| 1 | //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This defines CStringChecker, which is an assortment of checks on calls |
| 10 | // to functions in <string.h>. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "InterCheckerAPI.h" |
| 15 | #include "clang/AST/OperationKinds.h" |
| 16 | #include "clang/Basic/CharInfo.h" |
| 17 | #include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h" |
| 18 | #include "clang/StaticAnalyzer/Core/BugReporter/BugReporterVisitors.h" |
| 19 | #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" |
| 20 | #include "clang/StaticAnalyzer/Core/Checker.h" |
| 21 | #include "clang/StaticAnalyzer/Core/CheckerManager.h" |
| 22 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" |
| 23 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
| 24 | #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" |
| 25 | #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" |
| 26 | #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" |
| 27 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" |
| 28 | #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" |
| 29 | #include "llvm/ADT/APSInt.h" |
| 30 | #include "llvm/ADT/STLExtras.h" |
| 31 | #include "llvm/ADT/StringExtras.h" |
| 32 | #include "llvm/Support/raw_ostream.h" |
| 33 | #include <functional> |
| 34 | #include <optional> |
| 35 | |
| 36 | using namespace clang; |
| 37 | using namespace ento; |
| 38 | using namespace std::placeholders; |
| 39 | |
| 40 | namespace { |
| 41 | struct AnyArgExpr { |
| 42 | const Expr *Expression; |
| 43 | unsigned ArgumentIndex; |
| 44 | }; |
| 45 | struct SourceArgExpr : AnyArgExpr {}; |
| 46 | struct DestinationArgExpr : AnyArgExpr {}; |
| 47 | struct SizeArgExpr : AnyArgExpr {}; |
| 48 | |
| 49 | using ErrorMessage = SmallString<128>; |
| 50 | enum class AccessKind { write, read }; |
| 51 | |
| 52 | static ErrorMessage createOutOfBoundErrorMsg(StringRef FunctionDescription, |
| 53 | AccessKind Access) { |
| 54 | ErrorMessage Message; |
| 55 | llvm::raw_svector_ostream Os(Message); |
| 56 | |
| 57 | // Function classification like: Memory copy function |
| 58 | Os << toUppercase(c: FunctionDescription.front()) |
| 59 | << &FunctionDescription.data()[1]; |
| 60 | |
| 61 | if (Access == AccessKind::write) { |
| 62 | Os << " overflows the destination buffer" ; |
| 63 | } else { // read access |
| 64 | Os << " accesses out-of-bound array element" ; |
| 65 | } |
| 66 | |
| 67 | return Message; |
| 68 | } |
| 69 | |
| 70 | enum class ConcatFnKind { none = 0, strcat = 1, strlcat = 2 }; |
| 71 | |
| 72 | enum class CharKind { Regular = 0, Wide }; |
| 73 | constexpr CharKind CK_Regular = CharKind::Regular; |
| 74 | constexpr CharKind CK_Wide = CharKind::Wide; |
| 75 | |
| 76 | static QualType getCharPtrType(ASTContext &Ctx, CharKind CK) { |
| 77 | return Ctx.getPointerType(T: CK == CharKind::Regular ? Ctx.CharTy |
| 78 | : Ctx.WideCharTy); |
| 79 | } |
| 80 | |
| 81 | class CStringChecker : public Checker< eval::Call, |
| 82 | check::PreStmt<DeclStmt>, |
| 83 | check::LiveSymbols, |
| 84 | check::DeadSymbols, |
| 85 | check::RegionChanges |
| 86 | > { |
| 87 | mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap, |
| 88 | BT_NotCString, BT_AdditionOverflow, BT_UninitRead; |
| 89 | |
| 90 | mutable const char *CurrentFunctionDescription = nullptr; |
| 91 | |
| 92 | public: |
| 93 | /// The filter is used to filter out the diagnostics which are not enabled by |
| 94 | /// the user. |
| 95 | struct CStringChecksFilter { |
| 96 | bool CheckCStringNullArg = false; |
| 97 | bool CheckCStringOutOfBounds = false; |
| 98 | bool CheckCStringBufferOverlap = false; |
| 99 | bool CheckCStringNotNullTerm = false; |
| 100 | bool CheckCStringUninitializedRead = false; |
| 101 | |
| 102 | CheckerNameRef CheckNameCStringNullArg; |
| 103 | CheckerNameRef CheckNameCStringOutOfBounds; |
| 104 | CheckerNameRef CheckNameCStringBufferOverlap; |
| 105 | CheckerNameRef CheckNameCStringNotNullTerm; |
| 106 | CheckerNameRef CheckNameCStringUninitializedRead; |
| 107 | }; |
| 108 | |
| 109 | CStringChecksFilter Filter; |
| 110 | |
| 111 | static void *getTag() { static int tag; return &tag; } |
| 112 | |
| 113 | bool evalCall(const CallEvent &Call, CheckerContext &C) const; |
| 114 | void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const; |
| 115 | void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const; |
| 116 | void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const; |
| 117 | |
| 118 | ProgramStateRef |
| 119 | checkRegionChanges(ProgramStateRef state, |
| 120 | const InvalidatedSymbols *, |
| 121 | ArrayRef<const MemRegion *> ExplicitRegions, |
| 122 | ArrayRef<const MemRegion *> Regions, |
| 123 | const LocationContext *LCtx, |
| 124 | const CallEvent *Call) const; |
| 125 | |
| 126 | using FnCheck = std::function<void(const CStringChecker *, CheckerContext &, |
| 127 | const CallEvent &)>; |
| 128 | |
| 129 | CallDescriptionMap<FnCheck> Callbacks = { |
| 130 | {{CDM::CLibraryMaybeHardened, {"memcpy" }, 3}, |
| 131 | std::bind(f: &CStringChecker::evalMemcpy, args: _1, args: _2, args: _3, args: CK_Regular)}, |
| 132 | {{CDM::CLibraryMaybeHardened, {"wmemcpy" }, 3}, |
| 133 | std::bind(f: &CStringChecker::evalMemcpy, args: _1, args: _2, args: _3, args: CK_Wide)}, |
| 134 | {{CDM::CLibraryMaybeHardened, {"mempcpy" }, 3}, |
| 135 | std::bind(f: &CStringChecker::evalMempcpy, args: _1, args: _2, args: _3, args: CK_Regular)}, |
| 136 | {{CDM::CLibraryMaybeHardened, {"wmempcpy" }, 3}, |
| 137 | std::bind(f: &CStringChecker::evalMempcpy, args: _1, args: _2, args: _3, args: CK_Wide)}, |
| 138 | {{CDM::CLibrary, {"memcmp" }, 3}, |
| 139 | std::bind(f: &CStringChecker::evalMemcmp, args: _1, args: _2, args: _3, args: CK_Regular)}, |
| 140 | {{CDM::CLibrary, {"wmemcmp" }, 3}, |
| 141 | std::bind(f: &CStringChecker::evalMemcmp, args: _1, args: _2, args: _3, args: CK_Wide)}, |
| 142 | {{CDM::CLibraryMaybeHardened, {"memmove" }, 3}, |
| 143 | std::bind(f: &CStringChecker::evalMemmove, args: _1, args: _2, args: _3, args: CK_Regular)}, |
| 144 | {{CDM::CLibraryMaybeHardened, {"wmemmove" }, 3}, |
| 145 | std::bind(f: &CStringChecker::evalMemmove, args: _1, args: _2, args: _3, args: CK_Wide)}, |
| 146 | {{CDM::CLibraryMaybeHardened, {"memset" }, 3}, |
| 147 | &CStringChecker::evalMemset}, |
| 148 | {{CDM::CLibrary, {"explicit_memset" }, 3}, &CStringChecker::evalMemset}, |
| 149 | // FIXME: C23 introduces 'memset_explicit', maybe also model that |
| 150 | {{CDM::CLibraryMaybeHardened, {"strcpy" }, 2}, |
| 151 | &CStringChecker::evalStrcpy}, |
| 152 | {{CDM::CLibraryMaybeHardened, {"strncpy" }, 3}, |
| 153 | &CStringChecker::evalStrncpy}, |
| 154 | {{CDM::CLibraryMaybeHardened, {"stpcpy" }, 2}, |
| 155 | &CStringChecker::evalStpcpy}, |
| 156 | {{CDM::CLibraryMaybeHardened, {"strlcpy" }, 3}, |
| 157 | &CStringChecker::evalStrlcpy}, |
| 158 | {{CDM::CLibraryMaybeHardened, {"strcat" }, 2}, |
| 159 | &CStringChecker::evalStrcat}, |
| 160 | {{CDM::CLibraryMaybeHardened, {"strncat" }, 3}, |
| 161 | &CStringChecker::evalStrncat}, |
| 162 | {{CDM::CLibraryMaybeHardened, {"strlcat" }, 3}, |
| 163 | &CStringChecker::evalStrlcat}, |
| 164 | {{CDM::CLibraryMaybeHardened, {"strlen" }, 1}, |
| 165 | &CStringChecker::evalstrLength}, |
| 166 | {{CDM::CLibrary, {"wcslen" }, 1}, &CStringChecker::evalstrLength}, |
| 167 | {{CDM::CLibraryMaybeHardened, {"strnlen" }, 2}, |
| 168 | &CStringChecker::evalstrnLength}, |
| 169 | {{CDM::CLibrary, {"wcsnlen" }, 2}, &CStringChecker::evalstrnLength}, |
| 170 | {{CDM::CLibrary, {"strcmp" }, 2}, &CStringChecker::evalStrcmp}, |
| 171 | {{CDM::CLibrary, {"strncmp" }, 3}, &CStringChecker::evalStrncmp}, |
| 172 | {{CDM::CLibrary, {"strcasecmp" }, 2}, &CStringChecker::evalStrcasecmp}, |
| 173 | {{CDM::CLibrary, {"strncasecmp" }, 3}, &CStringChecker::evalStrncasecmp}, |
| 174 | {{CDM::CLibrary, {"strsep" }, 2}, &CStringChecker::evalStrsep}, |
| 175 | {{CDM::CLibrary, {"bcopy" }, 3}, &CStringChecker::evalBcopy}, |
| 176 | {{CDM::CLibrary, {"bcmp" }, 3}, |
| 177 | std::bind(f: &CStringChecker::evalMemcmp, args: _1, args: _2, args: _3, args: CK_Regular)}, |
| 178 | {{CDM::CLibrary, {"bzero" }, 2}, &CStringChecker::evalBzero}, |
| 179 | {{CDM::CLibraryMaybeHardened, {"explicit_bzero" }, 2}, |
| 180 | &CStringChecker::evalBzero}, |
| 181 | |
| 182 | // When recognizing calls to the following variadic functions, we accept |
| 183 | // any number of arguments in the call (std::nullopt = accept any |
| 184 | // number), but check that in the declaration there are 2 and 3 |
| 185 | // parameters respectively. (Note that the parameter count does not |
| 186 | // include the "...". Calls where the number of arguments is too small |
| 187 | // will be discarded by the callback.) |
| 188 | {{CDM::CLibraryMaybeHardened, {"sprintf" }, std::nullopt, 2}, |
| 189 | &CStringChecker::evalSprintf}, |
| 190 | {{CDM::CLibraryMaybeHardened, {"snprintf" }, std::nullopt, 3}, |
| 191 | &CStringChecker::evalSnprintf}, |
| 192 | }; |
| 193 | |
| 194 | // These require a bit of special handling. |
| 195 | CallDescription StdCopy{CDM::SimpleFunc, {"std" , "copy" }, 3}, |
| 196 | StdCopyBackward{CDM::SimpleFunc, {"std" , "copy_backward" }, 3}; |
| 197 | |
| 198 | FnCheck identifyCall(const CallEvent &Call, CheckerContext &C) const; |
| 199 | void evalMemcpy(CheckerContext &C, const CallEvent &Call, CharKind CK) const; |
| 200 | void evalMempcpy(CheckerContext &C, const CallEvent &Call, CharKind CK) const; |
| 201 | void evalMemmove(CheckerContext &C, const CallEvent &Call, CharKind CK) const; |
| 202 | void evalBcopy(CheckerContext &C, const CallEvent &Call) const; |
| 203 | void evalCopyCommon(CheckerContext &C, const CallEvent &Call, |
| 204 | ProgramStateRef state, SizeArgExpr Size, |
| 205 | DestinationArgExpr Dest, SourceArgExpr Source, |
| 206 | bool Restricted, bool IsMempcpy, CharKind CK) const; |
| 207 | |
| 208 | void evalMemcmp(CheckerContext &C, const CallEvent &Call, CharKind CK) const; |
| 209 | |
| 210 | void evalstrLength(CheckerContext &C, const CallEvent &Call) const; |
| 211 | void evalstrnLength(CheckerContext &C, const CallEvent &Call) const; |
| 212 | void evalstrLengthCommon(CheckerContext &C, const CallEvent &Call, |
| 213 | bool IsStrnlen = false) const; |
| 214 | |
| 215 | void evalStrcpy(CheckerContext &C, const CallEvent &Call) const; |
| 216 | void evalStrncpy(CheckerContext &C, const CallEvent &Call) const; |
| 217 | void evalStpcpy(CheckerContext &C, const CallEvent &Call) const; |
| 218 | void evalStrlcpy(CheckerContext &C, const CallEvent &Call) const; |
| 219 | void evalStrcpyCommon(CheckerContext &C, const CallEvent &Call, |
| 220 | bool ReturnEnd, bool IsBounded, ConcatFnKind appendK, |
| 221 | bool returnPtr = true) const; |
| 222 | |
| 223 | void evalStrcat(CheckerContext &C, const CallEvent &Call) const; |
| 224 | void evalStrncat(CheckerContext &C, const CallEvent &Call) const; |
| 225 | void evalStrlcat(CheckerContext &C, const CallEvent &Call) const; |
| 226 | |
| 227 | void evalStrcmp(CheckerContext &C, const CallEvent &Call) const; |
| 228 | void evalStrncmp(CheckerContext &C, const CallEvent &Call) const; |
| 229 | void evalStrcasecmp(CheckerContext &C, const CallEvent &Call) const; |
| 230 | void evalStrncasecmp(CheckerContext &C, const CallEvent &Call) const; |
| 231 | void evalStrcmpCommon(CheckerContext &C, const CallEvent &Call, |
| 232 | bool IsBounded = false, bool IgnoreCase = false) const; |
| 233 | |
| 234 | void evalStrsep(CheckerContext &C, const CallEvent &Call) const; |
| 235 | |
| 236 | void evalStdCopy(CheckerContext &C, const CallEvent &Call) const; |
| 237 | void evalStdCopyBackward(CheckerContext &C, const CallEvent &Call) const; |
| 238 | void evalStdCopyCommon(CheckerContext &C, const CallEvent &Call) const; |
| 239 | void evalMemset(CheckerContext &C, const CallEvent &Call) const; |
| 240 | void evalBzero(CheckerContext &C, const CallEvent &Call) const; |
| 241 | |
| 242 | void evalSprintf(CheckerContext &C, const CallEvent &Call) const; |
| 243 | void evalSnprintf(CheckerContext &C, const CallEvent &Call) const; |
| 244 | void evalSprintfCommon(CheckerContext &C, const CallEvent &Call, |
| 245 | bool IsBounded) const; |
| 246 | |
| 247 | // Utility methods |
| 248 | std::pair<ProgramStateRef , ProgramStateRef > |
| 249 | static assumeZero(CheckerContext &C, |
| 250 | ProgramStateRef state, SVal V, QualType Ty); |
| 251 | |
| 252 | static ProgramStateRef setCStringLength(ProgramStateRef state, |
| 253 | const MemRegion *MR, |
| 254 | SVal strLength); |
| 255 | static SVal getCStringLengthForRegion(CheckerContext &C, |
| 256 | ProgramStateRef &state, |
| 257 | const Expr *Ex, |
| 258 | const MemRegion *MR, |
| 259 | bool hypothetical); |
| 260 | SVal getCStringLength(CheckerContext &C, |
| 261 | ProgramStateRef &state, |
| 262 | const Expr *Ex, |
| 263 | SVal Buf, |
| 264 | bool hypothetical = false) const; |
| 265 | |
| 266 | const StringLiteral *getCStringLiteral(CheckerContext &C, |
| 267 | ProgramStateRef &state, |
| 268 | const Expr *expr, |
| 269 | SVal val) const; |
| 270 | |
| 271 | /// Invalidate the destination buffer determined by characters copied. |
| 272 | static ProgramStateRef |
| 273 | invalidateDestinationBufferBySize(CheckerContext &C, ProgramStateRef S, |
| 274 | const Expr *BufE, ConstCFGElementRef Elem, |
| 275 | SVal BufV, SVal SizeV, QualType SizeTy); |
| 276 | |
| 277 | /// Operation never overflows, do not invalidate the super region. |
| 278 | static ProgramStateRef invalidateDestinationBufferNeverOverflows( |
| 279 | CheckerContext &C, ProgramStateRef S, ConstCFGElementRef Elem, SVal BufV); |
| 280 | |
| 281 | /// We do not know whether the operation can overflow (e.g. size is unknown), |
| 282 | /// invalidate the super region and escape related pointers. |
| 283 | static ProgramStateRef invalidateDestinationBufferAlwaysEscapeSuperRegion( |
| 284 | CheckerContext &C, ProgramStateRef S, ConstCFGElementRef Elem, SVal BufV); |
| 285 | |
| 286 | /// Invalidate the source buffer for escaping pointers. |
| 287 | static ProgramStateRef invalidateSourceBuffer(CheckerContext &C, |
| 288 | ProgramStateRef S, |
| 289 | ConstCFGElementRef Elem, |
| 290 | SVal BufV); |
| 291 | |
| 292 | /// @param InvalidationTraitOperations Determine how to invlidate the |
| 293 | /// MemRegion by setting the invalidation traits. Return true to cause pointer |
| 294 | /// escape, or false otherwise. |
| 295 | static ProgramStateRef invalidateBufferAux( |
| 296 | CheckerContext &C, ProgramStateRef State, ConstCFGElementRef Elem, SVal V, |
| 297 | llvm::function_ref<bool(RegionAndSymbolInvalidationTraits &, |
| 298 | const MemRegion *)> |
| 299 | InvalidationTraitOperations); |
| 300 | |
| 301 | static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx, |
| 302 | const MemRegion *MR); |
| 303 | |
| 304 | static bool memsetAux(const Expr *DstBuffer, ConstCFGElementRef Elem, |
| 305 | SVal CharE, const Expr *Size, CheckerContext &C, |
| 306 | ProgramStateRef &State); |
| 307 | |
| 308 | // Re-usable checks |
| 309 | ProgramStateRef checkNonNull(CheckerContext &C, ProgramStateRef State, |
| 310 | AnyArgExpr Arg, SVal l) const; |
| 311 | // Check whether the origin region behind \p Element (like the actual array |
| 312 | // region \p Element is from) is initialized. |
| 313 | ProgramStateRef checkInit(CheckerContext &C, ProgramStateRef state, |
| 314 | AnyArgExpr Buffer, SVal Element, SVal Size) const; |
| 315 | ProgramStateRef CheckLocation(CheckerContext &C, ProgramStateRef state, |
| 316 | AnyArgExpr Buffer, SVal Element, |
| 317 | AccessKind Access, |
| 318 | CharKind CK = CharKind::Regular) const; |
| 319 | ProgramStateRef CheckBufferAccess(CheckerContext &C, ProgramStateRef State, |
| 320 | AnyArgExpr Buffer, SizeArgExpr Size, |
| 321 | AccessKind Access, |
| 322 | CharKind CK = CharKind::Regular) const; |
| 323 | ProgramStateRef CheckOverlap(CheckerContext &C, ProgramStateRef state, |
| 324 | SizeArgExpr Size, AnyArgExpr First, |
| 325 | AnyArgExpr Second, |
| 326 | CharKind CK = CharKind::Regular) const; |
| 327 | void emitOverlapBug(CheckerContext &C, |
| 328 | ProgramStateRef state, |
| 329 | const Stmt *First, |
| 330 | const Stmt *Second) const; |
| 331 | |
| 332 | void emitNullArgBug(CheckerContext &C, ProgramStateRef State, const Stmt *S, |
| 333 | StringRef WarningMsg) const; |
| 334 | void emitOutOfBoundsBug(CheckerContext &C, ProgramStateRef State, |
| 335 | const Stmt *S, StringRef WarningMsg) const; |
