| 1 | //===- CallEvent.cpp - Wrapper for all function and method calls ----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | /// \file This file defines CallEvent and its subclasses, which represent path- |
| 10 | /// sensitive instances of different kinds of function and method calls |
| 11 | /// (C, C++, and Objective-C). |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
| 16 | #include "clang/AST/ASTContext.h" |
| 17 | #include "clang/AST/Attr.h" |
| 18 | #include "clang/AST/Decl.h" |
| 19 | #include "clang/AST/DeclBase.h" |
| 20 | #include "clang/AST/DeclCXX.h" |
| 21 | #include "clang/AST/DeclObjC.h" |
| 22 | #include "clang/AST/Expr.h" |
| 23 | #include "clang/AST/ExprCXX.h" |
| 24 | #include "clang/AST/ExprObjC.h" |
| 25 | #include "clang/AST/ParentMap.h" |
| 26 | #include "clang/AST/Stmt.h" |
| 27 | #include "clang/AST/Type.h" |
| 28 | #include "clang/Analysis/AnalysisDeclContext.h" |
| 29 | #include "clang/Analysis/CFG.h" |
| 30 | #include "clang/Analysis/CFGStmtMap.h" |
| 31 | #include "clang/Analysis/PathDiagnostic.h" |
| 32 | #include "clang/Analysis/ProgramPoint.h" |
| 33 | #include "clang/Basic/IdentifierTable.h" |
| 34 | #include "clang/Basic/LLVM.h" |
| 35 | #include "clang/Basic/SourceLocation.h" |
| 36 | #include "clang/Basic/Specifiers.h" |
| 37 | #include "clang/CrossTU/CrossTranslationUnit.h" |
| 38 | #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h" |
| 39 | #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h" |
| 40 | #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h" |
| 41 | #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h" |
| 42 | #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h" |
| 43 | #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" |
| 44 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
| 45 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" |
| 46 | #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" |
| 47 | #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" |
| 48 | #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" |
| 49 | #include "llvm/ADT/ArrayRef.h" |
| 50 | #include "llvm/ADT/DenseMap.h" |
| 51 | #include "llvm/ADT/ImmutableList.h" |
| 52 | #include "llvm/ADT/PointerIntPair.h" |
| 53 | #include "llvm/ADT/SmallSet.h" |
| 54 | #include "llvm/ADT/SmallVector.h" |
| 55 | #include "llvm/ADT/StringExtras.h" |
| 56 | #include "llvm/ADT/StringRef.h" |
| 57 | #include "llvm/Support/Compiler.h" |
| 58 | #include "llvm/Support/Debug.h" |
| 59 | #include "llvm/Support/ErrorHandling.h" |
| 60 | #include "llvm/Support/raw_ostream.h" |
| 61 | #include <cassert> |
| 62 | #include <optional> |
| 63 | #include <utility> |
| 64 | |
| 65 | #define DEBUG_TYPE "static-analyzer-call-event" |
| 66 | |
| 67 | using namespace clang; |
| 68 | using namespace ento; |
| 69 | |
| 70 | QualType CallEvent::getResultType() const { |
| 71 | ASTContext &Ctx = getState()->getStateManager().getContext(); |
| 72 | const Expr *E = getOriginExpr(); |
| 73 | if (!E) |
| 74 | return Ctx.VoidTy; |
| 75 | return Ctx.getReferenceQualifiedType(e: E); |
| 76 | } |
| 77 | |
| 78 | static bool isCallback(QualType T) { |
| 79 | // If a parameter is a block or a callback, assume it can modify pointer. |
| 80 | if (T->isBlockPointerType() || |
| 81 | T->isFunctionPointerType() || |
| 82 | T->isObjCSelType()) |
| 83 | return true; |
| 84 | |
| 85 | // Check if a callback is passed inside a struct (for both, struct passed by |
| 86 | // reference and by value). Dig just one level into the struct for now. |
| 87 | |
| 88 | if (T->isAnyPointerType() || T->isReferenceType()) |
| 89 | T = T->getPointeeType(); |
| 90 | |
| 91 | if (const RecordType *RT = T->getAsStructureType()) { |
| 92 | const RecordDecl *RD = RT->getDecl(); |
| 93 | for (const auto *I : RD->fields()) { |
| 94 | QualType FieldT = I->getType(); |
| 95 | if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType()) |
| 96 | return true; |
| 97 | } |
| 98 | } |
| 99 | return false; |
| 100 | } |
| 101 | |
| 102 | static bool isVoidPointerToNonConst(QualType T) { |
| 103 | if (const auto *PT = T->getAs<PointerType>()) { |
| 104 | QualType PointeeTy = PT->getPointeeType(); |
| 105 | if (PointeeTy.isConstQualified()) |
| 106 | return false; |
| 107 | return PointeeTy->isVoidType(); |
| 108 | } else |
| 109 | return false; |
| 110 | } |
| 111 | |
| 112 | bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const { |
| 113 | unsigned NumOfArgs = getNumArgs(); |
| 114 | |
| 115 | // If calling using a function pointer, assume the function does not |
| 116 | // satisfy the callback. |
| 117 | // TODO: We could check the types of the arguments here. |
| 118 | if (!getDecl()) |
| 119 | return false; |
| 120 | |
| 121 | unsigned Idx = 0; |
| 122 | for (CallEvent::param_type_iterator I = param_type_begin(), |
| 123 | E = param_type_end(); |
| 124 | I != E && Idx < NumOfArgs; ++I, ++Idx) { |
| 125 | // If the parameter is 0, it's harmless. |
| 126 | if (getArgSVal(Index: Idx).isZeroConstant()) |
| 127 | continue; |
| 128 | |
| 129 | if (Condition(*I)) |
| 130 | return true; |
| 131 | } |
| 132 | return false; |
| 133 | } |
| 134 | |
| 135 | bool CallEvent::hasNonZeroCallbackArg() const { |
| 136 | return hasNonNullArgumentsWithType(Condition: isCallback); |
| 137 | } |
| 138 | |
| 139 | bool CallEvent::hasVoidPointerToNonConstArg() const { |
| 140 | return hasNonNullArgumentsWithType(Condition: isVoidPointerToNonConst); |
| 141 | } |
| 142 | |
| 143 | bool CallEvent::isGlobalCFunction(StringRef FunctionName) const { |
| 144 | const auto *FD = dyn_cast_or_null<FunctionDecl>(Val: getDecl()); |
| 145 | if (!FD) |
| 146 | return false; |
| 147 | |
| 148 | return CheckerContext::isCLibraryFunction(FD, Name: FunctionName); |
| 149 | } |
| 150 | |
| 151 | AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const { |
| 152 | const Decl *D = getDecl(); |
| 153 | if (!D) |
| 154 | return nullptr; |
| 155 | |
| 156 | AnalysisDeclContext *ADC = |
| 157 | LCtx->getAnalysisDeclContext()->getManager()->getContext(D); |
| 158 | |
| 159 | return ADC; |
| 160 | } |
| 161 | |
| 162 | const StackFrameContext * |
| 163 | CallEvent::getCalleeStackFrame(unsigned BlockCount) const { |
| 164 | AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext(); |
| 165 | if (!ADC) |
| 166 | return nullptr; |
| 167 | |
| 168 | const Expr *E = getOriginExpr(); |
| 169 | if (!E) |
| 170 | return nullptr; |
| 171 | |
| 172 | // Recover CFG block via reverse lookup. |
| 173 | // TODO: If we were to keep CFG element information as part of the CallEvent |
| 174 | // instead of doing this reverse lookup, we would be able to build the stack |
| 175 | // frame for non-expression-based calls, and also we wouldn't need the reverse |
| 176 | // lookup. |
| 177 | CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap(); |
| 178 | const CFGBlock *B = Map->getBlock(S: E); |
| 179 | assert(B); |
| 180 | |
| 181 | // Also recover CFG index by scanning the CFG block. |
| 182 | unsigned Idx = 0, Sz = B->size(); |
| 183 | for (; Idx < Sz; ++Idx) |
| 184 | if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>()) |
| 185 | if (StmtElem->getStmt() == E) |
| 186 | break; |
| 187 | assert(Idx < Sz); |
| 188 | |
| 189 | return ADC->getManager()->getStackFrame(ADC, Parent: LCtx, S: E, Block: B, BlockCount, Index: Idx); |
| 190 | } |
| 191 | |
| 192 | const ParamVarRegion |
| 193 | *CallEvent::getParameterLocation(unsigned Index, unsigned BlockCount) const { |
| 194 | const StackFrameContext *SFC = getCalleeStackFrame(BlockCount); |
| 195 | // We cannot construct a VarRegion without a stack frame. |
| 196 | if (!SFC) |
| 197 | return nullptr; |
| 198 | |
| 199 | const ParamVarRegion *PVR = |
| 200 | State->getStateManager().getRegionManager().getParamVarRegion( |
| 201 | OriginExpr: getOriginExpr(), Index, LC: SFC); |
| 202 | return PVR; |
| 203 | } |
| 204 | |
| 205 | /// Returns true if a type is a pointer-to-const or reference-to-const |
| 206 | /// with no further indirection. |
| 207 | static bool isPointerToConst(QualType Ty) { |
| 208 | QualType PointeeTy = Ty->getPointeeType(); |
| 209 | if (PointeeTy == QualType()) |
| 210 | return false; |
