| 1 | //== RangeConstraintManager.cpp - Manage range constraints.------*- C++ -*--==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines RangeConstraintManager, a class that tracks simple |
| 10 | // equality and inequality constraints on symbolic values of ProgramState. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "clang/Basic/JsonSupport.h" |
| 15 | #include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h" |
| 16 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" |
| 17 | #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" |
| 18 | #include "clang/StaticAnalyzer/Core/PathSensitive/RangedConstraintManager.h" |
| 19 | #include "clang/StaticAnalyzer/Core/PathSensitive/SValVisitor.h" |
| 20 | #include "llvm/ADT/FoldingSet.h" |
| 21 | #include "llvm/ADT/ImmutableSet.h" |
| 22 | #include "llvm/ADT/STLExtras.h" |
| 23 | #include "llvm/ADT/SmallSet.h" |
| 24 | #include "llvm/ADT/StringExtras.h" |
| 25 | #include "llvm/Support/Compiler.h" |
| 26 | #include "llvm/Support/raw_ostream.h" |
| 27 | #include <algorithm> |
| 28 | #include <iterator> |
| 29 | #include <optional> |
| 30 | |
| 31 | using namespace clang; |
| 32 | using namespace ento; |
| 33 | |
| 34 | // This class can be extended with other tables which will help to reason |
| 35 | // about ranges more precisely. |
| 36 | class OperatorRelationsTable { |
| 37 | static_assert(BO_LT < BO_GT && BO_GT < BO_LE && BO_LE < BO_GE && |
| 38 | BO_GE < BO_EQ && BO_EQ < BO_NE, |
| 39 | "This class relies on operators order. Rework it otherwise." ); |
| 40 | |
| 41 | public: |
| 42 | enum TriStateKind { |
| 43 | False = 0, |
| 44 | True, |
| 45 | Unknown, |
| 46 | }; |
| 47 | |
| 48 | private: |
| 49 | // CmpOpTable holds states which represent the corresponding range for |
| 50 | // branching an exploded graph. We can reason about the branch if there is |
| 51 | // a previously known fact of the existence of a comparison expression with |
| 52 | // operands used in the current expression. |
| 53 | // E.g. assuming (x < y) is true that means (x != y) is surely true. |
| 54 | // if (x previous_operation y) // < | != | > |
| 55 | // if (x operation y) // != | > | < |
| 56 | // tristate // True | Unknown | False |
| 57 | // |
| 58 | // CmpOpTable represents next: |
| 59 | // __|< |> |<=|>=|==|!=|UnknownX2| |
| 60 | // < |1 |0 |* |0 |0 |* |1 | |
| 61 | // > |0 |1 |0 |* |0 |* |1 | |
| 62 | // <=|1 |0 |1 |* |1 |* |0 | |
| 63 | // >=|0 |1 |* |1 |1 |* |0 | |
| 64 | // ==|0 |0 |* |* |1 |0 |1 | |
| 65 | // !=|1 |1 |* |* |0 |1 |0 | |
| 66 | // |
| 67 | // Columns stands for a previous operator. |
| 68 | // Rows stands for a current operator. |
| 69 | // Each row has exactly two `Unknown` cases. |
| 70 | // UnknownX2 means that both `Unknown` previous operators are met in code, |
| 71 | // and there is a special column for that, for example: |
| 72 | // if (x >= y) |
| 73 | // if (x != y) |
| 74 | // if (x <= y) |
| 75 | // False only |
| 76 | static constexpr size_t CmpOpCount = BO_NE - BO_LT + 1; |
| 77 | const TriStateKind CmpOpTable[CmpOpCount][CmpOpCount + 1] = { |
| 78 | // < > <= >= == != UnknownX2 |
| 79 | {True, False, Unknown, False, False, Unknown, True}, // < |
| 80 | {False, True, False, Unknown, False, Unknown, True}, // > |
| 81 | {True, False, True, Unknown, True, Unknown, False}, // <= |
| 82 | {False, True, Unknown, True, True, Unknown, False}, // >= |
| 83 | {False, False, Unknown, Unknown, True, False, True}, // == |
| 84 | {True, True, Unknown, Unknown, False, True, False}, // != |
| 85 | }; |
| 86 | |
| 87 | static size_t getIndexFromOp(BinaryOperatorKind OP) { |
| 88 | return static_cast<size_t>(OP - BO_LT); |
| 89 | } |
| 90 | |
| 91 | public: |
| 92 | constexpr size_t getCmpOpCount() const { return CmpOpCount; } |
| 93 | |
| 94 | static BinaryOperatorKind getOpFromIndex(size_t Index) { |
| 95 | return static_cast<BinaryOperatorKind>(Index + BO_LT); |
| 96 | } |
| 97 | |
| 98 | TriStateKind getCmpOpState(BinaryOperatorKind CurrentOP, |
| 99 | BinaryOperatorKind QueriedOP) const { |
| 100 | return CmpOpTable[getIndexFromOp(OP: CurrentOP)][getIndexFromOp(OP: QueriedOP)]; |
| 101 | } |
| 102 | |
| 103 | TriStateKind getCmpOpStateForUnknownX2(BinaryOperatorKind CurrentOP) const { |
| 104 | return CmpOpTable[getIndexFromOp(OP: CurrentOP)][CmpOpCount]; |
| 105 | } |
| 106 | }; |
| 107 | |
| 108 | //===----------------------------------------------------------------------===// |
| 109 | // RangeSet implementation |
| 110 | //===----------------------------------------------------------------------===// |
| 111 | |
| 112 | RangeSet::ContainerType RangeSet::Factory::EmptySet{}; |
| 113 | |
| 114 | RangeSet RangeSet::Factory::add(RangeSet LHS, RangeSet RHS) { |
| 115 | ContainerType Result; |
| 116 | Result.reserve(N: LHS.size() + RHS.size()); |
| 117 | std::merge(first1: LHS.begin(), last1: LHS.end(), first2: RHS.begin(), last2: RHS.end(), |
| 118 | result: std::back_inserter(x&: Result)); |
| 119 | return makePersistent(From: std::move(Result)); |
| 120 | } |
| 121 | |
| 122 | RangeSet RangeSet::Factory::add(RangeSet Original, Range Element) { |
| 123 | ContainerType Result; |
| 124 | Result.reserve(N: Original.size() + 1); |
| 125 | |
| 126 | const_iterator Lower = llvm::lower_bound(Range&: Original, Value&: Element); |
| 127 | Result.insert(I: Result.end(), From: Original.begin(), To: Lower); |
| 128 | Result.push_back(Elt: Element); |
| 129 | Result.insert(I: Result.end(), From: Lower, To: Original.end()); |
| 130 | |
| 131 | return makePersistent(From: std::move(Result)); |
| 132 | } |
| 133 | |
| 134 | RangeSet RangeSet::Factory::add(RangeSet Original, const llvm::APSInt &Point) { |
| 135 | return add(Original, Element: Range(Point)); |
| 136 | } |
| 137 | |
| 138 | RangeSet RangeSet::Factory::unite(RangeSet LHS, RangeSet RHS) { |
| 139 | ContainerType Result = unite(LHS: *LHS.Impl, RHS: *RHS.Impl); |
| 140 | return makePersistent(From: std::move(Result)); |
| 141 | } |
| 142 | |
| 143 | RangeSet RangeSet::Factory::unite(RangeSet Original, Range R) { |
| 144 | ContainerType Result; |
| 145 | Result.push_back(Elt: R); |
| 146 | Result = unite(LHS: *Original.Impl, RHS: Result); |
| 147 | return makePersistent(From: std::move(Result)); |
