| 1 | //===----- SemaTypeTraits.cpp - Semantic Analysis for C++ Type Traits -----===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements semantic analysis for C++ type traits. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/AST/DeclCXX.h" |
| 14 | #include "clang/AST/Type.h" |
| 15 | #include "clang/Basic/DiagnosticParse.h" |
| 16 | #include "clang/Basic/DiagnosticSema.h" |
| 17 | #include "clang/Basic/TypeTraits.h" |
| 18 | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
| 19 | #include "clang/Sema/Initialization.h" |
| 20 | #include "clang/Sema/Lookup.h" |
| 21 | #include "clang/Sema/Overload.h" |
| 22 | #include "clang/Sema/Sema.h" |
| 23 | #include "clang/Sema/SemaHLSL.h" |
| 24 | |
| 25 | using namespace clang; |
| 26 | |
| 27 | static CXXMethodDecl *LookupSpecialMemberFromXValue(Sema &SemaRef, |
| 28 | const CXXRecordDecl *RD, |
| 29 | bool Assign) { |
| 30 | RD = RD->getDefinition(); |
| 31 | SourceLocation LookupLoc = RD->getLocation(); |
| 32 | |
| 33 | CanQualType CanTy = SemaRef.getASTContext().getCanonicalType( |
| 34 | T: SemaRef.getASTContext().getTagDeclType(Decl: RD)); |
| 35 | DeclarationName Name; |
| 36 | Expr *Arg = nullptr; |
| 37 | unsigned NumArgs; |
| 38 | |
| 39 | QualType ArgType = CanTy; |
| 40 | ExprValueKind VK = clang::VK_XValue; |
| 41 | |
| 42 | if (Assign) |
| 43 | Name = |
| 44 | SemaRef.getASTContext().DeclarationNames.getCXXOperatorName(Op: OO_Equal); |
| 45 | else |
| 46 | Name = |
| 47 | SemaRef.getASTContext().DeclarationNames.getCXXConstructorName(Ty: CanTy); |
| 48 | |
| 49 | OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK); |
| 50 | NumArgs = 1; |
| 51 | Arg = &FakeArg; |
| 52 | |
| 53 | // Create the object argument |
| 54 | QualType ThisTy = CanTy; |
| 55 | Expr::Classification Classification = |
| 56 | OpaqueValueExpr(LookupLoc, ThisTy, VK_LValue) |
| 57 | .Classify(Ctx&: SemaRef.getASTContext()); |
| 58 | |
| 59 | // Now we perform lookup on the name we computed earlier and do overload |
| 60 | // resolution. Lookup is only performed directly into the class since there |
| 61 | // will always be a (possibly implicit) declaration to shadow any others. |
| 62 | OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal); |
| 63 | DeclContext::lookup_result R = RD->lookup(Name); |
| 64 | |
| 65 | if (R.empty()) |
| 66 | return nullptr; |
| 67 | |
| 68 | // Copy the candidates as our processing of them may load new declarations |
| 69 | // from an external source and invalidate lookup_result. |
| 70 | SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end()); |
| 71 | |
| 72 | for (NamedDecl *CandDecl : Candidates) { |
| 73 | if (CandDecl->isInvalidDecl()) |
| 74 | continue; |
| 75 | |
| 76 | DeclAccessPair Cand = DeclAccessPair::make(D: CandDecl, AS: clang::AS_none); |
| 77 | auto CtorInfo = getConstructorInfo(ND: Cand); |
| 78 | if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Val: Cand->getUnderlyingDecl())) { |
| 79 | if (Assign) |
| 80 | SemaRef.AddMethodCandidate(Method: M, FoundDecl: Cand, ActingContext: const_cast<CXXRecordDecl *>(RD), |
| 81 | ObjectType: ThisTy, ObjectClassification: Classification, |
| 82 | Args: llvm::ArrayRef(&Arg, NumArgs), CandidateSet&: OCS, SuppressUserConversions: true); |
| 83 | else { |
| 84 | assert(CtorInfo); |
| 85 | SemaRef.AddOverloadCandidate(Function: CtorInfo.Constructor, FoundDecl: CtorInfo.FoundDecl, |
| 86 | Args: llvm::ArrayRef(&Arg, NumArgs), CandidateSet&: OCS, |
| 87 | /*SuppressUserConversions*/ true); |
| 88 | } |
| 89 | } else if (FunctionTemplateDecl *Tmpl = |
| 90 | dyn_cast<FunctionTemplateDecl>(Val: Cand->getUnderlyingDecl())) { |
| 91 | if (Assign) |
| 92 | SemaRef.AddMethodTemplateCandidate( |
| 93 | MethodTmpl: Tmpl, FoundDecl: Cand, ActingContext: const_cast<CXXRecordDecl *>(RD), ExplicitTemplateArgs: nullptr, ObjectType: ThisTy, |
| 94 | ObjectClassification: Classification, Args: llvm::ArrayRef(&Arg, NumArgs), CandidateSet&: OCS, SuppressUserConversions: true); |
| 95 | else { |
| 96 | assert(CtorInfo); |
| 97 | SemaRef.AddTemplateOverloadCandidate( |
| 98 | FunctionTemplate: CtorInfo.ConstructorTmpl, FoundDecl: CtorInfo.FoundDecl, ExplicitTemplateArgs: nullptr, |
| 99 | Args: llvm::ArrayRef(&Arg, NumArgs), CandidateSet&: OCS, SuppressUserConversions: true); |
| 100 | } |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | OverloadCandidateSet::iterator Best; |
| 105 | switch (OCS.BestViableFunction(S&: SemaRef, Loc: LookupLoc, Best)) { |
| 106 | case OR_Success: |
| 107 | case OR_Deleted: |
| 108 | return cast<CXXMethodDecl>(Val: Best->Function)->getCanonicalDecl(); |
| 109 | default: |
| 110 | return nullptr; |
| 111 | } |
| 112 | } |
| 113 | |
| 114 | static bool hasSuitableConstructorForRelocation(Sema &SemaRef, |
| 115 | const CXXRecordDecl *D, |
| 116 | bool AllowUserDefined) { |
| 117 | assert(D->hasDefinition() && !D->isInvalidDecl()); |
| 118 | |
| 119 | if (D->hasSimpleMoveConstructor() || D->hasSimpleCopyConstructor()) |
| 120 | return true; |
| 121 | |
| 122 | CXXMethodDecl *Decl = |
| 123 | LookupSpecialMemberFromXValue(SemaRef, RD: D, /*Assign=*/false); |
| 124 | return Decl && (AllowUserDefined || !Decl->isUserProvided()) && |
| 125 | !Decl->isDeleted(); |
| 126 | } |
| 127 | |
| 128 | static bool hasSuitableMoveAssignmentOperatorForRelocation( |
| 129 | Sema &SemaRef, const CXXRecordDecl *D, bool AllowUserDefined) { |
| 130 | assert(D->hasDefinition() && !D->isInvalidDecl()); |
| 131 | |
| 132 | if (D->hasSimpleMoveAssignment() || D->hasSimpleCopyAssignment()) |
| 133 | return true; |
| 134 | |
| 135 | CXXMethodDecl *Decl = |
| 136 | LookupSpecialMemberFromXValue(SemaRef, RD: D, /*Assign=*/true); |
| 137 | if (!Decl) |
| 138 | return false; |
| 139 | |
| 140 | return Decl && (AllowUserDefined || !Decl->isUserProvided()) && |
| 141 | !Decl->isDeleted(); |
| 142 | } |
| 143 | |
| 144 | // [C++26][class.prop] |
| 145 | // A class C is default-movable if |
| 146 | // - overload resolution for direct-initializing an object of type C |
| 147 | // from an xvalue of type C selects a constructor that is a direct member of C |
| 148 | // and is neither user-provided nor deleted, |
| 149 | // - overload resolution for assigning to an lvalue of type C from an xvalue of |
| 150 | // type C selects an assignment operator function that is a direct member of C |
| 151 | // and is neither user-provided nor deleted, and C has a destructor that is |
| 152 | // neither user-provided nor deleted. |
| 153 | static bool IsDefaultMovable(Sema &SemaRef, const CXXRecordDecl *D) { |
| 154 | if (!hasSuitableConstructorForRelocation(SemaRef, D, |
| 155 | /*AllowUserDefined=*/false)) |
| 156 | return false; |
| 157 | |
| 158 | if (!hasSuitableMoveAssignmentOperatorForRelocation( |
| 159 | SemaRef, D, /*AllowUserDefined=*/false)) |
| 160 | return false; |
| 161 | |
| 162 | CXXDestructorDecl *Dtr = D->getDestructor(); |
| 163 | |
| 164 | if (!Dtr) |
| 165 | return true; |
| 166 | |
| 167 | Dtr = Dtr->getCanonicalDecl(); |
| 168 | |
| 169 | if (Dtr->isUserProvided() && (!Dtr->isDefaulted() || Dtr->isDeleted())) |
| 170 | return false; |
| 171 | |
| 172 | return !Dtr->isDeleted(); |
| 173 | } |
| 174 | |
| 175 | // [C++26][class.prop] |
| 176 | // A class is eligible for trivial relocation unless it... |
| 177 | static bool IsEligibleForTrivialRelocation(Sema &SemaRef, |
| 178 | const CXXRecordDecl *D) { |
| 179 | |
| 180 | for (const CXXBaseSpecifier &B : D->bases()) { |
| 181 | const auto *BaseDecl = B.getType()->getAsCXXRecordDecl(); |
| 182 | if (!BaseDecl) |
| 183 | continue; |
| 184 | // ... has any virtual base classes |
| 185 | // ... has a base class that is not a trivially relocatable class |
| 186 | if (B.isVirtual() || (!BaseDecl->isDependentType() && |
| 187 | !SemaRef.IsCXXTriviallyRelocatableType(T: B.getType()))) |
| 188 | return false; |
| 189 | } |
| 190 | |
| 191 | bool IsUnion = D->isUnion(); |
| 192 | for (const FieldDecl *Field : D->fields()) { |
| 193 | if (Field->getType()->isDependentType()) |
| 194 | continue; |
| 195 | if (Field->getType()->isReferenceType()) |
| 196 | continue; |
| 197 | // ... has a non-static data member of an object type that is not |
| 198 | // of a trivially relocatable type |
| 199 | if (!SemaRef.IsCXXTriviallyRelocatableType(T: Field->getType())) |
| 200 | return false; |
| 201 | |
| 202 | // A union contains values with address discriminated pointer auth |
| 203 | // cannot be relocated. |
| 204 | if (IsUnion && SemaRef.Context.containsAddressDiscriminatedPointerAuth( |
| 205 | T: Field->getType())) |
| 206 | return false; |
| 207 | } |
| 208 | return !D->hasDeletedDestructor(); |
| 209 | } |
| 210 | |
| 211 | // [C++26][class.prop] |
| 212 | // A class C is eligible for replacement unless |
| 213 | static bool IsEligibleForReplacement(Sema &SemaRef, const CXXRecordDecl *D) { |
| 214 | |
| 215 | for (const CXXBaseSpecifier &B : D->bases()) { |
| 216 | const auto *BaseDecl = B.getType()->getAsCXXRecordDecl(); |
| 217 | if (!BaseDecl) |
| 218 | continue; |
| 219 | // it has a base class that is not a replaceable class |
| 220 | if (!BaseDecl->isDependentType() && |
| 221 | !SemaRef.IsCXXReplaceableType(T: B.getType())) |
| 222 | return false; |
| 223 | } |
| 224 | |
| 225 | for (const FieldDecl *Field : D->fields()) { |
| 226 | if (Field->getType()->isDependentType()) |
| 227 | continue; |
| 228 | |
| 229 | // it has a non-static data member that is not of a replaceable type, |
| 230 | if (!SemaRef.IsCXXReplaceableType(T: Field->getType())) |
| 231 | return false; |
| 232 | } |
| 233 | return !D->hasDeletedDestructor(); |
| 234 | } |
| 235 | |
| 236 | ASTContext::CXXRecordDeclRelocationInfo |
| 237 | Sema::CheckCXX2CRelocatableAndReplaceable(const CXXRecordDecl *D) { |
| 238 | ASTContext::CXXRecordDeclRelocationInfo Info{.IsRelocatable: false, .IsReplaceable: false}; |
| 239 | |
| 240 | if (!getLangOpts().CPlusPlus || D->isInvalidDecl()) |
| 241 | return Info; |
| 242 | |
| 243 | assert(D->hasDefinition()); |
| 244 | |
| 245 | // This is part of "eligible for replacement", however we defer it |
| 246 | // to avoid extraneous computations. |
| 247 | auto HasSuitableSMP = [&] { |
| 248 | return hasSuitableConstructorForRelocation(SemaRef&: *this, D, |
| 249 | /*AllowUserDefined=*/true) && |
| 250 | hasSuitableMoveAssignmentOperatorForRelocation( |
| 251 | SemaRef&: *this, D, /*AllowUserDefined=*/true); |
| 252 | }; |
| 253 | |
| 254 | auto IsUnion = [&, Is = std::optional<bool>{}]() mutable { |
| 255 | if (!Is.has_value()) |
| 256 | Is = D->isUnion() && !D->hasUserDeclaredCopyConstructor() && |
| 257 | !D->hasUserDeclaredCopyAssignment() && |
| 258 | !D->hasUserDeclaredMoveOperation() && |
| 259 | !D->hasUserDeclaredDestructor(); |
| 260 | return *Is; |
| 261 | }; |
| 262 | |
| 263 | auto IsDefaultMovable = [&, Is = std::optional<bool>{}]() mutable { |
| 264 | if (!Is.has_value()) |
| 265 | Is = ::IsDefaultMovable(SemaRef&: *this, D); |
| 266 | return *Is; |
| 267 | }; |
| 268 | |
| 269 | Info.IsRelocatable = [&] { |
| 270 | if (D->isDependentType()) |
| 271 | return false; |
| 272 | |
| 273 | // if it is eligible for trivial relocation |
| 274 | if (!IsEligibleForTrivialRelocation(SemaRef&: *this, D)) |
| 275 | return false; |
| 276 | |
| 277 | // has the trivially_relocatable_if_eligible class-property-specifier, |
| 278 | if (D->hasAttr<TriviallyRelocatableAttr>()) |
| 279 | return true; |
| 280 | |
| 281 | // is a union with no user-declared special member functions, or |
| 282 | if (IsUnion()) |
| 283 | return true; |
| 284 | |
| 285 | // is default-movable. |
| 286 | return IsDefaultMovable(); |
| 287 | }(); |
| 288 | |
| 289 | Info.IsReplaceable = [&] { |
| 290 | if (D->isDependentType()) |
| 291 | return false; |
| 292 | |
| 293 | // A class C is a replaceable class if it is eligible for replacement |
| 294 | if (!IsEligibleForReplacement(SemaRef&: *this, D)) |
| 295 | return false; |
| 296 | |
| 297 | // has the replaceable_if_eligible class-property-specifier |
| 298 | if (D->hasAttr<ReplaceableAttr>()) |
| 299 | return HasSuitableSMP(); |
| 300 | |
| 301 | // is a union with no user-declared special member functions, or |
| 302 | if (IsUnion()) |
| 303 | return HasSuitableSMP(); |
| 304 | |
| 305 | // is default-movable. |
| 306 | return IsDefaultMovable(); |
| 307 | }(); |
| 308 | |
| 309 | return Info; |
| 310 | } |
| 311 | |
| 312 | bool Sema::IsCXXTriviallyRelocatableType(const CXXRecordDecl &RD) { |
| 313 | if (std::optional<ASTContext::CXXRecordDeclRelocationInfo> Info = |
| 314 | getASTContext().getRelocationInfoForCXXRecord(&RD)) |
| 315 | return Info->IsRelocatable; |
| 316 | ASTContext::CXXRecordDeclRelocationInfo Info = |
| 317 | CheckCXX2CRelocatableAndReplaceable(D: &RD); |
| 318 | getASTContext().setRelocationInfoForCXXRecord(&RD, Info); |
| 319 | return Info.IsRelocatable; |
| 320 | } |
| 321 | |
| 322 | bool Sema::IsCXXTriviallyRelocatableType(QualType Type) { |
| 323 | QualType BaseElementType = getASTContext().getBaseElementType(QT: Type); |
| 324 | |
| 325 | if (Type->isVariableArrayType()) |
| 326 | return false; |
| 327 | |
| 328 | if (BaseElementType.hasNonTrivialObjCLifetime()) |
| 329 | return false; |
| 330 | |
| 331 | if (BaseElementType->isIncompleteType()) |
| 332 | return false; |
| 333 | |
| 334 | if (Context.containsNonRelocatablePointerAuth(T: Type)) |
| 335 | return false; |
| 336 | |
| 337 | if (BaseElementType->isScalarType() || BaseElementType->isVectorType()) |
| 338 | return true; |
| 339 | |
| 340 | if (const auto *RD = BaseElementType->getAsCXXRecordDecl()) |
| 341 | return IsCXXTriviallyRelocatableType(RD: *RD); |
| 342 | |
| 343 | return false; |
| 344 | } |
| 345 | |
| 346 | static bool IsCXXReplaceableType(Sema &S, const CXXRecordDecl *RD) { |
| 347 | if (std::optional<ASTContext::CXXRecordDeclRelocationInfo> Info = |
| 348 | S.getASTContext().getRelocationInfoForCXXRecord(RD)) |
| 349 | return Info->IsReplaceable; |
| 350 | ASTContext::CXXRecordDeclRelocationInfo Info = |
| 351 | S.CheckCXX2CRelocatableAndReplaceable(D: RD); |
