operator '->', the built-in candidates set is empty. |
| 10335 | break; |
| 10336 | |
| 10337 | OpBuilder.addBinaryBitwiseArithmeticOverloads(); |
| 10338 | break; |
| 10339 | |
| 10340 | case OO_Tilde: |
| 10341 | OpBuilder.addUnaryTildePromotedIntegralOverloads(); |
| 10342 | break; |
| 10343 | |
| 10344 | case OO_Equal: |
| 10345 | OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); |
| 10346 | [[fallthrough]]; |
| 10347 | |
| 10348 | case OO_PlusEqual: |
| 10349 | case OO_MinusEqual: |
| 10350 | OpBuilder.addAssignmentPointerOverloads(isEqualOp: Op == OO_Equal); |
| 10351 | [[fallthrough]]; |
| 10352 | |
| 10353 | case OO_StarEqual: |
| 10354 | case OO_SlashEqual: |
| 10355 | OpBuilder.addAssignmentArithmeticOverloads(isEqualOp: Op == OO_Equal); |
| 10356 | break; |
| 10357 | |
| 10358 | case OO_PercentEqual: |
| 10359 | case OO_LessLessEqual: |
| 10360 | case OO_GreaterGreaterEqual: |
| 10361 | case OO_AmpEqual: |
| 10362 | case OO_CaretEqual: |
| 10363 | case OO_PipeEqual: |
| 10364 | OpBuilder.addAssignmentIntegralOverloads(); |
| 10365 | break; |
| 10366 | |
| 10367 | case OO_Exclaim: |
| 10368 | OpBuilder.addExclaimOverload(); |
| 10369 | break; |
| 10370 | |
| 10371 | case OO_AmpAmp: |
| 10372 | case OO_PipePipe: |
| 10373 | OpBuilder.addAmpAmpOrPipePipeOverload(); |
| 10374 | break; |
| 10375 | |
| 10376 | case OO_Subscript: |
| 10377 | if (Args.size() == 2) |
| 10378 | OpBuilder.addSubscriptOverloads(); |
| 10379 | break; |
| 10380 | |
| 10381 | case OO_ArrowStar: |
| 10382 | OpBuilder.addArrowStarOverloads(); |
| 10383 | break; |
| 10384 | |
| 10385 | case OO_Conditional: |
| 10386 | OpBuilder.addConditionalOperatorOverloads(); |
| 10387 | OpBuilder.addGenericBinaryArithmeticOverloads(); |
| 10388 | break; |
| 10389 | } |
| 10390 | } |
| 10391 | |
| 10392 | void |
| 10393 | Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, |
| 10394 | SourceLocation Loc, |
| 10395 | ArrayRef<Expr *> Args, |
| 10396 | TemplateArgumentListInfo *ExplicitTemplateArgs, |
| 10397 | OverloadCandidateSet& CandidateSet, |
| 10398 | bool PartialOverloading) { |
| 10399 | ADLResult Fns; |
| 10400 | |
| 10401 | // FIXME: This approach for uniquing ADL results (and removing |
| 10402 | // redundant candidates from the set) relies on pointer-equality, |
| 10403 | // which means we need to key off the canonical decl. However, |
| 10404 | // always going back to the canonical decl might not get us the |
| 10405 | // right set of default arguments. What default arguments are |
| 10406 | // we supposed to consider on ADL candidates, anyway? |
| 10407 | |
| 10408 | // FIXME: Pass in the explicit template arguments? |
| 10409 | ArgumentDependentLookup(Name, Loc, Args, Functions&: Fns); |
| 10410 | |
| 10411 | ArrayRef<Expr *> ReversedArgs; |
| 10412 | |
| 10413 | // Erase all of the candidates we already knew about. |
| 10414 | for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), |
| 10415 | CandEnd = CandidateSet.end(); |
| 10416 | Cand != CandEnd; ++Cand) |
| 10417 | if (Cand->Function) { |
| 10418 | FunctionDecl *Fn = Cand->Function; |
| 10419 | Fns.erase(D: Fn); |
| 10420 | if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) |
| 10421 | Fns.erase(D: FunTmpl); |
| 10422 | } |
| 10423 | |
| 10424 | // For each of the ADL candidates we found, add it to the overload |
| 10425 | // set. |
| 10426 | for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { |
| 10427 | DeclAccessPair FoundDecl = DeclAccessPair::make(D: *I, AS: AS_none); |
| 10428 | |
| 10429 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: *I)) { |
| 10430 | if (ExplicitTemplateArgs) |
| 10431 | continue; |
| 10432 | |
| 10433 | AddOverloadCandidate( |
| 10434 | Function: FD, FoundDecl, Args, CandidateSet, /*SuppressUserConversions=*/false, |
| 10435 | PartialOverloading, /*AllowExplicit=*/true, |
| 10436 | /*AllowExplicitConversion=*/AllowExplicitConversions: false, IsADLCandidate: ADLCallKind::UsesADL); |
| 10437 | if (CandidateSet.getRewriteInfo().shouldAddReversed(S&: *this, OriginalArgs: Args, FD)) { |
| 10438 | AddOverloadCandidate( |
| 10439 | Function: FD, FoundDecl, Args: {Args[1], Args[0]}, CandidateSet, |
| 10440 | /*SuppressUserConversions=*/false, PartialOverloading, |
| 10441 | /*AllowExplicit=*/true, /*AllowExplicitConversion=*/AllowExplicitConversions: false, |
| 10442 | IsADLCandidate: ADLCallKind::UsesADL, EarlyConversions: {}, PO: OverloadCandidateParamOrder::Reversed); |
| 10443 | } |
| 10444 | } else { |
| 10445 | auto *FTD = cast<FunctionTemplateDecl>(Val: *I); |
| 10446 | AddTemplateOverloadCandidate( |
| 10447 | FunctionTemplate: FTD, FoundDecl, ExplicitTemplateArgs, Args, CandidateSet, |
| 10448 | /*SuppressUserConversions=*/false, PartialOverloading, |
| 10449 | /*AllowExplicit=*/true, IsADLCandidate: ADLCallKind::UsesADL); |
| 10450 | if (CandidateSet.getRewriteInfo().shouldAddReversed( |
| 10451 | S&: *this, OriginalArgs: Args, FD: FTD->getTemplatedDecl())) { |
| 10452 | |
| 10453 | // As template candidates are not deduced immediately, |
| 10454 | // persist the array in the overload set. |
| 10455 | if (ReversedArgs.empty()) |
| 10456 | ReversedArgs = CandidateSet.getPersistentArgsArray(Exprs: Args[1], Exprs: Args[0]); |
| 10457 | |
| 10458 | AddTemplateOverloadCandidate( |
| 10459 | FunctionTemplate: FTD, FoundDecl, ExplicitTemplateArgs, Args: ReversedArgs, CandidateSet, |
| 10460 | /*SuppressUserConversions=*/false, PartialOverloading, |
| 10461 | /*AllowExplicit=*/true, IsADLCandidate: ADLCallKind::UsesADL, |
| 10462 | PO: OverloadCandidateParamOrder::Reversed); |
| 10463 | } |
| 10464 | } |
| 10465 | } |
| 10466 | } |
| 10467 | |
| 10468 | namespace { |
| 10469 | enum class Comparison { Equal, Better, Worse }; |
| 10470 | } |
| 10471 | |
| 10472 | /// Compares the enable_if attributes of two FunctionDecls, for the purposes of |
| 10473 | /// overload resolution. |
| 10474 | /// |
| 10475 | /// Cand1's set of enable_if attributes are said to be "better" than Cand2's iff |
| 10476 | /// Cand1's first N enable_if attributes have precisely the same conditions as |
| 10477 | /// Cand2's first N enable_if attributes (where N = the number of enable_if |
| 10478 | /// attributes on Cand2), and Cand1 has more than N enable_if attributes. |
| 10479 | /// |
| 10480 | /// Note that you can have a pair of candidates such that Cand1's enable_if |
| 10481 | /// attributes are worse than Cand2's, and Cand2's enable_if attributes are |
| 10482 | /// worse than Cand1's. |
| 10483 | static Comparison compareEnableIfAttrs(const Sema &S, const FunctionDecl *Cand1, |
| 10484 | const FunctionDecl *Cand2) { |
| 10485 | // Common case: One (or both) decls don't have enable_if attrs. |
| 10486 | bool Cand1Attr = Cand1->hasAttr<EnableIfAttr>(); |
| 10487 | bool Cand2Attr = Cand2->hasAttr<EnableIfAttr>(); |
| 10488 | if (!Cand1Attr || !Cand2Attr) { |
| 10489 | if (Cand1Attr == Cand2Attr) |
| 10490 | return Comparison::Equal; |
| 10491 | return Cand1Attr ? Comparison::Better : Comparison::Worse; |
| 10492 | } |
| 10493 | |
| 10494 | auto Cand1Attrs = Cand1->specific_attrs<EnableIfAttr>(); |
| 10495 | auto Cand2Attrs = Cand2->specific_attrs<EnableIfAttr>(); |
| 10496 | |
| 10497 | llvm::FoldingSetNodeID Cand1ID, Cand2ID; |
| 10498 | for (auto Pair : zip_longest(t&: Cand1Attrs, u&: Cand2Attrs)) { |
| 10499 | std::optional<EnableIfAttr *> Cand1A = std::get<0>(t&: Pair); |
| 10500 | std::optional<EnableIfAttr *> Cand2A = std::get<1>(t&: Pair); |
| 10501 | |
| 10502 | // It's impossible for Cand1 to be better than (or equal to) Cand2 if Cand1 |
| 10503 | // has fewer enable_if attributes than Cand2, and vice versa. |
| 10504 | if (!Cand1A) |
| 10505 | return Comparison::Worse; |
| 10506 | if (!Cand2A) |
| 10507 | return Comparison::Better; |
| 10508 | |
| 10509 | Cand1ID.clear(); |
| 10510 | Cand2ID.clear(); |
| 10511 | |
| 10512 | (*Cand1A)->getCond()->Profile(ID&: Cand1ID, Context: S.getASTContext(), Canonical: true); |
| 10513 | (*Cand2A)->getCond()->Profile(ID&: Cand2ID, Context: S.getASTContext(), Canonical: true); |
| 10514 | if (Cand1ID != Cand2ID) |
| 10515 | return Comparison::Worse; |
| 10516 | } |
| 10517 | |
| 10518 | return Comparison::Equal; |
| 10519 | } |
| 10520 | |
| 10521 | static Comparison |
| 10522 | isBetterMultiversionCandidate(const OverloadCandidate &Cand1, |
| 10523 | const OverloadCandidate &Cand2) { |
| 10524 | if (!Cand1.Function || !Cand1.Function->isMultiVersion() || !Cand2.Function || |
| 10525 | !Cand2.Function->isMultiVersion()) |
| 10526 | return Comparison::Equal; |
| 10527 | |
| 10528 | // If both are invalid, they are equal. If one of them is invalid, the other |
| 10529 | // is better. |
| 10530 | if (Cand1.Function->isInvalidDecl()) { |
| 10531 | if (Cand2.Function->isInvalidDecl()) |
| 10532 | return Comparison::Equal; |
| 10533 | return Comparison::Worse; |
| 10534 | } |
| 10535 | if (Cand2.Function->isInvalidDecl()) |
| 10536 | return Comparison::Better; |
| 10537 | |
| 10538 | // If this is a cpu_dispatch/cpu_specific multiversion situation, prefer |
| 10539 | // cpu_dispatch, else arbitrarily based on the identifiers. |
| 10540 | bool Cand1CPUDisp = Cand1.Function->hasAttr<CPUDispatchAttr>(); |
| 10541 | bool Cand2CPUDisp = Cand2.Function->hasAttr<CPUDispatchAttr>(); |
| 10542 | const auto *Cand1CPUSpec = Cand1.Function->getAttr<CPUSpecificAttr>(); |
| 10543 | const auto *Cand2CPUSpec = Cand2.Function->getAttr<CPUSpecificAttr>(); |
| 10544 | |
| 10545 | if (!Cand1CPUDisp && !Cand2CPUDisp && !Cand1CPUSpec && !Cand2CPUSpec) |
| 10546 | return Comparison::Equal; |
| 10547 | |
| 10548 | if (Cand1CPUDisp && !Cand2CPUDisp) |
| 10549 | return Comparison::Better; |
| 10550 | if (Cand2CPUDisp && !Cand1CPUDisp) |
| 10551 | return Comparison::Worse; |
| 10552 | |
| 10553 | if (Cand1CPUSpec && Cand2CPUSpec) { |
| 10554 | if (Cand1CPUSpec->cpus_size() != Cand2CPUSpec->cpus_size()) |
| 10555 | return Cand1CPUSpec->cpus_size() < Cand2CPUSpec->cpus_size() |
| 10556 | ? Comparison::Better |
| 10557 | : Comparison::Worse; |
| 10558 | |
| 10559 | std::pair<CPUSpecificAttr::cpus_iterator, CPUSpecificAttr::cpus_iterator> |
| 10560 | FirstDiff = std::mismatch( |
| 10561 | first1: Cand1CPUSpec->cpus_begin(), last1: Cand1CPUSpec->cpus_end(), |
| 10562 | first2: Cand2CPUSpec->cpus_begin(), |
| 10563 | binary_pred: [](const IdentifierInfo *LHS, const IdentifierInfo *RHS) { |
| 10564 | return LHS->getName() == RHS->getName(); |
| 10565 | }); |
| 10566 | |
| 10567 | assert(FirstDiff.first != Cand1CPUSpec->cpus_end() && |
| 10568 | "Two different cpu-specific versions should not have the same " |
| 10569 | "identifier list, otherwise they'd be the same decl!" ); |
| 10570 | return (*FirstDiff.first)->getName() < (*FirstDiff.second)->getName() |
| 10571 | ? Comparison::Better |
| 10572 | : Comparison::Worse; |
| 10573 | } |
| 10574 | llvm_unreachable("No way to get here unless both had cpu_dispatch" ); |
| 10575 | } |
| 10576 | |
| 10577 | /// Compute the type of the implicit object parameter for the given function, |
| 10578 | /// if any. Returns std::nullopt if there is no implicit object parameter, and a |
| 10579 | /// null QualType if there is a 'matches anything' implicit object parameter. |
| 10580 | static std::optional<QualType> |
| 10581 | getImplicitObjectParamType(ASTContext &Context, const FunctionDecl *F) { |
| 10582 | if (!isa<CXXMethodDecl>(Val: F) || isa<CXXConstructorDecl>(Val: F)) |
| 10583 | return std::nullopt; |
| 10584 | |
| 10585 | auto *M = cast<CXXMethodDecl>(Val: F); |
| 10586 | // Static member functions' object parameters match all types. |
| 10587 | if (M->isStatic()) |
| 10588 | return QualType(); |
| 10589 | return M->getFunctionObjectParameterReferenceType(); |
| 10590 | } |
| 10591 | |
| 10592 | // As a Clang extension, allow ambiguity among F1 and F2 if they represent |
| 10593 | // represent the same entity. |
| 10594 | static bool allowAmbiguity(ASTContext &Context, const FunctionDecl *F1, |
| 10595 | const FunctionDecl *F2) { |
| 10596 | if (declaresSameEntity(D1: F1, D2: F2)) |
| 10597 | return true; |
| 10598 | auto PT1 = F1->getPrimaryTemplate(); |
| 10599 | auto PT2 = F2->getPrimaryTemplate(); |
| 10600 | if (PT1 && PT2) { |
| 10601 | if (declaresSameEntity(D1: PT1, D2: PT2) || |
| 10602 | declaresSameEntity(D1: PT1->getInstantiatedFromMemberTemplate(), |
| 10603 | D2: PT2->getInstantiatedFromMemberTemplate())) |
| 10604 | return true; |
| 10605 | } |
| 10606 | // TODO: It is not clear whether comparing parameters is necessary (i.e. |
| 10607 | // different functions with same params). Consider removing this (as no test |
| 10608 | // fail w/o it). |
| 10609 | auto NextParam = [&](const FunctionDecl *F, unsigned &I, bool First) { |
| 10610 | if (First) { |
| 10611 | if (std::optional<QualType> T = getImplicitObjectParamType(Context, F)) |
| 10612 | return *T; |
| 10613 | } |
| 10614 | assert(I < F->getNumParams()); |
| 10615 | return F->getParamDecl(i: I++)->getType(); |
| 10616 | }; |
| 10617 | |
| 10618 | unsigned F1NumParams = F1->getNumParams() + isa<CXXMethodDecl>(Val: F1); |
| 10619 | unsigned F2NumParams = F2->getNumParams() + isa<CXXMethodDecl>(Val: F2); |
| 10620 | |
| 10621 | if (F1NumParams != F2NumParams) |
| 10622 | return false; |
| 10623 | |
| 10624 | unsigned I1 = 0, I2 = 0; |
| 10625 | for (unsigned I = 0; I != F1NumParams; ++I) { |
| 10626 | QualType T1 = NextParam(F1, I1, I == 0); |
| 10627 | QualType T2 = NextParam(F2, I2, I == 0); |
| 10628 | assert(!T1.isNull() && !T2.isNull() && "Unexpected null param types" ); |
| 10629 | if (!Context.hasSameUnqualifiedType(T1, T2)) |
| 10630 | return false; |
| 10631 | } |
| 10632 | return true; |
| 10633 | } |
| 10634 | |
| 10635 | /// We're allowed to use constraints partial ordering only if the candidates |
| 10636 | /// have the same parameter types: |
| 10637 | /// [over.match.best.general]p2.6 |
| 10638 | /// F1 and F2 are non-template functions with the same |
| 10639 | /// non-object-parameter-type-lists, and F1 is more constrained than F2 [...] |
| 10640 | static bool sameFunctionParameterTypeLists(Sema &S, FunctionDecl *Fn1, |
| 10641 | FunctionDecl *Fn2, |
| 10642 | bool IsFn1Reversed, |
| 10643 | bool IsFn2Reversed) { |
| 10644 | assert(Fn1 && Fn2); |
| 10645 | if (Fn1->isVariadic() != Fn2->isVariadic()) |
| 10646 | return false; |
| 10647 | |
| 10648 | if (!S.FunctionNonObjectParamTypesAreEqual(OldFunction: Fn1, NewFunction: Fn2, ArgPos: nullptr, |
| 10649 | Reversed: IsFn1Reversed ^ IsFn2Reversed)) |
| 10650 | return false; |
| 10651 | |
| 10652 | auto *Mem1 = dyn_cast<CXXMethodDecl>(Val: Fn1); |
| 10653 | auto *Mem2 = dyn_cast<CXXMethodDecl>(Val: Fn2); |
| 10654 | if (Mem1 && Mem2) { |
| 10655 | // if they are member functions, both are direct members of the same class, |
| 10656 | // and |
| 10657 | if (Mem1->getParent() != Mem2->getParent()) |
| 10658 | return false; |
| 10659 | // if both are non-static member functions, they have the same types for |
| 10660 | // their object parameters |
| 10661 | if (Mem1->isInstance() && Mem2->isInstance() && |
| 10662 | !S.getASTContext().hasSameType( |
| 10663 | T1: Mem1->getFunctionObjectParameterReferenceType(), |
| 10664 | T2: Mem1->getFunctionObjectParameterReferenceType())) |
| 10665 | return false; |
| 10666 | } |
| 10667 | return true; |
| 10668 | } |
| 10669 | |
| 10670 | static FunctionDecl * |
| 10671 | getMorePartialOrderingConstrained(Sema &S, FunctionDecl *Fn1, FunctionDecl *Fn2, |
| 10672 | bool IsFn1Reversed, bool IsFn2Reversed) { |
| 10673 | if (!Fn1 || !Fn2) |
| 10674 | return nullptr; |
| 10675 | |
| 10676 | // C++ [temp.constr.order]: |
| 10677 | // A non-template function F1 is more partial-ordering-constrained than a |
| 10678 | // non-template function F2 if: |
| 10679 | bool Cand1IsSpecialization = Fn1->getPrimaryTemplate(); |
| 10680 | bool Cand2IsSpecialization = Fn2->getPrimaryTemplate(); |
| 10681 | |
| 10682 | if (Cand1IsSpecialization || Cand2IsSpecialization) |
| 10683 | return nullptr; |
| 10684 | |
| 10685 | // - they have the same non-object-parameter-type-lists, and [...] |
| 10686 | if (!sameFunctionParameterTypeLists(S, Fn1, Fn2, IsFn1Reversed, |
| 10687 | IsFn2Reversed)) |
| 10688 | return nullptr; |
| 10689 | |
| 10690 | // - the declaration of F1 is more constrained than the declaration of F2. |
| 10691 | return S.getMoreConstrainedFunction(FD1: Fn1, FD2: Fn2); |
| 10692 | } |
| 10693 | |
| 10694 | /// isBetterOverloadCandidate - Determines whether the first overload |
| 10695 | /// candidate is a better candidate than the second (C++ 13.3.3p1). |
| 10696 | bool clang::isBetterOverloadCandidate( |
| 10697 | Sema &S, const OverloadCandidate &Cand1, const OverloadCandidate &Cand2, |
| 10698 | SourceLocation Loc, OverloadCandidateSet::CandidateSetKind Kind, |
| 10699 | bool PartialOverloading) { |
| 10700 | // Define viable functions to be better candidates than non-viable |
| 10701 | // functions. |
| 10702 | if (!Cand2.Viable) |
| 10703 | return Cand1.Viable; |
| 10704 | else if (!Cand1.Viable) |
| 10705 | return false; |
| 10706 | |
| 10707 | // [CUDA] A function with 'never' preference is marked not viable, therefore |
| 10708 | // is never shown up here. The worst preference shown up here is 'wrong side', |
| 10709 | // e.g. an H function called by a HD function in device compilation. This is |
| 10710 | // valid AST as long as the HD function is not emitted, e.g. it is an inline |
| 10711 | // function which is called only by an H function. A deferred diagnostic will |
| 10712 | // be triggered if it is emitted. However a wrong-sided function is still |
| 10713 | // a viable candidate here. |
| 10714 | // |
| 10715 | // If Cand1 can be emitted and Cand2 cannot be emitted in the current |
| 10716 | // context, Cand1 is better than Cand2. If Cand1 can not be emitted and Cand2 |
| 10717 | // can be emitted, Cand1 is not better than Cand2. This rule should have |
| 10718 | // precedence over other rules. |
| 10719 | // |
| 10720 | // If both Cand1 and Cand2 can be emitted, or neither can be emitted, then |
| 10721 | // other rules should be used to determine which is better. This is because |
| 10722 | // host/device based overloading resolution is mostly for determining |
| 10723 | // viability of a function. If two functions are both viable, other factors |
| 10724 | // should take precedence in preference, e.g. the standard-defined preferences |
| 10725 | // like argument conversion ranks or enable_if partial-ordering. The |
| 10726 | // preference for pass-object-size parameters is probably most similar to a |
| 10727 | // type-based-overloading decision and so should take priority. |
| 10728 | // |
| 10729 | // If other rules cannot determine which is better, CUDA preference will be |
| 10730 | // used again to determine which is better. |
| 10731 | // |
| 10732 | // TODO: Currently IdentifyPreference does not return correct values |
| 10733 | // for functions called in global variable initializers due to missing |
| 10734 | // correct context about device/host. Therefore we can only enforce this |
| 10735 | // rule when there is a caller. We should enforce this rule for functions |
| 10736 | // in global variable initializers once proper context is added. |
| 10737 | // |
| 10738 | // TODO: We can only enable the hostness based overloading resolution when |
| 10739 | // -fgpu-exclude-wrong-side-overloads is on since this requires deferring |
| 10740 | // overloading resolution diagnostics. |
| 10741 | if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function && |
| 10742 | S.getLangOpts().GPUExcludeWrongSideOverloads) { |
| 10743 | if (FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true)) { |
| 10744 | bool IsCallerImplicitHD = SemaCUDA::isImplicitHostDeviceFunction(D: Caller); |
| 10745 | bool IsCand1ImplicitHD = |
| 10746 | SemaCUDA::isImplicitHostDeviceFunction(D: Cand1.Function); |
| 10747 | bool IsCand2ImplicitHD = |
| 10748 | SemaCUDA::isImplicitHostDeviceFunction(D: Cand2.Function); |
| 10749 | auto P1 = S.CUDA().IdentifyPreference(Caller, Callee: Cand1.Function); |
| 10750 | auto P2 = S.CUDA().IdentifyPreference(Caller, Callee: Cand2.Function); |
| 10751 | assert(P1 != SemaCUDA::CFP_Never && P2 != SemaCUDA::CFP_Never); |
| 10752 | // The implicit HD function may be a function in a system header which |
| 10753 | // is forced by pragma. In device compilation, if we prefer HD candidates |
| 10754 | // over wrong-sided candidates, overloading resolution may change, which |
| 10755 | // may result in non-deferrable diagnostics. As a workaround, we let |
| 10756 | // implicit HD candidates take equal preference as wrong-sided candidates. |
| 10757 | // This will preserve the overloading resolution. |
| 10758 | // TODO: We still need special handling of implicit HD functions since |
| 10759 | // they may incur other diagnostics to be deferred. We should make all |
| 10760 | // host/device related diagnostics deferrable and remove special handling |
| 10761 | // of implicit HD functions. |
| 10762 | auto EmitThreshold = |
| 10763 | (S.getLangOpts().CUDAIsDevice && IsCallerImplicitHD && |
| 10764 | (IsCand1ImplicitHD || IsCand2ImplicitHD)) |
| 10765 | ? SemaCUDA::CFP_Never |
| 10766 | : SemaCUDA::CFP_WrongSide; |
| 10767 | auto Cand1Emittable = P1 > EmitThreshold; |
| 10768 | auto Cand2Emittable = P2 > EmitThreshold; |
| 10769 | if (Cand1Emittable && !Cand2Emittable) |
| 10770 | return true; |
| 10771 | if (!Cand1Emittable && Cand2Emittable) |
| 10772 | return false; |
| 10773 | } |
| 10774 | } |
| 10775 | |
| 10776 | // C++ [over.match.best]p1: (Changed in C++23) |
| 10777 | // |
| 10778 | // -- if F is a static member function, ICS1(F) is defined such |
| 10779 | // that ICS1(F) is neither better nor worse than ICS1(G) for |
| 10780 | // any function G, and, symmetrically, ICS1(G) is neither |
| 10781 | // better nor worse than ICS1(F). |
| 10782 | unsigned StartArg = 0; |
| 10783 | if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) |
| 10784 | StartArg = 1; |
| 10785 | |
| 10786 | auto IsIllFormedConversion = [&](const ImplicitConversionSequence &ICS) { |
| 10787 | // We don't allow incompatible pointer conversions in C++. |
| 10788 | if (!S.getLangOpts().CPlusPlus) |
| 10789 | return ICS.isStandard() && |
| 10790 | ICS.Standard.Second == ICK_Incompatible_Pointer_Conversion; |
| 10791 | |
| 10792 | // The only ill-formed conversion we allow in C++ is the string literal to |
| 10793 | // char* conversion, which is only considered ill-formed after C++11. |
| 10794 | return S.getLangOpts().CPlusPlus11 && !S.getLangOpts().WritableStrings && |
| 10795 | hasDeprecatedStringLiteralToCharPtrConversion(ICS); |
| 10796 | }; |
| 10797 | |
| 10798 | // Define functions that don't require ill-formed conversions for a given |
| 10799 | // argument to be better candidates than functions that do. |
| 10800 | unsigned NumArgs = Cand1.Conversions.size(); |
| 10801 | assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch" ); |
| 10802 | bool HasBetterConversion = false; |
| 10803 | for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { |
| 10804 | bool Cand1Bad = IsIllFormedConversion(Cand1.Conversions[ArgIdx]); |
| 10805 | bool Cand2Bad = IsIllFormedConversion(Cand2.Conversions[ArgIdx]); |
| 10806 | if (Cand1Bad != Cand2Bad) { |
| 10807 | if (Cand1Bad) |
| 10808 | return false; |
| 10809 | HasBetterConversion = true; |
| 10810 | } |
| 10811 | } |
| 10812 | |
| 10813 | if (HasBetterConversion) |
| 10814 | return true; |
| 10815 | |
| 10816 | // C++ [over.match.best]p1: |
| 10817 | // A viable function F1 is defined to be a better function than another |
| 10818 | // viable function F2 if for all arguments i, ICSi(F1) is not a worse |
| 10819 | // conversion sequence than ICSi(F2), and then... |
| 10820 | bool HasWorseConversion = false; |
| 10821 | for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { |
| 10822 | switch (CompareImplicitConversionSequences(S, Loc, |
| 10823 | ICS1: Cand1.Conversions[ArgIdx], |
| 10824 | ICS2: Cand2.Conversions[ArgIdx])) { |
| 10825 | case ImplicitConversionSequence::Better: |
| 10826 | // Cand1 has a better conversion sequence. |
| 10827 | HasBetterConversion = true; |
| 10828 | break; |
| 10829 | |
| 10830 | case ImplicitConversionSequence::Worse: |
| 10831 | if (Cand1.Function && Cand2.Function && |
| 10832 | Cand1.isReversed() != Cand2.isReversed() && |
| 10833 | allowAmbiguity(Context&: S.Context, F1: Cand1.Function, F2: Cand2.Function)) { |
| 10834 | // Work around large-scale breakage caused by considering reversed |
| 10835 | // forms of operator== in C++20: |
| 10836 | // |
| 10837 | // When comparing a function against a reversed function, if we have a |
| 10838 | // better conversion for one argument and a worse conversion for the |
| 10839 | // other, the implicit conversion sequences are treated as being equally |
| 10840 | // good. |
| 10841 | // |
| 10842 | // This prevents a comparison function from being considered ambiguous |
| 10843 | // with a reversed form that is written in the same way. |
| 10844 | // |
| 10845 | // We diagnose this as an extension from CreateOverloadedBinOp. |
| 10846 | HasWorseConversion = true; |
| 10847 | break; |
| 10848 | } |
| 10849 | |
| 10850 | // Cand1 can't be better than Cand2. |
| 10851 | return false; |
| 10852 | |
| 10853 | case ImplicitConversionSequence::Indistinguishable: |
| 10854 | // Do nothing. |
| 10855 | break; |
| 10856 | } |
| 10857 | } |
| 10858 | |
| 10859 | // -- for some argument j, ICSj(F1) is a better conversion sequence than |
| 10860 | // ICSj(F2), or, if not that, |
| 10861 | if (HasBetterConversion && !HasWorseConversion) |
| 10862 | return true; |
| 10863 | |
| 10864 | // -- the context is an initialization by user-defined conversion |
| 10865 | // (see 8.5, 13.3.1.5) and the standard conversion sequence |
| 10866 | // from the return type of F1 to the destination type (i.e., |
| 10867 | // the type of the entity being initialized) is a better |
| 10868 | // conversion sequence than the standard conversion sequence |
| 10869 | // from the return type of F2 to the destination type. |
| 10870 | if (Kind == OverloadCandidateSet::CSK_InitByUserDefinedConversion && |
| 10871 | Cand1.Function && Cand2.Function && |
| 10872 | isa<CXXConversionDecl>(Val: Cand1.Function) && |
| 10873 | isa<CXXConversionDecl>(Val: Cand2.Function)) { |
| 10874 | |
| 10875 | assert(Cand1.HasFinalConversion && Cand2.HasFinalConversion); |
| 10876 | // First check whether we prefer one of the conversion functions over the |
| 10877 | // other. This only distinguishes the results in non-standard, extension |
| 10878 | // cases such as the conversion from a lambda closure type to a function |
| 10879 | // pointer or block. |
| 10880 | ImplicitConversionSequence::CompareKind Result = |
| 10881 | compareConversionFunctions(S, Function1: Cand1.Function, Function2: Cand2.Function); |
| 10882 | if (Result == ImplicitConversionSequence::Indistinguishable) |
| 10883 | Result = CompareStandardConversionSequences(S, Loc, |
| 10884 | SCS1: Cand1.FinalConversion, |
| 10885 | SCS2: Cand2.FinalConversion); |
| 10886 | |
| 10887 | if (Result != ImplicitConversionSequence::Indistinguishable) |
| 10888 | return Result == ImplicitConversionSequence::Better; |
| 10889 | |
| 10890 | // FIXME: Compare kind of reference binding if conversion functions |
| 10891 | // convert to a reference type used in direct reference binding, per |
| 10892 | // C++14 [over.match.best]p1 section 2 bullet 3. |
| 10893 | } |
| 10894 | |
| 10895 | // FIXME: Work around a defect in the C++17 guaranteed copy elision wording, |
| 10896 | // as combined with the resolution to CWG issue 243. |
| 10897 | // |
| 10898 | // When the context is initialization by constructor ([over.match.ctor] or |
| 10899 | // either phase of [over.match.list]), a constructor is preferred over |
| 10900 | // a conversion function. |
| 10901 | if (Kind == OverloadCandidateSet::CSK_InitByConstructor && NumArgs == 1 && |
| 10902 | Cand1.Function && Cand2.Function && |
| 10903 | isa<CXXConstructorDecl>(Val: Cand1.Function) != |
| 10904 | isa<CXXConstructorDecl>(Val: Cand2.Function)) |
| 10905 | return isa<CXXConstructorDecl>(Val: Cand1.Function); |
| 10906 | |
| 10907 | if (Cand1.StrictPackMatch != Cand2.StrictPackMatch) |
| 10908 | return Cand2.StrictPackMatch; |
| 10909 | |
| 10910 | // -- F1 is a non-template function and F2 is a function template |
| 10911 | // specialization, or, if not that, |
| 10912 | bool Cand1IsSpecialization = Cand1.Function && |
| 10913 | Cand1.Function->getPrimaryTemplate(); |
| 10914 | bool Cand2IsSpecialization = Cand2.Function && |
| 10915 | Cand2.Function->getPrimaryTemplate(); |
| 10916 | if (Cand1IsSpecialization != Cand2IsSpecialization) |
| 10917 | return Cand2IsSpecialization; |
| 10918 | |
| 10919 | // -- F1 and F2 are function template specializations, and the function |
| 10920 | // template for F1 is more specialized than the template for F2 |
| 10921 | // according to the partial ordering rules described in 14.5.5.2, or, |
| 10922 | // if not that, |
| 10923 | if (Cand1IsSpecialization && Cand2IsSpecialization) { |
| 10924 | const auto *Obj1Context = |
| 10925 | dyn_cast<CXXRecordDecl>(Val: Cand1.FoundDecl->getDeclContext()); |
| 10926 | const auto *Obj2Context = |
| 10927 | dyn_cast<CXXRecordDecl>(Val: Cand2.FoundDecl->getDeclContext()); |
| 10928 | if (FunctionTemplateDecl *BetterTemplate = S.getMoreSpecializedTemplate( |
| 10929 | FT1: Cand1.Function->getPrimaryTemplate(), |
| 10930 | FT2: Cand2.Function->getPrimaryTemplate(), Loc, |
| 10931 | TPOC: isa<CXXConversionDecl>(Val: Cand1.Function) ? TPOC_Conversion |
| 10932 | : TPOC_Call, |
| 10933 | NumCallArguments1: Cand1.ExplicitCallArguments, |
| 10934 | RawObj1Ty: Obj1Context ? QualType(Obj1Context->getTypeForDecl(), 0) |
| 10935 | : QualType{}, |
| 10936 | RawObj2Ty: Obj2Context ? QualType(Obj2Context->getTypeForDecl(), 0) |
| 10937 | : QualType{}, |
| 10938 | Reversed: Cand1.isReversed() ^ Cand2.isReversed(), PartialOverloading)) { |
| 10939 | return BetterTemplate == Cand1.Function->getPrimaryTemplate(); |
| 10940 | } |
| 10941 | } |
| 10942 | |
| 10943 | // -— F1 and F2 are non-template functions and F1 is more |
| 10944 | // partial-ordering-constrained than F2 [...], |
| 10945 | if (FunctionDecl *F = getMorePartialOrderingConstrained( |
| 10946 | S, Fn1: Cand1.Function, Fn2: Cand2.Function, IsFn1Reversed: Cand1.isReversed(), |
| 10947 | IsFn2Reversed: Cand2.isReversed()); |
| 10948 | F && F == Cand1.Function) |
| 10949 | return true; |
| 10950 | |
| 10951 | // -- F1 is a constructor for a class D, F2 is a constructor for a base |
| 10952 | // class B of D, and for all arguments the corresponding parameters of |
| 10953 | // F1 and F2 have the same type. |
| 10954 | // FIXME: Implement the "all parameters have the same type" check. |
| 10955 | bool Cand1IsInherited = |
| 10956 | isa_and_nonnull<ConstructorUsingShadowDecl>(Val: Cand1.FoundDecl.getDecl()); |
| 10957 | bool Cand2IsInherited = |
| 10958 | isa_and_nonnull<ConstructorUsingShadowDecl>(Val: Cand2.FoundDecl.getDecl()); |
| 10959 | if (Cand1IsInherited != Cand2IsInherited) |
| 10960 | return Cand2IsInherited; |
| 10961 | else if (Cand1IsInherited) { |
| 10962 | assert(Cand2IsInherited); |
| 10963 | auto *Cand1Class = cast<CXXRecordDecl>(Val: Cand1.Function->getDeclContext()); |
| 10964 | auto *Cand2Class = cast<CXXRecordDecl>(Val: Cand2.Function->getDeclContext()); |
| 10965 | if (Cand1Class->isDerivedFrom(Base: Cand2Class)) |
| 10966 | return true; |
| 10967 | if (Cand2Class->isDerivedFrom(Base: Cand1Class)) |
| 10968 | return false; |
| 10969 | // Inherited from sibling base classes: still ambiguous. |
| 10970 | } |
| 10971 | |
| 10972 | // -- F2 is a rewritten candidate (12.4.1.2) and F1 is not |
| 10973 | // -- F1 and F2 are rewritten candidates, and F2 is a synthesized candidate |
| 10974 | // with reversed order of parameters and F1 is not |
| 10975 | // |
| 10976 | // We rank reversed + different operator as worse than just reversed, but |
| 10977 | // that comparison can never happen, because we only consider reversing for |
| 10978 | // the maximally-rewritten operator (== or <=>). |
| 10979 | if (Cand1.RewriteKind != Cand2.RewriteKind) |
| 10980 | return Cand1.RewriteKind < Cand2.RewriteKind; |
| 10981 | |
| 10982 | // Check C++17 tie-breakers for deduction guides. |
| 10983 | { |
| 10984 | auto *Guide1 = dyn_cast_or_null<CXXDeductionGuideDecl>(Val: Cand1.Function); |
| 10985 | auto *Guide2 = dyn_cast_or_null<CXXDeductionGuideDecl>(Val: Cand2.Function); |
| 10986 | if (Guide1 && Guide2) { |
| 10987 | // -- F1 is generated from a deduction-guide and F2 is not |
| 10988 | if (Guide1->isImplicit() != Guide2->isImplicit()) |
| 10989 | return Guide2->isImplicit(); |
| 10990 | |
| 10991 | // -- F1 is the copy deduction candidate(16.3.1.8) and F2 is not |
| 10992 | if (Guide1->getDeductionCandidateKind() == DeductionCandidate::Copy) |
| 10993 | return true; |
| 10994 | if (Guide2->getDeductionCandidateKind() == DeductionCandidate::Copy) |
| 10995 | return false; |
| 10996 | |
| 10997 | // --F1 is generated from a non-template constructor and F2 is generated |
| 10998 | // from a constructor template |
| 10999 | const auto *Constructor1 = Guide1->getCorrespondingConstructor(); |
| 11000 | const auto *Constructor2 = Guide2->getCorrespondingConstructor(); |
| 11001 | if (Constructor1 && Constructor2) { |
| 11002 | bool isC1Templated = Constructor1->getTemplatedKind() != |
| 11003 | FunctionDecl::TemplatedKind::TK_NonTemplate; |
| 11004 | bool isC2Templated = Constructor2->getTemplatedKind() != |
| 11005 | FunctionDecl::TemplatedKind::TK_NonTemplate; |
| 11006 | if (isC1Templated != isC2Templated) |
| 11007 | return isC2Templated; |
| 11008 | } |
| 11009 | } |
| 11010 | } |
| 11011 | |
| 11012 | // Check for enable_if value-based overload resolution. |
| 11013 | if (Cand1.Function && Cand2.Function) { |
| 11014 | Comparison Cmp = compareEnableIfAttrs(S, Cand1: Cand1.Function, Cand2: Cand2.Function); |
| 11015 | if (Cmp != Comparison::Equal) |
| 11016 | return Cmp == Comparison::Better; |
| 11017 | } |
| 11018 | |
| 11019 | bool HasPS1 = Cand1.Function != nullptr && |
| 11020 | functionHasPassObjectSizeParams(FD: Cand1.Function); |
| 11021 | bool HasPS2 = Cand2.Function != nullptr && |
| 11022 | functionHasPassObjectSizeParams(FD: Cand2.Function); |
| 11023 | if (HasPS1 != HasPS2 && HasPS1) |
| 11024 | return true; |
| 11025 | |
| 11026 | auto MV = isBetterMultiversionCandidate(Cand1, Cand2); |
| 11027 | if (MV == Comparison::Better) |
| 11028 | return true; |
| 11029 | if (MV == Comparison::Worse) |
| 11030 | return false; |
| 11031 | |
| 11032 | // If other rules cannot determine which is better, CUDA preference is used |
| 11033 | // to determine which is better. |
| 11034 | if (S.getLangOpts().CUDA && Cand1.Function && Cand2.Function) { |
| 11035 | FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true); |
| 11036 | return S.CUDA().IdentifyPreference(Caller, Callee: Cand1.Function) > |
| 11037 | S.CUDA().IdentifyPreference(Caller, Callee: Cand2.Function); |
| 11038 | } |
| 11039 | |
| 11040 | // General member function overloading is handled above, so this only handles |
| 11041 | // constructors with address spaces. |
| 11042 | // This only handles address spaces since C++ has no other |
| 11043 | // qualifier that can be used with constructors. |
| 11044 | const auto *CD1 = dyn_cast_or_null<CXXConstructorDecl>(Val: Cand1.Function); |
| 11045 | const auto *CD2 = dyn_cast_or_null<CXXConstructorDecl>(Val: Cand2.Function); |
| 11046 | if (CD1 && CD2) { |
| 11047 | LangAS AS1 = CD1->getMethodQualifiers().getAddressSpace(); |
| 11048 | LangAS AS2 = CD2->getMethodQualifiers().getAddressSpace(); |
| 11049 | if (AS1 != AS2) { |
| 11050 | if (Qualifiers::isAddressSpaceSupersetOf(A: AS2, B: AS1, Ctx: S.getASTContext())) |
| 11051 | return true; |
| 11052 | if (Qualifiers::isAddressSpaceSupersetOf(A: AS1, B: AS2, Ctx: S.getASTContext())) |
| 11053 | return false; |
| 11054 | } |
| 11055 | } |
| 11056 | |
| 11057 | return false; |
| 11058 | } |
| 11059 | |
| 11060 | /// Determine whether two declarations are "equivalent" for the purposes of |
| 11061 | /// name lookup and overload resolution. This applies when the same internal/no |
| 11062 | /// linkage entity is defined by two modules (probably by textually including |
| 11063 | /// the same header). In such a case, we don't consider the declarations to |
| 11064 | /// declare the same entity, but we also don't want lookups with both |
| 11065 | /// declarations visible to be ambiguous in some cases (this happens when using |
| 11066 | /// a modularized libstdc++). |
| 11067 | bool Sema::isEquivalentInternalLinkageDeclaration(const NamedDecl *A, |
| 11068 | const NamedDecl *B) { |
| 11069 | auto *VA = dyn_cast_or_null<ValueDecl>(Val: A); |
| 11070 | auto *VB = dyn_cast_or_null<ValueDecl>(Val: B); |
| 11071 | if (!VA || !VB) |
| 11072 | return false; |
| 11073 | |
| 11074 | // The declarations must be declaring the same name as an internal linkage |
| 11075 | // entity in different modules. |
| 11076 | if (!VA->getDeclContext()->getRedeclContext()->Equals( |
| 11077 | DC: VB->getDeclContext()->getRedeclContext()) || |
| 11078 | getOwningModule(Entity: VA) == getOwningModule(Entity: VB) || |
| 11079 | VA->isExternallyVisible() || VB->isExternallyVisible()) |
| 11080 | return false; |
| 11081 | |
| 11082 | // Check that the declarations appear to be equivalent. |
| 11083 | // |
| 11084 | // FIXME: Checking the type isn't really enough to resolve the ambiguity. |
| 11085 | // For constants and functions, we should check the initializer or body is |
| 11086 | // the same. For non-constant variables, we shouldn't allow it at all. |
| 11087 | if (Context.hasSameType(T1: VA->getType(), T2: VB->getType())) |
| 11088 | return true; |
| 11089 | |
| 11090 | // Enum constants within unnamed enumerations will have different types, but |
| 11091 | // may still be similar enough to be interchangeable for our purposes. |
| 11092 | if (auto *EA = dyn_cast<EnumConstantDecl>(Val: VA)) { |
| 11093 | if (auto *EB = dyn_cast<EnumConstantDecl>(Val: VB)) { |
| 11094 | // Only handle anonymous enums. If the enumerations were named and |
| 11095 | // equivalent, they would have been merged to the same type. |
| 11096 | auto *EnumA = cast<EnumDecl>(Val: EA->getDeclContext()); |
| 11097 | auto *EnumB = cast<EnumDecl>(Val: EB->getDeclContext()); |
| 11098 | if (EnumA->hasNameForLinkage() || EnumB->hasNameForLinkage() || |
| 11099 | !Context.hasSameType(T1: EnumA->getIntegerType(), |
| 11100 | T2: EnumB->getIntegerType())) |
| 11101 | return false; |
| 11102 | // Allow this only if the value is the same for both enumerators. |
| 11103 | return llvm::APSInt::isSameValue(I1: EA->getInitVal(), I2: EB->getInitVal()); |
| 11104 | } |
| 11105 | } |
| 11106 | |
| 11107 | // Nothing else is sufficiently similar. |
| 11108 | return false; |
| 11109 | } |
| 11110 | |
| 11111 | void Sema::diagnoseEquivalentInternalLinkageDeclarations( |
| 11112 | SourceLocation Loc, const NamedDecl *D, ArrayRef<const NamedDecl *> Equiv) { |
| 11113 | assert(D && "Unknown declaration" ); |
| 11114 | Diag(Loc, DiagID: diag::ext_equivalent_internal_linkage_decl_in_modules) << D; |
| 11115 | |
| 11116 | Module *M = getOwningModule(Entity: D); |
| 11117 | Diag(Loc: D->getLocation(), DiagID: diag::note_equivalent_internal_linkage_decl) |
| 11118 | << !M << (M ? M->getFullModuleName() : "" ); |
| 11119 | |
| 11120 | for (auto *E : Equiv) { |
| 11121 | Module *M = getOwningModule(Entity: E); |
| 11122 | Diag(Loc: E->getLocation(), DiagID: diag::note_equivalent_internal_linkage_decl) |
| 11123 | << !M << (M ? M->getFullModuleName() : "" ); |
| 11124 | } |
| 11125 | } |
| 11126 | |
| 11127 | bool OverloadCandidate::NotValidBecauseConstraintExprHasError() const { |
| 11128 | return FailureKind == ovl_fail_bad_deduction && |
| 11129 | static_cast<TemplateDeductionResult>(DeductionFailure.Result) == |
| 11130 | TemplateDeductionResult::ConstraintsNotSatisfied && |
| 11131 | static_cast<CNSInfo *>(DeductionFailure.Data) |
| 11132 | ->Satisfaction.ContainsErrors; |
| 11133 | } |
| 11134 | |
| 11135 | void OverloadCandidateSet::AddDeferredTemplateCandidate( |