| 211 | if (!PointeeTy.isConstQualified()) |
| 212 | return false; |
| 213 | if (PointeeTy->isAnyPointerType()) |
| 214 | return false; |
| 215 | return true; |
| 216 | } |
| 217 | |
| 218 | // Try to retrieve the function declaration and find the function parameter |
| 219 | // types which are pointers/references to a non-pointer const. |
| 220 | // We will not invalidate the corresponding argument regions. |
| 221 | static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs, |
| 222 | const CallEvent &Call) { |
| 223 | unsigned Idx = 0; |
| 224 | for (CallEvent::param_type_iterator I = Call.param_type_begin(), |
| 225 | E = Call.param_type_end(); |
| 226 | I != E; ++I, ++Idx) { |
| 227 | if (isPointerToConst(Ty: *I)) |
| 228 | PreserveArgs.insert(V: Idx); |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount, |
| 233 | ProgramStateRef Orig) const { |
| 234 | ProgramStateRef Result = (Orig ? Orig : getState()); |
| 235 | |
| 236 | // Don't invalidate anything if the callee is marked pure/const. |
| 237 | if (const Decl *callee = getDecl()) |
| 238 | if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>()) |
| 239 | return Result; |
| 240 | |
| 241 | SmallVector<SVal, 8> ValuesToInvalidate; |
| 242 | RegionAndSymbolInvalidationTraits ETraits; |
| 243 | |
| 244 | getExtraInvalidatedValues(Values&: ValuesToInvalidate, ETraits: &ETraits); |
| 245 | |
| 246 | // Indexes of arguments whose values will be preserved by the call. |
| 247 | llvm::SmallSet<unsigned, 4> PreserveArgs; |
| 248 | if (!argumentsMayEscape()) |
| 249 | findPtrToConstParams(PreserveArgs, Call: *this); |
| 250 | |
| 251 | for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) { |
| 252 | // Mark this region for invalidation. We batch invalidate regions |
| 253 | // below for efficiency. |
| 254 | if (PreserveArgs.count(V: Idx)) |
| 255 | if (const MemRegion *MR = getArgSVal(Index: Idx).getAsRegion()) |
| 256 | ETraits.setTrait(MR: MR->getBaseRegion(), |
| 257 | IK: RegionAndSymbolInvalidationTraits::TK_PreserveContents); |
| 258 | // TODO: Factor this out + handle the lower level const pointers. |
| 259 | |
| 260 | ValuesToInvalidate.push_back(Elt: getArgSVal(Index: Idx)); |
| 261 | |
| 262 | // If a function accepts an object by argument (which would of course be a |
| 263 | // temporary that isn't lifetime-extended), invalidate the object itself, |
| 264 | // not only other objects reachable from it. This is necessary because the |
| 265 | // destructor has access to the temporary object after the call. |
| 266 | // TODO: Support placement arguments once we start |
| 267 | // constructing them directly. |
| 268 | // TODO: This is unnecessary when there's no destructor, but that's |
| 269 | // currently hard to figure out. |
| 270 | if (getKind() != CE_CXXAllocator) |
| 271 | if (isArgumentConstructedDirectly(Index: Idx)) |
| 272 | if (auto AdjIdx = getAdjustedParameterIndex(ASTArgumentIndex: Idx)) |
| 273 | if (const TypedValueRegion *TVR = |
| 274 | getParameterLocation(Index: *AdjIdx, BlockCount)) |
| 275 | ValuesToInvalidate.push_back(Elt: loc::MemRegionVal(TVR)); |
| 276 | } |
| 277 | |
| 278 | // Invalidate designated regions using the batch invalidation API. |
| 279 | // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate |
| 280 | // global variables. |
| 281 | return Result->invalidateRegions(Values: ValuesToInvalidate, Elem: getCFGElementRef(), |
| 282 | BlockCount, LCtx: getLocationContext(), |
| 283 | /*CausedByPointerEscape*/ CausesPointerEscape: true, |
| 284 | /*Symbols=*/IS: nullptr, Call: this, ITraits: &ETraits); |
| 285 | } |
| 286 | |
| 287 | ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit, |
| 288 | const ProgramPointTag *Tag) const { |
| 289 | |
| 290 | if (const Expr *E = getOriginExpr()) { |
| 291 | if (IsPreVisit) |
| 292 | return PreStmt(E, getLocationContext(), Tag); |
| 293 | return PostStmt(E, getLocationContext(), Tag); |
| 294 | } |
| 295 | |
| 296 | const Decl *D = getDecl(); |
| 297 | assert(D && "Cannot get a program point without a statement or decl" ); |
| 298 | assert(ElemRef.getParent() && |
| 299 | "Cannot get a program point without a CFGElementRef" ); |
| 300 | |
| 301 | SourceLocation Loc = getSourceRange().getBegin(); |
| 302 | if (IsPreVisit) |
| 303 | return PreImplicitCall(D, Loc, getLocationContext(), ElemRef, Tag); |
| 304 | return PostImplicitCall(D, Loc, getLocationContext(), ElemRef, Tag); |
| 305 | } |
| 306 | |
| 307 | SVal CallEvent::getArgSVal(unsigned Index) const { |
| 308 | const Expr *ArgE = getArgExpr(Index); |
| 309 | if (!ArgE) |
| 310 | return UnknownVal(); |
| 311 | return getSVal(S: ArgE); |
| 312 | } |
| 313 | |
| 314 | SourceRange CallEvent::getArgSourceRange(unsigned Index) const { |
| 315 | const Expr *ArgE = getArgExpr(Index); |
| 316 | if (!ArgE) |
| 317 | return {}; |
| 318 | return ArgE->getSourceRange(); |
| 319 | } |
| 320 | |
| 321 | SVal CallEvent::getReturnValue() const { |
| 322 | const Expr *E = getOriginExpr(); |
| 323 | if (!E) |
| 324 | return UndefinedVal(); |
| 325 | return getSVal(S: E); |
| 326 | } |
| 327 | |
| 328 | LLVM_DUMP_METHOD void CallEvent::dump() const { dump(Out&: llvm::errs()); } |
| 329 | |
| 330 | void CallEvent::dump(raw_ostream &Out) const { |
| 331 | ASTContext &Ctx = getState()->getStateManager().getContext(); |
| 332 | if (const Expr *E = getOriginExpr()) { |
| 333 | E->printPretty(OS&: Out, Helper: nullptr, Policy: Ctx.getPrintingPolicy()); |
| 334 | return; |
| 335 | } |
| 336 | |
| 337 | if (const Decl *D = getDecl()) { |
| 338 | Out << "Call to " ; |
| 339 | D->print(Out, Policy: Ctx.getPrintingPolicy()); |
| 340 | return; |
| 341 | } |
| 342 | |
| 343 | Out << "Unknown call (type " << getKindAsString() << ")" ; |
| 344 | } |
| 345 | |
| 346 | bool CallEvent::isCallStmt(const Stmt *S) { |
| 347 | return isa<CallExpr, ObjCMessageExpr, CXXConstructExpr, CXXNewExpr>(Val: S); |
| 348 | } |
| 349 | |
| 350 | QualType CallEvent::getDeclaredResultType(const Decl *D) { |
| 351 | assert(D); |
| 352 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
| 353 | return FD->getReturnType(); |
| 354 | if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) |
| 355 | return MD->getReturnType(); |
| 356 | if (const auto *BD = dyn_cast<BlockDecl>(Val: D)) { |
| 357 | // Blocks are difficult because the return type may not be stored in the |
| 358 | // BlockDecl itself. The AST should probably be enhanced, but for now we |
| 359 | // just do what we can. |
| 360 | // If the block is declared without an explicit argument list, the |
| 361 | // signature-as-written just includes the return type, not the entire |
| 362 | // function type. |
| 363 | // FIXME: All blocks should have signatures-as-written, even if the return |
| 364 | // type is inferred. (That's signified with a dependent result type.) |
| 365 | if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) { |
| 366 | QualType Ty = TSI->getType(); |
| 367 | if (const FunctionType *FT = Ty->getAs<FunctionType>()) |
| 368 | Ty = FT->getReturnType(); |
| 369 | if (!Ty->isDependentType()) |
| 370 | return Ty; |
| 371 | } |
| 372 | |
| 373 | return {}; |
| 374 | } |
| 375 | |
| 376 | llvm_unreachable("unknown callable kind" ); |
| 377 | } |
| 378 | |
| 379 | bool CallEvent::isVariadic(const Decl *D) { |
| 380 | assert(D); |
| 381 | |
| 382 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
| 383 | return FD->isVariadic(); |
| 384 | if (const auto *MD = dyn_cast<ObjCMethodDecl>(Val: D)) |
| 385 | return MD->isVariadic(); |
| 386 | if (const auto *BD = dyn_cast<BlockDecl>(Val: D)) |
| 387 | return BD->isVariadic(); |
| 388 | |
| 389 | llvm_unreachable("unknown callable kind" ); |
| 390 | } |
| 391 | |
| 392 | static bool isTransparentUnion(QualType T) { |
| 393 | const RecordType *UT = T->getAsUnionType(); |
| 394 | return UT && UT->getDecl()->hasAttr<TransparentUnionAttr>(); |
| 395 | } |
| 396 | |
| 397 | // In some cases, symbolic cases should be transformed before we associate |
| 398 | // them with parameters. This function incapsulates such cases. |
| 399 | static SVal processArgument(SVal Value, const Expr *ArgumentExpr, |
| 400 | const ParmVarDecl *Parameter, SValBuilder &SVB) { |