| 352 | S.getASTContext().setRelocationInfoForCXXRecord(RD, Info); |
| 353 | return Info.IsReplaceable; |
| 354 | } |
| 355 | |
| 356 | bool Sema::IsCXXReplaceableType(QualType Type) { |
| 357 | if (Type.isConstQualified() || Type.isVolatileQualified()) |
| 358 | return false; |
| 359 | |
| 360 | if (Type->isVariableArrayType()) |
| 361 | return false; |
| 362 | |
| 363 | QualType BaseElementType = |
| 364 | getASTContext().getBaseElementType(QT: Type.getUnqualifiedType()); |
| 365 | if (BaseElementType->isIncompleteType()) |
| 366 | return false; |
| 367 | if (BaseElementType->isScalarType()) |
| 368 | return true; |
| 369 | if (const auto *RD = BaseElementType->getAsCXXRecordDecl()) |
| 370 | return ::IsCXXReplaceableType(S&: *this, RD); |
| 371 | return false; |
| 372 | } |
| 373 | |
| 374 | /// Checks that type T is not a VLA. |
| 375 | /// |
| 376 | /// @returns @c true if @p T is VLA and a diagnostic was emitted, |
| 377 | /// @c false otherwise. |
| 378 | static bool DiagnoseVLAInCXXTypeTrait(Sema &S, const TypeSourceInfo *T, |
| 379 | clang::tok::TokenKind TypeTraitID) { |
| 380 | if (!T->getType()->isVariableArrayType()) |
| 381 | return false; |
| 382 | |
| 383 | S.Diag(Loc: T->getTypeLoc().getBeginLoc(), DiagID: diag::err_vla_unsupported) |
| 384 | << 1 << TypeTraitID; |
| 385 | return true; |
| 386 | } |
| 387 | |
| 388 | /// Checks that type T is not an atomic type (_Atomic). |
| 389 | /// |
| 390 | /// @returns @c true if @p T is VLA and a diagnostic was emitted, |
| 391 | /// @c false otherwise. |
| 392 | static bool DiagnoseAtomicInCXXTypeTrait(Sema &S, const TypeSourceInfo *T, |
| 393 | clang::tok::TokenKind TypeTraitID) { |
| 394 | if (!T->getType()->isAtomicType()) |
| 395 | return false; |
| 396 | |
| 397 | S.Diag(Loc: T->getTypeLoc().getBeginLoc(), DiagID: diag::err_atomic_unsupported) |
| 398 | << TypeTraitID; |
| 399 | return true; |
| 400 | } |
| 401 | |
| 402 | /// Check the completeness of a type in a unary type trait. |
| 403 | /// |
| 404 | /// If the particular type trait requires a complete type, tries to complete |
| 405 | /// it. If completing the type fails, a diagnostic is emitted and false |
| 406 | /// returned. If completing the type succeeds or no completion was required, |
| 407 | /// returns true. |
| 408 | static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, |
| 409 | SourceLocation Loc, |
| 410 | QualType ArgTy) { |
| 411 | // C++0x [meta.unary.prop]p3: |
| 412 | // For all of the class templates X declared in this Clause, instantiating |
| 413 | // that template with a template argument that is a class template |
| 414 | // specialization may result in the implicit instantiation of the template |
| 415 | // argument if and only if the semantics of X require that the argument |
| 416 | // must be a complete type. |
| 417 | // We apply this rule to all the type trait expressions used to implement |
| 418 | // these class templates. We also try to follow any GCC documented behavior |
| 419 | // in these expressions to ensure portability of standard libraries. |
| 420 | switch (UTT) { |
| 421 | default: |
| 422 | llvm_unreachable("not a UTT" ); |
| 423 | // is_complete_type somewhat obviously cannot require a complete type. |
| 424 | case UTT_IsCompleteType: |
| 425 | // Fall-through |
| 426 | |
| 427 | // These traits are modeled on the type predicates in C++0x |
| 428 | // [meta.unary.cat] and [meta.unary.comp]. They are not specified as |
| 429 | // requiring a complete type, as whether or not they return true cannot be |
| 430 | // impacted by the completeness of the type. |
| 431 | case UTT_IsVoid: |
| 432 | case UTT_IsIntegral: |
| 433 | case UTT_IsFloatingPoint: |
| 434 | case UTT_IsArray: |
| 435 | case UTT_IsBoundedArray: |
| 436 | case UTT_IsPointer: |
| 437 | case UTT_IsLvalueReference: |
| 438 | case UTT_IsRvalueReference: |
| 439 | case UTT_IsMemberFunctionPointer: |
| 440 | case UTT_IsMemberObjectPointer: |
| 441 | case UTT_IsEnum: |
| 442 | case UTT_IsScopedEnum: |
| 443 | case UTT_IsUnion: |
| 444 | case UTT_IsClass: |
| 445 | case UTT_IsFunction: |
| 446 | case UTT_IsReference: |
| 447 | case UTT_IsArithmetic: |
| 448 | case UTT_IsFundamental: |
| 449 | case UTT_IsObject: |
| 450 | case UTT_IsScalar: |
| 451 | case UTT_IsCompound: |
| 452 | case UTT_IsMemberPointer: |
| 453 | case UTT_IsTypedResourceElementCompatible: |
| 454 | // Fall-through |
| 455 | |
| 456 | // These traits are modeled on type predicates in C++0x [meta.unary.prop] |
| 457 | // which requires some of its traits to have the complete type. However, |
| 458 | // the completeness of the type cannot impact these traits' semantics, and |
| 459 | // so they don't require it. This matches the comments on these traits in |
| 460 | // Table 49. |
| 461 | case UTT_IsConst: |
| 462 | case UTT_IsVolatile: |
| 463 | case UTT_IsSigned: |
| 464 | case UTT_IsUnboundedArray: |
| 465 | case UTT_IsUnsigned: |
| 466 | |
| 467 | // This type trait always returns false, checking the type is moot. |
| 468 | case UTT_IsInterfaceClass: |
| 469 | return true; |
| 470 | |
| 471 | // We diagnose incomplete class types later. |
| 472 | case UTT_StructuredBindingSize: |
| 473 | return true; |
| 474 | |
| 475 | // C++14 [meta.unary.prop]: |
| 476 | // If T is a non-union class type, T shall be a complete type. |
| 477 | case UTT_IsEmpty: |
| 478 | case UTT_IsPolymorphic: |
| 479 | case UTT_IsAbstract: |
| 480 | if (const auto *RD = ArgTy->getAsCXXRecordDecl()) |
| 481 | if (!RD->isUnion()) |
| 482 | return !S.RequireCompleteType( |
| 483 | Loc, T: ArgTy, DiagID: diag::err_incomplete_type_used_in_type_trait_expr); |
| 484 | return true; |
| 485 | |
| 486 | // C++14 [meta.unary.prop]: |
| 487 | // If T is a class type, T shall be a complete type. |
| 488 | case UTT_IsFinal: |
| 489 | case UTT_IsSealed: |
| 490 | if (ArgTy->getAsCXXRecordDecl()) |
| 491 | return !S.RequireCompleteType( |
| 492 | Loc, T: ArgTy, DiagID: diag::err_incomplete_type_used_in_type_trait_expr); |
| 493 | return true; |
| 494 | |
| 495 | // LWG3823: T shall be an array type, a complete type, or cv void. |
| 496 | case UTT_IsAggregate: |
| 497 | case UTT_IsImplicitLifetime: |
| 498 | if (ArgTy->isArrayType() || ArgTy->isVoidType()) |
| 499 | return true; |
| 500 | |
| 501 | return !S.RequireCompleteType( |
| 502 | Loc, T: ArgTy, DiagID: diag::err_incomplete_type_used_in_type_trait_expr); |
| 503 | |
| 504 | // has_unique_object_representations<T> |
| 505 | // remove_all_extents_t<T> shall be a complete type or cv void (LWG4113). |
| 506 | case UTT_HasUniqueObjectRepresentations: |
| 507 | ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); |
| 508 | if (ArgTy->isVoidType()) |
| 509 | return true; |
| 510 | return !S.RequireCompleteType( |
| 511 | Loc, T: ArgTy, DiagID: diag::err_incomplete_type_used_in_type_trait_expr); |
| 512 | |
| 513 | // C++1z [meta.unary.prop]: |
| 514 | // remove_all_extents_t<T> shall be a complete type or cv void. |
| 515 | case UTT_IsTrivial: |
| 516 | case UTT_IsTriviallyCopyable: |
| 517 | case UTT_IsStandardLayout: |
| 518 | case UTT_IsPOD: |
| 519 | case UTT_IsLiteral: |
| 520 | case UTT_IsBitwiseCloneable: |
| 521 | // By analogy, is_trivially_relocatable and is_trivially_equality_comparable |
| 522 | // impose the same constraints. |
| 523 | case UTT_IsTriviallyRelocatable: |
| 524 | case UTT_IsTriviallyEqualityComparable: |
| 525 | case UTT_IsCppTriviallyRelocatable: |
| 526 | case UTT_IsReplaceable: |
| 527 | case UTT_CanPassInRegs: |
| 528 | // Per the GCC type traits documentation, T shall be a complete type, cv void, |
| 529 | // or an array of unknown bound. But GCC actually imposes the same constraints |
| 530 | // as above. |
| 531 | case UTT_HasNothrowAssign: |
| 532 | case UTT_HasNothrowMoveAssign: |
| 533 | case UTT_HasNothrowConstructor: |
| 534 | case UTT_HasNothrowCopy: |
| 535 | case UTT_HasTrivialAssign: |
| 536 | case UTT_HasTrivialMoveAssign: |
| 537 | case UTT_HasTrivialDefaultConstructor: |
| 538 | case UTT_HasTrivialMoveConstructor: |
| 539 | case UTT_HasTrivialCopy: |
| 540 | case UTT_HasTrivialDestructor: |
| 541 | case UTT_HasVirtualDestructor: |
| 542 | ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); |
| 543 | [[fallthrough]]; |
| 544 | // C++1z [meta.unary.prop]: |
| 545 | // T shall be a complete type, cv void, or an array of unknown bound. |
| 546 | case UTT_IsDestructible: |
| 547 | case UTT_IsNothrowDestructible: |
| 548 | case UTT_IsTriviallyDestructible: |
| 549 | case UTT_IsIntangibleType: |
| 550 | if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) |
| 551 | return true; |
| 552 | |
| 553 | return !S.RequireCompleteType( |
| 554 | Loc, T: ArgTy, DiagID: diag::err_incomplete_type_used_in_type_trait_expr); |
| 555 | } |
| 556 | } |
| 557 | |
| 558 | static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, |
| 559 | Sema &Self, SourceLocation KeyLoc, ASTContext &C, |
| 560 | bool (CXXRecordDecl::*HasTrivial)() const, |
| 561 | bool (CXXRecordDecl::*HasNonTrivial)() const, |
| 562 | bool (CXXMethodDecl::*IsDesiredOp)() const) { |
| 563 | CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 564 | if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) |
| 565 | return true; |
| 566 | |
| 567 | DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); |
| 568 | DeclarationNameInfo NameInfo(Name, KeyLoc); |
| 569 | LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); |
| 570 | if (Self.LookupQualifiedName(R&: Res, LookupCtx: RD)) { |
| 571 | bool FoundOperator = false; |
| 572 | Res.suppressDiagnostics(); |
| 573 | for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); |
| 574 | Op != OpEnd; ++Op) { |
| 575 | if (isa<FunctionTemplateDecl>(Val: *Op)) |
| 576 | continue; |
| 577 | |
| 578 | CXXMethodDecl *Operator = cast<CXXMethodDecl>(Val: *Op); |
| 579 | if ((Operator->*IsDesiredOp)()) { |
| 580 | FoundOperator = true; |
| 581 | auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); |
| 582 | CPT = Self.ResolveExceptionSpec(Loc: KeyLoc, FPT: CPT); |
| 583 | if (!CPT || !CPT->isNothrow()) |
| 584 | return false; |
| 585 | } |
| 586 | } |
| 587 | return FoundOperator; |
| 588 | } |
| 589 | return false; |
| 590 | } |
| 591 | |
| 592 | static bool HasNonDeletedDefaultedEqualityComparison(Sema &S, |
| 593 | const CXXRecordDecl *Decl, |
| 594 | SourceLocation KeyLoc) { |
| 595 | if (Decl->isUnion()) |
| 596 | return false; |
| 597 | if (Decl->isLambda()) |
| 598 | return Decl->isCapturelessLambda(); |
| 599 | |
| 600 | { |
| 601 | EnterExpressionEvaluationContext UnevaluatedContext( |
| 602 | S, Sema::ExpressionEvaluationContext::Unevaluated); |
| 603 | Sema::SFINAETrap SFINAE(S, /*ForValidityCheck=*/true); |
| 604 | Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); |
| 605 | |
| 606 | // const ClassT& obj; |
| 607 | OpaqueValueExpr Operand( |
| 608 | KeyLoc, |
| 609 | Decl->getTypeForDecl()->getCanonicalTypeUnqualified().withConst(), |
| 610 | ExprValueKind::VK_LValue); |
| 611 | UnresolvedSet<16> Functions; |
| 612 | // obj == obj; |
| 613 | S.LookupBinOp(S: S.TUScope, OpLoc: {}, Opc: BinaryOperatorKind::BO_EQ, Functions); |
| 614 | |
| 615 | auto Result = S.CreateOverloadedBinOp(OpLoc: KeyLoc, Opc: BinaryOperatorKind::BO_EQ, |
| 616 | Fns: Functions, LHS: &Operand, RHS: &Operand); |
| 617 | if (Result.isInvalid() || SFINAE.hasErrorOccurred()) |
| 618 | return false; |
| 619 | |
| 620 | const auto *CallExpr = dyn_cast<CXXOperatorCallExpr>(Val: Result.get()); |
| 621 | if (!CallExpr) |
| 622 | return false; |
| 623 | const auto *Callee = CallExpr->getDirectCallee(); |
| 624 | auto ParamT = Callee->getParamDecl(i: 0)->getType(); |
| 625 | if (!Callee->isDefaulted()) |
| 626 | return false; |
| 627 | if (!ParamT->isReferenceType() && !Decl->isTriviallyCopyable()) |
| 628 | return false; |
| 629 | if (ParamT.getNonReferenceType()->getUnqualifiedDesugaredType() != |
| 630 | Decl->getTypeForDecl()) |
| 631 | return false; |
| 632 | } |
| 633 | |
| 634 | return llvm::all_of(Range: Decl->bases(), |
| 635 | P: [&](const CXXBaseSpecifier &BS) { |
| 636 | if (const auto *RD = BS.getType()->getAsCXXRecordDecl()) |
| 637 | return HasNonDeletedDefaultedEqualityComparison( |
| 638 | S, Decl: RD, KeyLoc); |
| 639 | return true; |
| 640 | }) && |
| 641 | llvm::all_of(Range: Decl->fields(), P: [&](const FieldDecl *FD) { |
| 642 | auto Type = FD->getType(); |
| 643 | if (Type->isArrayType()) |
| 644 | Type = Type->getBaseElementTypeUnsafe() |
| 645 | ->getCanonicalTypeUnqualified(); |
| 646 | |
| 647 | if (Type->isReferenceType() || Type->isEnumeralType()) |
| 648 | return false; |
| 649 | if (const auto *RD = Type->getAsCXXRecordDecl()) |
| 650 | return HasNonDeletedDefaultedEqualityComparison(S, Decl: RD, KeyLoc); |
| 651 | return true; |
| 652 | }); |
| 653 | } |
| 654 | |
| 655 | static bool isTriviallyEqualityComparableType(Sema &S, QualType Type, |
| 656 | SourceLocation KeyLoc) { |
| 657 | QualType CanonicalType = Type.getCanonicalType(); |
| 658 | if (CanonicalType->isIncompleteType() || CanonicalType->isDependentType() || |
| 659 | CanonicalType->isEnumeralType() || CanonicalType->isArrayType()) |
| 660 | return false; |
| 661 | |
| 662 | if (const auto *RD = CanonicalType->getAsCXXRecordDecl()) { |
| 663 | if (!HasNonDeletedDefaultedEqualityComparison(S, Decl: RD, KeyLoc)) |
| 664 | return false; |
| 665 | } |
| 666 | |
| 667 | return S.getASTContext().hasUniqueObjectRepresentations( |
| 668 | Ty: CanonicalType, /*CheckIfTriviallyCopyable=*/false); |
| 669 | } |
| 670 | |
| 671 | static bool IsTriviallyRelocatableType(Sema &SemaRef, QualType T) { |
| 672 | QualType BaseElementType = SemaRef.getASTContext().getBaseElementType(QT: T); |
| 673 | |
| 674 | if (BaseElementType->isIncompleteType()) |
| 675 | return false; |
| 676 | if (!BaseElementType->isObjectType()) |
| 677 | return false; |
| 678 | |
| 679 | // The deprecated __builtin_is_trivially_relocatable does not have |
| 680 | // an equivalent to __builtin_trivially_relocate, so there is no |
| 681 | // safe way to use it if there are any address discriminated values. |