| 336 | void emitNotCStringBug(CheckerContext &C, ProgramStateRef State, |
| 337 | const Stmt *S, StringRef WarningMsg) const; |
| 338 | void emitAdditionOverflowBug(CheckerContext &C, ProgramStateRef State) const; |
| 339 | void emitUninitializedReadBug(CheckerContext &C, ProgramStateRef State, |
| 340 | const Expr *E, const MemRegion *R, |
| 341 | StringRef Msg) const; |
| 342 | ProgramStateRef checkAdditionOverflow(CheckerContext &C, |
| 343 | ProgramStateRef state, |
| 344 | NonLoc left, |
| 345 | NonLoc right) const; |
| 346 | |
| 347 | // Return true if the destination buffer of the copy function may be in bound. |
| 348 | // Expects SVal of Size to be positive and unsigned. |
| 349 | // Expects SVal of FirstBuf to be a FieldRegion. |
| 350 | static bool isFirstBufInBound(CheckerContext &C, ProgramStateRef State, |
| 351 | SVal BufVal, QualType BufTy, SVal LengthVal, |
| 352 | QualType LengthTy); |
| 353 | }; |
| 354 | |
| 355 | } //end anonymous namespace |
| 356 | |
| 357 | REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal) |
| 358 | |
| 359 | //===----------------------------------------------------------------------===// |
| 360 | // Individual checks and utility methods. |
| 361 | //===----------------------------------------------------------------------===// |
| 362 | |
| 363 | std::pair<ProgramStateRef, ProgramStateRef> |
| 364 | CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef State, SVal V, |
| 365 | QualType Ty) { |
| 366 | std::optional<DefinedSVal> val = V.getAs<DefinedSVal>(); |
| 367 | if (!val) |
| 368 | return std::pair<ProgramStateRef, ProgramStateRef>(State, State); |
| 369 | |
| 370 | SValBuilder &svalBuilder = C.getSValBuilder(); |
| 371 | DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(type: Ty); |
| 372 | return State->assume(Cond: svalBuilder.evalEQ(state: State, lhs: *val, rhs: zero)); |
| 373 | } |
| 374 | |
| 375 | ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C, |
| 376 | ProgramStateRef State, |
| 377 | AnyArgExpr Arg, SVal l) const { |
| 378 | // If a previous check has failed, propagate the failure. |
| 379 | if (!State) |
| 380 | return nullptr; |
| 381 | |
| 382 | ProgramStateRef stateNull, stateNonNull; |
| 383 | std::tie(args&: stateNull, args&: stateNonNull) = |
| 384 | assumeZero(C, State, V: l, Ty: Arg.Expression->getType()); |
| 385 | |
| 386 | if (stateNull && !stateNonNull) { |
| 387 | if (Filter.CheckCStringNullArg) { |
| 388 | SmallString<80> buf; |
| 389 | llvm::raw_svector_ostream OS(buf); |
| 390 | assert(CurrentFunctionDescription); |
| 391 | OS << "Null pointer passed as " << (Arg.ArgumentIndex + 1) |
| 392 | << llvm::getOrdinalSuffix(Val: Arg.ArgumentIndex + 1) << " argument to " |
| 393 | << CurrentFunctionDescription; |
| 394 | |
| 395 | emitNullArgBug(C, State: stateNull, S: Arg.Expression, WarningMsg: OS.str()); |
| 396 | } |
| 397 | return nullptr; |
| 398 | } |
| 399 | |
| 400 | // From here on, assume that the value is non-null. |
| 401 | assert(stateNonNull); |
| 402 | return stateNonNull; |
| 403 | } |
| 404 | |
| 405 | static std::optional<NonLoc> getIndex(ProgramStateRef State, |
| 406 | const ElementRegion *ER, CharKind CK) { |
| 407 | SValBuilder &SVB = State->getStateManager().getSValBuilder(); |
| 408 | ASTContext &Ctx = SVB.getContext(); |
| 409 | |
| 410 | if (CK == CharKind::Regular) { |
| 411 | if (ER->getValueType() != Ctx.CharTy) |
| 412 | return {}; |
| 413 | return ER->getIndex(); |
| 414 | } |
| 415 | |
| 416 | if (ER->getValueType() != Ctx.WideCharTy) |
| 417 | return {}; |
| 418 | |
| 419 | QualType SizeTy = Ctx.getSizeType(); |
| 420 | NonLoc WideSize = |
| 421 | SVB.makeIntVal(integer: Ctx.getTypeSizeInChars(T: Ctx.WideCharTy).getQuantity(), |
| 422 | type: SizeTy) |
| 423 | .castAs<NonLoc>(); |
| 424 | SVal Offset = |
| 425 | SVB.evalBinOpNN(state: State, op: BO_Mul, lhs: ER->getIndex(), rhs: WideSize, resultTy: SizeTy); |
| 426 | if (Offset.isUnknown()) |
| 427 | return {}; |
| 428 | return Offset.castAs<NonLoc>(); |
| 429 | } |
| 430 | |
| 431 | // Basically 1 -> 1st, 12 -> 12th, etc. |
| 432 | static void printIdxWithOrdinalSuffix(llvm::raw_ostream &Os, unsigned Idx) { |
| 433 | Os << Idx << llvm::getOrdinalSuffix(Val: Idx); |
| 434 | } |
| 435 | |
| 436 | ProgramStateRef CStringChecker::checkInit(CheckerContext &C, |
| 437 | ProgramStateRef State, |
| 438 | AnyArgExpr Buffer, SVal Element, |
| 439 | SVal Size) const { |
| 440 | |
| 441 | // If a previous check has failed, propagate the failure. |
| 442 | if (!State) |
| 443 | return nullptr; |
| 444 | |
| 445 | const MemRegion *R = Element.getAsRegion(); |
| 446 | const auto *ER = dyn_cast_or_null<ElementRegion>(Val: R); |
| 447 | if (!ER) |
| 448 | return State; |
| 449 | |
| 450 | const auto *SuperR = ER->getSuperRegion()->getAs<TypedValueRegion>(); |
| 451 | if (!SuperR) |
| 452 | return State; |
| 453 | |
| 454 | // FIXME: We ought to able to check objects as well. Maybe |
| 455 | // UninitializedObjectChecker could help? |
| 456 | if (!SuperR->getValueType()->isArrayType()) |
| 457 | return State; |
| 458 | |
| 459 | SValBuilder &SVB = C.getSValBuilder(); |
| 460 | ASTContext &Ctx = SVB.getContext(); |
| 461 | |
| 462 | const QualType ElemTy = Ctx.getBaseElementType(QT: SuperR->getValueType()); |
| 463 | const NonLoc Zero = SVB.makeZeroArrayIndex(); |
| 464 | |
| 465 | std::optional<Loc> FirstElementVal = |
| 466 | State->getLValue(ElementType: ElemTy, Idx: Zero, Base: loc::MemRegionVal(SuperR)).getAs<Loc>(); |
| 467 | if (!FirstElementVal) |
| 468 | return State; |
| 469 | |
| 470 | // Ensure that we wouldn't read uninitialized value. |
| 471 | if (Filter.CheckCStringUninitializedRead && |
| 472 | State->getSVal(LV: *FirstElementVal).isUndef()) { |
| 473 | llvm::SmallString<258> Buf; |
| 474 | llvm::raw_svector_ostream OS(Buf); |
| 475 | OS << "The first element of the " ; |
| 476 | printIdxWithOrdinalSuffix(Os&: OS, Idx: Buffer.ArgumentIndex + 1); |
| 477 | OS << " argument is undefined" ; |
| 478 | emitUninitializedReadBug(C, State, E: Buffer.Expression, |
| 479 | R: FirstElementVal->getAsRegion(), Msg: OS.str()); |
| 480 | return nullptr; |
| 481 | } |
| 482 | |
| 483 | // We won't check whether the entire region is fully initialized -- lets just |
| 484 | // check that the first and the last element is. So, onto checking the last |
| 485 | // element: |
| 486 | const QualType IdxTy = SVB.getArrayIndexType(); |
| 487 | |
| 488 | NonLoc ElemSize = |
| 489 | SVB.makeIntVal(integer: Ctx.getTypeSizeInChars(T: ElemTy).getQuantity(), type: IdxTy) |
| 490 | .castAs<NonLoc>(); |
| 491 | |
| 492 | // FIXME: Check that the size arg to the cstring function is divisible by |
| 493 | // size of the actual element type? |
| 494 | |
| 495 | // The type of the argument to the cstring function is either char or wchar, |
| 496 | // but thats not the type of the original array (or memory region). |
| 497 | // Suppose the following: |
| 498 | // int t[5]; |
| 499 | // memcpy(dst, t, sizeof(t) / sizeof(t[0])); |
| 500 | // When checking whether t is fully initialized, we see it as char array of |
| 501 | // size sizeof(int)*5. If we check the last element as a character, we read |
| 502 | // the last byte of an integer, which will be undefined. But just because |
| 503 | // that value is undefined, it doesn't mean that the element is uninitialized! |
| 504 | // For this reason, we need to retrieve the actual last element with the |
| 505 | // correct type. |
| 506 | |
| 507 | // Divide the size argument to the cstring function by the actual element |
| 508 | // type. This value will be size of the array, or the index to the |
| 509 | // past-the-end element. |
| 510 | std::optional<NonLoc> Offset = |
| 511 | SVB.evalBinOpNN(state: State, op: clang::BO_Div, lhs: Size.castAs<NonLoc>(), rhs: ElemSize, |
| 512 | resultTy: IdxTy) |
| 513 | .getAs<NonLoc>(); |
| 514 | |
| 515 | // Retrieve the index of the last element. |
| 516 | const NonLoc One = SVB.makeIntVal(integer: 1, type: IdxTy).castAs<NonLoc>(); |
| 517 | SVal LastIdx = SVB.evalBinOpNN(state: State, op: BO_Sub, lhs: *Offset, rhs: One, resultTy: IdxTy); |
| 518 | |
| 519 | if (!Offset) |
| 520 | return State; |
| 521 | |
| 522 | SVal LastElementVal = |
| 523 | State->getLValue(ElementType: ElemTy, Idx: LastIdx, Base: loc::MemRegionVal(SuperR)); |
| 524 | if (!isa<Loc>(Val: LastElementVal)) |
| 525 | return State; |
| 526 | |
| 527 | if (Filter.CheckCStringUninitializedRead && |
| 528 | State->getSVal(LV: LastElementVal.castAs<Loc>()).isUndef()) { |
| 529 | const llvm::APSInt *IdxInt = LastIdx.getAsInteger(); |
| 530 | // If we can't get emit a sensible last element index, just bail out -- |
| 531 | // prefer to emit nothing in favour of emitting garbage quality reports. |
| 532 | if (!IdxInt) { |
| 533 | C.addSink(); |
| 534 | return nullptr; |
| 535 | } |
| 536 | llvm::SmallString<258> Buf; |
| 537 | llvm::raw_svector_ostream OS(Buf); |
| 538 | OS << "The last accessed element (at index " ; |
| 539 | OS << IdxInt->getExtValue(); |
| 540 | OS << ") in the " ; |
| 541 | printIdxWithOrdinalSuffix(Os&: OS, Idx: Buffer.ArgumentIndex + 1); |
| 542 | OS << " argument is undefined" ; |
| 543 | emitUninitializedReadBug(C, State, E: Buffer.Expression, |
| 544 | R: LastElementVal.getAsRegion(), Msg: OS.str()); |
| 545 | return nullptr; |
| 546 | } |
| 547 | return State; |
| 548 | } |
| 549 | // FIXME: The root of this logic was copied from the old checker |
| 550 | // alpha.security.ArrayBound (which is removed within this commit). |
| 551 | // It should be refactored to use the different, more sophisticated bounds |
| 552 | // checking logic used by the new checker ``security.ArrayBound``. |
| 553 | ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C, |
| 554 | ProgramStateRef state, |
| 555 | AnyArgExpr Buffer, SVal Element, |
| 556 | AccessKind Access, |
| 557 | CharKind CK) const { |
| 558 | |
| 559 | // If a previous check has failed, propagate the failure. |
| 560 | if (!state) |
| 561 | return nullptr; |
| 562 | |
| 563 | // Check for out of bound array element access. |
| 564 | const MemRegion *R = Element.getAsRegion(); |
| 565 | if (!R) |
| 566 | return state; |
| 567 | |
| 568 | const auto *ER = dyn_cast<ElementRegion>(Val: R); |
| 569 | if (!ER) |
| 570 | return state; |
| 571 | |
| 572 | // Get the index of the accessed element. |
| 573 | std::optional<NonLoc> Idx = getIndex(State: state, ER, CK); |
| 574 | if (!Idx) |
| 575 | return state; |
| 576 | |
| 577 | // Get the size of the array. |
| 578 | const auto *superReg = cast<SubRegion>(Val: ER->getSuperRegion()); |
| 579 | DefinedOrUnknownSVal Size = |
| 580 | getDynamicExtent(State: state, MR: superReg, SVB&: C.getSValBuilder()); |
| 581 | |
| 582 | auto [StInBound, StOutBound] = state->assumeInBoundDual(idx: *Idx, upperBound: Size); |
| 583 | if (StOutBound && !StInBound) { |
| 584 | // These checks are either enabled by the CString out-of-bounds checker |
| 585 | // explicitly or implicitly by the Malloc checker. |
| 586 | // In the latter case we only do modeling but do not emit warning. |
| 587 | if (!Filter.CheckCStringOutOfBounds) |
| 588 | return nullptr; |
| 589 | |
| 590 | // Emit a bug report. |
| 591 | ErrorMessage Message = |
| 592 | createOutOfBoundErrorMsg(FunctionDescription: CurrentFunctionDescription, Access); |
| 593 | emitOutOfBoundsBug(C, State: StOutBound, S: Buffer.Expression, WarningMsg: Message); |
| 594 | return nullptr; |
| 595 | } |
| 596 | |
| 597 | // Array bound check succeeded. From this point forward the array bound |
| 598 | // should always succeed. |
| 599 | return StInBound; |
| 600 | } |
| 601 | |
| 602 | ProgramStateRef |
| 603 | CStringChecker::CheckBufferAccess(CheckerContext &C, ProgramStateRef State, |
| 604 | AnyArgExpr Buffer, SizeArgExpr Size, |
| 605 | AccessKind Access, CharKind CK) const { |
| 606 | // If a previous check has failed, propagate the failure. |
| 607 | if (!State) |
| 608 | return nullptr; |
| 609 | |
| 610 | SValBuilder &svalBuilder = C.getSValBuilder(); |
| 611 | ASTContext &Ctx = svalBuilder.getContext(); |
| 612 | |
| 613 | QualType SizeTy = Size.Expression->getType(); |
| 614 | QualType PtrTy = getCharPtrType(Ctx, CK); |
| 615 | |
| 616 | // Check that the first buffer is non-null. |
| 617 | SVal BufVal = C.getSVal(S: Buffer.Expression); |
| 618 | State = checkNonNull(C, State, Arg: Buffer, l: BufVal); |
| 619 | if (!State) |
| 620 | return nullptr; |
| 621 | |
| 622 | // If out-of-bounds checking is turned off, skip the rest. |
| 623 | if (!Filter.CheckCStringOutOfBounds) |
| 624 | return State; |
| 625 | |
| 626 | SVal BufStart = |
| 627 | svalBuilder.evalCast(V: BufVal, CastTy: PtrTy, OriginalTy: Buffer.Expression->getType()); |
| 628 | |
| 629 | // Check if the first byte of the buffer is accessible. |
| 630 | State = CheckLocation(C, state: State, Buffer, Element: BufStart, Access, CK); |
| 631 | |
| 632 | if (!State) |
| 633 | return nullptr; |
| 634 | |
| 635 | // Get the access length and make sure it is known. |
| 636 | // FIXME: This assumes the caller has already checked that the access length |
| 637 | // is positive. And that it's unsigned. |
| 638 | SVal LengthVal = C.getSVal(S: Size.Expression); |
| 639 | std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); |
| 640 | if (!Length) |
| 641 | return State; |
| 642 | |
| 643 | // Compute the offset of the last element to be accessed: size-1. |
| 644 | NonLoc One = svalBuilder.makeIntVal(integer: 1, type: SizeTy).castAs<NonLoc>(); |
| 645 | SVal Offset = svalBuilder.evalBinOpNN(state: State, op: BO_Sub, lhs: *Length, rhs: One, resultTy: SizeTy); |
| 646 | if (Offset.isUnknown()) |
| 647 | return nullptr; |
| 648 | NonLoc LastOffset = Offset.castAs<NonLoc>(); |
| 649 | |
| 650 | // Check that the first buffer is sufficiently long. |
| 651 | if (std::optional<Loc> BufLoc = BufStart.getAs<Loc>()) { |
| 652 | |
| 653 | SVal BufEnd = |
| 654 | svalBuilder.evalBinOpLN(state: State, op: BO_Add, lhs: *BufLoc, rhs: LastOffset, resultTy: PtrTy); |
| 655 | State = CheckLocation(C, state: State, Buffer, Element: BufEnd, Access, CK); |
| 656 | if (Access == AccessKind::read) |
| 657 | State = checkInit(C, State, Buffer, Element: BufEnd, Size: *Length); |
| 658 | |
| 659 | // If the buffer isn't large enough, abort. |
| 660 | if (!State) |
| 661 | return nullptr; |
| 662 | } |
| 663 | |
| 664 | // Large enough or not, return this state! |
| 665 | return State; |
| 666 | } |
| 667 | |
| 668 | ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C, |
| 669 | ProgramStateRef state, |
| 670 | SizeArgExpr Size, AnyArgExpr First, |
| 671 | AnyArgExpr Second, |
| 672 | CharKind CK) const { |
| 673 | if (!Filter.CheckCStringBufferOverlap) |
| 674 | return state; |
| 675 | |
| 676 | // Do a simple check for overlap: if the two arguments are from the same |
| 677 | // buffer, see if the end of the first is greater than the start of the second |
| 678 | // or vice versa. |
| 679 | |
| 680 | // If a previous check has failed, propagate the failure. |
| 681 | if (!state) |
| 682 | return nullptr; |
| 683 | |
| 684 | ProgramStateRef stateTrue, stateFalse; |
| 685 | |
| 686 | // Assume different address spaces cannot overlap. |
| 687 | if (First.Expression->getType()->getPointeeType().getAddressSpace() != |
| 688 | Second.Expression->getType()->getPointeeType().getAddressSpace()) |
| 689 | return state; |
| 690 | |
| 691 | // Get the buffer values and make sure they're known locations. |
| 692 | const LocationContext *LCtx = C.getLocationContext(); |
| 693 | SVal firstVal = state->getSVal(Ex: First.Expression, LCtx); |
| 694 | SVal secondVal = state->getSVal(Ex: Second.Expression, LCtx); |
| 695 | |
| 696 | std::optional<Loc> firstLoc = firstVal.getAs<Loc>(); |
| 697 | if (!firstLoc) |
| 698 | return state; |
| 699 | |
| 700 | std::optional<Loc> secondLoc = secondVal.getAs<Loc>(); |
| 701 | if (!secondLoc) |
| 702 | return state; |
| 703 | |
| 704 | // Are the two values the same? |
| 705 | SValBuilder &svalBuilder = C.getSValBuilder(); |
| 706 | std::tie(args&: stateTrue, args&: stateFalse) = |
| 707 | state->assume(Cond: svalBuilder.evalEQ(state, lhs: *firstLoc, rhs: *secondLoc)); |
| 708 | |
| 709 | if (stateTrue && !stateFalse) { |
| 710 | // If the values are known to be equal, that's automatically an overlap. |
| 711 | emitOverlapBug(C, state: stateTrue, First: First.Expression, Second: Second.Expression); |
| 712 | return nullptr; |
| 713 | } |
| 714 | |
| 715 | // assume the two expressions are not equal. |