| 11136 | FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, |
| 11137 | ArrayRef<Expr *> Args, bool SuppressUserConversions, |
| 11138 | bool PartialOverloading, bool AllowExplicit, |
| 11139 | CallExpr::ADLCallKind IsADLCandidate, OverloadCandidateParamOrder PO, |
| 11140 | bool AggregateCandidateDeduction) { |
| 11141 | |
| 11142 | auto *C = |
| 11143 | allocateDeferredCandidate<DeferredFunctionTemplateOverloadCandidate>(); |
| 11144 | |
| 11145 | C = new (C) DeferredFunctionTemplateOverloadCandidate{ |
| 11146 | {.Next: nullptr, .Kind: DeferredFunctionTemplateOverloadCandidate::Function, |
| 11147 | /*AllowObjCConversionOnExplicit=*/false, |
| 11148 | /*AllowResultConversion=*/false, .AllowExplicit: AllowExplicit, .SuppressUserConversions: SuppressUserConversions, |
| 11149 | .PartialOverloading: PartialOverloading, .AggregateCandidateDeduction: AggregateCandidateDeduction}, |
| 11150 | .FunctionTemplate: FunctionTemplate, |
| 11151 | .FoundDecl: FoundDecl, |
| 11152 | .Args: Args, |
| 11153 | .IsADLCandidate: IsADLCandidate, |
| 11154 | .PO: PO}; |
| 11155 | |
| 11156 | HasDeferredTemplateConstructors |= |
| 11157 | isa<CXXConstructorDecl>(Val: FunctionTemplate->getTemplatedDecl()); |
| 11158 | } |
| 11159 | |
| 11160 | void OverloadCandidateSet::AddDeferredMethodTemplateCandidate( |
| 11161 | FunctionTemplateDecl *MethodTmpl, DeclAccessPair FoundDecl, |
| 11162 | CXXRecordDecl *ActingContext, QualType ObjectType, |
| 11163 | Expr::Classification ObjectClassification, ArrayRef<Expr *> Args, |
| 11164 | bool SuppressUserConversions, bool PartialOverloading, |
| 11165 | OverloadCandidateParamOrder PO) { |
| 11166 | |
| 11167 | assert(!isa<CXXConstructorDecl>(MethodTmpl->getTemplatedDecl())); |
| 11168 | |
| 11169 | auto *C = |
| 11170 | allocateDeferredCandidate<DeferredMethodTemplateOverloadCandidate>(); |
| 11171 | |
| 11172 | C = new (C) DeferredMethodTemplateOverloadCandidate{ |
| 11173 | {.Next: nullptr, .Kind: DeferredFunctionTemplateOverloadCandidate::Method, |
| 11174 | /*AllowObjCConversionOnExplicit=*/false, |
| 11175 | /*AllowResultConversion=*/false, |
| 11176 | /*AllowExplicit=*/false, .SuppressUserConversions: SuppressUserConversions, .PartialOverloading: PartialOverloading, |
| 11177 | /*AggregateCandidateDeduction=*/false}, |
| 11178 | .FunctionTemplate: MethodTmpl, |
| 11179 | .FoundDecl: FoundDecl, |
| 11180 | .Args: Args, |
| 11181 | .ActingContext: ActingContext, |
| 11182 | .ObjectClassification: ObjectClassification, |
| 11183 | .ObjectType: ObjectType, |
| 11184 | .PO: PO}; |
| 11185 | } |
| 11186 | |
| 11187 | void OverloadCandidateSet::AddDeferredConversionTemplateCandidate( |
| 11188 | FunctionTemplateDecl *FunctionTemplate, DeclAccessPair FoundDecl, |
| 11189 | CXXRecordDecl *ActingContext, Expr *From, QualType ToType, |
| 11190 | bool AllowObjCConversionOnExplicit, bool AllowExplicit, |
| 11191 | bool AllowResultConversion) { |
| 11192 | |
| 11193 | auto *C = |
| 11194 | allocateDeferredCandidate<DeferredConversionTemplateOverloadCandidate>(); |
| 11195 | |
| 11196 | C = new (C) DeferredConversionTemplateOverloadCandidate{ |
| 11197 | {.Next: nullptr, .Kind: DeferredFunctionTemplateOverloadCandidate::Conversion, |
| 11198 | .AllowObjCConversionOnExplicit: AllowObjCConversionOnExplicit, .AllowResultConversion: AllowResultConversion, |
| 11199 | /*AllowExplicit=*/false, |
| 11200 | /*SuppressUserConversions=*/false, |
| 11201 | /*PartialOverloading*/ false, |
| 11202 | /*AggregateCandidateDeduction=*/false}, |
| 11203 | .FunctionTemplate: FunctionTemplate, |
| 11204 | .FoundDecl: FoundDecl, |
| 11205 | .ActingContext: ActingContext, |
| 11206 | .From: From, |
| 11207 | .ToType: ToType}; |
| 11208 | } |
| 11209 | |
| 11210 | static void |
| 11211 | AddTemplateOverloadCandidate(Sema &S, OverloadCandidateSet &CandidateSet, |
| 11212 | DeferredMethodTemplateOverloadCandidate &C) { |
| 11213 | |
| 11214 | AddMethodTemplateCandidateImmediately( |
| 11215 | S, CandidateSet, MethodTmpl: C.FunctionTemplate, FoundDecl: C.FoundDecl, ActingContext: C.ActingContext, |
| 11216 | /*ExplicitTemplateArgs=*/nullptr, ObjectType: C.ObjectType, ObjectClassification: C.ObjectClassification, |
| 11217 | Args: C.Args, SuppressUserConversions: C.SuppressUserConversions, PartialOverloading: C.PartialOverloading, PO: C.PO); |
| 11218 | } |
| 11219 | |
| 11220 | static void |
| 11221 | AddTemplateOverloadCandidate(Sema &S, OverloadCandidateSet &CandidateSet, |
| 11222 | DeferredFunctionTemplateOverloadCandidate &C) { |
| 11223 | AddTemplateOverloadCandidateImmediately( |
| 11224 | S, CandidateSet, FunctionTemplate: C.FunctionTemplate, FoundDecl: C.FoundDecl, |
| 11225 | /*ExplicitTemplateArgs=*/nullptr, Args: C.Args, SuppressUserConversions: C.SuppressUserConversions, |
| 11226 | PartialOverloading: C.PartialOverloading, AllowExplicit: C.AllowExplicit, IsADLCandidate: C.IsADLCandidate, PO: C.PO, |
| 11227 | AggregateCandidateDeduction: C.AggregateCandidateDeduction); |
| 11228 | } |
| 11229 | |
| 11230 | static void |
| 11231 | AddTemplateOverloadCandidate(Sema &S, OverloadCandidateSet &CandidateSet, |
| 11232 | DeferredConversionTemplateOverloadCandidate &C) { |
| 11233 | return AddTemplateConversionCandidateImmediately( |
| 11234 | S, CandidateSet, FunctionTemplate: C.FunctionTemplate, FoundDecl: C.FoundDecl, ActingContext: C.ActingContext, From: C.From, |
| 11235 | ToType: C.ToType, AllowObjCConversionOnExplicit: C.AllowObjCConversionOnExplicit, AllowExplicit: C.AllowExplicit, |
| 11236 | AllowResultConversion: C.AllowResultConversion); |
| 11237 | } |
| 11238 | |
| 11239 | void OverloadCandidateSet::InjectNonDeducedTemplateCandidates(Sema &S) { |
| 11240 | Candidates.reserve(N: Candidates.size() + DeferredCandidatesCount); |
| 11241 | DeferredTemplateOverloadCandidate *Cand = FirstDeferredCandidate; |
| 11242 | while (Cand) { |
| 11243 | switch (Cand->Kind) { |
| 11244 | case DeferredTemplateOverloadCandidate::Function: |
| 11245 | AddTemplateOverloadCandidate( |
| 11246 | S, CandidateSet&: *this, |
| 11247 | C&: *static_cast<DeferredFunctionTemplateOverloadCandidate *>(Cand)); |
| 11248 | break; |
| 11249 | case DeferredTemplateOverloadCandidate::Method: |
| 11250 | AddTemplateOverloadCandidate( |
| 11251 | S, CandidateSet&: *this, |
| 11252 | C&: *static_cast<DeferredMethodTemplateOverloadCandidate *>(Cand)); |
| 11253 | break; |
| 11254 | case DeferredTemplateOverloadCandidate::Conversion: |
| 11255 | AddTemplateOverloadCandidate( |
| 11256 | S, CandidateSet&: *this, |
| 11257 | C&: *static_cast<DeferredConversionTemplateOverloadCandidate *>(Cand)); |
| 11258 | break; |
| 11259 | } |
| 11260 | Cand = Cand->Next; |
| 11261 | } |
| 11262 | FirstDeferredCandidate = nullptr; |
| 11263 | DeferredCandidatesCount = 0; |
| 11264 | } |
| 11265 | |
| 11266 | OverloadingResult |
| 11267 | OverloadCandidateSet::ResultForBestCandidate(const iterator &Best) { |
| 11268 | Best->Best = true; |
| 11269 | if (Best->Function && Best->Function->isDeleted()) |
| 11270 | return OR_Deleted; |
| 11271 | return OR_Success; |
| 11272 | } |
| 11273 | |
| 11274 | void OverloadCandidateSet::CudaExcludeWrongSideCandidates( |
| 11275 | Sema &S, SmallVectorImpl<OverloadCandidate *> &Candidates) { |
| 11276 | // [CUDA] HD->H or HD->D calls are technically not allowed by CUDA but |
| 11277 | // are accepted by both clang and NVCC. However, during a particular |
| 11278 | // compilation mode only one call variant is viable. We need to |
| 11279 | // exclude non-viable overload candidates from consideration based |
| 11280 | // only on their host/device attributes. Specifically, if one |
| 11281 | // candidate call is WrongSide and the other is SameSide, we ignore |
| 11282 | // the WrongSide candidate. |
| 11283 | // We only need to remove wrong-sided candidates here if |
| 11284 | // -fgpu-exclude-wrong-side-overloads is off. When |
| 11285 | // -fgpu-exclude-wrong-side-overloads is on, all candidates are compared |
| 11286 | // uniformly in isBetterOverloadCandidate. |
| 11287 | if (!S.getLangOpts().CUDA || S.getLangOpts().GPUExcludeWrongSideOverloads) |
| 11288 | return; |
| 11289 | const FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true); |
| 11290 | |
| 11291 | bool ContainsSameSideCandidate = |
| 11292 | llvm::any_of(Range&: Candidates, P: [&](const OverloadCandidate *Cand) { |
| 11293 | // Check viable function only. |
| 11294 | return Cand->Viable && Cand->Function && |
| 11295 | S.CUDA().IdentifyPreference(Caller, Callee: Cand->Function) == |
| 11296 | SemaCUDA::CFP_SameSide; |
| 11297 | }); |
| 11298 | |
| 11299 | if (!ContainsSameSideCandidate) |
| 11300 | return; |
| 11301 | |
| 11302 | auto IsWrongSideCandidate = [&](const OverloadCandidate *Cand) { |
| 11303 | // Check viable function only to avoid unnecessary data copying/moving. |
| 11304 | return Cand->Viable && Cand->Function && |
| 11305 | S.CUDA().IdentifyPreference(Caller, Callee: Cand->Function) == |
| 11306 | SemaCUDA::CFP_WrongSide; |
| 11307 | }; |
| 11308 | llvm::erase_if(C&: Candidates, P: IsWrongSideCandidate); |
| 11309 | } |
| 11310 | |
| 11311 | /// Computes the best viable function (C++ 13.3.3) |
| 11312 | /// within an overload candidate set. |
| 11313 | /// |
| 11314 | /// \param Loc The location of the function name (or operator symbol) for |
| 11315 | /// which overload resolution occurs. |
| 11316 | /// |
| 11317 | /// \param Best If overload resolution was successful or found a deleted |
| 11318 | /// function, \p Best points to the candidate function found. |
| 11319 | /// |
| 11320 | /// \returns The result of overload resolution. |
| 11321 | OverloadingResult OverloadCandidateSet::BestViableFunction(Sema &S, |
| 11322 | SourceLocation Loc, |
| 11323 | iterator &Best) { |
| 11324 | |
| 11325 | assert((shouldDeferTemplateArgumentDeduction(S.getLangOpts()) || |
| 11326 | DeferredCandidatesCount == 0) && |
| 11327 | "Unexpected deferred template candidates" ); |
| 11328 | |
| 11329 | bool TwoPhaseResolution = |
| 11330 | DeferredCandidatesCount != 0 && !ResolutionByPerfectCandidateIsDisabled; |
| 11331 | |
| 11332 | if (TwoPhaseResolution) { |
| 11333 | |
| 11334 | PerfectViableFunction(S, Loc, Best); |
| 11335 | if (Best != end()) |
| 11336 | return ResultForBestCandidate(Best); |
| 11337 | } |
| 11338 | |
| 11339 | InjectNonDeducedTemplateCandidates(S); |
| 11340 | return BestViableFunctionImpl(S, Loc, Best); |
| 11341 | } |
| 11342 | |
| 11343 | void OverloadCandidateSet::PerfectViableFunction( |
| 11344 | Sema &S, SourceLocation Loc, OverloadCandidateSet::iterator &Best) { |
| 11345 | |
| 11346 | Best = end(); |
| 11347 | for (auto It = Candidates.begin(); It != Candidates.end(); ++It) { |
| 11348 | |
| 11349 | if (!It->isPerfectMatch(Ctx: S.getASTContext())) |
| 11350 | continue; |
| 11351 | |
| 11352 | // We found a suitable conversion function |
| 11353 | // but if there is a template constructor in the target class |
| 11354 | // we might prefer that instead. |
| 11355 | if (HasDeferredTemplateConstructors && |
| 11356 | isa_and_nonnull<CXXConversionDecl>(Val: It->Function)) { |
| 11357 | Best = end(); |
| 11358 | break; |
| 11359 | } |
| 11360 | |
| 11361 | if (Best == end()) { |
| 11362 | Best = It; |
| 11363 | continue; |
| 11364 | } |
| 11365 | if (Best->Function && It->Function) { |
| 11366 | FunctionDecl *D = |
| 11367 | S.getMoreConstrainedFunction(FD1: Best->Function, FD2: It->Function); |
| 11368 | if (D == nullptr) { |
| 11369 | Best = end(); |
| 11370 | break; |
| 11371 | } |
| 11372 | if (D == It->Function) |
| 11373 | Best = It; |
| 11374 | continue; |
| 11375 | } |
| 11376 | // ambiguous |
| 11377 | Best = end(); |
| 11378 | break; |
| 11379 | } |
| 11380 | } |
| 11381 | |
| 11382 | OverloadingResult OverloadCandidateSet::BestViableFunctionImpl( |
| 11383 | Sema &S, SourceLocation Loc, OverloadCandidateSet::iterator &Best) { |
| 11384 | |
| 11385 | llvm::SmallVector<OverloadCandidate *, 16> Candidates; |
| 11386 | Candidates.reserve(N: this->Candidates.size()); |
| 11387 | std::transform(first: this->Candidates.begin(), last: this->Candidates.end(), |
| 11388 | result: std::back_inserter(x&: Candidates), |
| 11389 | unary_op: [](OverloadCandidate &Cand) { return &Cand; }); |
| 11390 | |
| 11391 | if (S.getLangOpts().CUDA) |
| 11392 | CudaExcludeWrongSideCandidates(S, Candidates); |
| 11393 | |
| 11394 | Best = end(); |
| 11395 | for (auto *Cand : Candidates) { |
| 11396 | Cand->Best = false; |
| 11397 | if (Cand->Viable) { |
| 11398 | if (Best == end() || |
| 11399 | isBetterOverloadCandidate(S, Cand1: *Cand, Cand2: *Best, Loc, Kind)) |
| 11400 | Best = Cand; |
| 11401 | } else if (Cand->NotValidBecauseConstraintExprHasError()) { |
| 11402 | // This candidate has constraint that we were unable to evaluate because |
| 11403 | // it referenced an expression that contained an error. Rather than fall |
| 11404 | // back onto a potentially unintended candidate (made worse by |
| 11405 | // subsuming constraints), treat this as 'no viable candidate'. |
| 11406 | Best = end(); |
| 11407 | return OR_No_Viable_Function; |
| 11408 | } |
| 11409 | } |
| 11410 | |
| 11411 | // If we didn't find any viable functions, abort. |
| 11412 | if (Best == end()) |
| 11413 | return OR_No_Viable_Function; |
| 11414 | |
| 11415 | llvm::SmallVector<OverloadCandidate *, 4> PendingBest; |
| 11416 | llvm::SmallVector<const NamedDecl *, 4> EquivalentCands; |
| 11417 | PendingBest.push_back(Elt: &*Best); |
| 11418 | Best->Best = true; |
| 11419 | |
| 11420 | // Make sure that this function is better than every other viable |
| 11421 | // function. If not, we have an ambiguity. |
| 11422 | while (!PendingBest.empty()) { |
| 11423 | auto *Curr = PendingBest.pop_back_val(); |
| 11424 | for (auto *Cand : Candidates) { |
| 11425 | if (Cand->Viable && !Cand->Best && |
| 11426 | !isBetterOverloadCandidate(S, Cand1: *Curr, Cand2: *Cand, Loc, Kind)) { |
| 11427 | PendingBest.push_back(Elt: Cand); |
| 11428 | Cand->Best = true; |
| 11429 | |
| 11430 | if (S.isEquivalentInternalLinkageDeclaration(A: Cand->Function, |
| 11431 | B: Curr->Function)) |
| 11432 | EquivalentCands.push_back(Elt: Cand->Function); |
| 11433 | else |
| 11434 | Best = end(); |
| 11435 | } |
| 11436 | } |
| 11437 | } |
| 11438 | |
| 11439 | if (Best == end()) |
| 11440 | return OR_Ambiguous; |
| 11441 | |
| 11442 | OverloadingResult R = ResultForBestCandidate(Best); |
| 11443 | |
| 11444 | if (!EquivalentCands.empty()) |
| 11445 | S.diagnoseEquivalentInternalLinkageDeclarations(Loc, D: Best->Function, |
| 11446 | Equiv: EquivalentCands); |
| 11447 | return R; |
| 11448 | } |
| 11449 | |
| 11450 | namespace { |
| 11451 | |
| 11452 | enum OverloadCandidateKind { |
| 11453 | oc_function, |
| 11454 | oc_method, |
| 11455 | oc_reversed_binary_operator, |
| 11456 | oc_constructor, |
| 11457 | oc_implicit_default_constructor, |
| 11458 | oc_implicit_copy_constructor, |
| 11459 | oc_implicit_move_constructor, |
| 11460 | oc_implicit_copy_assignment, |
| 11461 | oc_implicit_move_assignment, |
| 11462 | oc_implicit_equality_comparison, |
| 11463 | oc_inherited_constructor |
| 11464 | }; |
| 11465 | |
| 11466 | enum OverloadCandidateSelect { |
| 11467 | ocs_non_template, |
| 11468 | ocs_template, |
| 11469 | ocs_described_template, |
| 11470 | }; |
| 11471 | |
| 11472 | static std::pair<OverloadCandidateKind, OverloadCandidateSelect> |
| 11473 | ClassifyOverloadCandidate(Sema &S, const NamedDecl *Found, |
| 11474 | const FunctionDecl *Fn, |
| 11475 | OverloadCandidateRewriteKind CRK, |
| 11476 | std::string &Description) { |
| 11477 | |
| 11478 | bool isTemplate = Fn->isTemplateDecl() || Found->isTemplateDecl(); |
| 11479 | if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { |
| 11480 | isTemplate = true; |
| 11481 | Description = S.getTemplateArgumentBindingsText( |
| 11482 | Params: FunTmpl->getTemplateParameters(), Args: *Fn->getTemplateSpecializationArgs()); |
| 11483 | } |
| 11484 | |
| 11485 | OverloadCandidateSelect Select = [&]() { |
| 11486 | if (!Description.empty()) |
| 11487 | return ocs_described_template; |
| 11488 | return isTemplate ? ocs_template : ocs_non_template; |
| 11489 | }(); |
| 11490 | |
| 11491 | OverloadCandidateKind Kind = [&]() { |
| 11492 | if (Fn->isImplicit() && Fn->getOverloadedOperator() == OO_EqualEqual) |
| 11493 | return oc_implicit_equality_comparison; |
| 11494 | |
| 11495 | if (CRK & CRK_Reversed) |
| 11496 | return oc_reversed_binary_operator; |
| 11497 | |
| 11498 | if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(Val: Fn)) { |
| 11499 | if (!Ctor->isImplicit()) { |
| 11500 | if (isa<ConstructorUsingShadowDecl>(Val: Found)) |
| 11501 | return oc_inherited_constructor; |
| 11502 | else |
| 11503 | return oc_constructor; |
| 11504 | } |
| 11505 | |
| 11506 | if (Ctor->isDefaultConstructor()) |
| 11507 | return oc_implicit_default_constructor; |
| 11508 | |
| 11509 | if (Ctor->isMoveConstructor()) |
| 11510 | return oc_implicit_move_constructor; |
| 11511 | |
| 11512 | assert(Ctor->isCopyConstructor() && |
| 11513 | "unexpected sort of implicit constructor" ); |
| 11514 | return oc_implicit_copy_constructor; |
| 11515 | } |
| 11516 | |
| 11517 | if (const auto *Meth = dyn_cast<CXXMethodDecl>(Val: Fn)) { |
| 11518 | // This actually gets spelled 'candidate function' for now, but |
| 11519 | // it doesn't hurt to split it out. |
| 11520 | if (!Meth->isImplicit()) |
| 11521 | return oc_method; |
| 11522 | |
| 11523 | if (Meth->isMoveAssignmentOperator()) |
| 11524 | return oc_implicit_move_assignment; |
| 11525 | |
| 11526 | if (Meth->isCopyAssignmentOperator()) |
| 11527 | return oc_implicit_copy_assignment; |
| 11528 | |
| 11529 | assert(isa<CXXConversionDecl>(Meth) && "expected conversion" ); |
| 11530 | return oc_method; |
| 11531 | } |
| 11532 | |
| 11533 | return oc_function; |
| 11534 | }(); |
| 11535 | |
| 11536 | return std::make_pair(x&: Kind, y&: Select); |
| 11537 | } |
| 11538 | |
| 11539 | void MaybeEmitInheritedConstructorNote(Sema &S, const Decl *FoundDecl) { |
| 11540 | // FIXME: It'd be nice to only emit a note once per using-decl per overload |
| 11541 | // set. |
| 11542 | if (const auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(Val: FoundDecl)) |
| 11543 | S.Diag(Loc: FoundDecl->getLocation(), |
| 11544 | DiagID: diag::note_ovl_candidate_inherited_constructor) |
| 11545 | << Shadow->getNominatedBaseClass(); |
| 11546 | } |
| 11547 | |
| 11548 | } // end anonymous namespace |
| 11549 | |
| 11550 | static bool isFunctionAlwaysEnabled(const ASTContext &Ctx, |
| 11551 | const FunctionDecl *FD) { |
| 11552 | for (auto *EnableIf : FD->specific_attrs<EnableIfAttr>()) { |
| 11553 | bool AlwaysTrue; |
| 11554 | if (EnableIf->getCond()->isValueDependent() || |
| 11555 | !EnableIf->getCond()->EvaluateAsBooleanCondition(Result&: AlwaysTrue, Ctx)) |
| 11556 | return false; |
| 11557 | if (!AlwaysTrue) |
| 11558 | return false; |
| 11559 | } |
| 11560 | return true; |
| 11561 | } |
| 11562 | |
| 11563 | /// Returns true if we can take the address of the function. |
| 11564 | /// |
| 11565 | /// \param Complain - If true, we'll emit a diagnostic |
| 11566 | /// \param InOverloadResolution - For the purposes of emitting a diagnostic, are |
| 11567 | /// we in overload resolution? |
| 11568 | /// \param Loc - The location of the statement we're complaining about. Ignored |
| 11569 | /// if we're not complaining, or if we're in overload resolution. |
| 11570 | static bool checkAddressOfFunctionIsAvailable(Sema &S, const FunctionDecl *FD, |
| 11571 | bool Complain, |
| 11572 | bool InOverloadResolution, |
| 11573 | SourceLocation Loc) { |
| 11574 | if (!isFunctionAlwaysEnabled(Ctx: S.Context, FD)) { |
| 11575 | if (Complain) { |
| 11576 | if (InOverloadResolution) |
| 11577 | S.Diag(Loc: FD->getBeginLoc(), |
| 11578 | DiagID: diag::note_addrof_ovl_candidate_disabled_by_enable_if_attr); |
| 11579 | else |
| 11580 | S.Diag(Loc, DiagID: diag::err_addrof_function_disabled_by_enable_if_attr) << FD; |
| 11581 | } |
| 11582 | return false; |
| 11583 | } |
| 11584 | |
| 11585 | if (FD->getTrailingRequiresClause()) { |
| 11586 | ConstraintSatisfaction Satisfaction; |
| 11587 | if (S.CheckFunctionConstraints(FD, Satisfaction, UsageLoc: Loc)) |
| 11588 | return false; |
| 11589 | if (!Satisfaction.IsSatisfied) { |
| 11590 | if (Complain) { |
| 11591 | if (InOverloadResolution) { |
| 11592 | SmallString<128> TemplateArgString; |
| 11593 | if (FunctionTemplateDecl *FunTmpl = FD->getPrimaryTemplate()) { |
| 11594 | TemplateArgString += " " ; |
| 11595 | TemplateArgString += S.getTemplateArgumentBindingsText( |
| 11596 | Params: FunTmpl->getTemplateParameters(), |
| 11597 | Args: *FD->getTemplateSpecializationArgs()); |
| 11598 | } |
| 11599 | |
| 11600 | S.Diag(Loc: FD->getBeginLoc(), |
| 11601 | DiagID: diag::note_ovl_candidate_unsatisfied_constraints) |
| 11602 | << TemplateArgString; |
| 11603 | } else |
| 11604 | S.Diag(Loc, DiagID: diag::err_addrof_function_constraints_not_satisfied) |
| 11605 | << FD; |
| 11606 | S.DiagnoseUnsatisfiedConstraint(Satisfaction); |
| 11607 | } |
| 11608 | return false; |
| 11609 | } |
| 11610 | } |
| 11611 | |
| 11612 | auto I = llvm::find_if(Range: FD->parameters(), P: [](const ParmVarDecl *P) { |
| 11613 | return P->hasAttr<PassObjectSizeAttr>(); |
| 11614 | }); |
| 11615 | if (I == FD->param_end()) |
| 11616 | return true; |
| 11617 | |
| 11618 | if (Complain) { |
| 11619 | // Add one to ParamNo because it's user-facing |
| 11620 | unsigned ParamNo = std::distance(first: FD->param_begin(), last: I) + 1; |
| 11621 | if (InOverloadResolution) |
| 11622 | S.Diag(Loc: FD->getLocation(), |
| 11623 | DiagID: diag::note_ovl_candidate_has_pass_object_size_params) |
| 11624 | << ParamNo; |
| 11625 | else |
| 11626 | S.Diag(Loc, DiagID: diag::err_address_of_function_with_pass_object_size_params) |
| 11627 | << FD << ParamNo; |
| 11628 | } |
| 11629 | return false; |
| 11630 | } |
| 11631 | |
| 11632 | static bool checkAddressOfCandidateIsAvailable(Sema &S, |
| 11633 | const FunctionDecl *FD) { |
| 11634 | return checkAddressOfFunctionIsAvailable(S, FD, /*Complain=*/true, |
| 11635 | /*InOverloadResolution=*/true, |
| 11636 | /*Loc=*/SourceLocation()); |
| 11637 | } |
| 11638 | |
| 11639 | bool Sema::checkAddressOfFunctionIsAvailable(const FunctionDecl *Function, |
| 11640 | bool Complain, |
| 11641 | SourceLocation Loc) { |
| 11642 | return ::checkAddressOfFunctionIsAvailable(S&: *this, FD: Function, Complain, |
| 11643 | /*InOverloadResolution=*/false, |
| 11644 | Loc); |
| 11645 | } |
| 11646 | |
| 11647 | // Don't print candidates other than the one that matches the calling |
| 11648 | // convention of the call operator, since that is guaranteed to exist. |
| 11649 | static bool shouldSkipNotingLambdaConversionDecl(const FunctionDecl *Fn) { |
| 11650 | const auto *ConvD = dyn_cast<CXXConversionDecl>(Val: Fn); |
| 11651 | |
| 11652 | if (!ConvD) |
| 11653 | return false; |
| 11654 | const auto *RD = cast<CXXRecordDecl>(Val: Fn->getParent()); |
| 11655 | if (!RD->isLambda()) |
| 11656 | return false; |
| 11657 | |
| 11658 | CXXMethodDecl *CallOp = RD->getLambdaCallOperator(); |
| 11659 | CallingConv CallOpCC = |
| 11660 | CallOp->getType()->castAs<FunctionType>()->getCallConv(); |
| 11661 | QualType ConvRTy = ConvD->getType()->castAs<FunctionType>()->getReturnType(); |
| 11662 | CallingConv ConvToCC = |
| 11663 | ConvRTy->getPointeeType()->castAs<FunctionType>()->getCallConv(); |
| 11664 | |
| 11665 | return ConvToCC != CallOpCC; |
| 11666 | } |
| 11667 | |
| 11668 | // Notes the location of an overload candidate. |
| 11669 | void Sema::NoteOverloadCandidate(const NamedDecl *Found, const FunctionDecl *Fn, |
| 11670 | OverloadCandidateRewriteKind RewriteKind, |
| 11671 | QualType DestType, bool TakingAddress) { |
| 11672 | if (TakingAddress && !checkAddressOfCandidateIsAvailable(S&: *this, FD: Fn)) |
| 11673 | return; |
| 11674 | if (Fn->isMultiVersion() && Fn->hasAttr<TargetAttr>() && |
| 11675 | !Fn->getAttr<TargetAttr>()->isDefaultVersion()) |
| 11676 | return; |
| 11677 | if (Fn->isMultiVersion() && Fn->hasAttr<TargetVersionAttr>() && |
| 11678 | !Fn->getAttr<TargetVersionAttr>()->isDefaultVersion()) |
| 11679 | return; |
| 11680 | if (shouldSkipNotingLambdaConversionDecl(Fn)) |
| 11681 | return; |
| 11682 | |
| 11683 | std::string FnDesc; |
| 11684 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> KSPair = |
| 11685 | ClassifyOverloadCandidate(S&: *this, Found, Fn, CRK: RewriteKind, Description&: FnDesc); |
| 11686 | PartialDiagnostic PD = PDiag(DiagID: diag::note_ovl_candidate) |
| 11687 | << (unsigned)KSPair.first << (unsigned)KSPair.second |
| 11688 | << Fn << FnDesc; |
| 11689 | |
| 11690 | HandleFunctionTypeMismatch(PDiag&: PD, FromType: Fn->getType(), ToType: DestType); |
| 11691 | Diag(Loc: Fn->getLocation(), PD); |
| 11692 | MaybeEmitInheritedConstructorNote(S&: *this, FoundDecl: Found); |
| 11693 | } |
| 11694 | |
| 11695 | static void |
| 11696 | MaybeDiagnoseAmbiguousConstraints(Sema &S, ArrayRef<OverloadCandidate> Cands) { |
| 11697 | // Perhaps the ambiguity was caused by two atomic constraints that are |
| 11698 | // 'identical' but not equivalent: |
| 11699 | // |
| 11700 | // void foo() requires (sizeof(T) > 4) { } // #1 |
| 11701 | // void foo() requires (sizeof(T) > 4) && T::value { } // #2 |
| 11702 | // |
| 11703 | // The 'sizeof(T) > 4' constraints are seemingly equivalent and should cause |
| 11704 | // #2 to subsume #1, but these constraint are not considered equivalent |
| 11705 | // according to the subsumption rules because they are not the same |
| 11706 | // source-level construct. This behavior is quite confusing and we should try |
| 11707 | // to help the user figure out what happened. |
| 11708 | |
| 11709 | SmallVector<AssociatedConstraint, 3> FirstAC, SecondAC; |
| 11710 | FunctionDecl *FirstCand = nullptr, *SecondCand = nullptr; |
| 11711 | for (auto I = Cands.begin(), E = Cands.end(); I != E; ++I) { |
| 11712 | if (!I->Function) |
| 11713 | continue; |
| 11714 | SmallVector<AssociatedConstraint, 3> AC; |
| 11715 | if (auto *Template = I->Function->getPrimaryTemplate()) |
| 11716 | Template->getAssociatedConstraints(AC); |
| 11717 | else |
| 11718 | I->Function->getAssociatedConstraints(ACs&: AC); |
| 11719 | if (AC.empty()) |
| 11720 | continue; |
| 11721 | if (FirstCand == nullptr) { |
| 11722 | FirstCand = I->Function; |
| 11723 | FirstAC = AC; |
| 11724 | } else if (SecondCand == nullptr) { |
| 11725 | SecondCand = I->Function; |
| 11726 | SecondAC = AC; |
| 11727 | } else { |
| 11728 | // We have more than one pair of constrained functions - this check is |
| 11729 | // expensive and we'd rather not try to diagnose it. |
| 11730 | return; |
| 11731 | } |
| 11732 | } |
| 11733 | if (!SecondCand) |
| 11734 | return; |
| 11735 | // The diagnostic can only happen if there are associated constraints on |
| 11736 | // both sides (there needs to be some identical atomic constraint). |
| 11737 | if (S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(D1: FirstCand, AC1: FirstAC, |
| 11738 | D2: SecondCand, AC2: SecondAC)) |
| 11739 | // Just show the user one diagnostic, they'll probably figure it out |
| 11740 | // from here. |
| 11741 | return; |
| 11742 | } |
| 11743 | |
| 11744 | // Notes the location of all overload candidates designated through |
| 11745 | // OverloadedExpr |
| 11746 | void Sema::NoteAllOverloadCandidates(Expr *OverloadedExpr, QualType DestType, |
| 11747 | bool TakingAddress) { |
| 11748 | assert(OverloadedExpr->getType() == Context.OverloadTy); |
| 11749 | |
| 11750 | OverloadExpr::FindResult Ovl = OverloadExpr::find(E: OverloadedExpr); |
| 11751 | OverloadExpr *OvlExpr = Ovl.Expression; |
| 11752 | |
| 11753 | for (UnresolvedSetIterator I = OvlExpr->decls_begin(), |
| 11754 | IEnd = OvlExpr->decls_end(); |
| 11755 | I != IEnd; ++I) { |
| 11756 | if (FunctionTemplateDecl *FunTmpl = |
| 11757 | dyn_cast<FunctionTemplateDecl>(Val: (*I)->getUnderlyingDecl()) ) { |
| 11758 | NoteOverloadCandidate(Found: *I, Fn: FunTmpl->getTemplatedDecl(), RewriteKind: CRK_None, DestType, |
| 11759 | TakingAddress); |
| 11760 | } else if (FunctionDecl *Fun |
| 11761 | = dyn_cast<FunctionDecl>(Val: (*I)->getUnderlyingDecl()) ) { |
| 11762 | NoteOverloadCandidate(Found: *I, Fn: Fun, RewriteKind: CRK_None, DestType, TakingAddress); |
| 11763 | } |
| 11764 | } |
| 11765 | } |
| 11766 | |
| 11767 | /// Diagnoses an ambiguous conversion. The partial diagnostic is the |
| 11768 | /// "lead" diagnostic; it will be given two arguments, the source and |
| 11769 | /// target types of the conversion. |
| 11770 | void ImplicitConversionSequence::DiagnoseAmbiguousConversion( |
| 11771 | Sema &S, |
| 11772 | SourceLocation CaretLoc, |
| 11773 | const PartialDiagnostic &PDiag) const { |
| 11774 | S.Diag(Loc: CaretLoc, PD: PDiag) |
| 11775 | << Ambiguous.getFromType() << Ambiguous.getToType(); |
| 11776 | unsigned CandsShown = 0; |
| 11777 | AmbiguousConversionSequence::const_iterator I, E; |
| 11778 | for (I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { |
| 11779 | if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow()) |
| 11780 | break; |
| 11781 | ++CandsShown; |
| 11782 | S.NoteOverloadCandidate(Found: I->first, Fn: I->second); |
| 11783 | } |
| 11784 | S.Diags.overloadCandidatesShown(N: CandsShown); |
| 11785 | if (I != E) |
| 11786 | S.Diag(Loc: SourceLocation(), DiagID: diag::note_ovl_too_many_candidates) << int(E - I); |
| 11787 | } |
| 11788 | |
| 11789 | static void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, |
| 11790 | unsigned I, bool TakingCandidateAddress) { |
| 11791 | const ImplicitConversionSequence &Conv = Cand->Conversions[I]; |
| 11792 | assert(Conv.isBad()); |
| 11793 | assert(Cand->Function && "for now, candidate must be a function" ); |
| 11794 | FunctionDecl *Fn = Cand->Function; |
| 11795 | |
| 11796 | // There's a conversion slot for the object argument if this is a |
| 11797 | // non-constructor method. Note that 'I' corresponds the |
| 11798 | // conversion-slot index. |
| 11799 | bool isObjectArgument = false; |
| 11800 | if (isa<CXXMethodDecl>(Val: Fn) && !isa<CXXConstructorDecl>(Val: Fn)) { |
| 11801 | if (I == 0) |
| 11802 | isObjectArgument = true; |
| 11803 | else if (!Fn->hasCXXExplicitFunctionObjectParameter()) |
| 11804 | I--; |
| 11805 | } |
| 11806 | |
| 11807 | std::string FnDesc; |
| 11808 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = |
| 11809 | ClassifyOverloadCandidate(S, Found: Cand->FoundDecl, Fn, CRK: Cand->getRewriteKind(), |
| 11810 | Description&: FnDesc); |
| 11811 | |
| 11812 | Expr *FromExpr = Conv.Bad.FromExpr; |
| 11813 | QualType FromTy = Conv.Bad.getFromType(); |
| 11814 | QualType ToTy = Conv.Bad.getToType(); |
| 11815 | SourceRange ToParamRange; |
| 11816 | |
| 11817 | // FIXME: In presence of parameter packs we can't determine parameter range |
| 11818 | // reliably, as we don't have access to instantiation. |
| 11819 | bool HasParamPack = |
| 11820 | llvm::any_of(Range: Fn->parameters().take_front(N: I), P: [](const ParmVarDecl *Parm) { |
| 11821 | return Parm->isParameterPack(); |
| 11822 | }); |
| 11823 | if (!isObjectArgument && !HasParamPack) |
| 11824 | ToParamRange = Fn->getParamDecl(i: I)->getSourceRange(); |
| 11825 | |
| 11826 | if (FromTy == S.Context.OverloadTy) { |
| 11827 | assert(FromExpr && "overload set argument came from implicit argument?" ); |
| 11828 | Expr *E = FromExpr->IgnoreParens(); |
| 11829 | if (isa<UnaryOperator>(Val: E)) |
| 11830 | E = cast<UnaryOperator>(Val: E)->getSubExpr()->IgnoreParens(); |
| 11831 | DeclarationName Name = cast<OverloadExpr>(Val: E)->getName(); |
| 11832 | |
| 11833 | S.Diag(Loc: Fn->getLocation(), DiagID: diag::note_ovl_candidate_bad_overload) |
| 11834 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 11835 | << ToParamRange << ToTy << Name << I + 1; |
| 11836 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Cand->FoundDecl); |
| 11837 | return; |
| 11838 | } |
| 11839 | |
| 11840 | // Do some hand-waving analysis to see if the non-viability is due |
| 11841 | // to a qualifier mismatch. |
| 11842 | CanQualType CFromTy = S.Context.getCanonicalType(T: FromTy); |
| 11843 | CanQualType CToTy = S.Context.getCanonicalType(T: ToTy); |
| 11844 | if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) |
| 11845 | CToTy = RT->getPointeeType(); |
| 11846 | else { |
| 11847 | // TODO: detect and diagnose the full richness of const mismatches. |
| 11848 | if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) |
| 11849 | if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) { |
| 11850 | CFromTy = FromPT->getPointeeType(); |
| 11851 | CToTy = ToPT->getPointeeType(); |
| 11852 | } |
| 11853 | } |
| 11854 | |
| 11855 | if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && |
| 11856 | !CToTy.isAtLeastAsQualifiedAs(Other: CFromTy, Ctx: S.getASTContext())) { |
| 11857 | Qualifiers FromQs = CFromTy.getQualifiers(); |
| 11858 | Qualifiers ToQs = CToTy.getQualifiers(); |
| 11859 | |
| 11860 | if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { |
| 11861 | if (isObjectArgument) |
| 11862 | S.Diag(Loc: Fn->getLocation(), DiagID: diag::note_ovl_candidate_bad_addrspace_this) |
| 11863 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second |
| 11864 | << FnDesc << FromQs.getAddressSpace() << ToQs.getAddressSpace(); |
| 11865 | else |
| 11866 | S.Diag(Loc: Fn->getLocation(), DiagID: diag::note_ovl_candidate_bad_addrspace) |
| 11867 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second |
| 11868 | << FnDesc << ToParamRange << FromQs.getAddressSpace() |
| 11869 | << ToQs.getAddressSpace() << ToTy->isReferenceType() << I + 1; |
| 11870 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Cand->FoundDecl); |
| 11871 | return; |
| 11872 | } |
| 11873 | |
| 11874 | if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { |
| 11875 | S.Diag(Loc: Fn->getLocation(), DiagID: diag::note_ovl_candidate_bad_ownership) |
| 11876 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 11877 | << ToParamRange << FromTy << FromQs.getObjCLifetime() |
| 11878 | << ToQs.getObjCLifetime() << (unsigned)isObjectArgument << I + 1; |
| 11879 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Cand->FoundDecl); |
| 11880 | return; |
| 11881 | } |
| 11882 | |
| 11883 | if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { |
| 11884 | S.Diag(Loc: Fn->getLocation(), DiagID: diag::note_ovl_candidate_bad_gc) |
| 11885 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 11886 | << ToParamRange << FromTy << FromQs.getObjCGCAttr() |
| 11887 | << ToQs.getObjCGCAttr() << (unsigned)isObjectArgument << I + 1; |
| 11888 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Cand->FoundDecl); |
| 11889 | return; |
| 11890 | } |
| 11891 | |
| 11892 | if (!FromQs.getPointerAuth().isEquivalent(Other: ToQs.getPointerAuth())) { |
| 11893 | S.Diag(Loc: Fn->getLocation(), DiagID: diag::note_ovl_candidate_bad_ptrauth) |
| 11894 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 11895 | << FromTy << !!FromQs.getPointerAuth() |
| 11896 | << FromQs.getPointerAuth().getAsString() << !!ToQs.getPointerAuth() |
| 11897 | << ToQs.getPointerAuth().getAsString() << I + 1 |
| 11898 | << (FromExpr ? FromExpr->getSourceRange() : SourceRange()); |
| 11899 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Cand->FoundDecl); |
| 11900 | return; |
| 11901 | } |
| 11902 | |
| 11903 | unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); |
| 11904 | assert(CVR && "expected qualifiers mismatch" ); |
| 11905 | |
| 11906 | if (isObjectArgument) { |
| 11907 | S.Diag(Loc: Fn->getLocation(), DiagID: diag::note_ovl_candidate_bad_cvr_this) |
| 11908 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 11909 | << FromTy << (CVR - 1); |
| 11910 | } else { |
| 11911 | S.Diag(Loc: Fn->getLocation(), DiagID: diag::note_ovl_candidate_bad_cvr) |
| 11912 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 11913 | << ToParamRange << FromTy << (CVR - 1) << I + 1; |
| 11914 | } |
| 11915 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Cand->FoundDecl); |
| 11916 | return; |
| 11917 | } |
| 11918 | |
| 11919 | if (Conv.Bad.Kind == BadConversionSequence::lvalue_ref_to_rvalue || |
| 11920 | Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) { |
| 11921 | S.Diag(Loc: Fn->getLocation(), DiagID: diag::note_ovl_candidate_bad_value_category) |
| 11922 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 11923 | << (unsigned)isObjectArgument << I + 1 |
| 11924 | << (Conv.Bad.Kind == BadConversionSequence::rvalue_ref_to_lvalue) |
| 11925 | << ToParamRange; |
| 11926 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Cand->FoundDecl); |
| 11927 | return; |
| 11928 | } |
| 11929 | |
| 11930 | // Special diagnostic for failure to convert an initializer list, since |
| 11931 | // telling the user that it has type void is not useful. |
| 11932 | if (FromExpr && isa<InitListExpr>(Val: FromExpr)) { |
| 11933 | S.Diag(Loc: Fn->getLocation(), DiagID: diag::note_ovl_candidate_bad_list_argument) |
| 11934 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 11935 | << ToParamRange << FromTy << ToTy << (unsigned)isObjectArgument << I + 1 |
| 11936 | << (Conv.Bad.Kind == BadConversionSequence::too_few_initializers ? 1 |
| 11937 | : Conv.Bad.Kind == BadConversionSequence::too_many_initializers |
| 11938 | ? 2 |
| 11939 | : 0); |
| 11940 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Cand->FoundDecl); |
| 11941 | return; |
| 11942 | } |
| 11943 | |
| 11944 | // Diagnose references or pointers to incomplete types differently, |
| 11945 | // since it's far from impossible that the incompleteness triggered |
| 11946 | // the failure. |
| 11947 | QualType TempFromTy = FromTy.getNonReferenceType(); |
| 11948 | if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) |
| 11949 | TempFromTy = PTy->getPointeeType(); |
| 11950 | if (TempFromTy->isIncompleteType()) { |
| 11951 | // Emit the generic diagnostic and, optionally, add the hints to it. |
| 11952 | S.Diag(Loc: Fn->getLocation(), DiagID: diag::note_ovl_candidate_bad_conv_incomplete) |
| 11953 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 11954 | << ToParamRange << FromTy << ToTy << (unsigned)isObjectArgument << I + 1 |
| 11955 | << (unsigned)(Cand->Fix.Kind); |
| 11956 | |
| 11957 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Cand->FoundDecl); |
| 11958 | return; |
| 11959 | } |
| 11960 | |
| 11961 | // Diagnose base -> derived pointer conversions. |
| 11962 | unsigned BaseToDerivedConversion = 0; |
| 11963 | if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { |
| 11964 | if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { |
| 11965 | if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( |
| 11966 | other: FromPtrTy->getPointeeType(), Ctx: S.getASTContext()) && |
| 11967 | !FromPtrTy->getPointeeType()->isIncompleteType() && |
| 11968 | !ToPtrTy->getPointeeType()->isIncompleteType() && |
| 11969 | S.IsDerivedFrom(Loc: SourceLocation(), Derived: ToPtrTy->getPointeeType(), |
| 11970 | Base: FromPtrTy->getPointeeType())) |
| 11971 | BaseToDerivedConversion = 1; |
| 11972 | } |
| 11973 | } else if (const ObjCObjectPointerType *FromPtrTy |
| 11974 | = FromTy->getAs<ObjCObjectPointerType>()) { |
| 11975 | if (const ObjCObjectPointerType *ToPtrTy |
| 11976 | = ToTy->getAs<ObjCObjectPointerType>()) |
| 11977 | if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) |
| 11978 | if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) |
| 11979 | if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( |
| 11980 | other: FromPtrTy->getPointeeType(), Ctx: S.getASTContext()) && |
| 11981 | FromIface->isSuperClassOf(I: ToIface)) |
| 11982 | BaseToDerivedConversion = 2; |
| 11983 | } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { |
| 11984 | if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(other: FromTy, |
| 11985 | Ctx: S.getASTContext()) && |
| 11986 | !FromTy->isIncompleteType() && |
| 11987 | !ToRefTy->getPointeeType()->isIncompleteType() && |
| 11988 | S.IsDerivedFrom(Loc: SourceLocation(), Derived: ToRefTy->getPointeeType(), Base: FromTy)) { |
| 11989 | BaseToDerivedConversion = 3; |
| 11990 | } |
| 11991 | } |
| 11992 | |
| 11993 | if (BaseToDerivedConversion) { |