| 148 | } |
| 149 | |
| 150 | RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt Point) { |
| 151 | return unite(Original, R: Range(ValueFactory.getValue(X: Point))); |
| 152 | } |
| 153 | |
| 154 | RangeSet RangeSet::Factory::unite(RangeSet Original, llvm::APSInt From, |
| 155 | llvm::APSInt To) { |
| 156 | return unite(Original, |
| 157 | R: Range(ValueFactory.getValue(X: From), ValueFactory.getValue(X: To))); |
| 158 | } |
| 159 | |
| 160 | template <typename T> |
| 161 | static void swapIterators(T &First, T &FirstEnd, T &Second, T &SecondEnd) { |
| 162 | std::swap(First, Second); |
| 163 | std::swap(FirstEnd, SecondEnd); |
| 164 | } |
| 165 | |
| 166 | RangeSet::ContainerType RangeSet::Factory::unite(const ContainerType &LHS, |
| 167 | const ContainerType &RHS) { |
| 168 | if (LHS.empty()) |
| 169 | return RHS; |
| 170 | if (RHS.empty()) |
| 171 | return LHS; |
| 172 | |
| 173 | using llvm::APSInt; |
| 174 | using iterator = ContainerType::const_iterator; |
| 175 | |
| 176 | iterator First = LHS.begin(); |
| 177 | iterator FirstEnd = LHS.end(); |
| 178 | iterator Second = RHS.begin(); |
| 179 | iterator SecondEnd = RHS.end(); |
| 180 | APSIntType Ty = APSIntType(First->From()); |
| 181 | const APSInt Min = Ty.getMinValue(); |
| 182 | |
| 183 | // Handle a corner case first when both range sets start from MIN. |
| 184 | // This helps to avoid complicated conditions below. Specifically, this |
| 185 | // particular check for `MIN` is not needed in the loop below every time |
| 186 | // when we do `Second->From() - One` operation. |
| 187 | if (Min == First->From() && Min == Second->From()) { |
| 188 | if (First->To() > Second->To()) { |
| 189 | // [ First ]---> |
| 190 | // [ Second ]-----> |
| 191 | // MIN^ |
| 192 | // The Second range is entirely inside the First one. |
| 193 | |
| 194 | // Check if Second is the last in its RangeSet. |
| 195 | if (++Second == SecondEnd) |
| 196 | // [ First ]--[ First + 1 ]---> |
| 197 | // [ Second ]---------------------> |
| 198 | // MIN^ |
| 199 | // The Union is equal to First's RangeSet. |
| 200 | return LHS; |
| 201 | } else { |
| 202 | // case 1: [ First ]-----> |
| 203 | // case 2: [ First ]---> |
| 204 | // [ Second ]---> |
| 205 | // MIN^ |
| 206 | // The First range is entirely inside or equal to the Second one. |
| 207 | |
| 208 | // Check if First is the last in its RangeSet. |
| 209 | if (++First == FirstEnd) |
| 210 | // [ First ]-----------------------> |
| 211 | // [ Second ]--[ Second + 1 ]----> |
| 212 | // MIN^ |
| 213 | // The Union is equal to Second's RangeSet. |
| 214 | return RHS; |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | const APSInt One = Ty.getValue(RawValue: 1); |
| 219 | ContainerType Result; |
| 220 | |
| 221 | // This is called when there are no ranges left in one of the ranges. |
| 222 | // Append the rest of the ranges from another range set to the Result |
| 223 | // and return with that. |
| 224 | const auto AppendTheRest = [&Result](iterator I, iterator E) { |
| 225 | Result.append(in_start: I, in_end: E); |
| 226 | return Result; |
| 227 | }; |
| 228 | |
| 229 | while (true) { |
| 230 | // We want to keep the following invariant at all times: |
| 231 | // ---[ First ------> |
| 232 | // -----[ Second ---> |
| 233 | if (First->From() > Second->From()) |
| 234 | swapIterators(First, FirstEnd, Second, SecondEnd); |
| 235 | |
| 236 | // The Union definitely starts with First->From(). |
| 237 | // ----------[ First ------> |
| 238 | // ------------[ Second ---> |
| 239 | // ----------[ Union ------> |
| 240 | // UnionStart^ |
| 241 | const llvm::APSInt &UnionStart = First->From(); |
| 242 | |
| 243 | // Loop where the invariant holds. |
| 244 | while (true) { |
| 245 | // Skip all enclosed ranges. |
| 246 | // ---[ First ]---> |
| 247 | // -----[ Second ]--[ Second + 1 ]--[ Second + N ]-----> |
| 248 | while (First->To() >= Second->To()) { |
| 249 | // Check if Second is the last in its RangeSet. |
| 250 | if (++Second == SecondEnd) { |
| 251 | // Append the Union. |
| 252 | // ---[ Union ]---> |
| 253 | // -----[ Second ]-----> |
| 254 | // --------[ First ]---> |
| 255 | // UnionEnd^ |
| 256 | Result.emplace_back(Args: UnionStart, Args: First->To()); |
| 257 | // ---[ Union ]-----------------> |
| 258 | // --------------[ First + 1]---> |
| 259 | // Append all remaining ranges from the First's RangeSet. |
| 260 | return AppendTheRest(++First, FirstEnd); |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | // Check if First and Second are disjoint. It means that we find |
| 265 | // the end of the Union. Exit the loop and append the Union. |
| 266 | // ---[ First ]=-------------> |
| 267 | // ------------=[ Second ]---> |
| 268 | // ----MinusOne^ |
| 269 | if (First->To() < Second->From() - One) |
| 270 | break; |
| 271 | |
| 272 | // First is entirely inside the Union. Go next. |
| 273 | // ---[ Union -----------> |
| 274 | // ---- [ First ]--------> |
| 275 | // -------[ Second ]-----> |
| 276 | // Check if First is the last in its RangeSet. |
| 277 | if (++First == FirstEnd) { |
| 278 | // Append the Union. |
| 279 | // ---[ Union ]---> |
| 280 | // -----[ First ]-------> |
| 281 | // --------[ Second ]---> |
| 282 | // UnionEnd^ |
| 283 | Result.emplace_back(Args: UnionStart, Args: Second->To()); |
| 284 | // ---[ Union ]------------------> |
| 285 | // --------------[ Second + 1]---> |
| 286 | // Append all remaining ranges from the Second's RangeSet. |
| 287 | return AppendTheRest(++Second, SecondEnd); |
| 288 | } |
| 289 | |
| 290 | // We know that we are at one of the two cases: |
| 291 | // case 1: --[ First ]---------> |
| 292 | // case 2: ----[ First ]-------> |
| 293 | // --------[ Second ]----------> |
| 294 | // In both cases First starts after Second->From(). |
| 295 | // Make sure that the loop invariant holds. |
| 296 | swapIterators(First, FirstEnd, Second, SecondEnd); |
| 297 | } |
| 298 | |
| 299 | // Here First and Second are disjoint. |
| 300 | // Append the Union. |
| 301 | // ---[ Union ]---------------> |
| 302 | // -----------------[ Second ]---> |
| 303 | // ------[ First ]---------------> |
| 304 | // UnionEnd^ |
| 305 | Result.emplace_back(Args: UnionStart, Args: First->To()); |
| 306 | |