| 682 | if (SemaRef.getASTContext().containsAddressDiscriminatedPointerAuth(T)) |
| 683 | return false; |
| 684 | |
| 685 | if (const auto *RD = BaseElementType->getAsCXXRecordDecl(); |
| 686 | RD && !RD->isPolymorphic() && SemaRef.IsCXXTriviallyRelocatableType(RD: *RD)) |
| 687 | return true; |
| 688 | |
| 689 | if (const auto *RD = BaseElementType->getAsRecordDecl()) |
| 690 | return RD->canPassInRegisters(); |
| 691 | |
| 692 | if (BaseElementType.isTriviallyCopyableType(Context: SemaRef.getASTContext())) |
| 693 | return true; |
| 694 | |
| 695 | switch (T.isNonTrivialToPrimitiveDestructiveMove()) { |
| 696 | case QualType::PCK_Trivial: |
| 697 | return !T.isDestructedType(); |
| 698 | case QualType::PCK_ARCStrong: |
| 699 | return true; |
| 700 | default: |
| 701 | return false; |
| 702 | } |
| 703 | } |
| 704 | |
| 705 | static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, |
| 706 | SourceLocation KeyLoc, |
| 707 | TypeSourceInfo *TInfo) { |
| 708 | QualType T = TInfo->getType(); |
| 709 | assert(!T->isDependentType() && "Cannot evaluate traits of dependent type" ); |
| 710 | |
| 711 | ASTContext &C = Self.Context; |
| 712 | switch (UTT) { |
| 713 | default: |
| 714 | llvm_unreachable("not a UTT" ); |
| 715 | // Type trait expressions corresponding to the primary type category |
| 716 | // predicates in C++0x [meta.unary.cat]. |
| 717 | case UTT_IsVoid: |
| 718 | return T->isVoidType(); |
| 719 | case UTT_IsIntegral: |
| 720 | return T->isIntegralType(Ctx: C); |
| 721 | case UTT_IsFloatingPoint: |
| 722 | return T->isFloatingType(); |
| 723 | case UTT_IsArray: |
| 724 | // Zero-sized arrays aren't considered arrays in partial specializations, |
| 725 | // so __is_array shouldn't consider them arrays either. |
| 726 | if (const auto *CAT = C.getAsConstantArrayType(T)) |
| 727 | return CAT->getSize() != 0; |
| 728 | return T->isArrayType(); |
| 729 | case UTT_IsBoundedArray: |
| 730 | if (DiagnoseVLAInCXXTypeTrait(S&: Self, T: TInfo, TypeTraitID: tok::kw___is_bounded_array)) |
| 731 | return false; |
| 732 | // Zero-sized arrays aren't considered arrays in partial specializations, |
| 733 | // so __is_bounded_array shouldn't consider them arrays either. |
| 734 | if (const auto *CAT = C.getAsConstantArrayType(T)) |
| 735 | return CAT->getSize() != 0; |
| 736 | return T->isArrayType() && !T->isIncompleteArrayType(); |
| 737 | case UTT_IsUnboundedArray: |
| 738 | if (DiagnoseVLAInCXXTypeTrait(S&: Self, T: TInfo, TypeTraitID: tok::kw___is_unbounded_array)) |
| 739 | return false; |
| 740 | return T->isIncompleteArrayType(); |
| 741 | case UTT_IsPointer: |
| 742 | return T->isAnyPointerType(); |
| 743 | case UTT_IsLvalueReference: |
| 744 | return T->isLValueReferenceType(); |
| 745 | case UTT_IsRvalueReference: |
| 746 | return T->isRValueReferenceType(); |
| 747 | case UTT_IsMemberFunctionPointer: |
| 748 | return T->isMemberFunctionPointerType(); |
| 749 | case UTT_IsMemberObjectPointer: |
| 750 | return T->isMemberDataPointerType(); |
| 751 | case UTT_IsEnum: |
| 752 | return T->isEnumeralType(); |
| 753 | case UTT_IsScopedEnum: |
| 754 | return T->isScopedEnumeralType(); |
| 755 | case UTT_IsUnion: |
| 756 | return T->isUnionType(); |
| 757 | case UTT_IsClass: |
| 758 | return T->isClassType() || T->isStructureType() || T->isInterfaceType(); |
| 759 | case UTT_IsFunction: |
| 760 | return T->isFunctionType(); |
| 761 | |
| 762 | // Type trait expressions which correspond to the convenient composition |
| 763 | // predicates in C++0x [meta.unary.comp]. |
| 764 | case UTT_IsReference: |
| 765 | return T->isReferenceType(); |
| 766 | case UTT_IsArithmetic: |
| 767 | return T->isArithmeticType() && !T->isEnumeralType(); |
| 768 | case UTT_IsFundamental: |
| 769 | return T->isFundamentalType(); |
| 770 | case UTT_IsObject: |
| 771 | return T->isObjectType(); |
| 772 | case UTT_IsScalar: |
| 773 | // Note: semantic analysis depends on Objective-C lifetime types to be |
| 774 | // considered scalar types. However, such types do not actually behave |
| 775 | // like scalar types at run time (since they may require retain/release |
| 776 | // operations), so we report them as non-scalar. |
| 777 | if (T->isObjCLifetimeType()) { |
| 778 | switch (T.getObjCLifetime()) { |
| 779 | case Qualifiers::OCL_None: |
| 780 | case Qualifiers::OCL_ExplicitNone: |
| 781 | return true; |
| 782 | |
| 783 | case Qualifiers::OCL_Strong: |
| 784 | case Qualifiers::OCL_Weak: |
| 785 | case Qualifiers::OCL_Autoreleasing: |
| 786 | return false; |
| 787 | } |
| 788 | } |
| 789 | |
| 790 | return T->isScalarType(); |
| 791 | case UTT_IsCompound: |
| 792 | return T->isCompoundType(); |
| 793 | case UTT_IsMemberPointer: |
| 794 | return T->isMemberPointerType(); |
| 795 | |
| 796 | // Type trait expressions which correspond to the type property predicates |
| 797 | // in C++0x [meta.unary.prop]. |
| 798 | case UTT_IsConst: |
| 799 | return T.isConstQualified(); |
| 800 | case UTT_IsVolatile: |
| 801 | return T.isVolatileQualified(); |
| 802 | case UTT_IsTrivial: |
| 803 | return T.isTrivialType(Context: C); |
| 804 | case UTT_IsTriviallyCopyable: |
| 805 | return T.isTriviallyCopyableType(Context: C); |
| 806 | case UTT_IsStandardLayout: |
| 807 | return T->isStandardLayoutType(); |
| 808 | case UTT_IsPOD: |
| 809 | return T.isPODType(Context: C); |
| 810 | case UTT_IsLiteral: |
| 811 | return T->isLiteralType(Ctx: C); |
| 812 | case UTT_IsEmpty: |
| 813 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| 814 | return !RD->isUnion() && RD->isEmpty(); |
| 815 | return false; |
| 816 | case UTT_IsPolymorphic: |
| 817 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| 818 | return !RD->isUnion() && RD->isPolymorphic(); |
| 819 | return false; |
| 820 | case UTT_IsAbstract: |
| 821 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| 822 | return !RD->isUnion() && RD->isAbstract(); |
| 823 | return false; |
| 824 | case UTT_IsAggregate: |
| 825 | // Report vector extensions and complex types as aggregates because they |
| 826 | // support aggregate initialization. GCC mirrors this behavior for vectors |
| 827 | // but not _Complex. |
| 828 | return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || |
| 829 | T->isAnyComplexType(); |
| 830 | // __is_interface_class only returns true when CL is invoked in /CLR mode and |
| 831 | // even then only when it is used with the 'interface struct ...' syntax |
| 832 | // Clang doesn't support /CLR which makes this type trait moot. |
| 833 | case UTT_IsInterfaceClass: |
| 834 | return false; |
| 835 | case UTT_IsFinal: |
| 836 | case UTT_IsSealed: |
| 837 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| 838 | return RD->hasAttr<FinalAttr>(); |
| 839 | return false; |
| 840 | case UTT_IsSigned: |
| 841 | // Enum types should always return false. |
| 842 | // Floating points should always return true. |
| 843 | return T->isFloatingType() || |
| 844 | (T->isSignedIntegerType() && !T->isEnumeralType()); |
| 845 | case UTT_IsUnsigned: |
| 846 | // Enum types should always return false. |
| 847 | return T->isUnsignedIntegerType() && !T->isEnumeralType(); |
| 848 | |
| 849 | // Type trait expressions which query classes regarding their construction, |
| 850 | // destruction, and copying. Rather than being based directly on the |
| 851 | // related type predicates in the standard, they are specified by both |
| 852 | // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those |
| 853 | // specifications. |
| 854 | // |
| 855 | // 1: http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html |
| 856 | // 2: |
| 857 | // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index |
| 858 | // |
| 859 | // Note that these builtins do not behave as documented in g++: if a class |
| 860 | // has both a trivial and a non-trivial special member of a particular kind, |
| 861 | // they return false! For now, we emulate this behavior. |
| 862 | // FIXME: This appears to be a g++ bug: more complex cases reveal that it |
| 863 | // does not correctly compute triviality in the presence of multiple special |
| 864 | // members of the same kind. Revisit this once the g++ bug is fixed. |
| 865 | case UTT_HasTrivialDefaultConstructor: |
| 866 | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
| 867 | // If __is_pod (type) is true then the trait is true, else if type is |
| 868 | // a cv class or union type (or array thereof) with a trivial default |
| 869 | // constructor ([class.ctor]) then the trait is true, else it is false. |
| 870 | if (T.isPODType(Context: C)) |
| 871 | return true; |
| 872 | if (CXXRecordDecl *RD = C.getBaseElementType(QT: T)->getAsCXXRecordDecl()) |
| 873 | return RD->hasTrivialDefaultConstructor() && |
| 874 | !RD->hasNonTrivialDefaultConstructor(); |
| 875 | return false; |
| 876 | case UTT_HasTrivialMoveConstructor: |
| 877 | // This trait is implemented by MSVC 2012 and needed to parse the |
| 878 | // standard library headers. Specifically this is used as the logic |
| 879 | // behind std::is_trivially_move_constructible (20.9.4.3). |
| 880 | if (T.isPODType(Context: C)) |
| 881 | return true; |
| 882 | if (CXXRecordDecl *RD = C.getBaseElementType(QT: T)->getAsCXXRecordDecl()) |
| 883 | return RD->hasTrivialMoveConstructor() && |
| 884 | !RD->hasNonTrivialMoveConstructor(); |
| 885 | return false; |
| 886 | case UTT_HasTrivialCopy: |
| 887 | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
| 888 | // If __is_pod (type) is true or type is a reference type then |
| 889 | // the trait is true, else if type is a cv class or union type |
| 890 | // with a trivial copy constructor ([class.copy]) then the trait |
| 891 | // is true, else it is false. |
| 892 | if (T.isPODType(Context: C) || T->isReferenceType()) |
| 893 | return true; |
| 894 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| 895 | return RD->hasTrivialCopyConstructor() && |
| 896 | !RD->hasNonTrivialCopyConstructor(); |
| 897 | return false; |
| 898 | case UTT_HasTrivialMoveAssign: |
| 899 | // This trait is implemented by MSVC 2012 and needed to parse the |
| 900 | // standard library headers. Specifically it is used as the logic |
| 901 | // behind std::is_trivially_move_assignable (20.9.4.3) |
| 902 | if (T.isPODType(Context: C)) |
| 903 | return true; |
| 904 | if (CXXRecordDecl *RD = C.getBaseElementType(QT: T)->getAsCXXRecordDecl()) |
| 905 | return RD->hasTrivialMoveAssignment() && |
| 906 | !RD->hasNonTrivialMoveAssignment(); |
| 907 | return false; |
| 908 | case UTT_HasTrivialAssign: |
| 909 | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
| 910 | // If type is const qualified or is a reference type then the |
| 911 | // trait is false. Otherwise if __is_pod (type) is true then the |
| 912 | // trait is true, else if type is a cv class or union type with |
| 913 | // a trivial copy assignment ([class.copy]) then the trait is |
| 914 | // true, else it is false. |
| 915 | // Note: the const and reference restrictions are interesting, |
| 916 | // given that const and reference members don't prevent a class |
| 917 | // from having a trivial copy assignment operator (but do cause |
| 918 | // errors if the copy assignment operator is actually used, q.v. |
| 919 | // [class.copy]p12). |
| 920 | |
| 921 | if (T.isConstQualified()) |
| 922 | return false; |
| 923 | if (T.isPODType(Context: C)) |
| 924 | return true; |
| 925 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| 926 | return RD->hasTrivialCopyAssignment() && |
| 927 | !RD->hasNonTrivialCopyAssignment(); |
| 928 | return false; |
| 929 | case UTT_IsDestructible: |
| 930 | case UTT_IsTriviallyDestructible: |
| 931 | case UTT_IsNothrowDestructible: |
| 932 | // C++14 [meta.unary.prop]: |
| 933 | // For reference types, is_destructible<T>::value is true. |
| 934 | if (T->isReferenceType()) |
| 935 | return true; |
| 936 | |
| 937 | // Objective-C++ ARC: autorelease types don't require destruction. |
| 938 | if (T->isObjCLifetimeType() && |
| 939 | T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) |
| 940 | return true; |
| 941 | |
| 942 | // C++14 [meta.unary.prop]: |
| 943 | // For incomplete types and function types, is_destructible<T>::value is |
| 944 | // false. |
| 945 | if (T->isIncompleteType() || T->isFunctionType()) |
| 946 | return false; |
| 947 | |
| 948 | // A type that requires destruction (via a non-trivial destructor or ARC |
| 949 | // lifetime semantics) is not trivially-destructible. |
| 950 | if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) |
| 951 | return false; |
| 952 | |
| 953 | // C++14 [meta.unary.prop]: |
| 954 | // For object types and given U equal to remove_all_extents_t<T>, if the |
| 955 | // expression std::declval<U&>().~U() is well-formed when treated as an |
| 956 | // unevaluated operand (Clause 5), then is_destructible<T>::value is true |
| 957 | if (auto *RD = C.getBaseElementType(QT: T)->getAsCXXRecordDecl()) { |
| 958 | CXXDestructorDecl *Destructor = Self.LookupDestructor(Class: RD); |
| 959 | if (!Destructor) |
| 960 | return false; |
| 961 | // C++14 [dcl.fct.def.delete]p2: |
| 962 | // A program that refers to a deleted function implicitly or |
| 963 | // explicitly, other than to declare it, is ill-formed. |
| 964 | if (Destructor->isDeleted()) |
| 965 | return false; |
| 966 | if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) |
| 967 | return false; |
| 968 | if (UTT == UTT_IsNothrowDestructible) { |
| 969 | auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); |
| 970 | CPT = Self.ResolveExceptionSpec(Loc: KeyLoc, FPT: CPT); |
| 971 | if (!CPT || !CPT->isNothrow()) |
| 972 | return false; |
| 973 | } |
| 974 | } |
| 975 | return true; |
| 976 | |
| 977 | case UTT_HasTrivialDestructor: |
| 978 | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html |
| 979 | // If __is_pod (type) is true or type is a reference type |
| 980 | // then the trait is true, else if type is a cv class or union |
| 981 | // type (or array thereof) with a trivial destructor |