| 401 | QualType ParamType = Parameter->getType(); |
| 402 | QualType ArgumentType = ArgumentExpr->getType(); |
| 403 | |
| 404 | // Transparent unions allow users to easily convert values of union field |
| 405 | // types into union-typed objects. |
| 406 | // |
| 407 | // Also, more importantly, they allow users to define functions with different |
| 408 | // different parameter types, substituting types matching transparent union |
| 409 | // field types with the union type itself. |
| 410 | // |
| 411 | // Here, we check specifically for latter cases and prevent binding |
| 412 | // field-typed values to union-typed regions. |
| 413 | if (isTransparentUnion(T: ParamType) && |
| 414 | // Let's check that we indeed trying to bind different types. |
| 415 | !isTransparentUnion(T: ArgumentType)) { |
| 416 | BasicValueFactory &BVF = SVB.getBasicValueFactory(); |
| 417 | |
| 418 | llvm::ImmutableList<SVal> CompoundSVals = BVF.getEmptySValList(); |
| 419 | CompoundSVals = BVF.prependSVal(X: Value, L: CompoundSVals); |
| 420 | |
| 421 | // Wrap it with compound value. |
| 422 | return SVB.makeCompoundVal(type: ParamType, vals: CompoundSVals); |
| 423 | } |
| 424 | |
| 425 | return Value; |
| 426 | } |
| 427 | |
| 428 | /// Cast the argument value to the type of the parameter at the function |
| 429 | /// declaration. |
| 430 | /// Returns the argument value if it didn't need a cast. |
| 431 | /// Or returns the cast argument if it needed a cast. |
| 432 | /// Or returns 'Unknown' if it would need a cast but the callsite and the |
| 433 | /// runtime definition don't match in terms of argument and parameter count. |
| 434 | static SVal castArgToParamTypeIfNeeded(const CallEvent &Call, unsigned ArgIdx, |
| 435 | SVal ArgVal, SValBuilder &SVB) { |
| 436 | const auto *CallExprDecl = dyn_cast_or_null<FunctionDecl>(Val: Call.getDecl()); |
| 437 | if (!CallExprDecl) |
| 438 | return ArgVal; |
| 439 | |
| 440 | const FunctionDecl *Definition = CallExprDecl; |
| 441 | Definition->hasBody(Definition); |
| 442 | |
| 443 | // The function decl of the Call (in the AST) will not have any parameter |
| 444 | // declarations, if it was 'only' declared without a prototype. However, the |
| 445 | // engine will find the appropriate runtime definition - basically a |
| 446 | // redeclaration, which has a function body (and a function prototype). |
| 447 | if (CallExprDecl->hasPrototype() || !Definition->hasPrototype()) |
| 448 | return ArgVal; |
| 449 | |
| 450 | // Only do this cast if the number arguments at the callsite matches with |
| 451 | // the parameters at the runtime definition. |
| 452 | if (Call.getNumArgs() != Definition->getNumParams()) |
| 453 | return UnknownVal(); |
| 454 | |
| 455 | const Expr *ArgExpr = Call.getArgExpr(Index: ArgIdx); |
| 456 | const ParmVarDecl *Param = Definition->getParamDecl(i: ArgIdx); |
| 457 | return SVB.evalCast(V: ArgVal, CastTy: Param->getType(), OriginalTy: ArgExpr->getType()); |
| 458 | } |
| 459 | |
| 460 | static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx, |
| 461 | CallEvent::BindingsTy &Bindings, |
| 462 | SValBuilder &SVB, |
| 463 | const CallEvent &Call, |
| 464 | ArrayRef<ParmVarDecl*> parameters) { |
| 465 | MemRegionManager &MRMgr = SVB.getRegionManager(); |
| 466 | |
| 467 | // If the function has fewer parameters than the call has arguments, we simply |
| 468 | // do not bind any values to them. |
| 469 | unsigned NumArgs = Call.getNumArgs(); |
| 470 | unsigned Idx = 0; |
| 471 | ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end(); |
| 472 | for (; I != E && Idx < NumArgs; ++I, ++Idx) { |
| 473 | assert(*I && "Formal parameter has no decl?" ); |
| 474 | |
| 475 | // TODO: Support allocator calls. |
| 476 | if (Call.getKind() != CE_CXXAllocator) |
| 477 | if (Call.isArgumentConstructedDirectly(Index: Call.getASTArgumentIndex(CallArgumentIndex: Idx))) |
| 478 | continue; |
| 479 | |
| 480 | // TODO: Allocators should receive the correct size and possibly alignment, |
| 481 | // determined in compile-time but not represented as arg-expressions, |
| 482 | // which makes getArgSVal() fail and return UnknownVal. |
| 483 | SVal ArgVal = Call.getArgSVal(Index: Idx); |
| 484 | const Expr *ArgExpr = Call.getArgExpr(Index: Idx); |
| 485 | |
| 486 | if (ArgVal.isUnknown()) |
| 487 | continue; |
| 488 | |
| 489 | // Cast the argument value to match the type of the parameter in some |
| 490 | // edge-cases. |
| 491 | ArgVal = castArgToParamTypeIfNeeded(Call, ArgIdx: Idx, ArgVal, SVB); |
| 492 | |
| 493 | Loc ParamLoc = SVB.makeLoc( |
| 494 | region: MRMgr.getParamVarRegion(OriginExpr: Call.getOriginExpr(), Index: Idx, LC: CalleeCtx)); |
| 495 | Bindings.push_back( |
| 496 | Elt: std::make_pair(x&: ParamLoc, y: processArgument(Value: ArgVal, ArgumentExpr: ArgExpr, Parameter: *I, SVB))); |
| 497 | } |
| 498 | |
| 499 | // FIXME: Variadic arguments are not handled at all right now. |
| 500 | } |
| 501 | |
| 502 | const ConstructionContext *CallEvent::getConstructionContext() const { |
| 503 | const StackFrameContext *StackFrame = getCalleeStackFrame(BlockCount: 0); |
| 504 | if (!StackFrame) |
| 505 | return nullptr; |
| 506 | |
| 507 | const CFGElement Element = StackFrame->getCallSiteCFGElement(); |
| 508 | if (const auto Ctor = Element.getAs<CFGConstructor>()) { |
| 509 | return Ctor->getConstructionContext(); |
| 510 | } |
| 511 | |
| 512 | if (const auto RecCall = Element.getAs<CFGCXXRecordTypedCall>()) { |
| 513 | return RecCall->getConstructionContext(); |
| 514 | } |
| 515 | |
| 516 | return nullptr; |
| 517 | } |
| 518 | |
| 519 | const CallEventRef<> CallEvent::getCaller() const { |
| 520 | const auto *CallLocationContext = this->getLocationContext(); |
| 521 | if (!CallLocationContext || CallLocationContext->inTopFrame()) |
| 522 | return nullptr; |
| 523 | |
| 524 | const auto *CallStackFrameContext = CallLocationContext->getStackFrame(); |
| 525 | if (!CallStackFrameContext) |
| 526 | return nullptr; |
| 527 | |
| 528 | CallEventManager &CEMgr = State->getStateManager().getCallEventManager(); |
| 529 | return CEMgr.getCaller(CalleeCtx: CallStackFrameContext, State); |
| 530 | } |
| 531 | |
| 532 | bool CallEvent::() const { |
| 533 | if (const CallEventRef<> Caller = getCaller()) |
| 534 | return Caller->isInSystemHeader(); |
| 535 | |
| 536 | return false; |
| 537 | } |
| 538 | |
| 539 | std::optional<SVal> CallEvent::getReturnValueUnderConstruction() const { |
| 540 | const auto *CC = getConstructionContext(); |
| 541 | if (!CC) |
| 542 | return std::nullopt; |
| 543 | |
| 544 | EvalCallOptions CallOpts; |
| 545 | ExprEngine &Engine = getState()->getStateManager().getOwningEngine(); |
| 546 | SVal RetVal = Engine.computeObjectUnderConstruction( |
| 547 | E: getOriginExpr(), State: getState(), BldrCtx: &Engine.getBuilderContext(), |
| 548 | LCtx: getLocationContext(), CC, CallOpts); |
| 549 | return RetVal; |
| 550 | } |
| 551 | |
| 552 | ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const { |
| 553 | const FunctionDecl *D = getDecl(); |
| 554 | if (!D) |
| 555 | return {}; |
| 556 | return D->parameters(); |
| 557 | } |
| 558 | |
| 559 | RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const { |
| 560 | const FunctionDecl *FD = getDecl(); |
| 561 | if (!FD) |
| 562 | return {}; |
| 563 | |
| 564 | // Note that the AnalysisDeclContext will have the FunctionDecl with |
| 565 | // the definition (if one exists). |
| 566 | AnalysisDeclContext *AD = |
| 567 | getLocationContext()->getAnalysisDeclContext()-> |
| 568 | getManager()->getContext(D: FD); |
| 569 | bool IsAutosynthesized; |
| 570 | Stmt* Body = AD->getBody(IsAutosynthesized); |
| 571 | LLVM_DEBUG({ |
| 572 | if (IsAutosynthesized) |
| 573 | llvm::dbgs() << "Using autosynthesized body for " << FD->getName() |
| 574 | << "\n" ; |
| 575 | }); |
| 576 | |
| 577 | ExprEngine &Engine = getState()->getStateManager().getOwningEngine(); |
| 578 | cross_tu::CrossTranslationUnitContext &CTUCtx = |
| 579 | *Engine.getCrossTranslationUnitContext(); |
| 580 | |
| 581 | AnalyzerOptions &Opts = Engine.getAnalysisManager().options; |
| 582 | |
| 583 | if (Body) { |
| 584 | const Decl* Decl = AD->getDecl(); |