| 307 | // Check if First is the last in its RangeSet. |
| 308 | if (++First == FirstEnd) |
| 309 | // ---[ Union ]---------------> |
| 310 | // --------------[ Second ]---> |
| 311 | // Append all remaining ranges from the Second's RangeSet. |
| 312 | return AppendTheRest(Second, SecondEnd); |
| 313 | } |
| 314 | |
| 315 | llvm_unreachable("Normally, we should not reach here" ); |
| 316 | } |
| 317 | |
| 318 | RangeSet RangeSet::Factory::getRangeSet(Range From) { |
| 319 | ContainerType Result; |
| 320 | Result.push_back(Elt: From); |
| 321 | return makePersistent(From: std::move(Result)); |
| 322 | } |
| 323 | |
| 324 | RangeSet RangeSet::Factory::makePersistent(ContainerType &&From) { |
| 325 | llvm::FoldingSetNodeID ID; |
| 326 | void *InsertPos; |
| 327 | |
| 328 | From.Profile(ID); |
| 329 | ContainerType *Result = Cache.FindNodeOrInsertPos(ID, InsertPos); |
| 330 | |
| 331 | if (!Result) { |
| 332 | // It is cheaper to fully construct the resulting range on stack |
| 333 | // and move it to the freshly allocated buffer if we don't have |
| 334 | // a set like this already. |
| 335 | Result = construct(From: std::move(From)); |
| 336 | Cache.InsertNode(N: Result, InsertPos); |
| 337 | } |
| 338 | |
| 339 | return Result; |
| 340 | } |
| 341 | |
| 342 | RangeSet::ContainerType *RangeSet::Factory::construct(ContainerType &&From) { |
| 343 | void *Buffer = Arena.Allocate(); |
| 344 | return new (Buffer) ContainerType(std::move(From)); |
| 345 | } |
| 346 | |
| 347 | const llvm::APSInt &RangeSet::getMinValue() const { |
| 348 | assert(!isEmpty()); |
| 349 | return begin()->From(); |
| 350 | } |
| 351 | |
| 352 | const llvm::APSInt &RangeSet::getMaxValue() const { |
| 353 | assert(!isEmpty()); |
| 354 | return std::prev(x: end())->To(); |
| 355 | } |
| 356 | |
| 357 | bool clang::ento::RangeSet::isUnsigned() const { |
| 358 | assert(!isEmpty()); |
| 359 | return begin()->From().isUnsigned(); |
| 360 | } |
| 361 | |
| 362 | uint32_t clang::ento::RangeSet::getBitWidth() const { |
| 363 | assert(!isEmpty()); |
| 364 | return begin()->From().getBitWidth(); |
| 365 | } |
| 366 | |
| 367 | APSIntType clang::ento::RangeSet::getAPSIntType() const { |
| 368 | assert(!isEmpty()); |
| 369 | return APSIntType(begin()->From()); |
| 370 | } |
| 371 | |
| 372 | bool RangeSet::containsImpl(llvm::APSInt &Point) const { |
| 373 | if (isEmpty() || !pin(Point)) |
| 374 | return false; |
| 375 | |
| 376 | Range Dummy(Point); |
| 377 | const_iterator It = llvm::upper_bound(Range: *this, Value&: Dummy); |
| 378 | if (It == begin()) |
| 379 | return false; |
| 380 | |
| 381 | return std::prev(x: It)->Includes(Point); |
| 382 | } |
| 383 | |
| 384 | bool RangeSet::pin(llvm::APSInt &Point) const { |
| 385 | APSIntType Type(getMinValue()); |
| 386 | if (Type.testInRange(Val: Point, AllowMixedSign: true) != APSIntType::RTR_Within) |
| 387 | return false; |
| 388 | |
| 389 | Type.apply(Value&: Point); |
| 390 | return true; |
| 391 | } |
| 392 | |
| 393 | bool RangeSet::pin(llvm::APSInt &Lower, llvm::APSInt &Upper) const { |
| 394 | // This function has nine cases, the cartesian product of range-testing |
| 395 | // both the upper and lower bounds against the symbol's type. |
| 396 | // Each case requires a different pinning operation. |
| 397 | // The function returns false if the described range is entirely outside |
| 398 | // the range of values for the associated symbol. |
| 399 | APSIntType Type(getMinValue()); |
| 400 | APSIntType::RangeTestResultKind LowerTest = Type.testInRange(Val: Lower, AllowMixedSign: true); |
| 401 | APSIntType::RangeTestResultKind UpperTest = Type.testInRange(Val: Upper, AllowMixedSign: true); |
| 402 | |
| 403 | switch (LowerTest) { |
| 404 | case APSIntType::RTR_Below: |
| 405 | switch (UpperTest) { |
| 406 | case APSIntType::RTR_Below: |
| 407 | // The entire range is outside the symbol's set of possible values. |
| 408 | // If this is a conventionally-ordered range, the state is infeasible. |
| 409 | if (Lower <= Upper) |
| 410 | return false; |
| 411 | |
| 412 | // However, if the range wraps around, it spans all possible values. |
| 413 | Lower = Type.getMinValue(); |
| 414 | Upper = Type.getMaxValue(); |
| 415 | break; |
| 416 | case APSIntType::RTR_Within: |
| 417 | // The range starts below what's possible but ends within it. Pin. |
| 418 | Lower = Type.getMinValue(); |
| 419 | Type.apply(Value&: Upper); |
| 420 | break; |
| 421 | case APSIntType::RTR_Above: |
| 422 | // The range spans all possible values for the symbol. Pin. |
| 423 | Lower = Type.getMinValue(); |
| 424 | Upper = Type.getMaxValue(); |
| 425 | break; |
| 426 | } |
| 427 | break; |
| 428 | case APSIntType::RTR_Within: |
| 429 | switch (UpperTest) { |
| 430 | case APSIntType::RTR_Below: |
| 431 | // The range wraps around, but all lower values are not possible. |
| 432 | Type.apply(Value&: Lower); |
| 433 | Upper = Type.getMaxValue(); |
| 434 | break; |
| 435 | case APSIntType::RTR_Within: |
| 436 | // The range may or may not wrap around, but both limits are valid. |
| 437 | Type.apply(Value&: Lower); |
| 438 | Type.apply(Value&: Upper); |
| 439 | break; |
| 440 | case APSIntType::RTR_Above: |
| 441 | // The range starts within what's possible but ends above it. Pin. |
| 442 | Type.apply(Value&: Lower); |
| 443 | Upper = Type.getMaxValue(); |
| 444 | break; |
| 445 | } |
| 446 | break; |
| 447 | case APSIntType::RTR_Above: |
| 448 | switch (UpperTest) { |
| 449 | case APSIntType::RTR_Below: |
| 450 | // The range wraps but is outside the symbol's set of possible values. |
| 451 | return false; |
| 452 | case APSIntType::RTR_Within: |
| 453 | // The range starts above what's possible but ends within it (wrap). |
| 454 | Lower = Type.getMinValue(); |
| 455 | Type.apply(Value&: Upper); |
| 456 | break; |
| 457 | case APSIntType::RTR_Above: |
| 458 | // The entire range is outside the symbol's set of possible values. |
| 459 | // If this is a conventionally-ordered range, the state is infeasible. |
| 460 | if (Lower <= Upper) |
| 461 | return false; |
| 462 | |
| 463 | // However, if the range wraps around, it spans all possible values. |
| 464 | Lower = Type.getMinValue(); |
| 465 | Upper = Type.getMaxValue(); |
| 466 | break; |
| 467 | } |