| 11994 | S.Diag(Loc: Fn->getLocation(), DiagID: diag::note_ovl_candidate_bad_base_to_derived_conv) |
| 11995 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 11996 | << ToParamRange << (BaseToDerivedConversion - 1) << FromTy << ToTy |
| 11997 | << I + 1; |
| 11998 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Cand->FoundDecl); |
| 11999 | return; |
| 12000 | } |
| 12001 | |
| 12002 | if (isa<ObjCObjectPointerType>(Val: CFromTy) && |
| 12003 | isa<PointerType>(Val: CToTy)) { |
| 12004 | Qualifiers FromQs = CFromTy.getQualifiers(); |
| 12005 | Qualifiers ToQs = CToTy.getQualifiers(); |
| 12006 | if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { |
| 12007 | S.Diag(Loc: Fn->getLocation(), DiagID: diag::note_ovl_candidate_bad_arc_conv) |
| 12008 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 12009 | << ToParamRange << FromTy << ToTy << (unsigned)isObjectArgument |
| 12010 | << I + 1; |
| 12011 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Cand->FoundDecl); |
| 12012 | return; |
| 12013 | } |
| 12014 | } |
| 12015 | |
| 12016 | if (TakingCandidateAddress && !checkAddressOfCandidateIsAvailable(S, FD: Fn)) |
| 12017 | return; |
| 12018 | |
| 12019 | // Emit the generic diagnostic and, optionally, add the hints to it. |
| 12020 | PartialDiagnostic FDiag = S.PDiag(DiagID: diag::note_ovl_candidate_bad_conv); |
| 12021 | FDiag << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 12022 | << ToParamRange << FromTy << ToTy << (unsigned)isObjectArgument << I + 1 |
| 12023 | << (unsigned)(Cand->Fix.Kind); |
| 12024 | |
| 12025 | // Check that location of Fn is not in system header. |
| 12026 | if (!S.SourceMgr.isInSystemHeader(Loc: Fn->getLocation())) { |
| 12027 | // If we can fix the conversion, suggest the FixIts. |
| 12028 | for (const FixItHint &HI : Cand->Fix.Hints) |
| 12029 | FDiag << HI; |
| 12030 | } |
| 12031 | |
| 12032 | S.Diag(Loc: Fn->getLocation(), PD: FDiag); |
| 12033 | |
| 12034 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Cand->FoundDecl); |
| 12035 | } |
| 12036 | |
| 12037 | /// Additional arity mismatch diagnosis specific to a function overload |
| 12038 | /// candidates. This is not covered by the more general DiagnoseArityMismatch() |
| 12039 | /// over a candidate in any candidate set. |
| 12040 | static bool CheckArityMismatch(Sema &S, OverloadCandidate *Cand, |
| 12041 | unsigned NumArgs, bool IsAddressOf = false) { |
| 12042 | assert(Cand->Function && "Candidate is required to be a function." ); |
| 12043 | FunctionDecl *Fn = Cand->Function; |
| 12044 | unsigned MinParams = Fn->getMinRequiredExplicitArguments() + |
| 12045 | ((IsAddressOf && !Fn->isStatic()) ? 1 : 0); |
| 12046 | |
| 12047 | // With invalid overloaded operators, it's possible that we think we |
| 12048 | // have an arity mismatch when in fact it looks like we have the |
| 12049 | // right number of arguments, because only overloaded operators have |
| 12050 | // the weird behavior of overloading member and non-member functions. |
| 12051 | // Just don't report anything. |
| 12052 | if (Fn->isInvalidDecl() && |
| 12053 | Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) |
| 12054 | return true; |
| 12055 | |
| 12056 | if (NumArgs < MinParams) { |
| 12057 | assert((Cand->FailureKind == ovl_fail_too_few_arguments) || |
| 12058 | (Cand->FailureKind == ovl_fail_bad_deduction && |
| 12059 | Cand->DeductionFailure.getResult() == |
| 12060 | TemplateDeductionResult::TooFewArguments)); |
| 12061 | } else { |
| 12062 | assert((Cand->FailureKind == ovl_fail_too_many_arguments) || |
| 12063 | (Cand->FailureKind == ovl_fail_bad_deduction && |
| 12064 | Cand->DeductionFailure.getResult() == |
| 12065 | TemplateDeductionResult::TooManyArguments)); |
| 12066 | } |
| 12067 | |
| 12068 | return false; |
| 12069 | } |
| 12070 | |
| 12071 | /// General arity mismatch diagnosis over a candidate in a candidate set. |
| 12072 | static void DiagnoseArityMismatch(Sema &S, NamedDecl *Found, Decl *D, |
| 12073 | unsigned NumFormalArgs, |
| 12074 | bool IsAddressOf = false) { |
| 12075 | assert(isa<FunctionDecl>(D) && |
| 12076 | "The templated declaration should at least be a function" |
| 12077 | " when diagnosing bad template argument deduction due to too many" |
| 12078 | " or too few arguments" ); |
| 12079 | |
| 12080 | FunctionDecl *Fn = cast<FunctionDecl>(Val: D); |
| 12081 | |
| 12082 | // TODO: treat calls to a missing default constructor as a special case |
| 12083 | const auto *FnTy = Fn->getType()->castAs<FunctionProtoType>(); |
| 12084 | unsigned MinParams = Fn->getMinRequiredExplicitArguments() + |
| 12085 | ((IsAddressOf && !Fn->isStatic()) ? 1 : 0); |
| 12086 | |
| 12087 | // at least / at most / exactly |
| 12088 | bool HasExplicitObjectParam = |
| 12089 | !IsAddressOf && Fn->hasCXXExplicitFunctionObjectParameter(); |
| 12090 | |
| 12091 | unsigned ParamCount = |
| 12092 | Fn->getNumNonObjectParams() + ((IsAddressOf && !Fn->isStatic()) ? 1 : 0); |
| 12093 | unsigned mode, modeCount; |
| 12094 | |
| 12095 | if (NumFormalArgs < MinParams) { |
| 12096 | if (MinParams != ParamCount || FnTy->isVariadic() || |
| 12097 | FnTy->isTemplateVariadic()) |
| 12098 | mode = 0; // "at least" |
| 12099 | else |
| 12100 | mode = 2; // "exactly" |
| 12101 | modeCount = MinParams; |
| 12102 | } else { |
| 12103 | if (MinParams != ParamCount) |
| 12104 | mode = 1; // "at most" |
| 12105 | else |
| 12106 | mode = 2; // "exactly" |
| 12107 | modeCount = ParamCount; |
| 12108 | } |
| 12109 | |
| 12110 | std::string Description; |
| 12111 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = |
| 12112 | ClassifyOverloadCandidate(S, Found, Fn, CRK: CRK_None, Description); |
| 12113 | |
| 12114 | if (modeCount == 1 && !IsAddressOf && |
| 12115 | Fn->getParamDecl(i: HasExplicitObjectParam ? 1 : 0)->getDeclName()) |
| 12116 | S.Diag(Loc: Fn->getLocation(), DiagID: diag::note_ovl_candidate_arity_one) |
| 12117 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second |
| 12118 | << Description << mode |
| 12119 | << Fn->getParamDecl(i: HasExplicitObjectParam ? 1 : 0) << NumFormalArgs |
| 12120 | << HasExplicitObjectParam << Fn->getParametersSourceRange(); |
| 12121 | else |
| 12122 | S.Diag(Loc: Fn->getLocation(), DiagID: diag::note_ovl_candidate_arity) |
| 12123 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second |
| 12124 | << Description << mode << modeCount << NumFormalArgs |
| 12125 | << HasExplicitObjectParam << Fn->getParametersSourceRange(); |
| 12126 | |
| 12127 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Found); |
| 12128 | } |
| 12129 | |
| 12130 | /// Arity mismatch diagnosis specific to a function overload candidate. |
| 12131 | static void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, |
| 12132 | unsigned NumFormalArgs) { |
| 12133 | assert(Cand->Function && "Candidate must be a function" ); |
| 12134 | FunctionDecl *Fn = Cand->Function; |
| 12135 | if (!CheckArityMismatch(S, Cand, NumArgs: NumFormalArgs, IsAddressOf: Cand->TookAddressOfOverload)) |
| 12136 | DiagnoseArityMismatch(S, Found: Cand->FoundDecl, D: Fn, NumFormalArgs, |
| 12137 | IsAddressOf: Cand->TookAddressOfOverload); |
| 12138 | } |
| 12139 | |
| 12140 | static TemplateDecl *getDescribedTemplate(Decl *Templated) { |
| 12141 | if (TemplateDecl *TD = Templated->getDescribedTemplate()) |
| 12142 | return TD; |
| 12143 | llvm_unreachable("Unsupported: Getting the described template declaration" |
| 12144 | " for bad deduction diagnosis" ); |
| 12145 | } |
| 12146 | |
| 12147 | /// Diagnose a failed template-argument deduction. |
| 12148 | static void DiagnoseBadDeduction(Sema &S, NamedDecl *Found, Decl *Templated, |
| 12149 | DeductionFailureInfo &DeductionFailure, |
| 12150 | unsigned NumArgs, |
| 12151 | bool TakingCandidateAddress) { |
| 12152 | TemplateParameter Param = DeductionFailure.getTemplateParameter(); |
| 12153 | NamedDecl *ParamD; |
| 12154 | (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || |
| 12155 | (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || |
| 12156 | (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); |
| 12157 | switch (DeductionFailure.getResult()) { |
| 12158 | case TemplateDeductionResult::Success: |
| 12159 | llvm_unreachable( |
| 12160 | "TemplateDeductionResult::Success while diagnosing bad deduction" ); |
| 12161 | case TemplateDeductionResult::NonDependentConversionFailure: |
| 12162 | llvm_unreachable("TemplateDeductionResult::NonDependentConversionFailure " |
| 12163 | "while diagnosing bad deduction" ); |
| 12164 | case TemplateDeductionResult::Invalid: |
| 12165 | case TemplateDeductionResult::AlreadyDiagnosed: |
| 12166 | return; |
| 12167 | |
| 12168 | case TemplateDeductionResult::Incomplete: { |
| 12169 | assert(ParamD && "no parameter found for incomplete deduction result" ); |
| 12170 | S.Diag(Loc: Templated->getLocation(), |
| 12171 | DiagID: diag::note_ovl_candidate_incomplete_deduction) |
| 12172 | << ParamD->getDeclName(); |
| 12173 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Found); |
| 12174 | return; |
| 12175 | } |
| 12176 | |
| 12177 | case TemplateDeductionResult::IncompletePack: { |
| 12178 | assert(ParamD && "no parameter found for incomplete deduction result" ); |
| 12179 | S.Diag(Loc: Templated->getLocation(), |
| 12180 | DiagID: diag::note_ovl_candidate_incomplete_deduction_pack) |
| 12181 | << ParamD->getDeclName() |
| 12182 | << (DeductionFailure.getFirstArg()->pack_size() + 1) |
| 12183 | << *DeductionFailure.getFirstArg(); |
| 12184 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Found); |
| 12185 | return; |
| 12186 | } |
| 12187 | |
| 12188 | case TemplateDeductionResult::Underqualified: { |
| 12189 | assert(ParamD && "no parameter found for bad qualifiers deduction result" ); |
| 12190 | TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(Val: ParamD); |
| 12191 | |
| 12192 | QualType Param = DeductionFailure.getFirstArg()->getAsType(); |
| 12193 | |
| 12194 | // Param will have been canonicalized, but it should just be a |
| 12195 | // qualified version of ParamD, so move the qualifiers to that. |
| 12196 | QualifierCollector Qs; |
| 12197 | Qs.strip(type: Param); |
| 12198 | QualType NonCanonParam = Qs.apply(Context: S.Context, T: TParam->getTypeForDecl()); |
| 12199 | assert(S.Context.hasSameType(Param, NonCanonParam)); |
| 12200 | |
| 12201 | // Arg has also been canonicalized, but there's nothing we can do |
| 12202 | // about that. It also doesn't matter as much, because it won't |
| 12203 | // have any template parameters in it (because deduction isn't |
| 12204 | // done on dependent types). |
| 12205 | QualType Arg = DeductionFailure.getSecondArg()->getAsType(); |
| 12206 | |
| 12207 | S.Diag(Loc: Templated->getLocation(), DiagID: diag::note_ovl_candidate_underqualified) |
| 12208 | << ParamD->getDeclName() << Arg << NonCanonParam; |
| 12209 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Found); |
| 12210 | return; |
| 12211 | } |
| 12212 | |
| 12213 | case TemplateDeductionResult::Inconsistent: { |
| 12214 | assert(ParamD && "no parameter found for inconsistent deduction result" ); |
| 12215 | int which = 0; |
| 12216 | if (isa<TemplateTypeParmDecl>(Val: ParamD)) |
| 12217 | which = 0; |
| 12218 | else if (isa<NonTypeTemplateParmDecl>(Val: ParamD)) { |
| 12219 | // Deduction might have failed because we deduced arguments of two |
| 12220 | // different types for a non-type template parameter. |
| 12221 | // FIXME: Use a different TDK value for this. |
| 12222 | QualType T1 = |
| 12223 | DeductionFailure.getFirstArg()->getNonTypeTemplateArgumentType(); |
| 12224 | QualType T2 = |
| 12225 | DeductionFailure.getSecondArg()->getNonTypeTemplateArgumentType(); |
| 12226 | if (!T1.isNull() && !T2.isNull() && !S.Context.hasSameType(T1, T2)) { |
| 12227 | S.Diag(Loc: Templated->getLocation(), |
| 12228 | DiagID: diag::note_ovl_candidate_inconsistent_deduction_types) |
| 12229 | << ParamD->getDeclName() << *DeductionFailure.getFirstArg() << T1 |
| 12230 | << *DeductionFailure.getSecondArg() << T2; |
| 12231 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Found); |
| 12232 | return; |
| 12233 | } |
| 12234 | |
| 12235 | which = 1; |
| 12236 | } else { |
| 12237 | which = 2; |
| 12238 | } |
| 12239 | |
| 12240 | // Tweak the diagnostic if the problem is that we deduced packs of |
| 12241 | // different arities. We'll print the actual packs anyway in case that |
| 12242 | // includes additional useful information. |
| 12243 | if (DeductionFailure.getFirstArg()->getKind() == TemplateArgument::Pack && |
| 12244 | DeductionFailure.getSecondArg()->getKind() == TemplateArgument::Pack && |
| 12245 | DeductionFailure.getFirstArg()->pack_size() != |
| 12246 | DeductionFailure.getSecondArg()->pack_size()) { |
| 12247 | which = 3; |
| 12248 | } |
| 12249 | |
| 12250 | S.Diag(Loc: Templated->getLocation(), |
| 12251 | DiagID: diag::note_ovl_candidate_inconsistent_deduction) |
| 12252 | << which << ParamD->getDeclName() << *DeductionFailure.getFirstArg() |
| 12253 | << *DeductionFailure.getSecondArg(); |
| 12254 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Found); |
| 12255 | return; |
| 12256 | } |
| 12257 | |
| 12258 | case TemplateDeductionResult::InvalidExplicitArguments: |
| 12259 | assert(ParamD && "no parameter found for invalid explicit arguments" ); |
| 12260 | if (ParamD->getDeclName()) |
| 12261 | S.Diag(Loc: Templated->getLocation(), |
| 12262 | DiagID: diag::note_ovl_candidate_explicit_arg_mismatch_named) |
| 12263 | << ParamD->getDeclName(); |
| 12264 | else { |
| 12265 | int index = 0; |
| 12266 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: ParamD)) |
| 12267 | index = TTP->getIndex(); |
| 12268 | else if (NonTypeTemplateParmDecl *NTTP |
| 12269 | = dyn_cast<NonTypeTemplateParmDecl>(Val: ParamD)) |
| 12270 | index = NTTP->getIndex(); |
| 12271 | else |
| 12272 | index = cast<TemplateTemplateParmDecl>(Val: ParamD)->getIndex(); |
| 12273 | S.Diag(Loc: Templated->getLocation(), |
| 12274 | DiagID: diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) |
| 12275 | << (index + 1); |
| 12276 | } |
| 12277 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Found); |
| 12278 | return; |
| 12279 | |
| 12280 | case TemplateDeductionResult::ConstraintsNotSatisfied: { |
| 12281 | // Format the template argument list into the argument string. |
| 12282 | SmallString<128> TemplateArgString; |
| 12283 | TemplateArgumentList *Args = DeductionFailure.getTemplateArgumentList(); |
| 12284 | TemplateArgString = " " ; |
| 12285 | TemplateArgString += S.getTemplateArgumentBindingsText( |
| 12286 | Params: getDescribedTemplate(Templated)->getTemplateParameters(), Args: *Args); |
| 12287 | if (TemplateArgString.size() == 1) |
| 12288 | TemplateArgString.clear(); |
| 12289 | S.Diag(Loc: Templated->getLocation(), |
| 12290 | DiagID: diag::note_ovl_candidate_unsatisfied_constraints) |
| 12291 | << TemplateArgString; |
| 12292 | |
| 12293 | S.DiagnoseUnsatisfiedConstraint( |
| 12294 | Satisfaction: static_cast<CNSInfo*>(DeductionFailure.Data)->Satisfaction); |
| 12295 | return; |
| 12296 | } |
| 12297 | case TemplateDeductionResult::TooManyArguments: |
| 12298 | case TemplateDeductionResult::TooFewArguments: |
| 12299 | DiagnoseArityMismatch(S, Found, D: Templated, NumFormalArgs: NumArgs); |
| 12300 | return; |
| 12301 | |
| 12302 | case TemplateDeductionResult::InstantiationDepth: |
| 12303 | S.Diag(Loc: Templated->getLocation(), |
| 12304 | DiagID: diag::note_ovl_candidate_instantiation_depth); |
| 12305 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Found); |
| 12306 | return; |
| 12307 | |
| 12308 | case TemplateDeductionResult::SubstitutionFailure: { |
| 12309 | // Format the template argument list into the argument string. |
| 12310 | SmallString<128> TemplateArgString; |
| 12311 | if (TemplateArgumentList *Args = |
| 12312 | DeductionFailure.getTemplateArgumentList()) { |
| 12313 | TemplateArgString = " " ; |
| 12314 | TemplateArgString += S.getTemplateArgumentBindingsText( |
| 12315 | Params: getDescribedTemplate(Templated)->getTemplateParameters(), Args: *Args); |
| 12316 | if (TemplateArgString.size() == 1) |
| 12317 | TemplateArgString.clear(); |
| 12318 | } |
| 12319 | |
| 12320 | // If this candidate was disabled by enable_if, say so. |
| 12321 | PartialDiagnosticAt *PDiag = DeductionFailure.getSFINAEDiagnostic(); |
| 12322 | if (PDiag && PDiag->second.getDiagID() == |
| 12323 | diag::err_typename_nested_not_found_enable_if) { |
| 12324 | // FIXME: Use the source range of the condition, and the fully-qualified |
| 12325 | // name of the enable_if template. These are both present in PDiag. |
| 12326 | S.Diag(Loc: PDiag->first, DiagID: diag::note_ovl_candidate_disabled_by_enable_if) |
| 12327 | << "'enable_if'" << TemplateArgString; |
| 12328 | return; |
| 12329 | } |
| 12330 | |
| 12331 | // We found a specific requirement that disabled the enable_if. |
| 12332 | if (PDiag && PDiag->second.getDiagID() == |
| 12333 | diag::err_typename_nested_not_found_requirement) { |
| 12334 | S.Diag(Loc: Templated->getLocation(), |
| 12335 | DiagID: diag::note_ovl_candidate_disabled_by_requirement) |
| 12336 | << PDiag->second.getStringArg(I: 0) << TemplateArgString; |
| 12337 | return; |
| 12338 | } |
| 12339 | |
| 12340 | // Format the SFINAE diagnostic into the argument string. |
| 12341 | // FIXME: Add a general mechanism to include a PartialDiagnostic *'s |
| 12342 | // formatted message in another diagnostic. |
| 12343 | SmallString<128> SFINAEArgString; |
| 12344 | SourceRange R; |
| 12345 | if (PDiag) { |
| 12346 | SFINAEArgString = ": " ; |
| 12347 | R = SourceRange(PDiag->first, PDiag->first); |
| 12348 | PDiag->second.EmitToString(Diags&: S.getDiagnostics(), Buf&: SFINAEArgString); |
| 12349 | } |
| 12350 | |
| 12351 | S.Diag(Loc: Templated->getLocation(), |
| 12352 | DiagID: diag::note_ovl_candidate_substitution_failure) |
| 12353 | << TemplateArgString << SFINAEArgString << R; |
| 12354 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Found); |
| 12355 | return; |
| 12356 | } |
| 12357 | |
| 12358 | case TemplateDeductionResult::DeducedMismatch: |
| 12359 | case TemplateDeductionResult::DeducedMismatchNested: { |
| 12360 | // Format the template argument list into the argument string. |
| 12361 | SmallString<128> TemplateArgString; |
| 12362 | if (TemplateArgumentList *Args = |
| 12363 | DeductionFailure.getTemplateArgumentList()) { |
| 12364 | TemplateArgString = " " ; |
| 12365 | TemplateArgString += S.getTemplateArgumentBindingsText( |
| 12366 | Params: getDescribedTemplate(Templated)->getTemplateParameters(), Args: *Args); |
| 12367 | if (TemplateArgString.size() == 1) |
| 12368 | TemplateArgString.clear(); |
| 12369 | } |
| 12370 | |
| 12371 | S.Diag(Loc: Templated->getLocation(), DiagID: diag::note_ovl_candidate_deduced_mismatch) |
| 12372 | << (*DeductionFailure.getCallArgIndex() + 1) |
| 12373 | << *DeductionFailure.getFirstArg() << *DeductionFailure.getSecondArg() |
| 12374 | << TemplateArgString |
| 12375 | << (DeductionFailure.getResult() == |
| 12376 | TemplateDeductionResult::DeducedMismatchNested); |
| 12377 | break; |
| 12378 | } |
| 12379 | |
| 12380 | case TemplateDeductionResult::NonDeducedMismatch: { |
| 12381 | // FIXME: Provide a source location to indicate what we couldn't match. |
| 12382 | TemplateArgument FirstTA = *DeductionFailure.getFirstArg(); |
| 12383 | TemplateArgument SecondTA = *DeductionFailure.getSecondArg(); |
| 12384 | if (FirstTA.getKind() == TemplateArgument::Template && |
| 12385 | SecondTA.getKind() == TemplateArgument::Template) { |
| 12386 | TemplateName FirstTN = FirstTA.getAsTemplate(); |
| 12387 | TemplateName SecondTN = SecondTA.getAsTemplate(); |
| 12388 | if (FirstTN.getKind() == TemplateName::Template && |
| 12389 | SecondTN.getKind() == TemplateName::Template) { |
| 12390 | if (FirstTN.getAsTemplateDecl()->getName() == |
| 12391 | SecondTN.getAsTemplateDecl()->getName()) { |
| 12392 | // FIXME: This fixes a bad diagnostic where both templates are named |
| 12393 | // the same. This particular case is a bit difficult since: |
| 12394 | // 1) It is passed as a string to the diagnostic printer. |
| 12395 | // 2) The diagnostic printer only attempts to find a better |
| 12396 | // name for types, not decls. |
| 12397 | // Ideally, this should folded into the diagnostic printer. |
| 12398 | S.Diag(Loc: Templated->getLocation(), |
| 12399 | DiagID: diag::note_ovl_candidate_non_deduced_mismatch_qualified) |
| 12400 | << FirstTN.getAsTemplateDecl() << SecondTN.getAsTemplateDecl(); |
| 12401 | return; |
| 12402 | } |
| 12403 | } |
| 12404 | } |
| 12405 | |
| 12406 | if (TakingCandidateAddress && isa<FunctionDecl>(Val: Templated) && |
| 12407 | !checkAddressOfCandidateIsAvailable(S, FD: cast<FunctionDecl>(Val: Templated))) |
| 12408 | return; |
| 12409 | |
| 12410 | // FIXME: For generic lambda parameters, check if the function is a lambda |
| 12411 | // call operator, and if so, emit a prettier and more informative |
| 12412 | // diagnostic that mentions 'auto' and lambda in addition to |
| 12413 | // (or instead of?) the canonical template type parameters. |
| 12414 | S.Diag(Loc: Templated->getLocation(), |
| 12415 | DiagID: diag::note_ovl_candidate_non_deduced_mismatch) |
| 12416 | << FirstTA << SecondTA; |
| 12417 | return; |
| 12418 | } |
| 12419 | // TODO: diagnose these individually, then kill off |
| 12420 | // note_ovl_candidate_bad_deduction, which is uselessly vague. |
| 12421 | case TemplateDeductionResult::MiscellaneousDeductionFailure: |
| 12422 | S.Diag(Loc: Templated->getLocation(), DiagID: diag::note_ovl_candidate_bad_deduction); |
| 12423 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Found); |
| 12424 | return; |
| 12425 | case TemplateDeductionResult::CUDATargetMismatch: |
| 12426 | S.Diag(Loc: Templated->getLocation(), |
| 12427 | DiagID: diag::note_cuda_ovl_candidate_target_mismatch); |
| 12428 | return; |
| 12429 | } |
| 12430 | } |
| 12431 | |
| 12432 | /// Diagnose a failed template-argument deduction, for function calls. |
| 12433 | static void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, |
| 12434 | unsigned NumArgs, |
| 12435 | bool TakingCandidateAddress) { |
| 12436 | assert(Cand->Function && "Candidate must be a function" ); |
| 12437 | FunctionDecl *Fn = Cand->Function; |
| 12438 | TemplateDeductionResult TDK = Cand->DeductionFailure.getResult(); |
| 12439 | if (TDK == TemplateDeductionResult::TooFewArguments || |
| 12440 | TDK == TemplateDeductionResult::TooManyArguments) { |
| 12441 | if (CheckArityMismatch(S, Cand, NumArgs)) |
| 12442 | return; |
| 12443 | } |
| 12444 | DiagnoseBadDeduction(S, Found: Cand->FoundDecl, Templated: Fn, // pattern |
| 12445 | DeductionFailure&: Cand->DeductionFailure, NumArgs, TakingCandidateAddress); |
| 12446 | } |
| 12447 | |
| 12448 | /// CUDA: diagnose an invalid call across targets. |
| 12449 | static void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) { |
| 12450 | FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true); |
| 12451 | assert(Cand->Function && "Candidate must be a Function." ); |
| 12452 | FunctionDecl *Callee = Cand->Function; |
| 12453 | |
| 12454 | CUDAFunctionTarget CallerTarget = S.CUDA().IdentifyTarget(D: Caller), |
| 12455 | CalleeTarget = S.CUDA().IdentifyTarget(D: Callee); |
| 12456 | |
| 12457 | std::string FnDesc; |
| 12458 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = |
| 12459 | ClassifyOverloadCandidate(S, Found: Cand->FoundDecl, Fn: Callee, |
| 12460 | CRK: Cand->getRewriteKind(), Description&: FnDesc); |
| 12461 | |
| 12462 | S.Diag(Loc: Callee->getLocation(), DiagID: diag::note_ovl_candidate_bad_target) |
| 12463 | << (unsigned)FnKindPair.first << (unsigned)ocs_non_template |
| 12464 | << FnDesc /* Ignored */ |
| 12465 | << CalleeTarget << CallerTarget; |
| 12466 | |
| 12467 | // This could be an implicit constructor for which we could not infer the |
| 12468 | // target due to a collsion. Diagnose that case. |
| 12469 | CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Val: Callee); |
| 12470 | if (Meth != nullptr && Meth->isImplicit()) { |
| 12471 | CXXRecordDecl *ParentClass = Meth->getParent(); |
| 12472 | CXXSpecialMemberKind CSM; |
| 12473 | |
| 12474 | switch (FnKindPair.first) { |
| 12475 | default: |
| 12476 | return; |
| 12477 | case oc_implicit_default_constructor: |
| 12478 | CSM = CXXSpecialMemberKind::DefaultConstructor; |
| 12479 | break; |
| 12480 | case oc_implicit_copy_constructor: |
| 12481 | CSM = CXXSpecialMemberKind::CopyConstructor; |
| 12482 | break; |
| 12483 | case oc_implicit_move_constructor: |
| 12484 | CSM = CXXSpecialMemberKind::MoveConstructor; |
| 12485 | break; |
| 12486 | case oc_implicit_copy_assignment: |
| 12487 | CSM = CXXSpecialMemberKind::CopyAssignment; |
| 12488 | break; |
| 12489 | case oc_implicit_move_assignment: |
| 12490 | CSM = CXXSpecialMemberKind::MoveAssignment; |
| 12491 | break; |
| 12492 | }; |
| 12493 | |
| 12494 | bool ConstRHS = false; |
| 12495 | if (Meth->getNumParams()) { |
| 12496 | if (const ReferenceType *RT = |
| 12497 | Meth->getParamDecl(i: 0)->getType()->getAs<ReferenceType>()) { |
| 12498 | ConstRHS = RT->getPointeeType().isConstQualified(); |
| 12499 | } |
| 12500 | } |
| 12501 | |
| 12502 | S.CUDA().inferTargetForImplicitSpecialMember(ClassDecl: ParentClass, CSM, MemberDecl: Meth, |
| 12503 | /* ConstRHS */ ConstRHS, |
| 12504 | /* Diagnose */ true); |
| 12505 | } |
| 12506 | } |
| 12507 | |
| 12508 | static void DiagnoseFailedEnableIfAttr(Sema &S, OverloadCandidate *Cand) { |
| 12509 | assert(Cand->Function && "Candidate must be a function" ); |
| 12510 | FunctionDecl *Callee = Cand->Function; |
| 12511 | EnableIfAttr *Attr = static_cast<EnableIfAttr*>(Cand->DeductionFailure.Data); |
| 12512 | |
| 12513 | S.Diag(Loc: Callee->getLocation(), |
| 12514 | DiagID: diag::note_ovl_candidate_disabled_by_function_cond_attr) |
| 12515 | << Attr->getCond()->getSourceRange() << Attr->getMessage(); |
| 12516 | } |
| 12517 | |
| 12518 | static void DiagnoseFailedExplicitSpec(Sema &S, OverloadCandidate *Cand) { |
| 12519 | assert(Cand->Function && "Candidate must be a function" ); |
| 12520 | FunctionDecl *Fn = Cand->Function; |
| 12521 | ExplicitSpecifier ES = ExplicitSpecifier::getFromDecl(Function: Fn); |
| 12522 | assert(ES.isExplicit() && "not an explicit candidate" ); |
| 12523 | |
| 12524 | unsigned Kind; |
| 12525 | switch (Fn->getDeclKind()) { |
| 12526 | case Decl::Kind::CXXConstructor: |
| 12527 | Kind = 0; |
| 12528 | break; |
| 12529 | case Decl::Kind::CXXConversion: |
| 12530 | Kind = 1; |
| 12531 | break; |
| 12532 | case Decl::Kind::CXXDeductionGuide: |
| 12533 | Kind = Fn->isImplicit() ? 0 : 2; |
| 12534 | break; |
| 12535 | default: |
| 12536 | llvm_unreachable("invalid Decl" ); |
| 12537 | } |
| 12538 | |
| 12539 | // Note the location of the first (in-class) declaration; a redeclaration |
| 12540 | // (particularly an out-of-class definition) will typically lack the |
| 12541 | // 'explicit' specifier. |
| 12542 | // FIXME: This is probably a good thing to do for all 'candidate' notes. |
| 12543 | FunctionDecl *First = Fn->getFirstDecl(); |
| 12544 | if (FunctionDecl *Pattern = First->getTemplateInstantiationPattern()) |
| 12545 | First = Pattern->getFirstDecl(); |
| 12546 | |
| 12547 | S.Diag(Loc: First->getLocation(), |
| 12548 | DiagID: diag::note_ovl_candidate_explicit) |
| 12549 | << Kind << (ES.getExpr() ? 1 : 0) |
| 12550 | << (ES.getExpr() ? ES.getExpr()->getSourceRange() : SourceRange()); |
| 12551 | } |
| 12552 | |
| 12553 | static void NoteImplicitDeductionGuide(Sema &S, FunctionDecl *Fn) { |
| 12554 | auto *DG = dyn_cast<CXXDeductionGuideDecl>(Val: Fn); |
| 12555 | if (!DG) |
| 12556 | return; |
| 12557 | TemplateDecl *OriginTemplate = |
| 12558 | DG->getDeclName().getCXXDeductionGuideTemplate(); |
| 12559 | // We want to always print synthesized deduction guides for type aliases. |
| 12560 | // They would retain the explicit bit of the corresponding constructor. |
| 12561 | if (!(DG->isImplicit() || (OriginTemplate && OriginTemplate->isTypeAlias()))) |
| 12562 | return; |
| 12563 | std::string FunctionProto; |
| 12564 | llvm::raw_string_ostream OS(FunctionProto); |
| 12565 | FunctionTemplateDecl *Template = DG->getDescribedFunctionTemplate(); |
| 12566 | if (!Template) { |
| 12567 | // This also could be an instantiation. Find out the primary template. |
| 12568 | FunctionDecl *Pattern = |
| 12569 | DG->getTemplateInstantiationPattern(/*ForDefinition=*/false); |
| 12570 | if (!Pattern) { |
| 12571 | // The implicit deduction guide is built on an explicit non-template |
| 12572 | // deduction guide. Currently, this might be the case only for type |
| 12573 | // aliases. |
| 12574 | // FIXME: Add a test once https://github.com/llvm/llvm-project/pull/96686 |
| 12575 | // gets merged. |
| 12576 | assert(OriginTemplate->isTypeAlias() && |
| 12577 | "Non-template implicit deduction guides are only possible for " |
| 12578 | "type aliases" ); |
| 12579 | DG->print(Out&: OS); |
| 12580 | S.Diag(Loc: DG->getLocation(), DiagID: diag::note_implicit_deduction_guide) |
| 12581 | << FunctionProto; |
| 12582 | return; |
| 12583 | } |
| 12584 | Template = Pattern->getDescribedFunctionTemplate(); |
| 12585 | assert(Template && "Cannot find the associated function template of " |
| 12586 | "CXXDeductionGuideDecl?" ); |
| 12587 | } |
| 12588 | Template->print(Out&: OS); |
| 12589 | S.Diag(Loc: DG->getLocation(), DiagID: diag::note_implicit_deduction_guide) |
| 12590 | << FunctionProto; |
| 12591 | } |
| 12592 | |
| 12593 | /// Generates a 'note' diagnostic for an overload candidate. We've |
| 12594 | /// already generated a primary error at the call site. |
| 12595 | /// |
| 12596 | /// It really does need to be a single diagnostic with its caret |
| 12597 | /// pointed at the candidate declaration. Yes, this creates some |
| 12598 | /// major challenges of technical writing. Yes, this makes pointing |
| 12599 | /// out problems with specific arguments quite awkward. It's still |
| 12600 | /// better than generating twenty screens of text for every failed |
| 12601 | /// overload. |
| 12602 | /// |
| 12603 | /// It would be great to be able to express per-candidate problems |
| 12604 | /// more richly for those diagnostic clients that cared, but we'd |
| 12605 | /// still have to be just as careful with the default diagnostics. |
| 12606 | /// \param CtorDestAS Addr space of object being constructed (for ctor |
| 12607 | /// candidates only). |
| 12608 | static void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, |
| 12609 | unsigned NumArgs, |
| 12610 | bool TakingCandidateAddress, |
| 12611 | LangAS CtorDestAS = LangAS::Default) { |
| 12612 | assert(Cand->Function && "Candidate must be a function" ); |
| 12613 | FunctionDecl *Fn = Cand->Function; |
| 12614 | if (shouldSkipNotingLambdaConversionDecl(Fn)) |
| 12615 | return; |
| 12616 | |
| 12617 | // There is no physical candidate declaration to point to for OpenCL builtins. |
| 12618 | // Except for failed conversions, the notes are identical for each candidate, |
| 12619 | // so do not generate such notes. |
| 12620 | if (S.getLangOpts().OpenCL && Fn->isImplicit() && |
| 12621 | Cand->FailureKind != ovl_fail_bad_conversion) |
| 12622 | return; |
| 12623 | |
| 12624 | // Skip implicit member functions when trying to resolve |
| 12625 | // the address of a an overload set for a function pointer. |
| 12626 | if (Cand->TookAddressOfOverload && |
| 12627 | !Fn->hasCXXExplicitFunctionObjectParameter() && !Fn->isStatic()) |
| 12628 | return; |
| 12629 | |
| 12630 | // Note deleted candidates, but only if they're viable. |
| 12631 | if (Cand->Viable) { |
| 12632 | if (Fn->isDeleted()) { |
| 12633 | std::string FnDesc; |
| 12634 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = |
| 12635 | ClassifyOverloadCandidate(S, Found: Cand->FoundDecl, Fn, |
| 12636 | CRK: Cand->getRewriteKind(), Description&: FnDesc); |
| 12637 | |
| 12638 | S.Diag(Loc: Fn->getLocation(), DiagID: diag::note_ovl_candidate_deleted) |
| 12639 | << (unsigned)FnKindPair.first << (unsigned)FnKindPair.second << FnDesc |
| 12640 | << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0); |
| 12641 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Cand->FoundDecl); |
| 12642 | return; |
| 12643 | } |
| 12644 | |
| 12645 | // We don't really have anything else to say about viable candidates. |
| 12646 | S.NoteOverloadCandidate(Found: Cand->FoundDecl, Fn, RewriteKind: Cand->getRewriteKind()); |
| 12647 | return; |
| 12648 | } |
| 12649 | |
| 12650 | // If this is a synthesized deduction guide we're deducing against, add a note |
| 12651 | // for it. These deduction guides are not explicitly spelled in the source |
| 12652 | // code, so simply printing a deduction failure note mentioning synthesized |
| 12653 | // template parameters or pointing to the header of the surrounding RecordDecl |
| 12654 | // would be confusing. |
| 12655 | // |
| 12656 | // We prefer adding such notes at the end of the deduction failure because |
| 12657 | // duplicate code snippets appearing in the diagnostic would likely become |
| 12658 | // noisy. |
| 12659 | auto _ = llvm::make_scope_exit(F: [&] { NoteImplicitDeductionGuide(S, Fn); }); |
| 12660 | |
| 12661 | switch (Cand->FailureKind) { |
| 12662 | case ovl_fail_too_many_arguments: |
| 12663 | case ovl_fail_too_few_arguments: |
| 12664 | return DiagnoseArityMismatch(S, Cand, NumFormalArgs: NumArgs); |
| 12665 | |
| 12666 | case ovl_fail_bad_deduction: |
| 12667 | return DiagnoseBadDeduction(S, Cand, NumArgs, |
| 12668 | TakingCandidateAddress); |
| 12669 | |
| 12670 | case ovl_fail_illegal_constructor: { |
| 12671 | S.Diag(Loc: Fn->getLocation(), DiagID: diag::note_ovl_candidate_illegal_constructor) |
| 12672 | << (Fn->getPrimaryTemplate() ? 1 : 0); |
| 12673 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Cand->FoundDecl); |
| 12674 | return; |
| 12675 | } |
| 12676 | |
| 12677 | case ovl_fail_object_addrspace_mismatch: { |
| 12678 | Qualifiers QualsForPrinting; |
| 12679 | QualsForPrinting.setAddressSpace(CtorDestAS); |
| 12680 | S.Diag(Loc: Fn->getLocation(), |
| 12681 | DiagID: diag::note_ovl_candidate_illegal_constructor_adrspace_mismatch) |
| 12682 | << QualsForPrinting; |
| 12683 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Cand->FoundDecl); |
| 12684 | return; |
| 12685 | } |
| 12686 | |
| 12687 | case ovl_fail_trivial_conversion: |
| 12688 | case ovl_fail_bad_final_conversion: |
| 12689 | case ovl_fail_final_conversion_not_exact: |
| 12690 | return S.NoteOverloadCandidate(Found: Cand->FoundDecl, Fn, RewriteKind: Cand->getRewriteKind()); |
| 12691 | |
| 12692 | case ovl_fail_bad_conversion: { |
| 12693 | unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); |
| 12694 | for (unsigned N = Cand->Conversions.size(); I != N; ++I) |
| 12695 | if (Cand->Conversions[I].isInitialized() && Cand->Conversions[I].isBad()) |
| 12696 | return DiagnoseBadConversion(S, Cand, I, TakingCandidateAddress); |
| 12697 | |
| 12698 | // FIXME: this currently happens when we're called from SemaInit |
| 12699 | // when user-conversion overload fails. Figure out how to handle |
| 12700 | // those conditions and diagnose them well. |
| 12701 | return S.NoteOverloadCandidate(Found: Cand->FoundDecl, Fn, RewriteKind: Cand->getRewriteKind()); |
| 12702 | } |
| 12703 | |
| 12704 | case ovl_fail_bad_target: |
| 12705 | return DiagnoseBadTarget(S, Cand); |
| 12706 | |
| 12707 | case ovl_fail_enable_if: |
| 12708 | return DiagnoseFailedEnableIfAttr(S, Cand); |
| 12709 | |
| 12710 | case ovl_fail_explicit: |
| 12711 | return DiagnoseFailedExplicitSpec(S, Cand); |
| 12712 | |
| 12713 | case ovl_fail_inhctor_slice: |
| 12714 | // It's generally not interesting to note copy/move constructors here. |
| 12715 | if (cast<CXXConstructorDecl>(Val: Fn)->isCopyOrMoveConstructor()) |
| 12716 | return; |
| 12717 | S.Diag(Loc: Fn->getLocation(), |
| 12718 | DiagID: diag::note_ovl_candidate_inherited_constructor_slice) |
| 12719 | << (Fn->getPrimaryTemplate() ? 1 : 0) |
| 12720 | << Fn->getParamDecl(i: 0)->getType()->isRValueReferenceType(); |
| 12721 | MaybeEmitInheritedConstructorNote(S, FoundDecl: Cand->FoundDecl); |
| 12722 | return; |
| 12723 | |
| 12724 | case ovl_fail_addr_not_available: { |
| 12725 | bool Available = checkAddressOfCandidateIsAvailable(S, FD: Fn); |
| 12726 | (void)Available; |
| 12727 | assert(!Available); |
| 12728 | break; |
| 12729 | } |
| 12730 | case ovl_non_default_multiversion_function: |
| 12731 | // Do nothing, these should simply be ignored. |
| 12732 | break; |
| 12733 | |
| 12734 | case ovl_fail_constraints_not_satisfied: { |
| 12735 | std::string FnDesc; |
| 12736 | std::pair<OverloadCandidateKind, OverloadCandidateSelect> FnKindPair = |
| 12737 | ClassifyOverloadCandidate(S, Found: Cand->FoundDecl, Fn, |
| 12738 | CRK: Cand->getRewriteKind(), Description&: FnDesc); |
| 12739 | |
| 12740 | S.Diag(Loc: Fn->getLocation(), |
| 12741 | DiagID: diag::note_ovl_candidate_constraints_not_satisfied) |
| 12742 | << (unsigned)FnKindPair.first << (unsigned)ocs_non_template |
| 12743 | << FnDesc /* Ignored */; |
| 12744 | ConstraintSatisfaction Satisfaction; |
| 12745 | if (S.CheckFunctionConstraints(FD: Fn, Satisfaction)) |
| 12746 | break; |
| 12747 | S.DiagnoseUnsatisfiedConstraint(Satisfaction); |
| 12748 | } |
| 12749 | } |
| 12750 | } |
| 12751 | |
| 12752 | static void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { |
| 12753 | if (shouldSkipNotingLambdaConversionDecl(Fn: Cand->Surrogate)) |
| 12754 | return; |
| 12755 | |
| 12756 | // Desugar the type of the surrogate down to a function type, |
| 12757 | // retaining as many typedefs as possible while still showing |
| 12758 | // the function type (and, therefore, its parameter types). |
| 12759 | QualType FnType = Cand->Surrogate->getConversionType(); |
| 12760 | bool isLValueReference = false; |
| 12761 | bool isRValueReference = false; |
| 12762 | bool isPointer = false; |
| 12763 | if (const LValueReferenceType *FnTypeRef = |
| 12764 | FnType->getAs<LValueReferenceType>()) { |
| 12765 | FnType = FnTypeRef->getPointeeType(); |
| 12766 | isLValueReference = true; |
| 12767 | } else if (const RValueReferenceType *FnTypeRef = |
| 12768 | FnType->getAs<RValueReferenceType>()) { |
| 12769 | FnType = FnTypeRef->getPointeeType(); |
| 12770 | isRValueReference = true; |
| 12771 | } |
| 12772 | if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { |
| 12773 | FnType = FnTypePtr->getPointeeType(); |
| 12774 | isPointer = true; |
| 12775 | } |
| 12776 | // Desugar down to a function type. |
| 12777 | FnType = QualType(FnType->getAs<FunctionType>(), 0); |
| 12778 | // Reconstruct the pointer/reference as appropriate. |
| 12779 | if (isPointer) FnType = S.Context.getPointerType(T: FnType); |
| 12780 | if (isRValueReference) FnType = S.Context.getRValueReferenceType(T: FnType); |
| 12781 | if (isLValueReference) FnType = S.Context.getLValueReferenceType(T: FnType); |
| 12782 | |
| 12783 | if (!Cand->Viable && |
| 12784 | Cand->FailureKind == ovl_fail_constraints_not_satisfied) { |
| 12785 | S.Diag(Loc: Cand->Surrogate->getLocation(), |
| 12786 | DiagID: diag::note_ovl_surrogate_constraints_not_satisfied) |
| 12787 | << Cand->Surrogate; |
| 12788 | ConstraintSatisfaction Satisfaction; |
| 12789 | if (S.CheckFunctionConstraints(FD: Cand->Surrogate, Satisfaction)) |
| 12790 | S.DiagnoseUnsatisfiedConstraint(Satisfaction); |
| 12791 | } else { |
| 12792 | S.Diag(Loc: Cand->Surrogate->getLocation(), DiagID: diag::note_ovl_surrogate_cand) |
| 12793 | << FnType; |
| 12794 | } |
| 12795 | } |
| 12796 | |
| 12797 | static void NoteBuiltinOperatorCandidate(Sema &S, StringRef Opc, |
| 12798 | SourceLocation OpLoc, |
| 12799 | OverloadCandidate *Cand) { |
| 12800 | assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary" ); |
| 12801 | std::string TypeStr("operator" ); |
| 12802 | TypeStr += Opc; |
| 12803 | TypeStr += "(" ; |
| 12804 | TypeStr += Cand->BuiltinParamTypes[0].getAsString(); |
| 12805 | if (Cand->Conversions.size() == 1) { |
| 12806 | TypeStr += ")" ; |
| 12807 | S.Diag(Loc: OpLoc, DiagID: diag::note_ovl_builtin_candidate) << TypeStr; |
| 12808 | } else { |
| 12809 | TypeStr += ", " ; |
| 12810 | TypeStr += Cand->BuiltinParamTypes[1].getAsString(); |