| 982 | // ([class.dtor]) then the trait is true, else it is |
| 983 | // false. |
| 984 | if (T.isPODType(Context: C) || T->isReferenceType()) |
| 985 | return true; |
| 986 | |
| 987 | // Objective-C++ ARC: autorelease types don't require destruction. |
| 988 | if (T->isObjCLifetimeType() && |
| 989 | T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) |
| 990 | return true; |
| 991 | |
| 992 | if (CXXRecordDecl *RD = C.getBaseElementType(QT: T)->getAsCXXRecordDecl()) |
| 993 | return RD->hasTrivialDestructor(); |
| 994 | return false; |
| 995 | // TODO: Propagate nothrowness for implicitly declared special members. |
| 996 | case UTT_HasNothrowAssign: |
| 997 | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
| 998 | // If type is const qualified or is a reference type then the |
| 999 | // trait is false. Otherwise if __has_trivial_assign (type) |
| 1000 | // is true then the trait is true, else if type is a cv class |
| 1001 | // or union type with copy assignment operators that are known |
| 1002 | // not to throw an exception then the trait is true, else it is |
| 1003 | // false. |
| 1004 | if (C.getBaseElementType(QT: T).isConstQualified()) |
| 1005 | return false; |
| 1006 | if (T->isReferenceType()) |
| 1007 | return false; |
| 1008 | if (T.isPODType(Context: C) || T->isObjCLifetimeType()) |
| 1009 | return true; |
| 1010 | |
| 1011 | if (const RecordType *RT = T->getAs<RecordType>()) |
| 1012 | return HasNoThrowOperator(RT, Op: OO_Equal, Self, KeyLoc, C, |
| 1013 | HasTrivial: &CXXRecordDecl::hasTrivialCopyAssignment, |
| 1014 | HasNonTrivial: &CXXRecordDecl::hasNonTrivialCopyAssignment, |
| 1015 | IsDesiredOp: &CXXMethodDecl::isCopyAssignmentOperator); |
| 1016 | return false; |
| 1017 | case UTT_HasNothrowMoveAssign: |
| 1018 | // This trait is implemented by MSVC 2012 and needed to parse the |
| 1019 | // standard library headers. Specifically this is used as the logic |
| 1020 | // behind std::is_nothrow_move_assignable (20.9.4.3). |
| 1021 | if (T.isPODType(Context: C)) |
| 1022 | return true; |
| 1023 | |
| 1024 | if (const RecordType *RT = C.getBaseElementType(QT: T)->getAs<RecordType>()) |
| 1025 | return HasNoThrowOperator(RT, Op: OO_Equal, Self, KeyLoc, C, |
| 1026 | HasTrivial: &CXXRecordDecl::hasTrivialMoveAssignment, |
| 1027 | HasNonTrivial: &CXXRecordDecl::hasNonTrivialMoveAssignment, |
| 1028 | IsDesiredOp: &CXXMethodDecl::isMoveAssignmentOperator); |
| 1029 | return false; |
| 1030 | case UTT_HasNothrowCopy: |
| 1031 | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
| 1032 | // If __has_trivial_copy (type) is true then the trait is true, else |
| 1033 | // if type is a cv class or union type with copy constructors that are |
| 1034 | // known not to throw an exception then the trait is true, else it is |
| 1035 | // false. |
| 1036 | if (T.isPODType(Context: C) || T->isReferenceType() || T->isObjCLifetimeType()) |
| 1037 | return true; |
| 1038 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { |
| 1039 | if (RD->hasTrivialCopyConstructor() && |
| 1040 | !RD->hasNonTrivialCopyConstructor()) |
| 1041 | return true; |
| 1042 | |
| 1043 | bool FoundConstructor = false; |
| 1044 | unsigned FoundTQs; |
| 1045 | for (const auto *ND : Self.LookupConstructors(Class: RD)) { |
| 1046 | // A template constructor is never a copy constructor. |
| 1047 | // FIXME: However, it may actually be selected at the actual overload |
| 1048 | // resolution point. |
| 1049 | if (isa<FunctionTemplateDecl>(Val: ND->getUnderlyingDecl())) |
| 1050 | continue; |
| 1051 | // UsingDecl itself is not a constructor |
| 1052 | if (isa<UsingDecl>(Val: ND)) |
| 1053 | continue; |
| 1054 | auto *Constructor = cast<CXXConstructorDecl>(Val: ND->getUnderlyingDecl()); |
| 1055 | if (Constructor->isCopyConstructor(TypeQuals&: FoundTQs)) { |
| 1056 | FoundConstructor = true; |
| 1057 | auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); |
| 1058 | CPT = Self.ResolveExceptionSpec(Loc: KeyLoc, FPT: CPT); |
| 1059 | if (!CPT) |
| 1060 | return false; |
| 1061 | // TODO: check whether evaluating default arguments can throw. |
| 1062 | // For now, we'll be conservative and assume that they can throw. |
| 1063 | if (!CPT->isNothrow() || CPT->getNumParams() > 1) |
| 1064 | return false; |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | return FoundConstructor; |
| 1069 | } |
| 1070 | return false; |
| 1071 | case UTT_HasNothrowConstructor: |
| 1072 | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html |
| 1073 | // If __has_trivial_constructor (type) is true then the trait is |
| 1074 | // true, else if type is a cv class or union type (or array |
| 1075 | // thereof) with a default constructor that is known not to |
| 1076 | // throw an exception then the trait is true, else it is false. |
| 1077 | if (T.isPODType(Context: C) || T->isObjCLifetimeType()) |
| 1078 | return true; |
| 1079 | if (CXXRecordDecl *RD = C.getBaseElementType(QT: T)->getAsCXXRecordDecl()) { |
| 1080 | if (RD->hasTrivialDefaultConstructor() && |
| 1081 | !RD->hasNonTrivialDefaultConstructor()) |
| 1082 | return true; |
| 1083 | |
| 1084 | bool FoundConstructor = false; |
| 1085 | for (const auto *ND : Self.LookupConstructors(Class: RD)) { |
| 1086 | // FIXME: In C++0x, a constructor template can be a default constructor. |
| 1087 | if (isa<FunctionTemplateDecl>(Val: ND->getUnderlyingDecl())) |
| 1088 | continue; |
| 1089 | // UsingDecl itself is not a constructor |
| 1090 | if (isa<UsingDecl>(Val: ND)) |
| 1091 | continue; |
| 1092 | auto *Constructor = cast<CXXConstructorDecl>(Val: ND->getUnderlyingDecl()); |
| 1093 | if (Constructor->isDefaultConstructor()) { |
| 1094 | FoundConstructor = true; |
| 1095 | auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); |
| 1096 | CPT = Self.ResolveExceptionSpec(Loc: KeyLoc, FPT: CPT); |
| 1097 | if (!CPT) |
| 1098 | return false; |
| 1099 | // FIXME: check whether evaluating default arguments can throw. |
| 1100 | // For now, we'll be conservative and assume that they can throw. |
| 1101 | if (!CPT->isNothrow() || CPT->getNumParams() > 0) |
| 1102 | return false; |
| 1103 | } |
| 1104 | } |
| 1105 | return FoundConstructor; |
| 1106 | } |
| 1107 | return false; |
| 1108 | case UTT_HasVirtualDestructor: |
| 1109 | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
| 1110 | // If type is a class type with a virtual destructor ([class.dtor]) |
| 1111 | // then the trait is true, else it is false. |
| 1112 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| 1113 | if (CXXDestructorDecl *Destructor = Self.LookupDestructor(Class: RD)) |
| 1114 | return Destructor->isVirtual(); |
| 1115 | return false; |
| 1116 | |
| 1117 | // These type trait expressions are modeled on the specifications for the |
| 1118 | // Embarcadero C++0x type trait functions: |
| 1119 | // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index |
| 1120 | case UTT_IsCompleteType: |
| 1121 | // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): |
| 1122 | // Returns True if and only if T is a complete type at the point of the |
| 1123 | // function call. |
| 1124 | return !T->isIncompleteType(); |
| 1125 | case UTT_HasUniqueObjectRepresentations: |
| 1126 | return C.hasUniqueObjectRepresentations(Ty: T); |
| 1127 | case UTT_IsTriviallyRelocatable: |
| 1128 | return IsTriviallyRelocatableType(SemaRef&: Self, T); |
| 1129 | case UTT_IsBitwiseCloneable: |
| 1130 | return T.isBitwiseCloneableType(Context: C); |
| 1131 | case UTT_IsCppTriviallyRelocatable: |
| 1132 | return Self.IsCXXTriviallyRelocatableType(Type: T); |
| 1133 | case UTT_IsReplaceable: |
| 1134 | return Self.IsCXXReplaceableType(Type: T); |
| 1135 | case UTT_CanPassInRegs: |
| 1136 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl(); RD && !T.hasQualifiers()) |
| 1137 | return RD->canPassInRegisters(); |
| 1138 | Self.Diag(Loc: KeyLoc, DiagID: diag::err_builtin_pass_in_regs_non_class) << T; |
| 1139 | return false; |
| 1140 | case UTT_IsTriviallyEqualityComparable: |
| 1141 | return isTriviallyEqualityComparableType(S&: Self, Type: T, KeyLoc); |
| 1142 | case UTT_IsImplicitLifetime: { |
| 1143 | DiagnoseVLAInCXXTypeTrait(S&: Self, T: TInfo, |
| 1144 | TypeTraitID: tok::kw___builtin_is_implicit_lifetime); |
| 1145 | DiagnoseAtomicInCXXTypeTrait(S&: Self, T: TInfo, |
| 1146 | TypeTraitID: tok::kw___builtin_is_implicit_lifetime); |
| 1147 | |
| 1148 | // [basic.types.general] p9 |
| 1149 | // Scalar types, implicit-lifetime class types ([class.prop]), |
| 1150 | // array types, and cv-qualified versions of these types |
| 1151 | // are collectively called implicit-lifetime types. |
| 1152 | QualType UnqualT = T->getCanonicalTypeUnqualified(); |
| 1153 | if (UnqualT->isScalarType()) |
| 1154 | return true; |
| 1155 | if (UnqualT->isArrayType() || UnqualT->isVectorType()) |
| 1156 | return true; |
| 1157 | const CXXRecordDecl *RD = UnqualT->getAsCXXRecordDecl(); |
| 1158 | if (!RD) |
| 1159 | return false; |
| 1160 | |
| 1161 | // [class.prop] p9 |
| 1162 | // A class S is an implicit-lifetime class if |
| 1163 | // - it is an aggregate whose destructor is not user-provided or |
| 1164 | // - it has at least one trivial eligible constructor and a trivial, |
| 1165 | // non-deleted destructor. |
| 1166 | const CXXDestructorDecl *Dtor = RD->getDestructor(); |
| 1167 | if (UnqualT->isAggregateType()) |
| 1168 | if (Dtor && !Dtor->isUserProvided()) |
| 1169 | return true; |
| 1170 | if (RD->hasTrivialDestructor() && (!Dtor || !Dtor->isDeleted())) |
| 1171 | if (RD->hasTrivialDefaultConstructor() || |
| 1172 | RD->hasTrivialCopyConstructor() || RD->hasTrivialMoveConstructor()) |
| 1173 | return true; |
| 1174 | return false; |
| 1175 | } |
| 1176 | case UTT_IsIntangibleType: |
| 1177 | assert(Self.getLangOpts().HLSL && "intangible types are HLSL-only feature" ); |
| 1178 | if (!T->isVoidType() && !T->isIncompleteArrayType()) |
| 1179 | if (Self.RequireCompleteType(Loc: TInfo->getTypeLoc().getBeginLoc(), T, |
| 1180 | DiagID: diag::err_incomplete_type)) |
| 1181 | return false; |
| 1182 | if (DiagnoseVLAInCXXTypeTrait(S&: Self, T: TInfo, |
| 1183 | TypeTraitID: tok::kw___builtin_hlsl_is_intangible)) |
| 1184 | return false; |
| 1185 | return T->isHLSLIntangibleType(); |
| 1186 | |
| 1187 | case UTT_IsTypedResourceElementCompatible: |
| 1188 | assert(Self.getLangOpts().HLSL && |
| 1189 | "typed resource element compatible types are an HLSL-only feature" ); |
| 1190 | if (T->isIncompleteType()) |
| 1191 | return false; |
| 1192 | |
| 1193 | return Self.HLSL().IsTypedResourceElementCompatible(T1: T); |
| 1194 | } |
| 1195 | } |
| 1196 | |
| 1197 | static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, |
| 1198 | const TypeSourceInfo *Lhs, |
| 1199 | const TypeSourceInfo *Rhs, |
| 1200 | SourceLocation KeyLoc); |
| 1201 | |
| 1202 | static ExprResult CheckConvertibilityForTypeTraits( |
| 1203 | Sema &Self, const TypeSourceInfo *Lhs, const TypeSourceInfo *Rhs, |
| 1204 | SourceLocation KeyLoc, llvm::BumpPtrAllocator &OpaqueExprAllocator) { |
| 1205 | |
| 1206 | QualType LhsT = Lhs->getType(); |
| 1207 | QualType RhsT = Rhs->getType(); |
| 1208 | |
| 1209 | // C++0x [meta.rel]p4: |
| 1210 | // Given the following function prototype: |
| 1211 | // |
| 1212 | // template <class T> |
| 1213 | // typename add_rvalue_reference<T>::type create(); |
| 1214 | // |
| 1215 | // the predicate condition for a template specialization |
| 1216 | // is_convertible<From, To> shall be satisfied if and only if |
| 1217 | // the return expression in the following code would be |
| 1218 | // well-formed, including any implicit conversions to the return |
| 1219 | // type of the function: |
| 1220 | // |
| 1221 | // To test() { |
| 1222 | // return create<From>(); |
| 1223 | // } |
| 1224 | // |
| 1225 | // Access checking is performed as if in a context unrelated to To and |
| 1226 | // From. Only the validity of the immediate context of the expression |
| 1227 | // of the return-statement (including conversions to the return type) |
| 1228 | // is considered. |
| 1229 | // |
| 1230 | // We model the initialization as a copy-initialization of a temporary |
| 1231 | // of the appropriate type, which for this expression is identical to the |
| 1232 | // return statement (since NRVO doesn't apply). |
| 1233 | |
| 1234 | // Functions aren't allowed to return function or array types. |
| 1235 | if (RhsT->isFunctionType() || RhsT->isArrayType()) |
| 1236 | return ExprError(); |
| 1237 | |
| 1238 | // A function definition requires a complete, non-abstract return type. |
| 1239 | if (!Self.isCompleteType(Loc: Rhs->getTypeLoc().getBeginLoc(), T: RhsT) || |
| 1240 | Self.isAbstractType(Loc: Rhs->getTypeLoc().getBeginLoc(), T: RhsT)) |
| 1241 | return ExprError(); |
| 1242 | |
| 1243 | // Compute the result of add_rvalue_reference. |
| 1244 | if (LhsT->isObjectType() || LhsT->isFunctionType()) |
| 1245 | LhsT = Self.Context.getRValueReferenceType(T: LhsT); |
| 1246 | |
| 1247 | // Build a fake source and destination for initialization. |
| 1248 | InitializedEntity To(InitializedEntity::InitializeTemporary(Type: RhsT)); |
| 1249 | Expr *From = new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) |
| 1250 | OpaqueValueExpr(KeyLoc, LhsT.getNonLValueExprType(Context: Self.Context), |
| 1251 | Expr::getValueKindForType(T: LhsT)); |
| 1252 | InitializationKind Kind = |
| 1253 | InitializationKind::CreateCopy(InitLoc: KeyLoc, EqualLoc: SourceLocation()); |
| 1254 | |
| 1255 | // Perform the initialization in an unevaluated context within a SFINAE |
| 1256 | // trap at translation unit scope. |
| 1257 | EnterExpressionEvaluationContext Unevaluated( |
| 1258 | Self, Sema::ExpressionEvaluationContext::Unevaluated); |
| 1259 | Sema::SFINAETrap SFINAE(Self, /*ForValidityCheck=*/true); |
| 1260 | Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); |
| 1261 | InitializationSequence Init(Self, To, Kind, From); |
| 1262 | if (Init.Failed()) |
| 1263 | return ExprError(); |
| 1264 | |