| 468 | break; |
| 469 | } |
| 470 | |
| 471 | return true; |
| 472 | } |
| 473 | |
| 474 | RangeSet RangeSet::Factory::intersect(RangeSet What, llvm::APSInt Lower, |
| 475 | llvm::APSInt Upper) { |
| 476 | if (What.isEmpty() || !What.pin(Lower, Upper)) |
| 477 | return getEmptySet(); |
| 478 | |
| 479 | ContainerType DummyContainer; |
| 480 | |
| 481 | if (Lower <= Upper) { |
| 482 | // [Lower, Upper] is a regular range. |
| 483 | // |
| 484 | // Shortcut: check that there is even a possibility of the intersection |
| 485 | // by checking the two following situations: |
| 486 | // |
| 487 | // <---[ What ]---[------]------> |
| 488 | // Lower Upper |
| 489 | // -or- |
| 490 | // <----[------]----[ What ]----> |
| 491 | // Lower Upper |
| 492 | if (What.getMaxValue() < Lower || Upper < What.getMinValue()) |
| 493 | return getEmptySet(); |
| 494 | |
| 495 | DummyContainer.push_back( |
| 496 | Elt: Range(ValueFactory.getValue(X: Lower), ValueFactory.getValue(X: Upper))); |
| 497 | } else { |
| 498 | // [Lower, Upper] is an inverted range, i.e. [MIN, Upper] U [Lower, MAX] |
| 499 | // |
| 500 | // Shortcut: check that there is even a possibility of the intersection |
| 501 | // by checking the following situation: |
| 502 | // |
| 503 | // <------]---[ What ]---[------> |
| 504 | // Upper Lower |
| 505 | if (What.getMaxValue() < Lower && Upper < What.getMinValue()) |
| 506 | return getEmptySet(); |
| 507 | |
| 508 | DummyContainer.push_back( |
| 509 | Elt: Range(ValueFactory.getMinValue(v: Upper), ValueFactory.getValue(X: Upper))); |
| 510 | DummyContainer.push_back( |
| 511 | Elt: Range(ValueFactory.getValue(X: Lower), ValueFactory.getMaxValue(v: Lower))); |
| 512 | } |
| 513 | |
| 514 | return intersect(LHS: *What.Impl, RHS: DummyContainer); |
| 515 | } |
| 516 | |
| 517 | RangeSet RangeSet::Factory::intersect(const RangeSet::ContainerType &LHS, |
| 518 | const RangeSet::ContainerType &RHS) { |
| 519 | ContainerType Result; |
| 520 | Result.reserve(N: std::max(a: LHS.size(), b: RHS.size())); |
| 521 | |
| 522 | const_iterator First = LHS.begin(), Second = RHS.begin(), |
| 523 | FirstEnd = LHS.end(), SecondEnd = RHS.end(); |
| 524 | |
| 525 | // If we ran out of ranges in one set, but not in the other, |
| 526 | // it means that those elements are definitely not in the |
| 527 | // intersection. |
| 528 | while (First != FirstEnd && Second != SecondEnd) { |
| 529 | // We want to keep the following invariant at all times: |
| 530 | // |
| 531 | // ----[ First ----------------------> |
| 532 | // --------[ Second -----------------> |
| 533 | if (Second->From() < First->From()) |
| 534 | swapIterators(First, FirstEnd, Second, SecondEnd); |
| 535 | |
| 536 | // Loop where the invariant holds: |
| 537 | do { |
| 538 | // Check for the following situation: |
| 539 | // |
| 540 | // ----[ First ]---------------------> |
| 541 | // ---------------[ Second ]---------> |
| 542 | // |
| 543 | // which means that... |
| 544 | if (Second->From() > First->To()) { |
| 545 | // ...First is not in the intersection. |
| 546 | // |
| 547 | // We should move on to the next range after First and break out of the |
| 548 | // loop because the invariant might not be true. |
| 549 | ++First; |
| 550 | break; |
| 551 | } |
| 552 | |
| 553 | // We have a guaranteed intersection at this point! |
| 554 | // And this is the current situation: |
| 555 | // |
| 556 | // ----[ First ]-----------------> |
| 557 | // -------[ Second ------------------> |
| 558 | // |
| 559 | // Additionally, it definitely starts with Second->From(). |
| 560 | const llvm::APSInt &IntersectionStart = Second->From(); |
| 561 | |
| 562 | // It is important to know which of the two ranges' ends |
| 563 | // is greater. That "longer" range might have some other |
| 564 | // intersections, while the "shorter" range might not. |
| 565 | if (Second->To() > First->To()) { |
| 566 | // Here we make a decision to keep First as the "longer" |
| 567 | // range. |
| 568 | swapIterators(First, FirstEnd, Second, SecondEnd); |
| 569 | } |
| 570 | |
| 571 | // At this point, we have the following situation: |
| 572 | // |
| 573 | // ---- First ]--------------------> |
| 574 | // ---- Second ]--[ Second+1 ----------> |
| 575 | // |
| 576 | // We don't know the relationship between First->From and |
| 577 | // Second->From and we don't know whether Second+1 intersects |
| 578 | // with First. |
| 579 | // |
| 580 | // However, we know that [IntersectionStart, Second->To] is |
| 581 | // a part of the intersection... |
| 582 | Result.push_back(Elt: Range(IntersectionStart, Second->To())); |
| 583 | ++Second; |
| 584 | // ...and that the invariant will hold for a valid Second+1 |
| 585 | // because First->From <= Second->To < (Second+1)->From. |
| 586 | } while (Second != SecondEnd); |
| 587 | } |
| 588 | |
| 589 | if (Result.empty()) |
| 590 | return getEmptySet(); |
| 591 | |
| 592 | return makePersistent(From: std::move(Result)); |
| 593 | } |
| 594 | |
| 595 | RangeSet RangeSet::Factory::intersect(RangeSet LHS, RangeSet RHS) { |
| 596 | // Shortcut: let's see if the intersection is even possible. |
| 597 | if (LHS.isEmpty() || RHS.isEmpty() || LHS.getMaxValue() < RHS.getMinValue() || |
| 598 | RHS.getMaxValue() < LHS.getMinValue()) |
| 599 | return getEmptySet(); |
| 600 | |
| 601 | return intersect(LHS: *LHS.Impl, RHS: *RHS.Impl); |
| 602 | } |
| 603 | |
| 604 | RangeSet RangeSet::Factory::intersect(RangeSet LHS, llvm::APSInt Point) { |
| 605 | if (LHS.containsImpl(Point)) |
| 606 | return getRangeSet(Origin: ValueFactory.getValue(X: Point)); |
| 607 | |
| 608 | return getEmptySet(); |
| 609 | } |
| 610 | |
| 611 | RangeSet RangeSet::Factory::negate(RangeSet What) { |
| 612 | if (What.isEmpty()) |
| 613 | return getEmptySet(); |
| 614 | |
| 615 | const llvm::APSInt SampleValue = What.getMinValue(); |
| 616 | const llvm::APSInt &MIN = ValueFactory.getMinValue(v: SampleValue); |
| 617 | const llvm::APSInt &MAX = ValueFactory.getMaxValue(v: SampleValue); |
| 618 | |
| 619 | ContainerType Result; |
| 620 | Result.reserve(N: What.size() + (SampleValue == MIN)); |
| 621 | |
| 622 | // Handle a special case for MIN value. |
| 623 | const_iterator It = What.begin(); |
| 624 | const_iterator End = What.end(); |