| 12811 | TypeStr += ")" ; |
| 12812 | S.Diag(Loc: OpLoc, DiagID: diag::note_ovl_builtin_candidate) << TypeStr; |
| 12813 | } |
| 12814 | } |
| 12815 | |
| 12816 | static void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, |
| 12817 | OverloadCandidate *Cand) { |
| 12818 | for (const ImplicitConversionSequence &ICS : Cand->Conversions) { |
| 12819 | if (ICS.isBad()) break; // all meaningless after first invalid |
| 12820 | if (!ICS.isAmbiguous()) continue; |
| 12821 | |
| 12822 | ICS.DiagnoseAmbiguousConversion( |
| 12823 | S, CaretLoc: OpLoc, PDiag: S.PDiag(DiagID: diag::note_ambiguous_type_conversion)); |
| 12824 | } |
| 12825 | } |
| 12826 | |
| 12827 | static SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { |
| 12828 | if (Cand->Function) |
| 12829 | return Cand->Function->getLocation(); |
| 12830 | if (Cand->IsSurrogate) |
| 12831 | return Cand->Surrogate->getLocation(); |
| 12832 | return SourceLocation(); |
| 12833 | } |
| 12834 | |
| 12835 | static unsigned RankDeductionFailure(const DeductionFailureInfo &DFI) { |
| 12836 | switch (static_cast<TemplateDeductionResult>(DFI.Result)) { |
| 12837 | case TemplateDeductionResult::Success: |
| 12838 | case TemplateDeductionResult::NonDependentConversionFailure: |
| 12839 | case TemplateDeductionResult::AlreadyDiagnosed: |
| 12840 | llvm_unreachable("non-deduction failure while diagnosing bad deduction" ); |
| 12841 | |
| 12842 | case TemplateDeductionResult::Invalid: |
| 12843 | case TemplateDeductionResult::Incomplete: |
| 12844 | case TemplateDeductionResult::IncompletePack: |
| 12845 | return 1; |
| 12846 | |
| 12847 | case TemplateDeductionResult::Underqualified: |
| 12848 | case TemplateDeductionResult::Inconsistent: |
| 12849 | return 2; |
| 12850 | |
| 12851 | case TemplateDeductionResult::SubstitutionFailure: |
| 12852 | case TemplateDeductionResult::DeducedMismatch: |
| 12853 | case TemplateDeductionResult::ConstraintsNotSatisfied: |
| 12854 | case TemplateDeductionResult::DeducedMismatchNested: |
| 12855 | case TemplateDeductionResult::NonDeducedMismatch: |
| 12856 | case TemplateDeductionResult::MiscellaneousDeductionFailure: |
| 12857 | case TemplateDeductionResult::CUDATargetMismatch: |
| 12858 | return 3; |
| 12859 | |
| 12860 | case TemplateDeductionResult::InstantiationDepth: |
| 12861 | return 4; |
| 12862 | |
| 12863 | case TemplateDeductionResult::InvalidExplicitArguments: |
| 12864 | return 5; |
| 12865 | |
| 12866 | case TemplateDeductionResult::TooManyArguments: |
| 12867 | case TemplateDeductionResult::TooFewArguments: |
| 12868 | return 6; |
| 12869 | } |
| 12870 | llvm_unreachable("Unhandled deduction result" ); |
| 12871 | } |
| 12872 | |
| 12873 | namespace { |
| 12874 | |
| 12875 | struct CompareOverloadCandidatesForDisplay { |
| 12876 | Sema &S; |
| 12877 | SourceLocation Loc; |
| 12878 | size_t NumArgs; |
| 12879 | OverloadCandidateSet::CandidateSetKind CSK; |
| 12880 | |
| 12881 | CompareOverloadCandidatesForDisplay( |
| 12882 | Sema &S, SourceLocation Loc, size_t NArgs, |
| 12883 | OverloadCandidateSet::CandidateSetKind CSK) |
| 12884 | : S(S), NumArgs(NArgs), CSK(CSK) {} |
| 12885 | |
| 12886 | OverloadFailureKind EffectiveFailureKind(const OverloadCandidate *C) const { |
| 12887 | // If there are too many or too few arguments, that's the high-order bit we |
| 12888 | // want to sort by, even if the immediate failure kind was something else. |
| 12889 | if (C->FailureKind == ovl_fail_too_many_arguments || |
| 12890 | C->FailureKind == ovl_fail_too_few_arguments) |
| 12891 | return static_cast<OverloadFailureKind>(C->FailureKind); |
| 12892 | |
| 12893 | if (C->Function) { |
| 12894 | if (NumArgs > C->Function->getNumParams() && !C->Function->isVariadic()) |
| 12895 | return ovl_fail_too_many_arguments; |
| 12896 | if (NumArgs < C->Function->getMinRequiredArguments()) |
| 12897 | return ovl_fail_too_few_arguments; |
| 12898 | } |
| 12899 | |
| 12900 | return static_cast<OverloadFailureKind>(C->FailureKind); |
| 12901 | } |
| 12902 | |
| 12903 | bool operator()(const OverloadCandidate *L, |
| 12904 | const OverloadCandidate *R) { |
| 12905 | // Fast-path this check. |
| 12906 | if (L == R) return false; |
| 12907 | |
| 12908 | // Order first by viability. |
| 12909 | if (L->Viable) { |
| 12910 | if (!R->Viable) return true; |
| 12911 | |
| 12912 | if (int Ord = CompareConversions(L: *L, R: *R)) |
| 12913 | return Ord < 0; |
| 12914 | // Use other tie breakers. |
| 12915 | } else if (R->Viable) |
| 12916 | return false; |
| 12917 | |
| 12918 | assert(L->Viable == R->Viable); |
| 12919 | |
| 12920 | // Criteria by which we can sort non-viable candidates: |
| 12921 | if (!L->Viable) { |
| 12922 | OverloadFailureKind LFailureKind = EffectiveFailureKind(C: L); |
| 12923 | OverloadFailureKind RFailureKind = EffectiveFailureKind(C: R); |
| 12924 | |
| 12925 | // 1. Arity mismatches come after other candidates. |
| 12926 | if (LFailureKind == ovl_fail_too_many_arguments || |
| 12927 | LFailureKind == ovl_fail_too_few_arguments) { |
| 12928 | if (RFailureKind == ovl_fail_too_many_arguments || |
| 12929 | RFailureKind == ovl_fail_too_few_arguments) { |
| 12930 | int LDist = std::abs(x: (int)L->getNumParams() - (int)NumArgs); |
| 12931 | int RDist = std::abs(x: (int)R->getNumParams() - (int)NumArgs); |
| 12932 | if (LDist == RDist) { |
| 12933 | if (LFailureKind == RFailureKind) |
| 12934 | // Sort non-surrogates before surrogates. |
| 12935 | return !L->IsSurrogate && R->IsSurrogate; |
| 12936 | // Sort candidates requiring fewer parameters than there were |
| 12937 | // arguments given after candidates requiring more parameters |
| 12938 | // than there were arguments given. |
| 12939 | return LFailureKind == ovl_fail_too_many_arguments; |
| 12940 | } |
| 12941 | return LDist < RDist; |
| 12942 | } |
| 12943 | return false; |
| 12944 | } |
| 12945 | if (RFailureKind == ovl_fail_too_many_arguments || |
| 12946 | RFailureKind == ovl_fail_too_few_arguments) |
| 12947 | return true; |
| 12948 | |
| 12949 | // 2. Bad conversions come first and are ordered by the number |
| 12950 | // of bad conversions and quality of good conversions. |
| 12951 | if (LFailureKind == ovl_fail_bad_conversion) { |
| 12952 | if (RFailureKind != ovl_fail_bad_conversion) |
| 12953 | return true; |
| 12954 | |
| 12955 | // The conversion that can be fixed with a smaller number of changes, |
| 12956 | // comes first. |
| 12957 | unsigned numLFixes = L->Fix.NumConversionsFixed; |
| 12958 | unsigned numRFixes = R->Fix.NumConversionsFixed; |
| 12959 | numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes; |
| 12960 | numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes; |
| 12961 | if (numLFixes != numRFixes) { |
| 12962 | return numLFixes < numRFixes; |
| 12963 | } |
| 12964 | |
| 12965 | // If there's any ordering between the defined conversions... |
| 12966 | if (int Ord = CompareConversions(L: *L, R: *R)) |
| 12967 | return Ord < 0; |
| 12968 | } else if (RFailureKind == ovl_fail_bad_conversion) |
| 12969 | return false; |
| 12970 | |
| 12971 | if (LFailureKind == ovl_fail_bad_deduction) { |
| 12972 | if (RFailureKind != ovl_fail_bad_deduction) |
| 12973 | return true; |
| 12974 | |
| 12975 | if (L->DeductionFailure.Result != R->DeductionFailure.Result) { |
| 12976 | unsigned LRank = RankDeductionFailure(DFI: L->DeductionFailure); |
| 12977 | unsigned RRank = RankDeductionFailure(DFI: R->DeductionFailure); |
| 12978 | if (LRank != RRank) |
| 12979 | return LRank < RRank; |
| 12980 | } |
| 12981 | } else if (RFailureKind == ovl_fail_bad_deduction) |
| 12982 | return false; |
| 12983 | |
| 12984 | // TODO: others? |
| 12985 | } |
| 12986 | |
| 12987 | // Sort everything else by location. |
| 12988 | SourceLocation LLoc = GetLocationForCandidate(Cand: L); |
| 12989 | SourceLocation RLoc = GetLocationForCandidate(Cand: R); |
| 12990 | |
| 12991 | // Put candidates without locations (e.g. builtins) at the end. |
| 12992 | if (LLoc.isValid() && RLoc.isValid()) |
| 12993 | return S.SourceMgr.isBeforeInTranslationUnit(LHS: LLoc, RHS: RLoc); |
| 12994 | if (LLoc.isValid() && !RLoc.isValid()) |
| 12995 | return true; |
| 12996 | if (RLoc.isValid() && !LLoc.isValid()) |
| 12997 | return false; |
| 12998 | assert(!LLoc.isValid() && !RLoc.isValid()); |
| 12999 | // For builtins and other functions without locations, fallback to the order |
| 13000 | // in which they were added into the candidate set. |
| 13001 | return L < R; |
| 13002 | } |
| 13003 | |
| 13004 | private: |
| 13005 | struct ConversionSignals { |
| 13006 | unsigned KindRank = 0; |
| 13007 | ImplicitConversionRank Rank = ICR_Exact_Match; |
| 13008 | |
| 13009 | static ConversionSignals ForSequence(ImplicitConversionSequence &Seq) { |
| 13010 | ConversionSignals Sig; |
| 13011 | Sig.KindRank = Seq.getKindRank(); |
| 13012 | if (Seq.isStandard()) |
| 13013 | Sig.Rank = Seq.Standard.getRank(); |
| 13014 | else if (Seq.isUserDefined()) |
| 13015 | Sig.Rank = Seq.UserDefined.After.getRank(); |
| 13016 | // We intend StaticObjectArgumentConversion to compare the same as |
| 13017 | // StandardConversion with ICR_ExactMatch rank. |
| 13018 | return Sig; |
| 13019 | } |
| 13020 | |
| 13021 | static ConversionSignals ForObjectArgument() { |
| 13022 | // We intend StaticObjectArgumentConversion to compare the same as |
| 13023 | // StandardConversion with ICR_ExactMatch rank. Default give us that. |
| 13024 | return {}; |
| 13025 | } |
| 13026 | }; |
| 13027 | |
| 13028 | // Returns -1 if conversions in L are considered better. |
| 13029 | // 0 if they are considered indistinguishable. |
| 13030 | // 1 if conversions in R are better. |
| 13031 | int CompareConversions(const OverloadCandidate &L, |
| 13032 | const OverloadCandidate &R) { |
| 13033 | // We cannot use `isBetterOverloadCandidate` because it is defined |
| 13034 | // according to the C++ standard and provides a partial order, but we need |
| 13035 | // a total order as this function is used in sort. |
| 13036 | assert(L.Conversions.size() == R.Conversions.size()); |
| 13037 | for (unsigned I = 0, N = L.Conversions.size(); I != N; ++I) { |
| 13038 | auto LS = L.IgnoreObjectArgument && I == 0 |
| 13039 | ? ConversionSignals::ForObjectArgument() |
| 13040 | : ConversionSignals::ForSequence(Seq&: L.Conversions[I]); |
| 13041 | auto RS = R.IgnoreObjectArgument |
| 13042 | ? ConversionSignals::ForObjectArgument() |
| 13043 | : ConversionSignals::ForSequence(Seq&: R.Conversions[I]); |
| 13044 | if (std::tie(args&: LS.KindRank, args&: LS.Rank) != std::tie(args&: RS.KindRank, args&: RS.Rank)) |
| 13045 | return std::tie(args&: LS.KindRank, args&: LS.Rank) < std::tie(args&: RS.KindRank, args&: RS.Rank) |
| 13046 | ? -1 |
| 13047 | : 1; |
| 13048 | } |
| 13049 | // FIXME: find a way to compare templates for being more or less |
| 13050 | // specialized that provides a strict weak ordering. |
| 13051 | return 0; |
| 13052 | } |
| 13053 | }; |
| 13054 | } |
| 13055 | |
| 13056 | /// CompleteNonViableCandidate - Normally, overload resolution only |
| 13057 | /// computes up to the first bad conversion. Produces the FixIt set if |
| 13058 | /// possible. |
| 13059 | static void |
| 13060 | CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, |
| 13061 | ArrayRef<Expr *> Args, |
| 13062 | OverloadCandidateSet::CandidateSetKind CSK) { |
| 13063 | assert(!Cand->Viable); |
| 13064 | |
| 13065 | // Don't do anything on failures other than bad conversion. |
| 13066 | if (Cand->FailureKind != ovl_fail_bad_conversion) |
| 13067 | return; |
| 13068 | |
| 13069 | // We only want the FixIts if all the arguments can be corrected. |
| 13070 | bool Unfixable = false; |
| 13071 | // Use a implicit copy initialization to check conversion fixes. |
| 13072 | Cand->Fix.setConversionChecker(TryCopyInitialization); |
| 13073 | |
| 13074 | // Attempt to fix the bad conversion. |
| 13075 | unsigned ConvCount = Cand->Conversions.size(); |
| 13076 | for (unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); /**/; |
| 13077 | ++ConvIdx) { |
| 13078 | assert(ConvIdx != ConvCount && "no bad conversion in candidate" ); |
| 13079 | if (Cand->Conversions[ConvIdx].isInitialized() && |
| 13080 | Cand->Conversions[ConvIdx].isBad()) { |
| 13081 | Unfixable = !Cand->TryToFixBadConversion(Idx: ConvIdx, S); |
| 13082 | break; |
| 13083 | } |
| 13084 | } |
| 13085 | |
| 13086 | // FIXME: this should probably be preserved from the overload |
| 13087 | // operation somehow. |
| 13088 | bool SuppressUserConversions = false; |
| 13089 | |
| 13090 | unsigned ConvIdx = 0; |
| 13091 | unsigned ArgIdx = 0; |
| 13092 | ArrayRef<QualType> ParamTypes; |
| 13093 | bool Reversed = Cand->isReversed(); |
| 13094 | |
| 13095 | if (Cand->IsSurrogate) { |
| 13096 | QualType ConvType |
| 13097 | = Cand->Surrogate->getConversionType().getNonReferenceType(); |
| 13098 | if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) |
| 13099 | ConvType = ConvPtrType->getPointeeType(); |
| 13100 | ParamTypes = ConvType->castAs<FunctionProtoType>()->getParamTypes(); |
| 13101 | // Conversion 0 is 'this', which doesn't have a corresponding parameter. |
| 13102 | ConvIdx = 1; |
| 13103 | } else if (Cand->Function) { |
| 13104 | ParamTypes = |
| 13105 | Cand->Function->getType()->castAs<FunctionProtoType>()->getParamTypes(); |
| 13106 | if (isa<CXXMethodDecl>(Val: Cand->Function) && |
| 13107 | !isa<CXXConstructorDecl>(Val: Cand->Function) && !Reversed) { |
| 13108 | // Conversion 0 is 'this', which doesn't have a corresponding parameter. |
| 13109 | ConvIdx = 1; |
| 13110 | if (CSK == OverloadCandidateSet::CSK_Operator && |
| 13111 | Cand->Function->getDeclName().getCXXOverloadedOperator() != OO_Call && |
| 13112 | Cand->Function->getDeclName().getCXXOverloadedOperator() != |
| 13113 | OO_Subscript) |
| 13114 | // Argument 0 is 'this', which doesn't have a corresponding parameter. |
| 13115 | ArgIdx = 1; |
| 13116 | } |
| 13117 | } else { |
| 13118 | // Builtin operator. |
| 13119 | assert(ConvCount <= 3); |
| 13120 | ParamTypes = Cand->BuiltinParamTypes; |
| 13121 | } |
| 13122 | |
| 13123 | // Fill in the rest of the conversions. |
| 13124 | for (unsigned ParamIdx = Reversed ? ParamTypes.size() - 1 : 0; |
| 13125 | ConvIdx != ConvCount; |
| 13126 | ++ConvIdx, ++ArgIdx, ParamIdx += (Reversed ? -1 : 1)) { |
| 13127 | assert(ArgIdx < Args.size() && "no argument for this arg conversion" ); |
| 13128 | if (Cand->Conversions[ConvIdx].isInitialized()) { |
| 13129 | // We've already checked this conversion. |
| 13130 | } else if (ParamIdx < ParamTypes.size()) { |
| 13131 | if (ParamTypes[ParamIdx]->isDependentType()) |
| 13132 | Cand->Conversions[ConvIdx].setAsIdentityConversion( |
| 13133 | Args[ArgIdx]->getType()); |
| 13134 | else { |
| 13135 | Cand->Conversions[ConvIdx] = |
| 13136 | TryCopyInitialization(S, From: Args[ArgIdx], ToType: ParamTypes[ParamIdx], |
| 13137 | SuppressUserConversions, |
| 13138 | /*InOverloadResolution=*/true, |
| 13139 | /*AllowObjCWritebackConversion=*/ |
| 13140 | S.getLangOpts().ObjCAutoRefCount); |
| 13141 | // Store the FixIt in the candidate if it exists. |
| 13142 | if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) |
| 13143 | Unfixable = !Cand->TryToFixBadConversion(Idx: ConvIdx, S); |
| 13144 | } |
| 13145 | } else |
| 13146 | Cand->Conversions[ConvIdx].setEllipsis(); |
| 13147 | } |
| 13148 | } |
| 13149 | |
| 13150 | SmallVector<OverloadCandidate *, 32> OverloadCandidateSet::CompleteCandidates( |
| 13151 | Sema &S, OverloadCandidateDisplayKind OCD, ArrayRef<Expr *> Args, |
| 13152 | SourceLocation OpLoc, |
| 13153 | llvm::function_ref<bool(OverloadCandidate &)> Filter) { |
| 13154 | |
| 13155 | InjectNonDeducedTemplateCandidates(S); |
| 13156 | |
| 13157 | // Sort the candidates by viability and position. Sorting directly would |
| 13158 | // be prohibitive, so we make a set of pointers and sort those. |
| 13159 | SmallVector<OverloadCandidate*, 32> Cands; |
| 13160 | if (OCD == OCD_AllCandidates) Cands.reserve(N: size()); |
| 13161 | for (iterator Cand = Candidates.begin(), LastCand = Candidates.end(); |
| 13162 | Cand != LastCand; ++Cand) { |
| 13163 | if (!Filter(*Cand)) |
| 13164 | continue; |
| 13165 | switch (OCD) { |
| 13166 | case OCD_AllCandidates: |
| 13167 | if (!Cand->Viable) { |
| 13168 | if (!Cand->Function && !Cand->IsSurrogate) { |
| 13169 | // This a non-viable builtin candidate. We do not, in general, |
| 13170 | // want to list every possible builtin candidate. |
| 13171 | continue; |
| 13172 | } |
| 13173 | CompleteNonViableCandidate(S, Cand, Args, CSK: Kind); |
| 13174 | } |
| 13175 | break; |
| 13176 | |
| 13177 | case OCD_ViableCandidates: |
| 13178 | if (!Cand->Viable) |
| 13179 | continue; |
| 13180 | break; |
| 13181 | |
| 13182 | case OCD_AmbiguousCandidates: |
| 13183 | if (!Cand->Best) |
| 13184 | continue; |
| 13185 | break; |
| 13186 | } |
| 13187 | |
| 13188 | Cands.push_back(Elt: Cand); |
| 13189 | } |
| 13190 | |
| 13191 | llvm::stable_sort( |
| 13192 | Range&: Cands, C: CompareOverloadCandidatesForDisplay(S, OpLoc, Args.size(), Kind)); |
| 13193 | |
| 13194 | return Cands; |
| 13195 | } |
| 13196 | |
| 13197 | bool OverloadCandidateSet::shouldDeferDiags(Sema &S, ArrayRef<Expr *> Args, |
| 13198 | SourceLocation OpLoc) { |
| 13199 | bool DeferHint = false; |
| 13200 | if (S.getLangOpts().CUDA && S.getLangOpts().GPUDeferDiag) { |
| 13201 | // Defer diagnostic for CUDA/HIP if there are wrong-sided candidates or |
| 13202 | // host device candidates. |
| 13203 | auto WrongSidedCands = |
| 13204 | CompleteCandidates(S, OCD: OCD_AllCandidates, Args, OpLoc, Filter: [](auto &Cand) { |
| 13205 | return (Cand.Viable == false && |
| 13206 | Cand.FailureKind == ovl_fail_bad_target) || |
| 13207 | (Cand.Function && |
| 13208 | Cand.Function->template hasAttr<CUDAHostAttr>() && |
| 13209 | Cand.Function->template hasAttr<CUDADeviceAttr>()); |
| 13210 | }); |
| 13211 | DeferHint = !WrongSidedCands.empty(); |
| 13212 | } |
| 13213 | return DeferHint; |
| 13214 | } |
| 13215 | |
| 13216 | /// When overload resolution fails, prints diagnostic messages containing the |
| 13217 | /// candidates in the candidate set. |
| 13218 | void OverloadCandidateSet::NoteCandidates( |
| 13219 | PartialDiagnosticAt PD, Sema &S, OverloadCandidateDisplayKind OCD, |
| 13220 | ArrayRef<Expr *> Args, StringRef Opc, SourceLocation OpLoc, |
| 13221 | llvm::function_ref<bool(OverloadCandidate &)> Filter) { |
| 13222 | |
| 13223 | auto Cands = CompleteCandidates(S, OCD, Args, OpLoc, Filter); |
| 13224 | |
| 13225 | S.Diag(Loc: PD.first, PD: PD.second, DeferHint: shouldDeferDiags(S, Args, OpLoc)); |
| 13226 | |
| 13227 | // In WebAssembly we don't want to emit further diagnostics if a table is |
| 13228 | // passed as an argument to a function. |
| 13229 | bool NoteCands = true; |
| 13230 | for (const Expr *Arg : Args) { |
| 13231 | if (Arg->getType()->isWebAssemblyTableType()) |
| 13232 | NoteCands = false; |
| 13233 | } |
| 13234 | |
| 13235 | if (NoteCands) |
| 13236 | NoteCandidates(S, Args, Cands, Opc, OpLoc); |
| 13237 | |
| 13238 | if (OCD == OCD_AmbiguousCandidates) |
| 13239 | MaybeDiagnoseAmbiguousConstraints(S, |
| 13240 | Cands: {Candidates.begin(), Candidates.end()}); |
| 13241 | } |
| 13242 | |
| 13243 | void OverloadCandidateSet::NoteCandidates(Sema &S, ArrayRef<Expr *> Args, |
| 13244 | ArrayRef<OverloadCandidate *> Cands, |
| 13245 | StringRef Opc, SourceLocation OpLoc) { |
| 13246 | bool ReportedAmbiguousConversions = false; |
| 13247 | |
| 13248 | const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); |
| 13249 | unsigned CandsShown = 0; |
| 13250 | auto I = Cands.begin(), E = Cands.end(); |
| 13251 | for (; I != E; ++I) { |
| 13252 | OverloadCandidate *Cand = *I; |
| 13253 | |
| 13254 | if (CandsShown >= S.Diags.getNumOverloadCandidatesToShow() && |
| 13255 | ShowOverloads == Ovl_Best) { |
| 13256 | break; |
| 13257 | } |
| 13258 | ++CandsShown; |
| 13259 | |
| 13260 | if (Cand->Function) |
| 13261 | NoteFunctionCandidate(S, Cand, NumArgs: Args.size(), |
| 13262 | /*TakingCandidateAddress=*/false, CtorDestAS: DestAS); |
| 13263 | else if (Cand->IsSurrogate) |
| 13264 | NoteSurrogateCandidate(S, Cand); |
| 13265 | else { |
| 13266 | assert(Cand->Viable && |
| 13267 | "Non-viable built-in candidates are not added to Cands." ); |
| 13268 | // Generally we only see ambiguities including viable builtin |
| 13269 | // operators if overload resolution got screwed up by an |
| 13270 | // ambiguous user-defined conversion. |
| 13271 | // |
| 13272 | // FIXME: It's quite possible for different conversions to see |
| 13273 | // different ambiguities, though. |
| 13274 | if (!ReportedAmbiguousConversions) { |
| 13275 | NoteAmbiguousUserConversions(S, OpLoc, Cand); |
| 13276 | ReportedAmbiguousConversions = true; |
| 13277 | } |
| 13278 | |
| 13279 | // If this is a viable builtin, print it. |
| 13280 | NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); |
| 13281 | } |
| 13282 | } |
| 13283 | |
| 13284 | // Inform S.Diags that we've shown an overload set with N elements. This may |
| 13285 | // inform the future value of S.Diags.getNumOverloadCandidatesToShow(). |
| 13286 | S.Diags.overloadCandidatesShown(N: CandsShown); |
| 13287 | |
| 13288 | if (I != E) |
| 13289 | S.Diag(Loc: OpLoc, DiagID: diag::note_ovl_too_many_candidates, |
| 13290 | DeferHint: shouldDeferDiags(S, Args, OpLoc)) |
| 13291 | << int(E - I); |
| 13292 | } |
| 13293 | |
| 13294 | static SourceLocation |
| 13295 | GetLocationForCandidate(const TemplateSpecCandidate *Cand) { |
| 13296 | return Cand->Specialization ? Cand->Specialization->getLocation() |
| 13297 | : SourceLocation(); |
| 13298 | } |
| 13299 | |
| 13300 | namespace { |
| 13301 | struct CompareTemplateSpecCandidatesForDisplay { |
| 13302 | Sema &S; |
| 13303 | CompareTemplateSpecCandidatesForDisplay(Sema &S) : S(S) {} |
| 13304 | |
| 13305 | bool operator()(const TemplateSpecCandidate *L, |
| 13306 | const TemplateSpecCandidate *R) { |
| 13307 | // Fast-path this check. |
| 13308 | if (L == R) |
| 13309 | return false; |
| 13310 | |
| 13311 | // Assuming that both candidates are not matches... |
| 13312 | |
| 13313 | // Sort by the ranking of deduction failures. |
| 13314 | if (L->DeductionFailure.Result != R->DeductionFailure.Result) |
| 13315 | return RankDeductionFailure(DFI: L->DeductionFailure) < |
| 13316 | RankDeductionFailure(DFI: R->DeductionFailure); |
| 13317 | |
| 13318 | // Sort everything else by location. |
| 13319 | SourceLocation LLoc = GetLocationForCandidate(Cand: L); |
| 13320 | SourceLocation RLoc = GetLocationForCandidate(Cand: R); |
| 13321 | |
| 13322 | // Put candidates without locations (e.g. builtins) at the end. |
| 13323 | if (LLoc.isInvalid()) |
| 13324 | return false; |
| 13325 | if (RLoc.isInvalid()) |
| 13326 | return true; |
| 13327 | |
| 13328 | return S.SourceMgr.isBeforeInTranslationUnit(LHS: LLoc, RHS: RLoc); |
| 13329 | } |
| 13330 | }; |
| 13331 | } |
| 13332 | |
| 13333 | /// Diagnose a template argument deduction failure. |
| 13334 | /// We are treating these failures as overload failures due to bad |
| 13335 | /// deductions. |
| 13336 | void TemplateSpecCandidate::NoteDeductionFailure(Sema &S, |
| 13337 | bool ForTakingAddress) { |
| 13338 | DiagnoseBadDeduction(S, Found: FoundDecl, Templated: Specialization, // pattern |
| 13339 | DeductionFailure, /*NumArgs=*/0, TakingCandidateAddress: ForTakingAddress); |
| 13340 | } |
| 13341 | |
| 13342 | void TemplateSpecCandidateSet::destroyCandidates() { |
| 13343 | for (iterator i = begin(), e = end(); i != e; ++i) { |
| 13344 | i->DeductionFailure.Destroy(); |
| 13345 | } |
| 13346 | } |
| 13347 | |
| 13348 | void TemplateSpecCandidateSet::clear() { |
| 13349 | destroyCandidates(); |
| 13350 | Candidates.clear(); |
| 13351 | } |
| 13352 | |
| 13353 | /// NoteCandidates - When no template specialization match is found, prints |
| 13354 | /// diagnostic messages containing the non-matching specializations that form |
| 13355 | /// the candidate set. |
| 13356 | /// This is analoguous to OverloadCandidateSet::NoteCandidates() with |
| 13357 | /// OCD == OCD_AllCandidates and Cand->Viable == false. |
| 13358 | void TemplateSpecCandidateSet::NoteCandidates(Sema &S, SourceLocation Loc) { |
| 13359 | // Sort the candidates by position (assuming no candidate is a match). |
| 13360 | // Sorting directly would be prohibitive, so we make a set of pointers |
| 13361 | // and sort those. |
| 13362 | SmallVector<TemplateSpecCandidate *, 32> Cands; |
| 13363 | Cands.reserve(N: size()); |
| 13364 | for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { |
| 13365 | if (Cand->Specialization) |
| 13366 | Cands.push_back(Elt: Cand); |
| 13367 | // Otherwise, this is a non-matching builtin candidate. We do not, |
| 13368 | // in general, want to list every possible builtin candidate. |
| 13369 | } |
| 13370 | |
| 13371 | llvm::sort(C&: Cands, Comp: CompareTemplateSpecCandidatesForDisplay(S)); |
| 13372 | |
| 13373 | // FIXME: Perhaps rename OverloadsShown and getShowOverloads() |
| 13374 | // for generalization purposes (?). |
| 13375 | const OverloadsShown ShowOverloads = S.Diags.getShowOverloads(); |
| 13376 | |
| 13377 | SmallVectorImpl<TemplateSpecCandidate *>::iterator I, E; |
| 13378 | unsigned CandsShown = 0; |
| 13379 | for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { |
| 13380 | TemplateSpecCandidate *Cand = *I; |
| 13381 | |
| 13382 | // Set an arbitrary limit on the number of candidates we'll spam |
| 13383 | // the user with. FIXME: This limit should depend on details of the |
| 13384 | // candidate list. |
| 13385 | if (CandsShown >= 4 && ShowOverloads == Ovl_Best) |
| 13386 | break; |
| 13387 | ++CandsShown; |
| 13388 | |
| 13389 | assert(Cand->Specialization && |
| 13390 | "Non-matching built-in candidates are not added to Cands." ); |
| 13391 | Cand->NoteDeductionFailure(S, ForTakingAddress); |
| 13392 | } |
| 13393 | |
| 13394 | if (I != E) |
| 13395 | S.Diag(Loc, DiagID: diag::note_ovl_too_many_candidates) << int(E - I); |
| 13396 | } |
| 13397 | |
| 13398 | // [PossiblyAFunctionType] --> [Return] |
| 13399 | // NonFunctionType --> NonFunctionType |
| 13400 | // R (A) --> R(A) |
| 13401 | // R (*)(A) --> R (A) |
| 13402 | // R (&)(A) --> R (A) |
| 13403 | // R (S::*)(A) --> R (A) |
| 13404 | QualType Sema::(QualType PossiblyAFunctionType) { |
| 13405 | QualType Ret = PossiblyAFunctionType; |
| 13406 | if (const PointerType *ToTypePtr = |
| 13407 | PossiblyAFunctionType->getAs<PointerType>()) |
| 13408 | Ret = ToTypePtr->getPointeeType(); |
| 13409 | else if (const ReferenceType *ToTypeRef = |
| 13410 | PossiblyAFunctionType->getAs<ReferenceType>()) |
| 13411 | Ret = ToTypeRef->getPointeeType(); |
| 13412 | else if (const MemberPointerType *MemTypePtr = |
| 13413 | PossiblyAFunctionType->getAs<MemberPointerType>()) |
| 13414 | Ret = MemTypePtr->getPointeeType(); |
| 13415 | Ret = |
| 13416 | Context.getCanonicalType(T: Ret).getUnqualifiedType(); |
| 13417 | return Ret; |
| 13418 | } |
| 13419 | |
| 13420 | static bool completeFunctionType(Sema &S, FunctionDecl *FD, SourceLocation Loc, |
| 13421 | bool Complain = true) { |
| 13422 | if (S.getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && |
| 13423 | S.DeduceReturnType(FD, Loc, Diagnose: Complain)) |
| 13424 | return true; |
| 13425 | |
| 13426 | auto *FPT = FD->getType()->castAs<FunctionProtoType>(); |
| 13427 | if (S.getLangOpts().CPlusPlus17 && |
| 13428 | isUnresolvedExceptionSpec(ESpecType: FPT->getExceptionSpecType()) && |
| 13429 | !S.ResolveExceptionSpec(Loc, FPT)) |
| 13430 | return true; |
| 13431 | |
| 13432 | return false; |
| 13433 | } |
| 13434 | |
| 13435 | namespace { |
| 13436 | // A helper class to help with address of function resolution |
| 13437 | // - allows us to avoid passing around all those ugly parameters |
| 13438 | class AddressOfFunctionResolver { |
| 13439 | Sema& S; |
| 13440 | Expr* SourceExpr; |
| 13441 | const QualType& TargetType; |
| 13442 | QualType TargetFunctionType; // Extracted function type from target type |
| 13443 | |
| 13444 | bool Complain; |
| 13445 | //DeclAccessPair& ResultFunctionAccessPair; |
| 13446 | ASTContext& Context; |
| 13447 | |
| 13448 | bool TargetTypeIsNonStaticMemberFunction; |
| 13449 | bool FoundNonTemplateFunction; |
| 13450 | bool StaticMemberFunctionFromBoundPointer; |
| 13451 | bool HasComplained; |
| 13452 | |
| 13453 | OverloadExpr::FindResult OvlExprInfo; |
| 13454 | OverloadExpr *OvlExpr; |
| 13455 | TemplateArgumentListInfo OvlExplicitTemplateArgs; |
| 13456 | SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; |
| 13457 | TemplateSpecCandidateSet FailedCandidates; |
| 13458 | |
| 13459 | public: |
| 13460 | AddressOfFunctionResolver(Sema &S, Expr *SourceExpr, |
| 13461 | const QualType &TargetType, bool Complain) |
| 13462 | : S(S), SourceExpr(SourceExpr), TargetType(TargetType), |
| 13463 | Complain(Complain), Context(S.getASTContext()), |
| 13464 | TargetTypeIsNonStaticMemberFunction( |
| 13465 | !!TargetType->getAs<MemberPointerType>()), |
| 13466 | FoundNonTemplateFunction(false), |
| 13467 | StaticMemberFunctionFromBoundPointer(false), |
| 13468 | HasComplained(false), |
| 13469 | OvlExprInfo(OverloadExpr::find(E: SourceExpr)), |
| 13470 | OvlExpr(OvlExprInfo.Expression), |
| 13471 | FailedCandidates(OvlExpr->getNameLoc(), /*ForTakingAddress=*/true) { |
| 13472 | ExtractUnqualifiedFunctionTypeFromTargetType(); |
| 13473 | |
| 13474 | if (TargetFunctionType->isFunctionType()) { |
| 13475 | if (UnresolvedMemberExpr *UME = dyn_cast<UnresolvedMemberExpr>(Val: OvlExpr)) |
| 13476 | if (!UME->isImplicitAccess() && |
| 13477 | !S.ResolveSingleFunctionTemplateSpecialization(ovl: UME)) |
| 13478 | StaticMemberFunctionFromBoundPointer = true; |
| 13479 | } else if (OvlExpr->hasExplicitTemplateArgs()) { |
| 13480 | DeclAccessPair dap; |
| 13481 | if (FunctionDecl *Fn = S.ResolveSingleFunctionTemplateSpecialization( |
| 13482 | ovl: OvlExpr, Complain: false, Found: &dap)) { |
| 13483 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: Fn)) |
| 13484 | if (!Method->isStatic()) { |
| 13485 | // If the target type is a non-function type and the function found |
| 13486 | // is a non-static member function, pretend as if that was the |
| 13487 | // target, it's the only possible type to end up with. |
| 13488 | TargetTypeIsNonStaticMemberFunction = true; |
| 13489 | |
| 13490 | // And skip adding the function if its not in the proper form. |
| 13491 | // We'll diagnose this due to an empty set of functions. |
| 13492 | if (!OvlExprInfo.HasFormOfMemberPointer) |
| 13493 | return; |
| 13494 | } |
| 13495 | |
| 13496 | Matches.push_back(Elt: std::make_pair(x&: dap, y&: Fn)); |
| 13497 | } |
| 13498 | return; |
| 13499 | } |
| 13500 | |
| 13501 | if (OvlExpr->hasExplicitTemplateArgs()) |
| 13502 | OvlExpr->copyTemplateArgumentsInto(List&: OvlExplicitTemplateArgs); |
| 13503 | |
| 13504 | if (FindAllFunctionsThatMatchTargetTypeExactly()) { |
| 13505 | // C++ [over.over]p4: |
| 13506 | // If more than one function is selected, [...] |
| 13507 | if (Matches.size() > 1 && !eliminiateSuboptimalOverloadCandidates()) { |
| 13508 | if (FoundNonTemplateFunction) { |
| 13509 | EliminateAllTemplateMatches(); |
| 13510 | EliminateLessPartialOrderingConstrainedMatches(); |
| 13511 | } else |
| 13512 | EliminateAllExceptMostSpecializedTemplate(); |
| 13513 | } |
| 13514 | } |
| 13515 | |
| 13516 | if (S.getLangOpts().CUDA && Matches.size() > 1) |
| 13517 | EliminateSuboptimalCudaMatches(); |
| 13518 | } |
| 13519 | |
| 13520 | bool hasComplained() const { return HasComplained; } |
| 13521 | |
| 13522 | private: |
| 13523 | bool candidateHasExactlyCorrectType(const FunctionDecl *FD) { |
| 13524 | return Context.hasSameUnqualifiedType(T1: TargetFunctionType, T2: FD->getType()) || |
| 13525 | S.IsFunctionConversion(FromType: FD->getType(), ToType: TargetFunctionType); |
| 13526 | } |
| 13527 | |
| 13528 | /// \return true if A is considered a better overload candidate for the |
| 13529 | /// desired type than B. |
| 13530 | bool isBetterCandidate(const FunctionDecl *A, const FunctionDecl *B) { |
| 13531 | // If A doesn't have exactly the correct type, we don't want to classify it |
| 13532 | // as "better" than anything else. This way, the user is required to |
| 13533 | // disambiguate for us if there are multiple candidates and no exact match. |
| 13534 | return candidateHasExactlyCorrectType(FD: A) && |
| 13535 | (!candidateHasExactlyCorrectType(FD: B) || |
| 13536 | compareEnableIfAttrs(S, Cand1: A, Cand2: B) == Comparison::Better); |
| 13537 | } |
| 13538 | |
| 13539 | /// \return true if we were able to eliminate all but one overload candidate, |
| 13540 | /// false otherwise. |
| 13541 | bool eliminiateSuboptimalOverloadCandidates() { |
| 13542 | // Same algorithm as overload resolution -- one pass to pick the "best", |
| 13543 | // another pass to be sure that nothing is better than the best. |
| 13544 | auto Best = Matches.begin(); |
| 13545 | for (auto I = Matches.begin()+1, E = Matches.end(); I != E; ++I) |
| 13546 | if (isBetterCandidate(A: I->second, B: Best->second)) |
| 13547 | Best = I; |
| 13548 | |
| 13549 | const FunctionDecl *BestFn = Best->second; |
| 13550 | auto IsBestOrInferiorToBest = [this, BestFn]( |
| 13551 | const std::pair<DeclAccessPair, FunctionDecl *> &Pair) { |
| 13552 | return BestFn == Pair.second || isBetterCandidate(A: BestFn, B: Pair.second); |
| 13553 | }; |
| 13554 | |
| 13555 | // Note: We explicitly leave Matches unmodified if there isn't a clear best |
| 13556 | // option, so we can potentially give the user a better error |
| 13557 | if (!llvm::all_of(Range&: Matches, P: IsBestOrInferiorToBest)) |
| 13558 | return false; |
| 13559 | Matches[0] = *Best; |
| 13560 | Matches.resize(N: 1); |
| 13561 | return true; |
| 13562 | } |
| 13563 | |
| 13564 | bool isTargetTypeAFunction() const { |
| 13565 | return TargetFunctionType->isFunctionType(); |
| 13566 | } |
| 13567 | |
| 13568 | // [ToType] [Return] |
| 13569 | |
| 13570 | // R (*)(A) --> R (A), IsNonStaticMemberFunction = false |
| 13571 | // R (&)(A) --> R (A), IsNonStaticMemberFunction = false |
| 13572 | // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true |
| 13573 | void inline () { |
| 13574 | TargetFunctionType = S.ExtractUnqualifiedFunctionType(PossiblyAFunctionType: TargetType); |
| 13575 | } |
| 13576 | |
| 13577 | // return true if any matching specializations were found |
| 13578 | bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, |
| 13579 | const DeclAccessPair& CurAccessFunPair) { |
| 13580 | if (CXXMethodDecl *Method |
| 13581 | = dyn_cast<CXXMethodDecl>(Val: FunctionTemplate->getTemplatedDecl())) { |
| 13582 | // Skip non-static function templates when converting to pointer, and |
| 13583 | // static when converting to member pointer. |
| 13584 | bool CanConvertToFunctionPointer = |
| 13585 | Method->isStatic() || Method->isExplicitObjectMemberFunction(); |
| 13586 | if (CanConvertToFunctionPointer == TargetTypeIsNonStaticMemberFunction) |
| 13587 | return false; |
| 13588 | } |
| 13589 | else if (TargetTypeIsNonStaticMemberFunction) |
| 13590 | return false; |
| 13591 | |
| 13592 | // C++ [over.over]p2: |
| 13593 | // If the name is a function template, template argument deduction is |
| 13594 | // done (14.8.2.2), and if the argument deduction succeeds, the |
| 13595 | // resulting template argument list is used to generate a single |
| 13596 | // function template specialization, which is added to the set of |
| 13597 | // overloaded functions considered. |
| 13598 | FunctionDecl *Specialization = nullptr; |
| 13599 | TemplateDeductionInfo Info(FailedCandidates.getLocation()); |
| 13600 | if (TemplateDeductionResult Result = S.DeduceTemplateArguments( |
| 13601 | FunctionTemplate, ExplicitTemplateArgs: &OvlExplicitTemplateArgs, ArgFunctionType: TargetFunctionType, |
| 13602 | Specialization, Info, /*IsAddressOfFunction*/ true); |
| 13603 | Result != TemplateDeductionResult::Success) { |
| 13604 | // Make a note of the failed deduction for diagnostics. |
| 13605 | FailedCandidates.addCandidate() |
| 13606 | .set(Found: CurAccessFunPair, Spec: FunctionTemplate->getTemplatedDecl(), |
| 13607 | Info: MakeDeductionFailureInfo(Context, TDK: Result, Info)); |
| 13608 | return false; |
| 13609 | } |
| 13610 | |
| 13611 | // Template argument deduction ensures that we have an exact match or |
| 13612 | // compatible pointer-to-function arguments that would be adjusted by ICS. |
| 13613 | // This function template specicalization works. |
| 13614 | assert(S.isSameOrCompatibleFunctionType( |
| 13615 | Context.getCanonicalType(Specialization->getType()), |
| 13616 | Context.getCanonicalType(TargetFunctionType))); |
| 13617 | |
| 13618 | if (!S.checkAddressOfFunctionIsAvailable(Function: Specialization)) |
| 13619 | return false; |
| 13620 | |
| 13621 | Matches.push_back(Elt: std::make_pair(x: CurAccessFunPair, y&: Specialization)); |
| 13622 | return true; |
| 13623 | } |
| 13624 | |
| 13625 | bool AddMatchingNonTemplateFunction(NamedDecl* Fn, |
| 13626 | const DeclAccessPair& CurAccessFunPair) { |
| 13627 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: Fn)) { |
| 13628 | // Skip non-static functions when converting to pointer, and static |
| 13629 | // when converting to member pointer. |
| 13630 | bool CanConvertToFunctionPointer = |
| 13631 | Method->isStatic() || Method->isExplicitObjectMemberFunction(); |
| 13632 | if (CanConvertToFunctionPointer == TargetTypeIsNonStaticMemberFunction) |
| 13633 | return false; |
| 13634 | } |
| 13635 | else if (TargetTypeIsNonStaticMemberFunction) |
| 13636 | return false; |
| 13637 | |
| 13638 | if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Val: Fn)) { |
| 13639 | if (S.getLangOpts().CUDA) { |
| 13640 | FunctionDecl *Caller = S.getCurFunctionDecl(/*AllowLambda=*/true); |
| 13641 | if (!(Caller && Caller->isImplicit()) && |
| 13642 | !S.CUDA().IsAllowedCall(Caller, Callee: FunDecl)) |
| 13643 | return false; |
| 13644 | } |
| 13645 | if (FunDecl->isMultiVersion()) { |
| 13646 | const auto *TA = FunDecl->getAttr<TargetAttr>(); |
| 13647 | if (TA && !TA->isDefaultVersion()) |
| 13648 | return false; |
| 13649 | const auto *TVA = FunDecl->getAttr<TargetVersionAttr>(); |
| 13650 | if (TVA && !TVA->isDefaultVersion()) |
| 13651 | return false; |
| 13652 | } |
| 13653 | |
| 13654 | // If any candidate has a placeholder return type, trigger its deduction |
| 13655 | // now. |
| 13656 | if (completeFunctionType(S, FD: FunDecl, Loc: SourceExpr->getBeginLoc(), |
| 13657 | Complain)) { |
| 13658 | HasComplained |= Complain; |
| 13659 | return false; |
| 13660 | } |
| 13661 | |
| 13662 | if (!S.checkAddressOfFunctionIsAvailable(Function: FunDecl)) |
| 13663 | return false; |
| 13664 | |
| 13665 | // If we're in C, we need to support types that aren't exactly identical. |
| 13666 | if (!S.getLangOpts().CPlusPlus || |
| 13667 | candidateHasExactlyCorrectType(FD: FunDecl)) { |
| 13668 | Matches.push_back(Elt: std::make_pair( |
| 13669 | x: CurAccessFunPair, y: cast<FunctionDecl>(Val: FunDecl->getCanonicalDecl()))); |
| 13670 | FoundNonTemplateFunction = true; |
| 13671 | return true; |
| 13672 | } |
| 13673 | } |
| 13674 | |
| 13675 | return false; |
| 13676 | } |
| 13677 | |
| 13678 | bool FindAllFunctionsThatMatchTargetTypeExactly() { |
| 13679 | bool Ret = false; |
| 13680 | |
| 13681 | // If the overload expression doesn't have the form of a pointer to |
| 13682 | // member, don't try to convert it to a pointer-to-member type. |
| 13683 | if (IsInvalidFormOfPointerToMemberFunction()) |
| 13684 | return false; |
| 13685 | |
| 13686 | for (UnresolvedSetIterator I = OvlExpr->decls_begin(), |
| 13687 | E = OvlExpr->decls_end(); |
| 13688 | I != E; ++I) { |
| 13689 | // Look through any using declarations to find the underlying function. |
| 13690 | NamedDecl *Fn = (*I)->getUnderlyingDecl(); |
| 13691 | |
| 13692 | // C++ [over.over]p3: |
| 13693 | // Non-member functions and static member functions match |
| 13694 | // targets of type "pointer-to-function" or "reference-to-function." |
| 13695 | // Nonstatic member functions match targets of |
| 13696 | // type "pointer-to-member-function." |