| 1265 | ExprResult Result = Init.Perform(S&: Self, Entity: To, Kind, Args: From); |
| 1266 | if (Result.isInvalid() || SFINAE.hasErrorOccurred()) |
| 1267 | return ExprError(); |
| 1268 | |
| 1269 | return Result; |
| 1270 | } |
| 1271 | |
| 1272 | static APValue EvaluateSizeTTypeTrait(Sema &S, TypeTrait Kind, |
| 1273 | SourceLocation KWLoc, |
| 1274 | ArrayRef<TypeSourceInfo *> Args, |
| 1275 | SourceLocation RParenLoc, |
| 1276 | bool IsDependent) { |
| 1277 | if (IsDependent) |
| 1278 | return APValue(); |
| 1279 | |
| 1280 | switch (Kind) { |
| 1281 | case TypeTrait::UTT_StructuredBindingSize: { |
| 1282 | QualType T = Args[0]->getType(); |
| 1283 | SourceRange ArgRange = Args[0]->getTypeLoc().getSourceRange(); |
| 1284 | UnsignedOrNone Size = |
| 1285 | S.GetDecompositionElementCount(DecompType: T, Loc: ArgRange.getBegin()); |
| 1286 | if (!Size) { |
| 1287 | S.Diag(Loc: KWLoc, DiagID: diag::err_arg_is_not_destructurable) << T << ArgRange; |
| 1288 | return APValue(); |
| 1289 | } |
| 1290 | return APValue( |
| 1291 | S.getASTContext().MakeIntValue(Value: *Size, Type: S.getASTContext().getSizeType())); |
| 1292 | break; |
| 1293 | } |
| 1294 | default: |
| 1295 | llvm_unreachable("Not a SizeT type trait" ); |
| 1296 | } |
| 1297 | } |
| 1298 | |
| 1299 | static bool EvaluateBooleanTypeTrait(Sema &S, TypeTrait Kind, |
| 1300 | SourceLocation KWLoc, |
| 1301 | ArrayRef<TypeSourceInfo *> Args, |
| 1302 | SourceLocation RParenLoc, |
| 1303 | bool IsDependent) { |
| 1304 | if (IsDependent) |
| 1305 | return false; |
| 1306 | |
| 1307 | if (Kind <= UTT_Last) |
| 1308 | return EvaluateUnaryTypeTrait(Self&: S, UTT: Kind, KeyLoc: KWLoc, TInfo: Args[0]); |
| 1309 | |
| 1310 | // Evaluate ReferenceBindsToTemporary and ReferenceConstructsFromTemporary |
| 1311 | // alongside the IsConstructible traits to avoid duplication. |
| 1312 | if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary && |
| 1313 | Kind != BTT_ReferenceConstructsFromTemporary && |
| 1314 | Kind != BTT_ReferenceConvertsFromTemporary) |
| 1315 | return EvaluateBinaryTypeTrait(Self&: S, BTT: Kind, Lhs: Args[0], Rhs: Args[1], KeyLoc: RParenLoc); |
| 1316 | |
| 1317 | switch (Kind) { |
| 1318 | case clang::BTT_ReferenceBindsToTemporary: |
| 1319 | case clang::BTT_ReferenceConstructsFromTemporary: |
| 1320 | case clang::BTT_ReferenceConvertsFromTemporary: |
| 1321 | case clang::TT_IsConstructible: |
| 1322 | case clang::TT_IsNothrowConstructible: |
| 1323 | case clang::TT_IsTriviallyConstructible: { |
| 1324 | // C++11 [meta.unary.prop]: |
| 1325 | // is_trivially_constructible is defined as: |
| 1326 | // |
| 1327 | // is_constructible<T, Args...>::value is true and the variable |
| 1328 | // definition for is_constructible, as defined below, is known to call |
| 1329 | // no operation that is not trivial. |
| 1330 | // |
| 1331 | // The predicate condition for a template specialization |
| 1332 | // is_constructible<T, Args...> shall be satisfied if and only if the |
| 1333 | // following variable definition would be well-formed for some invented |
| 1334 | // variable t: |
| 1335 | // |
| 1336 | // T t(create<Args>()...); |
| 1337 | assert(!Args.empty()); |
| 1338 | |
| 1339 | // Precondition: T and all types in the parameter pack Args shall be |
| 1340 | // complete types, (possibly cv-qualified) void, or arrays of |
| 1341 | // unknown bound. |
| 1342 | for (const auto *TSI : Args) { |
| 1343 | QualType ArgTy = TSI->getType(); |
| 1344 | if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) |
| 1345 | continue; |
| 1346 | |
| 1347 | if (S.RequireCompleteType( |
| 1348 | Loc: KWLoc, T: ArgTy, DiagID: diag::err_incomplete_type_used_in_type_trait_expr)) |
| 1349 | return false; |
| 1350 | } |
| 1351 | |
| 1352 | // Make sure the first argument is not incomplete nor a function type. |
| 1353 | QualType T = Args[0]->getType(); |
| 1354 | if (T->isIncompleteType() || T->isFunctionType()) |
| 1355 | return false; |
| 1356 | |
| 1357 | // Make sure the first argument is not an abstract type. |
| 1358 | CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
| 1359 | if (RD && RD->isAbstract()) |
| 1360 | return false; |
| 1361 | |
| 1362 | // LWG3819: For reference_meows_from_temporary traits, && is not added to |
| 1363 | // the source object type. |
| 1364 | // Otherwise, compute the result of add_rvalue_reference_t. |
| 1365 | bool UseRawObjectType = |
| 1366 | Kind == clang::BTT_ReferenceBindsToTemporary || |
| 1367 | Kind == clang::BTT_ReferenceConstructsFromTemporary || |
| 1368 | Kind == clang::BTT_ReferenceConvertsFromTemporary; |
| 1369 | |
| 1370 | llvm::BumpPtrAllocator OpaqueExprAllocator; |
| 1371 | SmallVector<Expr *, 2> ArgExprs; |
| 1372 | ArgExprs.reserve(N: Args.size() - 1); |
| 1373 | for (unsigned I = 1, N = Args.size(); I != N; ++I) { |
| 1374 | QualType ArgTy = Args[I]->getType(); |
| 1375 | if ((ArgTy->isObjectType() && !UseRawObjectType) || |
| 1376 | ArgTy->isFunctionType()) |
| 1377 | ArgTy = S.Context.getRValueReferenceType(T: ArgTy); |
| 1378 | ArgExprs.push_back( |
| 1379 | Elt: new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) |
| 1380 | OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), |
| 1381 | ArgTy.getNonLValueExprType(Context: S.Context), |
| 1382 | Expr::getValueKindForType(T: ArgTy))); |
| 1383 | } |
| 1384 | |
| 1385 | // Perform the initialization in an unevaluated context within a SFINAE |
| 1386 | // trap at translation unit scope. |
| 1387 | EnterExpressionEvaluationContext Unevaluated( |
| 1388 | S, Sema::ExpressionEvaluationContext::Unevaluated); |
| 1389 | Sema::SFINAETrap SFINAE(S, /*ForValidityCheck=*/true); |
| 1390 | Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); |
| 1391 | InitializedEntity To( |
| 1392 | InitializedEntity::InitializeTemporary(Context&: S.Context, TypeInfo: Args[0])); |
| 1393 | InitializationKind InitKind( |
| 1394 | Kind == clang::BTT_ReferenceConvertsFromTemporary |
| 1395 | ? InitializationKind::CreateCopy(InitLoc: KWLoc, EqualLoc: KWLoc) |
| 1396 | : InitializationKind::CreateDirect(InitLoc: KWLoc, LParenLoc: KWLoc, RParenLoc)); |
| 1397 | InitializationSequence Init(S, To, InitKind, ArgExprs); |
| 1398 | if (Init.Failed()) |
| 1399 | return false; |
| 1400 | |
| 1401 | ExprResult Result = Init.Perform(S, Entity: To, Kind: InitKind, Args: ArgExprs); |
| 1402 | if (Result.isInvalid() || SFINAE.hasErrorOccurred()) |
| 1403 | return false; |
| 1404 | |
| 1405 | if (Kind == clang::TT_IsConstructible) |
| 1406 | return true; |
| 1407 | |
| 1408 | if (Kind == clang::BTT_ReferenceBindsToTemporary || |
| 1409 | Kind == clang::BTT_ReferenceConstructsFromTemporary || |
| 1410 | Kind == clang::BTT_ReferenceConvertsFromTemporary) { |
| 1411 | if (!T->isReferenceType()) |
| 1412 | return false; |
| 1413 | |
| 1414 | // A function reference never binds to a temporary object. |
| 1415 | if (T.getNonReferenceType()->isFunctionType()) |
| 1416 | return false; |
| 1417 | |
| 1418 | if (!Init.isDirectReferenceBinding()) |
| 1419 | return true; |
| 1420 | |
| 1421 | if (Kind == clang::BTT_ReferenceBindsToTemporary) |
| 1422 | return false; |
| 1423 | |
| 1424 | QualType U = Args[1]->getType(); |
| 1425 | if (U->isReferenceType()) |
| 1426 | return false; |
| 1427 | |
| 1428 | TypeSourceInfo *TPtr = S.Context.CreateTypeSourceInfo( |
| 1429 | T: S.Context.getPointerType(T: T.getNonReferenceType())); |
| 1430 | TypeSourceInfo *UPtr = S.Context.CreateTypeSourceInfo( |
| 1431 | T: S.Context.getPointerType(T: U.getNonReferenceType())); |
| 1432 | return !CheckConvertibilityForTypeTraits(Self&: S, Lhs: UPtr, Rhs: TPtr, KeyLoc: RParenLoc, |
| 1433 | OpaqueExprAllocator) |
| 1434 | .isInvalid(); |
| 1435 | } |
| 1436 | |
| 1437 | if (Kind == clang::TT_IsNothrowConstructible) |
| 1438 | return S.canThrow(E: Result.get()) == CT_Cannot; |
| 1439 | |
| 1440 | if (Kind == clang::TT_IsTriviallyConstructible) { |
| 1441 | // Under Objective-C ARC and Weak, if the destination has non-trivial |
| 1442 | // Objective-C lifetime, this is a non-trivial construction. |
| 1443 | if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) |
| 1444 | return false; |
| 1445 | |
| 1446 | // The initialization succeeded; now make sure there are no non-trivial |
| 1447 | // calls. |
| 1448 | return !Result.get()->hasNonTrivialCall(Ctx: S.Context); |
| 1449 | } |
| 1450 | |
| 1451 | llvm_unreachable("unhandled type trait" ); |
| 1452 | return false; |
| 1453 | } |
| 1454 | default: |
| 1455 | llvm_unreachable("not a TT" ); |
| 1456 | } |
| 1457 | |
| 1458 | return false; |
| 1459 | } |
| 1460 | |
| 1461 | namespace { |
| 1462 | void DiagnoseBuiltinDeprecation(Sema &S, TypeTrait Kind, SourceLocation KWLoc) { |
| 1463 | TypeTrait Replacement; |
| 1464 | switch (Kind) { |
| 1465 | case UTT_HasNothrowAssign: |
| 1466 | case UTT_HasNothrowMoveAssign: |
| 1467 | Replacement = BTT_IsNothrowAssignable; |
| 1468 | break; |
| 1469 | case UTT_HasNothrowCopy: |
| 1470 | case UTT_HasNothrowConstructor: |
| 1471 | Replacement = TT_IsNothrowConstructible; |
| 1472 | break; |
| 1473 | case UTT_HasTrivialAssign: |
| 1474 | case UTT_HasTrivialMoveAssign: |
| 1475 | Replacement = BTT_IsTriviallyAssignable; |
| 1476 | break; |
| 1477 | case UTT_HasTrivialCopy: |
| 1478 | Replacement = UTT_IsTriviallyCopyable; |
| 1479 | break; |
| 1480 | case UTT_HasTrivialDefaultConstructor: |
| 1481 | case UTT_HasTrivialMoveConstructor: |
| 1482 | Replacement = TT_IsTriviallyConstructible; |
| 1483 | break; |
| 1484 | case UTT_HasTrivialDestructor: |
| 1485 | Replacement = UTT_IsTriviallyDestructible; |
| 1486 | break; |
| 1487 | case UTT_IsTriviallyRelocatable: |
| 1488 | Replacement = clang::UTT_IsCppTriviallyRelocatable; |
| 1489 | break; |
| 1490 | case BTT_ReferenceBindsToTemporary: |
| 1491 | Replacement = clang::BTT_ReferenceConstructsFromTemporary; |
| 1492 | break; |
| 1493 | default: |
| 1494 | return; |
| 1495 | } |
| 1496 | S.Diag(Loc: KWLoc, DiagID: diag::warn_deprecated_builtin) |
| 1497 | << getTraitSpelling(T: Kind) << getTraitSpelling(T: Replacement); |
| 1498 | } |
| 1499 | } // namespace |
| 1500 | |
| 1501 | bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) { |
| 1502 | if (Arity && N != Arity) { |
| 1503 | Diag(Loc, DiagID: diag::err_type_trait_arity) |
| 1504 | << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc); |
| 1505 | return false; |
| 1506 | } |
| 1507 | |
| 1508 | if (!Arity && N == 0) { |
| 1509 | Diag(Loc, DiagID: diag::err_type_trait_arity) |
| 1510 | << 1 << 1 << 1 << (int)N << SourceRange(Loc); |
| 1511 | return false; |
| 1512 | } |
| 1513 | return true; |
| 1514 | } |
| 1515 | |
| 1516 | enum class TypeTraitReturnType { |
| 1517 | Bool, |
| 1518 | SizeT, |
| 1519 | }; |
| 1520 | |
| 1521 | static TypeTraitReturnType GetReturnType(TypeTrait Kind) { |
| 1522 | if (Kind == TypeTrait::UTT_StructuredBindingSize) |
| 1523 | return TypeTraitReturnType::SizeT; |
| 1524 | return TypeTraitReturnType::Bool; |
| 1525 | } |
| 1526 | |
| 1527 | ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, |
| 1528 | ArrayRef<TypeSourceInfo *> Args, |
| 1529 | SourceLocation RParenLoc) { |
| 1530 | if (!CheckTypeTraitArity(Arity: getTypeTraitArity(T: Kind), Loc: KWLoc, N: Args.size())) |
| 1531 | return ExprError(); |
| 1532 | |
| 1533 | if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( |
| 1534 | S&: *this, UTT: Kind, Loc: KWLoc, ArgTy: Args[0]->getType())) |
| 1535 | return ExprError(); |
| 1536 | |
| 1537 | DiagnoseBuiltinDeprecation(S&: *this, Kind, KWLoc); |
| 1538 | |
| 1539 | bool Dependent = false; |
| 1540 | for (unsigned I = 0, N = Args.size(); I != N; ++I) { |
| 1541 | if (Args[I]->getType()->isDependentType()) { |
| 1542 | Dependent = true; |
| 1543 | break; |
| 1544 | } |
| 1545 | } |
| 1546 | |
| 1547 | switch (GetReturnType(Kind)) { |
| 1548 | case TypeTraitReturnType::Bool: { |
| 1549 | bool Result = EvaluateBooleanTypeTrait(S&: *this, Kind, KWLoc, Args, RParenLoc, |
| 1550 | IsDependent: Dependent); |
| 1551 | return TypeTraitExpr::Create(C: Context, T: Context.getLogicalOperationType(), |
| 1552 | Loc: KWLoc, Kind, Args, RParenLoc, Value: Result); |
| 1553 | } |
| 1554 | case TypeTraitReturnType::SizeT: { |
| 1555 | APValue Result = |
| 1556 | EvaluateSizeTTypeTrait(S&: *this, Kind, KWLoc, Args, RParenLoc, IsDependent: Dependent); |
| 1557 | return TypeTraitExpr::Create(C: Context, T: Context.getSizeType(), Loc: KWLoc, Kind, |
| 1558 | Args, RParenLoc, Value: Result); |
| 1559 | } |
| 1560 | } |
| 1561 | llvm_unreachable("unhandled type trait return type" ); |
| 1562 | } |
| 1563 | |
| 1564 | ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, |
| 1565 | ArrayRef<ParsedType> Args, |
| 1566 | SourceLocation RParenLoc) { |
| 1567 | SmallVector<TypeSourceInfo *, 4> ConvertedArgs; |
| 1568 | ConvertedArgs.reserve(N: Args.size()); |
| 1569 | |
| 1570 | for (unsigned I = 0, N = Args.size(); I != N; ++I) { |
| 1571 | TypeSourceInfo *TInfo; |
| 1572 | QualType T = GetTypeFromParser(Ty: Args[I], TInfo: &TInfo); |
| 1573 | if (!TInfo) |
| 1574 | TInfo = Context.getTrivialTypeSourceInfo(T, Loc: KWLoc); |
| 1575 | |
| 1576 | ConvertedArgs.push_back(Elt: TInfo); |
| 1577 | } |
| 1578 | |
| 1579 | return BuildTypeTrait(Kind, KWLoc, Args: ConvertedArgs, RParenLoc); |
| 1580 | } |
| 1581 | |
| 1582 | bool Sema::BuiltinIsBaseOf(SourceLocation RhsTLoc, QualType LhsT, |
| 1583 | QualType RhsT) { |
| 1584 | // C++0x [meta.rel]p2 |
| 1585 | // Base is a base class of Derived without regard to cv-qualifiers or |
| 1586 | // Base and Derived are not unions and name the same class type without |
| 1587 | // regard to cv-qualifiers. |
| 1588 | |
| 1589 | const RecordType *lhsRecord = LhsT->getAs<RecordType>(); |
| 1590 | const RecordType *rhsRecord = RhsT->getAs<RecordType>(); |
| 1591 | if (!rhsRecord || !lhsRecord) { |
| 1592 | const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); |
| 1593 | const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); |
| 1594 | if (!LHSObjTy || !RHSObjTy) |
| 1595 | return false; |
| 1596 | |
| 1597 | ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); |