| 585 | if (Opts.IsNaiveCTUEnabled && CTUCtx.isImportedAsNew(ToDecl: Decl)) { |
| 586 | // A newly created definition, but we had error(s) during the import. |
| 587 | if (CTUCtx.hasError(ToDecl: Decl)) |
| 588 | return {}; |
| 589 | return RuntimeDefinition(Decl, /*Foreign=*/true); |
| 590 | } |
| 591 | return RuntimeDefinition(Decl, /*Foreign=*/false); |
| 592 | } |
| 593 | |
| 594 | // Try to get CTU definition only if CTUDir is provided. |
| 595 | if (!Opts.IsNaiveCTUEnabled) |
| 596 | return {}; |
| 597 | |
| 598 | llvm::Expected<const FunctionDecl *> CTUDeclOrError = |
| 599 | CTUCtx.getCrossTUDefinition(FD, CrossTUDir: Opts.CTUDir, IndexName: Opts.CTUIndexName, |
| 600 | DisplayCTUProgress: Opts.DisplayCTUProgress); |
| 601 | |
| 602 | if (!CTUDeclOrError) { |
| 603 | handleAllErrors(E: CTUDeclOrError.takeError(), |
| 604 | Handlers: [&](const cross_tu::IndexError &IE) { |
| 605 | CTUCtx.emitCrossTUDiagnostics(IE); |
| 606 | }); |
| 607 | return {}; |
| 608 | } |
| 609 | |
| 610 | return RuntimeDefinition(*CTUDeclOrError, /*Foreign=*/true); |
| 611 | } |
| 612 | |
| 613 | void AnyFunctionCall::getInitialStackFrameContents( |
| 614 | const StackFrameContext *CalleeCtx, |
| 615 | BindingsTy &Bindings) const { |
| 616 | const auto *D = cast<FunctionDecl>(Val: CalleeCtx->getDecl()); |
| 617 | SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); |
| 618 | addParameterValuesToBindings(CalleeCtx, Bindings, SVB, Call: *this, |
| 619 | parameters: D->parameters()); |
| 620 | } |
| 621 | |
| 622 | bool AnyFunctionCall::argumentsMayEscape() const { |
| 623 | if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg()) |
| 624 | return true; |
| 625 | |
| 626 | const FunctionDecl *D = getDecl(); |
| 627 | if (!D) |
| 628 | return true; |
| 629 | |
| 630 | const IdentifierInfo *II = D->getIdentifier(); |
| 631 | if (!II) |
| 632 | return false; |
| 633 | |
| 634 | // This set of "escaping" APIs is |
| 635 | |
| 636 | // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a |
| 637 | // value into thread local storage. The value can later be retrieved with |
| 638 | // 'void *ptheread_getspecific(pthread_key)'. So even thought the |
| 639 | // parameter is 'const void *', the region escapes through the call. |
| 640 | if (II->isStr(Str: "pthread_setspecific" )) |
| 641 | return true; |
| 642 | |
| 643 | // - xpc_connection_set_context stores a value which can be retrieved later |
| 644 | // with xpc_connection_get_context. |
| 645 | if (II->isStr(Str: "xpc_connection_set_context" )) |
| 646 | return true; |
| 647 | |
| 648 | // - funopen - sets a buffer for future IO calls. |
| 649 | if (II->isStr(Str: "funopen" )) |
| 650 | return true; |
| 651 | |
| 652 | // - __cxa_demangle - can reallocate memory and can return the pointer to |
| 653 | // the input buffer. |
| 654 | if (II->isStr(Str: "__cxa_demangle" )) |
| 655 | return true; |
| 656 | |
| 657 | StringRef FName = II->getName(); |
| 658 | |
| 659 | // - CoreFoundation functions that end with "NoCopy" can free a passed-in |
| 660 | // buffer even if it is const. |
| 661 | if (FName.ends_with(Suffix: "NoCopy" )) |
| 662 | return true; |
| 663 | |
| 664 | // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can |
| 665 | // be deallocated by NSMapRemove. |
| 666 | if (FName.starts_with(Prefix: "NS" ) && FName.contains(Other: "Insert" )) |
| 667 | return true; |
| 668 | |
| 669 | // - Many CF containers allow objects to escape through custom |
| 670 | // allocators/deallocators upon container construction. (PR12101) |
| 671 | if (FName.starts_with(Prefix: "CF" ) || FName.starts_with(Prefix: "CG" )) { |
| 672 | return StrInStrNoCase(s1: FName, s2: "InsertValue" ) != StringRef::npos || |
| 673 | StrInStrNoCase(s1: FName, s2: "AddValue" ) != StringRef::npos || |
| 674 | StrInStrNoCase(s1: FName, s2: "SetValue" ) != StringRef::npos || |
| 675 | StrInStrNoCase(s1: FName, s2: "WithData" ) != StringRef::npos || |
| 676 | StrInStrNoCase(s1: FName, s2: "AppendValue" ) != StringRef::npos || |
| 677 | StrInStrNoCase(s1: FName, s2: "SetAttribute" ) != StringRef::npos; |
| 678 | } |
| 679 | |
| 680 | return false; |
| 681 | } |
| 682 | |
| 683 | const FunctionDecl *SimpleFunctionCall::getDecl() const { |
| 684 | const FunctionDecl *D = getOriginExpr()->getDirectCallee(); |
| 685 | if (D) |
| 686 | return D; |
| 687 | |
| 688 | return getSVal(S: getOriginExpr()->getCallee()).getAsFunctionDecl(); |
| 689 | } |
| 690 | |
| 691 | RuntimeDefinition SimpleFunctionCall::getRuntimeDefinition() const { |
| 692 | // Clang converts lambdas to function pointers using an implicit conversion |
| 693 | // operator, which returns the lambda's '__invoke' method. However, Sema |
| 694 | // leaves the body of '__invoke' empty (it is generated later in CodeGen), so |
| 695 | // we need to skip '__invoke' and access the lambda's operator() directly. |
| 696 | if (const auto *CMD = dyn_cast_if_present<CXXMethodDecl>(Val: getDecl()); |
| 697 | CMD && CMD->isLambdaStaticInvoker()) |
| 698 | return RuntimeDefinition{CMD->getParent()->getLambdaCallOperator()}; |
| 699 | |
| 700 | return AnyFunctionCall::getRuntimeDefinition(); |
| 701 | } |
| 702 | |
| 703 | const FunctionDecl *CXXInstanceCall::getDecl() const { |
| 704 | const auto *CE = cast_or_null<CallExpr>(Val: getOriginExpr()); |
| 705 | if (!CE) |
| 706 | return AnyFunctionCall::getDecl(); |
| 707 | |
| 708 | const FunctionDecl *D = CE->getDirectCallee(); |
| 709 | if (D) |
| 710 | return D; |
| 711 | |
| 712 | return getSVal(S: CE->getCallee()).getAsFunctionDecl(); |
| 713 | } |
| 714 | |
| 715 | void CXXInstanceCall::getExtraInvalidatedValues( |
| 716 | ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { |
| 717 | SVal ThisVal = getCXXThisVal(); |
| 718 | Values.push_back(Elt: ThisVal); |
| 719 | |
| 720 | // Don't invalidate if the method is const and there are no mutable fields. |
| 721 | if (const auto *D = cast_or_null<CXXMethodDecl>(Val: getDecl())) { |
| 722 | if (!D->isConst()) |
| 723 | return; |
| 724 | |
| 725 | // Get the record decl for the class of 'This'. D->getParent() may return |
| 726 | // a base class decl, rather than the class of the instance which needs to |
| 727 | // be checked for mutable fields. |
| 728 | const CXXRecordDecl *ParentRecord = getDeclForDynamicType().first; |
| 729 | if (!ParentRecord || !ParentRecord->hasDefinition()) |
| 730 | return; |
| 731 | |
| 732 | if (ParentRecord->hasMutableFields()) |
| 733 | return; |
| 734 | |
| 735 | // Preserve CXXThis. |
| 736 | const MemRegion *ThisRegion = ThisVal.getAsRegion(); |
| 737 | if (!ThisRegion) |
| 738 | return; |
| 739 | |
| 740 | ETraits->setTrait(MR: ThisRegion->getBaseRegion(), |
| 741 | IK: RegionAndSymbolInvalidationTraits::TK_PreserveContents); |
| 742 | } |
| 743 | } |
| 744 | |
| 745 | SVal CXXInstanceCall::getCXXThisVal() const { |
| 746 | const Expr *Base = getCXXThisExpr(); |
| 747 | // FIXME: This doesn't handle an overloaded ->* operator. |
| 748 | SVal ThisVal = Base ? getSVal(S: Base) : UnknownVal(); |
| 749 | |
| 750 | if (isa<NonLoc>(Val: ThisVal)) { |
| 751 | SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); |
| 752 | QualType OriginalTy = ThisVal.getType(SVB.getContext()); |
| 753 | return SVB.evalCast(V: ThisVal, CastTy: Base->getType(), OriginalTy); |
| 754 | } |
| 755 | |
| 756 | assert(ThisVal.isUnknownOrUndef() || isa<Loc>(ThisVal)); |
| 757 | return ThisVal; |
| 758 | } |
| 759 | |
| 760 | std::pair<const CXXRecordDecl *, bool> |
| 761 | CXXInstanceCall::getDeclForDynamicType() const { |
| 762 | const MemRegion *R = getCXXThisVal().getAsRegion(); |
| 763 | if (!R) |
| 764 | return {}; |
| 765 | |
| 766 | DynamicTypeInfo DynType = getDynamicTypeInfo(State: getState(), MR: R); |
| 767 | if (!DynType.isValid()) |
| 768 | return {}; |
| 769 | |
| 770 | assert(!DynType.getType()->getPointeeType().isNull()); |
| 771 | return {DynType.getType()->getPointeeCXXRecordDecl(), |
| 772 | DynType.canBeASubClass()}; |
| 773 | } |
| 774 | |
| 775 | RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const { |
| 776 | // Do we have a decl at all? |
| 777 | const Decl *D = getDecl(); |
| 778 | if (!D) |
| 779 | return {}; |
| 780 | |