| 716 | assert(stateFalse); |
| 717 | state = stateFalse; |
| 718 | |
| 719 | // Which value comes first? |
| 720 | QualType cmpTy = svalBuilder.getConditionType(); |
| 721 | SVal reverse = |
| 722 | svalBuilder.evalBinOpLL(state, op: BO_GT, lhs: *firstLoc, rhs: *secondLoc, resultTy: cmpTy); |
| 723 | std::optional<DefinedOrUnknownSVal> reverseTest = |
| 724 | reverse.getAs<DefinedOrUnknownSVal>(); |
| 725 | if (!reverseTest) |
| 726 | return state; |
| 727 | |
| 728 | std::tie(args&: stateTrue, args&: stateFalse) = state->assume(Cond: *reverseTest); |
| 729 | if (stateTrue) { |
| 730 | if (stateFalse) { |
| 731 | // If we don't know which one comes first, we can't perform this test. |
| 732 | return state; |
| 733 | } else { |
| 734 | // Switch the values so that firstVal is before secondVal. |
| 735 | std::swap(lhs&: firstLoc, rhs&: secondLoc); |
| 736 | |
| 737 | // Switch the Exprs as well, so that they still correspond. |
| 738 | std::swap(a&: First, b&: Second); |
| 739 | } |
| 740 | } |
| 741 | |
| 742 | // Get the length, and make sure it too is known. |
| 743 | SVal LengthVal = state->getSVal(Ex: Size.Expression, LCtx); |
| 744 | std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); |
| 745 | if (!Length) |
| 746 | return state; |
| 747 | |
| 748 | // Convert the first buffer's start address to char*. |
| 749 | // Bail out if the cast fails. |
| 750 | ASTContext &Ctx = svalBuilder.getContext(); |
| 751 | QualType CharPtrTy = getCharPtrType(Ctx, CK); |
| 752 | SVal FirstStart = |
| 753 | svalBuilder.evalCast(V: *firstLoc, CastTy: CharPtrTy, OriginalTy: First.Expression->getType()); |
| 754 | std::optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>(); |
| 755 | if (!FirstStartLoc) |
| 756 | return state; |
| 757 | |
| 758 | // Compute the end of the first buffer. Bail out if THAT fails. |
| 759 | SVal FirstEnd = svalBuilder.evalBinOpLN(state, op: BO_Add, lhs: *FirstStartLoc, |
| 760 | rhs: *Length, resultTy: CharPtrTy); |
| 761 | std::optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>(); |
| 762 | if (!FirstEndLoc) |
| 763 | return state; |
| 764 | |
| 765 | // Is the end of the first buffer past the start of the second buffer? |
| 766 | SVal Overlap = |
| 767 | svalBuilder.evalBinOpLL(state, op: BO_GT, lhs: *FirstEndLoc, rhs: *secondLoc, resultTy: cmpTy); |
| 768 | std::optional<DefinedOrUnknownSVal> OverlapTest = |
| 769 | Overlap.getAs<DefinedOrUnknownSVal>(); |
| 770 | if (!OverlapTest) |
| 771 | return state; |
| 772 | |
| 773 | std::tie(args&: stateTrue, args&: stateFalse) = state->assume(Cond: *OverlapTest); |
| 774 | |
| 775 | if (stateTrue && !stateFalse) { |
| 776 | // Overlap! |
| 777 | emitOverlapBug(C, state: stateTrue, First: First.Expression, Second: Second.Expression); |
| 778 | return nullptr; |
| 779 | } |
| 780 | |
| 781 | // assume the two expressions don't overlap. |
| 782 | assert(stateFalse); |
| 783 | return stateFalse; |
| 784 | } |
| 785 | |
| 786 | void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state, |
| 787 | const Stmt *First, const Stmt *Second) const { |
| 788 | ExplodedNode *N = C.generateErrorNode(State: state); |
| 789 | if (!N) |
| 790 | return; |
| 791 | |
| 792 | if (!BT_Overlap) |
| 793 | BT_Overlap.reset(p: new BugType(Filter.CheckNameCStringBufferOverlap, |
| 794 | categories::UnixAPI, "Improper arguments" )); |
| 795 | |
| 796 | // Generate a report for this bug. |
| 797 | auto report = std::make_unique<PathSensitiveBugReport>( |
| 798 | args&: *BT_Overlap, args: "Arguments must not be overlapping buffers" , args&: N); |
| 799 | report->addRange(R: First->getSourceRange()); |
| 800 | report->addRange(R: Second->getSourceRange()); |
| 801 | |
| 802 | C.emitReport(R: std::move(report)); |
| 803 | } |
| 804 | |
| 805 | void CStringChecker::emitNullArgBug(CheckerContext &C, ProgramStateRef State, |
| 806 | const Stmt *S, StringRef WarningMsg) const { |
| 807 | if (ExplodedNode *N = C.generateErrorNode(State)) { |
| 808 | if (!BT_Null) { |
| 809 | // FIXME: This call uses the string constant 'categories::UnixAPI' as the |
| 810 | // description of the bug; it should be replaced by a real description. |
| 811 | BT_Null.reset( |
| 812 | p: new BugType(Filter.CheckNameCStringNullArg, categories::UnixAPI)); |
| 813 | } |
| 814 | |
| 815 | auto Report = |
| 816 | std::make_unique<PathSensitiveBugReport>(args&: *BT_Null, args&: WarningMsg, args&: N); |
| 817 | Report->addRange(R: S->getSourceRange()); |
| 818 | if (const auto *Ex = dyn_cast<Expr>(Val: S)) |
| 819 | bugreporter::trackExpressionValue(N, E: Ex, R&: *Report); |
| 820 | C.emitReport(R: std::move(Report)); |
| 821 | } |
| 822 | } |
| 823 | |
| 824 | void CStringChecker::emitUninitializedReadBug(CheckerContext &C, |
| 825 | ProgramStateRef State, |
| 826 | const Expr *E, const MemRegion *R, |
| 827 | StringRef Msg) const { |
| 828 | if (ExplodedNode *N = C.generateErrorNode(State)) { |
| 829 | if (!BT_UninitRead) |
| 830 | BT_UninitRead.reset(p: new BugType(Filter.CheckNameCStringUninitializedRead, |
| 831 | "Accessing unitialized/garbage values" )); |
| 832 | |
| 833 | auto Report = |
| 834 | std::make_unique<PathSensitiveBugReport>(args&: *BT_UninitRead, args&: Msg, args&: N); |
| 835 | Report->addNote(Msg: "Other elements might also be undefined" , |
| 836 | Pos: Report->getLocation()); |
| 837 | Report->addRange(R: E->getSourceRange()); |
| 838 | bugreporter::trackExpressionValue(N, E, R&: *Report); |
| 839 | Report->addVisitor<NoStoreFuncVisitor>(ConstructorArgs: R->castAs<SubRegion>()); |
| 840 | C.emitReport(R: std::move(Report)); |
| 841 | } |
| 842 | } |
| 843 | |
| 844 | void CStringChecker::emitOutOfBoundsBug(CheckerContext &C, |
| 845 | ProgramStateRef State, const Stmt *S, |
| 846 | StringRef WarningMsg) const { |
| 847 | if (ExplodedNode *N = C.generateErrorNode(State)) { |
| 848 | if (!BT_Bounds) |
| 849 | BT_Bounds.reset(p: new BugType(Filter.CheckCStringOutOfBounds |
| 850 | ? Filter.CheckNameCStringOutOfBounds |
| 851 | : Filter.CheckNameCStringNullArg, |
| 852 | "Out-of-bound array access" )); |
| 853 | |
| 854 | // FIXME: It would be nice to eventually make this diagnostic more clear, |
| 855 | // e.g., by referencing the original declaration or by saying *why* this |
| 856 | // reference is outside the range. |
| 857 | auto Report = |
| 858 | std::make_unique<PathSensitiveBugReport>(args&: *BT_Bounds, args&: WarningMsg, args&: N); |
| 859 | Report->addRange(R: S->getSourceRange()); |
| 860 | C.emitReport(R: std::move(Report)); |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | void CStringChecker::emitNotCStringBug(CheckerContext &C, ProgramStateRef State, |
| 865 | const Stmt *S, |
| 866 | StringRef WarningMsg) const { |
| 867 | if (ExplodedNode *N = C.generateNonFatalErrorNode(State)) { |
| 868 | if (!BT_NotCString) { |
| 869 | // FIXME: This call uses the string constant 'categories::UnixAPI' as the |
| 870 | // description of the bug; it should be replaced by a real description. |
| 871 | BT_NotCString.reset( |
| 872 | p: new BugType(Filter.CheckNameCStringNotNullTerm, categories::UnixAPI)); |
| 873 | } |
| 874 | |
| 875 | auto Report = |
| 876 | std::make_unique<PathSensitiveBugReport>(args&: *BT_NotCString, args&: WarningMsg, args&: N); |
| 877 | |
| 878 | Report->addRange(R: S->getSourceRange()); |
| 879 | C.emitReport(R: std::move(Report)); |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | void CStringChecker::emitAdditionOverflowBug(CheckerContext &C, |
| 884 | ProgramStateRef State) const { |
| 885 | if (ExplodedNode *N = C.generateErrorNode(State)) { |
| 886 | if (!BT_AdditionOverflow) { |
| 887 | // FIXME: This call uses the word "API" as the description of the bug; |
| 888 | // it should be replaced by a better error message (if this unlikely |
| 889 | // situation continues to exist as a separate bug type). |
| 890 | BT_AdditionOverflow.reset( |
| 891 | p: new BugType(Filter.CheckNameCStringOutOfBounds, "API" )); |
| 892 | } |
| 893 | |
| 894 | // This isn't a great error message, but this should never occur in real |
| 895 | // code anyway -- you'd have to create a buffer longer than a size_t can |
| 896 | // represent, which is sort of a contradiction. |
| 897 | const char *WarningMsg = |
| 898 | "This expression will create a string whose length is too big to " |
| 899 | "be represented as a size_t" ; |
| 900 | |
| 901 | auto Report = std::make_unique<PathSensitiveBugReport>(args&: *BT_AdditionOverflow, |
| 902 | args&: WarningMsg, args&: N); |
| 903 | C.emitReport(R: std::move(Report)); |
| 904 | } |
| 905 | } |
| 906 | |
| 907 | ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C, |
| 908 | ProgramStateRef state, |
| 909 | NonLoc left, |
| 910 | NonLoc right) const { |
| 911 | // If out-of-bounds checking is turned off, skip the rest. |
| 912 | if (!Filter.CheckCStringOutOfBounds) |
| 913 | return state; |
| 914 | |
| 915 | // If a previous check has failed, propagate the failure. |
| 916 | if (!state) |
| 917 | return nullptr; |
| 918 | |
| 919 | SValBuilder &svalBuilder = C.getSValBuilder(); |
| 920 | BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); |
| 921 | |
| 922 | QualType sizeTy = svalBuilder.getContext().getSizeType(); |
| 923 | const llvm::APSInt &maxValInt = BVF.getMaxValue(T: sizeTy); |
| 924 | NonLoc maxVal = svalBuilder.makeIntVal(integer: maxValInt); |
| 925 | |
| 926 | SVal maxMinusRight; |
| 927 | if (isa<nonloc::ConcreteInt>(Val: right)) { |
| 928 | maxMinusRight = svalBuilder.evalBinOpNN(state, op: BO_Sub, lhs: maxVal, rhs: right, |
| 929 | resultTy: sizeTy); |
| 930 | } else { |
| 931 | // Try switching the operands. (The order of these two assignments is |
| 932 | // important!) |
| 933 | maxMinusRight = svalBuilder.evalBinOpNN(state, op: BO_Sub, lhs: maxVal, rhs: left, |
| 934 | resultTy: sizeTy); |
| 935 | left = right; |
| 936 | } |
| 937 | |
| 938 | if (std::optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) { |
| 939 | QualType cmpTy = svalBuilder.getConditionType(); |
| 940 | // If left > max - right, we have an overflow. |
| 941 | SVal willOverflow = svalBuilder.evalBinOpNN(state, op: BO_GT, lhs: left, |
| 942 | rhs: *maxMinusRightNL, resultTy: cmpTy); |
| 943 | |
| 944 | ProgramStateRef stateOverflow, stateOkay; |
| 945 | std::tie(args&: stateOverflow, args&: stateOkay) = |
| 946 | state->assume(Cond: willOverflow.castAs<DefinedOrUnknownSVal>()); |
| 947 | |
| 948 | if (stateOverflow && !stateOkay) { |
| 949 | // We have an overflow. Emit a bug report. |
| 950 | emitAdditionOverflowBug(C, State: stateOverflow); |
| 951 | return nullptr; |
| 952 | } |
| 953 | |
| 954 | // From now on, assume an overflow didn't occur. |
| 955 | assert(stateOkay); |
| 956 | state = stateOkay; |
| 957 | } |
| 958 | |
| 959 | return state; |
| 960 | } |
| 961 | |
| 962 | ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state, |
| 963 | const MemRegion *MR, |
| 964 | SVal strLength) { |
| 965 | assert(!strLength.isUndef() && "Attempt to set an undefined string length" ); |
| 966 | |
| 967 | MR = MR->StripCasts(); |
| 968 | |
| 969 | switch (MR->getKind()) { |
| 970 | case MemRegion::StringRegionKind: |
| 971 | // FIXME: This can happen if we strcpy() into a string region. This is |
| 972 | // undefined [C99 6.4.5p6], but we should still warn about it. |
| 973 | return state; |
| 974 | |
| 975 | case MemRegion::SymbolicRegionKind: |
| 976 | case MemRegion::AllocaRegionKind: |
| 977 | case MemRegion::NonParamVarRegionKind: |
| 978 | case MemRegion::ParamVarRegionKind: |
| 979 | case MemRegion::FieldRegionKind: |
| 980 | case MemRegion::ObjCIvarRegionKind: |
| 981 | // These are the types we can currently track string lengths for. |
| 982 | break; |
| 983 | |
| 984 | case MemRegion::ElementRegionKind: |
| 985 | // FIXME: Handle element regions by upper-bounding the parent region's |
| 986 | // string length. |
| 987 | return state; |
| 988 | |
| 989 | default: |
| 990 | // Other regions (mostly non-data) can't have a reliable C string length. |
| 991 | // For now, just ignore the change. |
| 992 | // FIXME: These are rare but not impossible. We should output some kind of |
| 993 | // warning for things like strcpy((char[]){'a', 0}, "b"); |
| 994 | return state; |
| 995 | } |
| 996 | |
| 997 | if (strLength.isUnknown()) |
| 998 | return state->remove<CStringLength>(K: MR); |
| 999 | |
| 1000 | return state->set<CStringLength>(K: MR, E: strLength); |
| 1001 | } |
| 1002 | |
| 1003 | SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C, |
| 1004 | ProgramStateRef &state, |
| 1005 | const Expr *Ex, |
| 1006 | const MemRegion *MR, |
| 1007 | bool hypothetical) { |
| 1008 | if (!hypothetical) { |
| 1009 | // If there's a recorded length, go ahead and return it. |
| 1010 | const SVal *Recorded = state->get<CStringLength>(key: MR); |
| 1011 | if (Recorded) |
| 1012 | return *Recorded; |
| 1013 | } |
| 1014 | |
| 1015 | // Otherwise, get a new symbol and update the state. |
| 1016 | SValBuilder &svalBuilder = C.getSValBuilder(); |
| 1017 | QualType sizeTy = svalBuilder.getContext().getSizeType(); |
| 1018 | SVal strLength = svalBuilder.getMetadataSymbolVal(symbolTag: CStringChecker::getTag(), |
| 1019 | region: MR, expr: Ex, type: sizeTy, |
| 1020 | LCtx: C.getLocationContext(), |
| 1021 | count: C.blockCount()); |
| 1022 | |
| 1023 | if (!hypothetical) { |
| 1024 | if (std::optional<NonLoc> strLn = strLength.getAs<NonLoc>()) { |
| 1025 | // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4 |
| 1026 | BasicValueFactory &BVF = svalBuilder.getBasicValueFactory(); |
| 1027 | const llvm::APSInt &maxValInt = BVF.getMaxValue(T: sizeTy); |
| 1028 | llvm::APSInt fourInt = APSIntType(maxValInt).getValue(RawValue: 4); |
| 1029 | std::optional<APSIntPtr> maxLengthInt = |
| 1030 | BVF.evalAPSInt(Op: BO_Div, V1: maxValInt, V2: fourInt); |
| 1031 | NonLoc maxLength = svalBuilder.makeIntVal(integer: *maxLengthInt); |
| 1032 | SVal evalLength = svalBuilder.evalBinOpNN(state, op: BO_LE, lhs: *strLn, rhs: maxLength, |
| 1033 | resultTy: svalBuilder.getConditionType()); |
| 1034 | state = state->assume(Cond: evalLength.castAs<DefinedOrUnknownSVal>(), Assumption: true); |
| 1035 | } |
| 1036 | state = state->set<CStringLength>(K: MR, E: strLength); |
| 1037 | } |
| 1038 | |
| 1039 | return strLength; |
| 1040 | } |
| 1041 | |
| 1042 | SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state, |
| 1043 | const Expr *Ex, SVal Buf, |
| 1044 | bool hypothetical) const { |
| 1045 | const MemRegion *MR = Buf.getAsRegion(); |
| 1046 | if (!MR) { |
| 1047 | // If we can't get a region, see if it's something we /know/ isn't a |
| 1048 | // C string. In the context of locations, the only time we can issue such |
| 1049 | // a warning is for labels. |
| 1050 | if (std::optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) { |
| 1051 | if (Filter.CheckCStringNotNullTerm) { |
| 1052 | SmallString<120> buf; |
| 1053 | llvm::raw_svector_ostream os(buf); |
| 1054 | assert(CurrentFunctionDescription); |
| 1055 | os << "Argument to " << CurrentFunctionDescription |
| 1056 | << " is the address of the label '" << Label->getLabel()->getName() |
| 1057 | << "', which is not a null-terminated string" ; |
| 1058 | |
| 1059 | emitNotCStringBug(C, State: state, S: Ex, WarningMsg: os.str()); |
| 1060 | } |
| 1061 | return UndefinedVal(); |
| 1062 | } |
| 1063 | |
| 1064 | // If it's not a region and not a label, give up. |
| 1065 | return UnknownVal(); |
| 1066 | } |
| 1067 | |
| 1068 | // If we have a region, strip casts from it and see if we can figure out |
| 1069 | // its length. For anything we can't figure out, just return UnknownVal. |
| 1070 | MR = MR->StripCasts(); |
| 1071 | |
| 1072 | switch (MR->getKind()) { |
| 1073 | case MemRegion::StringRegionKind: { |
| 1074 | // Modifying the contents of string regions is undefined [C99 6.4.5p6], |
| 1075 | // so we can assume that the byte length is the correct C string length. |
| 1076 | SValBuilder &svalBuilder = C.getSValBuilder(); |
| 1077 | QualType sizeTy = svalBuilder.getContext().getSizeType(); |
| 1078 | const StringLiteral *strLit = cast<StringRegion>(Val: MR)->getStringLiteral(); |
| 1079 | return svalBuilder.makeIntVal(integer: strLit->getLength(), type: sizeTy); |
| 1080 | } |
| 1081 | case MemRegion::NonParamVarRegionKind: { |
| 1082 | // If we have a global constant with a string literal initializer, |
| 1083 | // compute the initializer's length. |
| 1084 | const VarDecl *Decl = cast<NonParamVarRegion>(Val: MR)->getDecl(); |