| 1598 | ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); |
| 1599 | if (!BaseInterface || !DerivedInterface) |
| 1600 | return false; |
| 1601 | |
| 1602 | if (RequireCompleteType(Loc: RhsTLoc, T: RhsT, |
| 1603 | DiagID: diag::err_incomplete_type_used_in_type_trait_expr)) |
| 1604 | return false; |
| 1605 | |
| 1606 | return BaseInterface->isSuperClassOf(I: DerivedInterface); |
| 1607 | } |
| 1608 | |
| 1609 | assert(Context.hasSameUnqualifiedType(LhsT, RhsT) == |
| 1610 | (lhsRecord == rhsRecord)); |
| 1611 | |
| 1612 | // Unions are never base classes, and never have base classes. |
| 1613 | // It doesn't matter if they are complete or not. See PR#41843 |
| 1614 | if (lhsRecord && lhsRecord->getDecl()->isUnion()) |
| 1615 | return false; |
| 1616 | if (rhsRecord && rhsRecord->getDecl()->isUnion()) |
| 1617 | return false; |
| 1618 | |
| 1619 | if (lhsRecord == rhsRecord) |
| 1620 | return true; |
| 1621 | |
| 1622 | // C++0x [meta.rel]p2: |
| 1623 | // If Base and Derived are class types and are different types |
| 1624 | // (ignoring possible cv-qualifiers) then Derived shall be a |
| 1625 | // complete type. |
| 1626 | if (RequireCompleteType(Loc: RhsTLoc, T: RhsT, |
| 1627 | DiagID: diag::err_incomplete_type_used_in_type_trait_expr)) |
| 1628 | return false; |
| 1629 | |
| 1630 | return cast<CXXRecordDecl>(Val: rhsRecord->getDecl()) |
| 1631 | ->isDerivedFrom(Base: cast<CXXRecordDecl>(Val: lhsRecord->getDecl())); |
| 1632 | } |
| 1633 | |
| 1634 | static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, |
| 1635 | const TypeSourceInfo *Lhs, |
| 1636 | const TypeSourceInfo *Rhs, |
| 1637 | SourceLocation KeyLoc) { |
| 1638 | QualType LhsT = Lhs->getType(); |
| 1639 | QualType RhsT = Rhs->getType(); |
| 1640 | |
| 1641 | assert(!LhsT->isDependentType() && !RhsT->isDependentType() && |
| 1642 | "Cannot evaluate traits of dependent types" ); |
| 1643 | |
| 1644 | switch (BTT) { |
| 1645 | case BTT_IsBaseOf: |
| 1646 | return Self.BuiltinIsBaseOf(RhsTLoc: Rhs->getTypeLoc().getBeginLoc(), LhsT, RhsT); |
| 1647 | |
| 1648 | case BTT_IsVirtualBaseOf: { |
| 1649 | const RecordType *BaseRecord = LhsT->getAs<RecordType>(); |
| 1650 | const RecordType *DerivedRecord = RhsT->getAs<RecordType>(); |
| 1651 | |
| 1652 | if (!BaseRecord || !DerivedRecord) { |
| 1653 | DiagnoseVLAInCXXTypeTrait(S&: Self, T: Lhs, |
| 1654 | TypeTraitID: tok::kw___builtin_is_virtual_base_of); |
| 1655 | DiagnoseVLAInCXXTypeTrait(S&: Self, T: Rhs, |
| 1656 | TypeTraitID: tok::kw___builtin_is_virtual_base_of); |
| 1657 | return false; |
| 1658 | } |
| 1659 | |
| 1660 | if (BaseRecord->isUnionType() || DerivedRecord->isUnionType()) |
| 1661 | return false; |
| 1662 | |
| 1663 | if (!BaseRecord->isStructureOrClassType() || |
| 1664 | !DerivedRecord->isStructureOrClassType()) |
| 1665 | return false; |
| 1666 | |
| 1667 | if (Self.RequireCompleteType(Loc: Rhs->getTypeLoc().getBeginLoc(), T: RhsT, |
| 1668 | DiagID: diag::err_incomplete_type)) |
| 1669 | return false; |
| 1670 | |
| 1671 | return cast<CXXRecordDecl>(Val: DerivedRecord->getDecl()) |
| 1672 | ->isVirtuallyDerivedFrom(Base: cast<CXXRecordDecl>(Val: BaseRecord->getDecl())); |
| 1673 | } |
| 1674 | case BTT_IsSame: |
| 1675 | return Self.Context.hasSameType(T1: LhsT, T2: RhsT); |
| 1676 | case BTT_TypeCompatible: { |
| 1677 | // GCC ignores cv-qualifiers on arrays for this builtin. |
| 1678 | Qualifiers LhsQuals, RhsQuals; |
| 1679 | QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(T: LhsT, Quals&: LhsQuals); |
| 1680 | QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(T: RhsT, Quals&: RhsQuals); |
| 1681 | return Self.Context.typesAreCompatible(T1: Lhs, T2: Rhs); |
| 1682 | } |
| 1683 | case BTT_IsConvertible: |
| 1684 | case BTT_IsConvertibleTo: |
| 1685 | case BTT_IsNothrowConvertible: { |
| 1686 | if (RhsT->isVoidType()) |
| 1687 | return LhsT->isVoidType(); |
| 1688 | llvm::BumpPtrAllocator OpaqueExprAllocator; |
| 1689 | ExprResult Result = CheckConvertibilityForTypeTraits(Self, Lhs, Rhs, KeyLoc, |
| 1690 | OpaqueExprAllocator); |
| 1691 | if (Result.isInvalid()) |
| 1692 | return false; |
| 1693 | |
| 1694 | if (BTT != BTT_IsNothrowConvertible) |
| 1695 | return true; |
| 1696 | |
| 1697 | return Self.canThrow(E: Result.get()) == CT_Cannot; |
| 1698 | } |
| 1699 | |
| 1700 | case BTT_IsAssignable: |
| 1701 | case BTT_IsNothrowAssignable: |
| 1702 | case BTT_IsTriviallyAssignable: { |
| 1703 | // C++11 [meta.unary.prop]p3: |
| 1704 | // is_trivially_assignable is defined as: |
| 1705 | // is_assignable<T, U>::value is true and the assignment, as defined by |
| 1706 | // is_assignable, is known to call no operation that is not trivial |
| 1707 | // |
| 1708 | // is_assignable is defined as: |
| 1709 | // The expression declval<T>() = declval<U>() is well-formed when |
| 1710 | // treated as an unevaluated operand (Clause 5). |
| 1711 | // |
| 1712 | // For both, T and U shall be complete types, (possibly cv-qualified) |
| 1713 | // void, or arrays of unknown bound. |
| 1714 | if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && |
| 1715 | Self.RequireCompleteType( |
| 1716 | Loc: Lhs->getTypeLoc().getBeginLoc(), T: LhsT, |
| 1717 | DiagID: diag::err_incomplete_type_used_in_type_trait_expr)) |
| 1718 | return false; |
| 1719 | if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && |
| 1720 | Self.RequireCompleteType( |
| 1721 | Loc: Rhs->getTypeLoc().getBeginLoc(), T: RhsT, |
| 1722 | DiagID: diag::err_incomplete_type_used_in_type_trait_expr)) |
| 1723 | return false; |
| 1724 | |
| 1725 | // cv void is never assignable. |
| 1726 | if (LhsT->isVoidType() || RhsT->isVoidType()) |
| 1727 | return false; |
| 1728 | |
| 1729 | // Build expressions that emulate the effect of declval<T>() and |
| 1730 | // declval<U>(). |
| 1731 | auto createDeclValExpr = [&](QualType Ty) -> OpaqueValueExpr { |
| 1732 | if (Ty->isObjectType() || Ty->isFunctionType()) |
| 1733 | Ty = Self.Context.getRValueReferenceType(T: Ty); |
| 1734 | return {KeyLoc, Ty.getNonLValueExprType(Context: Self.Context), |
| 1735 | Expr::getValueKindForType(T: Ty)}; |
| 1736 | }; |
| 1737 | |
| 1738 | auto Lhs = createDeclValExpr(LhsT); |
| 1739 | auto Rhs = createDeclValExpr(RhsT); |
| 1740 | |
| 1741 | // Attempt the assignment in an unevaluated context within a SFINAE |
| 1742 | // trap at translation unit scope. |
| 1743 | EnterExpressionEvaluationContext Unevaluated( |
| 1744 | Self, Sema::ExpressionEvaluationContext::Unevaluated); |
| 1745 | Sema::SFINAETrap SFINAE(Self, /*ForValidityCheck=*/true); |
| 1746 | Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); |
| 1747 | ExprResult Result = |
| 1748 | Self.BuildBinOp(/*S=*/nullptr, OpLoc: KeyLoc, Opc: BO_Assign, LHSExpr: &Lhs, RHSExpr: &Rhs); |
| 1749 | if (Result.isInvalid()) |
| 1750 | return false; |
| 1751 | |
| 1752 | // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. |
| 1753 | Self.CheckUnusedVolatileAssignment(E: Result.get()); |
| 1754 | |
| 1755 | if (SFINAE.hasErrorOccurred()) |
| 1756 | return false; |
| 1757 | |
| 1758 | if (BTT == BTT_IsAssignable) |
| 1759 | return true; |
| 1760 | |
| 1761 | if (BTT == BTT_IsNothrowAssignable) |
| 1762 | return Self.canThrow(E: Result.get()) == CT_Cannot; |
| 1763 | |
| 1764 | if (BTT == BTT_IsTriviallyAssignable) { |
| 1765 | // Under Objective-C ARC and Weak, if the destination has non-trivial |
| 1766 | // Objective-C lifetime, this is a non-trivial assignment. |
| 1767 | if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) |
| 1768 | return false; |
| 1769 | |
| 1770 | return !Result.get()->hasNonTrivialCall(Ctx: Self.Context); |
| 1771 | } |
| 1772 | |
| 1773 | llvm_unreachable("unhandled type trait" ); |
| 1774 | return false; |
| 1775 | } |
| 1776 | case BTT_IsLayoutCompatible: { |
| 1777 | if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType()) |
| 1778 | Self.RequireCompleteType(Loc: Lhs->getTypeLoc().getBeginLoc(), T: LhsT, |
| 1779 | DiagID: diag::err_incomplete_type); |
| 1780 | if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType()) |
| 1781 | Self.RequireCompleteType(Loc: Rhs->getTypeLoc().getBeginLoc(), T: RhsT, |
| 1782 | DiagID: diag::err_incomplete_type); |
| 1783 | |
| 1784 | DiagnoseVLAInCXXTypeTrait(S&: Self, T: Lhs, TypeTraitID: tok::kw___is_layout_compatible); |
| 1785 | DiagnoseVLAInCXXTypeTrait(S&: Self, T: Rhs, TypeTraitID: tok::kw___is_layout_compatible); |
| 1786 | |
| 1787 | return Self.IsLayoutCompatible(T1: LhsT, T2: RhsT); |
| 1788 | } |
| 1789 | case BTT_IsPointerInterconvertibleBaseOf: { |
| 1790 | if (LhsT->isStructureOrClassType() && RhsT->isStructureOrClassType() && |
| 1791 | !Self.getASTContext().hasSameUnqualifiedType(T1: LhsT, T2: RhsT)) { |
| 1792 | Self.RequireCompleteType(Loc: Rhs->getTypeLoc().getBeginLoc(), T: RhsT, |
| 1793 | DiagID: diag::err_incomplete_type); |
| 1794 | } |
| 1795 | |
| 1796 | DiagnoseVLAInCXXTypeTrait(S&: Self, T: Lhs, |
| 1797 | TypeTraitID: tok::kw___is_pointer_interconvertible_base_of); |
| 1798 | DiagnoseVLAInCXXTypeTrait(S&: Self, T: Rhs, |
| 1799 | TypeTraitID: tok::kw___is_pointer_interconvertible_base_of); |
| 1800 | |
| 1801 | return Self.IsPointerInterconvertibleBaseOf(Base: Lhs, Derived: Rhs); |
| 1802 | } |
| 1803 | case BTT_IsDeducible: { |
| 1804 | const auto *TSTToBeDeduced = cast<DeducedTemplateSpecializationType>(Val&: LhsT); |
| 1805 | sema::TemplateDeductionInfo Info(KeyLoc); |
| 1806 | return Self.DeduceTemplateArgumentsFromType( |
| 1807 | TD: TSTToBeDeduced->getTemplateName().getAsTemplateDecl(), FromType: RhsT, |
| 1808 | Info) == TemplateDeductionResult::Success; |
| 1809 | } |
| 1810 | case BTT_IsScalarizedLayoutCompatible: { |
| 1811 | if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && |
| 1812 | Self.RequireCompleteType(Loc: Lhs->getTypeLoc().getBeginLoc(), T: LhsT, |
| 1813 | DiagID: diag::err_incomplete_type)) |
| 1814 | return true; |
| 1815 | if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && |
| 1816 | Self.RequireCompleteType(Loc: Rhs->getTypeLoc().getBeginLoc(), T: RhsT, |
| 1817 | DiagID: diag::err_incomplete_type)) |
| 1818 | return true; |
| 1819 | |
| 1820 | DiagnoseVLAInCXXTypeTrait( |
| 1821 | S&: Self, T: Lhs, TypeTraitID: tok::kw___builtin_hlsl_is_scalarized_layout_compatible); |
| 1822 | DiagnoseVLAInCXXTypeTrait( |
| 1823 | S&: Self, T: Rhs, TypeTraitID: tok::kw___builtin_hlsl_is_scalarized_layout_compatible); |
| 1824 | |
| 1825 | return Self.HLSL().IsScalarizedLayoutCompatible(T1: LhsT, T2: RhsT); |
| 1826 | } |
| 1827 | default: |
| 1828 | llvm_unreachable("not a BTT" ); |
| 1829 | } |
| 1830 | llvm_unreachable("Unknown type trait or not implemented" ); |
| 1831 | } |
| 1832 | |
| 1833 | ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, SourceLocation KWLoc, |
| 1834 | ParsedType Ty, Expr *DimExpr, |
| 1835 | SourceLocation RParen) { |
| 1836 | TypeSourceInfo *TSInfo; |
| 1837 | QualType T = GetTypeFromParser(Ty, TInfo: &TSInfo); |
| 1838 | if (!TSInfo) |
| 1839 | TSInfo = Context.getTrivialTypeSourceInfo(T); |
| 1840 | |
| 1841 | return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); |
| 1842 | } |
| 1843 | |
| 1844 | static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, |
| 1845 | QualType T, Expr *DimExpr, |
| 1846 | SourceLocation KeyLoc) { |
| 1847 | assert(!T->isDependentType() && "Cannot evaluate traits of dependent type" ); |
| 1848 | |
| 1849 | switch (ATT) { |
| 1850 | case ATT_ArrayRank: |
| 1851 | if (T->isArrayType()) { |
| 1852 | unsigned Dim = 0; |
| 1853 | while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { |
| 1854 | ++Dim; |
| 1855 | T = AT->getElementType(); |
| 1856 | } |
| 1857 | return Dim; |
| 1858 | } |
| 1859 | return 0; |
| 1860 | |
| 1861 | case ATT_ArrayExtent: { |
| 1862 | llvm::APSInt Value; |
| 1863 | uint64_t Dim; |
| 1864 | if (Self.VerifyIntegerConstantExpression( |
| 1865 | E: DimExpr, Result: &Value, DiagID: diag::err_dimension_expr_not_constant_integer) |
| 1866 | .isInvalid()) |
| 1867 | return 0; |
| 1868 | if (Value.isSigned() && Value.isNegative()) { |
| 1869 | Self.Diag(Loc: KeyLoc, DiagID: diag::err_dimension_expr_not_constant_integer) |
| 1870 | << DimExpr->getSourceRange(); |
| 1871 | return 0; |
| 1872 | } |
| 1873 | Dim = Value.getLimitedValue(); |
| 1874 | |
| 1875 | if (T->isArrayType()) { |
| 1876 | unsigned D = 0; |
| 1877 | bool Matched = false; |
| 1878 | while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { |
| 1879 | if (Dim == D) { |
| 1880 | Matched = true; |
| 1881 | break; |
| 1882 | } |
| 1883 | ++D; |
| 1884 | T = AT->getElementType(); |
| 1885 | } |
| 1886 | |
| 1887 | if (Matched && T->isArrayType()) { |
| 1888 | if (const ConstantArrayType *CAT = |
| 1889 | Self.Context.getAsConstantArrayType(T)) |
| 1890 | return CAT->getLimitedSize(); |
| 1891 | } |
| 1892 | } |
| 1893 | return 0; |
| 1894 | } |
| 1895 | } |
| 1896 | llvm_unreachable("Unknown type trait or not implemented" ); |
| 1897 | } |
| 1898 | |
| 1899 | ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, SourceLocation KWLoc, |
| 1900 | TypeSourceInfo *TSInfo, Expr *DimExpr, |
| 1901 | SourceLocation RParen) { |
| 1902 | QualType T = TSInfo->getType(); |
| 1903 | |
| 1904 | // FIXME: This should likely be tracked as an APInt to remove any host |
| 1905 | // assumptions about the width of size_t on the target. |
| 1906 | uint64_t Value = 0; |
| 1907 | if (!T->isDependentType()) |
| 1908 | Value = EvaluateArrayTypeTrait(Self&: *this, ATT, T, DimExpr, KeyLoc: KWLoc); |
| 1909 | |
| 1910 | // While the specification for these traits from the Embarcadero C++ |
| 1911 | // compiler's documentation says the return type is 'unsigned int', Clang |
| 1912 | // returns 'size_t'. On Windows, the primary platform for the Embarcadero |
| 1913 | // compiler, there is no difference. On several other platforms this is an |
| 1914 | // important distinction. |
| 1915 | return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, |
| 1916 | RParen, Context.getSizeType()); |
| 1917 | } |
| 1918 | |