| 781 | // If the method is non-virtual, we know we can inline it. |
| 782 | const auto *MD = cast<CXXMethodDecl>(Val: D); |
| 783 | if (!MD->isVirtual()) |
| 784 | return AnyFunctionCall::getRuntimeDefinition(); |
| 785 | |
| 786 | auto [RD, CanBeSubClass] = getDeclForDynamicType(); |
| 787 | if (!RD || !RD->hasDefinition()) |
| 788 | return {}; |
| 789 | |
| 790 | // Find the decl for this method in that class. |
| 791 | const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, MayBeBase: true); |
| 792 | if (!Result) { |
| 793 | // We might not even get the original statically-resolved method due to |
| 794 | // some particularly nasty casting (e.g. casts to sister classes). |
| 795 | // However, we should at least be able to search up and down our own class |
| 796 | // hierarchy, and some real bugs have been caught by checking this. |
| 797 | assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method" ); |
| 798 | |
| 799 | // FIXME: This is checking that our DynamicTypeInfo is at least as good as |
| 800 | // the static type. However, because we currently don't update |
| 801 | // DynamicTypeInfo when an object is cast, we can't actually be sure the |
| 802 | // DynamicTypeInfo is up to date. This assert should be re-enabled once |
| 803 | // this is fixed. |
| 804 | // |
| 805 | // assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo"); |
| 806 | |
| 807 | return {}; |
| 808 | } |
| 809 | |
| 810 | // Does the decl that we found have an implementation? |
| 811 | const FunctionDecl *Definition; |
| 812 | if (!Result->hasBody(Definition)) { |
| 813 | if (!CanBeSubClass) |
| 814 | return AnyFunctionCall::getRuntimeDefinition(); |
| 815 | return {}; |
| 816 | } |
| 817 | |
| 818 | // We found a definition. If we're not sure that this devirtualization is |
| 819 | // actually what will happen at runtime, make sure to provide the region so |
| 820 | // that ExprEngine can decide what to do with it. |
| 821 | if (CanBeSubClass) |
| 822 | return RuntimeDefinition(Definition, |
| 823 | getCXXThisVal().getAsRegion()->StripCasts()); |
| 824 | return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr); |
| 825 | } |
| 826 | |
| 827 | void CXXInstanceCall::getInitialStackFrameContents( |
| 828 | const StackFrameContext *CalleeCtx, |
| 829 | BindingsTy &Bindings) const { |
| 830 | AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); |
| 831 | |
| 832 | // Handle the binding of 'this' in the new stack frame. |
| 833 | SVal ThisVal = getCXXThisVal(); |
| 834 | if (!ThisVal.isUnknown()) { |
| 835 | ProgramStateManager &StateMgr = getState()->getStateManager(); |
| 836 | SValBuilder &SVB = StateMgr.getSValBuilder(); |
| 837 | |
| 838 | const auto *MD = cast<CXXMethodDecl>(Val: CalleeCtx->getDecl()); |
| 839 | Loc ThisLoc = SVB.getCXXThis(D: MD, SFC: CalleeCtx); |
| 840 | |
| 841 | // If we devirtualized to a different member function, we need to make sure |
| 842 | // we have the proper layering of CXXBaseObjectRegions. |
| 843 | if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) { |
| 844 | ASTContext &Ctx = SVB.getContext(); |
| 845 | const CXXRecordDecl *Class = MD->getParent(); |
| 846 | QualType Ty = Ctx.getPointerType(T: Ctx.getRecordType(Decl: Class)); |
| 847 | |
| 848 | // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager. |
| 849 | std::optional<SVal> V = |
| 850 | StateMgr.getStoreManager().evalBaseToDerived(Base: ThisVal, DerivedPtrType: Ty); |
| 851 | if (!V) { |
| 852 | // We might have suffered some sort of placement new earlier, so |
| 853 | // we're constructing in a completely unexpected storage. |
| 854 | // Fall back to a generic pointer cast for this-value. |
| 855 | const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(Val: getDecl()); |
| 856 | const CXXRecordDecl *StaticClass = StaticMD->getParent(); |
| 857 | QualType StaticTy = Ctx.getPointerType(T: Ctx.getRecordType(Decl: StaticClass)); |
| 858 | ThisVal = SVB.evalCast(V: ThisVal, CastTy: Ty, OriginalTy: StaticTy); |
| 859 | } else |
| 860 | ThisVal = *V; |
| 861 | } |
| 862 | |
| 863 | if (!ThisVal.isUnknown()) |
| 864 | Bindings.push_back(Elt: std::make_pair(x&: ThisLoc, y&: ThisVal)); |
| 865 | } |
| 866 | } |
| 867 | |
| 868 | const Expr *CXXMemberCall::getCXXThisExpr() const { |
| 869 | return getOriginExpr()->getImplicitObjectArgument(); |
| 870 | } |
| 871 | |
| 872 | RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const { |
| 873 | // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the |
| 874 | // id-expression in the class member access expression is a qualified-id, |
| 875 | // that function is called. Otherwise, its final overrider in the dynamic type |
| 876 | // of the object expression is called. |
| 877 | if (const auto *ME = dyn_cast<MemberExpr>(Val: getOriginExpr()->getCallee())) |
| 878 | if (ME->hasQualifier()) |
| 879 | return AnyFunctionCall::getRuntimeDefinition(); |
| 880 | |
| 881 | return CXXInstanceCall::getRuntimeDefinition(); |
| 882 | } |
| 883 | |
| 884 | const Expr *CXXMemberOperatorCall::getCXXThisExpr() const { |
| 885 | return getOriginExpr()->getArg(Arg: 0); |
| 886 | } |
| 887 | |
| 888 | const BlockDataRegion *BlockCall::getBlockRegion() const { |
| 889 | const Expr *Callee = getOriginExpr()->getCallee(); |
| 890 | const MemRegion *DataReg = getSVal(S: Callee).getAsRegion(); |
| 891 | |
| 892 | return dyn_cast_or_null<BlockDataRegion>(Val: DataReg); |
| 893 | } |
| 894 | |
| 895 | ArrayRef<ParmVarDecl*> BlockCall::parameters() const { |
| 896 | const BlockDecl *D = getDecl(); |
| 897 | if (!D) |
| 898 | return {}; |
| 899 | return D->parameters(); |
| 900 | } |
| 901 | |
| 902 | void BlockCall::getExtraInvalidatedValues(ValueList &Values, |
| 903 | RegionAndSymbolInvalidationTraits *ETraits) const { |
| 904 | // FIXME: This also needs to invalidate captured globals. |
| 905 | if (const MemRegion *R = getBlockRegion()) |
| 906 | Values.push_back(Elt: loc::MemRegionVal(R)); |
| 907 | } |
| 908 | |
| 909 | void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx, |
| 910 | BindingsTy &Bindings) const { |
| 911 | SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); |
| 912 | ArrayRef<ParmVarDecl*> Params; |
| 913 | if (isConversionFromLambda()) { |
| 914 | auto *LambdaOperatorDecl = cast<CXXMethodDecl>(Val: CalleeCtx->getDecl()); |
| 915 | Params = LambdaOperatorDecl->parameters(); |
| 916 | |
| 917 | // For blocks converted from a C++ lambda, the callee declaration is the |
| 918 | // operator() method on the lambda so we bind "this" to |
| 919 | // the lambda captured by the block. |
| 920 | const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda(); |
| 921 | SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion); |
| 922 | Loc ThisLoc = SVB.getCXXThis(D: LambdaOperatorDecl, SFC: CalleeCtx); |
| 923 | Bindings.push_back(Elt: std::make_pair(x&: ThisLoc, y&: ThisVal)); |
| 924 | } else { |
| 925 | Params = cast<BlockDecl>(Val: CalleeCtx->getDecl())->parameters(); |
| 926 | } |
| 927 | |
| 928 | addParameterValuesToBindings(CalleeCtx, Bindings, SVB, Call: *this, |
| 929 | parameters: Params); |
| 930 | } |
| 931 | |
| 932 | SVal AnyCXXConstructorCall::getCXXThisVal() const { |
| 933 | if (Data) |
| 934 | return loc::MemRegionVal(static_cast<const MemRegion *>(Data)); |
| 935 | return UnknownVal(); |
| 936 | } |
| 937 | |
| 938 | void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values, |
| 939 | RegionAndSymbolInvalidationTraits *ETraits) const { |
| 940 | SVal V = getCXXThisVal(); |
| 941 | if (SymbolRef Sym = V.getAsSymbol(IncludeBaseRegions: true)) |
| 942 | ETraits->setTrait(Sym, |
| 943 | IK: RegionAndSymbolInvalidationTraits::TK_SuppressEscape); |
| 944 | |
| 945 | // Standard classes don't reinterpret-cast and modify super regions. |
| 946 | const bool IsStdClassCtor = isWithinStdNamespace(D: getDecl()); |
| 947 | if (const MemRegion *Obj = V.getAsRegion(); Obj && IsStdClassCtor) { |
| 948 | ETraits->setTrait( |
| 949 | MR: Obj, IK: RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); |
| 950 | } |
| 951 | |
| 952 | Values.push_back(Elt: V); |
| 953 | } |
| 954 | |
| 955 | void AnyCXXConstructorCall::getInitialStackFrameContents( |
| 956 | const StackFrameContext *CalleeCtx, |