| 1085 | if (Decl->getType().isConstQualified() && Decl->hasGlobalStorage()) { |
| 1086 | if (const Expr *Init = Decl->getInit()) { |
| 1087 | if (auto *StrLit = dyn_cast<StringLiteral>(Val: Init)) { |
| 1088 | SValBuilder &SvalBuilder = C.getSValBuilder(); |
| 1089 | QualType SizeTy = SvalBuilder.getContext().getSizeType(); |
| 1090 | return SvalBuilder.makeIntVal(integer: StrLit->getLength(), type: SizeTy); |
| 1091 | } |
| 1092 | } |
| 1093 | } |
| 1094 | [[fallthrough]]; |
| 1095 | } |
| 1096 | case MemRegion::SymbolicRegionKind: |
| 1097 | case MemRegion::AllocaRegionKind: |
| 1098 | case MemRegion::ParamVarRegionKind: |
| 1099 | case MemRegion::FieldRegionKind: |
| 1100 | case MemRegion::ObjCIvarRegionKind: |
| 1101 | return getCStringLengthForRegion(C, state, Ex, MR, hypothetical); |
| 1102 | case MemRegion::CompoundLiteralRegionKind: |
| 1103 | // FIXME: Can we track this? Is it necessary? |
| 1104 | return UnknownVal(); |
| 1105 | case MemRegion::ElementRegionKind: |
| 1106 | // FIXME: How can we handle this? It's not good enough to subtract the |
| 1107 | // offset from the base string length; consider "123\x00567" and &a[5]. |
| 1108 | return UnknownVal(); |
| 1109 | default: |
| 1110 | // Other regions (mostly non-data) can't have a reliable C string length. |
| 1111 | // In this case, an error is emitted and UndefinedVal is returned. |
| 1112 | // The caller should always be prepared to handle this case. |
| 1113 | if (Filter.CheckCStringNotNullTerm) { |
| 1114 | SmallString<120> buf; |
| 1115 | llvm::raw_svector_ostream os(buf); |
| 1116 | |
| 1117 | assert(CurrentFunctionDescription); |
| 1118 | os << "Argument to " << CurrentFunctionDescription << " is " ; |
| 1119 | |
| 1120 | if (SummarizeRegion(os, Ctx&: C.getASTContext(), MR)) |
| 1121 | os << ", which is not a null-terminated string" ; |
| 1122 | else |
| 1123 | os << "not a null-terminated string" ; |
| 1124 | |
| 1125 | emitNotCStringBug(C, State: state, S: Ex, WarningMsg: os.str()); |
| 1126 | } |
| 1127 | return UndefinedVal(); |
| 1128 | } |
| 1129 | } |
| 1130 | |
| 1131 | const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C, |
| 1132 | ProgramStateRef &state, const Expr *expr, SVal val) const { |
| 1133 | |
| 1134 | // Get the memory region pointed to by the val. |
| 1135 | const MemRegion *bufRegion = val.getAsRegion(); |
| 1136 | if (!bufRegion) |
| 1137 | return nullptr; |
| 1138 | |
| 1139 | // Strip casts off the memory region. |
| 1140 | bufRegion = bufRegion->StripCasts(); |
| 1141 | |
| 1142 | // Cast the memory region to a string region. |
| 1143 | const StringRegion *strRegion= dyn_cast<StringRegion>(Val: bufRegion); |
| 1144 | if (!strRegion) |
| 1145 | return nullptr; |
| 1146 | |
| 1147 | // Return the actual string in the string region. |
| 1148 | return strRegion->getStringLiteral(); |
| 1149 | } |
| 1150 | |
| 1151 | bool CStringChecker::isFirstBufInBound(CheckerContext &C, ProgramStateRef State, |
| 1152 | SVal BufVal, QualType BufTy, |
| 1153 | SVal LengthVal, QualType LengthTy) { |
| 1154 | // If we do not know that the buffer is long enough we return 'true'. |
| 1155 | // Otherwise the parent region of this field region would also get |
| 1156 | // invalidated, which would lead to warnings based on an unknown state. |
| 1157 | |
| 1158 | if (LengthVal.isUnknown()) |
| 1159 | return false; |
| 1160 | |
| 1161 | // Originally copied from CheckBufferAccess and CheckLocation. |
| 1162 | SValBuilder &SB = C.getSValBuilder(); |
| 1163 | ASTContext &Ctx = C.getASTContext(); |
| 1164 | |
| 1165 | QualType PtrTy = Ctx.getPointerType(T: Ctx.CharTy); |
| 1166 | |
| 1167 | std::optional<NonLoc> Length = LengthVal.getAs<NonLoc>(); |
| 1168 | if (!Length) |
| 1169 | return true; // cf top comment. |
| 1170 | |
| 1171 | // Compute the offset of the last element to be accessed: size-1. |
| 1172 | NonLoc One = SB.makeIntVal(integer: 1, type: LengthTy).castAs<NonLoc>(); |
| 1173 | SVal Offset = SB.evalBinOpNN(state: State, op: BO_Sub, lhs: *Length, rhs: One, resultTy: LengthTy); |
| 1174 | if (Offset.isUnknown()) |
| 1175 | return true; // cf top comment |
| 1176 | NonLoc LastOffset = Offset.castAs<NonLoc>(); |
| 1177 | |
| 1178 | // Check that the first buffer is sufficiently long. |
| 1179 | SVal BufStart = SB.evalCast(V: BufVal, CastTy: PtrTy, OriginalTy: BufTy); |
| 1180 | std::optional<Loc> BufLoc = BufStart.getAs<Loc>(); |
| 1181 | if (!BufLoc) |
| 1182 | return true; // cf top comment. |
| 1183 | |
| 1184 | SVal BufEnd = SB.evalBinOpLN(state: State, op: BO_Add, lhs: *BufLoc, rhs: LastOffset, resultTy: PtrTy); |
| 1185 | |
| 1186 | // Check for out of bound array element access. |
| 1187 | const MemRegion *R = BufEnd.getAsRegion(); |
| 1188 | if (!R) |
| 1189 | return true; // cf top comment. |
| 1190 | |
| 1191 | const ElementRegion *ER = dyn_cast<ElementRegion>(Val: R); |
| 1192 | if (!ER) |
| 1193 | return true; // cf top comment. |
| 1194 | |
| 1195 | // FIXME: Does this crash when a non-standard definition |
| 1196 | // of a library function is encountered? |
| 1197 | assert(ER->getValueType() == C.getASTContext().CharTy && |
| 1198 | "isFirstBufInBound should only be called with char* ElementRegions" ); |
| 1199 | |
| 1200 | // Get the size of the array. |
| 1201 | const SubRegion *superReg = cast<SubRegion>(Val: ER->getSuperRegion()); |
| 1202 | DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, MR: superReg, SVB&: SB); |
| 1203 | |
| 1204 | // Get the index of the accessed element. |
| 1205 | DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>(); |
| 1206 | |
| 1207 | ProgramStateRef StInBound = State->assumeInBound(idx: Idx, upperBound: SizeDV, assumption: true); |
| 1208 | |
| 1209 | return static_cast<bool>(StInBound); |
| 1210 | } |
| 1211 | |
| 1212 | ProgramStateRef CStringChecker::invalidateDestinationBufferBySize( |
| 1213 | CheckerContext &C, ProgramStateRef S, const Expr *BufE, |
| 1214 | ConstCFGElementRef Elem, SVal BufV, SVal SizeV, QualType SizeTy) { |
| 1215 | auto InvalidationTraitOperations = |
| 1216 | [&C, S, BufTy = BufE->getType(), BufV, SizeV, |
| 1217 | SizeTy](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) { |
| 1218 | // If destination buffer is a field region and access is in bound, do |
| 1219 | // not invalidate its super region. |
| 1220 | if (MemRegion::FieldRegionKind == R->getKind() && |
| 1221 | isFirstBufInBound(C, State: S, BufVal: BufV, BufTy, LengthVal: SizeV, LengthTy: SizeTy)) { |
| 1222 | ITraits.setTrait( |
| 1223 | MR: R, |
| 1224 | IK: RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); |
| 1225 | } |
| 1226 | return false; |
| 1227 | }; |
| 1228 | |
| 1229 | return invalidateBufferAux(C, State: S, Elem, V: BufV, InvalidationTraitOperations); |
| 1230 | } |
| 1231 | |
| 1232 | ProgramStateRef |
| 1233 | CStringChecker::invalidateDestinationBufferAlwaysEscapeSuperRegion( |
| 1234 | CheckerContext &C, ProgramStateRef S, ConstCFGElementRef Elem, SVal BufV) { |
| 1235 | auto InvalidationTraitOperations = [](RegionAndSymbolInvalidationTraits &, |
| 1236 | const MemRegion *R) { |
| 1237 | return isa<FieldRegion>(Val: R); |
| 1238 | }; |
| 1239 | |
| 1240 | return invalidateBufferAux(C, State: S, Elem, V: BufV, InvalidationTraitOperations); |
| 1241 | } |
| 1242 | |
| 1243 | ProgramStateRef CStringChecker::invalidateDestinationBufferNeverOverflows( |
| 1244 | CheckerContext &C, ProgramStateRef S, ConstCFGElementRef Elem, SVal BufV) { |
| 1245 | auto InvalidationTraitOperations = |
| 1246 | [](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) { |
| 1247 | if (MemRegion::FieldRegionKind == R->getKind()) |
| 1248 | ITraits.setTrait( |
| 1249 | MR: R, |
| 1250 | IK: RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); |
| 1251 | return false; |
| 1252 | }; |
| 1253 | |
| 1254 | return invalidateBufferAux(C, State: S, Elem, V: BufV, InvalidationTraitOperations); |
| 1255 | } |
| 1256 | |
| 1257 | ProgramStateRef CStringChecker::invalidateSourceBuffer(CheckerContext &C, |
| 1258 | ProgramStateRef S, |
| 1259 | ConstCFGElementRef Elem, |
| 1260 | SVal BufV) { |
| 1261 | auto InvalidationTraitOperations = |
| 1262 | [](RegionAndSymbolInvalidationTraits &ITraits, const MemRegion *R) { |
| 1263 | ITraits.setTrait( |
| 1264 | MR: R->getBaseRegion(), |
| 1265 | IK: RegionAndSymbolInvalidationTraits::TK_PreserveContents); |
| 1266 | ITraits.setTrait(MR: R, |
| 1267 | IK: RegionAndSymbolInvalidationTraits::TK_SuppressEscape); |
| 1268 | return true; |
| 1269 | }; |
| 1270 | |
| 1271 | return invalidateBufferAux(C, State: S, Elem, V: BufV, InvalidationTraitOperations); |
| 1272 | } |
| 1273 | |
| 1274 | ProgramStateRef CStringChecker::invalidateBufferAux( |
| 1275 | CheckerContext &C, ProgramStateRef State, ConstCFGElementRef Elem, SVal V, |
| 1276 | llvm::function_ref<bool(RegionAndSymbolInvalidationTraits &, |
| 1277 | const MemRegion *)> |
| 1278 | InvalidationTraitOperations) { |
| 1279 | std::optional<Loc> L = V.getAs<Loc>(); |
| 1280 | if (!L) |
| 1281 | return State; |
| 1282 | |
| 1283 | // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes |
| 1284 | // some assumptions about the value that CFRefCount can't. Even so, it should |
| 1285 | // probably be refactored. |
| 1286 | if (std::optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) { |
| 1287 | const MemRegion *R = MR->getRegion()->StripCasts(); |
| 1288 | |
| 1289 | // Are we dealing with an ElementRegion? If so, we should be invalidating |
| 1290 | // the super-region. |
| 1291 | if (const ElementRegion *ER = dyn_cast<ElementRegion>(Val: R)) { |
| 1292 | R = ER->getSuperRegion(); |
| 1293 | // FIXME: What about layers of ElementRegions? |
| 1294 | } |
| 1295 | |
| 1296 | // Invalidate this region. |
| 1297 | const LocationContext *LCtx = C.getPredecessor()->getLocationContext(); |
| 1298 | RegionAndSymbolInvalidationTraits ITraits; |
| 1299 | bool CausesPointerEscape = InvalidationTraitOperations(ITraits, R); |
| 1300 | |
| 1301 | return State->invalidateRegions(Regions: R, Elem, BlockCount: C.blockCount(), LCtx, |
| 1302 | CausesPointerEscape, IS: nullptr, Call: nullptr, |
| 1303 | ITraits: &ITraits); |
| 1304 | } |
| 1305 | |
| 1306 | // If we have a non-region value by chance, just remove the binding. |
| 1307 | // FIXME: is this necessary or correct? This handles the non-Region |
| 1308 | // cases. Is it ever valid to store to these? |
| 1309 | return State->killBinding(LV: *L); |
| 1310 | } |
| 1311 | |
| 1312 | bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx, |
| 1313 | const MemRegion *MR) { |
| 1314 | switch (MR->getKind()) { |
| 1315 | case MemRegion::FunctionCodeRegionKind: { |
| 1316 | if (const auto *FD = cast<FunctionCodeRegion>(Val: MR)->getDecl()) |
| 1317 | os << "the address of the function '" << *FD << '\''; |
| 1318 | else |
| 1319 | os << "the address of a function" ; |
| 1320 | return true; |
| 1321 | } |
| 1322 | case MemRegion::BlockCodeRegionKind: |
| 1323 | os << "block text" ; |
| 1324 | return true; |
| 1325 | case MemRegion::BlockDataRegionKind: |
| 1326 | os << "a block" ; |
| 1327 | return true; |
| 1328 | case MemRegion::CXXThisRegionKind: |
| 1329 | case MemRegion::CXXTempObjectRegionKind: |
| 1330 | os << "a C++ temp object of type " |
| 1331 | << cast<TypedValueRegion>(Val: MR)->getValueType(); |
| 1332 | return true; |
| 1333 | case MemRegion::NonParamVarRegionKind: |
| 1334 | os << "a variable of type" << cast<TypedValueRegion>(Val: MR)->getValueType(); |
| 1335 | return true; |
| 1336 | case MemRegion::ParamVarRegionKind: |
| 1337 | os << "a parameter of type" << cast<TypedValueRegion>(Val: MR)->getValueType(); |
| 1338 | return true; |
| 1339 | case MemRegion::FieldRegionKind: |
| 1340 | os << "a field of type " << cast<TypedValueRegion>(Val: MR)->getValueType(); |
| 1341 | return true; |
| 1342 | case MemRegion::ObjCIvarRegionKind: |
| 1343 | os << "an instance variable of type " |
| 1344 | << cast<TypedValueRegion>(Val: MR)->getValueType(); |
| 1345 | return true; |
| 1346 | default: |
| 1347 | return false; |
| 1348 | } |
| 1349 | } |
| 1350 | |
| 1351 | bool CStringChecker::memsetAux(const Expr *DstBuffer, ConstCFGElementRef Elem, |
| 1352 | SVal CharVal, const Expr *Size, |
| 1353 | CheckerContext &C, ProgramStateRef &State) { |
| 1354 | SVal MemVal = C.getSVal(S: DstBuffer); |
| 1355 | SVal SizeVal = C.getSVal(S: Size); |
| 1356 | const MemRegion *MR = MemVal.getAsRegion(); |
| 1357 | if (!MR) |
| 1358 | return false; |
| 1359 | |
| 1360 | // We're about to model memset by producing a "default binding" in the Store. |
| 1361 | // Our current implementation - RegionStore - doesn't support default bindings |
| 1362 | // that don't cover the whole base region. So we should first get the offset |
| 1363 | // and the base region to figure out whether the offset of buffer is 0. |
| 1364 | RegionOffset Offset = MR->getAsOffset(); |
| 1365 | const MemRegion *BR = Offset.getRegion(); |
| 1366 | |
| 1367 | std::optional<NonLoc> SizeNL = SizeVal.getAs<NonLoc>(); |
| 1368 | if (!SizeNL) |
| 1369 | return false; |
| 1370 | |
| 1371 | SValBuilder &svalBuilder = C.getSValBuilder(); |
| 1372 | ASTContext &Ctx = C.getASTContext(); |
| 1373 | |
| 1374 | // void *memset(void *dest, int ch, size_t count); |
| 1375 | // For now we can only handle the case of offset is 0 and concrete char value. |
| 1376 | if (Offset.isValid() && !Offset.hasSymbolicOffset() && |
| 1377 | Offset.getOffset() == 0) { |
| 1378 | // Get the base region's size. |
| 1379 | DefinedOrUnknownSVal SizeDV = getDynamicExtent(State, MR: BR, SVB&: svalBuilder); |
| 1380 | |
| 1381 | ProgramStateRef StateWholeReg, StateNotWholeReg; |
| 1382 | std::tie(args&: StateWholeReg, args&: StateNotWholeReg) = |
| 1383 | State->assume(Cond: svalBuilder.evalEQ(state: State, lhs: SizeDV, rhs: *SizeNL)); |
| 1384 | |
| 1385 | // With the semantic of 'memset()', we should convert the CharVal to |
| 1386 | // unsigned char. |
| 1387 | CharVal = svalBuilder.evalCast(V: CharVal, CastTy: Ctx.UnsignedCharTy, OriginalTy: Ctx.IntTy); |
| 1388 | |
| 1389 | ProgramStateRef StateNullChar, StateNonNullChar; |
| 1390 | std::tie(args&: StateNullChar, args&: StateNonNullChar) = |
| 1391 | assumeZero(C, State, V: CharVal, Ty: Ctx.UnsignedCharTy); |
| 1392 | |
| 1393 | if (StateWholeReg && !StateNotWholeReg && StateNullChar && |
| 1394 | !StateNonNullChar) { |
| 1395 | // If the 'memset()' acts on the whole region of destination buffer and |
| 1396 | // the value of the second argument of 'memset()' is zero, bind the second |
| 1397 | // argument's value to the destination buffer with 'default binding'. |
| 1398 | // FIXME: Since there is no perfect way to bind the non-zero character, we |
| 1399 | // can only deal with zero value here. In the future, we need to deal with |
| 1400 | // the binding of non-zero value in the case of whole region. |
| 1401 | State = State->bindDefaultZero(loc: svalBuilder.makeLoc(region: BR), |
| 1402 | LCtx: C.getLocationContext()); |
| 1403 | } else { |
| 1404 | // If the destination buffer's extent is not equal to the value of |
| 1405 | // third argument, just invalidate buffer. |
| 1406 | State = invalidateDestinationBufferBySize( |
| 1407 | C, S: State, BufE: DstBuffer, Elem, BufV: MemVal, SizeV: SizeVal, SizeTy: Size->getType()); |
| 1408 | } |
| 1409 | |
| 1410 | if (StateNullChar && !StateNonNullChar) { |
| 1411 | // If the value of the second argument of 'memset()' is zero, set the |
| 1412 | // string length of destination buffer to 0 directly. |
| 1413 | State = setCStringLength(state: State, MR, |
| 1414 | strLength: svalBuilder.makeZeroVal(type: Ctx.getSizeType())); |
| 1415 | } else if (!StateNullChar && StateNonNullChar) { |
| 1416 | SVal NewStrLen = svalBuilder.getMetadataSymbolVal( |
| 1417 | symbolTag: CStringChecker::getTag(), region: MR, expr: DstBuffer, type: Ctx.getSizeType(), |
| 1418 | LCtx: C.getLocationContext(), count: C.blockCount()); |
| 1419 | |
| 1420 | // If the value of second argument is not zero, then the string length |
| 1421 | // is at least the size argument. |
| 1422 | SVal NewStrLenGESize = svalBuilder.evalBinOp( |
| 1423 | state: State, op: BO_GE, lhs: NewStrLen, rhs: SizeVal, type: svalBuilder.getConditionType()); |
| 1424 | |
| 1425 | State = setCStringLength( |
| 1426 | state: State->assume(Cond: NewStrLenGESize.castAs<DefinedOrUnknownSVal>(), Assumption: true), |
| 1427 | MR, strLength: NewStrLen); |
| 1428 | } |
| 1429 | } else { |
| 1430 | // If the offset is not zero and char value is not concrete, we can do |