| 1919 | ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, SourceLocation KWLoc, |
| 1920 | Expr *Queried, SourceLocation RParen) { |
| 1921 | // If error parsing the expression, ignore. |
| 1922 | if (!Queried) |
| 1923 | return ExprError(); |
| 1924 | |
| 1925 | ExprResult Result = BuildExpressionTrait(OET: ET, KWLoc, Queried, RParen); |
| 1926 | |
| 1927 | return Result; |
| 1928 | } |
| 1929 | |
| 1930 | static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { |
| 1931 | switch (ET) { |
| 1932 | case ET_IsLValueExpr: |
| 1933 | return E->isLValue(); |
| 1934 | case ET_IsRValueExpr: |
| 1935 | return E->isPRValue(); |
| 1936 | } |
| 1937 | llvm_unreachable("Expression trait not covered by switch" ); |
| 1938 | } |
| 1939 | |
| 1940 | ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, SourceLocation KWLoc, |
| 1941 | Expr *Queried, SourceLocation RParen) { |
| 1942 | if (Queried->isTypeDependent()) { |
| 1943 | // Delay type-checking for type-dependent expressions. |
| 1944 | } else if (Queried->hasPlaceholderType()) { |
| 1945 | ExprResult PE = CheckPlaceholderExpr(E: Queried); |
| 1946 | if (PE.isInvalid()) |
| 1947 | return ExprError(); |
| 1948 | return BuildExpressionTrait(ET, KWLoc, Queried: PE.get(), RParen); |
| 1949 | } |
| 1950 | |
| 1951 | bool Value = EvaluateExpressionTrait(ET, E: Queried); |
| 1952 | |
| 1953 | return new (Context) |
| 1954 | ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); |
| 1955 | } |
| 1956 | |
| 1957 | static std::optional<TypeTrait> StdNameToTypeTrait(StringRef Name) { |
| 1958 | return llvm::StringSwitch<std::optional<TypeTrait>>(Name) |
| 1959 | .Case(S: "is_trivially_relocatable" , |
| 1960 | Value: TypeTrait::UTT_IsCppTriviallyRelocatable) |
| 1961 | .Case(S: "is_replaceable" , Value: TypeTrait::UTT_IsReplaceable) |
| 1962 | .Case(S: "is_trivially_copyable" , Value: TypeTrait::UTT_IsTriviallyCopyable) |
| 1963 | .Case(S: "is_assignable" , Value: TypeTrait::BTT_IsAssignable) |
| 1964 | .Case(S: "is_empty" , Value: TypeTrait::UTT_IsEmpty) |
| 1965 | .Case(S: "is_standard_layout" , Value: TypeTrait::UTT_IsStandardLayout) |
| 1966 | .Default(Value: std::nullopt); |
| 1967 | } |
| 1968 | |
| 1969 | using = |
| 1970 | std::optional<std::pair<TypeTrait, llvm::SmallVector<QualType, 1>>>; |
| 1971 | |
| 1972 | // Recognize type traits that are builting type traits, or known standard |
| 1973 | // type traits in <type_traits>. Note that at this point we assume the |
| 1974 | // trait evaluated to false, so we need only to recognize the shape of the |
| 1975 | // outer-most symbol. |
| 1976 | static ExtractedTypeTraitInfo (const Expr *E) { |
| 1977 | llvm::SmallVector<QualType, 1> Args; |
| 1978 | std::optional<TypeTrait> Trait; |
| 1979 | |
| 1980 | // builtins |
| 1981 | if (const auto *TraitExpr = dyn_cast<TypeTraitExpr>(Val: E)) { |
| 1982 | Trait = TraitExpr->getTrait(); |
| 1983 | for (const auto *Arg : TraitExpr->getArgs()) |
| 1984 | Args.push_back(Elt: Arg->getType()); |
| 1985 | return {{Trait.value(), std::move(Args)}}; |
| 1986 | } |
| 1987 | const auto *Ref = dyn_cast<DeclRefExpr>(Val: E); |
| 1988 | if (!Ref) |
| 1989 | return std::nullopt; |
| 1990 | |
| 1991 | // std::is_xxx_v<> |
| 1992 | if (const auto *VD = |
| 1993 | dyn_cast<VarTemplateSpecializationDecl>(Val: Ref->getDecl())) { |
| 1994 | if (!VD->isInStdNamespace()) |
| 1995 | return std::nullopt; |
| 1996 | StringRef Name = VD->getIdentifier()->getName(); |
| 1997 | if (!Name.consume_back(Suffix: "_v" )) |
| 1998 | return std::nullopt; |
| 1999 | Trait = StdNameToTypeTrait(Name); |
| 2000 | if (!Trait) |
| 2001 | return std::nullopt; |
| 2002 | for (const auto &Arg : VD->getTemplateArgs().asArray()) |
| 2003 | Args.push_back(Elt: Arg.getAsType()); |
| 2004 | return {{Trait.value(), std::move(Args)}}; |
| 2005 | } |
| 2006 | |
| 2007 | // std::is_xxx<>::value |
| 2008 | if (const auto *VD = dyn_cast<VarDecl>(Val: Ref->getDecl()); |
| 2009 | Ref->hasQualifier() && VD && VD->getIdentifier()->isStr(Str: "value" )) { |
| 2010 | const Type *T = Ref->getQualifier()->getAsType(); |
| 2011 | if (!T) |
| 2012 | return std::nullopt; |
| 2013 | const TemplateSpecializationType *Ts = |
| 2014 | T->getAs<TemplateSpecializationType>(); |
| 2015 | if (!Ts) |
| 2016 | return std::nullopt; |
| 2017 | const TemplateDecl *D = Ts->getTemplateName().getAsTemplateDecl(); |
| 2018 | if (!D || !D->isInStdNamespace()) |
| 2019 | return std::nullopt; |
| 2020 | Trait = StdNameToTypeTrait(Name: D->getIdentifier()->getName()); |
| 2021 | if (!Trait) |
| 2022 | return std::nullopt; |
| 2023 | for (const auto &Arg : Ts->template_arguments()) |
| 2024 | Args.push_back(Elt: Arg.getAsType()); |
| 2025 | return {{Trait.value(), std::move(Args)}}; |
| 2026 | } |
| 2027 | return std::nullopt; |
| 2028 | } |
| 2029 | |
| 2030 | static void DiagnoseNonDefaultMovable(Sema &SemaRef, SourceLocation Loc, |
| 2031 | const CXXRecordDecl *D) { |
| 2032 | if (D->isUnion()) { |
| 2033 | auto DiagSPM = [&](CXXSpecialMemberKind K, bool Has) { |
| 2034 | if (Has) |
| 2035 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2036 | << diag::TraitNotSatisfiedReason::UnionWithUserDeclaredSMF << K; |
| 2037 | }; |
| 2038 | DiagSPM(CXXSpecialMemberKind::CopyConstructor, |
| 2039 | D->hasUserDeclaredCopyConstructor()); |
| 2040 | DiagSPM(CXXSpecialMemberKind::CopyAssignment, |
| 2041 | D->hasUserDeclaredCopyAssignment()); |
| 2042 | DiagSPM(CXXSpecialMemberKind::MoveConstructor, |
| 2043 | D->hasUserDeclaredMoveConstructor()); |
| 2044 | DiagSPM(CXXSpecialMemberKind::MoveAssignment, |
| 2045 | D->hasUserDeclaredMoveAssignment()); |
| 2046 | return; |
| 2047 | } |
| 2048 | |
| 2049 | if (!D->hasSimpleMoveConstructor() && !D->hasSimpleCopyConstructor()) { |
| 2050 | const auto *Decl = cast_or_null<CXXConstructorDecl>( |
| 2051 | Val: LookupSpecialMemberFromXValue(SemaRef, RD: D, /*Assign=*/false)); |
| 2052 | if (Decl && Decl->isUserProvided()) |
| 2053 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2054 | << diag::TraitNotSatisfiedReason::UserProvidedCtr |
| 2055 | << Decl->isMoveConstructor() << Decl->getSourceRange(); |
| 2056 | } |
| 2057 | if (!D->hasSimpleMoveAssignment() && !D->hasSimpleCopyAssignment()) { |
| 2058 | CXXMethodDecl *Decl = |
| 2059 | LookupSpecialMemberFromXValue(SemaRef, RD: D, /*Assign=*/true); |
| 2060 | if (Decl && Decl->isUserProvided()) |
| 2061 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2062 | << diag::TraitNotSatisfiedReason::UserProvidedAssign |
| 2063 | << Decl->isMoveAssignmentOperator() << Decl->getSourceRange(); |
| 2064 | } |
| 2065 | if (CXXDestructorDecl *Dtr = D->getDestructor()) { |
| 2066 | Dtr = Dtr->getCanonicalDecl(); |
| 2067 | if (Dtr->isUserProvided() && !Dtr->isDefaulted()) |
| 2068 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2069 | << diag::TraitNotSatisfiedReason::DeletedDtr << /*User Provided*/ 1 |
| 2070 | << Dtr->getSourceRange(); |
| 2071 | } |
| 2072 | } |
| 2073 | |
| 2074 | static void DiagnoseNonTriviallyRelocatableReason(Sema &SemaRef, |
| 2075 | SourceLocation Loc, |
| 2076 | const CXXRecordDecl *D) { |
| 2077 | for (const CXXBaseSpecifier &B : D->bases()) { |
| 2078 | assert(B.getType()->getAsCXXRecordDecl() && "invalid base?" ); |
| 2079 | if (B.isVirtual()) |
| 2080 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2081 | << diag::TraitNotSatisfiedReason::VBase << B.getType() |
| 2082 | << B.getSourceRange(); |
| 2083 | if (!SemaRef.IsCXXTriviallyRelocatableType(Type: B.getType())) |
| 2084 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2085 | << diag::TraitNotSatisfiedReason::NTRBase << B.getType() |
| 2086 | << B.getSourceRange(); |
| 2087 | } |
| 2088 | for (const FieldDecl *Field : D->fields()) { |
| 2089 | if (!Field->getType()->isReferenceType() && |
| 2090 | !SemaRef.IsCXXTriviallyRelocatableType(Type: Field->getType())) |
| 2091 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2092 | << diag::TraitNotSatisfiedReason::NTRField << Field |
| 2093 | << Field->getType() << Field->getSourceRange(); |
| 2094 | } |
| 2095 | if (D->hasDeletedDestructor()) |
| 2096 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2097 | << diag::TraitNotSatisfiedReason::DeletedDtr << /*Deleted*/ 0 |
| 2098 | << D->getDestructor()->getSourceRange(); |
| 2099 | |
| 2100 | if (D->hasAttr<TriviallyRelocatableAttr>()) |
| 2101 | return; |
| 2102 | DiagnoseNonDefaultMovable(SemaRef, Loc, D); |
| 2103 | } |
| 2104 | |
| 2105 | static void DiagnoseNonTriviallyRelocatableReason(Sema &SemaRef, |
| 2106 | SourceLocation Loc, |
| 2107 | QualType T) { |
| 2108 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait) |
| 2109 | << T << diag::TraitName::TriviallyRelocatable; |
| 2110 | if (T->isVariablyModifiedType()) |
| 2111 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2112 | << diag::TraitNotSatisfiedReason::VLA; |
| 2113 | |
| 2114 | if (T->isReferenceType()) |
| 2115 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2116 | << diag::TraitNotSatisfiedReason::Ref; |
| 2117 | T = T.getNonReferenceType(); |
| 2118 | |
| 2119 | if (T.hasNonTrivialObjCLifetime()) |
| 2120 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2121 | << diag::TraitNotSatisfiedReason::HasArcLifetime; |
| 2122 | |
| 2123 | const CXXRecordDecl *D = T->getAsCXXRecordDecl(); |
| 2124 | if (!D || D->isInvalidDecl()) |
| 2125 | return; |
| 2126 | |
| 2127 | if (D->hasDefinition()) |
| 2128 | DiagnoseNonTriviallyRelocatableReason(SemaRef, Loc, D); |
| 2129 | |
| 2130 | SemaRef.Diag(Loc: D->getLocation(), DiagID: diag::note_defined_here) << D; |
| 2131 | } |
| 2132 | |
| 2133 | static void DiagnoseNonReplaceableReason(Sema &SemaRef, SourceLocation Loc, |
| 2134 | const CXXRecordDecl *D) { |
| 2135 | for (const CXXBaseSpecifier &B : D->bases()) { |
| 2136 | assert(B.getType()->getAsCXXRecordDecl() && "invalid base?" ); |
| 2137 | if (!SemaRef.IsCXXReplaceableType(Type: B.getType())) |
| 2138 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2139 | << diag::TraitNotSatisfiedReason::NonReplaceableBase << B.getType() |
| 2140 | << B.getSourceRange(); |
| 2141 | } |
| 2142 | for (const FieldDecl *Field : D->fields()) { |
| 2143 | if (!SemaRef.IsCXXReplaceableType(Type: Field->getType())) |
| 2144 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2145 | << diag::TraitNotSatisfiedReason::NonReplaceableField << Field |
| 2146 | << Field->getType() << Field->getSourceRange(); |
| 2147 | } |
| 2148 | if (D->hasDeletedDestructor()) |
| 2149 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2150 | << diag::TraitNotSatisfiedReason::DeletedDtr << /*Deleted*/ 0 |
| 2151 | << D->getDestructor()->getSourceRange(); |
| 2152 | |
| 2153 | if (!D->hasSimpleMoveConstructor() && !D->hasSimpleCopyConstructor()) { |
| 2154 | const auto *Decl = cast<CXXConstructorDecl>( |
| 2155 | Val: LookupSpecialMemberFromXValue(SemaRef, RD: D, /*Assign=*/false)); |
| 2156 | if (Decl && Decl->isDeleted()) |
| 2157 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2158 | << diag::TraitNotSatisfiedReason::DeletedCtr |
| 2159 | << Decl->isMoveConstructor() << Decl->getSourceRange(); |
| 2160 | } |
| 2161 | if (!D->hasSimpleMoveAssignment() && !D->hasSimpleCopyAssignment()) { |
| 2162 | CXXMethodDecl *Decl = |
| 2163 | LookupSpecialMemberFromXValue(SemaRef, RD: D, /*Assign=*/true); |
| 2164 | if (Decl && Decl->isDeleted()) |
| 2165 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2166 | << diag::TraitNotSatisfiedReason::DeletedAssign |
| 2167 | << Decl->isMoveAssignmentOperator() << Decl->getSourceRange(); |
| 2168 | } |
| 2169 | |
| 2170 | if (D->hasAttr<ReplaceableAttr>()) |
| 2171 | return; |
| 2172 | DiagnoseNonDefaultMovable(SemaRef, Loc, D); |
| 2173 | } |
| 2174 | |
| 2175 | static void DiagnoseNonReplaceableReason(Sema &SemaRef, SourceLocation Loc, |
| 2176 | QualType T) { |
| 2177 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait) |
| 2178 | << T << diag::TraitName::Replaceable; |
| 2179 | |
| 2180 | if (T->isVariablyModifiedType()) |
| 2181 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2182 | << diag::TraitNotSatisfiedReason::VLA; |
| 2183 | |
| 2184 | if (T->isReferenceType()) |
| 2185 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2186 | << diag::TraitNotSatisfiedReason::Ref; |
| 2187 | T = T.getNonReferenceType(); |
| 2188 | |
| 2189 | if (T.isConstQualified()) |
| 2190 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2191 | << diag::TraitNotSatisfiedReason::Const; |
| 2192 | |
| 2193 | if (T.isVolatileQualified()) |
| 2194 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2195 | << diag::TraitNotSatisfiedReason::Volatile; |
| 2196 | |
| 2197 | bool IsArray = T->isArrayType(); |
| 2198 | T = SemaRef.getASTContext().getBaseElementType(QT: T.getUnqualifiedType()); |
| 2199 | |
| 2200 | if (T->isScalarType()) |
| 2201 | return; |
| 2202 | |
| 2203 | const CXXRecordDecl *D = T->getAsCXXRecordDecl(); |
| 2204 | if (!D) { |
| 2205 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2206 | << diag::TraitNotSatisfiedReason::NotScalarOrClass << IsArray; |
| 2207 | return; |
| 2208 | } |
| 2209 | |
| 2210 | if (D->isInvalidDecl()) |
| 2211 | return; |
| 2212 | |
| 2213 | if (D->hasDefinition()) |
| 2214 | DiagnoseNonReplaceableReason(SemaRef, Loc, D); |
| 2215 | |
| 2216 | SemaRef.Diag(Loc: D->getLocation(), DiagID: diag::note_defined_here) << D; |
| 2217 | } |
| 2218 | |
| 2219 | static void DiagnoseNonTriviallyCopyableReason(Sema &SemaRef, |
| 2220 | SourceLocation Loc, |
| 2221 | const CXXRecordDecl *D) { |
| 2222 | for (const CXXBaseSpecifier &B : D->bases()) { |
| 2223 | assert(B.getType()->getAsCXXRecordDecl() && "invalid base?" ); |
| 2224 | if (B.isVirtual()) |
| 2225 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2226 | << diag::TraitNotSatisfiedReason::VBase << B.getType() |
| 2227 | << B.getSourceRange(); |
| 2228 | if (!B.getType().isTriviallyCopyableType(Context: D->getASTContext())) { |
| 2229 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2230 | << diag::TraitNotSatisfiedReason::NTCBase << B.getType() |
| 2231 | << B.getSourceRange(); |