| 13697 | // Note that according to DR 247, the containing class does not matter. |
| 13698 | if (FunctionTemplateDecl *FunctionTemplate |
| 13699 | = dyn_cast<FunctionTemplateDecl>(Val: Fn)) { |
| 13700 | if (AddMatchingTemplateFunction(FunctionTemplate, CurAccessFunPair: I.getPair())) |
| 13701 | Ret = true; |
| 13702 | } |
| 13703 | // If we have explicit template arguments supplied, skip non-templates. |
| 13704 | else if (!OvlExpr->hasExplicitTemplateArgs() && |
| 13705 | AddMatchingNonTemplateFunction(Fn, CurAccessFunPair: I.getPair())) |
| 13706 | Ret = true; |
| 13707 | } |
| 13708 | assert(Ret || Matches.empty()); |
| 13709 | return Ret; |
| 13710 | } |
| 13711 | |
| 13712 | void EliminateAllExceptMostSpecializedTemplate() { |
| 13713 | // [...] and any given function template specialization F1 is |
| 13714 | // eliminated if the set contains a second function template |
| 13715 | // specialization whose function template is more specialized |
| 13716 | // than the function template of F1 according to the partial |
| 13717 | // ordering rules of 14.5.5.2. |
| 13718 | |
| 13719 | // The algorithm specified above is quadratic. We instead use a |
| 13720 | // two-pass algorithm (similar to the one used to identify the |
| 13721 | // best viable function in an overload set) that identifies the |
| 13722 | // best function template (if it exists). |
| 13723 | |
| 13724 | UnresolvedSet<4> MatchesCopy; // TODO: avoid! |
| 13725 | for (unsigned I = 0, E = Matches.size(); I != E; ++I) |
| 13726 | MatchesCopy.addDecl(D: Matches[I].second, AS: Matches[I].first.getAccess()); |
| 13727 | |
| 13728 | // TODO: It looks like FailedCandidates does not serve much purpose |
| 13729 | // here, since the no_viable diagnostic has index 0. |
| 13730 | UnresolvedSetIterator Result = S.getMostSpecialized( |
| 13731 | SBegin: MatchesCopy.begin(), SEnd: MatchesCopy.end(), FailedCandidates, |
| 13732 | Loc: SourceExpr->getBeginLoc(), NoneDiag: S.PDiag(), |
| 13733 | AmbigDiag: S.PDiag(DiagID: diag::err_addr_ovl_ambiguous) |
| 13734 | << Matches[0].second->getDeclName(), |
| 13735 | CandidateDiag: S.PDiag(DiagID: diag::note_ovl_candidate) |
| 13736 | << (unsigned)oc_function << (unsigned)ocs_described_template, |
| 13737 | Complain, TargetType: TargetFunctionType); |
| 13738 | |
| 13739 | if (Result != MatchesCopy.end()) { |
| 13740 | // Make it the first and only element |
| 13741 | Matches[0].first = Matches[Result - MatchesCopy.begin()].first; |
| 13742 | Matches[0].second = cast<FunctionDecl>(Val: *Result); |
| 13743 | Matches.resize(N: 1); |
| 13744 | } else |
| 13745 | HasComplained |= Complain; |
| 13746 | } |
| 13747 | |
| 13748 | void EliminateAllTemplateMatches() { |
| 13749 | // [...] any function template specializations in the set are |
| 13750 | // eliminated if the set also contains a non-template function, [...] |
| 13751 | for (unsigned I = 0, N = Matches.size(); I != N; ) { |
| 13752 | if (Matches[I].second->getPrimaryTemplate() == nullptr) |
| 13753 | ++I; |
| 13754 | else { |
| 13755 | Matches[I] = Matches[--N]; |
| 13756 | Matches.resize(N); |
| 13757 | } |
| 13758 | } |
| 13759 | } |
| 13760 | |
| 13761 | void EliminateLessPartialOrderingConstrainedMatches() { |
| 13762 | // C++ [over.over]p5: |
| 13763 | // [...] Any given non-template function F0 is eliminated if the set |
| 13764 | // contains a second non-template function that is more |
| 13765 | // partial-ordering-constrained than F0. [...] |
| 13766 | assert(Matches[0].second->getPrimaryTemplate() == nullptr && |
| 13767 | "Call EliminateAllTemplateMatches() first" ); |
| 13768 | SmallVector<std::pair<DeclAccessPair, FunctionDecl *>, 4> Results; |
| 13769 | Results.push_back(Elt: Matches[0]); |
| 13770 | for (unsigned I = 1, N = Matches.size(); I < N; ++I) { |
| 13771 | assert(Matches[I].second->getPrimaryTemplate() == nullptr); |
| 13772 | FunctionDecl *F = getMorePartialOrderingConstrained( |
| 13773 | S, Fn1: Matches[I].second, Fn2: Results[0].second, |
| 13774 | /*IsFn1Reversed=*/false, |
| 13775 | /*IsFn2Reversed=*/false); |
| 13776 | if (!F) { |
| 13777 | Results.push_back(Elt: Matches[I]); |
| 13778 | continue; |
| 13779 | } |
| 13780 | if (F == Matches[I].second) { |
| 13781 | Results.clear(); |
| 13782 | Results.push_back(Elt: Matches[I]); |
| 13783 | } |
| 13784 | } |
| 13785 | std::swap(LHS&: Matches, RHS&: Results); |
| 13786 | } |
| 13787 | |
| 13788 | void EliminateSuboptimalCudaMatches() { |
| 13789 | S.CUDA().EraseUnwantedMatches(Caller: S.getCurFunctionDecl(/*AllowLambda=*/true), |
| 13790 | Matches); |
| 13791 | } |
| 13792 | |
| 13793 | public: |
| 13794 | void ComplainNoMatchesFound() const { |
| 13795 | assert(Matches.empty()); |
| 13796 | S.Diag(Loc: OvlExpr->getBeginLoc(), DiagID: diag::err_addr_ovl_no_viable) |
| 13797 | << OvlExpr->getName() << TargetFunctionType |
| 13798 | << OvlExpr->getSourceRange(); |
| 13799 | if (FailedCandidates.empty()) |
| 13800 | S.NoteAllOverloadCandidates(OverloadedExpr: OvlExpr, DestType: TargetFunctionType, |
| 13801 | /*TakingAddress=*/true); |
| 13802 | else { |
| 13803 | // We have some deduction failure messages. Use them to diagnose |
| 13804 | // the function templates, and diagnose the non-template candidates |
| 13805 | // normally. |
| 13806 | for (UnresolvedSetIterator I = OvlExpr->decls_begin(), |
| 13807 | IEnd = OvlExpr->decls_end(); |
| 13808 | I != IEnd; ++I) |
| 13809 | if (FunctionDecl *Fun = |
| 13810 | dyn_cast<FunctionDecl>(Val: (*I)->getUnderlyingDecl())) |
| 13811 | if (!functionHasPassObjectSizeParams(FD: Fun)) |
| 13812 | S.NoteOverloadCandidate(Found: *I, Fn: Fun, RewriteKind: CRK_None, DestType: TargetFunctionType, |
| 13813 | /*TakingAddress=*/true); |
| 13814 | FailedCandidates.NoteCandidates(S, Loc: OvlExpr->getBeginLoc()); |
| 13815 | } |
| 13816 | } |
| 13817 | |
| 13818 | bool IsInvalidFormOfPointerToMemberFunction() const { |
| 13819 | return TargetTypeIsNonStaticMemberFunction && |
| 13820 | !OvlExprInfo.HasFormOfMemberPointer; |
| 13821 | } |
| 13822 | |
| 13823 | void ComplainIsInvalidFormOfPointerToMemberFunction() const { |
| 13824 | // TODO: Should we condition this on whether any functions might |
| 13825 | // have matched, or is it more appropriate to do that in callers? |
| 13826 | // TODO: a fixit wouldn't hurt. |
| 13827 | S.Diag(Loc: OvlExpr->getNameLoc(), DiagID: diag::err_addr_ovl_no_qualifier) |
| 13828 | << TargetType << OvlExpr->getSourceRange(); |
| 13829 | } |
| 13830 | |
| 13831 | bool IsStaticMemberFunctionFromBoundPointer() const { |
| 13832 | return StaticMemberFunctionFromBoundPointer; |
| 13833 | } |
| 13834 | |
| 13835 | void ComplainIsStaticMemberFunctionFromBoundPointer() const { |
| 13836 | S.Diag(Loc: OvlExpr->getBeginLoc(), |
| 13837 | DiagID: diag::err_invalid_form_pointer_member_function) |
| 13838 | << OvlExpr->getSourceRange(); |
| 13839 | } |
| 13840 | |
| 13841 | void ComplainOfInvalidConversion() const { |
| 13842 | S.Diag(Loc: OvlExpr->getBeginLoc(), DiagID: diag::err_addr_ovl_not_func_ptrref) |
| 13843 | << OvlExpr->getName() << TargetType; |
| 13844 | } |
| 13845 | |
| 13846 | void ComplainMultipleMatchesFound() const { |
| 13847 | assert(Matches.size() > 1); |
| 13848 | S.Diag(Loc: OvlExpr->getBeginLoc(), DiagID: diag::err_addr_ovl_ambiguous) |
| 13849 | << OvlExpr->getName() << OvlExpr->getSourceRange(); |
| 13850 | S.NoteAllOverloadCandidates(OverloadedExpr: OvlExpr, DestType: TargetFunctionType, |
| 13851 | /*TakingAddress=*/true); |
| 13852 | } |
| 13853 | |
| 13854 | bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); } |
| 13855 | |
| 13856 | int getNumMatches() const { return Matches.size(); } |
| 13857 | |
| 13858 | FunctionDecl* getMatchingFunctionDecl() const { |
| 13859 | if (Matches.size() != 1) return nullptr; |
| 13860 | return Matches[0].second; |
| 13861 | } |
| 13862 | |
| 13863 | const DeclAccessPair* getMatchingFunctionAccessPair() const { |
| 13864 | if (Matches.size() != 1) return nullptr; |
| 13865 | return &Matches[0].first; |
| 13866 | } |
| 13867 | }; |
| 13868 | } |
| 13869 | |
| 13870 | FunctionDecl * |
| 13871 | Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, |
| 13872 | QualType TargetType, |
| 13873 | bool Complain, |
| 13874 | DeclAccessPair &FoundResult, |
| 13875 | bool *pHadMultipleCandidates) { |
| 13876 | assert(AddressOfExpr->getType() == Context.OverloadTy); |
| 13877 | |
| 13878 | AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, |
| 13879 | Complain); |
| 13880 | int NumMatches = Resolver.getNumMatches(); |
| 13881 | FunctionDecl *Fn = nullptr; |
| 13882 | bool ShouldComplain = Complain && !Resolver.hasComplained(); |
| 13883 | if (NumMatches == 0 && ShouldComplain) { |
| 13884 | if (Resolver.IsInvalidFormOfPointerToMemberFunction()) |
| 13885 | Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); |
| 13886 | else |
| 13887 | Resolver.ComplainNoMatchesFound(); |
| 13888 | } |
| 13889 | else if (NumMatches > 1 && ShouldComplain) |
| 13890 | Resolver.ComplainMultipleMatchesFound(); |
| 13891 | else if (NumMatches == 1) { |
| 13892 | Fn = Resolver.getMatchingFunctionDecl(); |
| 13893 | assert(Fn); |
| 13894 | if (auto *FPT = Fn->getType()->getAs<FunctionProtoType>()) |
| 13895 | ResolveExceptionSpec(Loc: AddressOfExpr->getExprLoc(), FPT); |
| 13896 | FoundResult = *Resolver.getMatchingFunctionAccessPair(); |
| 13897 | if (Complain) { |
| 13898 | if (Resolver.IsStaticMemberFunctionFromBoundPointer()) |
| 13899 | Resolver.ComplainIsStaticMemberFunctionFromBoundPointer(); |
| 13900 | else |
| 13901 | CheckAddressOfMemberAccess(OvlExpr: AddressOfExpr, FoundDecl: FoundResult); |
| 13902 | } |
| 13903 | } |
| 13904 | |
| 13905 | if (pHadMultipleCandidates) |
| 13906 | *pHadMultipleCandidates = Resolver.hadMultipleCandidates(); |
| 13907 | return Fn; |
| 13908 | } |
| 13909 | |
| 13910 | FunctionDecl * |
| 13911 | Sema::resolveAddressOfSingleOverloadCandidate(Expr *E, DeclAccessPair &Pair) { |
| 13912 | OverloadExpr::FindResult R = OverloadExpr::find(E); |
| 13913 | OverloadExpr *Ovl = R.Expression; |
| 13914 | bool IsResultAmbiguous = false; |
| 13915 | FunctionDecl *Result = nullptr; |
| 13916 | DeclAccessPair DAP; |
| 13917 | SmallVector<FunctionDecl *, 2> AmbiguousDecls; |
| 13918 | |
| 13919 | // Return positive for better, negative for worse, 0 for equal preference. |
| 13920 | auto CheckCUDAPreference = [&](FunctionDecl *FD1, FunctionDecl *FD2) { |
| 13921 | FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true); |
| 13922 | return static_cast<int>(CUDA().IdentifyPreference(Caller, Callee: FD1)) - |
| 13923 | static_cast<int>(CUDA().IdentifyPreference(Caller, Callee: FD2)); |
| 13924 | }; |
| 13925 | |
| 13926 | // Don't use the AddressOfResolver because we're specifically looking for |
| 13927 | // cases where we have one overload candidate that lacks |
| 13928 | // enable_if/pass_object_size/... |
| 13929 | for (auto I = Ovl->decls_begin(), E = Ovl->decls_end(); I != E; ++I) { |
| 13930 | auto *FD = dyn_cast<FunctionDecl>(Val: I->getUnderlyingDecl()); |
| 13931 | if (!FD) |
| 13932 | return nullptr; |
| 13933 | |
| 13934 | if (!checkAddressOfFunctionIsAvailable(Function: FD)) |
| 13935 | continue; |
| 13936 | |
| 13937 | // If we found a better result, update Result. |
| 13938 | auto FoundBetter = [&]() { |
| 13939 | IsResultAmbiguous = false; |
| 13940 | DAP = I.getPair(); |
| 13941 | Result = FD; |
| 13942 | }; |
| 13943 | |
| 13944 | // We have more than one result - see if it is more |
| 13945 | // partial-ordering-constrained than the previous one. |
| 13946 | if (Result) { |
| 13947 | // Check CUDA preference first. If the candidates have differennt CUDA |
| 13948 | // preference, choose the one with higher CUDA preference. Otherwise, |
| 13949 | // choose the one with more constraints. |
| 13950 | if (getLangOpts().CUDA) { |
| 13951 | int PreferenceByCUDA = CheckCUDAPreference(FD, Result); |
| 13952 | // FD has different preference than Result. |
| 13953 | if (PreferenceByCUDA != 0) { |
| 13954 | // FD is more preferable than Result. |
| 13955 | if (PreferenceByCUDA > 0) |
| 13956 | FoundBetter(); |
| 13957 | continue; |
| 13958 | } |
| 13959 | } |
| 13960 | // FD has the same CUDA preference than Result. Continue to check |
| 13961 | // constraints. |
| 13962 | |
| 13963 | // C++ [over.over]p5: |
| 13964 | // [...] Any given non-template function F0 is eliminated if the set |
| 13965 | // contains a second non-template function that is more |
| 13966 | // partial-ordering-constrained than F0 [...] |
| 13967 | FunctionDecl *MoreConstrained = |
| 13968 | getMorePartialOrderingConstrained(S&: *this, Fn1: FD, Fn2: Result, |
| 13969 | /*IsFn1Reversed=*/false, |
| 13970 | /*IsFn2Reversed=*/false); |
| 13971 | if (MoreConstrained != FD) { |
| 13972 | if (!MoreConstrained) { |
| 13973 | IsResultAmbiguous = true; |
| 13974 | AmbiguousDecls.push_back(Elt: FD); |
| 13975 | } |
| 13976 | continue; |
| 13977 | } |
| 13978 | // FD is more constrained - replace Result with it. |
| 13979 | } |
| 13980 | FoundBetter(); |
| 13981 | } |
| 13982 | |
| 13983 | if (IsResultAmbiguous) |
| 13984 | return nullptr; |
| 13985 | |
| 13986 | if (Result) { |
| 13987 | // We skipped over some ambiguous declarations which might be ambiguous with |
| 13988 | // the selected result. |
| 13989 | for (FunctionDecl *Skipped : AmbiguousDecls) { |
| 13990 | // If skipped candidate has different CUDA preference than the result, |
| 13991 | // there is no ambiguity. Otherwise check whether they have different |
| 13992 | // constraints. |
| 13993 | if (getLangOpts().CUDA && CheckCUDAPreference(Skipped, Result) != 0) |
| 13994 | continue; |
| 13995 | if (!getMoreConstrainedFunction(FD1: Skipped, FD2: Result)) |
| 13996 | return nullptr; |
| 13997 | } |
| 13998 | Pair = DAP; |
| 13999 | } |
| 14000 | return Result; |
| 14001 | } |
| 14002 | |
| 14003 | bool Sema::resolveAndFixAddressOfSingleOverloadCandidate( |
| 14004 | ExprResult &SrcExpr, bool DoFunctionPointerConversion) { |
| 14005 | Expr *E = SrcExpr.get(); |
| 14006 | assert(E->getType() == Context.OverloadTy && "SrcExpr must be an overload" ); |
| 14007 | |
| 14008 | DeclAccessPair DAP; |
| 14009 | FunctionDecl *Found = resolveAddressOfSingleOverloadCandidate(E, Pair&: DAP); |
| 14010 | if (!Found || Found->isCPUDispatchMultiVersion() || |
| 14011 | Found->isCPUSpecificMultiVersion()) |
| 14012 | return false; |
| 14013 | |
| 14014 | // Emitting multiple diagnostics for a function that is both inaccessible and |
| 14015 | // unavailable is consistent with our behavior elsewhere. So, always check |
| 14016 | // for both. |
| 14017 | DiagnoseUseOfDecl(D: Found, Locs: E->getExprLoc()); |
| 14018 | CheckAddressOfMemberAccess(OvlExpr: E, FoundDecl: DAP); |
| 14019 | ExprResult Res = FixOverloadedFunctionReference(E, FoundDecl: DAP, Fn: Found); |
| 14020 | if (Res.isInvalid()) |
| 14021 | return false; |
| 14022 | Expr *Fixed = Res.get(); |
| 14023 | if (DoFunctionPointerConversion && Fixed->getType()->isFunctionType()) |
| 14024 | SrcExpr = DefaultFunctionArrayConversion(E: Fixed, /*Diagnose=*/false); |
| 14025 | else |
| 14026 | SrcExpr = Fixed; |
| 14027 | return true; |
| 14028 | } |
| 14029 | |
| 14030 | FunctionDecl *Sema::ResolveSingleFunctionTemplateSpecialization( |
| 14031 | OverloadExpr *ovl, bool Complain, DeclAccessPair *FoundResult, |
| 14032 | TemplateSpecCandidateSet *FailedTSC, bool ForTypeDeduction) { |
| 14033 | // C++ [over.over]p1: |
| 14034 | // [...] [Note: any redundant set of parentheses surrounding the |
| 14035 | // overloaded function name is ignored (5.1). ] |
| 14036 | // C++ [over.over]p1: |
| 14037 | // [...] The overloaded function name can be preceded by the & |
| 14038 | // operator. |
| 14039 | |
| 14040 | // If we didn't actually find any template-ids, we're done. |
| 14041 | if (!ovl->hasExplicitTemplateArgs()) |
| 14042 | return nullptr; |
| 14043 | |
| 14044 | TemplateArgumentListInfo ExplicitTemplateArgs; |
| 14045 | ovl->copyTemplateArgumentsInto(List&: ExplicitTemplateArgs); |
| 14046 | |
| 14047 | // Look through all of the overloaded functions, searching for one |
| 14048 | // whose type matches exactly. |
| 14049 | FunctionDecl *Matched = nullptr; |
| 14050 | for (UnresolvedSetIterator I = ovl->decls_begin(), |
| 14051 | E = ovl->decls_end(); I != E; ++I) { |
| 14052 | // C++0x [temp.arg.explicit]p3: |
| 14053 | // [...] In contexts where deduction is done and fails, or in contexts |
| 14054 | // where deduction is not done, if a template argument list is |
| 14055 | // specified and it, along with any default template arguments, |
| 14056 | // identifies a single function template specialization, then the |
| 14057 | // template-id is an lvalue for the function template specialization. |
| 14058 | FunctionTemplateDecl *FunctionTemplate = |
| 14059 | dyn_cast<FunctionTemplateDecl>(Val: (*I)->getUnderlyingDecl()); |
| 14060 | if (!FunctionTemplate) |
| 14061 | continue; |
| 14062 | |
| 14063 | // C++ [over.over]p2: |
| 14064 | // If the name is a function template, template argument deduction is |
| 14065 | // done (14.8.2.2), and if the argument deduction succeeds, the |
| 14066 | // resulting template argument list is used to generate a single |
| 14067 | // function template specialization, which is added to the set of |
| 14068 | // overloaded functions considered. |
| 14069 | FunctionDecl *Specialization = nullptr; |
| 14070 | TemplateDeductionInfo Info(ovl->getNameLoc()); |
| 14071 | if (TemplateDeductionResult Result = DeduceTemplateArguments( |
| 14072 | FunctionTemplate, ExplicitTemplateArgs: &ExplicitTemplateArgs, Specialization, Info, |
| 14073 | /*IsAddressOfFunction*/ true); |
| 14074 | Result != TemplateDeductionResult::Success) { |
| 14075 | // Make a note of the failed deduction for diagnostics. |
| 14076 | if (FailedTSC) |
| 14077 | FailedTSC->addCandidate().set( |
| 14078 | Found: I.getPair(), Spec: FunctionTemplate->getTemplatedDecl(), |
| 14079 | Info: MakeDeductionFailureInfo(Context, TDK: Result, Info)); |
| 14080 | continue; |
| 14081 | } |
| 14082 | |
| 14083 | assert(Specialization && "no specialization and no error?" ); |
| 14084 | |
| 14085 | // C++ [temp.deduct.call]p6: |
| 14086 | // [...] If all successful deductions yield the same deduced A, that |
| 14087 | // deduced A is the result of deduction; otherwise, the parameter is |
| 14088 | // treated as a non-deduced context. |
| 14089 | if (Matched) { |
| 14090 | if (ForTypeDeduction && |
| 14091 | isSameOrCompatibleFunctionType(Param: Matched->getType(), |
| 14092 | Arg: Specialization->getType())) |
| 14093 | continue; |
| 14094 | // Multiple matches; we can't resolve to a single declaration. |
| 14095 | if (Complain) { |
| 14096 | Diag(Loc: ovl->getExprLoc(), DiagID: diag::err_addr_ovl_ambiguous) |
| 14097 | << ovl->getName(); |
| 14098 | NoteAllOverloadCandidates(OverloadedExpr: ovl); |
| 14099 | } |
| 14100 | return nullptr; |
| 14101 | } |
| 14102 | |
| 14103 | Matched = Specialization; |
| 14104 | if (FoundResult) *FoundResult = I.getPair(); |
| 14105 | } |
| 14106 | |
| 14107 | if (Matched && |
| 14108 | completeFunctionType(S&: *this, FD: Matched, Loc: ovl->getExprLoc(), Complain)) |
| 14109 | return nullptr; |
| 14110 | |
| 14111 | return Matched; |
| 14112 | } |
| 14113 | |
| 14114 | bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization( |
| 14115 | ExprResult &SrcExpr, bool doFunctionPointerConversion, bool complain, |
| 14116 | SourceRange OpRangeForComplaining, QualType DestTypeForComplaining, |
| 14117 | unsigned DiagIDForComplaining) { |
| 14118 | assert(SrcExpr.get()->getType() == Context.OverloadTy); |
| 14119 | |
| 14120 | OverloadExpr::FindResult ovl = OverloadExpr::find(E: SrcExpr.get()); |
| 14121 | |
| 14122 | DeclAccessPair found; |
| 14123 | ExprResult SingleFunctionExpression; |
| 14124 | if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( |
| 14125 | ovl: ovl.Expression, /*complain*/ Complain: false, FoundResult: &found)) { |
| 14126 | if (DiagnoseUseOfDecl(D: fn, Locs: SrcExpr.get()->getBeginLoc())) { |
| 14127 | SrcExpr = ExprError(); |
| 14128 | return true; |
| 14129 | } |
| 14130 | |
| 14131 | // It is only correct to resolve to an instance method if we're |
| 14132 | // resolving a form that's permitted to be a pointer to member. |
| 14133 | // Otherwise we'll end up making a bound member expression, which |
| 14134 | // is illegal in all the contexts we resolve like this. |
| 14135 | if (!ovl.HasFormOfMemberPointer && |
| 14136 | isa<CXXMethodDecl>(Val: fn) && |
| 14137 | cast<CXXMethodDecl>(Val: fn)->isInstance()) { |
| 14138 | if (!complain) return false; |
| 14139 | |
| 14140 | Diag(Loc: ovl.Expression->getExprLoc(), |
| 14141 | DiagID: diag::err_bound_member_function) |
| 14142 | << 0 << ovl.Expression->getSourceRange(); |
| 14143 | |
| 14144 | // TODO: I believe we only end up here if there's a mix of |
| 14145 | // static and non-static candidates (otherwise the expression |
| 14146 | // would have 'bound member' type, not 'overload' type). |
| 14147 | // Ideally we would note which candidate was chosen and why |
| 14148 | // the static candidates were rejected. |
| 14149 | SrcExpr = ExprError(); |
| 14150 | return true; |
| 14151 | } |
| 14152 | |
| 14153 | // Fix the expression to refer to 'fn'. |
| 14154 | SingleFunctionExpression = |
| 14155 | FixOverloadedFunctionReference(E: SrcExpr.get(), FoundDecl: found, Fn: fn); |
| 14156 | |
| 14157 | // If desired, do function-to-pointer decay. |
| 14158 | if (doFunctionPointerConversion) { |
| 14159 | SingleFunctionExpression = |
| 14160 | DefaultFunctionArrayLvalueConversion(E: SingleFunctionExpression.get()); |
| 14161 | if (SingleFunctionExpression.isInvalid()) { |
| 14162 | SrcExpr = ExprError(); |
| 14163 | return true; |
| 14164 | } |
| 14165 | } |
| 14166 | } |
| 14167 | |
| 14168 | if (!SingleFunctionExpression.isUsable()) { |
| 14169 | if (complain) { |
| 14170 | Diag(Loc: OpRangeForComplaining.getBegin(), DiagID: DiagIDForComplaining) |
| 14171 | << ovl.Expression->getName() |
| 14172 | << DestTypeForComplaining |
| 14173 | << OpRangeForComplaining |
| 14174 | << ovl.Expression->getQualifierLoc().getSourceRange(); |
| 14175 | NoteAllOverloadCandidates(OverloadedExpr: SrcExpr.get()); |
| 14176 | |
| 14177 | SrcExpr = ExprError(); |
| 14178 | return true; |
| 14179 | } |
| 14180 | |
| 14181 | return false; |
| 14182 | } |
| 14183 | |
| 14184 | SrcExpr = SingleFunctionExpression; |
| 14185 | return true; |
| 14186 | } |
| 14187 | |
| 14188 | /// Add a single candidate to the overload set. |
| 14189 | static void AddOverloadedCallCandidate(Sema &S, |
| 14190 | DeclAccessPair FoundDecl, |
| 14191 | TemplateArgumentListInfo *ExplicitTemplateArgs, |
| 14192 | ArrayRef<Expr *> Args, |
| 14193 | OverloadCandidateSet &CandidateSet, |
| 14194 | bool PartialOverloading, |
| 14195 | bool KnownValid) { |
| 14196 | NamedDecl *Callee = FoundDecl.getDecl(); |
| 14197 | if (isa<UsingShadowDecl>(Val: Callee)) |
| 14198 | Callee = cast<UsingShadowDecl>(Val: Callee)->getTargetDecl(); |
| 14199 | |
| 14200 | if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Val: Callee)) { |
| 14201 | if (ExplicitTemplateArgs) { |
| 14202 | assert(!KnownValid && "Explicit template arguments?" ); |
| 14203 | return; |
| 14204 | } |
| 14205 | // Prevent ill-formed function decls to be added as overload candidates. |
| 14206 | if (!isa<FunctionProtoType>(Val: Func->getType()->getAs<FunctionType>())) |
| 14207 | return; |
| 14208 | |
| 14209 | S.AddOverloadCandidate(Function: Func, FoundDecl, Args, CandidateSet, |
| 14210 | /*SuppressUserConversions=*/false, |
| 14211 | PartialOverloading); |
| 14212 | return; |
| 14213 | } |
| 14214 | |
| 14215 | if (FunctionTemplateDecl *FuncTemplate |
| 14216 | = dyn_cast<FunctionTemplateDecl>(Val: Callee)) { |
| 14217 | S.AddTemplateOverloadCandidate(FunctionTemplate: FuncTemplate, FoundDecl, |
| 14218 | ExplicitTemplateArgs, Args, CandidateSet, |
| 14219 | /*SuppressUserConversions=*/false, |
| 14220 | PartialOverloading); |
| 14221 | return; |
| 14222 | } |
| 14223 | |
| 14224 | assert(!KnownValid && "unhandled case in overloaded call candidate" ); |
| 14225 | } |
| 14226 | |
| 14227 | void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, |
| 14228 | ArrayRef<Expr *> Args, |
| 14229 | OverloadCandidateSet &CandidateSet, |
| 14230 | bool PartialOverloading) { |
| 14231 | |
| 14232 | #ifndef NDEBUG |
| 14233 | // Verify that ArgumentDependentLookup is consistent with the rules |
| 14234 | // in C++0x [basic.lookup.argdep]p3: |
| 14235 | // |
| 14236 | // Let X be the lookup set produced by unqualified lookup (3.4.1) |
| 14237 | // and let Y be the lookup set produced by argument dependent |
| 14238 | // lookup (defined as follows). If X contains |
| 14239 | // |
| 14240 | // -- a declaration of a class member, or |
| 14241 | // |
| 14242 | // -- a block-scope function declaration that is not a |
| 14243 | // using-declaration, or |
| 14244 | // |
| 14245 | // -- a declaration that is neither a function or a function |
| 14246 | // template |
| 14247 | // |
| 14248 | // then Y is empty. |
| 14249 | |
| 14250 | if (ULE->requiresADL()) { |
| 14251 | for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), |
| 14252 | E = ULE->decls_end(); I != E; ++I) { |
| 14253 | assert(!(*I)->getDeclContext()->isRecord()); |
| 14254 | assert(isa<UsingShadowDecl>(*I) || |
| 14255 | !(*I)->getDeclContext()->isFunctionOrMethod()); |
| 14256 | assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); |
| 14257 | } |
| 14258 | } |
| 14259 | #endif |
| 14260 | |
| 14261 | // It would be nice to avoid this copy. |
| 14262 | TemplateArgumentListInfo TABuffer; |
| 14263 | TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; |
| 14264 | if (ULE->hasExplicitTemplateArgs()) { |
| 14265 | ULE->copyTemplateArgumentsInto(List&: TABuffer); |
| 14266 | ExplicitTemplateArgs = &TABuffer; |
| 14267 | } |
| 14268 | |
| 14269 | for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), |
| 14270 | E = ULE->decls_end(); I != E; ++I) |
| 14271 | AddOverloadedCallCandidate(S&: *this, FoundDecl: I.getPair(), ExplicitTemplateArgs, Args, |
| 14272 | CandidateSet, PartialOverloading, |
| 14273 | /*KnownValid*/ true); |
| 14274 | |
| 14275 | if (ULE->requiresADL()) |
| 14276 | AddArgumentDependentLookupCandidates(Name: ULE->getName(), Loc: ULE->getExprLoc(), |
| 14277 | Args, ExplicitTemplateArgs, |
| 14278 | CandidateSet, PartialOverloading); |
| 14279 | } |
| 14280 | |
| 14281 | void Sema::AddOverloadedCallCandidates( |
| 14282 | LookupResult &R, TemplateArgumentListInfo *ExplicitTemplateArgs, |
| 14283 | ArrayRef<Expr *> Args, OverloadCandidateSet &CandidateSet) { |
| 14284 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) |
| 14285 | AddOverloadedCallCandidate(S&: *this, FoundDecl: I.getPair(), ExplicitTemplateArgs, Args, |
| 14286 | CandidateSet, PartialOverloading: false, /*KnownValid*/ false); |
| 14287 | } |
| 14288 | |
| 14289 | /// Determine whether a declaration with the specified name could be moved into |
| 14290 | /// a different namespace. |
| 14291 | static bool canBeDeclaredInNamespace(const DeclarationName &Name) { |
| 14292 | switch (Name.getCXXOverloadedOperator()) { |
| 14293 | case OO_New: case OO_Array_New: |
| 14294 | case OO_Delete: case OO_Array_Delete: |
| 14295 | return false; |
| 14296 | |
| 14297 | default: |
| 14298 | return true; |
| 14299 | } |
| 14300 | } |
| 14301 | |
| 14302 | /// Attempt to recover from an ill-formed use of a non-dependent name in a |
| 14303 | /// template, where the non-dependent name was declared after the template |
| 14304 | /// was defined. This is common in code written for a compilers which do not |
| 14305 | /// correctly implement two-stage name lookup. |
| 14306 | /// |
| 14307 | /// Returns true if a viable candidate was found and a diagnostic was issued. |
| 14308 | static bool DiagnoseTwoPhaseLookup( |
| 14309 | Sema &SemaRef, SourceLocation FnLoc, const CXXScopeSpec &SS, |
| 14310 | LookupResult &R, OverloadCandidateSet::CandidateSetKind CSK, |
| 14311 | TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, |
| 14312 | CXXRecordDecl **FoundInClass = nullptr) { |
| 14313 | if (!SemaRef.inTemplateInstantiation() || !SS.isEmpty()) |
| 14314 | return false; |
| 14315 | |
| 14316 | for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { |
| 14317 | if (DC->isTransparentContext()) |
| 14318 | continue; |
| 14319 | |
| 14320 | SemaRef.LookupQualifiedName(R, LookupCtx: DC); |
| 14321 | |
| 14322 | if (!R.empty()) { |
| 14323 | R.suppressDiagnostics(); |
| 14324 | |
| 14325 | OverloadCandidateSet Candidates(FnLoc, CSK); |
| 14326 | SemaRef.AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, |
| 14327 | CandidateSet&: Candidates); |
| 14328 | |
| 14329 | OverloadCandidateSet::iterator Best; |
| 14330 | OverloadingResult OR = |
| 14331 | Candidates.BestViableFunction(S&: SemaRef, Loc: FnLoc, Best); |
| 14332 | |
| 14333 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: DC)) { |
| 14334 | // We either found non-function declarations or a best viable function |
| 14335 | // at class scope. A class-scope lookup result disables ADL. Don't |
| 14336 | // look past this, but let the caller know that we found something that |
| 14337 | // either is, or might be, usable in this class. |
| 14338 | if (FoundInClass) { |
| 14339 | *FoundInClass = RD; |
| 14340 | if (OR == OR_Success) { |
| 14341 | R.clear(); |
| 14342 | R.addDecl(D: Best->FoundDecl.getDecl(), AS: Best->FoundDecl.getAccess()); |
| 14343 | R.resolveKind(); |
| 14344 | } |
| 14345 | } |
| 14346 | return false; |
| 14347 | } |
| 14348 | |
| 14349 | if (OR != OR_Success) { |
| 14350 | // There wasn't a unique best function or function template. |
| 14351 | return false; |
| 14352 | } |
| 14353 | |
| 14354 | // Find the namespaces where ADL would have looked, and suggest |
| 14355 | // declaring the function there instead. |
| 14356 | Sema::AssociatedNamespaceSet AssociatedNamespaces; |
| 14357 | Sema::AssociatedClassSet AssociatedClasses; |
| 14358 | SemaRef.FindAssociatedClassesAndNamespaces(InstantiationLoc: FnLoc, Args, |
| 14359 | AssociatedNamespaces, |
| 14360 | AssociatedClasses); |
| 14361 | Sema::AssociatedNamespaceSet SuggestedNamespaces; |
| 14362 | if (canBeDeclaredInNamespace(Name: R.getLookupName())) { |
| 14363 | DeclContext *Std = SemaRef.getStdNamespace(); |
| 14364 | for (Sema::AssociatedNamespaceSet::iterator |
| 14365 | it = AssociatedNamespaces.begin(), |
| 14366 | end = AssociatedNamespaces.end(); it != end; ++it) { |
| 14367 | // Never suggest declaring a function within namespace 'std'. |
| 14368 | if (Std && Std->Encloses(DC: *it)) |
| 14369 | continue; |
| 14370 | |
| 14371 | // Never suggest declaring a function within a namespace with a |
| 14372 | // reserved name, like __gnu_cxx. |
| 14373 | NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Val: *it); |
| 14374 | if (NS && |
| 14375 | NS->getQualifiedNameAsString().find(s: "__" ) != std::string::npos) |
| 14376 | continue; |
| 14377 | |
| 14378 | SuggestedNamespaces.insert(X: *it); |
| 14379 | } |
| 14380 | } |
| 14381 | |
| 14382 | SemaRef.Diag(Loc: R.getNameLoc(), DiagID: diag::err_not_found_by_two_phase_lookup) |
| 14383 | << R.getLookupName(); |
| 14384 | if (SuggestedNamespaces.empty()) { |
| 14385 | SemaRef.Diag(Loc: Best->Function->getLocation(), |
| 14386 | DiagID: diag::note_not_found_by_two_phase_lookup) |
| 14387 | << R.getLookupName() << 0; |
| 14388 | } else if (SuggestedNamespaces.size() == 1) { |
| 14389 | SemaRef.Diag(Loc: Best->Function->getLocation(), |
| 14390 | DiagID: diag::note_not_found_by_two_phase_lookup) |
| 14391 | << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); |
| 14392 | } else { |
| 14393 | // FIXME: It would be useful to list the associated namespaces here, |
| 14394 | // but the diagnostics infrastructure doesn't provide a way to produce |
| 14395 | // a localized representation of a list of items. |
| 14396 | SemaRef.Diag(Loc: Best->Function->getLocation(), |
| 14397 | DiagID: diag::note_not_found_by_two_phase_lookup) |
| 14398 | << R.getLookupName() << 2; |
| 14399 | } |
| 14400 | |
| 14401 | // Try to recover by calling this function. |
| 14402 | return true; |
| 14403 | } |
| 14404 | |
| 14405 | R.clear(); |
| 14406 | } |
| 14407 | |
| 14408 | return false; |
| 14409 | } |
| 14410 | |
| 14411 | /// Attempt to recover from ill-formed use of a non-dependent operator in a |
| 14412 | /// template, where the non-dependent operator was declared after the template |
| 14413 | /// was defined. |
| 14414 | /// |
| 14415 | /// Returns true if a viable candidate was found and a diagnostic was issued. |
| 14416 | static bool |
| 14417 | DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, |
| 14418 | SourceLocation OpLoc, |
| 14419 | ArrayRef<Expr *> Args) { |
| 14420 | DeclarationName OpName = |
| 14421 | SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); |
| 14422 | LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); |
| 14423 | return DiagnoseTwoPhaseLookup(SemaRef, FnLoc: OpLoc, SS: CXXScopeSpec(), R, |
| 14424 | CSK: OverloadCandidateSet::CSK_Operator, |
| 14425 | /*ExplicitTemplateArgs=*/nullptr, Args); |
| 14426 | } |
| 14427 | |
| 14428 | namespace { |
| 14429 | class BuildRecoveryCallExprRAII { |
| 14430 | Sema &SemaRef; |
| 14431 | Sema::SatisfactionStackResetRAII SatStack; |
| 14432 | |
| 14433 | public: |
| 14434 | BuildRecoveryCallExprRAII(Sema &S) : SemaRef(S), SatStack(S) { |
| 14435 | assert(SemaRef.IsBuildingRecoveryCallExpr == false); |
| 14436 | SemaRef.IsBuildingRecoveryCallExpr = true; |
| 14437 | } |
| 14438 | |
| 14439 | ~BuildRecoveryCallExprRAII() { SemaRef.IsBuildingRecoveryCallExpr = false; } |
| 14440 | }; |
| 14441 | } |
| 14442 | |
| 14443 | /// Attempts to recover from a call where no functions were found. |
| 14444 | /// |
| 14445 | /// This function will do one of three things: |
| 14446 | /// * Diagnose, recover, and return a recovery expression. |
| 14447 | /// * Diagnose, fail to recover, and return ExprError(). |
| 14448 | /// * Do not diagnose, do not recover, and return ExprResult(). The caller is |
| 14449 | /// expected to diagnose as appropriate. |
| 14450 | static ExprResult |
| 14451 | BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, |
| 14452 | UnresolvedLookupExpr *ULE, |
| 14453 | SourceLocation LParenLoc, |
| 14454 | MutableArrayRef<Expr *> Args, |
| 14455 | SourceLocation RParenLoc, |
| 14456 | bool EmptyLookup, bool AllowTypoCorrection) { |
| 14457 | // Do not try to recover if it is already building a recovery call. |
| 14458 | // This stops infinite loops for template instantiations like |
| 14459 | // |
| 14460 | // template <typename T> auto foo(T t) -> decltype(foo(t)) {} |
| 14461 | // template <typename T> auto foo(T t) -> decltype(foo(&t)) {} |
| 14462 | if (SemaRef.IsBuildingRecoveryCallExpr) |
| 14463 | return ExprResult(); |
| 14464 | BuildRecoveryCallExprRAII RCE(SemaRef); |
| 14465 | |
| 14466 | CXXScopeSpec SS; |
| 14467 | SS.Adopt(Other: ULE->getQualifierLoc()); |
| 14468 | SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc(); |
| 14469 | |
| 14470 | TemplateArgumentListInfo TABuffer; |
| 14471 | TemplateArgumentListInfo *ExplicitTemplateArgs = nullptr; |
| 14472 | if (ULE->hasExplicitTemplateArgs()) { |
| 14473 | ULE->copyTemplateArgumentsInto(List&: TABuffer); |
| 14474 | ExplicitTemplateArgs = &TABuffer; |
| 14475 | } |
| 14476 | |
| 14477 | LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), |
| 14478 | Sema::LookupOrdinaryName); |
| 14479 | CXXRecordDecl *FoundInClass = nullptr; |
| 14480 | if (DiagnoseTwoPhaseLookup(SemaRef, FnLoc: Fn->getExprLoc(), SS, R, |
| 14481 | CSK: OverloadCandidateSet::CSK_Normal, |
| 14482 | ExplicitTemplateArgs, Args, FoundInClass: &FoundInClass)) { |
| 14483 | // OK, diagnosed a two-phase lookup issue. |
| 14484 | } else if (EmptyLookup) { |
| 14485 | // Try to recover from an empty lookup with typo correction. |
| 14486 | R.clear(); |
| 14487 | NoTypoCorrectionCCC NoTypoValidator{}; |
| 14488 | FunctionCallFilterCCC FunctionCallValidator(SemaRef, Args.size(), |
| 14489 | ExplicitTemplateArgs != nullptr, |
| 14490 | dyn_cast<MemberExpr>(Val: Fn)); |
| 14491 | CorrectionCandidateCallback &Validator = |
| 14492 | AllowTypoCorrection |
| 14493 | ? static_cast<CorrectionCandidateCallback &>(FunctionCallValidator) |
| 14494 | : static_cast<CorrectionCandidateCallback &>(NoTypoValidator); |
| 14495 | if (SemaRef.DiagnoseEmptyLookup(S, SS, R, CCC&: Validator, ExplicitTemplateArgs, |
| 14496 | Args)) |
| 14497 | return ExprError(); |
| 14498 | } else if (FoundInClass && SemaRef.getLangOpts().MSVCCompat) { |
| 14499 | // We found a usable declaration of the name in a dependent base of some |
| 14500 | // enclosing class. |
| 14501 | // FIXME: We should also explain why the candidates found by name lookup |
| 14502 | // were not viable. |
| 14503 | if (SemaRef.DiagnoseDependentMemberLookup(R)) |
| 14504 | return ExprError(); |
| 14505 | } else { |
| 14506 | // We had viable candidates and couldn't recover; let the caller diagnose |
| 14507 | // this. |
| 14508 | return ExprResult(); |
| 14509 | } |
| 14510 | |
| 14511 | // If we get here, we should have issued a diagnostic and formed a recovery |
| 14512 | // lookup result. |
| 14513 | assert(!R.empty() && "lookup results empty despite recovery" ); |
| 14514 | |
| 14515 | // If recovery created an ambiguity, just bail out. |
| 14516 | if (R.isAmbiguous()) { |
| 14517 | R.suppressDiagnostics(); |
| 14518 | return ExprError(); |
| 14519 | } |
| 14520 | |
| 14521 | // Build an implicit member call if appropriate. Just drop the |
| 14522 | // casts and such from the call, we don't really care. |
| 14523 | ExprResult NewFn = ExprError(); |
| 14524 | if ((*R.begin())->isCXXClassMember()) |
| 14525 | NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, |
| 14526 | TemplateArgs: ExplicitTemplateArgs, S); |
| 14527 | else if (ExplicitTemplateArgs || TemplateKWLoc.isValid()) |
| 14528 | NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, RequiresADL: false, |
| 14529 | TemplateArgs: ExplicitTemplateArgs); |
| 14530 | else |
| 14531 | NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, NeedsADL: false); |
| 14532 | |
| 14533 | if (NewFn.isInvalid()) |
| 14534 | return ExprError(); |
| 14535 | |
| 14536 | // This shouldn't cause an infinite loop because we're giving it |
| 14537 | // an expression with viable lookup results, which should never |
| 14538 | // end up here. |
| 14539 | return SemaRef.BuildCallExpr(/*Scope*/ S: nullptr, Fn: NewFn.get(), LParenLoc, |
| 14540 | ArgExprs: MultiExprArg(Args.data(), Args.size()), |
| 14541 | RParenLoc); |
| 14542 | } |
| 14543 | |
| 14544 | bool Sema::buildOverloadedCallSet(Scope *S, Expr *Fn, |
| 14545 | UnresolvedLookupExpr *ULE, |
| 14546 | MultiExprArg Args, |
| 14547 | SourceLocation RParenLoc, |
| 14548 | OverloadCandidateSet *CandidateSet, |
| 14549 | ExprResult *Result) { |
| 14550 | #ifndef NDEBUG |
| 14551 | if (ULE->requiresADL()) { |
| 14552 | // To do ADL, we must have found an unqualified name. |
| 14553 | assert(!ULE->getQualifier() && "qualified name with ADL" ); |
| 14554 | |
| 14555 | // We don't perform ADL for implicit declarations of builtins. |
| 14556 | // Verify that this was correctly set up. |
| 14557 | FunctionDecl *F; |
| 14558 | if (ULE->decls_begin() != ULE->decls_end() && |
| 14559 | ULE->decls_begin() + 1 == ULE->decls_end() && |
| 14560 | (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && |
| 14561 | F->getBuiltinID() && F->isImplicit()) |
| 14562 | llvm_unreachable("performing ADL for builtin" ); |
| 14563 | |
| 14564 | // We don't perform ADL in C. |
| 14565 | assert(getLangOpts().CPlusPlus && "ADL enabled in C" ); |
| 14566 | } |
| 14567 | #endif |
| 14568 | |
| 14569 | UnbridgedCastsSet UnbridgedCasts; |
| 14570 | if (checkArgPlaceholdersForOverload(S&: *this, Args, unbridged&: UnbridgedCasts)) { |
| 14571 | *Result = ExprError(); |
| 14572 | return true; |
| 14573 | } |
| 14574 | |
| 14575 | // Add the functions denoted by the callee to the set of candidate |
| 14576 | // functions, including those from argument-dependent lookup. |
| 14577 | AddOverloadedCallCandidates(ULE, Args, CandidateSet&: *CandidateSet); |
| 14578 | |
| 14579 | if (getLangOpts().MSVCCompat && |