| 1431 | // nothing but invalidate the buffer. |
| 1432 | State = invalidateDestinationBufferBySize(C, S: State, BufE: DstBuffer, Elem, BufV: MemVal, |
| 1433 | SizeV: SizeVal, SizeTy: Size->getType()); |
| 1434 | } |
| 1435 | return true; |
| 1436 | } |
| 1437 | |
| 1438 | //===----------------------------------------------------------------------===// |
| 1439 | // evaluation of individual function calls. |
| 1440 | //===----------------------------------------------------------------------===// |
| 1441 | |
| 1442 | void CStringChecker::evalCopyCommon(CheckerContext &C, const CallEvent &Call, |
| 1443 | ProgramStateRef state, SizeArgExpr Size, |
| 1444 | DestinationArgExpr Dest, |
| 1445 | SourceArgExpr Source, bool Restricted, |
| 1446 | bool IsMempcpy, CharKind CK) const { |
| 1447 | CurrentFunctionDescription = "memory copy function" ; |
| 1448 | |
| 1449 | // See if the size argument is zero. |
| 1450 | const LocationContext *LCtx = C.getLocationContext(); |
| 1451 | SVal sizeVal = state->getSVal(Ex: Size.Expression, LCtx); |
| 1452 | QualType sizeTy = Size.Expression->getType(); |
| 1453 | |
| 1454 | ProgramStateRef stateZeroSize, stateNonZeroSize; |
| 1455 | std::tie(args&: stateZeroSize, args&: stateNonZeroSize) = |
| 1456 | assumeZero(C, State: state, V: sizeVal, Ty: sizeTy); |
| 1457 | |
| 1458 | // Get the value of the Dest. |
| 1459 | SVal destVal = state->getSVal(Ex: Dest.Expression, LCtx); |
| 1460 | |
| 1461 | // If the size is zero, there won't be any actual memory access, so |
| 1462 | // just bind the return value to the destination buffer and return. |
| 1463 | if (stateZeroSize && !stateNonZeroSize) { |
| 1464 | stateZeroSize = |
| 1465 | stateZeroSize->BindExpr(S: Call.getOriginExpr(), LCtx, V: destVal); |
| 1466 | C.addTransition(State: stateZeroSize); |
| 1467 | return; |
| 1468 | } |
| 1469 | |
| 1470 | // If the size can be nonzero, we have to check the other arguments. |
| 1471 | if (stateNonZeroSize) { |
| 1472 | // TODO: If Size is tainted and we cannot prove that it is smaller or equal |
| 1473 | // to the size of the destination buffer, then emit a warning |
| 1474 | // that an attacker may provoke a buffer overflow error. |
| 1475 | state = stateNonZeroSize; |
| 1476 | |
| 1477 | // Ensure the destination is not null. If it is NULL there will be a |
| 1478 | // NULL pointer dereference. |
| 1479 | state = checkNonNull(C, State: state, Arg: Dest, l: destVal); |
| 1480 | if (!state) |
| 1481 | return; |
| 1482 | |
| 1483 | // Get the value of the Src. |
| 1484 | SVal srcVal = state->getSVal(Ex: Source.Expression, LCtx); |
| 1485 | |
| 1486 | // Ensure the source is not null. If it is NULL there will be a |
| 1487 | // NULL pointer dereference. |
| 1488 | state = checkNonNull(C, State: state, Arg: Source, l: srcVal); |
| 1489 | if (!state) |
| 1490 | return; |
| 1491 | |
| 1492 | // Ensure the accesses are valid and that the buffers do not overlap. |
| 1493 | state = CheckBufferAccess(C, State: state, Buffer: Dest, Size, Access: AccessKind::write, CK); |
| 1494 | state = CheckBufferAccess(C, State: state, Buffer: Source, Size, Access: AccessKind::read, CK); |
| 1495 | |
| 1496 | if (Restricted) |
| 1497 | state = CheckOverlap(C, state, Size, First: Dest, Second: Source, CK); |
| 1498 | |
| 1499 | if (!state) |
| 1500 | return; |
| 1501 | |
| 1502 | // If this is mempcpy, get the byte after the last byte copied and |
| 1503 | // bind the expr. |
| 1504 | if (IsMempcpy) { |
| 1505 | // Get the byte after the last byte copied. |
| 1506 | SValBuilder &SvalBuilder = C.getSValBuilder(); |
| 1507 | ASTContext &Ctx = SvalBuilder.getContext(); |
| 1508 | QualType CharPtrTy = getCharPtrType(Ctx, CK); |
| 1509 | SVal DestRegCharVal = |
| 1510 | SvalBuilder.evalCast(V: destVal, CastTy: CharPtrTy, OriginalTy: Dest.Expression->getType()); |
| 1511 | SVal lastElement = C.getSValBuilder().evalBinOp( |
| 1512 | state, op: BO_Add, lhs: DestRegCharVal, rhs: sizeVal, type: Dest.Expression->getType()); |
| 1513 | // If we don't know how much we copied, we can at least |
| 1514 | // conjure a return value for later. |
| 1515 | if (lastElement.isUnknown()) |
| 1516 | lastElement = C.getSValBuilder().conjureSymbolVal(call: Call, visitCount: C.blockCount()); |
| 1517 | |
| 1518 | // The byte after the last byte copied is the return value. |
| 1519 | state = state->BindExpr(S: Call.getOriginExpr(), LCtx, V: lastElement); |
| 1520 | } else { |
| 1521 | // All other copies return the destination buffer. |
| 1522 | // (Well, bcopy() has a void return type, but this won't hurt.) |
| 1523 | state = state->BindExpr(S: Call.getOriginExpr(), LCtx, V: destVal); |
| 1524 | } |
| 1525 | |
| 1526 | // Invalidate the destination (regular invalidation without pointer-escaping |
| 1527 | // the address of the top-level region). |
| 1528 | // FIXME: Even if we can't perfectly model the copy, we should see if we |
| 1529 | // can use LazyCompoundVals to copy the source values into the destination. |
| 1530 | // This would probably remove any existing bindings past the end of the |
| 1531 | // copied region, but that's still an improvement over blank invalidation. |
| 1532 | state = invalidateDestinationBufferBySize( |
| 1533 | C, S: state, BufE: Dest.Expression, Elem: Call.getCFGElementRef(), |
| 1534 | BufV: C.getSVal(S: Dest.Expression), SizeV: sizeVal, SizeTy: Size.Expression->getType()); |
| 1535 | |
| 1536 | // Invalidate the source (const-invalidation without const-pointer-escaping |
| 1537 | // the address of the top-level region). |
| 1538 | state = invalidateSourceBuffer(C, S: state, Elem: Call.getCFGElementRef(), |
| 1539 | BufV: C.getSVal(S: Source.Expression)); |
| 1540 | |
| 1541 | C.addTransition(State: state); |
| 1542 | } |
| 1543 | } |
| 1544 | |
| 1545 | void CStringChecker::evalMemcpy(CheckerContext &C, const CallEvent &Call, |
| 1546 | CharKind CK) const { |
| 1547 | // void *memcpy(void *restrict dst, const void *restrict src, size_t n); |
| 1548 | // The return value is the address of the destination buffer. |
| 1549 | DestinationArgExpr Dest = {{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
| 1550 | SourceArgExpr Src = {{.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}}; |
| 1551 | SizeArgExpr Size = {{.Expression: Call.getArgExpr(Index: 2), .ArgumentIndex: 2}}; |
| 1552 | |
| 1553 | ProgramStateRef State = C.getState(); |
| 1554 | |
| 1555 | constexpr bool IsRestricted = true; |
| 1556 | constexpr bool IsMempcpy = false; |
| 1557 | evalCopyCommon(C, Call, state: State, Size, Dest, Source: Src, Restricted: IsRestricted, IsMempcpy, CK); |
| 1558 | } |
| 1559 | |
| 1560 | void CStringChecker::evalMempcpy(CheckerContext &C, const CallEvent &Call, |
| 1561 | CharKind CK) const { |
| 1562 | // void *mempcpy(void *restrict dst, const void *restrict src, size_t n); |
| 1563 | // The return value is a pointer to the byte following the last written byte. |
| 1564 | DestinationArgExpr Dest = {{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
| 1565 | SourceArgExpr Src = {{.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}}; |
| 1566 | SizeArgExpr Size = {{.Expression: Call.getArgExpr(Index: 2), .ArgumentIndex: 2}}; |
| 1567 | |
| 1568 | constexpr bool IsRestricted = true; |
| 1569 | constexpr bool IsMempcpy = true; |
| 1570 | evalCopyCommon(C, Call, state: C.getState(), Size, Dest, Source: Src, Restricted: IsRestricted, |
| 1571 | IsMempcpy, CK); |
| 1572 | } |
| 1573 | |
| 1574 | void CStringChecker::evalMemmove(CheckerContext &C, const CallEvent &Call, |
| 1575 | CharKind CK) const { |
| 1576 | // void *memmove(void *dst, const void *src, size_t n); |
| 1577 | // The return value is the address of the destination buffer. |
| 1578 | DestinationArgExpr Dest = {{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
| 1579 | SourceArgExpr Src = {{.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}}; |
| 1580 | SizeArgExpr Size = {{.Expression: Call.getArgExpr(Index: 2), .ArgumentIndex: 2}}; |
| 1581 | |
| 1582 | constexpr bool IsRestricted = false; |
| 1583 | constexpr bool IsMempcpy = false; |
| 1584 | evalCopyCommon(C, Call, state: C.getState(), Size, Dest, Source: Src, Restricted: IsRestricted, |
| 1585 | IsMempcpy, CK); |
| 1586 | } |
| 1587 | |
| 1588 | void CStringChecker::evalBcopy(CheckerContext &C, const CallEvent &Call) const { |
| 1589 | // void bcopy(const void *src, void *dst, size_t n); |
| 1590 | SourceArgExpr Src{{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
| 1591 | DestinationArgExpr Dest = {{.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}}; |
| 1592 | SizeArgExpr Size = {{.Expression: Call.getArgExpr(Index: 2), .ArgumentIndex: 2}}; |
| 1593 | |
| 1594 | constexpr bool IsRestricted = false; |
| 1595 | constexpr bool IsMempcpy = false; |
| 1596 | evalCopyCommon(C, Call, state: C.getState(), Size, Dest, Source: Src, Restricted: IsRestricted, |
| 1597 | IsMempcpy, CK: CharKind::Regular); |
| 1598 | } |
| 1599 | |
| 1600 | void CStringChecker::evalMemcmp(CheckerContext &C, const CallEvent &Call, |
| 1601 | CharKind CK) const { |
| 1602 | // int memcmp(const void *s1, const void *s2, size_t n); |
| 1603 | CurrentFunctionDescription = "memory comparison function" ; |
| 1604 | |
| 1605 | AnyArgExpr Left = {.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}; |
| 1606 | AnyArgExpr Right = {.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}; |
| 1607 | SizeArgExpr Size = {{.Expression: Call.getArgExpr(Index: 2), .ArgumentIndex: 2}}; |
| 1608 | |
| 1609 | ProgramStateRef State = C.getState(); |
| 1610 | SValBuilder &Builder = C.getSValBuilder(); |
| 1611 | const LocationContext *LCtx = C.getLocationContext(); |
| 1612 | |
| 1613 | // See if the size argument is zero. |
| 1614 | SVal sizeVal = State->getSVal(Ex: Size.Expression, LCtx); |
| 1615 | QualType sizeTy = Size.Expression->getType(); |
| 1616 | |
| 1617 | ProgramStateRef stateZeroSize, stateNonZeroSize; |
| 1618 | std::tie(args&: stateZeroSize, args&: stateNonZeroSize) = |
| 1619 | assumeZero(C, State, V: sizeVal, Ty: sizeTy); |
| 1620 | |
| 1621 | // If the size can be zero, the result will be 0 in that case, and we don't |
| 1622 | // have to check either of the buffers. |
| 1623 | if (stateZeroSize) { |
| 1624 | State = stateZeroSize; |
| 1625 | State = State->BindExpr(S: Call.getOriginExpr(), LCtx, |
| 1626 | V: Builder.makeZeroVal(type: Call.getResultType())); |
| 1627 | C.addTransition(State); |
| 1628 | } |
| 1629 | |
| 1630 | // If the size can be nonzero, we have to check the other arguments. |
| 1631 | if (stateNonZeroSize) { |
| 1632 | State = stateNonZeroSize; |
| 1633 | // If we know the two buffers are the same, we know the result is 0. |
| 1634 | // First, get the two buffers' addresses. Another checker will have already |
| 1635 | // made sure they're not undefined. |
| 1636 | DefinedOrUnknownSVal LV = |
| 1637 | State->getSVal(Ex: Left.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); |
| 1638 | DefinedOrUnknownSVal RV = |
| 1639 | State->getSVal(Ex: Right.Expression, LCtx).castAs<DefinedOrUnknownSVal>(); |
| 1640 | |
| 1641 | // See if they are the same. |
| 1642 | ProgramStateRef SameBuffer, NotSameBuffer; |
| 1643 | std::tie(args&: SameBuffer, args&: NotSameBuffer) = |
| 1644 | State->assume(Cond: Builder.evalEQ(state: State, lhs: LV, rhs: RV)); |
| 1645 | |
| 1646 | // If the two arguments are the same buffer, we know the result is 0, |
| 1647 | // and we only need to check one size. |
| 1648 | if (SameBuffer && !NotSameBuffer) { |
| 1649 | State = SameBuffer; |
| 1650 | State = CheckBufferAccess(C, State, Buffer: Left, Size, Access: AccessKind::read); |
| 1651 | if (State) { |
| 1652 | State = SameBuffer->BindExpr(S: Call.getOriginExpr(), LCtx, |
| 1653 | V: Builder.makeZeroVal(type: Call.getResultType())); |
| 1654 | C.addTransition(State); |
| 1655 | } |
| 1656 | return; |
| 1657 | } |
| 1658 | |
| 1659 | // If the two arguments might be different buffers, we have to check |
| 1660 | // the size of both of them. |
| 1661 | assert(NotSameBuffer); |
| 1662 | State = CheckBufferAccess(C, State, Buffer: Right, Size, Access: AccessKind::read, CK); |
| 1663 | State = CheckBufferAccess(C, State, Buffer: Left, Size, Access: AccessKind::read, CK); |
| 1664 | if (State) { |
| 1665 | // The return value is the comparison result, which we don't know. |
| 1666 | SVal CmpV = Builder.conjureSymbolVal(call: Call, visitCount: C.blockCount()); |
| 1667 | State = State->BindExpr(S: Call.getOriginExpr(), LCtx, V: CmpV); |
| 1668 | C.addTransition(State); |
| 1669 | } |
| 1670 | } |
| 1671 | } |
| 1672 | |
| 1673 | void CStringChecker::evalstrLength(CheckerContext &C, |
| 1674 | const CallEvent &Call) const { |
| 1675 | // size_t strlen(const char *s); |
| 1676 | evalstrLengthCommon(C, Call, /* IsStrnlen = */ false); |
| 1677 | } |
| 1678 | |
| 1679 | void CStringChecker::evalstrnLength(CheckerContext &C, |
| 1680 | const CallEvent &Call) const { |
| 1681 | // size_t strnlen(const char *s, size_t maxlen); |
| 1682 | evalstrLengthCommon(C, Call, /* IsStrnlen = */ true); |
| 1683 | } |
| 1684 | |
| 1685 | void CStringChecker::evalstrLengthCommon(CheckerContext &C, |
| 1686 | const CallEvent &Call, |
| 1687 | bool IsStrnlen) const { |
| 1688 | CurrentFunctionDescription = "string length function" ; |
| 1689 | ProgramStateRef state = C.getState(); |
| 1690 | const LocationContext *LCtx = C.getLocationContext(); |
| 1691 | |
| 1692 | if (IsStrnlen) { |
| 1693 | const Expr *maxlenExpr = Call.getArgExpr(Index: 1); |
| 1694 | SVal maxlenVal = state->getSVal(Ex: maxlenExpr, LCtx); |
| 1695 | |
| 1696 | ProgramStateRef stateZeroSize, stateNonZeroSize; |
| 1697 | std::tie(args&: stateZeroSize, args&: stateNonZeroSize) = |
| 1698 | assumeZero(C, State: state, V: maxlenVal, Ty: maxlenExpr->getType()); |
| 1699 | |
| 1700 | // If the size can be zero, the result will be 0 in that case, and we don't |
| 1701 | // have to check the string itself. |
| 1702 | if (stateZeroSize) { |
| 1703 | SVal zero = C.getSValBuilder().makeZeroVal(type: Call.getResultType()); |
| 1704 | stateZeroSize = stateZeroSize->BindExpr(S: Call.getOriginExpr(), LCtx, V: zero); |
| 1705 | C.addTransition(State: stateZeroSize); |
| 1706 | } |
| 1707 | |
| 1708 | // If the size is GUARANTEED to be zero, we're done! |
| 1709 | if (!stateNonZeroSize) |
| 1710 | return; |
| 1711 | |
| 1712 | // Otherwise, record the assumption that the size is nonzero. |
| 1713 | state = stateNonZeroSize; |
| 1714 | } |
| 1715 | |
| 1716 | // Check that the string argument is non-null. |
| 1717 | AnyArgExpr Arg = {.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}; |
| 1718 | SVal ArgVal = state->getSVal(Ex: Arg.Expression, LCtx); |
| 1719 | state = checkNonNull(C, State: state, Arg, l: ArgVal); |
| 1720 | |
| 1721 | if (!state) |
| 1722 | return; |
| 1723 | |
| 1724 | SVal strLength = getCStringLength(C, state, Ex: Arg.Expression, Buf: ArgVal); |
| 1725 | |
| 1726 | // If the argument isn't a valid C string, there's no valid state to |
| 1727 | // transition to. |
| 1728 | if (strLength.isUndef()) |
| 1729 | return; |
| 1730 | |
| 1731 | DefinedOrUnknownSVal result = UnknownVal(); |
| 1732 | |
| 1733 | // If the check is for strnlen() then bind the return value to no more than |
| 1734 | // the maxlen value. |
| 1735 | if (IsStrnlen) { |
| 1736 | QualType cmpTy = C.getSValBuilder().getConditionType(); |
| 1737 | |
| 1738 | // It's a little unfortunate to be getting this again, |
| 1739 | // but it's not that expensive... |
| 1740 | const Expr *maxlenExpr = Call.getArgExpr(Index: 1); |
| 1741 | SVal maxlenVal = state->getSVal(Ex: maxlenExpr, LCtx); |
| 1742 | |
| 1743 | std::optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); |
| 1744 | std::optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>(); |
| 1745 | |
| 1746 | if (strLengthNL && maxlenValNL) { |
| 1747 | ProgramStateRef stateStringTooLong, stateStringNotTooLong; |
| 1748 | |
| 1749 | // Check if the strLength is greater than the maxlen. |
| 1750 | std::tie(args&: stateStringTooLong, args&: stateStringNotTooLong) = state->assume( |
| 1751 | Cond: C.getSValBuilder() |
| 1752 | .evalBinOpNN(state, op: BO_GT, lhs: *strLengthNL, rhs: *maxlenValNL, resultTy: cmpTy) |
| 1753 | .castAs<DefinedOrUnknownSVal>()); |
| 1754 | |
| 1755 | if (stateStringTooLong && !stateStringNotTooLong) { |
| 1756 | // If the string is longer than maxlen, return maxlen. |
| 1757 | result = *maxlenValNL; |
| 1758 | } else if (stateStringNotTooLong && !stateStringTooLong) { |