| 625 | |
| 626 | const llvm::APSInt &From = It->From(); |
| 627 | const llvm::APSInt &To = It->To(); |
| 628 | |
| 629 | if (From == MIN) { |
| 630 | // If the range [From, To] is [MIN, MAX], then result is also [MIN, MAX]. |
| 631 | if (To == MAX) { |
| 632 | return What; |
| 633 | } |
| 634 | |
| 635 | const_iterator Last = std::prev(x: End); |
| 636 | |
| 637 | // Try to find and unite the following ranges: |
| 638 | // [MIN, MIN] & [MIN + 1, N] => [MIN, N]. |
| 639 | if (Last->To() == MAX) { |
| 640 | // It means that in the original range we have ranges |
| 641 | // [MIN, A], ... , [B, MAX] |
| 642 | // And the result should be [MIN, -B], ..., [-A, MAX] |
| 643 | Result.emplace_back(Args: MIN, Args: ValueFactory.getValue(X: -Last->From())); |
| 644 | // We already negated Last, so we can skip it. |
| 645 | End = Last; |
| 646 | } else { |
| 647 | // Add a separate range for the lowest value. |
| 648 | Result.emplace_back(Args: MIN, Args: MIN); |
| 649 | } |
| 650 | |
| 651 | // Skip adding the second range in case when [From, To] are [MIN, MIN]. |
| 652 | if (To != MIN) { |
| 653 | Result.emplace_back(Args: ValueFactory.getValue(X: -To), Args: MAX); |
| 654 | } |
| 655 | |
| 656 | // Skip the first range in the loop. |
| 657 | ++It; |
| 658 | } |
| 659 | |
| 660 | // Negate all other ranges. |
| 661 | for (; It != End; ++It) { |
| 662 | // Negate int values. |
| 663 | const llvm::APSInt &NewFrom = ValueFactory.getValue(X: -It->To()); |
| 664 | const llvm::APSInt &NewTo = ValueFactory.getValue(X: -It->From()); |
| 665 | |
| 666 | // Add a negated range. |
| 667 | Result.emplace_back(Args: NewFrom, Args: NewTo); |
| 668 | } |
| 669 | |
| 670 | llvm::sort(C&: Result); |
| 671 | return makePersistent(From: std::move(Result)); |
| 672 | } |
| 673 | |
| 674 | // Convert range set to the given integral type using truncation and promotion. |
| 675 | // This works similar to APSIntType::apply function but for the range set. |
| 676 | RangeSet RangeSet::Factory::castTo(RangeSet What, APSIntType Ty) { |
| 677 | // Set is empty or NOOP (aka cast to the same type). |
| 678 | if (What.isEmpty() || What.getAPSIntType() == Ty) |
| 679 | return What; |
| 680 | |
| 681 | const bool IsConversion = What.isUnsigned() != Ty.isUnsigned(); |
| 682 | const bool IsTruncation = What.getBitWidth() > Ty.getBitWidth(); |
| 683 | const bool IsPromotion = What.getBitWidth() < Ty.getBitWidth(); |
| 684 | |
| 685 | if (IsTruncation) |
| 686 | return makePersistent(From: truncateTo(What, Ty)); |
| 687 | |
| 688 | // Here we handle 2 cases: |
| 689 | // - IsConversion && !IsPromotion. |
| 690 | // In this case we handle changing a sign with same bitwidth: char -> uchar, |
| 691 | // uint -> int. Here we convert negatives to positives and positives which |
| 692 | // is out of range to negatives. We use convertTo function for that. |
| 693 | // - IsConversion && IsPromotion && !What.isUnsigned(). |
| 694 | // In this case we handle changing a sign from signeds to unsigneds with |
| 695 | // higher bitwidth: char -> uint, int-> uint64. The point is that we also |
| 696 | // need convert negatives to positives and use convertTo function as well. |
| 697 | // For example, we don't need such a convertion when converting unsigned to |
| 698 | // signed with higher bitwidth, because all the values of unsigned is valid |
| 699 | // for the such signed. |
| 700 | if (IsConversion && (!IsPromotion || !What.isUnsigned())) |
| 701 | return makePersistent(From: convertTo(What, Ty)); |
| 702 | |
| 703 | assert(IsPromotion && "Only promotion operation from unsigneds left." ); |
| 704 | return makePersistent(From: promoteTo(What, Ty)); |
| 705 | } |
| 706 | |
| 707 | RangeSet RangeSet::Factory::castTo(RangeSet What, QualType T) { |
| 708 | assert(T->isIntegralOrEnumerationType() && "T shall be an integral type." ); |
| 709 | return castTo(What, Ty: ValueFactory.getAPSIntType(T)); |
| 710 | } |
| 711 | |
| 712 | RangeSet::ContainerType RangeSet::Factory::truncateTo(RangeSet What, |
| 713 | APSIntType Ty) { |
| 714 | using llvm::APInt; |
| 715 | using llvm::APSInt; |
| 716 | ContainerType Result; |
| 717 | ContainerType Dummy; |
| 718 | // CastRangeSize is an amount of all possible values of cast type. |
| 719 | // Example: `char` has 256 values; `short` has 65536 values. |
| 720 | // But in fact we use `amount of values` - 1, because |
| 721 | // we can't keep `amount of values of UINT64` inside uint64_t. |
| 722 | // E.g. 256 is an amount of all possible values of `char` and we can't keep |
| 723 | // it inside `char`. |
| 724 | // And it's OK, it's enough to do correct calculations. |
| 725 | uint64_t CastRangeSize = APInt::getMaxValue(numBits: Ty.getBitWidth()).getZExtValue(); |
| 726 | for (const Range &R : What) { |
| 727 | // Get bounds of the given range. |
| 728 | APSInt FromInt = R.From(); |
| 729 | APSInt ToInt = R.To(); |
| 730 | // CurrentRangeSize is an amount of all possible values of the current |
| 731 | // range minus one. |
| 732 | uint64_t CurrentRangeSize = (ToInt - FromInt).getZExtValue(); |
| 733 | // This is an optimization for a specific case when this Range covers |
| 734 | // the whole range of the target type. |
| 735 | Dummy.clear(); |
| 736 | if (CurrentRangeSize >= CastRangeSize) { |
| 737 | Dummy.emplace_back(Args: ValueFactory.getMinValue(T: Ty), |
| 738 | Args: ValueFactory.getMaxValue(T: Ty)); |
| 739 | Result = std::move(Dummy); |
| 740 | break; |
| 741 | } |
| 742 | // Cast the bounds. |
| 743 | Ty.apply(Value&: FromInt); |
| 744 | Ty.apply(Value&: ToInt); |
| 745 | const APSInt &PersistentFrom = ValueFactory.getValue(X: FromInt); |
| 746 | const APSInt &PersistentTo = ValueFactory.getValue(X: ToInt); |
| 747 | if (FromInt > ToInt) { |
| 748 | Dummy.emplace_back(Args: ValueFactory.getMinValue(T: Ty), Args: PersistentTo); |
| 749 | Dummy.emplace_back(Args: PersistentFrom, Args: ValueFactory.getMaxValue(T: Ty)); |
| 750 | } else |
| 751 | Dummy.emplace_back(Args: PersistentFrom, Args: PersistentTo); |
| 752 | // Every range retrieved after truncation potentialy has garbage values. |
| 753 | // So, we have to unite every next range with the previouses. |
| 754 | Result = unite(LHS: Result, RHS: Dummy); |
| 755 | } |