| 14580 | CurContext->isDependentContext() && !isSFINAEContext() && |
| 14581 | (isa<FunctionDecl>(Val: CurContext) || isa<CXXRecordDecl>(Val: CurContext))) { |
| 14582 | |
| 14583 | OverloadCandidateSet::iterator Best; |
| 14584 | if (CandidateSet->empty() || |
| 14585 | CandidateSet->BestViableFunction(S&: *this, Loc: Fn->getBeginLoc(), Best) == |
| 14586 | OR_No_Viable_Function) { |
| 14587 | // In Microsoft mode, if we are inside a template class member function |
| 14588 | // then create a type dependent CallExpr. The goal is to postpone name |
| 14589 | // lookup to instantiation time to be able to search into type dependent |
| 14590 | // base classes. |
| 14591 | CallExpr *CE = |
| 14592 | CallExpr::Create(Ctx: Context, Fn, Args, Ty: Context.DependentTy, VK: VK_PRValue, |
| 14593 | RParenLoc, FPFeatures: CurFPFeatureOverrides()); |
| 14594 | CE->markDependentForPostponedNameLookup(); |
| 14595 | *Result = CE; |
| 14596 | return true; |
| 14597 | } |
| 14598 | } |
| 14599 | |
| 14600 | if (CandidateSet->empty()) |
| 14601 | return false; |
| 14602 | |
| 14603 | UnbridgedCasts.restore(); |
| 14604 | return false; |
| 14605 | } |
| 14606 | |
| 14607 | // Guess at what the return type for an unresolvable overload should be. |
| 14608 | static QualType chooseRecoveryType(OverloadCandidateSet &CS, |
| 14609 | OverloadCandidateSet::iterator *Best) { |
| 14610 | std::optional<QualType> Result; |
| 14611 | // Adjust Type after seeing a candidate. |
| 14612 | auto ConsiderCandidate = [&](const OverloadCandidate &Candidate) { |
| 14613 | if (!Candidate.Function) |
| 14614 | return; |
| 14615 | if (Candidate.Function->isInvalidDecl()) |
| 14616 | return; |
| 14617 | QualType T = Candidate.Function->getReturnType(); |
| 14618 | if (T.isNull()) |
| 14619 | return; |
| 14620 | if (!Result) |
| 14621 | Result = T; |
| 14622 | else if (Result != T) |
| 14623 | Result = QualType(); |
| 14624 | }; |
| 14625 | |
| 14626 | // Look for an unambiguous type from a progressively larger subset. |
| 14627 | // e.g. if types disagree, but all *viable* overloads return int, choose int. |
| 14628 | // |
| 14629 | // First, consider only the best candidate. |
| 14630 | if (Best && *Best != CS.end()) |
| 14631 | ConsiderCandidate(**Best); |
| 14632 | // Next, consider only viable candidates. |
| 14633 | if (!Result) |
| 14634 | for (const auto &C : CS) |
| 14635 | if (C.Viable) |
| 14636 | ConsiderCandidate(C); |
| 14637 | // Finally, consider all candidates. |
| 14638 | if (!Result) |
| 14639 | for (const auto &C : CS) |
| 14640 | ConsiderCandidate(C); |
| 14641 | |
| 14642 | if (!Result) |
| 14643 | return QualType(); |
| 14644 | auto Value = *Result; |
| 14645 | if (Value.isNull() || Value->isUndeducedType()) |
| 14646 | return QualType(); |
| 14647 | return Value; |
| 14648 | } |
| 14649 | |
| 14650 | /// FinishOverloadedCallExpr - given an OverloadCandidateSet, builds and returns |
| 14651 | /// the completed call expression. If overload resolution fails, emits |
| 14652 | /// diagnostics and returns ExprError() |
| 14653 | static ExprResult FinishOverloadedCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, |
| 14654 | UnresolvedLookupExpr *ULE, |
| 14655 | SourceLocation LParenLoc, |
| 14656 | MultiExprArg Args, |
| 14657 | SourceLocation RParenLoc, |
| 14658 | Expr *ExecConfig, |
| 14659 | OverloadCandidateSet *CandidateSet, |
| 14660 | OverloadCandidateSet::iterator *Best, |
| 14661 | OverloadingResult OverloadResult, |
| 14662 | bool AllowTypoCorrection) { |
| 14663 | switch (OverloadResult) { |
| 14664 | case OR_Success: { |
| 14665 | FunctionDecl *FDecl = (*Best)->Function; |
| 14666 | SemaRef.CheckUnresolvedLookupAccess(E: ULE, FoundDecl: (*Best)->FoundDecl); |
| 14667 | if (SemaRef.DiagnoseUseOfDecl(D: FDecl, Locs: ULE->getNameLoc())) |
| 14668 | return ExprError(); |
| 14669 | ExprResult Res = |
| 14670 | SemaRef.FixOverloadedFunctionReference(E: Fn, FoundDecl: (*Best)->FoundDecl, Fn: FDecl); |
| 14671 | if (Res.isInvalid()) |
| 14672 | return ExprError(); |
| 14673 | return SemaRef.BuildResolvedCallExpr( |
| 14674 | Fn: Res.get(), NDecl: FDecl, LParenLoc, Arg: Args, RParenLoc, Config: ExecConfig, |
| 14675 | /*IsExecConfig=*/false, |
| 14676 | UsesADL: static_cast<CallExpr::ADLCallKind>((*Best)->IsADLCandidate)); |
| 14677 | } |
| 14678 | |
| 14679 | case OR_No_Viable_Function: { |
| 14680 | if (*Best != CandidateSet->end() && |
| 14681 | CandidateSet->getKind() == |
| 14682 | clang::OverloadCandidateSet::CSK_AddressOfOverloadSet) { |
| 14683 | if (CXXMethodDecl *M = |
| 14684 | dyn_cast_if_present<CXXMethodDecl>(Val: (*Best)->Function); |
| 14685 | M && M->isImplicitObjectMemberFunction()) { |
| 14686 | CandidateSet->NoteCandidates( |
| 14687 | PD: PartialDiagnosticAt( |
| 14688 | Fn->getBeginLoc(), |
| 14689 | SemaRef.PDiag(DiagID: diag::err_member_call_without_object) << 0 << M), |
| 14690 | S&: SemaRef, OCD: OCD_AmbiguousCandidates, Args); |
| 14691 | return ExprError(); |
| 14692 | } |
| 14693 | } |
| 14694 | |
| 14695 | // Try to recover by looking for viable functions which the user might |
| 14696 | // have meant to call. |
| 14697 | ExprResult Recovery = BuildRecoveryCallExpr(SemaRef, S, Fn, ULE, LParenLoc, |
| 14698 | Args, RParenLoc, |
| 14699 | EmptyLookup: CandidateSet->empty(), |
| 14700 | AllowTypoCorrection); |
| 14701 | if (Recovery.isInvalid() || Recovery.isUsable()) |
| 14702 | return Recovery; |
| 14703 | |
| 14704 | // If the user passes in a function that we can't take the address of, we |
| 14705 | // generally end up emitting really bad error messages. Here, we attempt to |
| 14706 | // emit better ones. |
| 14707 | for (const Expr *Arg : Args) { |
| 14708 | if (!Arg->getType()->isFunctionType()) |
| 14709 | continue; |
| 14710 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: Arg->IgnoreParenImpCasts())) { |
| 14711 | auto *FD = dyn_cast<FunctionDecl>(Val: DRE->getDecl()); |
| 14712 | if (FD && |
| 14713 | !SemaRef.checkAddressOfFunctionIsAvailable(Function: FD, /*Complain=*/true, |
| 14714 | Loc: Arg->getExprLoc())) |
| 14715 | return ExprError(); |
| 14716 | } |
| 14717 | } |
| 14718 | |
| 14719 | CandidateSet->NoteCandidates( |
| 14720 | PD: PartialDiagnosticAt( |
| 14721 | Fn->getBeginLoc(), |
| 14722 | SemaRef.PDiag(DiagID: diag::err_ovl_no_viable_function_in_call) |
| 14723 | << ULE->getName() << Fn->getSourceRange()), |
| 14724 | S&: SemaRef, OCD: OCD_AllCandidates, Args); |
| 14725 | break; |
| 14726 | } |
| 14727 | |
| 14728 | case OR_Ambiguous: |
| 14729 | CandidateSet->NoteCandidates( |
| 14730 | PD: PartialDiagnosticAt(Fn->getBeginLoc(), |
| 14731 | SemaRef.PDiag(DiagID: diag::err_ovl_ambiguous_call) |
| 14732 | << ULE->getName() << Fn->getSourceRange()), |
| 14733 | S&: SemaRef, OCD: OCD_AmbiguousCandidates, Args); |
| 14734 | break; |
| 14735 | |
| 14736 | case OR_Deleted: { |
| 14737 | FunctionDecl *FDecl = (*Best)->Function; |
| 14738 | SemaRef.DiagnoseUseOfDeletedFunction(Loc: Fn->getBeginLoc(), |
| 14739 | Range: Fn->getSourceRange(), Name: ULE->getName(), |
| 14740 | CandidateSet&: *CandidateSet, Fn: FDecl, Args); |
| 14741 | |
| 14742 | // We emitted an error for the unavailable/deleted function call but keep |
| 14743 | // the call in the AST. |
| 14744 | ExprResult Res = |
| 14745 | SemaRef.FixOverloadedFunctionReference(E: Fn, FoundDecl: (*Best)->FoundDecl, Fn: FDecl); |
| 14746 | if (Res.isInvalid()) |
| 14747 | return ExprError(); |
| 14748 | return SemaRef.BuildResolvedCallExpr( |
| 14749 | Fn: Res.get(), NDecl: FDecl, LParenLoc, Arg: Args, RParenLoc, Config: ExecConfig, |
| 14750 | /*IsExecConfig=*/false, |
| 14751 | UsesADL: static_cast<CallExpr::ADLCallKind>((*Best)->IsADLCandidate)); |
| 14752 | } |
| 14753 | } |
| 14754 | |
| 14755 | // Overload resolution failed, try to recover. |
| 14756 | SmallVector<Expr *, 8> SubExprs = {Fn}; |
| 14757 | SubExprs.append(in_start: Args.begin(), in_end: Args.end()); |
| 14758 | return SemaRef.CreateRecoveryExpr(Begin: Fn->getBeginLoc(), End: RParenLoc, SubExprs, |
| 14759 | T: chooseRecoveryType(CS&: *CandidateSet, Best)); |
| 14760 | } |
| 14761 | |
| 14762 | static void markUnaddressableCandidatesUnviable(Sema &S, |
| 14763 | OverloadCandidateSet &CS) { |
| 14764 | for (auto I = CS.begin(), E = CS.end(); I != E; ++I) { |
| 14765 | if (I->Viable && |
| 14766 | !S.checkAddressOfFunctionIsAvailable(Function: I->Function, /*Complain=*/false)) { |
| 14767 | I->Viable = false; |
| 14768 | I->FailureKind = ovl_fail_addr_not_available; |
| 14769 | } |
| 14770 | } |
| 14771 | } |
| 14772 | |
| 14773 | ExprResult Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, |
| 14774 | UnresolvedLookupExpr *ULE, |
| 14775 | SourceLocation LParenLoc, |
| 14776 | MultiExprArg Args, |
| 14777 | SourceLocation RParenLoc, |
| 14778 | Expr *ExecConfig, |
| 14779 | bool AllowTypoCorrection, |
| 14780 | bool CalleesAddressIsTaken) { |
| 14781 | |
| 14782 | OverloadCandidateSet::CandidateSetKind CSK = |
| 14783 | CalleesAddressIsTaken ? OverloadCandidateSet::CSK_AddressOfOverloadSet |
| 14784 | : OverloadCandidateSet::CSK_Normal; |
| 14785 | |
| 14786 | OverloadCandidateSet CandidateSet(Fn->getExprLoc(), CSK); |
| 14787 | ExprResult result; |
| 14788 | |
| 14789 | if (buildOverloadedCallSet(S, Fn, ULE, Args, RParenLoc: LParenLoc, CandidateSet: &CandidateSet, |
| 14790 | Result: &result)) |
| 14791 | return result; |
| 14792 | |
| 14793 | // If the user handed us something like `(&Foo)(Bar)`, we need to ensure that |
| 14794 | // functions that aren't addressible are considered unviable. |
| 14795 | if (CalleesAddressIsTaken) |
| 14796 | markUnaddressableCandidatesUnviable(S&: *this, CS&: CandidateSet); |
| 14797 | |
| 14798 | OverloadCandidateSet::iterator Best; |
| 14799 | OverloadingResult OverloadResult = |
| 14800 | CandidateSet.BestViableFunction(S&: *this, Loc: Fn->getBeginLoc(), Best); |
| 14801 | |
| 14802 | // [C++23][over.call.func] |
| 14803 | // if overload resolution selects a non-static member function, |
| 14804 | // the call is ill-formed; |
| 14805 | if (CSK == OverloadCandidateSet::CSK_AddressOfOverloadSet && |
| 14806 | Best != CandidateSet.end()) { |
| 14807 | if (auto *M = dyn_cast_or_null<CXXMethodDecl>(Val: Best->Function); |
| 14808 | M && M->isImplicitObjectMemberFunction()) { |
| 14809 | OverloadResult = OR_No_Viable_Function; |
| 14810 | } |
| 14811 | } |
| 14812 | |
| 14813 | // Model the case with a call to a templated function whose definition |
| 14814 | // encloses the call and whose return type contains a placeholder type as if |
| 14815 | // the UnresolvedLookupExpr was type-dependent. |
| 14816 | if (OverloadResult == OR_Success) { |
| 14817 | const FunctionDecl *FDecl = Best->Function; |
| 14818 | if (LangOpts.CUDA) |
| 14819 | CUDA().recordPotentialODRUsedVariable(Args, CandidateSet); |
| 14820 | if (FDecl && FDecl->isTemplateInstantiation() && |
| 14821 | FDecl->getReturnType()->isUndeducedType()) { |
| 14822 | |
| 14823 | // Creating dependent CallExpr is not okay if the enclosing context itself |
| 14824 | // is not dependent. This situation notably arises if a non-dependent |
| 14825 | // member function calls the later-defined overloaded static function. |
| 14826 | // |
| 14827 | // For example, in |
| 14828 | // class A { |
| 14829 | // void c() { callee(1); } |
| 14830 | // static auto callee(auto x) { } |
| 14831 | // }; |
| 14832 | // |
| 14833 | // Here callee(1) is unresolved at the call site, but is not inside a |
| 14834 | // dependent context. There will be no further attempt to resolve this |
| 14835 | // call if it is made dependent. |
| 14836 | |
| 14837 | if (const auto *TP = |
| 14838 | FDecl->getTemplateInstantiationPattern(/*ForDefinition=*/false); |
| 14839 | TP && TP->willHaveBody() && CurContext->isDependentContext()) { |
| 14840 | return CallExpr::Create(Ctx: Context, Fn, Args, Ty: Context.DependentTy, |
| 14841 | VK: VK_PRValue, RParenLoc, FPFeatures: CurFPFeatureOverrides()); |
| 14842 | } |
| 14843 | } |
| 14844 | } |
| 14845 | |
| 14846 | return FinishOverloadedCallExpr(SemaRef&: *this, S, Fn, ULE, LParenLoc, Args, RParenLoc, |
| 14847 | ExecConfig, CandidateSet: &CandidateSet, Best: &Best, |
| 14848 | OverloadResult, AllowTypoCorrection); |
| 14849 | } |
| 14850 | |
| 14851 | ExprResult Sema::CreateUnresolvedLookupExpr(CXXRecordDecl *NamingClass, |
| 14852 | NestedNameSpecifierLoc NNSLoc, |
| 14853 | DeclarationNameInfo DNI, |
| 14854 | const UnresolvedSetImpl &Fns, |
| 14855 | bool PerformADL) { |
| 14856 | return UnresolvedLookupExpr::Create( |
| 14857 | Context, NamingClass, QualifierLoc: NNSLoc, NameInfo: DNI, RequiresADL: PerformADL, Begin: Fns.begin(), End: Fns.end(), |
| 14858 | /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false); |
| 14859 | } |
| 14860 | |
| 14861 | ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, |
| 14862 | CXXConversionDecl *Method, |
| 14863 | bool HadMultipleCandidates) { |
| 14864 | // FoundDecl can be the TemplateDecl of Method. Don't retain a template in |
| 14865 | // the FoundDecl as it impedes TransformMemberExpr. |
| 14866 | // We go a bit further here: if there's no difference in UnderlyingDecl, |
| 14867 | // then using FoundDecl vs Method shouldn't make a difference either. |
| 14868 | if (FoundDecl->getUnderlyingDecl() == FoundDecl) |
| 14869 | FoundDecl = Method; |
| 14870 | // Convert the expression to match the conversion function's implicit object |
| 14871 | // parameter. |
| 14872 | ExprResult Exp; |
| 14873 | if (Method->isExplicitObjectMemberFunction()) |
| 14874 | Exp = InitializeExplicitObjectArgument(S&: *this, Obj: E, Fun: Method); |
| 14875 | else |
| 14876 | Exp = PerformImplicitObjectArgumentInitialization(From: E, /*Qualifier=*/nullptr, |
| 14877 | FoundDecl, Method); |
| 14878 | if (Exp.isInvalid()) |
| 14879 | return true; |
| 14880 | |
| 14881 | if (Method->getParent()->isLambda() && |
| 14882 | Method->getConversionType()->isBlockPointerType()) { |
| 14883 | // This is a lambda conversion to block pointer; check if the argument |
| 14884 | // was a LambdaExpr. |
| 14885 | Expr *SubE = E; |
| 14886 | auto *CE = dyn_cast<CastExpr>(Val: SubE); |
| 14887 | if (CE && CE->getCastKind() == CK_NoOp) |
| 14888 | SubE = CE->getSubExpr(); |
| 14889 | SubE = SubE->IgnoreParens(); |
| 14890 | if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(Val: SubE)) |
| 14891 | SubE = BE->getSubExpr(); |
| 14892 | if (isa<LambdaExpr>(Val: SubE)) { |
| 14893 | // For the conversion to block pointer on a lambda expression, we |
| 14894 | // construct a special BlockLiteral instead; this doesn't really make |
| 14895 | // a difference in ARC, but outside of ARC the resulting block literal |
| 14896 | // follows the normal lifetime rules for block literals instead of being |
| 14897 | // autoreleased. |
| 14898 | PushExpressionEvaluationContext( |
| 14899 | NewContext: ExpressionEvaluationContext::PotentiallyEvaluated); |
| 14900 | ExprResult BlockExp = BuildBlockForLambdaConversion( |
| 14901 | CurrentLocation: Exp.get()->getExprLoc(), ConvLocation: Exp.get()->getExprLoc(), Conv: Method, Src: Exp.get()); |
| 14902 | PopExpressionEvaluationContext(); |
| 14903 | |
| 14904 | // FIXME: This note should be produced by a CodeSynthesisContext. |
| 14905 | if (BlockExp.isInvalid()) |
| 14906 | Diag(Loc: Exp.get()->getExprLoc(), DiagID: diag::note_lambda_to_block_conv); |
| 14907 | return BlockExp; |
| 14908 | } |
| 14909 | } |
| 14910 | CallExpr *CE; |
| 14911 | QualType ResultType = Method->getReturnType(); |
| 14912 | ExprValueKind VK = Expr::getValueKindForType(T: ResultType); |
| 14913 | ResultType = ResultType.getNonLValueExprType(Context); |
| 14914 | if (Method->isExplicitObjectMemberFunction()) { |
| 14915 | ExprResult FnExpr = |
| 14916 | CreateFunctionRefExpr(S&: *this, Fn: Method, FoundDecl, Base: Exp.get(), |
| 14917 | HadMultipleCandidates, Loc: E->getBeginLoc()); |
| 14918 | if (FnExpr.isInvalid()) |
| 14919 | return ExprError(); |
| 14920 | Expr *ObjectParam = Exp.get(); |
| 14921 | CE = CallExpr::Create(Ctx: Context, Fn: FnExpr.get(), Args: MultiExprArg(&ObjectParam, 1), |
| 14922 | Ty: ResultType, VK, RParenLoc: Exp.get()->getEndLoc(), |
| 14923 | FPFeatures: CurFPFeatureOverrides()); |
| 14924 | CE->setUsesMemberSyntax(true); |
| 14925 | } else { |
| 14926 | MemberExpr *ME = |
| 14927 | BuildMemberExpr(Base: Exp.get(), /*IsArrow=*/false, OpLoc: SourceLocation(), |
| 14928 | NNS: NestedNameSpecifierLoc(), TemplateKWLoc: SourceLocation(), Member: Method, |
| 14929 | FoundDecl: DeclAccessPair::make(D: FoundDecl, AS: FoundDecl->getAccess()), |
| 14930 | HadMultipleCandidates, MemberNameInfo: DeclarationNameInfo(), |
| 14931 | Ty: Context.BoundMemberTy, VK: VK_PRValue, OK: OK_Ordinary); |
| 14932 | |
| 14933 | CE = CXXMemberCallExpr::Create(Ctx: Context, Fn: ME, /*Args=*/{}, Ty: ResultType, VK, |
| 14934 | RP: Exp.get()->getEndLoc(), |
| 14935 | FPFeatures: CurFPFeatureOverrides()); |
| 14936 | } |
| 14937 | |
| 14938 | if (CheckFunctionCall(FDecl: Method, TheCall: CE, |
| 14939 | Proto: Method->getType()->castAs<FunctionProtoType>())) |
| 14940 | return ExprError(); |
| 14941 | |
| 14942 | return CheckForImmediateInvocation(E: CE, Decl: CE->getDirectCallee()); |
| 14943 | } |
| 14944 | |
| 14945 | ExprResult |
| 14946 | Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, UnaryOperatorKind Opc, |
| 14947 | const UnresolvedSetImpl &Fns, |
| 14948 | Expr *Input, bool PerformADL) { |
| 14949 | OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); |
| 14950 | assert(Op != OO_None && "Invalid opcode for overloaded unary operator" ); |
| 14951 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| 14952 | // TODO: provide better source location info. |
| 14953 | DeclarationNameInfo OpNameInfo(OpName, OpLoc); |
| 14954 | |
| 14955 | if (checkPlaceholderForOverload(S&: *this, E&: Input)) |
| 14956 | return ExprError(); |
| 14957 | |
| 14958 | Expr *Args[2] = { Input, nullptr }; |
| 14959 | unsigned NumArgs = 1; |
| 14960 | |
| 14961 | // For post-increment and post-decrement, add the implicit '0' as |
| 14962 | // the second argument, so that we know this is a post-increment or |
| 14963 | // post-decrement. |
| 14964 | if (Opc == UO_PostInc || Opc == UO_PostDec) { |
| 14965 | llvm::APSInt Zero(Context.getTypeSize(T: Context.IntTy), false); |
| 14966 | Args[1] = IntegerLiteral::Create(C: Context, V: Zero, type: Context.IntTy, |
| 14967 | l: SourceLocation()); |
| 14968 | NumArgs = 2; |
| 14969 | } |
| 14970 | |
| 14971 | ArrayRef<Expr *> ArgsArray(Args, NumArgs); |
| 14972 | |
| 14973 | if (Input->isTypeDependent()) { |
| 14974 | ExprValueKind VK = ExprValueKind::VK_PRValue; |
| 14975 | // [C++26][expr.unary.op][expr.pre.incr] |
| 14976 | // The * operator yields an lvalue of type |
| 14977 | // The pre/post increment operators yied an lvalue. |
| 14978 | if (Opc == UO_PreDec || Opc == UO_PreInc || Opc == UO_Deref) |
| 14979 | VK = VK_LValue; |
| 14980 | |
| 14981 | if (Fns.empty()) |
| 14982 | return UnaryOperator::Create(C: Context, input: Input, opc: Opc, type: Context.DependentTy, VK, |
| 14983 | OK: OK_Ordinary, l: OpLoc, CanOverflow: false, |
| 14984 | FPFeatures: CurFPFeatureOverrides()); |
| 14985 | |
| 14986 | CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators |
| 14987 | ExprResult Fn = CreateUnresolvedLookupExpr( |
| 14988 | NamingClass, NNSLoc: NestedNameSpecifierLoc(), DNI: OpNameInfo, Fns); |
| 14989 | if (Fn.isInvalid()) |
| 14990 | return ExprError(); |
| 14991 | return CXXOperatorCallExpr::Create(Ctx: Context, OpKind: Op, Fn: Fn.get(), Args: ArgsArray, |
| 14992 | Ty: Context.DependentTy, VK: VK_PRValue, OperatorLoc: OpLoc, |
| 14993 | FPFeatures: CurFPFeatureOverrides()); |
| 14994 | } |
| 14995 | |
| 14996 | // Build an empty overload set. |
| 14997 | OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator); |
| 14998 | |
| 14999 | // Add the candidates from the given function set. |
| 15000 | AddNonMemberOperatorCandidates(Fns, Args: ArgsArray, CandidateSet); |
| 15001 | |
| 15002 | // Add operator candidates that are member functions. |
| 15003 | AddMemberOperatorCandidates(Op, OpLoc, Args: ArgsArray, CandidateSet); |
| 15004 | |
| 15005 | // Add candidates from ADL. |
| 15006 | if (PerformADL) { |
| 15007 | AddArgumentDependentLookupCandidates(Name: OpName, Loc: OpLoc, Args: ArgsArray, |
| 15008 | /*ExplicitTemplateArgs*/nullptr, |
| 15009 | CandidateSet); |
| 15010 | } |
| 15011 | |
| 15012 | // Add builtin operator candidates. |
| 15013 | AddBuiltinOperatorCandidates(Op, OpLoc, Args: ArgsArray, CandidateSet); |
| 15014 | |
| 15015 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 15016 | |
| 15017 | // Perform overload resolution. |
| 15018 | OverloadCandidateSet::iterator Best; |
| 15019 | switch (CandidateSet.BestViableFunction(S&: *this, Loc: OpLoc, Best)) { |
| 15020 | case OR_Success: { |
| 15021 | // We found a built-in operator or an overloaded operator. |
| 15022 | FunctionDecl *FnDecl = Best->Function; |
| 15023 | |
| 15024 | if (FnDecl) { |
| 15025 | Expr *Base = nullptr; |
| 15026 | // We matched an overloaded operator. Build a call to that |
| 15027 | // operator. |
| 15028 | |
| 15029 | // Convert the arguments. |
| 15030 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: FnDecl)) { |
| 15031 | CheckMemberOperatorAccess(Loc: OpLoc, ObjectExpr: Input, ArgExpr: nullptr, FoundDecl: Best->FoundDecl); |
| 15032 | |
| 15033 | ExprResult InputInit; |
| 15034 | if (Method->isExplicitObjectMemberFunction()) |
| 15035 | InputInit = InitializeExplicitObjectArgument(S&: *this, Obj: Input, Fun: Method); |
| 15036 | else |
| 15037 | InputInit = PerformImplicitObjectArgumentInitialization( |
| 15038 | From: Input, /*Qualifier=*/nullptr, FoundDecl: Best->FoundDecl, Method); |
| 15039 | if (InputInit.isInvalid()) |
| 15040 | return ExprError(); |
| 15041 | Base = Input = InputInit.get(); |
| 15042 | } else { |
| 15043 | // Convert the arguments. |
| 15044 | ExprResult InputInit |
| 15045 | = PerformCopyInitialization(Entity: InitializedEntity::InitializeParameter( |
| 15046 | Context, |
| 15047 | Parm: FnDecl->getParamDecl(i: 0)), |
| 15048 | EqualLoc: SourceLocation(), |
| 15049 | Init: Input); |
| 15050 | if (InputInit.isInvalid()) |
| 15051 | return ExprError(); |
| 15052 | Input = InputInit.get(); |
| 15053 | } |
| 15054 | |
| 15055 | // Build the actual expression node. |
| 15056 | ExprResult FnExpr = CreateFunctionRefExpr(S&: *this, Fn: FnDecl, FoundDecl: Best->FoundDecl, |
| 15057 | Base, HadMultipleCandidates, |
| 15058 | Loc: OpLoc); |
| 15059 | if (FnExpr.isInvalid()) |
| 15060 | return ExprError(); |
| 15061 | |
| 15062 | // Determine the result type. |
| 15063 | QualType ResultTy = FnDecl->getReturnType(); |
| 15064 | ExprValueKind VK = Expr::getValueKindForType(T: ResultTy); |
| 15065 | ResultTy = ResultTy.getNonLValueExprType(Context); |
| 15066 | |
| 15067 | Args[0] = Input; |
| 15068 | CallExpr *TheCall = CXXOperatorCallExpr::Create( |
| 15069 | Ctx: Context, OpKind: Op, Fn: FnExpr.get(), Args: ArgsArray, Ty: ResultTy, VK, OperatorLoc: OpLoc, |
| 15070 | FPFeatures: CurFPFeatureOverrides(), |
| 15071 | UsesADL: static_cast<CallExpr::ADLCallKind>(Best->IsADLCandidate)); |
| 15072 | |
| 15073 | if (CheckCallReturnType(ReturnType: FnDecl->getReturnType(), Loc: OpLoc, CE: TheCall, FD: FnDecl)) |
| 15074 | return ExprError(); |
| 15075 | |
| 15076 | if (CheckFunctionCall(FDecl: FnDecl, TheCall, |
| 15077 | Proto: FnDecl->getType()->castAs<FunctionProtoType>())) |
| 15078 | return ExprError(); |
| 15079 | return CheckForImmediateInvocation(E: MaybeBindToTemporary(E: TheCall), Decl: FnDecl); |
| 15080 | } else { |
| 15081 | // We matched a built-in operator. Convert the arguments, then |
| 15082 | // break out so that we will build the appropriate built-in |
| 15083 | // operator node. |
| 15084 | ExprResult InputRes = PerformImplicitConversion( |
| 15085 | From: Input, ToType: Best->BuiltinParamTypes[0], ICS: Best->Conversions[0], |
| 15086 | Action: AssignmentAction::Passing, |
| 15087 | CCK: CheckedConversionKind::ForBuiltinOverloadedOp); |
| 15088 | if (InputRes.isInvalid()) |
| 15089 | return ExprError(); |
| 15090 | Input = InputRes.get(); |
| 15091 | break; |
| 15092 | } |
| 15093 | } |
| 15094 | |
| 15095 | case OR_No_Viable_Function: |
| 15096 | // This is an erroneous use of an operator which can be overloaded by |
| 15097 | // a non-member function. Check for non-member operators which were |
| 15098 | // defined too late to be candidates. |
| 15099 | if (DiagnoseTwoPhaseOperatorLookup(SemaRef&: *this, Op, OpLoc, Args: ArgsArray)) |
| 15100 | // FIXME: Recover by calling the found function. |
| 15101 | return ExprError(); |
| 15102 | |
| 15103 | // No viable function; fall through to handling this as a |
| 15104 | // built-in operator, which will produce an error message for us. |
| 15105 | break; |
| 15106 | |
| 15107 | case OR_Ambiguous: |
| 15108 | CandidateSet.NoteCandidates( |
| 15109 | PD: PartialDiagnosticAt(OpLoc, |
| 15110 | PDiag(DiagID: diag::err_ovl_ambiguous_oper_unary) |
| 15111 | << UnaryOperator::getOpcodeStr(Op: Opc) |
| 15112 | << Input->getType() << Input->getSourceRange()), |
| 15113 | S&: *this, OCD: OCD_AmbiguousCandidates, Args: ArgsArray, |
| 15114 | Opc: UnaryOperator::getOpcodeStr(Op: Opc), OpLoc); |
| 15115 | return ExprError(); |
| 15116 | |
| 15117 | case OR_Deleted: { |
| 15118 | // CreateOverloadedUnaryOp fills the first element of ArgsArray with the |
| 15119 | // object whose method was called. Later in NoteCandidates size of ArgsArray |
| 15120 | // is passed further and it eventually ends up compared to number of |
| 15121 | // function candidate parameters which never includes the object parameter, |
| 15122 | // so slice ArgsArray to make sure apples are compared to apples. |
| 15123 | StringLiteral *Msg = Best->Function->getDeletedMessage(); |
| 15124 | CandidateSet.NoteCandidates( |
| 15125 | PD: PartialDiagnosticAt(OpLoc, PDiag(DiagID: diag::err_ovl_deleted_oper) |
| 15126 | << UnaryOperator::getOpcodeStr(Op: Opc) |
| 15127 | << (Msg != nullptr) |
| 15128 | << (Msg ? Msg->getString() : StringRef()) |
| 15129 | << Input->getSourceRange()), |
| 15130 | S&: *this, OCD: OCD_AllCandidates, Args: ArgsArray.drop_front(), |
| 15131 | Opc: UnaryOperator::getOpcodeStr(Op: Opc), OpLoc); |
| 15132 | return ExprError(); |
| 15133 | } |
| 15134 | } |
| 15135 | |
| 15136 | // Either we found no viable overloaded operator or we matched a |
| 15137 | // built-in operator. In either case, fall through to trying to |
| 15138 | // build a built-in operation. |
| 15139 | return CreateBuiltinUnaryOp(OpLoc, Opc, InputExpr: Input); |
| 15140 | } |
| 15141 | |
| 15142 | void Sema::LookupOverloadedBinOp(OverloadCandidateSet &CandidateSet, |
| 15143 | OverloadedOperatorKind Op, |
| 15144 | const UnresolvedSetImpl &Fns, |
| 15145 | ArrayRef<Expr *> Args, bool PerformADL) { |
| 15146 | SourceLocation OpLoc = CandidateSet.getLocation(); |
| 15147 | |
| 15148 | OverloadedOperatorKind = |
| 15149 | CandidateSet.getRewriteInfo().AllowRewrittenCandidates |
| 15150 | ? getRewrittenOverloadedOperator(Kind: Op) |
| 15151 | : OO_None; |
| 15152 | |
| 15153 | // Add the candidates from the given function set. This also adds the |
| 15154 | // rewritten candidates using these functions if necessary. |
| 15155 | AddNonMemberOperatorCandidates(Fns, Args, CandidateSet); |
| 15156 | |
| 15157 | // As template candidates are not deduced immediately, |
| 15158 | // persist the array in the overload set. |
| 15159 | ArrayRef<Expr *> ReversedArgs; |
| 15160 | if (CandidateSet.getRewriteInfo().allowsReversed(Op) || |
| 15161 | CandidateSet.getRewriteInfo().allowsReversed(Op: ExtraOp)) |
| 15162 | ReversedArgs = CandidateSet.getPersistentArgsArray(Exprs: Args[1], Exprs: Args[0]); |
| 15163 | |
| 15164 | // Add operator candidates that are member functions. |
| 15165 | AddMemberOperatorCandidates(Op, OpLoc, Args, CandidateSet); |
| 15166 | if (CandidateSet.getRewriteInfo().allowsReversed(Op)) |
| 15167 | AddMemberOperatorCandidates(Op, OpLoc, Args: ReversedArgs, CandidateSet, |
| 15168 | PO: OverloadCandidateParamOrder::Reversed); |
| 15169 | |
| 15170 | // In C++20, also add any rewritten member candidates. |
| 15171 | if (ExtraOp) { |
| 15172 | AddMemberOperatorCandidates(Op: ExtraOp, OpLoc, Args, CandidateSet); |
| 15173 | if (CandidateSet.getRewriteInfo().allowsReversed(Op: ExtraOp)) |
| 15174 | AddMemberOperatorCandidates(Op: ExtraOp, OpLoc, Args: ReversedArgs, CandidateSet, |
| 15175 | PO: OverloadCandidateParamOrder::Reversed); |
| 15176 | } |
| 15177 | |
| 15178 | // Add candidates from ADL. Per [over.match.oper]p2, this lookup is not |
| 15179 | // performed for an assignment operator (nor for operator[] nor operator->, |
| 15180 | // which don't get here). |
| 15181 | if (Op != OO_Equal && PerformADL) { |
| 15182 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| 15183 | AddArgumentDependentLookupCandidates(Name: OpName, Loc: OpLoc, Args, |
| 15184 | /*ExplicitTemplateArgs*/ nullptr, |
| 15185 | CandidateSet); |
| 15186 | if (ExtraOp) { |
| 15187 | DeclarationName = |
| 15188 | Context.DeclarationNames.getCXXOperatorName(Op: ExtraOp); |
| 15189 | AddArgumentDependentLookupCandidates(Name: ExtraOpName, Loc: OpLoc, Args, |
| 15190 | /*ExplicitTemplateArgs*/ nullptr, |
| 15191 | CandidateSet); |
| 15192 | } |
| 15193 | } |
| 15194 | |
| 15195 | // Add builtin operator candidates. |
| 15196 | // |
| 15197 | // FIXME: We don't add any rewritten candidates here. This is strictly |
| 15198 | // incorrect; a builtin candidate could be hidden by a non-viable candidate, |
| 15199 | // resulting in our selecting a rewritten builtin candidate. For example: |
| 15200 | // |
| 15201 | // enum class E { e }; |
| 15202 | // bool operator!=(E, E) requires false; |
| 15203 | // bool k = E::e != E::e; |
| 15204 | // |
| 15205 | // ... should select the rewritten builtin candidate 'operator==(E, E)'. But |
| 15206 | // it seems unreasonable to consider rewritten builtin candidates. A core |
| 15207 | // issue has been filed proposing to removed this requirement. |
| 15208 | AddBuiltinOperatorCandidates(Op, OpLoc, Args, CandidateSet); |
| 15209 | } |
| 15210 | |
| 15211 | ExprResult Sema::CreateOverloadedBinOp(SourceLocation OpLoc, |
| 15212 | BinaryOperatorKind Opc, |
| 15213 | const UnresolvedSetImpl &Fns, Expr *LHS, |
| 15214 | Expr *RHS, bool PerformADL, |
| 15215 | bool AllowRewrittenCandidates, |
| 15216 | FunctionDecl *DefaultedFn) { |
| 15217 | Expr *Args[2] = { LHS, RHS }; |
| 15218 | LHS=RHS=nullptr; // Please use only Args instead of LHS/RHS couple |
| 15219 | |
| 15220 | if (!getLangOpts().CPlusPlus20) |
| 15221 | AllowRewrittenCandidates = false; |
| 15222 | |
| 15223 | OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); |
| 15224 | |
| 15225 | // If either side is type-dependent, create an appropriate dependent |
| 15226 | // expression. |
| 15227 | if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { |
| 15228 | if (Fns.empty()) { |
| 15229 | // If there are no functions to store, just build a dependent |
| 15230 | // BinaryOperator or CompoundAssignment. |
| 15231 | if (BinaryOperator::isCompoundAssignmentOp(Opc)) |
| 15232 | return CompoundAssignOperator::Create( |
| 15233 | C: Context, lhs: Args[0], rhs: Args[1], opc: Opc, ResTy: Context.DependentTy, VK: VK_LValue, |
| 15234 | OK: OK_Ordinary, opLoc: OpLoc, FPFeatures: CurFPFeatureOverrides(), CompLHSType: Context.DependentTy, |
| 15235 | CompResultType: Context.DependentTy); |
| 15236 | return BinaryOperator::Create( |
| 15237 | C: Context, lhs: Args[0], rhs: Args[1], opc: Opc, ResTy: Context.DependentTy, VK: VK_PRValue, |
| 15238 | OK: OK_Ordinary, opLoc: OpLoc, FPFeatures: CurFPFeatureOverrides()); |
| 15239 | } |
| 15240 | |
| 15241 | // FIXME: save results of ADL from here? |
| 15242 | CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators |
| 15243 | // TODO: provide better source location info in DNLoc component. |
| 15244 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| 15245 | DeclarationNameInfo OpNameInfo(OpName, OpLoc); |
| 15246 | ExprResult Fn = CreateUnresolvedLookupExpr( |
| 15247 | NamingClass, NNSLoc: NestedNameSpecifierLoc(), DNI: OpNameInfo, Fns, PerformADL); |
| 15248 | if (Fn.isInvalid()) |
| 15249 | return ExprError(); |
| 15250 | return CXXOperatorCallExpr::Create(Ctx: Context, OpKind: Op, Fn: Fn.get(), Args, |
| 15251 | Ty: Context.DependentTy, VK: VK_PRValue, OperatorLoc: OpLoc, |
| 15252 | FPFeatures: CurFPFeatureOverrides()); |
| 15253 | } |
| 15254 | |
| 15255 | // If this is the .* operator, which is not overloadable, just |
| 15256 | // create a built-in binary operator. |
| 15257 | if (Opc == BO_PtrMemD) { |
| 15258 | auto CheckPlaceholder = [&](Expr *&Arg) { |
| 15259 | ExprResult Res = CheckPlaceholderExpr(E: Arg); |
| 15260 | if (Res.isUsable()) |
| 15261 | Arg = Res.get(); |
| 15262 | return !Res.isUsable(); |
| 15263 | }; |
| 15264 | |
| 15265 | // CreateBuiltinBinOp() doesn't like it if we tell it to create a '.*' |
| 15266 | // expression that contains placeholders (in either the LHS or RHS). |
| 15267 | if (CheckPlaceholder(Args[0]) || CheckPlaceholder(Args[1])) |
| 15268 | return ExprError(); |
| 15269 | return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr: Args[0], RHSExpr: Args[1]); |
| 15270 | } |
| 15271 | |
| 15272 | // Always do placeholder-like conversions on the RHS. |
| 15273 | if (checkPlaceholderForOverload(S&: *this, E&: Args[1])) |
| 15274 | return ExprError(); |
| 15275 | |
| 15276 | // Do placeholder-like conversion on the LHS; note that we should |
| 15277 | // not get here with a PseudoObject LHS. |
| 15278 | assert(Args[0]->getObjectKind() != OK_ObjCProperty); |
| 15279 | if (checkPlaceholderForOverload(S&: *this, E&: Args[0])) |
| 15280 | return ExprError(); |
| 15281 | |
| 15282 | // If this is the assignment operator, we only perform overload resolution |
| 15283 | // if the left-hand side is a class or enumeration type. This is actually |
| 15284 | // a hack. The standard requires that we do overload resolution between the |
| 15285 | // various built-in candidates, but as DR507 points out, this can lead to |
| 15286 | // problems. So we do it this way, which pretty much follows what GCC does. |
| 15287 | // Note that we go the traditional code path for compound assignment forms. |
| 15288 | if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) |
| 15289 | return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr: Args[0], RHSExpr: Args[1]); |
| 15290 | |
| 15291 | // Build the overload set. |
| 15292 | OverloadCandidateSet CandidateSet(OpLoc, OverloadCandidateSet::CSK_Operator, |
| 15293 | OverloadCandidateSet::OperatorRewriteInfo( |
| 15294 | Op, OpLoc, AllowRewrittenCandidates)); |
| 15295 | if (DefaultedFn) |
| 15296 | CandidateSet.exclude(F: DefaultedFn); |
| 15297 | LookupOverloadedBinOp(CandidateSet, Op, Fns, Args, PerformADL); |
| 15298 | |
| 15299 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 15300 | |
| 15301 | // Perform overload resolution. |
| 15302 | OverloadCandidateSet::iterator Best; |
| 15303 | switch (CandidateSet.BestViableFunction(S&: *this, Loc: OpLoc, Best)) { |
| 15304 | case OR_Success: { |
| 15305 | // We found a built-in operator or an overloaded operator. |
| 15306 | FunctionDecl *FnDecl = Best->Function; |
| 15307 | |
| 15308 | bool IsReversed = Best->isReversed(); |
| 15309 | if (IsReversed) |
| 15310 | std::swap(a&: Args[0], b&: Args[1]); |
| 15311 | |
| 15312 | if (FnDecl) { |
| 15313 | |
| 15314 | if (FnDecl->isInvalidDecl()) |
| 15315 | return ExprError(); |
| 15316 | |
| 15317 | Expr *Base = nullptr; |
| 15318 | // We matched an overloaded operator. Build a call to that |
| 15319 | // operator. |
| 15320 | |
| 15321 | OverloadedOperatorKind ChosenOp = |
| 15322 | FnDecl->getDeclName().getCXXOverloadedOperator(); |
| 15323 | |
| 15324 | // C++2a [over.match.oper]p9: |
| 15325 | // If a rewritten operator== candidate is selected by overload |
| 15326 | // resolution for an operator@, its return type shall be cv bool |
| 15327 | if (Best->RewriteKind && ChosenOp == OO_EqualEqual && |
| 15328 | !FnDecl->getReturnType()->isBooleanType()) { |
| 15329 | bool IsExtension = |
| 15330 | FnDecl->getReturnType()->isIntegralOrUnscopedEnumerationType(); |
| 15331 | Diag(Loc: OpLoc, DiagID: IsExtension ? diag::ext_ovl_rewrite_equalequal_not_bool |
| 15332 | : diag::err_ovl_rewrite_equalequal_not_bool) |
| 15333 | << FnDecl->getReturnType() << BinaryOperator::getOpcodeStr(Op: Opc) |
| 15334 | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| 15335 | Diag(Loc: FnDecl->getLocation(), DiagID: diag::note_declared_at); |
| 15336 | if (!IsExtension) |
| 15337 | return ExprError(); |
| 15338 | } |
| 15339 | |
| 15340 | if (AllowRewrittenCandidates && !IsReversed && |
| 15341 | CandidateSet.getRewriteInfo().isReversible()) { |
| 15342 | // We could have reversed this operator, but didn't. Check if some |
| 15343 | // reversed form was a viable candidate, and if so, if it had a |
| 15344 | // better conversion for either parameter. If so, this call is |
| 15345 | // formally ambiguous, and allowing it is an extension. |
| 15346 | llvm::SmallVector<FunctionDecl*, 4> AmbiguousWith; |
| 15347 | for (OverloadCandidate &Cand : CandidateSet) { |
| 15348 | if (Cand.Viable && Cand.Function && Cand.isReversed() && |
| 15349 | allowAmbiguity(Context, F1: Cand.Function, F2: FnDecl)) { |
| 15350 | for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { |
| 15351 | if (CompareImplicitConversionSequences( |
| 15352 | S&: *this, Loc: OpLoc, ICS1: Cand.Conversions[ArgIdx], |
| 15353 | ICS2: Best->Conversions[ArgIdx]) == |
| 15354 | ImplicitConversionSequence::Better) { |
| 15355 | AmbiguousWith.push_back(Elt: Cand.Function); |
| 15356 | break; |
| 15357 | } |
| 15358 | } |
| 15359 | } |
| 15360 | } |
| 15361 | |
| 15362 | if (!AmbiguousWith.empty()) { |
| 15363 | bool AmbiguousWithSelf = |
| 15364 | AmbiguousWith.size() == 1 && |
| 15365 | declaresSameEntity(D1: AmbiguousWith.front(), D2: FnDecl); |
| 15366 | Diag(Loc: OpLoc, DiagID: diag::ext_ovl_ambiguous_oper_binary_reversed) |
| 15367 | << BinaryOperator::getOpcodeStr(Op: Opc) |
| 15368 | << Args[0]->getType() << Args[1]->getType() << AmbiguousWithSelf |
| 15369 | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| 15370 | if (AmbiguousWithSelf) { |
| 15371 | Diag(Loc: FnDecl->getLocation(), |
| 15372 | DiagID: diag::note_ovl_ambiguous_oper_binary_reversed_self); |
| 15373 | // Mark member== const or provide matching != to disallow reversed |
| 15374 | // args. Eg. |
| 15375 | // struct S { bool operator==(const S&); }; |
| 15376 | // S()==S(); |
| 15377 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: FnDecl)) |
| 15378 | if (Op == OverloadedOperatorKind::OO_EqualEqual && |
| 15379 | !MD->isConst() && |
| 15380 | !MD->hasCXXExplicitFunctionObjectParameter() && |
| 15381 | Context.hasSameUnqualifiedType( |
| 15382 | T1: MD->getFunctionObjectParameterType(), |
| 15383 | T2: MD->getParamDecl(i: 0)->getType().getNonReferenceType()) && |
| 15384 | Context.hasSameUnqualifiedType( |
| 15385 | T1: MD->getFunctionObjectParameterType(), |
| 15386 | T2: Args[0]->getType()) && |
| 15387 | Context.hasSameUnqualifiedType( |
| 15388 | T1: MD->getFunctionObjectParameterType(), |
| 15389 | T2: Args[1]->getType())) |
| 15390 | Diag(Loc: FnDecl->getLocation(), |
| 15391 | DiagID: diag::note_ovl_ambiguous_eqeq_reversed_self_non_const); |
| 15392 | } else { |
| 15393 | Diag(Loc: FnDecl->getLocation(), |
| 15394 | DiagID: diag::note_ovl_ambiguous_oper_binary_selected_candidate); |
| 15395 | for (auto *F : AmbiguousWith) |
| 15396 | Diag(Loc: F->getLocation(), |
| 15397 | DiagID: diag::note_ovl_ambiguous_oper_binary_reversed_candidate); |
| 15398 | } |
| 15399 | } |
| 15400 | } |
| 15401 | |
| 15402 | // Check for nonnull = nullable. |
| 15403 | // This won't be caught in the arg's initialization: the parameter to |
| 15404 | // the assignment operator is not marked nonnull. |
| 15405 | if (Op == OO_Equal) |
| 15406 | diagnoseNullableToNonnullConversion(DstType: Args[0]->getType(), |
| 15407 | SrcType: Args[1]->getType(), Loc: OpLoc); |
| 15408 | |
| 15409 | // Convert the arguments. |
| 15410 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: FnDecl)) { |