| 1759 | // If the string is shorter than maxlen, return its length. |
| 1760 | result = *strLengthNL; |
| 1761 | } |
| 1762 | } |
| 1763 | |
| 1764 | if (result.isUnknown()) { |
| 1765 | // If we don't have enough information for a comparison, there's |
| 1766 | // no guarantee the full string length will actually be returned. |
| 1767 | // All we know is the return value is the min of the string length |
| 1768 | // and the limit. This is better than nothing. |
| 1769 | result = C.getSValBuilder().conjureSymbolVal(call: Call, visitCount: C.blockCount()); |
| 1770 | NonLoc resultNL = result.castAs<NonLoc>(); |
| 1771 | |
| 1772 | if (strLengthNL) { |
| 1773 | state = state->assume(Cond: C.getSValBuilder().evalBinOpNN( |
| 1774 | state, op: BO_LE, lhs: resultNL, rhs: *strLengthNL, resultTy: cmpTy) |
| 1775 | .castAs<DefinedOrUnknownSVal>(), Assumption: true); |
| 1776 | } |
| 1777 | |
| 1778 | if (maxlenValNL) { |
| 1779 | state = state->assume(Cond: C.getSValBuilder().evalBinOpNN( |
| 1780 | state, op: BO_LE, lhs: resultNL, rhs: *maxlenValNL, resultTy: cmpTy) |
| 1781 | .castAs<DefinedOrUnknownSVal>(), Assumption: true); |
| 1782 | } |
| 1783 | } |
| 1784 | |
| 1785 | } else { |
| 1786 | // This is a plain strlen(), not strnlen(). |
| 1787 | result = strLength.castAs<DefinedOrUnknownSVal>(); |
| 1788 | |
| 1789 | // If we don't know the length of the string, conjure a return |
| 1790 | // value, so it can be used in constraints, at least. |
| 1791 | if (result.isUnknown()) { |
| 1792 | result = C.getSValBuilder().conjureSymbolVal(call: Call, visitCount: C.blockCount()); |
| 1793 | } |
| 1794 | } |
| 1795 | |
| 1796 | // Bind the return value. |
| 1797 | assert(!result.isUnknown() && "Should have conjured a value by now" ); |
| 1798 | state = state->BindExpr(S: Call.getOriginExpr(), LCtx, V: result); |
| 1799 | C.addTransition(State: state); |
| 1800 | } |
| 1801 | |
| 1802 | void CStringChecker::evalStrcpy(CheckerContext &C, |
| 1803 | const CallEvent &Call) const { |
| 1804 | // char *strcpy(char *restrict dst, const char *restrict src); |
| 1805 | evalStrcpyCommon(C, Call, |
| 1806 | /* ReturnEnd = */ false, |
| 1807 | /* IsBounded = */ false, |
| 1808 | /* appendK = */ ConcatFnKind::none); |
| 1809 | } |
| 1810 | |
| 1811 | void CStringChecker::evalStrncpy(CheckerContext &C, |
| 1812 | const CallEvent &Call) const { |
| 1813 | // char *strncpy(char *restrict dst, const char *restrict src, size_t n); |
| 1814 | evalStrcpyCommon(C, Call, |
| 1815 | /* ReturnEnd = */ false, |
| 1816 | /* IsBounded = */ true, |
| 1817 | /* appendK = */ ConcatFnKind::none); |
| 1818 | } |
| 1819 | |
| 1820 | void CStringChecker::evalStpcpy(CheckerContext &C, |
| 1821 | const CallEvent &Call) const { |
| 1822 | // char *stpcpy(char *restrict dst, const char *restrict src); |
| 1823 | evalStrcpyCommon(C, Call, |
| 1824 | /* ReturnEnd = */ true, |
| 1825 | /* IsBounded = */ false, |
| 1826 | /* appendK = */ ConcatFnKind::none); |
| 1827 | } |
| 1828 | |
| 1829 | void CStringChecker::evalStrlcpy(CheckerContext &C, |
| 1830 | const CallEvent &Call) const { |
| 1831 | // size_t strlcpy(char *dest, const char *src, size_t size); |
| 1832 | evalStrcpyCommon(C, Call, |
| 1833 | /* ReturnEnd = */ true, |
| 1834 | /* IsBounded = */ true, |
| 1835 | /* appendK = */ ConcatFnKind::none, |
| 1836 | /* returnPtr = */ false); |
| 1837 | } |
| 1838 | |
| 1839 | void CStringChecker::evalStrcat(CheckerContext &C, |
| 1840 | const CallEvent &Call) const { |
| 1841 | // char *strcat(char *restrict s1, const char *restrict s2); |
| 1842 | evalStrcpyCommon(C, Call, |
| 1843 | /* ReturnEnd = */ false, |
| 1844 | /* IsBounded = */ false, |
| 1845 | /* appendK = */ ConcatFnKind::strcat); |
| 1846 | } |
| 1847 | |
| 1848 | void CStringChecker::evalStrncat(CheckerContext &C, |
| 1849 | const CallEvent &Call) const { |
| 1850 | // char *strncat(char *restrict s1, const char *restrict s2, size_t n); |
| 1851 | evalStrcpyCommon(C, Call, |
| 1852 | /* ReturnEnd = */ false, |
| 1853 | /* IsBounded = */ true, |
| 1854 | /* appendK = */ ConcatFnKind::strcat); |
| 1855 | } |
| 1856 | |
| 1857 | void CStringChecker::evalStrlcat(CheckerContext &C, |
| 1858 | const CallEvent &Call) const { |
| 1859 | // size_t strlcat(char *dst, const char *src, size_t size); |
| 1860 | // It will append at most size - strlen(dst) - 1 bytes, |
| 1861 | // NULL-terminating the result. |
| 1862 | evalStrcpyCommon(C, Call, |
| 1863 | /* ReturnEnd = */ false, |
| 1864 | /* IsBounded = */ true, |
| 1865 | /* appendK = */ ConcatFnKind::strlcat, |
| 1866 | /* returnPtr = */ false); |
| 1867 | } |
| 1868 | |
| 1869 | void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallEvent &Call, |
| 1870 | bool ReturnEnd, bool IsBounded, |
| 1871 | ConcatFnKind appendK, |
| 1872 | bool returnPtr) const { |
| 1873 | if (appendK == ConcatFnKind::none) |
| 1874 | CurrentFunctionDescription = "string copy function" ; |
| 1875 | else |
| 1876 | CurrentFunctionDescription = "string concatenation function" ; |
| 1877 | |
| 1878 | ProgramStateRef state = C.getState(); |
| 1879 | const LocationContext *LCtx = C.getLocationContext(); |
| 1880 | |
| 1881 | // Check that the destination is non-null. |
| 1882 | DestinationArgExpr Dst = {{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
| 1883 | SVal DstVal = state->getSVal(Ex: Dst.Expression, LCtx); |
| 1884 | state = checkNonNull(C, State: state, Arg: Dst, l: DstVal); |
| 1885 | if (!state) |
| 1886 | return; |
| 1887 | |
| 1888 | // Check that the source is non-null. |
| 1889 | SourceArgExpr srcExpr = {{.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}}; |
| 1890 | SVal srcVal = state->getSVal(Ex: srcExpr.Expression, LCtx); |
| 1891 | state = checkNonNull(C, State: state, Arg: srcExpr, l: srcVal); |
| 1892 | if (!state) |
| 1893 | return; |
| 1894 | |
| 1895 | // Get the string length of the source. |
| 1896 | SVal strLength = getCStringLength(C, state, Ex: srcExpr.Expression, Buf: srcVal); |
| 1897 | std::optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>(); |
| 1898 | |
| 1899 | // Get the string length of the destination buffer. |
| 1900 | SVal dstStrLength = getCStringLength(C, state, Ex: Dst.Expression, Buf: DstVal); |
| 1901 | std::optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>(); |
| 1902 | |
| 1903 | // If the source isn't a valid C string, give up. |
| 1904 | if (strLength.isUndef()) |
| 1905 | return; |
| 1906 | |
| 1907 | SValBuilder &svalBuilder = C.getSValBuilder(); |
| 1908 | QualType cmpTy = svalBuilder.getConditionType(); |
| 1909 | QualType sizeTy = svalBuilder.getContext().getSizeType(); |
| 1910 | |
| 1911 | // These two values allow checking two kinds of errors: |
| 1912 | // - actual overflows caused by a source that doesn't fit in the destination |
| 1913 | // - potential overflows caused by a bound that could exceed the destination |
| 1914 | SVal amountCopied = UnknownVal(); |
| 1915 | SVal maxLastElementIndex = UnknownVal(); |
| 1916 | const char *boundWarning = nullptr; |
| 1917 | |
| 1918 | // FIXME: Why do we choose the srcExpr if the access has no size? |
| 1919 | // Note that the 3rd argument of the call would be the size parameter. |
| 1920 | SizeArgExpr SrcExprAsSizeDummy = { |
| 1921 | {.Expression: srcExpr.Expression, .ArgumentIndex: srcExpr.ArgumentIndex}}; |
| 1922 | state = CheckOverlap( |
| 1923 | C, state, |
| 1924 | Size: (IsBounded ? SizeArgExpr{{.Expression: Call.getArgExpr(Index: 2), .ArgumentIndex: 2}} : SrcExprAsSizeDummy), |
| 1925 | First: Dst, Second: srcExpr); |
| 1926 | |
| 1927 | if (!state) |
| 1928 | return; |
| 1929 | |
| 1930 | // If the function is strncpy, strncat, etc... it is bounded. |
| 1931 | if (IsBounded) { |
| 1932 | // Get the max number of characters to copy. |
| 1933 | SizeArgExpr lenExpr = {{.Expression: Call.getArgExpr(Index: 2), .ArgumentIndex: 2}}; |
| 1934 | SVal lenVal = state->getSVal(Ex: lenExpr.Expression, LCtx); |
| 1935 | |
| 1936 | // Protect against misdeclared strncpy(). |
| 1937 | lenVal = |
| 1938 | svalBuilder.evalCast(V: lenVal, CastTy: sizeTy, OriginalTy: lenExpr.Expression->getType()); |
| 1939 | |
| 1940 | std::optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>(); |
| 1941 | |
| 1942 | // If we know both values, we might be able to figure out how much |
| 1943 | // we're copying. |
| 1944 | if (strLengthNL && lenValNL) { |
| 1945 | switch (appendK) { |
| 1946 | case ConcatFnKind::none: |
| 1947 | case ConcatFnKind::strcat: { |
| 1948 | ProgramStateRef stateSourceTooLong, stateSourceNotTooLong; |
| 1949 | // Check if the max number to copy is less than the length of the src. |
| 1950 | // If the bound is equal to the source length, strncpy won't null- |
| 1951 | // terminate the result! |
| 1952 | std::tie(args&: stateSourceTooLong, args&: stateSourceNotTooLong) = state->assume( |
| 1953 | Cond: svalBuilder |
| 1954 | .evalBinOpNN(state, op: BO_GE, lhs: *strLengthNL, rhs: *lenValNL, resultTy: cmpTy) |
| 1955 | .castAs<DefinedOrUnknownSVal>()); |
| 1956 | |
| 1957 | if (stateSourceTooLong && !stateSourceNotTooLong) { |
| 1958 | // Max number to copy is less than the length of the src, so the |
| 1959 | // actual strLength copied is the max number arg. |
| 1960 | state = stateSourceTooLong; |
| 1961 | amountCopied = lenVal; |
| 1962 | |
| 1963 | } else if (!stateSourceTooLong && stateSourceNotTooLong) { |
| 1964 | // The source buffer entirely fits in the bound. |
| 1965 | state = stateSourceNotTooLong; |
| 1966 | amountCopied = strLength; |
| 1967 | } |
| 1968 | break; |
| 1969 | } |
| 1970 | case ConcatFnKind::strlcat: |
| 1971 | if (!dstStrLengthNL) |
| 1972 | return; |
| 1973 | |
| 1974 | // amountCopied = min (size - dstLen - 1 , srcLen) |
| 1975 | SVal freeSpace = svalBuilder.evalBinOpNN(state, op: BO_Sub, lhs: *lenValNL, |
| 1976 | rhs: *dstStrLengthNL, resultTy: sizeTy); |
| 1977 | if (!isa<NonLoc>(Val: freeSpace)) |
| 1978 | return; |
| 1979 | freeSpace = |
| 1980 | svalBuilder.evalBinOp(state, op: BO_Sub, lhs: freeSpace, |
| 1981 | rhs: svalBuilder.makeIntVal(integer: 1, type: sizeTy), type: sizeTy); |
| 1982 | std::optional<NonLoc> freeSpaceNL = freeSpace.getAs<NonLoc>(); |
| 1983 | |
| 1984 | // While unlikely, it is possible that the subtraction is |
| 1985 | // too complex to compute, let's check whether it succeeded. |
| 1986 | if (!freeSpaceNL) |
| 1987 | return; |
| 1988 | SVal hasEnoughSpace = svalBuilder.evalBinOpNN( |
| 1989 | state, op: BO_LE, lhs: *strLengthNL, rhs: *freeSpaceNL, resultTy: cmpTy); |
| 1990 | |
| 1991 | ProgramStateRef TrueState, FalseState; |
| 1992 | std::tie(args&: TrueState, args&: FalseState) = |
| 1993 | state->assume(Cond: hasEnoughSpace.castAs<DefinedOrUnknownSVal>()); |
| 1994 | |
| 1995 | // srcStrLength <= size - dstStrLength -1 |
| 1996 | if (TrueState && !FalseState) { |
| 1997 | amountCopied = strLength; |
| 1998 | } |
| 1999 | |
| 2000 | // srcStrLength > size - dstStrLength -1 |
| 2001 | if (!TrueState && FalseState) { |
| 2002 | amountCopied = freeSpace; |
| 2003 | } |
| 2004 | |
| 2005 | if (TrueState && FalseState) |
| 2006 | amountCopied = UnknownVal(); |
| 2007 | break; |
| 2008 | } |
| 2009 | } |
| 2010 | // We still want to know if the bound is known to be too large. |
| 2011 | if (lenValNL) { |
| 2012 | switch (appendK) { |
| 2013 | case ConcatFnKind::strcat: |
| 2014 | // For strncat, the check is strlen(dst) + lenVal < sizeof(dst) |
| 2015 | |
| 2016 | // Get the string length of the destination. If the destination is |
| 2017 | // memory that can't have a string length, we shouldn't be copying |
| 2018 | // into it anyway. |
| 2019 | if (dstStrLength.isUndef()) |
| 2020 | return; |
| 2021 | |
| 2022 | if (dstStrLengthNL) { |
| 2023 | maxLastElementIndex = svalBuilder.evalBinOpNN( |
| 2024 | state, op: BO_Add, lhs: *lenValNL, rhs: *dstStrLengthNL, resultTy: sizeTy); |
| 2025 | |
| 2026 | boundWarning = "Size argument is greater than the free space in the " |
| 2027 | "destination buffer" ; |
| 2028 | } |
| 2029 | break; |
| 2030 | case ConcatFnKind::none: |
| 2031 | case ConcatFnKind::strlcat: |
| 2032 | // For strncpy and strlcat, this is just checking |
| 2033 | // that lenVal <= sizeof(dst). |
| 2034 | // (Yes, strncpy and strncat differ in how they treat termination. |
| 2035 | // strncat ALWAYS terminates, but strncpy doesn't.) |
| 2036 | |
| 2037 | // We need a special case for when the copy size is zero, in which |
| 2038 | // case strncpy will do no work at all. Our bounds check uses n-1 |
| 2039 | // as the last element accessed, so n == 0 is problematic. |
| 2040 | ProgramStateRef StateZeroSize, StateNonZeroSize; |
| 2041 | std::tie(args&: StateZeroSize, args&: StateNonZeroSize) = |
| 2042 | assumeZero(C, State: state, V: *lenValNL, Ty: sizeTy); |
| 2043 | |
| 2044 | // If the size is known to be zero, we're done. |
| 2045 | if (StateZeroSize && !StateNonZeroSize) { |
| 2046 | if (returnPtr) { |
| 2047 | StateZeroSize = |
| 2048 | StateZeroSize->BindExpr(S: Call.getOriginExpr(), LCtx, V: DstVal); |
| 2049 | } else { |
| 2050 | if (appendK == ConcatFnKind::none) { |
| 2051 | // strlcpy returns strlen(src) |
| 2052 | StateZeroSize = StateZeroSize->BindExpr(S: Call.getOriginExpr(), |
| 2053 | LCtx, V: strLength); |
| 2054 | } else { |
| 2055 | // strlcat returns strlen(src) + strlen(dst) |
| 2056 | SVal retSize = svalBuilder.evalBinOp( |
| 2057 | state, op: BO_Add, lhs: strLength, rhs: dstStrLength, type: sizeTy); |
| 2058 | StateZeroSize = |
| 2059 | StateZeroSize->BindExpr(S: Call.getOriginExpr(), LCtx, V: retSize); |
| 2060 | } |
| 2061 | } |
| 2062 | C.addTransition(State: StateZeroSize); |
| 2063 | return; |
| 2064 | } |
| 2065 | |
| 2066 | // Otherwise, go ahead and figure out the last element we'll touch. |
| 2067 | // We don't record the non-zero assumption here because we can't |
| 2068 | // be sure. We won't warn on a possible zero. |
| 2069 | NonLoc one = svalBuilder.makeIntVal(integer: 1, type: sizeTy).castAs<NonLoc>(); |
| 2070 | maxLastElementIndex = |
| 2071 | svalBuilder.evalBinOpNN(state, op: BO_Sub, lhs: *lenValNL, rhs: one, resultTy: sizeTy); |
| 2072 | boundWarning = "Size argument is greater than the length of the " |
| 2073 | "destination buffer" ; |
| 2074 | break; |
| 2075 | } |
| 2076 | } |
| 2077 | } else { |
| 2078 | // The function isn't bounded. The amount copied should match the length |
| 2079 | // of the source buffer. |
| 2080 | amountCopied = strLength; |
| 2081 | } |
| 2082 | |
| 2083 | assert(state); |
| 2084 | |
| 2085 | // This represents the number of characters copied into the destination |
| 2086 | // buffer. (It may not actually be the strlen if the destination buffer |
| 2087 | // is not terminated.) |
| 2088 | SVal finalStrLength = UnknownVal(); |
| 2089 | SVal strlRetVal = UnknownVal(); |
| 2090 | |
| 2091 | if (appendK == ConcatFnKind::none && !returnPtr) { |
| 2092 | // strlcpy returns the sizeof(src) |
| 2093 | strlRetVal = strLength; |
| 2094 | } |
| 2095 | |
| 2096 | // If this is an appending function (strcat, strncat...) then set the |
| 2097 | // string length to strlen(src) + strlen(dst) since the buffer will |
| 2098 | // ultimately contain both. |
| 2099 | if (appendK != ConcatFnKind::none) { |
| 2100 | // Get the string length of the destination. If the destination is memory |
| 2101 | // that can't have a string length, we shouldn't be copying into it anyway. |
| 2102 | if (dstStrLength.isUndef()) |
| 2103 | return; |
| 2104 | |
| 2105 | if (appendK == ConcatFnKind::strlcat && dstStrLengthNL && strLengthNL) { |
| 2106 | strlRetVal = svalBuilder.evalBinOpNN(state, op: BO_Add, lhs: *strLengthNL, |
| 2107 | rhs: *dstStrLengthNL, resultTy: sizeTy); |
| 2108 | } |
| 2109 | |
| 2110 | std::optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>(); |
| 2111 | |
| 2112 | // If we know both string lengths, we might know the final string length. |
| 2113 | if (amountCopiedNL && dstStrLengthNL) { |
| 2114 | // Make sure the two lengths together don't overflow a size_t. |
| 2115 | state = checkAdditionOverflow(C, state, left: *amountCopiedNL, right: *dstStrLengthNL); |
| 2116 | if (!state) |
| 2117 | return; |
| 2118 | |
| 2119 | finalStrLength = svalBuilder.evalBinOpNN(state, op: BO_Add, lhs: *amountCopiedNL, |
| 2120 | rhs: *dstStrLengthNL, resultTy: sizeTy); |
| 2121 | } |
| 2122 | |
| 2123 | // If we couldn't get a single value for the final string length, |
| 2124 | // we can at least bound it by the individual lengths. |
| 2125 | if (finalStrLength.isUnknown()) { |