| 756 | |
| 757 | return Result; |
| 758 | } |
| 759 | |
| 760 | // Divide the convertion into two phases (presented as loops here). |
| 761 | // First phase(loop) works when casted values go in ascending order. |
| 762 | // E.g. char{1,3,5,127} -> uint{1,3,5,127} |
| 763 | // Interrupt the first phase and go to second one when casted values start |
| 764 | // go in descending order. That means that we crossed over the middle of |
| 765 | // the type value set (aka 0 for signeds and MAX/2+1 for unsigneds). |
| 766 | // For instance: |
| 767 | // 1: uchar{1,3,5,128,255} -> char{1,3,5,-128,-1} |
| 768 | // Here we put {1,3,5} to one array and {-128, -1} to another |
| 769 | // 2: char{-128,-127,-1,0,1,2} -> uchar{128,129,255,0,1,3} |
| 770 | // Here we put {128,129,255} to one array and {0,1,3} to another. |
| 771 | // After that we unite both arrays. |
| 772 | // NOTE: We don't just concatenate the arrays, because they may have |
| 773 | // adjacent ranges, e.g.: |
| 774 | // 1: char(-128, 127) -> uchar -> arr1(128, 255), arr2(0, 127) -> |
| 775 | // unite -> uchar(0, 255) |
| 776 | // 2: uchar(0, 1)U(254, 255) -> char -> arr1(0, 1), arr2(-2, -1) -> |
| 777 | // unite -> uchar(-2, 1) |
| 778 | RangeSet::ContainerType RangeSet::Factory::convertTo(RangeSet What, |
| 779 | APSIntType Ty) { |
| 780 | using llvm::APInt; |
| 781 | using llvm::APSInt; |
| 782 | using Bounds = std::pair<const APSInt &, const APSInt &>; |
| 783 | ContainerType AscendArray; |
| 784 | ContainerType DescendArray; |
| 785 | auto CastRange = [Ty, &VF = ValueFactory](const Range &R) -> Bounds { |
| 786 | // Get bounds of the given range. |
| 787 | APSInt FromInt = R.From(); |
| 788 | APSInt ToInt = R.To(); |
| 789 | // Cast the bounds. |
| 790 | Ty.apply(Value&: FromInt); |
| 791 | Ty.apply(Value&: ToInt); |
| 792 | return {VF.getValue(X: FromInt), VF.getValue(X: ToInt)}; |
| 793 | }; |
| 794 | // Phase 1. Fill the first array. |
| 795 | APSInt LastConvertedInt = Ty.getMinValue(); |
| 796 | const auto *It = What.begin(); |
| 797 | const auto *E = What.end(); |
| 798 | while (It != E) { |
| 799 | Bounds NewBounds = CastRange(*(It++)); |
| 800 | // If values stop going acsending order, go to the second phase(loop). |
| 801 | if (NewBounds.first < LastConvertedInt) { |
| 802 | DescendArray.emplace_back(Args: NewBounds.first, Args: NewBounds.second); |
| 803 | break; |
| 804 | } |
| 805 | // If the range contains a midpoint, then split the range. |
| 806 | // E.g. char(-5, 5) -> uchar(251, 5) |
| 807 | // Here we shall add a range (251, 255) to the first array and (0, 5) to the |
| 808 | // second one. |
| 809 | if (NewBounds.first > NewBounds.second) { |
| 810 | DescendArray.emplace_back(Args: ValueFactory.getMinValue(T: Ty), Args: NewBounds.second); |
| 811 | AscendArray.emplace_back(Args: NewBounds.first, Args: ValueFactory.getMaxValue(T: Ty)); |
| 812 | } else |
| 813 | // Values are going acsending order. |
| 814 | AscendArray.emplace_back(Args: NewBounds.first, Args: NewBounds.second); |
| 815 | LastConvertedInt = NewBounds.first; |
| 816 | } |
| 817 | // Phase 2. Fill the second array. |
| 818 | while (It != E) { |
| 819 | Bounds NewBounds = CastRange(*(It++)); |
| 820 | DescendArray.emplace_back(Args: NewBounds.first, Args: NewBounds.second); |
| 821 | } |
| 822 | // Unite both arrays. |
| 823 | return unite(LHS: AscendArray, RHS: DescendArray); |
| 824 | } |
| 825 | |
| 826 | /// Promotion from unsigneds to signeds/unsigneds left. |
| 827 | RangeSet::ContainerType RangeSet::Factory::promoteTo(RangeSet What, |
| 828 | APSIntType Ty) { |
| 829 | ContainerType Result; |
| 830 | // We definitely know the size of the result set. |
| 831 | Result.reserve(N: What.size()); |
| 832 | |
| 833 | // Each unsigned value fits every larger type without any changes, |
| 834 | // whether the larger type is signed or unsigned. So just promote and push |
| 835 | // back each range one by one. |
| 836 | for (const Range &R : What) { |
| 837 | // Get bounds of the given range. |
| 838 | llvm::APSInt FromInt = R.From(); |
| 839 | llvm::APSInt ToInt = R.To(); |
| 840 | // Cast the bounds. |
| 841 | Ty.apply(Value&: FromInt); |
| 842 | Ty.apply(Value&: ToInt); |
| 843 | Result.emplace_back(Args: ValueFactory.getValue(X: FromInt), |
| 844 | Args: ValueFactory.getValue(X: ToInt)); |
| 845 | } |
| 846 | return Result; |
| 847 | } |
| 848 | |
| 849 | RangeSet RangeSet::Factory::deletePoint(RangeSet From, |
| 850 | const llvm::APSInt &Point) { |
| 851 | if (!From.contains(Point)) |
| 852 | return From; |
| 853 | |
| 854 | llvm::APSInt Upper = Point; |
| 855 | llvm::APSInt Lower = Point; |
| 856 | |
| 857 | ++Upper; |
| 858 | --Lower; |
| 859 | |
| 860 | // Notice that the lower bound is greater than the upper bound. |
| 861 | return intersect(What: From, Lower: Upper, Upper: Lower); |
| 862 | } |
| 863 | |
| 864 | LLVM_DUMP_METHOD void Range::dump(raw_ostream &OS) const { |
| 865 | OS << '[' << toString(I: From(), Radix: 10) << ", " << toString(I: To(), Radix: 10) << ']'; |
| 866 | } |
| 867 | LLVM_DUMP_METHOD void Range::dump() const { dump(OS&: llvm::errs()); } |
| 868 | |
| 869 | LLVM_DUMP_METHOD void RangeSet::dump(raw_ostream &OS) const { |
| 870 | OS << "{ " ; |
| 871 | llvm::interleaveComma(c: *this, os&: OS, each_fn: [&OS](const Range &R) { R.dump(OS); }); |
| 872 | OS << " }" ; |
| 873 | } |
| 874 | LLVM_DUMP_METHOD void RangeSet::dump() const { dump(OS&: llvm::errs()); } |
| 875 | |
| 876 | REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(SymbolSet, SymbolRef) |
| 877 | |
| 878 | namespace { |
| 879 | class EquivalenceClass; |
| 880 | } // end anonymous namespace |
| 881 | |
| 882 | REGISTER_MAP_WITH_PROGRAMSTATE(ClassMap, SymbolRef, EquivalenceClass) |
| 883 | REGISTER_MAP_WITH_PROGRAMSTATE(ClassMembers, EquivalenceClass, SymbolSet) |
| 884 | REGISTER_MAP_WITH_PROGRAMSTATE(ConstraintRange, EquivalenceClass, RangeSet) |
| 885 | |
| 886 | REGISTER_SET_FACTORY_WITH_PROGRAMSTATE(ClassSet, EquivalenceClass) |
| 887 | REGISTER_MAP_WITH_PROGRAMSTATE(DisequalityMap, EquivalenceClass, ClassSet) |
| 888 | |
| 889 | namespace { |
| 890 | /// This class encapsulates a set of symbols equal to each other. |
| 891 | /// |
| 892 | /// The main idea of the approach requiring such classes is in narrowing |