| 957 | BindingsTy &Bindings) const { |
| 958 | AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings); |
| 959 | |
| 960 | SVal ThisVal = getCXXThisVal(); |
| 961 | if (!ThisVal.isUnknown()) { |
| 962 | SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); |
| 963 | const auto *MD = cast<CXXMethodDecl>(Val: CalleeCtx->getDecl()); |
| 964 | Loc ThisLoc = SVB.getCXXThis(D: MD, SFC: CalleeCtx); |
| 965 | Bindings.push_back(Elt: std::make_pair(x&: ThisLoc, y&: ThisVal)); |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | const StackFrameContext * |
| 970 | CXXInheritedConstructorCall::getInheritingStackFrame() const { |
| 971 | const StackFrameContext *SFC = getLocationContext()->getStackFrame(); |
| 972 | while (isa<CXXInheritedCtorInitExpr>(Val: SFC->getCallSite())) |
| 973 | SFC = SFC->getParent()->getStackFrame(); |
| 974 | return SFC; |
| 975 | } |
| 976 | |
| 977 | SVal CXXDestructorCall::getCXXThisVal() const { |
| 978 | if (Data) |
| 979 | return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(V: Data).getPointer()); |
| 980 | return UnknownVal(); |
| 981 | } |
| 982 | |
| 983 | RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const { |
| 984 | // Base destructors are always called non-virtually. |
| 985 | // Skip CXXInstanceCall's devirtualization logic in this case. |
| 986 | if (isBaseDestructor()) |
| 987 | return AnyFunctionCall::getRuntimeDefinition(); |
| 988 | |
| 989 | return CXXInstanceCall::getRuntimeDefinition(); |
| 990 | } |
| 991 | |
| 992 | ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const { |
| 993 | const ObjCMethodDecl *D = getDecl(); |
| 994 | if (!D) |
| 995 | return {}; |
| 996 | return D->parameters(); |
| 997 | } |
| 998 | |
| 999 | void ObjCMethodCall::getExtraInvalidatedValues( |
| 1000 | ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const { |
| 1001 | |
| 1002 | // If the method call is a setter for property known to be backed by |
| 1003 | // an instance variable, don't invalidate the entire receiver, just |
| 1004 | // the storage for that instance variable. |
| 1005 | if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) { |
| 1006 | if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) { |
| 1007 | SVal IvarLVal = getState()->getLValue(D: PropIvar, Base: getReceiverSVal()); |
| 1008 | if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) { |
| 1009 | ETraits->setTrait( |
| 1010 | MR: IvarRegion, |
| 1011 | IK: RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion); |
| 1012 | ETraits->setTrait( |
| 1013 | MR: IvarRegion, |
| 1014 | IK: RegionAndSymbolInvalidationTraits::TK_SuppressEscape); |
| 1015 | Values.push_back(Elt: IvarLVal); |
| 1016 | } |
| 1017 | return; |
| 1018 | } |
| 1019 | } |
| 1020 | |
| 1021 | Values.push_back(Elt: getReceiverSVal()); |
| 1022 | } |
| 1023 | |
| 1024 | SVal ObjCMethodCall::getReceiverSVal() const { |
| 1025 | // FIXME: Is this the best way to handle class receivers? |
| 1026 | if (!isInstanceMessage()) |
| 1027 | return UnknownVal(); |
| 1028 | |
| 1029 | if (const Expr *RecE = getOriginExpr()->getInstanceReceiver()) |
| 1030 | return getSVal(S: RecE); |
| 1031 | |
| 1032 | // An instance message with no expression means we are sending to super. |
| 1033 | // In this case the object reference is the same as 'self'. |
| 1034 | assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance); |
| 1035 | SVal SelfVal = getState()->getSelfSVal(LC: getLocationContext()); |
| 1036 | assert(SelfVal.isValid() && "Calling super but not in ObjC method" ); |
| 1037 | return SelfVal; |
| 1038 | } |
| 1039 | |
| 1040 | bool ObjCMethodCall::isReceiverSelfOrSuper() const { |
| 1041 | if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance || |
| 1042 | getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass) |
| 1043 | return true; |
| 1044 | |
| 1045 | if (!isInstanceMessage()) |
| 1046 | return false; |
| 1047 | |
| 1048 | SVal RecVal = getSVal(S: getOriginExpr()->getInstanceReceiver()); |
| 1049 | SVal SelfVal = getState()->getSelfSVal(LC: getLocationContext()); |
| 1050 | |
| 1051 | return (RecVal == SelfVal); |
| 1052 | } |
| 1053 | |
| 1054 | SourceRange ObjCMethodCall::getSourceRange() const { |
| 1055 | switch (getMessageKind()) { |
| 1056 | case OCM_Message: |
| 1057 | return getOriginExpr()->getSourceRange(); |
| 1058 | case OCM_PropertyAccess: |
| 1059 | case OCM_Subscript: |
| 1060 | return getContainingPseudoObjectExpr()->getSourceRange(); |
| 1061 | } |
| 1062 | llvm_unreachable("unknown message kind" ); |
| 1063 | } |
| 1064 | |
| 1065 | using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>; |
| 1066 | |
| 1067 | const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const { |
| 1068 | assert(Data && "Lazy lookup not yet performed." ); |
| 1069 | assert(getMessageKind() != OCM_Message && "Explicit message send." ); |
| 1070 | return ObjCMessageDataTy::getFromOpaqueValue(V: Data).getPointer(); |
| 1071 | } |
| 1072 | |
| 1073 | static const Expr * |
| 1074 | getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) { |
| 1075 | const Expr *Syntactic = POE->getSyntacticForm()->IgnoreParens(); |
| 1076 | |
| 1077 | // This handles the funny case of assigning to the result of a getter. |
| 1078 | // This can happen if the getter returns a non-const reference. |
| 1079 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: Syntactic)) |
| 1080 | Syntactic = BO->getLHS()->IgnoreParens(); |
| 1081 | |
| 1082 | return Syntactic; |
| 1083 | } |
| 1084 | |
| 1085 | ObjCMessageKind ObjCMethodCall::getMessageKind() const { |
| 1086 | if (!Data) { |
| 1087 | // Find the parent, ignoring implicit casts. |
| 1088 | const ParentMap &PM = getLocationContext()->getParentMap(); |
| 1089 | const Stmt *S = PM.getParentIgnoreParenCasts(S: getOriginExpr()); |
| 1090 | |
| 1091 | // Check if parent is a PseudoObjectExpr. |
| 1092 | if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(Val: S)) { |
| 1093 | const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); |
| 1094 | |
| 1095 | ObjCMessageKind K; |
| 1096 | switch (Syntactic->getStmtClass()) { |
| 1097 | case Stmt::ObjCPropertyRefExprClass: |
| 1098 | K = OCM_PropertyAccess; |
| 1099 | break; |
| 1100 | case Stmt::ObjCSubscriptRefExprClass: |
| 1101 | K = OCM_Subscript; |
| 1102 | break; |
| 1103 | default: |
| 1104 | // FIXME: Can this ever happen? |
| 1105 | K = OCM_Message; |
| 1106 | break; |
| 1107 | } |
| 1108 | |
| 1109 | if (K != OCM_Message) { |
| 1110 | const_cast<ObjCMethodCall *>(this)->Data |
| 1111 | = ObjCMessageDataTy(POE, K).getOpaqueValue(); |
| 1112 | assert(getMessageKind() == K); |
| 1113 | return K; |
| 1114 | } |
| 1115 | } |
| 1116 | |
| 1117 | const_cast<ObjCMethodCall *>(this)->Data |
| 1118 | = ObjCMessageDataTy(nullptr, 1).getOpaqueValue(); |
| 1119 | assert(getMessageKind() == OCM_Message); |
| 1120 | return OCM_Message; |
| 1121 | } |
| 1122 | |
| 1123 | ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(V: Data); |
| 1124 | if (!Info.getPointer()) |
| 1125 | return OCM_Message; |
| 1126 | return static_cast<ObjCMessageKind>(Info.getInt()); |
| 1127 | } |
| 1128 | |
| 1129 | const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const { |
| 1130 | // Look for properties accessed with property syntax (foo.bar = ...) |
| 1131 | if (getMessageKind() == OCM_PropertyAccess) { |
| 1132 | const PseudoObjectExpr *POE = getContainingPseudoObjectExpr(); |
| 1133 | assert(POE && "Property access without PseudoObjectExpr?" ); |
| 1134 | |
| 1135 | const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE); |
| 1136 | auto *RefExpr = cast<ObjCPropertyRefExpr>(Val: Syntactic); |
| 1137 | |
| 1138 | if (RefExpr->isExplicitProperty()) |
| 1139 | return RefExpr->getExplicitProperty(); |
| 1140 | } |
| 1141 | |
| 1142 | // Look for properties accessed with method syntax ([foo setBar:...]). |
| 1143 | const ObjCMethodDecl *MD = getDecl(); |
| 1144 | if (!MD || !MD->isPropertyAccessor()) |
| 1145 | return nullptr; |
| 1146 | |
| 1147 | // Note: This is potentially quite slow. |
| 1148 | return MD->findPropertyDecl(); |
| 1149 | } |
| 1150 | |
| 1151 | bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl, |