| 2126 | // Try to get a "hypothetical" string length symbol, which we can later |
| 2127 | // set as a real value if that turns out to be the case. |
| 2128 | finalStrLength = |
| 2129 | getCStringLength(C, state, Ex: Call.getOriginExpr(), Buf: DstVal, hypothetical: true); |
| 2130 | assert(!finalStrLength.isUndef()); |
| 2131 | |
| 2132 | if (std::optional<NonLoc> finalStrLengthNL = |
| 2133 | finalStrLength.getAs<NonLoc>()) { |
| 2134 | if (amountCopiedNL && appendK == ConcatFnKind::none) { |
| 2135 | // we overwrite dst string with the src |
| 2136 | // finalStrLength >= srcStrLength |
| 2137 | SVal sourceInResult = svalBuilder.evalBinOpNN( |
| 2138 | state, op: BO_GE, lhs: *finalStrLengthNL, rhs: *amountCopiedNL, resultTy: cmpTy); |
| 2139 | state = state->assume(Cond: sourceInResult.castAs<DefinedOrUnknownSVal>(), |
| 2140 | Assumption: true); |
| 2141 | if (!state) |
| 2142 | return; |
| 2143 | } |
| 2144 | |
| 2145 | if (dstStrLengthNL && appendK != ConcatFnKind::none) { |
| 2146 | // we extend the dst string with the src |
| 2147 | // finalStrLength >= dstStrLength |
| 2148 | SVal destInResult = svalBuilder.evalBinOpNN(state, op: BO_GE, |
| 2149 | lhs: *finalStrLengthNL, |
| 2150 | rhs: *dstStrLengthNL, |
| 2151 | resultTy: cmpTy); |
| 2152 | state = |
| 2153 | state->assume(Cond: destInResult.castAs<DefinedOrUnknownSVal>(), Assumption: true); |
| 2154 | if (!state) |
| 2155 | return; |
| 2156 | } |
| 2157 | } |
| 2158 | } |
| 2159 | |
| 2160 | } else { |
| 2161 | // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and |
| 2162 | // the final string length will match the input string length. |
| 2163 | finalStrLength = amountCopied; |
| 2164 | } |
| 2165 | |
| 2166 | SVal Result; |
| 2167 | |
| 2168 | if (returnPtr) { |
| 2169 | // The final result of the function will either be a pointer past the last |
| 2170 | // copied element, or a pointer to the start of the destination buffer. |
| 2171 | Result = (ReturnEnd ? UnknownVal() : DstVal); |
| 2172 | } else { |
| 2173 | if (appendK == ConcatFnKind::strlcat || appendK == ConcatFnKind::none) |
| 2174 | //strlcpy, strlcat |
| 2175 | Result = strlRetVal; |
| 2176 | else |
| 2177 | Result = finalStrLength; |
| 2178 | } |
| 2179 | |
| 2180 | assert(state); |
| 2181 | |
| 2182 | // If the destination is a MemRegion, try to check for a buffer overflow and |
| 2183 | // record the new string length. |
| 2184 | if (std::optional<loc::MemRegionVal> dstRegVal = |
| 2185 | DstVal.getAs<loc::MemRegionVal>()) { |
| 2186 | QualType ptrTy = Dst.Expression->getType(); |
| 2187 | |
| 2188 | // If we have an exact value on a bounded copy, use that to check for |
| 2189 | // overflows, rather than our estimate about how much is actually copied. |
| 2190 | if (std::optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) { |
| 2191 | SVal maxLastElement = |
| 2192 | svalBuilder.evalBinOpLN(state, op: BO_Add, lhs: *dstRegVal, rhs: *maxLastNL, resultTy: ptrTy); |
| 2193 | |
| 2194 | // Check if the first byte of the destination is writable. |
| 2195 | state = CheckLocation(C, state, Buffer: Dst, Element: DstVal, Access: AccessKind::write); |
| 2196 | if (!state) |
| 2197 | return; |
| 2198 | // Check if the last byte of the destination is writable. |
| 2199 | state = CheckLocation(C, state, Buffer: Dst, Element: maxLastElement, Access: AccessKind::write); |
| 2200 | if (!state) |
| 2201 | return; |
| 2202 | } |
| 2203 | |
| 2204 | // Then, if the final length is known... |
| 2205 | if (std::optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) { |
| 2206 | SVal lastElement = svalBuilder.evalBinOpLN(state, op: BO_Add, lhs: *dstRegVal, |
| 2207 | rhs: *knownStrLength, resultTy: ptrTy); |
| 2208 | |
| 2209 | // ...and we haven't checked the bound, we'll check the actual copy. |
| 2210 | if (!boundWarning) { |
| 2211 | // Check if the first byte of the destination is writable. |
| 2212 | state = CheckLocation(C, state, Buffer: Dst, Element: DstVal, Access: AccessKind::write); |
| 2213 | if (!state) |
| 2214 | return; |
| 2215 | // Check if the last byte of the destination is writable. |
| 2216 | state = CheckLocation(C, state, Buffer: Dst, Element: lastElement, Access: AccessKind::write); |
| 2217 | if (!state) |
| 2218 | return; |
| 2219 | } |
| 2220 | |
| 2221 | // If this is a stpcpy-style copy, the last element is the return value. |
| 2222 | if (returnPtr && ReturnEnd) |
| 2223 | Result = lastElement; |
| 2224 | } |
| 2225 | |
| 2226 | // Invalidate the destination (regular invalidation without pointer-escaping |
| 2227 | // the address of the top-level region). This must happen before we set the |
| 2228 | // C string length because invalidation will clear the length. |
| 2229 | // FIXME: Even if we can't perfectly model the copy, we should see if we |
| 2230 | // can use LazyCompoundVals to copy the source values into the destination. |
| 2231 | // This would probably remove any existing bindings past the end of the |
| 2232 | // string, but that's still an improvement over blank invalidation. |
| 2233 | state = invalidateDestinationBufferBySize( |
| 2234 | C, S: state, BufE: Dst.Expression, Elem: Call.getCFGElementRef(), BufV: *dstRegVal, |
| 2235 | SizeV: amountCopied, SizeTy: C.getASTContext().getSizeType()); |
| 2236 | |
| 2237 | // Invalidate the source (const-invalidation without const-pointer-escaping |
| 2238 | // the address of the top-level region). |
| 2239 | state = invalidateSourceBuffer(C, S: state, Elem: Call.getCFGElementRef(), BufV: srcVal); |
| 2240 | |
| 2241 | // Set the C string length of the destination, if we know it. |
| 2242 | if (IsBounded && (appendK == ConcatFnKind::none)) { |
| 2243 | // strncpy is annoying in that it doesn't guarantee to null-terminate |
| 2244 | // the result string. If the original string didn't fit entirely inside |
| 2245 | // the bound (including the null-terminator), we don't know how long the |
| 2246 | // result is. |
| 2247 | if (amountCopied != strLength) |
| 2248 | finalStrLength = UnknownVal(); |
| 2249 | } |
| 2250 | state = setCStringLength(state, MR: dstRegVal->getRegion(), strLength: finalStrLength); |
| 2251 | } |
| 2252 | |
| 2253 | assert(state); |
| 2254 | |
| 2255 | if (returnPtr) { |
| 2256 | // If this is a stpcpy-style copy, but we were unable to check for a buffer |
| 2257 | // overflow, we still need a result. Conjure a return value. |
| 2258 | if (ReturnEnd && Result.isUnknown()) { |
| 2259 | Result = svalBuilder.conjureSymbolVal(call: Call, visitCount: C.blockCount()); |
| 2260 | } |
| 2261 | } |
| 2262 | // Set the return value. |
| 2263 | state = state->BindExpr(S: Call.getOriginExpr(), LCtx, V: Result); |
| 2264 | C.addTransition(State: state); |
| 2265 | } |
| 2266 | |
| 2267 | void CStringChecker::evalStrcmp(CheckerContext &C, |
| 2268 | const CallEvent &Call) const { |
| 2269 | //int strcmp(const char *s1, const char *s2); |
| 2270 | evalStrcmpCommon(C, Call, /* IsBounded = */ false, /* IgnoreCase = */ false); |
| 2271 | } |
| 2272 | |
| 2273 | void CStringChecker::evalStrncmp(CheckerContext &C, |
| 2274 | const CallEvent &Call) const { |
| 2275 | //int strncmp(const char *s1, const char *s2, size_t n); |
| 2276 | evalStrcmpCommon(C, Call, /* IsBounded = */ true, /* IgnoreCase = */ false); |
| 2277 | } |
| 2278 | |
| 2279 | void CStringChecker::evalStrcasecmp(CheckerContext &C, |
| 2280 | const CallEvent &Call) const { |
| 2281 | //int strcasecmp(const char *s1, const char *s2); |
| 2282 | evalStrcmpCommon(C, Call, /* IsBounded = */ false, /* IgnoreCase = */ true); |
| 2283 | } |
| 2284 | |
| 2285 | void CStringChecker::evalStrncasecmp(CheckerContext &C, |
| 2286 | const CallEvent &Call) const { |
| 2287 | //int strncasecmp(const char *s1, const char *s2, size_t n); |
| 2288 | evalStrcmpCommon(C, Call, /* IsBounded = */ true, /* IgnoreCase = */ true); |
| 2289 | } |
| 2290 | |
| 2291 | void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallEvent &Call, |
| 2292 | bool IsBounded, bool IgnoreCase) const { |
| 2293 | CurrentFunctionDescription = "string comparison function" ; |
| 2294 | ProgramStateRef state = C.getState(); |
| 2295 | const LocationContext *LCtx = C.getLocationContext(); |
| 2296 | |
| 2297 | // Check that the first string is non-null |
| 2298 | AnyArgExpr Left = {.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}; |
| 2299 | SVal LeftVal = state->getSVal(Ex: Left.Expression, LCtx); |
| 2300 | state = checkNonNull(C, State: state, Arg: Left, l: LeftVal); |
| 2301 | if (!state) |
| 2302 | return; |
| 2303 | |
| 2304 | // Check that the second string is non-null. |
| 2305 | AnyArgExpr Right = {.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}; |
| 2306 | SVal RightVal = state->getSVal(Ex: Right.Expression, LCtx); |
| 2307 | state = checkNonNull(C, State: state, Arg: Right, l: RightVal); |
| 2308 | if (!state) |
| 2309 | return; |
| 2310 | |
| 2311 | // Get the string length of the first string or give up. |
| 2312 | SVal LeftLength = getCStringLength(C, state, Ex: Left.Expression, Buf: LeftVal); |
| 2313 | if (LeftLength.isUndef()) |
| 2314 | return; |
| 2315 | |
| 2316 | // Get the string length of the second string or give up. |
| 2317 | SVal RightLength = getCStringLength(C, state, Ex: Right.Expression, Buf: RightVal); |
| 2318 | if (RightLength.isUndef()) |
| 2319 | return; |
| 2320 | |
| 2321 | // If we know the two buffers are the same, we know the result is 0. |
| 2322 | // First, get the two buffers' addresses. Another checker will have already |
| 2323 | // made sure they're not undefined. |
| 2324 | DefinedOrUnknownSVal LV = LeftVal.castAs<DefinedOrUnknownSVal>(); |
| 2325 | DefinedOrUnknownSVal RV = RightVal.castAs<DefinedOrUnknownSVal>(); |
| 2326 | |
| 2327 | // See if they are the same. |
| 2328 | SValBuilder &svalBuilder = C.getSValBuilder(); |
| 2329 | DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, lhs: LV, rhs: RV); |
| 2330 | ProgramStateRef StSameBuf, StNotSameBuf; |
| 2331 | std::tie(args&: StSameBuf, args&: StNotSameBuf) = state->assume(Cond: SameBuf); |
| 2332 | |
| 2333 | // If the two arguments might be the same buffer, we know the result is 0, |
| 2334 | // and we only need to check one size. |
| 2335 | if (StSameBuf) { |
| 2336 | StSameBuf = |
| 2337 | StSameBuf->BindExpr(S: Call.getOriginExpr(), LCtx, |
| 2338 | V: svalBuilder.makeZeroVal(type: Call.getResultType())); |
| 2339 | C.addTransition(State: StSameBuf); |
| 2340 | |
| 2341 | // If the two arguments are GUARANTEED to be the same, we're done! |
| 2342 | if (!StNotSameBuf) |
| 2343 | return; |
| 2344 | } |
| 2345 | |
| 2346 | assert(StNotSameBuf); |
| 2347 | state = StNotSameBuf; |
| 2348 | |
| 2349 | // At this point we can go about comparing the two buffers. |
| 2350 | // For now, we only do this if they're both known string literals. |
| 2351 | |
| 2352 | // Attempt to extract string literals from both expressions. |
| 2353 | const StringLiteral *LeftStrLiteral = |
| 2354 | getCStringLiteral(C, state, expr: Left.Expression, val: LeftVal); |
| 2355 | const StringLiteral *RightStrLiteral = |
| 2356 | getCStringLiteral(C, state, expr: Right.Expression, val: RightVal); |
| 2357 | bool canComputeResult = false; |
| 2358 | SVal resultVal = svalBuilder.conjureSymbolVal(call: Call, visitCount: C.blockCount()); |
| 2359 | |
| 2360 | if (LeftStrLiteral && RightStrLiteral) { |
| 2361 | StringRef LeftStrRef = LeftStrLiteral->getString(); |
| 2362 | StringRef RightStrRef = RightStrLiteral->getString(); |
| 2363 | |
| 2364 | if (IsBounded) { |
| 2365 | // Get the max number of characters to compare. |
| 2366 | const Expr *lenExpr = Call.getArgExpr(Index: 2); |
| 2367 | SVal lenVal = state->getSVal(Ex: lenExpr, LCtx); |
| 2368 | |
| 2369 | // If the length is known, we can get the right substrings. |
| 2370 | if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, val: lenVal)) { |
| 2371 | // Create substrings of each to compare the prefix. |
| 2372 | LeftStrRef = LeftStrRef.substr(Start: 0, N: (size_t)len->getZExtValue()); |
| 2373 | RightStrRef = RightStrRef.substr(Start: 0, N: (size_t)len->getZExtValue()); |
| 2374 | canComputeResult = true; |
| 2375 | } |
| 2376 | } else { |
| 2377 | // This is a normal, unbounded strcmp. |
| 2378 | canComputeResult = true; |
| 2379 | } |
| 2380 | |
| 2381 | if (canComputeResult) { |
| 2382 | // Real strcmp stops at null characters. |
| 2383 | size_t s1Term = LeftStrRef.find(C: '\0'); |
| 2384 | if (s1Term != StringRef::npos) |
| 2385 | LeftStrRef = LeftStrRef.substr(Start: 0, N: s1Term); |
| 2386 | |
| 2387 | size_t s2Term = RightStrRef.find(C: '\0'); |
| 2388 | if (s2Term != StringRef::npos) |
| 2389 | RightStrRef = RightStrRef.substr(Start: 0, N: s2Term); |
| 2390 | |
| 2391 | // Use StringRef's comparison methods to compute the actual result. |
| 2392 | int compareRes = IgnoreCase ? LeftStrRef.compare_insensitive(RHS: RightStrRef) |
| 2393 | : LeftStrRef.compare(RHS: RightStrRef); |
| 2394 | |
| 2395 | // The strcmp function returns an integer greater than, equal to, or less |
| 2396 | // than zero, [c11, p7.24.4.2]. |
| 2397 | if (compareRes == 0) { |
| 2398 | resultVal = svalBuilder.makeIntVal(integer: compareRes, type: Call.getResultType()); |
| 2399 | } |
| 2400 | else { |
| 2401 | DefinedSVal zeroVal = svalBuilder.makeIntVal(integer: 0, type: Call.getResultType()); |
| 2402 | // Constrain strcmp's result range based on the result of StringRef's |
| 2403 | // comparison methods. |
| 2404 | BinaryOperatorKind op = (compareRes > 0) ? BO_GT : BO_LT; |
| 2405 | SVal compareWithZero = |
| 2406 | svalBuilder.evalBinOp(state, op, lhs: resultVal, rhs: zeroVal, |
| 2407 | type: svalBuilder.getConditionType()); |
| 2408 | DefinedSVal compareWithZeroVal = compareWithZero.castAs<DefinedSVal>(); |
| 2409 | state = state->assume(Cond: compareWithZeroVal, Assumption: true); |
| 2410 | } |
| 2411 | } |
| 2412 | } |
| 2413 | |
| 2414 | state = state->BindExpr(S: Call.getOriginExpr(), LCtx, V: resultVal); |
| 2415 | |
| 2416 | // Record this as a possible path. |
| 2417 | C.addTransition(State: state); |
| 2418 | } |
| 2419 | |
| 2420 | void CStringChecker::evalStrsep(CheckerContext &C, |
| 2421 | const CallEvent &Call) const { |
| 2422 | // char *strsep(char **stringp, const char *delim); |
| 2423 | // Verify whether the search string parameter matches the return type. |
| 2424 | SourceArgExpr SearchStrPtr = {{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
| 2425 | |
| 2426 | QualType CharPtrTy = SearchStrPtr.Expression->getType()->getPointeeType(); |
| 2427 | if (CharPtrTy.isNull() || Call.getResultType().getUnqualifiedType() != |
| 2428 | CharPtrTy.getUnqualifiedType()) |
| 2429 | return; |
| 2430 | |
| 2431 | CurrentFunctionDescription = "strsep()" ; |
| 2432 | ProgramStateRef State = C.getState(); |
| 2433 | const LocationContext *LCtx = C.getLocationContext(); |
| 2434 | |
| 2435 | // Check that the search string pointer is non-null (though it may point to |
| 2436 | // a null string). |
| 2437 | SVal SearchStrVal = State->getSVal(Ex: SearchStrPtr.Expression, LCtx); |
| 2438 | State = checkNonNull(C, State, Arg: SearchStrPtr, l: SearchStrVal); |
| 2439 | if (!State) |
| 2440 | return; |
| 2441 | |
| 2442 | // Check that the delimiter string is non-null. |
| 2443 | AnyArgExpr DelimStr = {.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}; |
| 2444 | SVal DelimStrVal = State->getSVal(Ex: DelimStr.Expression, LCtx); |
| 2445 | State = checkNonNull(C, State, Arg: DelimStr, l: DelimStrVal); |
| 2446 | if (!State) |
| 2447 | return; |
| 2448 | |
| 2449 | SValBuilder &SVB = C.getSValBuilder(); |
| 2450 | SVal Result; |
| 2451 | if (std::optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) { |
| 2452 | // Get the current value of the search string pointer, as a char*. |
| 2453 | Result = State->getSVal(LV: *SearchStrLoc, T: CharPtrTy); |
| 2454 | |
| 2455 | // Invalidate the search string, representing the change of one delimiter |
| 2456 | // character to NUL. |
| 2457 | // As the replacement never overflows, do not invalidate its super region. |
| 2458 | State = invalidateDestinationBufferNeverOverflows( |
| 2459 | C, S: State, Elem: Call.getCFGElementRef(), BufV: Result); |
| 2460 | |
| 2461 | // Overwrite the search string pointer. The new value is either an address |
| 2462 | // further along in the same string, or NULL if there are no more tokens. |
| 2463 | State = State->bindLoc(location: *SearchStrLoc, |
| 2464 | V: SVB.conjureSymbolVal(call: Call, visitCount: C.blockCount(), symbolTag: getTag()), |
| 2465 | LCtx); |
| 2466 | } else { |