| 893 | /// and sharing constraints between symbols within the class. Also we can |
| 894 | /// conclude that there is no practical need in storing constraints for |
| 895 | /// every member of the class separately. |
| 896 | /// |
| 897 | /// Main terminology: |
| 898 | /// |
| 899 | /// * "Equivalence class" is an object of this class, which can be efficiently |
| 900 | /// compared to other classes. It represents the whole class without |
| 901 | /// storing the actual in it. The members of the class however can be |
| 902 | /// retrieved from the state. |
| 903 | /// |
| 904 | /// * "Class members" are the symbols corresponding to the class. This means |
| 905 | /// that A == B for every member symbols A and B from the class. Members of |
| 906 | /// each class are stored in the state. |
| 907 | /// |
| 908 | /// * "Trivial class" is a class that has and ever had only one same symbol. |
| 909 | /// |
| 910 | /// * "Merge operation" merges two classes into one. It is the main operation |
| 911 | /// to produce non-trivial classes. |
| 912 | /// If, at some point, we can assume that two symbols from two distinct |
| 913 | /// classes are equal, we can merge these classes. |
| 914 | class EquivalenceClass : public llvm::FoldingSetNode { |
| 915 | public: |
| 916 | /// Find equivalence class for the given symbol in the given state. |
| 917 | [[nodiscard]] static inline EquivalenceClass find(ProgramStateRef State, |
| 918 | SymbolRef Sym); |
| 919 | |
| 920 | /// Merge classes for the given symbols and return a new state. |
| 921 | [[nodiscard]] static inline ProgramStateRef merge(RangeSet::Factory &F, |
| 922 | ProgramStateRef State, |
| 923 | SymbolRef First, |
| 924 | SymbolRef Second); |
| 925 | // Merge this class with the given class and return a new state. |
| 926 | [[nodiscard]] inline ProgramStateRef |
| 927 | merge(RangeSet::Factory &F, ProgramStateRef State, EquivalenceClass Other); |
| 928 | |
| 929 | /// Return a set of class members for the given state. |
| 930 | [[nodiscard]] inline SymbolSet getClassMembers(ProgramStateRef State) const; |
| 931 | |
| 932 | /// Return true if the current class is trivial in the given state. |
| 933 | /// A class is trivial if and only if there is not any member relations stored |
| 934 | /// to it in State/ClassMembers. |
| 935 | /// An equivalence class with one member might seem as it does not hold any |
| 936 | /// meaningful information, i.e. that is a tautology. However, during the |
| 937 | /// removal of dead symbols we do not remove classes with one member for |
| 938 | /// resource and performance reasons. Consequently, a class with one member is |
| 939 | /// not necessarily trivial. It could happen that we have a class with two |
| 940 | /// members and then during the removal of dead symbols we remove one of its |
| 941 | /// members. In this case, the class is still non-trivial (it still has the |
| 942 | /// mappings in ClassMembers), even though it has only one member. |
| 943 | [[nodiscard]] inline bool isTrivial(ProgramStateRef State) const; |
| 944 | |
| 945 | /// Return true if the current class is trivial and its only member is dead. |
| 946 | [[nodiscard]] inline bool isTriviallyDead(ProgramStateRef State, |
| 947 | SymbolReaper &Reaper) const; |
| 948 | |
| 949 | [[nodiscard]] static inline ProgramStateRef |
| 950 | markDisequal(RangeSet::Factory &F, ProgramStateRef State, SymbolRef First, |
| 951 | SymbolRef Second); |
| 952 | [[nodiscard]] static inline ProgramStateRef |
| 953 | markDisequal(RangeSet::Factory &F, ProgramStateRef State, |
| 954 | EquivalenceClass First, EquivalenceClass Second); |
| 955 | [[nodiscard]] inline ProgramStateRef |
| 956 | markDisequal(RangeSet::Factory &F, ProgramStateRef State, |
| 957 | EquivalenceClass Other) const; |
| 958 | [[nodiscard]] static inline ClassSet getDisequalClasses(ProgramStateRef State, |
| 959 | SymbolRef Sym); |
| 960 | [[nodiscard]] inline ClassSet getDisequalClasses(ProgramStateRef State) const; |
| 961 | [[nodiscard]] inline ClassSet |
| 962 | getDisequalClasses(DisequalityMapTy Map, ClassSet::Factory &Factory) const; |
| 963 | |
| 964 | [[nodiscard]] static inline std::optional<bool> |
| 965 | areEqual(ProgramStateRef State, EquivalenceClass First, |
| 966 | EquivalenceClass Second); |
| 967 | [[nodiscard]] static inline std::optional<bool> |
| 968 | areEqual(ProgramStateRef State, SymbolRef First, SymbolRef Second); |
| 969 | |
| 970 | /// Remove one member from the class. |
| 971 | [[nodiscard]] ProgramStateRef removeMember(ProgramStateRef State, |
| 972 | const SymbolRef Old); |
| 973 | |
| 974 | /// Iterate over all symbols and try to simplify them. |
| 975 | [[nodiscard]] static inline ProgramStateRef simplify(SValBuilder &SVB, |
| 976 | RangeSet::Factory &F, |
| 977 | ProgramStateRef State, |
| 978 | EquivalenceClass Class); |
| 979 | |
| 980 | void dumpToStream(ProgramStateRef State, raw_ostream &os) const; |
| 981 | LLVM_DUMP_METHOD void dump(ProgramStateRef State) const { |
| 982 | dumpToStream(State, os&: llvm::errs()); |
| 983 | } |
| 984 | |
| 985 | /// Check equivalence data for consistency. |
| 986 | [[nodiscard]] LLVM_ATTRIBUTE_UNUSED static bool |
| 987 | isClassDataConsistent(ProgramStateRef State); |
| 988 | |
| 989 | [[nodiscard]] QualType getType() const { |
| 990 | return getRepresentativeSymbol()->getType(); |
| 991 | } |
| 992 | |
| 993 | EquivalenceClass() = delete; |
| 994 | EquivalenceClass(const EquivalenceClass &) = default; |
| 995 | EquivalenceClass &operator=(const EquivalenceClass &) = delete; |
| 996 | EquivalenceClass(EquivalenceClass &&) = default; |
| 997 | EquivalenceClass &operator=(EquivalenceClass &&) = delete; |
| 998 | |
| 999 | bool operator==(const EquivalenceClass &Other) const { |
| 1000 | return ID == Other.ID; |
| 1001 | } |
| 1002 | bool operator<(const EquivalenceClass &Other) const { return ID < Other.ID; } |
| 1003 | bool operator!=(const EquivalenceClass &Other) const { |
| 1004 | return !operator==(Other); |
| 1005 | } |
| 1006 | |
| 1007 | static void Profile(llvm::FoldingSetNodeID &ID, uintptr_t CID) { |
| 1008 | ID.AddInteger(I: CID); |
| 1009 | } |
| 1010 | |