| 1152 | Selector Sel) const { |
| 1153 | assert(IDecl); |
| 1154 | AnalysisManager &AMgr = |
| 1155 | getState()->getStateManager().getOwningEngine().getAnalysisManager(); |
| 1156 | // If the class interface is declared inside the main file, assume it is not |
| 1157 | // subcassed. |
| 1158 | // TODO: It could actually be subclassed if the subclass is private as well. |
| 1159 | // This is probably very rare. |
| 1160 | SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc(); |
| 1161 | if (InterfLoc.isValid() && AMgr.isInCodeFile(SL: InterfLoc)) |
| 1162 | return false; |
| 1163 | |
| 1164 | // Assume that property accessors are not overridden. |
| 1165 | if (getMessageKind() == OCM_PropertyAccess) |
| 1166 | return false; |
| 1167 | |
| 1168 | // We assume that if the method is public (declared outside of main file) or |
| 1169 | // has a parent which publicly declares the method, the method could be |
| 1170 | // overridden in a subclass. |
| 1171 | |
| 1172 | // Find the first declaration in the class hierarchy that declares |
| 1173 | // the selector. |
| 1174 | ObjCMethodDecl *D = nullptr; |
| 1175 | while (true) { |
| 1176 | D = IDecl->lookupMethod(Sel, isInstance: true); |
| 1177 | |
| 1178 | // Cannot find a public definition. |
| 1179 | if (!D) |
| 1180 | return false; |
| 1181 | |
| 1182 | // If outside the main file, |
| 1183 | if (D->getLocation().isValid() && !AMgr.isInCodeFile(SL: D->getLocation())) |
| 1184 | return true; |
| 1185 | |
| 1186 | if (D->isOverriding()) { |
| 1187 | // Search in the superclass on the next iteration. |
| 1188 | IDecl = D->getClassInterface(); |
| 1189 | if (!IDecl) |
| 1190 | return false; |
| 1191 | |
| 1192 | IDecl = IDecl->getSuperClass(); |
| 1193 | if (!IDecl) |
| 1194 | return false; |
| 1195 | |
| 1196 | continue; |
| 1197 | } |
| 1198 | |
| 1199 | return false; |
| 1200 | }; |
| 1201 | |
| 1202 | llvm_unreachable("The while loop should always terminate." ); |
| 1203 | } |
| 1204 | |
| 1205 | static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) { |
| 1206 | if (!MD) |
| 1207 | return MD; |
| 1208 | |
| 1209 | // Find the redeclaration that defines the method. |
| 1210 | if (!MD->hasBody()) { |
| 1211 | for (auto *I : MD->redecls()) |
| 1212 | if (I->hasBody()) |
| 1213 | MD = cast<ObjCMethodDecl>(Val: I); |
| 1214 | } |
| 1215 | return MD; |
| 1216 | } |
| 1217 | |
| 1218 | struct PrivateMethodKey { |
| 1219 | const ObjCInterfaceDecl *Interface; |
| 1220 | Selector LookupSelector; |
| 1221 | bool IsClassMethod; |
| 1222 | }; |
| 1223 | |
| 1224 | namespace llvm { |
| 1225 | template <> struct DenseMapInfo<PrivateMethodKey> { |
| 1226 | using InterfaceInfo = DenseMapInfo<const ObjCInterfaceDecl *>; |
| 1227 | using SelectorInfo = DenseMapInfo<Selector>; |
| 1228 | |
| 1229 | static inline PrivateMethodKey getEmptyKey() { |
| 1230 | return {.Interface: InterfaceInfo::getEmptyKey(), .LookupSelector: SelectorInfo::getEmptyKey(), .IsClassMethod: false}; |
| 1231 | } |
| 1232 | |
| 1233 | static inline PrivateMethodKey getTombstoneKey() { |
| 1234 | return {.Interface: InterfaceInfo::getTombstoneKey(), .LookupSelector: SelectorInfo::getTombstoneKey(), |
| 1235 | .IsClassMethod: true}; |
| 1236 | } |
| 1237 | |
| 1238 | static unsigned getHashValue(const PrivateMethodKey &Key) { |
| 1239 | return llvm::hash_combine( |
| 1240 | args: llvm::hash_code(InterfaceInfo::getHashValue(PtrVal: Key.Interface)), |
| 1241 | args: llvm::hash_code(SelectorInfo::getHashValue(S: Key.LookupSelector)), |
| 1242 | args: Key.IsClassMethod); |
| 1243 | } |
| 1244 | |
| 1245 | static bool isEqual(const PrivateMethodKey &LHS, |
| 1246 | const PrivateMethodKey &RHS) { |
| 1247 | return InterfaceInfo::isEqual(LHS: LHS.Interface, RHS: RHS.Interface) && |
| 1248 | SelectorInfo::isEqual(LHS: LHS.LookupSelector, RHS: RHS.LookupSelector) && |
| 1249 | LHS.IsClassMethod == RHS.IsClassMethod; |
| 1250 | } |
| 1251 | }; |
| 1252 | } // end namespace llvm |
| 1253 | |
| 1254 | static const ObjCMethodDecl * |
| 1255 | lookupRuntimeDefinition(const ObjCInterfaceDecl *Interface, |
| 1256 | Selector LookupSelector, bool InstanceMethod) { |
| 1257 | // Repeatedly calling lookupPrivateMethod() is expensive, especially |
| 1258 | // when in many cases it returns null. We cache the results so |
| 1259 | // that repeated queries on the same ObjCIntefaceDecl and Selector |
| 1260 | // don't incur the same cost. On some test cases, we can see the |
| 1261 | // same query being issued thousands of times. |
| 1262 | // |
| 1263 | // NOTE: This cache is essentially a "global" variable, but it |
| 1264 | // only gets lazily created when we get here. The value of the |
| 1265 | // cache probably comes from it being global across ExprEngines, |
| 1266 | // where the same queries may get issued. If we are worried about |
| 1267 | // concurrency, or possibly loading/unloading ASTs, etc., we may |
| 1268 | // need to revisit this someday. In terms of memory, this table |
| 1269 | // stays around until clang quits, which also may be bad if we |
| 1270 | // need to release memory. |
| 1271 | using PrivateMethodCache = |
| 1272 | llvm::DenseMap<PrivateMethodKey, std::optional<const ObjCMethodDecl *>>; |
| 1273 | |
| 1274 | static PrivateMethodCache PMC; |
| 1275 | std::optional<const ObjCMethodDecl *> &Val = |
| 1276 | PMC[{.Interface: Interface, .LookupSelector: LookupSelector, .IsClassMethod: InstanceMethod}]; |
| 1277 | |
| 1278 | // Query lookupPrivateMethod() if the cache does not hit. |
| 1279 | if (!Val) { |
| 1280 | Val = Interface->lookupPrivateMethod(Sel: LookupSelector, Instance: InstanceMethod); |
| 1281 | |
| 1282 | if (!*Val) { |
| 1283 | // Query 'lookupMethod' as a backup. |
| 1284 | Val = Interface->lookupMethod(Sel: LookupSelector, isInstance: InstanceMethod); |
| 1285 | } |
| 1286 | } |
| 1287 | |
| 1288 | return *Val; |
| 1289 | } |
| 1290 | |
| 1291 | RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const { |
| 1292 | const ObjCMessageExpr *E = getOriginExpr(); |
| 1293 | assert(E); |
| 1294 | Selector Sel = E->getSelector(); |
| 1295 | |
| 1296 | if (E->isInstanceMessage()) { |
| 1297 | // Find the receiver type. |
| 1298 | const ObjCObjectType *ReceiverT = nullptr; |
| 1299 | bool CanBeSubClassed = false; |
| 1300 | bool LookingForInstanceMethod = true; |
| 1301 | QualType SupersType = E->getSuperType(); |
| 1302 | const MemRegion *Receiver = nullptr; |
| 1303 | |
| 1304 | if (!SupersType.isNull()) { |
| 1305 | // The receiver is guaranteed to be 'super' in this case. |
| 1306 | // Super always means the type of immediate predecessor to the method |
| 1307 | // where the call occurs. |
| 1308 | ReceiverT = cast<ObjCObjectPointerType>(Val&: SupersType)->getObjectType(); |
| 1309 | } else { |
| 1310 | Receiver = getReceiverSVal().getAsRegion(); |
| 1311 | if (!Receiver) |
| 1312 | return {}; |
| 1313 | |
| 1314 | DynamicTypeInfo DTI = getDynamicTypeInfo(State: getState(), MR: Receiver); |
| 1315 | if (!DTI.isValid()) { |
| 1316 | assert(isa<AllocaRegion>(Receiver) && |
| 1317 | "Unhandled untyped region class!" ); |
| 1318 | return {}; |
| 1319 | } |
| 1320 | |
| 1321 | QualType DynType = DTI.getType(); |
| 1322 | CanBeSubClassed = DTI.canBeASubClass(); |
| 1323 | |
| 1324 | const auto *ReceiverDynT = |
| 1325 | dyn_cast<ObjCObjectPointerType>(Val: DynType.getCanonicalType()); |
| 1326 | |
| 1327 | if (ReceiverDynT) { |
| 1328 | ReceiverT = ReceiverDynT->getObjectType(); |
| 1329 | |
| 1330 | // It can be actually class methods called with Class object as a |
| 1331 | // receiver. This type of messages is treated by the compiler as |
| 1332 | // instance (not class). |
| 1333 | if (ReceiverT->isObjCClass()) { |
| 1334 | |
| 1335 | SVal SelfVal = getState()->getSelfSVal(LC: getLocationContext()); |
| 1336 | // For [self classMethod], return compiler visible declaration. |
| 1337 | if (Receiver == SelfVal.getAsRegion()) { |
| 1338 | return RuntimeDefinition(findDefiningRedecl(MD: E->getMethodDecl())); |
| 1339 | } |
| 1340 | |
| 1341 | // Otherwise, let's check if we know something about the type |
| 1342 | // inside of this class object. |
| 1343 | if (SymbolRef ReceiverSym = getReceiverSVal().getAsSymbol()) { |