| 15411 | // Best->Access is only meaningful for class members. |
| 15412 | CheckMemberOperatorAccess(Loc: OpLoc, ObjectExpr: Args[0], ArgExpr: Args[1], FoundDecl: Best->FoundDecl); |
| 15413 | |
| 15414 | ExprResult Arg0, Arg1; |
| 15415 | unsigned ParamIdx = 0; |
| 15416 | if (Method->isExplicitObjectMemberFunction()) { |
| 15417 | Arg0 = InitializeExplicitObjectArgument(S&: *this, Obj: Args[0], Fun: FnDecl); |
| 15418 | ParamIdx = 1; |
| 15419 | } else { |
| 15420 | Arg0 = PerformImplicitObjectArgumentInitialization( |
| 15421 | From: Args[0], /*Qualifier=*/nullptr, FoundDecl: Best->FoundDecl, Method); |
| 15422 | } |
| 15423 | Arg1 = PerformCopyInitialization( |
| 15424 | Entity: InitializedEntity::InitializeParameter( |
| 15425 | Context, Parm: FnDecl->getParamDecl(i: ParamIdx)), |
| 15426 | EqualLoc: SourceLocation(), Init: Args[1]); |
| 15427 | if (Arg0.isInvalid() || Arg1.isInvalid()) |
| 15428 | return ExprError(); |
| 15429 | |
| 15430 | Base = Args[0] = Arg0.getAs<Expr>(); |
| 15431 | Args[1] = RHS = Arg1.getAs<Expr>(); |
| 15432 | } else { |
| 15433 | // Convert the arguments. |
| 15434 | ExprResult Arg0 = PerformCopyInitialization( |
| 15435 | Entity: InitializedEntity::InitializeParameter(Context, |
| 15436 | Parm: FnDecl->getParamDecl(i: 0)), |
| 15437 | EqualLoc: SourceLocation(), Init: Args[0]); |
| 15438 | if (Arg0.isInvalid()) |
| 15439 | return ExprError(); |
| 15440 | |
| 15441 | ExprResult Arg1 = |
| 15442 | PerformCopyInitialization( |
| 15443 | Entity: InitializedEntity::InitializeParameter(Context, |
| 15444 | Parm: FnDecl->getParamDecl(i: 1)), |
| 15445 | EqualLoc: SourceLocation(), Init: Args[1]); |
| 15446 | if (Arg1.isInvalid()) |
| 15447 | return ExprError(); |
| 15448 | Args[0] = LHS = Arg0.getAs<Expr>(); |
| 15449 | Args[1] = RHS = Arg1.getAs<Expr>(); |
| 15450 | } |
| 15451 | |
| 15452 | // Build the actual expression node. |
| 15453 | ExprResult FnExpr = CreateFunctionRefExpr(S&: *this, Fn: FnDecl, |
| 15454 | FoundDecl: Best->FoundDecl, Base, |
| 15455 | HadMultipleCandidates, Loc: OpLoc); |
| 15456 | if (FnExpr.isInvalid()) |
| 15457 | return ExprError(); |
| 15458 | |
| 15459 | // Determine the result type. |
| 15460 | QualType ResultTy = FnDecl->getReturnType(); |
| 15461 | ExprValueKind VK = Expr::getValueKindForType(T: ResultTy); |
| 15462 | ResultTy = ResultTy.getNonLValueExprType(Context); |
| 15463 | |
| 15464 | CallExpr *TheCall; |
| 15465 | ArrayRef<const Expr *> ArgsArray(Args, 2); |
| 15466 | const Expr *ImplicitThis = nullptr; |
| 15467 | |
| 15468 | // We always create a CXXOperatorCallExpr, even for explicit object |
| 15469 | // members; CodeGen should take care not to emit the this pointer. |
| 15470 | TheCall = CXXOperatorCallExpr::Create( |
| 15471 | Ctx: Context, OpKind: ChosenOp, Fn: FnExpr.get(), Args, Ty: ResultTy, VK, OperatorLoc: OpLoc, |
| 15472 | FPFeatures: CurFPFeatureOverrides(), |
| 15473 | UsesADL: static_cast<CallExpr::ADLCallKind>(Best->IsADLCandidate)); |
| 15474 | |
| 15475 | if (const auto *Method = dyn_cast<CXXMethodDecl>(Val: FnDecl); |
| 15476 | Method && Method->isImplicitObjectMemberFunction()) { |
| 15477 | // Cut off the implicit 'this'. |
| 15478 | ImplicitThis = ArgsArray[0]; |
| 15479 | ArgsArray = ArgsArray.slice(N: 1); |
| 15480 | } |
| 15481 | |
| 15482 | if (CheckCallReturnType(ReturnType: FnDecl->getReturnType(), Loc: OpLoc, CE: TheCall, |
| 15483 | FD: FnDecl)) |
| 15484 | return ExprError(); |
| 15485 | |
| 15486 | if (Op == OO_Equal) { |
| 15487 | // Check for a self move. |
| 15488 | DiagnoseSelfMove(LHSExpr: Args[0], RHSExpr: Args[1], OpLoc); |
| 15489 | // lifetime check. |
| 15490 | checkAssignmentLifetime( |
| 15491 | SemaRef&: *this, Entity: AssignedEntity{.LHS: Args[0], .AssignmentOperator: dyn_cast<CXXMethodDecl>(Val: FnDecl)}, |
| 15492 | Init: Args[1]); |
| 15493 | } |
| 15494 | if (ImplicitThis) { |
| 15495 | QualType ThisType = Context.getPointerType(T: ImplicitThis->getType()); |
| 15496 | QualType ThisTypeFromDecl = Context.getPointerType( |
| 15497 | T: cast<CXXMethodDecl>(Val: FnDecl)->getFunctionObjectParameterType()); |
| 15498 | |
| 15499 | CheckArgAlignment(Loc: OpLoc, FDecl: FnDecl, ParamName: "'this'" , ArgTy: ThisType, |
| 15500 | ParamTy: ThisTypeFromDecl); |
| 15501 | } |
| 15502 | |
| 15503 | checkCall(FDecl: FnDecl, Proto: nullptr, ThisArg: ImplicitThis, Args: ArgsArray, |
| 15504 | IsMemberFunction: isa<CXXMethodDecl>(Val: FnDecl), Loc: OpLoc, Range: TheCall->getSourceRange(), |
| 15505 | CallType: VariadicCallType::DoesNotApply); |
| 15506 | |
| 15507 | ExprResult R = MaybeBindToTemporary(E: TheCall); |
| 15508 | if (R.isInvalid()) |
| 15509 | return ExprError(); |
| 15510 | |
| 15511 | R = CheckForImmediateInvocation(E: R, Decl: FnDecl); |
| 15512 | if (R.isInvalid()) |
| 15513 | return ExprError(); |
| 15514 | |
| 15515 | // For a rewritten candidate, we've already reversed the arguments |
| 15516 | // if needed. Perform the rest of the rewrite now. |
| 15517 | if ((Best->RewriteKind & CRK_DifferentOperator) || |
| 15518 | (Op == OO_Spaceship && IsReversed)) { |
| 15519 | if (Op == OO_ExclaimEqual) { |
| 15520 | assert(ChosenOp == OO_EqualEqual && "unexpected operator name" ); |
| 15521 | R = CreateBuiltinUnaryOp(OpLoc, Opc: UO_LNot, InputExpr: R.get()); |
| 15522 | } else { |
| 15523 | assert(ChosenOp == OO_Spaceship && "unexpected operator name" ); |
| 15524 | llvm::APSInt Zero(Context.getTypeSize(T: Context.IntTy), false); |
| 15525 | Expr *ZeroLiteral = |
| 15526 | IntegerLiteral::Create(C: Context, V: Zero, type: Context.IntTy, l: OpLoc); |
| 15527 | |
| 15528 | Sema::CodeSynthesisContext Ctx; |
| 15529 | Ctx.Kind = Sema::CodeSynthesisContext::RewritingOperatorAsSpaceship; |
| 15530 | Ctx.Entity = FnDecl; |
| 15531 | pushCodeSynthesisContext(Ctx); |
| 15532 | |
| 15533 | R = CreateOverloadedBinOp( |
| 15534 | OpLoc, Opc, Fns, LHS: IsReversed ? ZeroLiteral : R.get(), |
| 15535 | RHS: IsReversed ? R.get() : ZeroLiteral, /*PerformADL=*/true, |
| 15536 | /*AllowRewrittenCandidates=*/false); |
| 15537 | |
| 15538 | popCodeSynthesisContext(); |
| 15539 | } |
| 15540 | if (R.isInvalid()) |
| 15541 | return ExprError(); |
| 15542 | } else { |
| 15543 | assert(ChosenOp == Op && "unexpected operator name" ); |
| 15544 | } |
| 15545 | |
| 15546 | // Make a note in the AST if we did any rewriting. |
| 15547 | if (Best->RewriteKind != CRK_None) |
| 15548 | R = new (Context) CXXRewrittenBinaryOperator(R.get(), IsReversed); |
| 15549 | |
| 15550 | return R; |
| 15551 | } else { |
| 15552 | // We matched a built-in operator. Convert the arguments, then |
| 15553 | // break out so that we will build the appropriate built-in |
| 15554 | // operator node. |
| 15555 | ExprResult ArgsRes0 = PerformImplicitConversion( |
| 15556 | From: Args[0], ToType: Best->BuiltinParamTypes[0], ICS: Best->Conversions[0], |
| 15557 | Action: AssignmentAction::Passing, |
| 15558 | CCK: CheckedConversionKind::ForBuiltinOverloadedOp); |
| 15559 | if (ArgsRes0.isInvalid()) |
| 15560 | return ExprError(); |
| 15561 | Args[0] = ArgsRes0.get(); |
| 15562 | |
| 15563 | ExprResult ArgsRes1 = PerformImplicitConversion( |
| 15564 | From: Args[1], ToType: Best->BuiltinParamTypes[1], ICS: Best->Conversions[1], |
| 15565 | Action: AssignmentAction::Passing, |
| 15566 | CCK: CheckedConversionKind::ForBuiltinOverloadedOp); |
| 15567 | if (ArgsRes1.isInvalid()) |
| 15568 | return ExprError(); |
| 15569 | Args[1] = ArgsRes1.get(); |
| 15570 | break; |
| 15571 | } |
| 15572 | } |
| 15573 | |
| 15574 | case OR_No_Viable_Function: { |
| 15575 | // C++ [over.match.oper]p9: |
| 15576 | // If the operator is the operator , [...] and there are no |
| 15577 | // viable functions, then the operator is assumed to be the |
| 15578 | // built-in operator and interpreted according to clause 5. |
| 15579 | if (Opc == BO_Comma) |
| 15580 | break; |
| 15581 | |
| 15582 | // When defaulting an 'operator<=>', we can try to synthesize a three-way |
| 15583 | // compare result using '==' and '<'. |
| 15584 | if (DefaultedFn && Opc == BO_Cmp) { |
| 15585 | ExprResult E = BuildSynthesizedThreeWayComparison(OpLoc, Fns, LHS: Args[0], |
| 15586 | RHS: Args[1], DefaultedFn); |
| 15587 | if (E.isInvalid() || E.isUsable()) |
| 15588 | return E; |
| 15589 | } |
| 15590 | |
| 15591 | // For class as left operand for assignment or compound assignment |
| 15592 | // operator do not fall through to handling in built-in, but report that |
| 15593 | // no overloaded assignment operator found |
| 15594 | ExprResult Result = ExprError(); |
| 15595 | StringRef OpcStr = BinaryOperator::getOpcodeStr(Op: Opc); |
| 15596 | auto Cands = CandidateSet.CompleteCandidates(S&: *this, OCD: OCD_AllCandidates, |
| 15597 | Args, OpLoc); |
| 15598 | DeferDiagsRAII DDR(*this, |
| 15599 | CandidateSet.shouldDeferDiags(S&: *this, Args, OpLoc)); |
| 15600 | if (Args[0]->getType()->isRecordType() && |
| 15601 | Opc >= BO_Assign && Opc <= BO_OrAssign) { |
| 15602 | Diag(Loc: OpLoc, DiagID: diag::err_ovl_no_viable_oper) |
| 15603 | << BinaryOperator::getOpcodeStr(Op: Opc) |
| 15604 | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| 15605 | if (Args[0]->getType()->isIncompleteType()) { |
| 15606 | Diag(Loc: OpLoc, DiagID: diag::note_assign_lhs_incomplete) |
| 15607 | << Args[0]->getType() |
| 15608 | << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| 15609 | } |
| 15610 | } else { |
| 15611 | // This is an erroneous use of an operator which can be overloaded by |
| 15612 | // a non-member function. Check for non-member operators which were |
| 15613 | // defined too late to be candidates. |
| 15614 | if (DiagnoseTwoPhaseOperatorLookup(SemaRef&: *this, Op, OpLoc, Args)) |
| 15615 | // FIXME: Recover by calling the found function. |
| 15616 | return ExprError(); |
| 15617 | |
| 15618 | // No viable function; try to create a built-in operation, which will |
| 15619 | // produce an error. Then, show the non-viable candidates. |
| 15620 | Result = CreateBuiltinBinOp(OpLoc, Opc, LHSExpr: Args[0], RHSExpr: Args[1]); |
| 15621 | } |
| 15622 | assert(Result.isInvalid() && |
| 15623 | "C++ binary operator overloading is missing candidates!" ); |
| 15624 | CandidateSet.NoteCandidates(S&: *this, Args, Cands, Opc: OpcStr, OpLoc); |
| 15625 | return Result; |
| 15626 | } |
| 15627 | |
| 15628 | case OR_Ambiguous: |
| 15629 | CandidateSet.NoteCandidates( |
| 15630 | PD: PartialDiagnosticAt(OpLoc, PDiag(DiagID: diag::err_ovl_ambiguous_oper_binary) |
| 15631 | << BinaryOperator::getOpcodeStr(Op: Opc) |
| 15632 | << Args[0]->getType() |
| 15633 | << Args[1]->getType() |
| 15634 | << Args[0]->getSourceRange() |
| 15635 | << Args[1]->getSourceRange()), |
| 15636 | S&: *this, OCD: OCD_AmbiguousCandidates, Args, Opc: BinaryOperator::getOpcodeStr(Op: Opc), |
| 15637 | OpLoc); |
| 15638 | return ExprError(); |
| 15639 | |
| 15640 | case OR_Deleted: { |
| 15641 | if (isImplicitlyDeleted(FD: Best->Function)) { |
| 15642 | FunctionDecl *DeletedFD = Best->Function; |
| 15643 | DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD: DeletedFD); |
| 15644 | if (DFK.isSpecialMember()) { |
| 15645 | Diag(Loc: OpLoc, DiagID: diag::err_ovl_deleted_special_oper) |
| 15646 | << Args[0]->getType() << DFK.asSpecialMember(); |
| 15647 | } else { |
| 15648 | assert(DFK.isComparison()); |
| 15649 | Diag(Loc: OpLoc, DiagID: diag::err_ovl_deleted_comparison) |
| 15650 | << Args[0]->getType() << DeletedFD; |
| 15651 | } |
| 15652 | |
| 15653 | // The user probably meant to call this special member. Just |
| 15654 | // explain why it's deleted. |
| 15655 | NoteDeletedFunction(FD: DeletedFD); |
| 15656 | return ExprError(); |
| 15657 | } |
| 15658 | |
| 15659 | StringLiteral *Msg = Best->Function->getDeletedMessage(); |
| 15660 | CandidateSet.NoteCandidates( |
| 15661 | PD: PartialDiagnosticAt( |
| 15662 | OpLoc, |
| 15663 | PDiag(DiagID: diag::err_ovl_deleted_oper) |
| 15664 | << getOperatorSpelling(Operator: Best->Function->getDeclName() |
| 15665 | .getCXXOverloadedOperator()) |
| 15666 | << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef()) |
| 15667 | << Args[0]->getSourceRange() << Args[1]->getSourceRange()), |
| 15668 | S&: *this, OCD: OCD_AllCandidates, Args, Opc: BinaryOperator::getOpcodeStr(Op: Opc), |
| 15669 | OpLoc); |
| 15670 | return ExprError(); |
| 15671 | } |
| 15672 | } |
| 15673 | |
| 15674 | // We matched a built-in operator; build it. |
| 15675 | return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr: Args[0], RHSExpr: Args[1]); |
| 15676 | } |
| 15677 | |
| 15678 | ExprResult Sema::BuildSynthesizedThreeWayComparison( |
| 15679 | SourceLocation OpLoc, const UnresolvedSetImpl &Fns, Expr *LHS, Expr *RHS, |
| 15680 | FunctionDecl *DefaultedFn) { |
| 15681 | const ComparisonCategoryInfo *Info = |
| 15682 | Context.CompCategories.lookupInfoForType(Ty: DefaultedFn->getReturnType()); |
| 15683 | // If we're not producing a known comparison category type, we can't |
| 15684 | // synthesize a three-way comparison. Let the caller diagnose this. |
| 15685 | if (!Info) |
| 15686 | return ExprResult((Expr*)nullptr); |
| 15687 | |
| 15688 | // If we ever want to perform this synthesis more generally, we will need to |
| 15689 | // apply the temporary materialization conversion to the operands. |
| 15690 | assert(LHS->isGLValue() && RHS->isGLValue() && |
| 15691 | "cannot use prvalue expressions more than once" ); |
| 15692 | Expr *OrigLHS = LHS; |
| 15693 | Expr *OrigRHS = RHS; |
| 15694 | |
| 15695 | // Replace the LHS and RHS with OpaqueValueExprs; we're going to refer to |
| 15696 | // each of them multiple times below. |
| 15697 | LHS = new (Context) |
| 15698 | OpaqueValueExpr(LHS->getExprLoc(), LHS->getType(), LHS->getValueKind(), |
| 15699 | LHS->getObjectKind(), LHS); |
| 15700 | RHS = new (Context) |
| 15701 | OpaqueValueExpr(RHS->getExprLoc(), RHS->getType(), RHS->getValueKind(), |
| 15702 | RHS->getObjectKind(), RHS); |
| 15703 | |
| 15704 | ExprResult Eq = CreateOverloadedBinOp(OpLoc, Opc: BO_EQ, Fns, LHS, RHS, PerformADL: true, AllowRewrittenCandidates: true, |
| 15705 | DefaultedFn); |
| 15706 | if (Eq.isInvalid()) |
| 15707 | return ExprError(); |
| 15708 | |
| 15709 | ExprResult Less = CreateOverloadedBinOp(OpLoc, Opc: BO_LT, Fns, LHS, RHS, PerformADL: true, |
| 15710 | AllowRewrittenCandidates: true, DefaultedFn); |
| 15711 | if (Less.isInvalid()) |
| 15712 | return ExprError(); |
| 15713 | |
| 15714 | ExprResult Greater; |
| 15715 | if (Info->isPartial()) { |
| 15716 | Greater = CreateOverloadedBinOp(OpLoc, Opc: BO_LT, Fns, LHS: RHS, RHS: LHS, PerformADL: true, AllowRewrittenCandidates: true, |
| 15717 | DefaultedFn); |
| 15718 | if (Greater.isInvalid()) |
| 15719 | return ExprError(); |
| 15720 | } |
| 15721 | |
| 15722 | // Form the list of comparisons we're going to perform. |
| 15723 | struct Comparison { |
| 15724 | ExprResult Cmp; |
| 15725 | ComparisonCategoryResult Result; |
| 15726 | } Comparisons[4] = |
| 15727 | { {.Cmp: Eq, .Result: Info->isStrong() ? ComparisonCategoryResult::Equal |
| 15728 | : ComparisonCategoryResult::Equivalent}, |
| 15729 | {.Cmp: Less, .Result: ComparisonCategoryResult::Less}, |
| 15730 | {.Cmp: Greater, .Result: ComparisonCategoryResult::Greater}, |
| 15731 | {.Cmp: ExprResult(), .Result: ComparisonCategoryResult::Unordered}, |
| 15732 | }; |
| 15733 | |
| 15734 | int I = Info->isPartial() ? 3 : 2; |
| 15735 | |
| 15736 | // Combine the comparisons with suitable conditional expressions. |
| 15737 | ExprResult Result; |
| 15738 | for (; I >= 0; --I) { |
| 15739 | // Build a reference to the comparison category constant. |
| 15740 | auto *VI = Info->lookupValueInfo(ValueKind: Comparisons[I].Result); |
| 15741 | // FIXME: Missing a constant for a comparison category. Diagnose this? |
| 15742 | if (!VI) |
| 15743 | return ExprResult((Expr*)nullptr); |
| 15744 | ExprResult ThisResult = |
| 15745 | BuildDeclarationNameExpr(SS: CXXScopeSpec(), NameInfo: DeclarationNameInfo(), D: VI->VD); |
| 15746 | if (ThisResult.isInvalid()) |
| 15747 | return ExprError(); |
| 15748 | |
| 15749 | // Build a conditional unless this is the final case. |
| 15750 | if (Result.get()) { |
| 15751 | Result = ActOnConditionalOp(QuestionLoc: OpLoc, ColonLoc: OpLoc, CondExpr: Comparisons[I].Cmp.get(), |
| 15752 | LHSExpr: ThisResult.get(), RHSExpr: Result.get()); |
| 15753 | if (Result.isInvalid()) |
| 15754 | return ExprError(); |
| 15755 | } else { |
| 15756 | Result = ThisResult; |
| 15757 | } |
| 15758 | } |
| 15759 | |
| 15760 | // Build a PseudoObjectExpr to model the rewriting of an <=> operator, and to |
| 15761 | // bind the OpaqueValueExprs before they're (repeatedly) used. |
| 15762 | Expr *SyntacticForm = BinaryOperator::Create( |
| 15763 | C: Context, lhs: OrigLHS, rhs: OrigRHS, opc: BO_Cmp, ResTy: Result.get()->getType(), |
| 15764 | VK: Result.get()->getValueKind(), OK: Result.get()->getObjectKind(), opLoc: OpLoc, |
| 15765 | FPFeatures: CurFPFeatureOverrides()); |
| 15766 | Expr *SemanticForm[] = {LHS, RHS, Result.get()}; |
| 15767 | return PseudoObjectExpr::Create(Context, syntactic: SyntacticForm, semantic: SemanticForm, resultIndex: 2); |
| 15768 | } |
| 15769 | |
| 15770 | static bool PrepareArgumentsForCallToObjectOfClassType( |
| 15771 | Sema &S, SmallVectorImpl<Expr *> &MethodArgs, CXXMethodDecl *Method, |
| 15772 | MultiExprArg Args, SourceLocation LParenLoc) { |
| 15773 | |
| 15774 | const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); |
| 15775 | unsigned NumParams = Proto->getNumParams(); |
| 15776 | unsigned NumArgsSlots = |
| 15777 | MethodArgs.size() + std::max<unsigned>(a: Args.size(), b: NumParams); |
| 15778 | // Build the full argument list for the method call (the implicit object |
| 15779 | // parameter is placed at the beginning of the list). |
| 15780 | MethodArgs.reserve(N: MethodArgs.size() + NumArgsSlots); |
| 15781 | bool IsError = false; |
| 15782 | // Initialize the implicit object parameter. |
| 15783 | // Check the argument types. |
| 15784 | for (unsigned i = 0; i != NumParams; i++) { |
| 15785 | Expr *Arg; |
| 15786 | if (i < Args.size()) { |
| 15787 | Arg = Args[i]; |
| 15788 | ExprResult InputInit = |
| 15789 | S.PerformCopyInitialization(Entity: InitializedEntity::InitializeParameter( |
| 15790 | Context&: S.Context, Parm: Method->getParamDecl(i)), |
| 15791 | EqualLoc: SourceLocation(), Init: Arg); |
| 15792 | IsError |= InputInit.isInvalid(); |
| 15793 | Arg = InputInit.getAs<Expr>(); |
| 15794 | } else { |
| 15795 | ExprResult DefArg = |
| 15796 | S.BuildCXXDefaultArgExpr(CallLoc: LParenLoc, FD: Method, Param: Method->getParamDecl(i)); |
| 15797 | if (DefArg.isInvalid()) { |
| 15798 | IsError = true; |
| 15799 | break; |
| 15800 | } |
| 15801 | Arg = DefArg.getAs<Expr>(); |
| 15802 | } |
| 15803 | |
| 15804 | MethodArgs.push_back(Elt: Arg); |
| 15805 | } |
| 15806 | return IsError; |
| 15807 | } |
| 15808 | |
| 15809 | ExprResult Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, |
| 15810 | SourceLocation RLoc, |
| 15811 | Expr *Base, |
| 15812 | MultiExprArg ArgExpr) { |
| 15813 | SmallVector<Expr *, 2> Args; |
| 15814 | Args.push_back(Elt: Base); |
| 15815 | for (auto *e : ArgExpr) { |
| 15816 | Args.push_back(Elt: e); |
| 15817 | } |
| 15818 | DeclarationName OpName = |
| 15819 | Context.DeclarationNames.getCXXOperatorName(Op: OO_Subscript); |
| 15820 | |
| 15821 | SourceRange Range = ArgExpr.empty() |
| 15822 | ? SourceRange{} |
| 15823 | : SourceRange(ArgExpr.front()->getBeginLoc(), |
| 15824 | ArgExpr.back()->getEndLoc()); |
| 15825 | |
| 15826 | // If either side is type-dependent, create an appropriate dependent |
| 15827 | // expression. |
| 15828 | if (Expr::hasAnyTypeDependentArguments(Exprs: Args)) { |
| 15829 | |
| 15830 | CXXRecordDecl *NamingClass = nullptr; // lookup ignores member operators |
| 15831 | // CHECKME: no 'operator' keyword? |
| 15832 | DeclarationNameInfo OpNameInfo(OpName, LLoc); |
| 15833 | OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); |
| 15834 | ExprResult Fn = CreateUnresolvedLookupExpr( |
| 15835 | NamingClass, NNSLoc: NestedNameSpecifierLoc(), DNI: OpNameInfo, Fns: UnresolvedSet<0>()); |
| 15836 | if (Fn.isInvalid()) |
| 15837 | return ExprError(); |
| 15838 | // Can't add any actual overloads yet |
| 15839 | |
| 15840 | return CXXOperatorCallExpr::Create(Ctx: Context, OpKind: OO_Subscript, Fn: Fn.get(), Args, |
| 15841 | Ty: Context.DependentTy, VK: VK_PRValue, OperatorLoc: RLoc, |
| 15842 | FPFeatures: CurFPFeatureOverrides()); |
| 15843 | } |
| 15844 | |
| 15845 | // Handle placeholders |
| 15846 | UnbridgedCastsSet UnbridgedCasts; |
| 15847 | if (checkArgPlaceholdersForOverload(S&: *this, Args, unbridged&: UnbridgedCasts)) { |
| 15848 | return ExprError(); |
| 15849 | } |
| 15850 | // Build an empty overload set. |
| 15851 | OverloadCandidateSet CandidateSet(LLoc, OverloadCandidateSet::CSK_Operator); |
| 15852 | |
| 15853 | // Subscript can only be overloaded as a member function. |
| 15854 | |
| 15855 | // Add operator candidates that are member functions. |
| 15856 | AddMemberOperatorCandidates(Op: OO_Subscript, OpLoc: LLoc, Args, CandidateSet); |
| 15857 | |
| 15858 | // Add builtin operator candidates. |
| 15859 | if (Args.size() == 2) |
| 15860 | AddBuiltinOperatorCandidates(Op: OO_Subscript, OpLoc: LLoc, Args, CandidateSet); |
| 15861 | |
| 15862 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 15863 | |
| 15864 | // Perform overload resolution. |
| 15865 | OverloadCandidateSet::iterator Best; |
| 15866 | switch (CandidateSet.BestViableFunction(S&: *this, Loc: LLoc, Best)) { |
| 15867 | case OR_Success: { |
| 15868 | // We found a built-in operator or an overloaded operator. |
| 15869 | FunctionDecl *FnDecl = Best->Function; |
| 15870 | |
| 15871 | if (FnDecl) { |
| 15872 | // We matched an overloaded operator. Build a call to that |
| 15873 | // operator. |
| 15874 | |
| 15875 | CheckMemberOperatorAccess(Loc: LLoc, ObjectExpr: Args[0], ArgExprs: ArgExpr, FoundDecl: Best->FoundDecl); |
| 15876 | |
| 15877 | // Convert the arguments. |
| 15878 | CXXMethodDecl *Method = cast<CXXMethodDecl>(Val: FnDecl); |
| 15879 | SmallVector<Expr *, 2> MethodArgs; |
| 15880 | |
| 15881 | // Initialize the object parameter. |
| 15882 | if (Method->isExplicitObjectMemberFunction()) { |
| 15883 | ExprResult Res = |
| 15884 | InitializeExplicitObjectArgument(S&: *this, Obj: Args[0], Fun: Method); |
| 15885 | if (Res.isInvalid()) |
| 15886 | return ExprError(); |
| 15887 | Args[0] = Res.get(); |
| 15888 | ArgExpr = Args; |
| 15889 | } else { |
| 15890 | ExprResult Arg0 = PerformImplicitObjectArgumentInitialization( |
| 15891 | From: Args[0], /*Qualifier=*/nullptr, FoundDecl: Best->FoundDecl, Method); |
| 15892 | if (Arg0.isInvalid()) |
| 15893 | return ExprError(); |
| 15894 | |
| 15895 | MethodArgs.push_back(Elt: Arg0.get()); |
| 15896 | } |
| 15897 | |
| 15898 | bool IsError = PrepareArgumentsForCallToObjectOfClassType( |
| 15899 | S&: *this, MethodArgs, Method, Args: ArgExpr, LParenLoc: LLoc); |
| 15900 | if (IsError) |
| 15901 | return ExprError(); |
| 15902 | |
| 15903 | // Build the actual expression node. |
| 15904 | DeclarationNameInfo OpLocInfo(OpName, LLoc); |
| 15905 | OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); |
| 15906 | ExprResult FnExpr = CreateFunctionRefExpr( |
| 15907 | S&: *this, Fn: FnDecl, FoundDecl: Best->FoundDecl, Base, HadMultipleCandidates, |
| 15908 | Loc: OpLocInfo.getLoc(), LocInfo: OpLocInfo.getInfo()); |
| 15909 | if (FnExpr.isInvalid()) |
| 15910 | return ExprError(); |
| 15911 | |
| 15912 | // Determine the result type |
| 15913 | QualType ResultTy = FnDecl->getReturnType(); |
| 15914 | ExprValueKind VK = Expr::getValueKindForType(T: ResultTy); |
| 15915 | ResultTy = ResultTy.getNonLValueExprType(Context); |
| 15916 | |
| 15917 | CallExpr *TheCall = CXXOperatorCallExpr::Create( |
| 15918 | Ctx: Context, OpKind: OO_Subscript, Fn: FnExpr.get(), Args: MethodArgs, Ty: ResultTy, VK, OperatorLoc: RLoc, |
| 15919 | FPFeatures: CurFPFeatureOverrides()); |
| 15920 | |
| 15921 | if (CheckCallReturnType(ReturnType: FnDecl->getReturnType(), Loc: LLoc, CE: TheCall, FD: FnDecl)) |
| 15922 | return ExprError(); |
| 15923 | |
| 15924 | if (CheckFunctionCall(FDecl: Method, TheCall, |
| 15925 | Proto: Method->getType()->castAs<FunctionProtoType>())) |
| 15926 | return ExprError(); |
| 15927 | |
| 15928 | return CheckForImmediateInvocation(E: MaybeBindToTemporary(E: TheCall), |
| 15929 | Decl: FnDecl); |
| 15930 | } else { |
| 15931 | // We matched a built-in operator. Convert the arguments, then |
| 15932 | // break out so that we will build the appropriate built-in |
| 15933 | // operator node. |
| 15934 | ExprResult ArgsRes0 = PerformImplicitConversion( |
| 15935 | From: Args[0], ToType: Best->BuiltinParamTypes[0], ICS: Best->Conversions[0], |
| 15936 | Action: AssignmentAction::Passing, |
| 15937 | CCK: CheckedConversionKind::ForBuiltinOverloadedOp); |
| 15938 | if (ArgsRes0.isInvalid()) |
| 15939 | return ExprError(); |
| 15940 | Args[0] = ArgsRes0.get(); |
| 15941 | |
| 15942 | ExprResult ArgsRes1 = PerformImplicitConversion( |
| 15943 | From: Args[1], ToType: Best->BuiltinParamTypes[1], ICS: Best->Conversions[1], |
| 15944 | Action: AssignmentAction::Passing, |
| 15945 | CCK: CheckedConversionKind::ForBuiltinOverloadedOp); |
| 15946 | if (ArgsRes1.isInvalid()) |
| 15947 | return ExprError(); |
| 15948 | Args[1] = ArgsRes1.get(); |
| 15949 | |
| 15950 | break; |
| 15951 | } |
| 15952 | } |
| 15953 | |
| 15954 | case OR_No_Viable_Function: { |
| 15955 | PartialDiagnostic PD = |
| 15956 | CandidateSet.empty() |
| 15957 | ? (PDiag(DiagID: diag::err_ovl_no_oper) |
| 15958 | << Args[0]->getType() << /*subscript*/ 0 |
| 15959 | << Args[0]->getSourceRange() << Range) |
| 15960 | : (PDiag(DiagID: diag::err_ovl_no_viable_subscript) |
| 15961 | << Args[0]->getType() << Args[0]->getSourceRange() << Range); |
| 15962 | CandidateSet.NoteCandidates(PD: PartialDiagnosticAt(LLoc, PD), S&: *this, |
| 15963 | OCD: OCD_AllCandidates, Args: ArgExpr, Opc: "[]" , OpLoc: LLoc); |
| 15964 | return ExprError(); |
| 15965 | } |
| 15966 | |
| 15967 | case OR_Ambiguous: |
| 15968 | if (Args.size() == 2) { |
| 15969 | CandidateSet.NoteCandidates( |
| 15970 | PD: PartialDiagnosticAt( |
| 15971 | LLoc, PDiag(DiagID: diag::err_ovl_ambiguous_oper_binary) |
| 15972 | << "[]" << Args[0]->getType() << Args[1]->getType() |
| 15973 | << Args[0]->getSourceRange() << Range), |
| 15974 | S&: *this, OCD: OCD_AmbiguousCandidates, Args, Opc: "[]" , OpLoc: LLoc); |
| 15975 | } else { |
| 15976 | CandidateSet.NoteCandidates( |
| 15977 | PD: PartialDiagnosticAt(LLoc, |
| 15978 | PDiag(DiagID: diag::err_ovl_ambiguous_subscript_call) |
| 15979 | << Args[0]->getType() |
| 15980 | << Args[0]->getSourceRange() << Range), |
| 15981 | S&: *this, OCD: OCD_AmbiguousCandidates, Args, Opc: "[]" , OpLoc: LLoc); |
| 15982 | } |
| 15983 | return ExprError(); |
| 15984 | |
| 15985 | case OR_Deleted: { |
| 15986 | StringLiteral *Msg = Best->Function->getDeletedMessage(); |
| 15987 | CandidateSet.NoteCandidates( |
| 15988 | PD: PartialDiagnosticAt(LLoc, |
| 15989 | PDiag(DiagID: diag::err_ovl_deleted_oper) |
| 15990 | << "[]" << (Msg != nullptr) |
| 15991 | << (Msg ? Msg->getString() : StringRef()) |
| 15992 | << Args[0]->getSourceRange() << Range), |
| 15993 | S&: *this, OCD: OCD_AllCandidates, Args, Opc: "[]" , OpLoc: LLoc); |
| 15994 | return ExprError(); |
| 15995 | } |
| 15996 | } |
| 15997 | |
| 15998 | // We matched a built-in operator; build it. |
| 15999 | return CreateBuiltinArraySubscriptExpr(Base: Args[0], LLoc, Idx: Args[1], RLoc); |
| 16000 | } |
| 16001 | |
| 16002 | ExprResult Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, |
| 16003 | SourceLocation LParenLoc, |
| 16004 | MultiExprArg Args, |
| 16005 | SourceLocation RParenLoc, |
| 16006 | Expr *ExecConfig, bool IsExecConfig, |
| 16007 | bool AllowRecovery) { |
| 16008 | assert(MemExprE->getType() == Context.BoundMemberTy || |
| 16009 | MemExprE->getType() == Context.OverloadTy); |
| 16010 | |
| 16011 | // Dig out the member expression. This holds both the object |
| 16012 | // argument and the member function we're referring to. |
| 16013 | Expr *NakedMemExpr = MemExprE->IgnoreParens(); |
| 16014 | |
| 16015 | // Determine whether this is a call to a pointer-to-member function. |
| 16016 | if (BinaryOperator *op = dyn_cast<BinaryOperator>(Val: NakedMemExpr)) { |
| 16017 | assert(op->getType() == Context.BoundMemberTy); |
| 16018 | assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI); |
| 16019 | |
| 16020 | QualType fnType = |
| 16021 | op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); |
| 16022 | |
| 16023 | const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); |
| 16024 | QualType resultType = proto->getCallResultType(Context); |
| 16025 | ExprValueKind valueKind = Expr::getValueKindForType(T: proto->getReturnType()); |
| 16026 | |
| 16027 | // Check that the object type isn't more qualified than the |
| 16028 | // member function we're calling. |
| 16029 | Qualifiers funcQuals = proto->getMethodQuals(); |
| 16030 | |
| 16031 | QualType objectType = op->getLHS()->getType(); |
| 16032 | if (op->getOpcode() == BO_PtrMemI) |
| 16033 | objectType = objectType->castAs<PointerType>()->getPointeeType(); |
| 16034 | Qualifiers objectQuals = objectType.getQualifiers(); |
| 16035 | |
| 16036 | Qualifiers difference = objectQuals - funcQuals; |
| 16037 | difference.removeObjCGCAttr(); |
| 16038 | difference.removeAddressSpace(); |
| 16039 | if (difference) { |
| 16040 | std::string qualsString = difference.getAsString(); |
| 16041 | Diag(Loc: LParenLoc, DiagID: diag::err_pointer_to_member_call_drops_quals) |
| 16042 | << fnType.getUnqualifiedType() |
| 16043 | << qualsString |
| 16044 | << (qualsString.find(c: ' ') == std::string::npos ? 1 : 2); |
| 16045 | } |
| 16046 | |
| 16047 | CXXMemberCallExpr *call = CXXMemberCallExpr::Create( |
| 16048 | Ctx: Context, Fn: MemExprE, Args, Ty: resultType, VK: valueKind, RP: RParenLoc, |
| 16049 | FPFeatures: CurFPFeatureOverrides(), MinNumArgs: proto->getNumParams()); |
| 16050 | |
| 16051 | if (CheckCallReturnType(ReturnType: proto->getReturnType(), Loc: op->getRHS()->getBeginLoc(), |
| 16052 | CE: call, FD: nullptr)) |
| 16053 | return ExprError(); |
| 16054 | |
| 16055 | if (ConvertArgumentsForCall(Call: call, Fn: op, FDecl: nullptr, Proto: proto, Args, RParenLoc)) |
| 16056 | return ExprError(); |
| 16057 | |
| 16058 | if (CheckOtherCall(TheCall: call, Proto: proto)) |
| 16059 | return ExprError(); |
| 16060 | |
| 16061 | return MaybeBindToTemporary(E: call); |
| 16062 | } |
| 16063 | |
| 16064 | // We only try to build a recovery expr at this level if we can preserve |
| 16065 | // the return type, otherwise we return ExprError() and let the caller |
| 16066 | // recover. |
| 16067 | auto BuildRecoveryExpr = [&](QualType Type) { |
| 16068 | if (!AllowRecovery) |
| 16069 | return ExprError(); |
| 16070 | std::vector<Expr *> SubExprs = {MemExprE}; |
| 16071 | llvm::append_range(C&: SubExprs, R&: Args); |
| 16072 | return CreateRecoveryExpr(Begin: MemExprE->getBeginLoc(), End: RParenLoc, SubExprs, |
| 16073 | T: Type); |
| 16074 | }; |
| 16075 | if (isa<CXXPseudoDestructorExpr>(Val: NakedMemExpr)) |
| 16076 | return CallExpr::Create(Ctx: Context, Fn: MemExprE, Args, Ty: Context.VoidTy, VK: VK_PRValue, |
| 16077 | RParenLoc, FPFeatures: CurFPFeatureOverrides()); |
| 16078 | |
| 16079 | UnbridgedCastsSet UnbridgedCasts; |
| 16080 | if (checkArgPlaceholdersForOverload(S&: *this, Args, unbridged&: UnbridgedCasts)) |
| 16081 | return ExprError(); |
| 16082 | |
| 16083 | MemberExpr *MemExpr; |
| 16084 | CXXMethodDecl *Method = nullptr; |
| 16085 | bool HadMultipleCandidates = false; |
| 16086 | DeclAccessPair FoundDecl = DeclAccessPair::make(D: nullptr, AS: AS_public); |
| 16087 | NestedNameSpecifier *Qualifier = nullptr; |
| 16088 | if (isa<MemberExpr>(Val: NakedMemExpr)) { |
| 16089 | MemExpr = cast<MemberExpr>(Val: NakedMemExpr); |
| 16090 | Method = cast<CXXMethodDecl>(Val: MemExpr->getMemberDecl()); |
| 16091 | FoundDecl = MemExpr->getFoundDecl(); |
| 16092 | Qualifier = MemExpr->getQualifier(); |
| 16093 | UnbridgedCasts.restore(); |
| 16094 | } else { |
| 16095 | UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(Val: NakedMemExpr); |
| 16096 | Qualifier = UnresExpr->getQualifier(); |
| 16097 | |
| 16098 | QualType ObjectType = UnresExpr->getBaseType(); |
| 16099 | Expr::Classification ObjectClassification |
| 16100 | = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() |
| 16101 | : UnresExpr->getBase()->Classify(Ctx&: Context); |
| 16102 | |
| 16103 | // Add overload candidates |
| 16104 | OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc(), |
| 16105 | OverloadCandidateSet::CSK_Normal); |
| 16106 | |
| 16107 | // FIXME: avoid copy. |
| 16108 | TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; |
| 16109 | if (UnresExpr->hasExplicitTemplateArgs()) { |
| 16110 | UnresExpr->copyTemplateArgumentsInto(List&: TemplateArgsBuffer); |
| 16111 | TemplateArgs = &TemplateArgsBuffer; |
| 16112 | } |
| 16113 | |
| 16114 | for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), |
| 16115 | E = UnresExpr->decls_end(); I != E; ++I) { |
| 16116 | |
| 16117 | QualType ExplicitObjectType = ObjectType; |
| 16118 | |
| 16119 | NamedDecl *Func = *I; |
| 16120 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Val: Func->getDeclContext()); |
| 16121 | if (isa<UsingShadowDecl>(Val: Func)) |
| 16122 | Func = cast<UsingShadowDecl>(Val: Func)->getTargetDecl(); |
| 16123 | |
| 16124 | bool HasExplicitParameter = false; |
| 16125 | if (const auto *M = dyn_cast<FunctionDecl>(Val: Func); |
| 16126 | M && M->hasCXXExplicitFunctionObjectParameter()) |
| 16127 | HasExplicitParameter = true; |
| 16128 | else if (const auto *M = dyn_cast<FunctionTemplateDecl>(Val: Func); |
| 16129 | M && |
| 16130 | M->getTemplatedDecl()->hasCXXExplicitFunctionObjectParameter()) |
| 16131 | HasExplicitParameter = true; |
| 16132 | |
| 16133 | if (HasExplicitParameter) |
| 16134 | ExplicitObjectType = GetExplicitObjectType(S&: *this, MemExprE: UnresExpr); |
| 16135 | |
| 16136 | // Microsoft supports direct constructor calls. |
| 16137 | if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Val: Func)) { |
| 16138 | AddOverloadCandidate(Function: cast<CXXConstructorDecl>(Val: Func), FoundDecl: I.getPair(), Args, |
| 16139 | CandidateSet, |
| 16140 | /*SuppressUserConversions*/ false); |
| 16141 | } else if ((Method = dyn_cast<CXXMethodDecl>(Val: Func))) { |
| 16142 | // If explicit template arguments were provided, we can't call a |
| 16143 | // non-template member function. |
| 16144 | if (TemplateArgs) |
| 16145 | continue; |
| 16146 | |
| 16147 | AddMethodCandidate(Method, FoundDecl: I.getPair(), ActingContext: ActingDC, ObjectType: ExplicitObjectType, |
| 16148 | ObjectClassification, Args, CandidateSet, |
| 16149 | /*SuppressUserConversions=*/false); |
| 16150 | } else { |
| 16151 | AddMethodTemplateCandidate(MethodTmpl: cast<FunctionTemplateDecl>(Val: Func), |
| 16152 | FoundDecl: I.getPair(), ActingContext: ActingDC, ExplicitTemplateArgs: TemplateArgs, |
| 16153 | ObjectType: ExplicitObjectType, ObjectClassification, |
| 16154 | Args, CandidateSet, |
| 16155 | /*SuppressUserConversions=*/false); |
| 16156 | } |
| 16157 | } |
| 16158 | |
| 16159 | HadMultipleCandidates = (CandidateSet.size() > 1); |
| 16160 | |
| 16161 | DeclarationName DeclName = UnresExpr->getMemberName(); |
| 16162 | |
| 16163 | UnbridgedCasts.restore(); |
| 16164 | |
| 16165 | OverloadCandidateSet::iterator Best; |
| 16166 | bool Succeeded = false; |
| 16167 | switch (CandidateSet.BestViableFunction(S&: *this, Loc: UnresExpr->getBeginLoc(), |
| 16168 | Best)) { |
| 16169 | case OR_Success: |
| 16170 | Method = cast<CXXMethodDecl>(Val: Best->Function); |
| 16171 | FoundDecl = Best->FoundDecl; |
| 16172 | CheckUnresolvedMemberAccess(E: UnresExpr, FoundDecl: Best->FoundDecl); |
| 16173 | if (DiagnoseUseOfOverloadedDecl(D: Best->FoundDecl, Loc: UnresExpr->getNameLoc())) |
| 16174 | break; |
| 16175 | // If FoundDecl is different from Method (such as if one is a template |
| 16176 | // and the other a specialization), make sure DiagnoseUseOfDecl is |
| 16177 | // called on both. |
| 16178 | // FIXME: This would be more comprehensively addressed by modifying |
| 16179 | // DiagnoseUseOfDecl to accept both the FoundDecl and the decl |
| 16180 | // being used. |
| 16181 | if (Method != FoundDecl.getDecl() && |
| 16182 | DiagnoseUseOfOverloadedDecl(D: Method, Loc: UnresExpr->getNameLoc())) |
| 16183 | break; |
| 16184 | Succeeded = true; |
| 16185 | break; |
| 16186 | |
| 16187 | case OR_No_Viable_Function: |
| 16188 | CandidateSet.NoteCandidates( |
| 16189 | PD: PartialDiagnosticAt( |
| 16190 | UnresExpr->getMemberLoc(), |
| 16191 | PDiag(DiagID: diag::err_ovl_no_viable_member_function_in_call) |
| 16192 | << DeclName << MemExprE->getSourceRange()), |
| 16193 | S&: *this, OCD: OCD_AllCandidates, Args); |
| 16194 | break; |
| 16195 | case OR_Ambiguous: |
| 16196 | CandidateSet.NoteCandidates( |
| 16197 | PD: PartialDiagnosticAt(UnresExpr->getMemberLoc(), |
| 16198 | PDiag(DiagID: diag::err_ovl_ambiguous_member_call) |
| 16199 | << DeclName << MemExprE->getSourceRange()), |
| 16200 | S&: *this, OCD: OCD_AmbiguousCandidates, Args); |
| 16201 | break; |
| 16202 | case OR_Deleted: |
| 16203 | DiagnoseUseOfDeletedFunction( |
| 16204 | Loc: UnresExpr->getMemberLoc(), Range: MemExprE->getSourceRange(), Name: DeclName, |
| 16205 | CandidateSet, Fn: Best->Function, Args, /*IsMember=*/true); |
| 16206 | break; |
| 16207 | } |
| 16208 | // Overload resolution fails, try to recover. |
| 16209 | if (!Succeeded) |
| 16210 | return BuildRecoveryExpr(chooseRecoveryType(CS&: CandidateSet, Best: &Best)); |
| 16211 | |
| 16212 | ExprResult Res = |
| 16213 | FixOverloadedFunctionReference(E: MemExprE, FoundDecl, Fn: Method); |
| 16214 | if (Res.isInvalid()) |
| 16215 | return ExprError(); |
| 16216 | MemExprE = Res.get(); |
| 16217 | |
| 16218 | // If overload resolution picked a static member |
| 16219 | // build a non-member call based on that function. |
| 16220 | if (Method->isStatic()) { |
| 16221 | return BuildResolvedCallExpr(Fn: MemExprE, NDecl: Method, LParenLoc, Arg: Args, RParenLoc, |
| 16222 | Config: ExecConfig, IsExecConfig); |
| 16223 | } |
| 16224 | |
| 16225 | MemExpr = cast<MemberExpr>(Val: MemExprE->IgnoreParens()); |
| 16226 | } |
| 16227 | |
| 16228 | QualType ResultType = Method->getReturnType(); |
| 16229 | ExprValueKind VK = Expr::getValueKindForType(T: ResultType); |
| 16230 | ResultType = ResultType.getNonLValueExprType(Context); |
| 16231 | |
| 16232 | assert(Method && "Member call to something that isn't a method?" ); |
| 16233 | const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); |
| 16234 | |
| 16235 | CallExpr *TheCall = nullptr; |
| 16236 | llvm::SmallVector<Expr *, 8> NewArgs; |
| 16237 | if (Method->isExplicitObjectMemberFunction()) { |
| 16238 | if (PrepareExplicitObjectArgument(S&: *this, Method, Object: MemExpr->getBase(), Args, |
| 16239 | NewArgs)) |
| 16240 | return ExprError(); |
| 16241 | |
| 16242 | // Build the actual expression node. |
| 16243 | ExprResult FnExpr = |
| 16244 | CreateFunctionRefExpr(S&: *this, Fn: Method, FoundDecl, Base: MemExpr, |
| 16245 | HadMultipleCandidates, Loc: MemExpr->getExprLoc()); |
| 16246 | if (FnExpr.isInvalid()) |
| 16247 | return ExprError(); |
| 16248 | |
| 16249 | TheCall = |
| 16250 | CallExpr::Create(Ctx: Context, Fn: FnExpr.get(), Args, Ty: ResultType, VK, RParenLoc, |
| 16251 | FPFeatures: CurFPFeatureOverrides(), MinNumArgs: Proto->getNumParams()); |
| 16252 | TheCall->setUsesMemberSyntax(true); |
| 16253 | } else { |
| 16254 | // Convert the object argument (for a non-static member function call). |
| 16255 | ExprResult ObjectArg = PerformImplicitObjectArgumentInitialization( |
| 16256 | From: MemExpr->getBase(), Qualifier, FoundDecl, Method); |
| 16257 | if (ObjectArg.isInvalid()) |
| 16258 | return ExprError(); |
| 16259 | MemExpr->setBase(ObjectArg.get()); |
| 16260 | TheCall = CXXMemberCallExpr::Create(Ctx: Context, Fn: MemExprE, Args, Ty: ResultType, VK, |
| 16261 | RP: RParenLoc, FPFeatures: CurFPFeatureOverrides(), |