| 2467 | assert(SearchStrVal.isUnknown()); |
| 2468 | // Conjure a symbolic value. It's the best we can do. |
| 2469 | Result = SVB.conjureSymbolVal(call: Call, visitCount: C.blockCount()); |
| 2470 | } |
| 2471 | |
| 2472 | // Set the return value, and finish. |
| 2473 | State = State->BindExpr(S: Call.getOriginExpr(), LCtx, V: Result); |
| 2474 | C.addTransition(State); |
| 2475 | } |
| 2476 | |
| 2477 | // These should probably be moved into a C++ standard library checker. |
| 2478 | void CStringChecker::evalStdCopy(CheckerContext &C, |
| 2479 | const CallEvent &Call) const { |
| 2480 | evalStdCopyCommon(C, Call); |
| 2481 | } |
| 2482 | |
| 2483 | void CStringChecker::evalStdCopyBackward(CheckerContext &C, |
| 2484 | const CallEvent &Call) const { |
| 2485 | evalStdCopyCommon(C, Call); |
| 2486 | } |
| 2487 | |
| 2488 | void CStringChecker::evalStdCopyCommon(CheckerContext &C, |
| 2489 | const CallEvent &Call) const { |
| 2490 | if (!Call.getArgExpr(Index: 2)->getType()->isPointerType()) |
| 2491 | return; |
| 2492 | |
| 2493 | ProgramStateRef State = C.getState(); |
| 2494 | |
| 2495 | const LocationContext *LCtx = C.getLocationContext(); |
| 2496 | |
| 2497 | // template <class _InputIterator, class _OutputIterator> |
| 2498 | // _OutputIterator |
| 2499 | // copy(_InputIterator __first, _InputIterator __last, |
| 2500 | // _OutputIterator __result) |
| 2501 | |
| 2502 | // Invalidate the destination buffer |
| 2503 | const Expr *Dst = Call.getArgExpr(Index: 2); |
| 2504 | SVal DstVal = State->getSVal(Ex: Dst, LCtx); |
| 2505 | // FIXME: As we do not know how many items are copied, we also invalidate the |
| 2506 | // super region containing the target location. |
| 2507 | State = invalidateDestinationBufferAlwaysEscapeSuperRegion( |
| 2508 | C, S: State, Elem: Call.getCFGElementRef(), BufV: DstVal); |
| 2509 | |
| 2510 | SValBuilder &SVB = C.getSValBuilder(); |
| 2511 | |
| 2512 | SVal ResultVal = SVB.conjureSymbolVal(call: Call, visitCount: C.blockCount()); |
| 2513 | State = State->BindExpr(S: Call.getOriginExpr(), LCtx, V: ResultVal); |
| 2514 | |
| 2515 | C.addTransition(State); |
| 2516 | } |
| 2517 | |
| 2518 | void CStringChecker::evalMemset(CheckerContext &C, |
| 2519 | const CallEvent &Call) const { |
| 2520 | // void *memset(void *s, int c, size_t n); |
| 2521 | CurrentFunctionDescription = "memory set function" ; |
| 2522 | |
| 2523 | DestinationArgExpr Buffer = {{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
| 2524 | AnyArgExpr CharE = {.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}; |
| 2525 | SizeArgExpr Size = {{.Expression: Call.getArgExpr(Index: 2), .ArgumentIndex: 2}}; |
| 2526 | |
| 2527 | ProgramStateRef State = C.getState(); |
| 2528 | |
| 2529 | // See if the size argument is zero. |
| 2530 | const LocationContext *LCtx = C.getLocationContext(); |
| 2531 | SVal SizeVal = C.getSVal(S: Size.Expression); |
| 2532 | QualType SizeTy = Size.Expression->getType(); |
| 2533 | |
| 2534 | ProgramStateRef ZeroSize, NonZeroSize; |
| 2535 | std::tie(args&: ZeroSize, args&: NonZeroSize) = assumeZero(C, State, V: SizeVal, Ty: SizeTy); |
| 2536 | |
| 2537 | // Get the value of the memory area. |
| 2538 | SVal BufferPtrVal = C.getSVal(S: Buffer.Expression); |
| 2539 | |
| 2540 | // If the size is zero, there won't be any actual memory access, so |
| 2541 | // just bind the return value to the buffer and return. |
| 2542 | if (ZeroSize && !NonZeroSize) { |
| 2543 | ZeroSize = ZeroSize->BindExpr(S: Call.getOriginExpr(), LCtx, V: BufferPtrVal); |
| 2544 | C.addTransition(State: ZeroSize); |
| 2545 | return; |
| 2546 | } |
| 2547 | |
| 2548 | // Ensure the memory area is not null. |
| 2549 | // If it is NULL there will be a NULL pointer dereference. |
| 2550 | State = checkNonNull(C, State: NonZeroSize, Arg: Buffer, l: BufferPtrVal); |
| 2551 | if (!State) |
| 2552 | return; |
| 2553 | |
| 2554 | State = CheckBufferAccess(C, State, Buffer, Size, Access: AccessKind::write); |
| 2555 | if (!State) |
| 2556 | return; |
| 2557 | |
| 2558 | // According to the values of the arguments, bind the value of the second |
| 2559 | // argument to the destination buffer and set string length, or just |
| 2560 | // invalidate the destination buffer. |
| 2561 | if (!memsetAux(DstBuffer: Buffer.Expression, Elem: Call.getCFGElementRef(), |
| 2562 | CharVal: C.getSVal(S: CharE.Expression), Size: Size.Expression, C, State)) |
| 2563 | return; |
| 2564 | |
| 2565 | State = State->BindExpr(S: Call.getOriginExpr(), LCtx, V: BufferPtrVal); |
| 2566 | C.addTransition(State); |
| 2567 | } |
| 2568 | |
| 2569 | void CStringChecker::evalBzero(CheckerContext &C, const CallEvent &Call) const { |
| 2570 | CurrentFunctionDescription = "memory clearance function" ; |
| 2571 | |
| 2572 | DestinationArgExpr Buffer = {{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
| 2573 | SizeArgExpr Size = {{.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}}; |
| 2574 | SVal Zero = C.getSValBuilder().makeZeroVal(type: C.getASTContext().IntTy); |
| 2575 | |
| 2576 | ProgramStateRef State = C.getState(); |
| 2577 | |
| 2578 | // See if the size argument is zero. |
| 2579 | SVal SizeVal = C.getSVal(S: Size.Expression); |
| 2580 | QualType SizeTy = Size.Expression->getType(); |
| 2581 | |
| 2582 | ProgramStateRef StateZeroSize, StateNonZeroSize; |
| 2583 | std::tie(args&: StateZeroSize, args&: StateNonZeroSize) = |
| 2584 | assumeZero(C, State, V: SizeVal, Ty: SizeTy); |
| 2585 | |
| 2586 | // If the size is zero, there won't be any actual memory access, |
| 2587 | // In this case we just return. |
| 2588 | if (StateZeroSize && !StateNonZeroSize) { |
| 2589 | C.addTransition(State: StateZeroSize); |
| 2590 | return; |
| 2591 | } |
| 2592 | |
| 2593 | // Get the value of the memory area. |
| 2594 | SVal MemVal = C.getSVal(S: Buffer.Expression); |
| 2595 | |
| 2596 | // Ensure the memory area is not null. |
| 2597 | // If it is NULL there will be a NULL pointer dereference. |
| 2598 | State = checkNonNull(C, State: StateNonZeroSize, Arg: Buffer, l: MemVal); |
| 2599 | if (!State) |
| 2600 | return; |
| 2601 | |
| 2602 | State = CheckBufferAccess(C, State, Buffer, Size, Access: AccessKind::write); |
| 2603 | if (!State) |
| 2604 | return; |
| 2605 | |
| 2606 | if (!memsetAux(DstBuffer: Buffer.Expression, Elem: Call.getCFGElementRef(), CharVal: Zero, |
| 2607 | Size: Size.Expression, C, State)) |
| 2608 | return; |
| 2609 | |
| 2610 | C.addTransition(State); |
| 2611 | } |
| 2612 | |
| 2613 | void CStringChecker::evalSprintf(CheckerContext &C, |
| 2614 | const CallEvent &Call) const { |
| 2615 | CurrentFunctionDescription = "'sprintf'" ; |
| 2616 | evalSprintfCommon(C, Call, /* IsBounded = */ false); |
| 2617 | } |
| 2618 | |
| 2619 | void CStringChecker::evalSnprintf(CheckerContext &C, |
| 2620 | const CallEvent &Call) const { |
| 2621 | CurrentFunctionDescription = "'snprintf'" ; |
| 2622 | evalSprintfCommon(C, Call, /* IsBounded = */ true); |
| 2623 | } |
| 2624 | |
| 2625 | void CStringChecker::evalSprintfCommon(CheckerContext &C, const CallEvent &Call, |
| 2626 | bool IsBounded) const { |
| 2627 | ProgramStateRef State = C.getState(); |
| 2628 | const auto *CE = cast<CallExpr>(Val: Call.getOriginExpr()); |
| 2629 | DestinationArgExpr Dest = {{.Expression: Call.getArgExpr(Index: 0), .ArgumentIndex: 0}}; |
| 2630 | |
| 2631 | const auto NumParams = Call.parameters().size(); |
| 2632 | if (CE->getNumArgs() < NumParams) { |
| 2633 | // This is an invalid call, let's just ignore it. |
| 2634 | return; |
| 2635 | } |
| 2636 | |
| 2637 | const auto AllArguments = |
| 2638 | llvm::make_range(x: CE->getArgs(), y: CE->getArgs() + CE->getNumArgs()); |
| 2639 | const auto VariadicArguments = drop_begin(RangeOrContainer: enumerate(First: AllArguments), N: NumParams); |
| 2640 | |
| 2641 | for (const auto &[ArgIdx, ArgExpr] : VariadicArguments) { |
| 2642 | // We consider only string buffers |
| 2643 | if (const QualType type = ArgExpr->getType(); |
| 2644 | !type->isAnyPointerType() || |
| 2645 | !type->getPointeeType()->isAnyCharacterType()) |
| 2646 | continue; |
| 2647 | SourceArgExpr Source = {{.Expression: ArgExpr, .ArgumentIndex: unsigned(ArgIdx)}}; |
| 2648 | |
| 2649 | // Ensure the buffers do not overlap. |
| 2650 | SizeArgExpr SrcExprAsSizeDummy = { |
| 2651 | {.Expression: Source.Expression, .ArgumentIndex: Source.ArgumentIndex}}; |
| 2652 | State = CheckOverlap( |
| 2653 | C, state: State, |
| 2654 | Size: (IsBounded ? SizeArgExpr{{.Expression: Call.getArgExpr(Index: 1), .ArgumentIndex: 1}} : SrcExprAsSizeDummy), |
| 2655 | First: Dest, Second: Source); |
| 2656 | if (!State) |
| 2657 | return; |
| 2658 | } |
| 2659 | |
| 2660 | C.addTransition(State); |
| 2661 | } |
| 2662 | |
| 2663 | //===----------------------------------------------------------------------===// |
| 2664 | // The driver method, and other Checker callbacks. |
| 2665 | //===----------------------------------------------------------------------===// |
| 2666 | |
| 2667 | CStringChecker::FnCheck CStringChecker::identifyCall(const CallEvent &Call, |
| 2668 | CheckerContext &C) const { |
| 2669 | const auto *CE = dyn_cast_or_null<CallExpr>(Val: Call.getOriginExpr()); |
| 2670 | if (!CE) |
| 2671 | return nullptr; |
| 2672 | |
| 2673 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: Call.getDecl()); |
| 2674 | if (!FD) |
| 2675 | return nullptr; |
| 2676 | |
| 2677 | if (StdCopy.matches(Call)) |
| 2678 | return &CStringChecker::evalStdCopy; |
| 2679 | if (StdCopyBackward.matches(Call)) |
| 2680 | return &CStringChecker::evalStdCopyBackward; |
| 2681 | |
| 2682 | // Pro-actively check that argument types are safe to do arithmetic upon. |
| 2683 | // We do not want to crash if someone accidentally passes a structure |
| 2684 | // into, say, a C++ overload of any of these functions. We could not check |
| 2685 | // that for std::copy because they may have arguments of other types. |
| 2686 | for (auto I : CE->arguments()) { |
| 2687 | QualType T = I->getType(); |
| 2688 | if (!T->isIntegralOrEnumerationType() && !T->isPointerType()) |
| 2689 | return nullptr; |
| 2690 | } |
| 2691 | |
| 2692 | const FnCheck *Callback = Callbacks.lookup(Call); |
| 2693 | if (Callback) |
| 2694 | return *Callback; |
| 2695 | |
| 2696 | return nullptr; |
| 2697 | } |
| 2698 | |
| 2699 | bool CStringChecker::evalCall(const CallEvent &Call, CheckerContext &C) const { |
| 2700 | FnCheck Callback = identifyCall(Call, C); |
| 2701 | |
| 2702 | // If the callee isn't a string function, let another checker handle it. |
| 2703 | if (!Callback) |
| 2704 | return false; |
| 2705 | |
| 2706 | // Check and evaluate the call. |
| 2707 | assert(isa<CallExpr>(Call.getOriginExpr())); |
| 2708 | Callback(this, C, Call); |
| 2709 | |
| 2710 | // If the evaluate call resulted in no change, chain to the next eval call |
| 2711 | // handler. |
| 2712 | // Note, the custom CString evaluation calls assume that basic safety |
| 2713 | // properties are held. However, if the user chooses to turn off some of these |
| 2714 | // checks, we ignore the issues and leave the call evaluation to a generic |
| 2715 | // handler. |
| 2716 | return C.isDifferent(); |
| 2717 | } |
| 2718 | |
| 2719 | void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const { |
| 2720 | // Record string length for char a[] = "abc"; |
| 2721 | ProgramStateRef state = C.getState(); |
| 2722 | |
| 2723 | for (const auto *I : DS->decls()) { |
| 2724 | const VarDecl *D = dyn_cast<VarDecl>(Val: I); |
| 2725 | if (!D) |
| 2726 | continue; |
| 2727 | |
| 2728 | // FIXME: Handle array fields of structs. |
| 2729 | if (!D->getType()->isArrayType()) |
| 2730 | continue; |
| 2731 | |
| 2732 | const Expr *Init = D->getInit(); |
| 2733 | if (!Init) |
| 2734 | continue; |
| 2735 | if (!isa<StringLiteral>(Val: Init)) |
| 2736 | continue; |
| 2737 | |
| 2738 | Loc VarLoc = state->getLValue(VD: D, LC: C.getLocationContext()); |
| 2739 | const MemRegion *MR = VarLoc.getAsRegion(); |
| 2740 | if (!MR) |
| 2741 | continue; |
| 2742 | |
| 2743 | SVal StrVal = C.getSVal(S: Init); |
| 2744 | assert(StrVal.isValid() && "Initializer string is unknown or undefined" ); |
| 2745 | DefinedOrUnknownSVal strLength = |
| 2746 | getCStringLength(C, state, Ex: Init, Buf: StrVal).castAs<DefinedOrUnknownSVal>(); |
| 2747 | |
| 2748 | state = state->set<CStringLength>(K: MR, E: strLength); |
| 2749 | } |
| 2750 | |
| 2751 | C.addTransition(State: state); |
| 2752 | } |
| 2753 | |
| 2754 | ProgramStateRef |
| 2755 | CStringChecker::checkRegionChanges(ProgramStateRef state, |
| 2756 | const InvalidatedSymbols *, |
| 2757 | ArrayRef<const MemRegion *> ExplicitRegions, |
| 2758 | ArrayRef<const MemRegion *> Regions, |
| 2759 | const LocationContext *LCtx, |
| 2760 | const CallEvent *Call) const { |
| 2761 | CStringLengthTy Entries = state->get<CStringLength>(); |
| 2762 | if (Entries.isEmpty()) |
| 2763 | return state; |
| 2764 | |
| 2765 | llvm::SmallPtrSet<const MemRegion *, 8> Invalidated; |
| 2766 | llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions; |
| 2767 | |
| 2768 | // First build sets for the changed regions and their super-regions. |
| 2769 | for (const MemRegion *MR : Regions) { |
| 2770 | Invalidated.insert(Ptr: MR); |
| 2771 | |
| 2772 | SuperRegions.insert(Ptr: MR); |
| 2773 | while (const SubRegion *SR = dyn_cast<SubRegion>(Val: MR)) { |
| 2774 | MR = SR->getSuperRegion(); |
| 2775 | SuperRegions.insert(Ptr: MR); |
| 2776 | } |
| 2777 | } |
| 2778 | |
| 2779 | CStringLengthTy::Factory &F = state->get_context<CStringLength>(); |
| 2780 | |
| 2781 | // Then loop over the entries in the current state. |
| 2782 | for (const MemRegion *MR : llvm::make_first_range(c&: Entries)) { |
| 2783 | // Is this entry for a super-region of a changed region? |
| 2784 | if (SuperRegions.count(Ptr: MR)) { |
| 2785 | Entries = F.remove(Old: Entries, K: MR); |
| 2786 | continue; |
| 2787 | } |
| 2788 | |
| 2789 | // Is this entry for a sub-region of a changed region? |
| 2790 | const MemRegion *Super = MR; |
| 2791 | while (const SubRegion *SR = dyn_cast<SubRegion>(Val: Super)) { |
| 2792 | Super = SR->getSuperRegion(); |
| 2793 | if (Invalidated.count(Ptr: Super)) { |
| 2794 | Entries = F.remove(Old: Entries, K: MR); |
| 2795 | break; |
| 2796 | } |
| 2797 | } |
| 2798 | } |
| 2799 | |
| 2800 | return state->set<CStringLength>(Entries); |
| 2801 | } |
| 2802 | |
| 2803 | void CStringChecker::checkLiveSymbols(ProgramStateRef state, |
| 2804 | SymbolReaper &SR) const { |
| 2805 | // Mark all symbols in our string length map as valid. |
| 2806 | CStringLengthTy Entries = state->get<CStringLength>(); |
| 2807 | |
| 2808 | for (SVal Len : llvm::make_second_range(c&: Entries)) { |
| 2809 | for (SymbolRef Sym : Len.symbols()) |
| 2810 | SR.markInUse(sym: Sym); |
| 2811 | } |
| 2812 | } |
| 2813 | |
| 2814 | void CStringChecker::checkDeadSymbols(SymbolReaper &SR, |
| 2815 | CheckerContext &C) const { |
| 2816 | ProgramStateRef state = C.getState(); |
| 2817 | CStringLengthTy Entries = state->get<CStringLength>(); |
| 2818 | if (Entries.isEmpty()) |
| 2819 | return; |
| 2820 | |
| 2821 | CStringLengthTy::Factory &F = state->get_context<CStringLength>(); |
| 2822 | for (auto [Reg, Len] : Entries) { |
| 2823 | if (SymbolRef Sym = Len.getAsSymbol()) { |
| 2824 | if (SR.isDead(sym: Sym)) |
| 2825 | Entries = F.remove(Old: Entries, K: Reg); |
| 2826 | } |
| 2827 | } |
| 2828 | |
| 2829 | state = state->set<CStringLength>(Entries); |
| 2830 | C.addTransition(State: state); |
| 2831 | } |
| 2832 | |
| 2833 | void ento::registerCStringModeling(CheckerManager &Mgr) { |
| 2834 | Mgr.registerChecker<CStringChecker>(); |
| 2835 | } |
| 2836 | |
| 2837 | bool ento::shouldRegisterCStringModeling(const CheckerManager &mgr) { |
| 2838 | return true; |
| 2839 | } |
| 2840 | |
| 2841 | #define REGISTER_CHECKER(name) \ |
| 2842 | void ento::register##name(CheckerManager &mgr) { \ |
| 2843 | CStringChecker *checker = mgr.getChecker<CStringChecker>(); \ |
| 2844 | checker->Filter.Check##name = true; \ |
| 2845 | checker->Filter.CheckName##name = mgr.getCurrentCheckerName(); \ |
| 2846 | } \ |
| 2847 | \ |
| 2848 | bool ento::shouldRegister##name(const CheckerManager &mgr) { return true; } |
| 2849 | |
| 2850 | REGISTER_CHECKER(CStringNullArg) |
| 2851 | REGISTER_CHECKER(CStringOutOfBounds) |
| 2852 | REGISTER_CHECKER(CStringBufferOverlap) |
| 2853 | REGISTER_CHECKER(CStringNotNullTerm) |
| 2854 | REGISTER_CHECKER(CStringUninitializedRead) |
| 2855 | |