| 2232 | } |
| 2233 | } |
| 2234 | for (const FieldDecl *Field : D->fields()) { |
| 2235 | if (!Field->getType().isTriviallyCopyableType(Context: Field->getASTContext())) |
| 2236 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2237 | << diag::TraitNotSatisfiedReason::NTCField << Field |
| 2238 | << Field->getType() << Field->getSourceRange(); |
| 2239 | } |
| 2240 | CXXDestructorDecl *Dtr = D->getDestructor(); |
| 2241 | if (D->hasDeletedDestructor() || (Dtr && !Dtr->isTrivial())) |
| 2242 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2243 | << diag::TraitNotSatisfiedReason::DeletedDtr |
| 2244 | << !D->hasDeletedDestructor() << D->getDestructor()->getSourceRange(); |
| 2245 | |
| 2246 | for (const CXXMethodDecl *Method : D->methods()) { |
| 2247 | if (Method->isTrivial() || !Method->isUserProvided()) { |
| 2248 | continue; |
| 2249 | } |
| 2250 | auto SpecialMemberKind = |
| 2251 | SemaRef.getDefaultedFunctionKind(FD: Method).asSpecialMember(); |
| 2252 | switch (SpecialMemberKind) { |
| 2253 | case CXXSpecialMemberKind::CopyConstructor: |
| 2254 | case CXXSpecialMemberKind::MoveConstructor: |
| 2255 | case CXXSpecialMemberKind::CopyAssignment: |
| 2256 | case CXXSpecialMemberKind::MoveAssignment: { |
| 2257 | bool IsAssignment = |
| 2258 | SpecialMemberKind == CXXSpecialMemberKind::CopyAssignment || |
| 2259 | SpecialMemberKind == CXXSpecialMemberKind::MoveAssignment; |
| 2260 | bool IsMove = |
| 2261 | SpecialMemberKind == CXXSpecialMemberKind::MoveConstructor || |
| 2262 | SpecialMemberKind == CXXSpecialMemberKind::MoveAssignment; |
| 2263 | |
| 2264 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2265 | << (IsAssignment ? diag::TraitNotSatisfiedReason::UserProvidedAssign |
| 2266 | : diag::TraitNotSatisfiedReason::UserProvidedCtr) |
| 2267 | << IsMove << Method->getSourceRange(); |
| 2268 | break; |
| 2269 | } |
| 2270 | default: |
| 2271 | break; |
| 2272 | } |
| 2273 | } |
| 2274 | } |
| 2275 | |
| 2276 | static void DiagnoseNonTriviallyCopyableReason(Sema &SemaRef, |
| 2277 | SourceLocation Loc, QualType T) { |
| 2278 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait) |
| 2279 | << T << diag::TraitName::TriviallyCopyable; |
| 2280 | |
| 2281 | if (T->isReferenceType()) |
| 2282 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2283 | << diag::TraitNotSatisfiedReason::Ref; |
| 2284 | |
| 2285 | const CXXRecordDecl *D = T->getAsCXXRecordDecl(); |
| 2286 | if (!D || D->isInvalidDecl()) |
| 2287 | return; |
| 2288 | |
| 2289 | if (D->hasDefinition()) |
| 2290 | DiagnoseNonTriviallyCopyableReason(SemaRef, Loc, D); |
| 2291 | |
| 2292 | SemaRef.Diag(Loc: D->getLocation(), DiagID: diag::note_defined_here) << D; |
| 2293 | } |
| 2294 | |
| 2295 | static void DiagnoseNonAssignableReason(Sema &SemaRef, SourceLocation Loc, |
| 2296 | QualType T, QualType U) { |
| 2297 | const CXXRecordDecl *D = T->getAsCXXRecordDecl(); |
| 2298 | |
| 2299 | auto createDeclValExpr = [&](QualType Ty) -> OpaqueValueExpr { |
| 2300 | if (Ty->isObjectType() || Ty->isFunctionType()) |
| 2301 | Ty = SemaRef.Context.getRValueReferenceType(T: Ty); |
| 2302 | return {Loc, Ty.getNonLValueExprType(Context: SemaRef.Context), |
| 2303 | Expr::getValueKindForType(T: Ty)}; |
| 2304 | }; |
| 2305 | |
| 2306 | auto LHS = createDeclValExpr(T); |
| 2307 | auto RHS = createDeclValExpr(U); |
| 2308 | |
| 2309 | EnterExpressionEvaluationContext Unevaluated( |
| 2310 | SemaRef, Sema::ExpressionEvaluationContext::Unevaluated); |
| 2311 | Sema::ContextRAII TUContext(SemaRef, |
| 2312 | SemaRef.Context.getTranslationUnitDecl()); |
| 2313 | SemaRef.BuildBinOp(/*S=*/nullptr, OpLoc: Loc, Opc: BO_Assign, LHSExpr: &LHS, RHSExpr: &RHS); |
| 2314 | |
| 2315 | if (!D || D->isInvalidDecl()) |
| 2316 | return; |
| 2317 | |
| 2318 | SemaRef.Diag(Loc: D->getLocation(), DiagID: diag::note_defined_here) << D; |
| 2319 | } |
| 2320 | |
| 2321 | static void DiagnoseIsEmptyReason(Sema &S, SourceLocation Loc, |
| 2322 | const CXXRecordDecl *D) { |
| 2323 | // Non-static data members (ignore zero-width bit‐fields). |
| 2324 | for (const auto *Field : D->fields()) { |
| 2325 | if (Field->isZeroLengthBitField()) |
| 2326 | continue; |
| 2327 | if (Field->isBitField()) { |
| 2328 | S.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2329 | << diag::TraitNotSatisfiedReason::NonZeroLengthField << Field |
| 2330 | << Field->getSourceRange(); |
| 2331 | continue; |
| 2332 | } |
| 2333 | S.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2334 | << diag::TraitNotSatisfiedReason::NonEmptyMember << Field |
| 2335 | << Field->getType() << Field->getSourceRange(); |
| 2336 | } |
| 2337 | |
| 2338 | // Virtual functions. |
| 2339 | for (const auto *M : D->methods()) { |
| 2340 | if (M->isVirtual()) { |
| 2341 | S.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2342 | << diag::TraitNotSatisfiedReason::VirtualFunction << M |
| 2343 | << M->getSourceRange(); |
| 2344 | break; |
| 2345 | } |
| 2346 | } |
| 2347 | |
| 2348 | // Virtual bases and non-empty bases. |
| 2349 | for (const auto &B : D->bases()) { |
| 2350 | const auto *BR = B.getType()->getAsCXXRecordDecl(); |
| 2351 | if (!BR || BR->isInvalidDecl()) |
| 2352 | continue; |
| 2353 | if (B.isVirtual()) { |
| 2354 | S.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2355 | << diag::TraitNotSatisfiedReason::VBase << B.getType() |
| 2356 | << B.getSourceRange(); |
| 2357 | } |
| 2358 | if (!BR->isEmpty()) { |
| 2359 | S.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2360 | << diag::TraitNotSatisfiedReason::NonEmptyBase << B.getType() |
| 2361 | << B.getSourceRange(); |
| 2362 | } |
| 2363 | } |
| 2364 | } |
| 2365 | |
| 2366 | static void DiagnoseIsEmptyReason(Sema &S, SourceLocation Loc, QualType T) { |
| 2367 | // Emit primary "not empty" diagnostic. |
| 2368 | S.Diag(Loc, DiagID: diag::note_unsatisfied_trait) << T << diag::TraitName::Empty; |
| 2369 | |
| 2370 | // While diagnosing is_empty<T>, we want to look at the actual type, not a |
| 2371 | // reference or an array of it. So we need to massage the QualType param to |
| 2372 | // strip refs and arrays. |
| 2373 | if (T->isReferenceType()) |
| 2374 | S.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2375 | << diag::TraitNotSatisfiedReason::Ref; |
| 2376 | T = T.getNonReferenceType(); |
| 2377 | |
| 2378 | if (auto *AT = S.Context.getAsArrayType(T)) |
| 2379 | T = AT->getElementType(); |
| 2380 | |
| 2381 | if (auto *D = T->getAsCXXRecordDecl()) { |
| 2382 | if (D->hasDefinition()) { |
| 2383 | DiagnoseIsEmptyReason(S, Loc, D); |
| 2384 | S.Diag(Loc: D->getLocation(), DiagID: diag::note_defined_here) << D; |
| 2385 | } |
| 2386 | } |
| 2387 | } |
| 2388 | |
| 2389 | static bool hasMultipleDataBaseClassesWithFields(const CXXRecordDecl *D) { |
| 2390 | int NumBasesWithFields = 0; |
| 2391 | for (const CXXBaseSpecifier &Base : D->bases()) { |
| 2392 | const CXXRecordDecl *BaseRD = Base.getType()->getAsCXXRecordDecl(); |
| 2393 | if (!BaseRD || BaseRD->isInvalidDecl()) |
| 2394 | continue; |
| 2395 | |
| 2396 | for (const FieldDecl *Field : BaseRD->fields()) { |
| 2397 | if (!Field->isUnnamedBitField()) { |
| 2398 | if (++NumBasesWithFields > 1) |
| 2399 | return true; // found more than one base class with fields |
| 2400 | break; // no need to check further fields in this base class |
| 2401 | } |
| 2402 | } |
| 2403 | } |
| 2404 | return false; |
| 2405 | } |
| 2406 | |
| 2407 | static void DiagnoseNonStandardLayoutReason(Sema &SemaRef, SourceLocation Loc, |
| 2408 | const CXXRecordDecl *D) { |
| 2409 | for (const CXXBaseSpecifier &B : D->bases()) { |
| 2410 | assert(B.getType()->getAsCXXRecordDecl() && "invalid base?" ); |
| 2411 | if (B.isVirtual()) { |
| 2412 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2413 | << diag::TraitNotSatisfiedReason::VBase << B.getType() |
| 2414 | << B.getSourceRange(); |
| 2415 | } |
| 2416 | if (!B.getType()->isStandardLayoutType()) { |
| 2417 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2418 | << diag::TraitNotSatisfiedReason::NonStandardLayoutBase << B.getType() |
| 2419 | << B.getSourceRange(); |
| 2420 | } |
| 2421 | } |
| 2422 | // Check for mixed access specifiers in fields. |
| 2423 | const FieldDecl *FirstField = nullptr; |
| 2424 | AccessSpecifier FirstAccess = AS_none; |
| 2425 | |
| 2426 | for (const FieldDecl *Field : D->fields()) { |
| 2427 | if (Field->isUnnamedBitField()) |
| 2428 | continue; |
| 2429 | |
| 2430 | // Record the first field we see |
| 2431 | if (!FirstField) { |
| 2432 | FirstField = Field; |
| 2433 | FirstAccess = Field->getAccess(); |
| 2434 | continue; |
| 2435 | } |
| 2436 | |
| 2437 | // Check if the field has a different access specifier than the first one. |
| 2438 | if (Field->getAccess() != FirstAccess) { |
| 2439 | // Emit a diagnostic about mixed access specifiers. |
| 2440 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2441 | << diag::TraitNotSatisfiedReason::MixedAccess; |
| 2442 | |
| 2443 | SemaRef.Diag(Loc: FirstField->getLocation(), DiagID: diag::note_defined_here) |
| 2444 | << FirstField; |
| 2445 | |
| 2446 | SemaRef.Diag(Loc: Field->getLocation(), DiagID: diag::note_unsatisfied_trait_reason) |
| 2447 | << diag::TraitNotSatisfiedReason::MixedAccessField << Field |
| 2448 | << FirstField; |
| 2449 | |
| 2450 | // No need to check further fields, as we already found mixed access. |
| 2451 | break; |
| 2452 | } |
| 2453 | } |
| 2454 | if (hasMultipleDataBaseClassesWithFields(D)) { |
| 2455 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2456 | << diag::TraitNotSatisfiedReason::MultipleDataBase; |
| 2457 | } |
| 2458 | if (D->isPolymorphic()) { |
| 2459 | // Find the best location to point “defined here” at. |
| 2460 | const CXXMethodDecl *VirtualMD = nullptr; |
| 2461 | // First, look for a virtual method. |
| 2462 | for (const auto *M : D->methods()) { |
| 2463 | if (M->isVirtual()) { |
| 2464 | VirtualMD = M; |
| 2465 | break; |
| 2466 | } |
| 2467 | } |
| 2468 | if (VirtualMD) { |
| 2469 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2470 | << diag::TraitNotSatisfiedReason::VirtualFunction << VirtualMD; |
| 2471 | SemaRef.Diag(Loc: VirtualMD->getLocation(), DiagID: diag::note_defined_here) |
| 2472 | << VirtualMD; |
| 2473 | } else { |
| 2474 | // If no virtual method, point to the record declaration itself. |
| 2475 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2476 | << diag::TraitNotSatisfiedReason::VirtualFunction << D; |
| 2477 | SemaRef.Diag(Loc: D->getLocation(), DiagID: diag::note_defined_here) << D; |
| 2478 | } |
| 2479 | } |
| 2480 | for (const FieldDecl *Field : D->fields()) { |
| 2481 | if (!Field->getType()->isStandardLayoutType()) { |
| 2482 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2483 | << diag::TraitNotSatisfiedReason::NonStandardLayoutMember << Field |
| 2484 | << Field->getType() << Field->getSourceRange(); |
| 2485 | } |
| 2486 | } |
| 2487 | // Find any indirect base classes that have fields. |
| 2488 | if (D->hasDirectFields()) { |
| 2489 | const CXXRecordDecl *Indirect = nullptr; |
| 2490 | D->forallBases(BaseMatches: [&](const CXXRecordDecl *BaseDef) { |
| 2491 | if (BaseDef->hasDirectFields()) { |
| 2492 | Indirect = BaseDef; |
| 2493 | return false; // stop traversal |
| 2494 | } |
| 2495 | return true; // continue to the next base |
| 2496 | }); |
| 2497 | if (Indirect) { |
| 2498 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2499 | << diag::TraitNotSatisfiedReason::IndirectBaseWithFields << Indirect |
| 2500 | << Indirect->getSourceRange(); |
| 2501 | } |
| 2502 | } |
| 2503 | } |
| 2504 | |
| 2505 | static void DiagnoseNonStandardLayoutReason(Sema &SemaRef, SourceLocation Loc, |
| 2506 | QualType T) { |
| 2507 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait) |
| 2508 | << T << diag::TraitName::StandardLayout; |
| 2509 | |
| 2510 | // Check type-level exclusion first. |
| 2511 | if (T->isVariablyModifiedType()) { |
| 2512 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2513 | << diag::TraitNotSatisfiedReason::VLA; |
| 2514 | return; |
| 2515 | } |
| 2516 | |
| 2517 | if (T->isReferenceType()) { |
| 2518 | SemaRef.Diag(Loc, DiagID: diag::note_unsatisfied_trait_reason) |
| 2519 | << diag::TraitNotSatisfiedReason::Ref; |
| 2520 | return; |
| 2521 | } |
| 2522 | T = T.getNonReferenceType(); |
| 2523 | const CXXRecordDecl *D = T->getAsCXXRecordDecl(); |
| 2524 | if (!D || D->isInvalidDecl()) |
| 2525 | return; |
| 2526 | |
| 2527 | if (D->hasDefinition()) |
| 2528 | DiagnoseNonStandardLayoutReason(SemaRef, Loc, D); |
| 2529 | |
| 2530 | SemaRef.Diag(Loc: D->getLocation(), DiagID: diag::note_defined_here) << D; |
| 2531 | } |
| 2532 | |
| 2533 | void Sema::DiagnoseTypeTraitDetails(const Expr *E) { |
| 2534 | E = E->IgnoreParenImpCasts(); |
| 2535 | if (E->containsErrors()) |
| 2536 | return; |
| 2537 | |
| 2538 | ExtractedTypeTraitInfo TraitInfo = ExtractTypeTraitFromExpression(E); |
| 2539 | if (!TraitInfo) |
| 2540 | return; |
| 2541 | |
| 2542 | const auto &[Trait, Args] = TraitInfo.value(); |
| 2543 | switch (Trait) { |
| 2544 | case UTT_IsCppTriviallyRelocatable: |
| 2545 | DiagnoseNonTriviallyRelocatableReason(SemaRef&: *this, Loc: E->getBeginLoc(), T: Args[0]); |
| 2546 | break; |
| 2547 | case UTT_IsReplaceable: |
| 2548 | DiagnoseNonReplaceableReason(SemaRef&: *this, Loc: E->getBeginLoc(), T: Args[0]); |
| 2549 | break; |
| 2550 | case UTT_IsTriviallyCopyable: |
| 2551 | DiagnoseNonTriviallyCopyableReason(SemaRef&: *this, Loc: E->getBeginLoc(), T: Args[0]); |
| 2552 | break; |
| 2553 | case BTT_IsAssignable: |
| 2554 | DiagnoseNonAssignableReason(SemaRef&: *this, Loc: E->getBeginLoc(), T: Args[0], U: Args[1]); |
| 2555 | break; |
| 2556 | case UTT_IsEmpty: |
| 2557 | DiagnoseIsEmptyReason(S&: *this, Loc: E->getBeginLoc(), T: Args[0]); |
| 2558 | break; |
| 2559 | case UTT_IsStandardLayout: |
| 2560 | DiagnoseNonStandardLayoutReason(SemaRef&: *this, Loc: E->getBeginLoc(), T: Args[0]); |
| 2561 | break; |
| 2562 | default: |
| 2563 | break; |
| 2564 | } |
| 2565 | } |
| 2566 | |