| 16262 | MinNumArgs: Proto->getNumParams()); |
| 16263 | } |
| 16264 | |
| 16265 | // Check for a valid return type. |
| 16266 | if (CheckCallReturnType(ReturnType: Method->getReturnType(), Loc: MemExpr->getMemberLoc(), |
| 16267 | CE: TheCall, FD: Method)) |
| 16268 | return BuildRecoveryExpr(ResultType); |
| 16269 | |
| 16270 | // Convert the rest of the arguments |
| 16271 | if (ConvertArgumentsForCall(Call: TheCall, Fn: MemExpr, FDecl: Method, Proto, Args, |
| 16272 | RParenLoc)) |
| 16273 | return BuildRecoveryExpr(ResultType); |
| 16274 | |
| 16275 | DiagnoseSentinelCalls(D: Method, Loc: LParenLoc, Args); |
| 16276 | |
| 16277 | if (CheckFunctionCall(FDecl: Method, TheCall, Proto)) |
| 16278 | return ExprError(); |
| 16279 | |
| 16280 | // In the case the method to call was not selected by the overloading |
| 16281 | // resolution process, we still need to handle the enable_if attribute. Do |
| 16282 | // that here, so it will not hide previous -- and more relevant -- errors. |
| 16283 | if (auto *MemE = dyn_cast<MemberExpr>(Val: NakedMemExpr)) { |
| 16284 | if (const EnableIfAttr *Attr = |
| 16285 | CheckEnableIf(Function: Method, CallLoc: LParenLoc, Args, MissingImplicitThis: true)) { |
| 16286 | Diag(Loc: MemE->getMemberLoc(), |
| 16287 | DiagID: diag::err_ovl_no_viable_member_function_in_call) |
| 16288 | << Method << Method->getSourceRange(); |
| 16289 | Diag(Loc: Method->getLocation(), |
| 16290 | DiagID: diag::note_ovl_candidate_disabled_by_function_cond_attr) |
| 16291 | << Attr->getCond()->getSourceRange() << Attr->getMessage(); |
| 16292 | return ExprError(); |
| 16293 | } |
| 16294 | } |
| 16295 | |
| 16296 | if (isa<CXXConstructorDecl, CXXDestructorDecl>(Val: CurContext) && |
| 16297 | TheCall->getDirectCallee()->isPureVirtual()) { |
| 16298 | const FunctionDecl *MD = TheCall->getDirectCallee(); |
| 16299 | |
| 16300 | if (isa<CXXThisExpr>(Val: MemExpr->getBase()->IgnoreParenCasts()) && |
| 16301 | MemExpr->performsVirtualDispatch(LO: getLangOpts())) { |
| 16302 | Diag(Loc: MemExpr->getBeginLoc(), |
| 16303 | DiagID: diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) |
| 16304 | << MD->getDeclName() << isa<CXXDestructorDecl>(Val: CurContext) |
| 16305 | << MD->getParent(); |
| 16306 | |
| 16307 | Diag(Loc: MD->getBeginLoc(), DiagID: diag::note_previous_decl) << MD->getDeclName(); |
| 16308 | if (getLangOpts().AppleKext) |
| 16309 | Diag(Loc: MemExpr->getBeginLoc(), DiagID: diag::note_pure_qualified_call_kext) |
| 16310 | << MD->getParent() << MD->getDeclName(); |
| 16311 | } |
| 16312 | } |
| 16313 | |
| 16314 | if (auto *DD = dyn_cast<CXXDestructorDecl>(Val: TheCall->getDirectCallee())) { |
| 16315 | // a->A::f() doesn't go through the vtable, except in AppleKext mode. |
| 16316 | bool CallCanBeVirtual = !MemExpr->hasQualifier() || getLangOpts().AppleKext; |
| 16317 | CheckVirtualDtorCall(dtor: DD, Loc: MemExpr->getBeginLoc(), /*IsDelete=*/false, |
| 16318 | CallCanBeVirtual, /*WarnOnNonAbstractTypes=*/true, |
| 16319 | DtorLoc: MemExpr->getMemberLoc()); |
| 16320 | } |
| 16321 | |
| 16322 | return CheckForImmediateInvocation(E: MaybeBindToTemporary(E: TheCall), |
| 16323 | Decl: TheCall->getDirectCallee()); |
| 16324 | } |
| 16325 | |
| 16326 | ExprResult |
| 16327 | Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, |
| 16328 | SourceLocation LParenLoc, |
| 16329 | MultiExprArg Args, |
| 16330 | SourceLocation RParenLoc) { |
| 16331 | if (checkPlaceholderForOverload(S&: *this, E&: Obj)) |
| 16332 | return ExprError(); |
| 16333 | ExprResult Object = Obj; |
| 16334 | |
| 16335 | UnbridgedCastsSet UnbridgedCasts; |
| 16336 | if (checkArgPlaceholdersForOverload(S&: *this, Args, unbridged&: UnbridgedCasts)) |
| 16337 | return ExprError(); |
| 16338 | |
| 16339 | assert(Object.get()->getType()->isRecordType() && |
| 16340 | "Requires object type argument" ); |
| 16341 | |
| 16342 | // C++ [over.call.object]p1: |
| 16343 | // If the primary-expression E in the function call syntax |
| 16344 | // evaluates to a class object of type "cv T", then the set of |
| 16345 | // candidate functions includes at least the function call |
| 16346 | // operators of T. The function call operators of T are obtained by |
| 16347 | // ordinary lookup of the name operator() in the context of |
| 16348 | // (E).operator(). |
| 16349 | OverloadCandidateSet CandidateSet(LParenLoc, |
| 16350 | OverloadCandidateSet::CSK_Operator); |
| 16351 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op: OO_Call); |
| 16352 | |
| 16353 | if (RequireCompleteType(Loc: LParenLoc, T: Object.get()->getType(), |
| 16354 | DiagID: diag::err_incomplete_object_call, Args: Object.get())) |
| 16355 | return true; |
| 16356 | |
| 16357 | const auto *Record = Object.get()->getType()->castAs<RecordType>(); |
| 16358 | LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); |
| 16359 | LookupQualifiedName(R, LookupCtx: Record->getDecl()); |
| 16360 | R.suppressAccessDiagnostics(); |
| 16361 | |
| 16362 | for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); |
| 16363 | Oper != OperEnd; ++Oper) { |
| 16364 | AddMethodCandidate(FoundDecl: Oper.getPair(), ObjectType: Object.get()->getType(), |
| 16365 | ObjectClassification: Object.get()->Classify(Ctx&: Context), Args, CandidateSet, |
| 16366 | /*SuppressUserConversion=*/SuppressUserConversions: false); |
| 16367 | } |
| 16368 | |
| 16369 | // When calling a lambda, both the call operator, and |
| 16370 | // the conversion operator to function pointer |
| 16371 | // are considered. But when constraint checking |
| 16372 | // on the call operator fails, it will also fail on the |
| 16373 | // conversion operator as the constraints are always the same. |
| 16374 | // As the user probably does not intend to perform a surrogate call, |
| 16375 | // we filter them out to produce better error diagnostics, ie to avoid |
| 16376 | // showing 2 failed overloads instead of one. |
| 16377 | bool IgnoreSurrogateFunctions = false; |
| 16378 | if (CandidateSet.nonDeferredCandidatesCount() == 1 && |
| 16379 | Record->getAsCXXRecordDecl()->isLambda()) { |
| 16380 | const OverloadCandidate &Candidate = *CandidateSet.begin(); |
| 16381 | if (!Candidate.Viable && |
| 16382 | Candidate.FailureKind == ovl_fail_constraints_not_satisfied) |
| 16383 | IgnoreSurrogateFunctions = true; |
| 16384 | } |
| 16385 | |
| 16386 | // C++ [over.call.object]p2: |
| 16387 | // In addition, for each (non-explicit in C++0x) conversion function |
| 16388 | // declared in T of the form |
| 16389 | // |
| 16390 | // operator conversion-type-id () cv-qualifier; |
| 16391 | // |
| 16392 | // where cv-qualifier is the same cv-qualification as, or a |
| 16393 | // greater cv-qualification than, cv, and where conversion-type-id |
| 16394 | // denotes the type "pointer to function of (P1,...,Pn) returning |
| 16395 | // R", or the type "reference to pointer to function of |
| 16396 | // (P1,...,Pn) returning R", or the type "reference to function |
| 16397 | // of (P1,...,Pn) returning R", a surrogate call function [...] |
| 16398 | // is also considered as a candidate function. Similarly, |
| 16399 | // surrogate call functions are added to the set of candidate |
| 16400 | // functions for each conversion function declared in an |
| 16401 | // accessible base class provided the function is not hidden |
| 16402 | // within T by another intervening declaration. |
| 16403 | const auto &Conversions = |
| 16404 | cast<CXXRecordDecl>(Val: Record->getDecl())->getVisibleConversionFunctions(); |
| 16405 | for (auto I = Conversions.begin(), E = Conversions.end(); |
| 16406 | !IgnoreSurrogateFunctions && I != E; ++I) { |
| 16407 | NamedDecl *D = *I; |
| 16408 | CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Val: D->getDeclContext()); |
| 16409 | if (isa<UsingShadowDecl>(Val: D)) |
| 16410 | D = cast<UsingShadowDecl>(Val: D)->getTargetDecl(); |
| 16411 | |
| 16412 | // Skip over templated conversion functions; they aren't |
| 16413 | // surrogates. |
| 16414 | if (isa<FunctionTemplateDecl>(Val: D)) |
| 16415 | continue; |
| 16416 | |
| 16417 | CXXConversionDecl *Conv = cast<CXXConversionDecl>(Val: D); |
| 16418 | if (!Conv->isExplicit()) { |
| 16419 | // Strip the reference type (if any) and then the pointer type (if |
| 16420 | // any) to get down to what might be a function type. |
| 16421 | QualType ConvType = Conv->getConversionType().getNonReferenceType(); |
| 16422 | if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) |
| 16423 | ConvType = ConvPtrType->getPointeeType(); |
| 16424 | |
| 16425 | if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) |
| 16426 | { |
| 16427 | AddSurrogateCandidate(Conversion: Conv, FoundDecl: I.getPair(), ActingContext, Proto, |
| 16428 | Object: Object.get(), Args, CandidateSet); |
| 16429 | } |
| 16430 | } |
| 16431 | } |
| 16432 | |
| 16433 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 16434 | |
| 16435 | // Perform overload resolution. |
| 16436 | OverloadCandidateSet::iterator Best; |
| 16437 | switch (CandidateSet.BestViableFunction(S&: *this, Loc: Object.get()->getBeginLoc(), |
| 16438 | Best)) { |
| 16439 | case OR_Success: |
| 16440 | // Overload resolution succeeded; we'll build the appropriate call |
| 16441 | // below. |
| 16442 | break; |
| 16443 | |
| 16444 | case OR_No_Viable_Function: { |
| 16445 | PartialDiagnostic PD = |
| 16446 | CandidateSet.empty() |
| 16447 | ? (PDiag(DiagID: diag::err_ovl_no_oper) |
| 16448 | << Object.get()->getType() << /*call*/ 1 |
| 16449 | << Object.get()->getSourceRange()) |
| 16450 | : (PDiag(DiagID: diag::err_ovl_no_viable_object_call) |
| 16451 | << Object.get()->getType() << Object.get()->getSourceRange()); |
| 16452 | CandidateSet.NoteCandidates( |
| 16453 | PD: PartialDiagnosticAt(Object.get()->getBeginLoc(), PD), S&: *this, |
| 16454 | OCD: OCD_AllCandidates, Args); |
| 16455 | break; |
| 16456 | } |
| 16457 | case OR_Ambiguous: |
| 16458 | if (!R.isAmbiguous()) |
| 16459 | CandidateSet.NoteCandidates( |
| 16460 | PD: PartialDiagnosticAt(Object.get()->getBeginLoc(), |
| 16461 | PDiag(DiagID: diag::err_ovl_ambiguous_object_call) |
| 16462 | << Object.get()->getType() |
| 16463 | << Object.get()->getSourceRange()), |
| 16464 | S&: *this, OCD: OCD_AmbiguousCandidates, Args); |
| 16465 | break; |
| 16466 | |
| 16467 | case OR_Deleted: { |
| 16468 | // FIXME: Is this diagnostic here really necessary? It seems that |
| 16469 | // 1. we don't have any tests for this diagnostic, and |
| 16470 | // 2. we already issue err_deleted_function_use for this later on anyway. |
| 16471 | StringLiteral *Msg = Best->Function->getDeletedMessage(); |
| 16472 | CandidateSet.NoteCandidates( |
| 16473 | PD: PartialDiagnosticAt(Object.get()->getBeginLoc(), |
| 16474 | PDiag(DiagID: diag::err_ovl_deleted_object_call) |
| 16475 | << Object.get()->getType() << (Msg != nullptr) |
| 16476 | << (Msg ? Msg->getString() : StringRef()) |
| 16477 | << Object.get()->getSourceRange()), |
| 16478 | S&: *this, OCD: OCD_AllCandidates, Args); |
| 16479 | break; |
| 16480 | } |
| 16481 | } |
| 16482 | |
| 16483 | if (Best == CandidateSet.end()) |
| 16484 | return true; |
| 16485 | |
| 16486 | UnbridgedCasts.restore(); |
| 16487 | |
| 16488 | if (Best->Function == nullptr) { |
| 16489 | // Since there is no function declaration, this is one of the |
| 16490 | // surrogate candidates. Dig out the conversion function. |
| 16491 | CXXConversionDecl *Conv |
| 16492 | = cast<CXXConversionDecl>( |
| 16493 | Val: Best->Conversions[0].UserDefined.ConversionFunction); |
| 16494 | |
| 16495 | CheckMemberOperatorAccess(Loc: LParenLoc, ObjectExpr: Object.get(), ArgExpr: nullptr, |
| 16496 | FoundDecl: Best->FoundDecl); |
| 16497 | if (DiagnoseUseOfDecl(D: Best->FoundDecl, Locs: LParenLoc)) |
| 16498 | return ExprError(); |
| 16499 | assert(Conv == Best->FoundDecl.getDecl() && |
| 16500 | "Found Decl & conversion-to-functionptr should be same, right?!" ); |
| 16501 | // We selected one of the surrogate functions that converts the |
| 16502 | // object parameter to a function pointer. Perform the conversion |
| 16503 | // on the object argument, then let BuildCallExpr finish the job. |
| 16504 | |
| 16505 | // Create an implicit member expr to refer to the conversion operator. |
| 16506 | // and then call it. |
| 16507 | ExprResult Call = BuildCXXMemberCallExpr(E: Object.get(), FoundDecl: Best->FoundDecl, |
| 16508 | Method: Conv, HadMultipleCandidates); |
| 16509 | if (Call.isInvalid()) |
| 16510 | return ExprError(); |
| 16511 | // Record usage of conversion in an implicit cast. |
| 16512 | Call = ImplicitCastExpr::Create( |
| 16513 | Context, T: Call.get()->getType(), Kind: CK_UserDefinedConversion, Operand: Call.get(), |
| 16514 | BasePath: nullptr, Cat: VK_PRValue, FPO: CurFPFeatureOverrides()); |
| 16515 | |
| 16516 | return BuildCallExpr(S, Fn: Call.get(), LParenLoc, ArgExprs: Args, RParenLoc); |
| 16517 | } |
| 16518 | |
| 16519 | CheckMemberOperatorAccess(Loc: LParenLoc, ObjectExpr: Object.get(), ArgExpr: nullptr, FoundDecl: Best->FoundDecl); |
| 16520 | |
| 16521 | // We found an overloaded operator(). Build a CXXOperatorCallExpr |
| 16522 | // that calls this method, using Object for the implicit object |
| 16523 | // parameter and passing along the remaining arguments. |
| 16524 | CXXMethodDecl *Method = cast<CXXMethodDecl>(Val: Best->Function); |
| 16525 | |
| 16526 | // An error diagnostic has already been printed when parsing the declaration. |
| 16527 | if (Method->isInvalidDecl()) |
| 16528 | return ExprError(); |
| 16529 | |
| 16530 | const auto *Proto = Method->getType()->castAs<FunctionProtoType>(); |
| 16531 | unsigned NumParams = Proto->getNumParams(); |
| 16532 | |
| 16533 | DeclarationNameInfo OpLocInfo( |
| 16534 | Context.DeclarationNames.getCXXOperatorName(Op: OO_Call), LParenLoc); |
| 16535 | OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc)); |
| 16536 | ExprResult NewFn = CreateFunctionRefExpr(S&: *this, Fn: Method, FoundDecl: Best->FoundDecl, |
| 16537 | Base: Obj, HadMultipleCandidates, |
| 16538 | Loc: OpLocInfo.getLoc(), |
| 16539 | LocInfo: OpLocInfo.getInfo()); |
| 16540 | if (NewFn.isInvalid()) |
| 16541 | return true; |
| 16542 | |
| 16543 | SmallVector<Expr *, 8> MethodArgs; |
| 16544 | MethodArgs.reserve(N: NumParams + 1); |
| 16545 | |
| 16546 | bool IsError = false; |
| 16547 | |
| 16548 | // Initialize the object parameter. |
| 16549 | llvm::SmallVector<Expr *, 8> NewArgs; |
| 16550 | if (Method->isExplicitObjectMemberFunction()) { |
| 16551 | IsError |= PrepareExplicitObjectArgument(S&: *this, Method, Object: Obj, Args, NewArgs); |
| 16552 | } else { |
| 16553 | ExprResult ObjRes = PerformImplicitObjectArgumentInitialization( |
| 16554 | From: Object.get(), /*Qualifier=*/nullptr, FoundDecl: Best->FoundDecl, Method); |
| 16555 | if (ObjRes.isInvalid()) |
| 16556 | IsError = true; |
| 16557 | else |
| 16558 | Object = ObjRes; |
| 16559 | MethodArgs.push_back(Elt: Object.get()); |
| 16560 | } |
| 16561 | |
| 16562 | IsError |= PrepareArgumentsForCallToObjectOfClassType( |
| 16563 | S&: *this, MethodArgs, Method, Args, LParenLoc); |
| 16564 | |
| 16565 | // If this is a variadic call, handle args passed through "...". |
| 16566 | if (Proto->isVariadic()) { |
| 16567 | // Promote the arguments (C99 6.5.2.2p7). |
| 16568 | for (unsigned i = NumParams, e = Args.size(); i < e; i++) { |
| 16569 | ExprResult Arg = DefaultVariadicArgumentPromotion( |
| 16570 | E: Args[i], CT: VariadicCallType::Method, FDecl: nullptr); |
| 16571 | IsError |= Arg.isInvalid(); |
| 16572 | MethodArgs.push_back(Elt: Arg.get()); |
| 16573 | } |
| 16574 | } |
| 16575 | |
| 16576 | if (IsError) |
| 16577 | return true; |
| 16578 | |
| 16579 | DiagnoseSentinelCalls(D: Method, Loc: LParenLoc, Args); |
| 16580 | |
| 16581 | // Once we've built TheCall, all of the expressions are properly owned. |
| 16582 | QualType ResultTy = Method->getReturnType(); |
| 16583 | ExprValueKind VK = Expr::getValueKindForType(T: ResultTy); |
| 16584 | ResultTy = ResultTy.getNonLValueExprType(Context); |
| 16585 | |
| 16586 | CallExpr *TheCall = CXXOperatorCallExpr::Create( |
| 16587 | Ctx: Context, OpKind: OO_Call, Fn: NewFn.get(), Args: MethodArgs, Ty: ResultTy, VK, OperatorLoc: RParenLoc, |
| 16588 | FPFeatures: CurFPFeatureOverrides()); |
| 16589 | |
| 16590 | if (CheckCallReturnType(ReturnType: Method->getReturnType(), Loc: LParenLoc, CE: TheCall, FD: Method)) |
| 16591 | return true; |
| 16592 | |
| 16593 | if (CheckFunctionCall(FDecl: Method, TheCall, Proto)) |
| 16594 | return true; |
| 16595 | |
| 16596 | return CheckForImmediateInvocation(E: MaybeBindToTemporary(E: TheCall), Decl: Method); |
| 16597 | } |
| 16598 | |
| 16599 | ExprResult Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, |
| 16600 | SourceLocation OpLoc, |
| 16601 | bool *NoArrowOperatorFound) { |
| 16602 | assert(Base->getType()->isRecordType() && |
| 16603 | "left-hand side must have class type" ); |
| 16604 | |
| 16605 | if (checkPlaceholderForOverload(S&: *this, E&: Base)) |
| 16606 | return ExprError(); |
| 16607 | |
| 16608 | SourceLocation Loc = Base->getExprLoc(); |
| 16609 | |
| 16610 | // C++ [over.ref]p1: |
| 16611 | // |
| 16612 | // [...] An expression x->m is interpreted as (x.operator->())->m |
| 16613 | // for a class object x of type T if T::operator->() exists and if |
| 16614 | // the operator is selected as the best match function by the |
| 16615 | // overload resolution mechanism (13.3). |
| 16616 | DeclarationName OpName = |
| 16617 | Context.DeclarationNames.getCXXOperatorName(Op: OO_Arrow); |
| 16618 | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Operator); |
| 16619 | |
| 16620 | if (RequireCompleteType(Loc, T: Base->getType(), |
| 16621 | DiagID: diag::err_typecheck_incomplete_tag, Args: Base)) |
| 16622 | return ExprError(); |
| 16623 | |
| 16624 | LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); |
| 16625 | LookupQualifiedName(R, LookupCtx: Base->getType()->castAs<RecordType>()->getDecl()); |
| 16626 | R.suppressAccessDiagnostics(); |
| 16627 | |
| 16628 | for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); |
| 16629 | Oper != OperEnd; ++Oper) { |
| 16630 | AddMethodCandidate(FoundDecl: Oper.getPair(), ObjectType: Base->getType(), ObjectClassification: Base->Classify(Ctx&: Context), |
| 16631 | Args: {}, CandidateSet, |
| 16632 | /*SuppressUserConversion=*/SuppressUserConversions: false); |
| 16633 | } |
| 16634 | |
| 16635 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 16636 | |
| 16637 | // Perform overload resolution. |
| 16638 | OverloadCandidateSet::iterator Best; |
| 16639 | switch (CandidateSet.BestViableFunction(S&: *this, Loc: OpLoc, Best)) { |
| 16640 | case OR_Success: |
| 16641 | // Overload resolution succeeded; we'll build the call below. |
| 16642 | break; |
| 16643 | |
| 16644 | case OR_No_Viable_Function: { |
| 16645 | auto Cands = CandidateSet.CompleteCandidates(S&: *this, OCD: OCD_AllCandidates, Args: Base); |
| 16646 | if (CandidateSet.empty()) { |
| 16647 | QualType BaseType = Base->getType(); |
| 16648 | if (NoArrowOperatorFound) { |
| 16649 | // Report this specific error to the caller instead of emitting a |
| 16650 | // diagnostic, as requested. |
| 16651 | *NoArrowOperatorFound = true; |
| 16652 | return ExprError(); |
| 16653 | } |
| 16654 | Diag(Loc: OpLoc, DiagID: diag::err_typecheck_member_reference_arrow) |
| 16655 | << BaseType << Base->getSourceRange(); |
| 16656 | if (BaseType->isRecordType() && !BaseType->isPointerType()) { |
| 16657 | Diag(Loc: OpLoc, DiagID: diag::note_typecheck_member_reference_suggestion) |
| 16658 | << FixItHint::CreateReplacement(RemoveRange: OpLoc, Code: "." ); |
| 16659 | } |
| 16660 | } else |
| 16661 | Diag(Loc: OpLoc, DiagID: diag::err_ovl_no_viable_oper) |
| 16662 | << "operator->" << Base->getSourceRange(); |
| 16663 | CandidateSet.NoteCandidates(S&: *this, Args: Base, Cands); |
| 16664 | return ExprError(); |
| 16665 | } |
| 16666 | case OR_Ambiguous: |
| 16667 | if (!R.isAmbiguous()) |
| 16668 | CandidateSet.NoteCandidates( |
| 16669 | PD: PartialDiagnosticAt(OpLoc, PDiag(DiagID: diag::err_ovl_ambiguous_oper_unary) |
| 16670 | << "->" << Base->getType() |
| 16671 | << Base->getSourceRange()), |
| 16672 | S&: *this, OCD: OCD_AmbiguousCandidates, Args: Base); |
| 16673 | return ExprError(); |
| 16674 | |
| 16675 | case OR_Deleted: { |
| 16676 | StringLiteral *Msg = Best->Function->getDeletedMessage(); |
| 16677 | CandidateSet.NoteCandidates( |
| 16678 | PD: PartialDiagnosticAt(OpLoc, PDiag(DiagID: diag::err_ovl_deleted_oper) |
| 16679 | << "->" << (Msg != nullptr) |
| 16680 | << (Msg ? Msg->getString() : StringRef()) |
| 16681 | << Base->getSourceRange()), |
| 16682 | S&: *this, OCD: OCD_AllCandidates, Args: Base); |
| 16683 | return ExprError(); |
| 16684 | } |
| 16685 | } |
| 16686 | |
| 16687 | CheckMemberOperatorAccess(Loc: OpLoc, ObjectExpr: Base, ArgExpr: nullptr, FoundDecl: Best->FoundDecl); |
| 16688 | |
| 16689 | // Convert the object parameter. |
| 16690 | CXXMethodDecl *Method = cast<CXXMethodDecl>(Val: Best->Function); |
| 16691 | |
| 16692 | if (Method->isExplicitObjectMemberFunction()) { |
| 16693 | ExprResult R = InitializeExplicitObjectArgument(S&: *this, Obj: Base, Fun: Method); |
| 16694 | if (R.isInvalid()) |
| 16695 | return ExprError(); |
| 16696 | Base = R.get(); |
| 16697 | } else { |
| 16698 | ExprResult BaseResult = PerformImplicitObjectArgumentInitialization( |
| 16699 | From: Base, /*Qualifier=*/nullptr, FoundDecl: Best->FoundDecl, Method); |
| 16700 | if (BaseResult.isInvalid()) |
| 16701 | return ExprError(); |
| 16702 | Base = BaseResult.get(); |
| 16703 | } |
| 16704 | |
| 16705 | // Build the operator call. |
| 16706 | ExprResult FnExpr = CreateFunctionRefExpr(S&: *this, Fn: Method, FoundDecl: Best->FoundDecl, |
| 16707 | Base, HadMultipleCandidates, Loc: OpLoc); |
| 16708 | if (FnExpr.isInvalid()) |
| 16709 | return ExprError(); |
| 16710 | |
| 16711 | QualType ResultTy = Method->getReturnType(); |
| 16712 | ExprValueKind VK = Expr::getValueKindForType(T: ResultTy); |
| 16713 | ResultTy = ResultTy.getNonLValueExprType(Context); |
| 16714 | |
| 16715 | CallExpr *TheCall = |
| 16716 | CXXOperatorCallExpr::Create(Ctx: Context, OpKind: OO_Arrow, Fn: FnExpr.get(), Args: Base, |
| 16717 | Ty: ResultTy, VK, OperatorLoc: OpLoc, FPFeatures: CurFPFeatureOverrides()); |
| 16718 | |
| 16719 | if (CheckCallReturnType(ReturnType: Method->getReturnType(), Loc: OpLoc, CE: TheCall, FD: Method)) |
| 16720 | return ExprError(); |
| 16721 | |
| 16722 | if (CheckFunctionCall(FDecl: Method, TheCall, |
| 16723 | Proto: Method->getType()->castAs<FunctionProtoType>())) |
| 16724 | return ExprError(); |
| 16725 | |
| 16726 | return CheckForImmediateInvocation(E: MaybeBindToTemporary(E: TheCall), Decl: Method); |
| 16727 | } |
| 16728 | |
| 16729 | ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R, |
| 16730 | DeclarationNameInfo &SuffixInfo, |
| 16731 | ArrayRef<Expr*> Args, |
| 16732 | SourceLocation LitEndLoc, |
| 16733 | TemplateArgumentListInfo *TemplateArgs) { |
| 16734 | SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc(); |
| 16735 | |
| 16736 | OverloadCandidateSet CandidateSet(UDSuffixLoc, |
| 16737 | OverloadCandidateSet::CSK_Normal); |
| 16738 | AddNonMemberOperatorCandidates(Fns: R.asUnresolvedSet(), Args, CandidateSet, |
| 16739 | ExplicitTemplateArgs: TemplateArgs); |
| 16740 | |
| 16741 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| 16742 | |
| 16743 | // Perform overload resolution. This will usually be trivial, but might need |
| 16744 | // to perform substitutions for a literal operator template. |
| 16745 | OverloadCandidateSet::iterator Best; |
| 16746 | switch (CandidateSet.BestViableFunction(S&: *this, Loc: UDSuffixLoc, Best)) { |
| 16747 | case OR_Success: |
| 16748 | case OR_Deleted: |
| 16749 | break; |
| 16750 | |
| 16751 | case OR_No_Viable_Function: |
| 16752 | CandidateSet.NoteCandidates( |
| 16753 | PD: PartialDiagnosticAt(UDSuffixLoc, |
| 16754 | PDiag(DiagID: diag::err_ovl_no_viable_function_in_call) |
| 16755 | << R.getLookupName()), |
| 16756 | S&: *this, OCD: OCD_AllCandidates, Args); |
| 16757 | return ExprError(); |
| 16758 | |
| 16759 | case OR_Ambiguous: |
| 16760 | CandidateSet.NoteCandidates( |
| 16761 | PD: PartialDiagnosticAt(R.getNameLoc(), PDiag(DiagID: diag::err_ovl_ambiguous_call) |
| 16762 | << R.getLookupName()), |
| 16763 | S&: *this, OCD: OCD_AmbiguousCandidates, Args); |
| 16764 | return ExprError(); |
| 16765 | } |
| 16766 | |
| 16767 | FunctionDecl *FD = Best->Function; |
| 16768 | ExprResult Fn = CreateFunctionRefExpr(S&: *this, Fn: FD, FoundDecl: Best->FoundDecl, |
| 16769 | Base: nullptr, HadMultipleCandidates, |
| 16770 | Loc: SuffixInfo.getLoc(), |
| 16771 | LocInfo: SuffixInfo.getInfo()); |
| 16772 | if (Fn.isInvalid()) |
| 16773 | return true; |
| 16774 | |
| 16775 | // Check the argument types. This should almost always be a no-op, except |
| 16776 | // that array-to-pointer decay is applied to string literals. |
| 16777 | Expr *ConvArgs[2]; |
| 16778 | for (unsigned ArgIdx = 0, N = Args.size(); ArgIdx != N; ++ArgIdx) { |
| 16779 | ExprResult InputInit = PerformCopyInitialization( |
| 16780 | Entity: InitializedEntity::InitializeParameter(Context, Parm: FD->getParamDecl(i: ArgIdx)), |
| 16781 | EqualLoc: SourceLocation(), Init: Args[ArgIdx]); |
| 16782 | if (InputInit.isInvalid()) |
| 16783 | return true; |
| 16784 | ConvArgs[ArgIdx] = InputInit.get(); |
| 16785 | } |
| 16786 | |
| 16787 | QualType ResultTy = FD->getReturnType(); |
| 16788 | ExprValueKind VK = Expr::getValueKindForType(T: ResultTy); |
| 16789 | ResultTy = ResultTy.getNonLValueExprType(Context); |
| 16790 | |
| 16791 | UserDefinedLiteral *UDL = UserDefinedLiteral::Create( |
| 16792 | Ctx: Context, Fn: Fn.get(), Args: llvm::ArrayRef(ConvArgs, Args.size()), Ty: ResultTy, VK, |
| 16793 | LitEndLoc, SuffixLoc: UDSuffixLoc, FPFeatures: CurFPFeatureOverrides()); |
| 16794 | |
| 16795 | if (CheckCallReturnType(ReturnType: FD->getReturnType(), Loc: UDSuffixLoc, CE: UDL, FD)) |
| 16796 | return ExprError(); |
| 16797 | |
| 16798 | if (CheckFunctionCall(FDecl: FD, TheCall: UDL, Proto: nullptr)) |
| 16799 | return ExprError(); |
| 16800 | |
| 16801 | return CheckForImmediateInvocation(E: MaybeBindToTemporary(E: UDL), Decl: FD); |
| 16802 | } |
| 16803 | |
| 16804 | Sema::ForRangeStatus |
| 16805 | Sema::BuildForRangeBeginEndCall(SourceLocation Loc, |
| 16806 | SourceLocation RangeLoc, |
| 16807 | const DeclarationNameInfo &NameInfo, |
| 16808 | LookupResult &MemberLookup, |
| 16809 | OverloadCandidateSet *CandidateSet, |
| 16810 | Expr *Range, ExprResult *CallExpr) { |
| 16811 | Scope *S = nullptr; |
| 16812 | |
| 16813 | CandidateSet->clear(CSK: OverloadCandidateSet::CSK_Normal); |
| 16814 | if (!MemberLookup.empty()) { |
| 16815 | ExprResult MemberRef = |
| 16816 | BuildMemberReferenceExpr(Base: Range, BaseType: Range->getType(), OpLoc: Loc, |
| 16817 | /*IsPtr=*/IsArrow: false, SS: CXXScopeSpec(), |
| 16818 | /*TemplateKWLoc=*/SourceLocation(), |
| 16819 | /*FirstQualifierInScope=*/nullptr, |
| 16820 | R&: MemberLookup, |
| 16821 | /*TemplateArgs=*/nullptr, S); |
| 16822 | if (MemberRef.isInvalid()) { |
| 16823 | *CallExpr = ExprError(); |
| 16824 | return FRS_DiagnosticIssued; |
| 16825 | } |
| 16826 | *CallExpr = BuildCallExpr(S, Fn: MemberRef.get(), LParenLoc: Loc, ArgExprs: {}, RParenLoc: Loc, ExecConfig: nullptr); |
| 16827 | if (CallExpr->isInvalid()) { |
| 16828 | *CallExpr = ExprError(); |
| 16829 | return FRS_DiagnosticIssued; |
| 16830 | } |
| 16831 | } else { |
| 16832 | ExprResult FnR = CreateUnresolvedLookupExpr(/*NamingClass=*/nullptr, |
| 16833 | NNSLoc: NestedNameSpecifierLoc(), |
| 16834 | DNI: NameInfo, Fns: UnresolvedSet<0>()); |
| 16835 | if (FnR.isInvalid()) |
| 16836 | return FRS_DiagnosticIssued; |
| 16837 | UnresolvedLookupExpr *Fn = cast<UnresolvedLookupExpr>(Val: FnR.get()); |
| 16838 | |
| 16839 | bool CandidateSetError = buildOverloadedCallSet(S, Fn, ULE: Fn, Args: Range, RParenLoc: Loc, |
| 16840 | CandidateSet, Result: CallExpr); |
| 16841 | if (CandidateSet->empty() || CandidateSetError) { |
| 16842 | *CallExpr = ExprError(); |
| 16843 | return FRS_NoViableFunction; |
| 16844 | } |
| 16845 | OverloadCandidateSet::iterator Best; |
| 16846 | OverloadingResult OverloadResult = |
| 16847 | CandidateSet->BestViableFunction(S&: *this, Loc: Fn->getBeginLoc(), Best); |
| 16848 | |
| 16849 | if (OverloadResult == OR_No_Viable_Function) { |
| 16850 | *CallExpr = ExprError(); |
| 16851 | return FRS_NoViableFunction; |
| 16852 | } |
| 16853 | *CallExpr = FinishOverloadedCallExpr(SemaRef&: *this, S, Fn, ULE: Fn, LParenLoc: Loc, Args: Range, |
| 16854 | RParenLoc: Loc, ExecConfig: nullptr, CandidateSet, Best: &Best, |
| 16855 | OverloadResult, |
| 16856 | /*AllowTypoCorrection=*/false); |
| 16857 | if (CallExpr->isInvalid() || OverloadResult != OR_Success) { |
| 16858 | *CallExpr = ExprError(); |
| 16859 | return FRS_DiagnosticIssued; |
| 16860 | } |
| 16861 | } |
| 16862 | return FRS_Success; |
| 16863 | } |
| 16864 | |
| 16865 | ExprResult Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, |
| 16866 | FunctionDecl *Fn) { |
| 16867 | if (ParenExpr *PE = dyn_cast<ParenExpr>(Val: E)) { |
| 16868 | ExprResult SubExpr = |
| 16869 | FixOverloadedFunctionReference(E: PE->getSubExpr(), Found, Fn); |
| 16870 | if (SubExpr.isInvalid()) |
| 16871 | return ExprError(); |
| 16872 | if (SubExpr.get() == PE->getSubExpr()) |
| 16873 | return PE; |
| 16874 | |
| 16875 | return new (Context) |
| 16876 | ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); |
| 16877 | } |
| 16878 | |
| 16879 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) { |
| 16880 | ExprResult SubExpr = |
| 16881 | FixOverloadedFunctionReference(E: ICE->getSubExpr(), Found, Fn); |
| 16882 | if (SubExpr.isInvalid()) |
| 16883 | return ExprError(); |
| 16884 | assert(Context.hasSameType(ICE->getSubExpr()->getType(), |
| 16885 | SubExpr.get()->getType()) && |
| 16886 | "Implicit cast type cannot be determined from overload" ); |
| 16887 | assert(ICE->path_empty() && "fixing up hierarchy conversion?" ); |
| 16888 | if (SubExpr.get() == ICE->getSubExpr()) |
| 16889 | return ICE; |
| 16890 | |
| 16891 | return ImplicitCastExpr::Create(Context, T: ICE->getType(), Kind: ICE->getCastKind(), |
| 16892 | Operand: SubExpr.get(), BasePath: nullptr, Cat: ICE->getValueKind(), |
| 16893 | FPO: CurFPFeatureOverrides()); |
| 16894 | } |
| 16895 | |
| 16896 | if (auto *GSE = dyn_cast<GenericSelectionExpr>(Val: E)) { |
| 16897 | if (!GSE->isResultDependent()) { |
| 16898 | ExprResult SubExpr = |
| 16899 | FixOverloadedFunctionReference(E: GSE->getResultExpr(), Found, Fn); |
| 16900 | if (SubExpr.isInvalid()) |
| 16901 | return ExprError(); |
| 16902 | if (SubExpr.get() == GSE->getResultExpr()) |
| 16903 | return GSE; |
| 16904 | |
| 16905 | // Replace the resulting type information before rebuilding the generic |
| 16906 | // selection expression. |
| 16907 | ArrayRef<Expr *> A = GSE->getAssocExprs(); |
| 16908 | SmallVector<Expr *, 4> AssocExprs(A); |
| 16909 | unsigned ResultIdx = GSE->getResultIndex(); |
| 16910 | AssocExprs[ResultIdx] = SubExpr.get(); |
| 16911 | |
| 16912 | if (GSE->isExprPredicate()) |
| 16913 | return GenericSelectionExpr::Create( |
| 16914 | Context, GenericLoc: GSE->getGenericLoc(), ControllingExpr: GSE->getControllingExpr(), |
| 16915 | AssocTypes: GSE->getAssocTypeSourceInfos(), AssocExprs, DefaultLoc: GSE->getDefaultLoc(), |
| 16916 | RParenLoc: GSE->getRParenLoc(), ContainsUnexpandedParameterPack: GSE->containsUnexpandedParameterPack(), |
| 16917 | ResultIndex: ResultIdx); |
| 16918 | return GenericSelectionExpr::Create( |
| 16919 | Context, GenericLoc: GSE->getGenericLoc(), ControllingType: GSE->getControllingType(), |
| 16920 | AssocTypes: GSE->getAssocTypeSourceInfos(), AssocExprs, DefaultLoc: GSE->getDefaultLoc(), |
| 16921 | RParenLoc: GSE->getRParenLoc(), ContainsUnexpandedParameterPack: GSE->containsUnexpandedParameterPack(), |
| 16922 | ResultIndex: ResultIdx); |
| 16923 | } |
| 16924 | // Rather than fall through to the unreachable, return the original generic |
| 16925 | // selection expression. |
| 16926 | return GSE; |
| 16927 | } |
| 16928 | |
| 16929 | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: E)) { |
| 16930 | assert(UnOp->getOpcode() == UO_AddrOf && |
| 16931 | "Can only take the address of an overloaded function" ); |
| 16932 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: Fn)) { |
| 16933 | if (!Method->isImplicitObjectMemberFunction()) { |
| 16934 | // Do nothing: the address of static and |
| 16935 | // explicit object member functions is a (non-member) function pointer. |
| 16936 | } else { |
| 16937 | // Fix the subexpression, which really has to be an |
| 16938 | // UnresolvedLookupExpr holding an overloaded member function |
| 16939 | // or template. |
| 16940 | ExprResult SubExpr = |
| 16941 | FixOverloadedFunctionReference(E: UnOp->getSubExpr(), Found, Fn); |
| 16942 | if (SubExpr.isInvalid()) |
| 16943 | return ExprError(); |
| 16944 | if (SubExpr.get() == UnOp->getSubExpr()) |
| 16945 | return UnOp; |
| 16946 | |
| 16947 | if (CheckUseOfCXXMethodAsAddressOfOperand(OpLoc: UnOp->getBeginLoc(), |
| 16948 | Op: SubExpr.get(), MD: Method)) |
| 16949 | return ExprError(); |
| 16950 | |
| 16951 | assert(isa<DeclRefExpr>(SubExpr.get()) && |
| 16952 | "fixed to something other than a decl ref" ); |
| 16953 | NestedNameSpecifier *Qualifier = |
| 16954 | cast<DeclRefExpr>(Val: SubExpr.get())->getQualifier(); |
| 16955 | assert(Qualifier && |
| 16956 | "fixed to a member ref with no nested name qualifier" ); |
| 16957 | |
| 16958 | // We have taken the address of a pointer to member |
| 16959 | // function. Perform the computation here so that we get the |
| 16960 | // appropriate pointer to member type. |
| 16961 | QualType MemPtrType = Context.getMemberPointerType( |
| 16962 | T: Fn->getType(), Qualifier, |
| 16963 | Cls: cast<CXXRecordDecl>(Val: Method->getDeclContext())); |
| 16964 | // Under the MS ABI, lock down the inheritance model now. |
| 16965 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) |
| 16966 | (void)isCompleteType(Loc: UnOp->getOperatorLoc(), T: MemPtrType); |
| 16967 | |
| 16968 | return UnaryOperator::Create(C: Context, input: SubExpr.get(), opc: UO_AddrOf, |
| 16969 | type: MemPtrType, VK: VK_PRValue, OK: OK_Ordinary, |
| 16970 | l: UnOp->getOperatorLoc(), CanOverflow: false, |
| 16971 | FPFeatures: CurFPFeatureOverrides()); |
| 16972 | } |
| 16973 | } |
| 16974 | ExprResult SubExpr = |
| 16975 | FixOverloadedFunctionReference(E: UnOp->getSubExpr(), Found, Fn); |
| 16976 | if (SubExpr.isInvalid()) |
| 16977 | return ExprError(); |
| 16978 | if (SubExpr.get() == UnOp->getSubExpr()) |
| 16979 | return UnOp; |
| 16980 | |
| 16981 | return CreateBuiltinUnaryOp(OpLoc: UnOp->getOperatorLoc(), Opc: UO_AddrOf, |
| 16982 | InputExpr: SubExpr.get()); |
| 16983 | } |
| 16984 | |
| 16985 | if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Val: E)) { |
| 16986 | if (Found.getAccess() == AS_none) { |
| 16987 | CheckUnresolvedLookupAccess(E: ULE, FoundDecl: Found); |
| 16988 | } |
| 16989 | // FIXME: avoid copy. |
| 16990 | TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; |
| 16991 | if (ULE->hasExplicitTemplateArgs()) { |
| 16992 | ULE->copyTemplateArgumentsInto(List&: TemplateArgsBuffer); |
| 16993 | TemplateArgs = &TemplateArgsBuffer; |
| 16994 | } |
| 16995 | |
| 16996 | QualType Type = Fn->getType(); |
| 16997 | ExprValueKind ValueKind = |
| 16998 | getLangOpts().CPlusPlus && !Fn->hasCXXExplicitFunctionObjectParameter() |
| 16999 | ? VK_LValue |
| 17000 | : VK_PRValue; |
| 17001 | |
| 17002 | // FIXME: Duplicated from BuildDeclarationNameExpr. |
| 17003 | if (unsigned BID = Fn->getBuiltinID()) { |
| 17004 | if (!Context.BuiltinInfo.isDirectlyAddressable(ID: BID)) { |
| 17005 | Type = Context.BuiltinFnTy; |
| 17006 | ValueKind = VK_PRValue; |
| 17007 | } |
| 17008 | } |
| 17009 | |
| 17010 | DeclRefExpr *DRE = BuildDeclRefExpr( |
| 17011 | D: Fn, Ty: Type, VK: ValueKind, NameInfo: ULE->getNameInfo(), NNS: ULE->getQualifierLoc(), |
| 17012 | FoundD: Found.getDecl(), TemplateKWLoc: ULE->getTemplateKeywordLoc(), TemplateArgs); |
| 17013 | DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1); |
| 17014 | return DRE; |
| 17015 | } |
| 17016 | |
| 17017 | if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(Val: E)) { |
| 17018 | // FIXME: avoid copy. |
| 17019 | TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = nullptr; |
| 17020 | if (MemExpr->hasExplicitTemplateArgs()) { |
| 17021 | MemExpr->copyTemplateArgumentsInto(List&: TemplateArgsBuffer); |
| 17022 | TemplateArgs = &TemplateArgsBuffer; |
| 17023 | } |
| 17024 | |
| 17025 | Expr *Base; |
| 17026 | |
| 17027 | // If we're filling in a static method where we used to have an |
| 17028 | // implicit member access, rewrite to a simple decl ref. |
| 17029 | if (MemExpr->isImplicitAccess()) { |
| 17030 | if (cast<CXXMethodDecl>(Val: Fn)->isStatic()) { |
| 17031 | DeclRefExpr *DRE = BuildDeclRefExpr( |
| 17032 | D: Fn, Ty: Fn->getType(), VK: VK_LValue, NameInfo: MemExpr->getNameInfo(), |
| 17033 | NNS: MemExpr->getQualifierLoc(), FoundD: Found.getDecl(), |
| 17034 | TemplateKWLoc: MemExpr->getTemplateKeywordLoc(), TemplateArgs); |
| 17035 | DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1); |
| 17036 | return DRE; |
| 17037 | } else { |
| 17038 | SourceLocation Loc = MemExpr->getMemberLoc(); |
| 17039 | if (MemExpr->getQualifier()) |
| 17040 | Loc = MemExpr->getQualifierLoc().getBeginLoc(); |
| 17041 | Base = |
| 17042 | BuildCXXThisExpr(Loc, Type: MemExpr->getBaseType(), /*IsImplicit=*/true); |
| 17043 | } |
| 17044 | } else |
| 17045 | Base = MemExpr->getBase(); |
| 17046 | |
| 17047 | ExprValueKind valueKind; |
| 17048 | QualType type; |
| 17049 | if (cast<CXXMethodDecl>(Val: Fn)->isStatic()) { |
| 17050 | valueKind = VK_LValue; |
| 17051 | type = Fn->getType(); |
| 17052 | } else { |
| 17053 | valueKind = VK_PRValue; |
| 17054 | type = Context.BoundMemberTy; |
| 17055 | } |
| 17056 | |
| 17057 | return BuildMemberExpr( |
| 17058 | Base, IsArrow: MemExpr->isArrow(), OpLoc: MemExpr->getOperatorLoc(), |
| 17059 | NNS: MemExpr->getQualifierLoc(), TemplateKWLoc: MemExpr->getTemplateKeywordLoc(), Member: Fn, FoundDecl: Found, |
| 17060 | /*HadMultipleCandidates=*/true, MemberNameInfo: MemExpr->getMemberNameInfo(), |
| 17061 | Ty: type, VK: valueKind, OK: OK_Ordinary, TemplateArgs); |
| 17062 | } |
| 17063 | |
| 17064 | llvm_unreachable("Invalid reference to overloaded function" ); |
| 17065 | } |
| 17066 | |
| 17067 | ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, |
| 17068 | DeclAccessPair Found, |
| 17069 | FunctionDecl *Fn) { |
| 17070 | return FixOverloadedFunctionReference(E: E.get(), Found, Fn); |
| 17071 | } |
| 17072 | |
| 17073 | bool clang::shouldEnforceArgLimit(bool PartialOverloading, |
| 17074 | FunctionDecl *Function) { |
| 17075 | if (!PartialOverloading || !Function) |
| 17076 | return true; |
| 17077 | if (Function->isVariadic()) |
| 17078 | return false; |
| 17079 | if (const auto *Proto = |
| 17080 | dyn_cast<FunctionProtoType>(Val: Function->getFunctionType())) |
| 17081 | if (Proto->isTemplateVariadic()) |
| 17082 | return false; |
| 17083 | if (auto *Pattern = Function->getTemplateInstantiationPattern()) |
| 17084 | if (const auto *Proto = |
| 17085 | dyn_cast<FunctionProtoType>(Val: Pattern->getFunctionType())) |
| 17086 | if (Proto->isTemplateVariadic()) |
| 17087 | return false; |
| 17088 | return true; |
| 17089 | } |
| 17090 | |
| 17091 | void Sema::DiagnoseUseOfDeletedFunction(SourceLocation Loc, SourceRange Range, |
| 17092 | DeclarationName Name, |
| 17093 | OverloadCandidateSet &CandidateSet, |
| 17094 | FunctionDecl *Fn, MultiExprArg Args, |
| 17095 | bool IsMember) { |
| 17096 | StringLiteral *Msg = Fn->getDeletedMessage(); |
| 17097 | CandidateSet.NoteCandidates( |
| 17098 | PD: PartialDiagnosticAt(Loc, PDiag(DiagID: diag::err_ovl_deleted_call) |
| 17099 | << IsMember << Name << (Msg != nullptr) |
| 17100 | << (Msg ? Msg->getString() : StringRef()) |
| 17101 | << Range), |
| 17102 | S&: *this, OCD: OCD_AllCandidates, Args); |
| 17103 | } |
| 17104 | |