| 1344 | DynamicTypeInfo DTI = |
| 1345 | getClassObjectDynamicTypeInfo(State: getState(), Sym: ReceiverSym); |
| 1346 | if (DTI.isValid()) { |
| 1347 | // Let's use this type for lookup. |
| 1348 | ReceiverT = |
| 1349 | cast<ObjCObjectType>(Val: DTI.getType().getCanonicalType()); |
| 1350 | |
| 1351 | CanBeSubClassed = DTI.canBeASubClass(); |
| 1352 | // And it should be a class method instead. |
| 1353 | LookingForInstanceMethod = false; |
| 1354 | } |
| 1355 | } |
| 1356 | } |
| 1357 | |
| 1358 | if (CanBeSubClassed) |
| 1359 | if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) |
| 1360 | // Even if `DynamicTypeInfo` told us that it can be |
| 1361 | // not necessarily this type, but its descendants, we still want |
| 1362 | // to check again if this selector can be actually overridden. |
| 1363 | CanBeSubClassed = canBeOverridenInSubclass(IDecl, Sel); |
| 1364 | } |
| 1365 | } |
| 1366 | |
| 1367 | // Lookup the instance method implementation. |
| 1368 | if (ReceiverT) |
| 1369 | if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) { |
| 1370 | const ObjCMethodDecl *MD = |
| 1371 | lookupRuntimeDefinition(Interface: IDecl, LookupSelector: Sel, InstanceMethod: LookingForInstanceMethod); |
| 1372 | |
| 1373 | if (MD && !MD->hasBody()) |
| 1374 | MD = MD->getCanonicalDecl(); |
| 1375 | |
| 1376 | if (CanBeSubClassed) |
| 1377 | return RuntimeDefinition(MD, Receiver); |
| 1378 | else |
| 1379 | return RuntimeDefinition(MD, nullptr); |
| 1380 | } |
| 1381 | } else { |
| 1382 | // This is a class method. |
| 1383 | // If we have type info for the receiver class, we are calling via |
| 1384 | // class name. |
| 1385 | if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) { |
| 1386 | // Find/Return the method implementation. |
| 1387 | return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel)); |
| 1388 | } |
| 1389 | } |
| 1390 | |
| 1391 | return {}; |
| 1392 | } |
| 1393 | |
| 1394 | bool ObjCMethodCall::argumentsMayEscape() const { |
| 1395 | if (isInSystemHeader() && !isInstanceMessage()) { |
| 1396 | Selector Sel = getSelector(); |
| 1397 | if (Sel.getNumArgs() == 1 && |
| 1398 | Sel.getIdentifierInfoForSlot(argIndex: 0)->isStr(Str: "valueWithPointer" )) |
| 1399 | return true; |
| 1400 | } |
| 1401 | |
| 1402 | return CallEvent::argumentsMayEscape(); |
| 1403 | } |
| 1404 | |
| 1405 | void ObjCMethodCall::getInitialStackFrameContents( |
| 1406 | const StackFrameContext *CalleeCtx, |
| 1407 | BindingsTy &Bindings) const { |
| 1408 | const auto *D = cast<ObjCMethodDecl>(Val: CalleeCtx->getDecl()); |
| 1409 | SValBuilder &SVB = getState()->getStateManager().getSValBuilder(); |
| 1410 | addParameterValuesToBindings(CalleeCtx, Bindings, SVB, Call: *this, |
| 1411 | parameters: D->parameters()); |
| 1412 | |
| 1413 | SVal SelfVal = getReceiverSVal(); |
| 1414 | if (!SelfVal.isUnknown()) { |
| 1415 | const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl(); |
| 1416 | MemRegionManager &MRMgr = SVB.getRegionManager(); |
| 1417 | Loc SelfLoc = SVB.makeLoc(region: MRMgr.getVarRegion(VD: SelfD, LC: CalleeCtx)); |
| 1418 | Bindings.push_back(Elt: std::make_pair(x&: SelfLoc, y&: SelfVal)); |
| 1419 | } |
| 1420 | } |
| 1421 | |
| 1422 | CallEventRef<> |
| 1423 | CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State, |
| 1424 | const LocationContext *LCtx, |
| 1425 | CFGBlock::ConstCFGElementRef ElemRef) { |
| 1426 | if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: CE)) |
| 1427 | return create<CXXMemberCall>(A: MCE, St: State, LCtx, ElemRef); |
| 1428 | |
| 1429 | if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(Val: CE)) { |
| 1430 | const FunctionDecl *DirectCallee = OpCE->getDirectCallee(); |
| 1431 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: DirectCallee)) { |
| 1432 | if (MD->isImplicitObjectMemberFunction()) |
| 1433 | return create<CXXMemberOperatorCall>(A: OpCE, St: State, LCtx, ElemRef); |
| 1434 | if (MD->isStatic()) |
| 1435 | return create<CXXStaticOperatorCall>(A: OpCE, St: State, LCtx, ElemRef); |
| 1436 | } |
| 1437 | |
| 1438 | } else if (CE->getCallee()->getType()->isBlockPointerType()) { |
| 1439 | return create<BlockCall>(A: CE, St: State, LCtx, ElemRef); |
| 1440 | } |
| 1441 | |
| 1442 | // Otherwise, it's a normal function call, static member function call, or |
| 1443 | // something we can't reason about. |
| 1444 | return create<SimpleFunctionCall>(A: CE, St: State, LCtx, ElemRef); |
| 1445 | } |
| 1446 | |
| 1447 | CallEventRef<> |
| 1448 | CallEventManager::getCaller(const StackFrameContext *CalleeCtx, |
| 1449 | ProgramStateRef State) { |
| 1450 | const LocationContext *ParentCtx = CalleeCtx->getParent(); |
| 1451 | const LocationContext *CallerCtx = ParentCtx->getStackFrame(); |
| 1452 | CFGBlock::ConstCFGElementRef ElemRef = {CalleeCtx->getCallSiteBlock(), |
| 1453 | CalleeCtx->getIndex()}; |
| 1454 | assert(CallerCtx && "This should not be used for top-level stack frames" ); |
| 1455 | |
| 1456 | const Stmt *CallSite = CalleeCtx->getCallSite(); |
| 1457 | |
| 1458 | if (CallSite) { |
| 1459 | if (CallEventRef<> Out = getCall(S: CallSite, State, LC: CallerCtx, ElemRef)) |
| 1460 | return Out; |
| 1461 | |
| 1462 | SValBuilder &SVB = State->getStateManager().getSValBuilder(); |
| 1463 | const auto *Ctor = cast<CXXMethodDecl>(Val: CalleeCtx->getDecl()); |
| 1464 | Loc ThisPtr = SVB.getCXXThis(D: Ctor, SFC: CalleeCtx); |
| 1465 | SVal ThisVal = State->getSVal(LV: ThisPtr); |
| 1466 | |
| 1467 | if (const auto *CE = dyn_cast<CXXConstructExpr>(Val: CallSite)) |
| 1468 | return getCXXConstructorCall(E: CE, Target: ThisVal.getAsRegion(), State, LCtx: CallerCtx, |
| 1469 | ElemRef); |
| 1470 | else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(Val: CallSite)) |
| 1471 | return getCXXInheritedConstructorCall(E: CIE, Target: ThisVal.getAsRegion(), State, |
| 1472 | LCtx: CallerCtx, ElemRef); |
| 1473 | else { |
| 1474 | // All other cases are handled by getCall. |
| 1475 | llvm_unreachable("This is not an inlineable statement" ); |
| 1476 | } |
| 1477 | } |
| 1478 | |
| 1479 | // Fall back to the CFG. The only thing we haven't handled yet is |
| 1480 | // destructors, though this could change in the future. |
| 1481 | const CFGBlock *B = CalleeCtx->getCallSiteBlock(); |
| 1482 | CFGElement E = (*B)[CalleeCtx->getIndex()]; |
| 1483 | assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) && |
| 1484 | "All other CFG elements should have exprs" ); |
| 1485 | |
| 1486 | SValBuilder &SVB = State->getStateManager().getSValBuilder(); |
| 1487 | const auto *Dtor = cast<CXXDestructorDecl>(Val: CalleeCtx->getDecl()); |
| 1488 | Loc ThisPtr = SVB.getCXXThis(D: Dtor, SFC: CalleeCtx); |
| 1489 | SVal ThisVal = State->getSVal(LV: ThisPtr); |
| 1490 | |
| 1491 | const Stmt *Trigger; |
| 1492 | if (std::optional<CFGAutomaticObjDtor> AutoDtor = |
| 1493 | E.getAs<CFGAutomaticObjDtor>()) |
| 1494 | Trigger = AutoDtor->getTriggerStmt(); |
| 1495 | else if (std::optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>()) |
| 1496 | Trigger = DeleteDtor->getDeleteExpr(); |
| 1497 | else |
| 1498 | Trigger = Dtor->getBody(); |
| 1499 | |
| 1500 | return getCXXDestructorCall(DD: Dtor, Trigger, Target: ThisVal.getAsRegion(), |
| 1501 | IsBase: E.getAs<CFGBaseDtor>().has_value(), State, |
| 1502 | LCtx: CallerCtx, ElemRef); |
| 1503 | } |
| 1504 | |
| 1505 | CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State, |
| 1506 | const LocationContext *LC, |
| 1507 | CFGBlock::ConstCFGElementRef ElemRef) { |
| 1508 | if (const auto *CE = dyn_cast<CallExpr>(Val: S)) { |
| 1509 | return getSimpleCall(CE, State, LCtx: LC, ElemRef); |
| 1510 | } else if (const auto *NE = dyn_cast<CXXNewExpr>(Val: S)) { |
| 1511 | return getCXXAllocatorCall(E: NE, State, LCtx: LC, ElemRef); |
| 1512 | } else if (const auto *DE = dyn_cast<CXXDeleteExpr>(Val: S)) { |
| 1513 | return getCXXDeallocatorCall(E: DE, State, LCtx: LC, ElemRef); |
| 1514 | } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(Val: S)) { |
| 1515 | return getObjCMethodCall(E: ME, State, LCtx: LC, ElemRef); |
| 1516 | } else { |
| 1517 | return nullptr; |
| 1518 | } |
| 1519 | } |
| 1520 | |