| 1011 | void Profile(llvm::FoldingSetNodeID &ID) const { Profile(ID, CID: this->ID); } |
| 1012 | |
| 1013 | private: |
| 1014 | /* implicit */ EquivalenceClass(SymbolRef Sym) |
| 1015 | : ID(reinterpret_cast<uintptr_t>(Sym)) {} |
| 1016 | |
| 1017 | /// This function is intended to be used ONLY within the class. |
| 1018 | /// The fact that ID is a pointer to a symbol is an implementation detail |
| 1019 | /// and should stay that way. |
| 1020 | /// In the current implementation, we use it to retrieve the only member |
| 1021 | /// of the trivial class. |
| 1022 | SymbolRef getRepresentativeSymbol() const { |
| 1023 | return reinterpret_cast<SymbolRef>(ID); |
| 1024 | } |
| 1025 | static inline SymbolSet::Factory &getMembersFactory(ProgramStateRef State); |
| 1026 | |
| 1027 | inline ProgramStateRef mergeImpl(RangeSet::Factory &F, ProgramStateRef State, |
| 1028 | SymbolSet Members, EquivalenceClass Other, |
| 1029 | SymbolSet OtherMembers); |
| 1030 | |
| 1031 | static inline bool |
| 1032 | addToDisequalityInfo(DisequalityMapTy &Info, ConstraintRangeTy &Constraints, |
| 1033 | RangeSet::Factory &F, ProgramStateRef State, |
| 1034 | EquivalenceClass First, EquivalenceClass Second); |
| 1035 | |
| 1036 | /// This is a unique identifier of the class. |
| 1037 | uintptr_t ID; |
| 1038 | }; |
| 1039 | |
| 1040 | //===----------------------------------------------------------------------===// |
| 1041 | // Constraint functions |
| 1042 | //===----------------------------------------------------------------------===// |
| 1043 | |
| 1044 | [[nodiscard]] LLVM_ATTRIBUTE_UNUSED bool |
| 1045 | areFeasible(ConstraintRangeTy Constraints) { |
| 1046 | return llvm::none_of( |
| 1047 | Range&: Constraints, |
| 1048 | P: [](const std::pair<EquivalenceClass, RangeSet> &ClassConstraint) { |
| 1049 | return ClassConstraint.second.isEmpty(); |
| 1050 | }); |
| 1051 | } |
| 1052 | |
| 1053 | [[nodiscard]] inline const RangeSet *getConstraint(ProgramStateRef State, |
| 1054 | EquivalenceClass Class) { |
| 1055 | return State->get<ConstraintRange>(key: Class); |
| 1056 | } |
| 1057 | |
| 1058 | [[nodiscard]] inline const RangeSet *getConstraint(ProgramStateRef State, |
| 1059 | SymbolRef Sym) { |
| 1060 | return getConstraint(State, Class: EquivalenceClass::find(State, Sym)); |
| 1061 | } |
| 1062 | |
| 1063 | [[nodiscard]] ProgramStateRef setConstraint(ProgramStateRef State, |
| 1064 | EquivalenceClass Class, |
| 1065 | RangeSet Constraint) { |
| 1066 | return State->set<ConstraintRange>(K: Class, E: Constraint); |
| 1067 | } |
| 1068 | |
| 1069 | [[nodiscard]] ProgramStateRef setConstraints(ProgramStateRef State, |
| 1070 | ConstraintRangeTy Constraints) { |
| 1071 | return State->set<ConstraintRange>(Constraints); |
| 1072 | } |
| 1073 | |
| 1074 | //===----------------------------------------------------------------------===// |
| 1075 | // Equality/diseqiality abstraction |
| 1076 | //===----------------------------------------------------------------------===// |
| 1077 | |
| 1078 | /// A small helper function for detecting symbolic (dis)equality. |
| 1079 | /// |
| 1080 | /// Equality check can have different forms (like a == b or a - b) and this |
| 1081 | /// class encapsulates those away if the only thing the user wants to check - |
| 1082 | /// whether it's equality/diseqiality or not. |
| 1083 | /// |
| 1084 | /// \returns true if assuming this Sym to be true means equality of operands |
| 1085 | /// false if it means disequality of operands |
| 1086 | /// std::nullopt otherwise |
| 1087 | std::optional<bool> meansEquality(const SymSymExpr *Sym) { |
| 1088 | switch (Sym->getOpcode()) { |
| 1089 | case BO_Sub: |
| 1090 | // This case is: A - B != 0 -> disequality check. |
| 1091 | return false; |
| 1092 | case BO_EQ: |
| 1093 | // This case is: A == B != 0 -> equality check. |
| 1094 | return true; |
| 1095 | case BO_NE: |
| 1096 | // This case is: A != B != 0 -> diseqiality check. |
| 1097 | return false; |
| 1098 | default: |
| 1099 | return std::nullopt; |
| 1100 | } |
| 1101 | } |
| 1102 | |
| 1103 | //===----------------------------------------------------------------------===// |
| 1104 | // Intersection functions |
| 1105 | //===----------------------------------------------------------------------===// |
| 1106 | |
| 1107 | template <class SecondTy, class... RestTy> |
| 1108 | [[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, |
| 1109 | SecondTy Second, RestTy... Tail); |
| 1110 | |
| 1111 | template <class... RangeTy> struct IntersectionTraits; |
| 1112 | |
| 1113 | template <class... TailTy> struct IntersectionTraits<RangeSet, TailTy...> { |
| 1114 | // Found RangeSet, no need to check any further |
| 1115 | using Type = RangeSet; |
| 1116 | }; |
| 1117 | |
| 1118 | template <> struct IntersectionTraits<> { |
| 1119 | // We ran out of types, and we didn't find any RangeSet, so the result should |
| 1120 | // be optional. |
| 1121 | using Type = std::optional<RangeSet>; |
| 1122 | }; |
| 1123 | |
| 1124 | template <class OptionalOrPointer, class... TailTy> |
| 1125 | struct IntersectionTraits<OptionalOrPointer, TailTy...> { |
| 1126 | // If current type is Optional or a raw pointer, we should keep looking. |
| 1127 | using Type = typename IntersectionTraits<TailTy...>::Type; |
| 1128 | }; |
| 1129 | |
| 1130 | template <class EndTy> |
| 1131 | [[nodiscard]] inline EndTy intersect(RangeSet::Factory &F, EndTy End) { |
| 1132 | // If the list contains only RangeSet or std::optional<RangeSet>, simply |
| 1133 | // return that range set. |
| 1134 | return End; |
| 1135 | } |
| 1136 | |
| 1137 | [[nodiscard]] LLVM_ATTRIBUTE_UNUSED inline std::optional<RangeSet> |
| 1138 | intersect(RangeSet::Factory &F, const RangeSet *End) { |
| 1139 | // This is an extraneous conversion from a raw pointer into |
| 1140 | // std::optional<RangeSet> |
| 1141 | if (End) { |
| 1142 | return *End; |
| 1143 | } |
| 1144 | return std::nullopt; |
| 1145 | } |
| 1146 | |
| 1147 | template <class... RestTy> |
| 1148 | [[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, |
| 1149 | RangeSet Second, RestTy... Tail) { |
| 1150 | // Here we call either the <RangeSet,RangeSet,...> or <RangeSet,...> version |
| 1151 | // of the function and can be sure that the result is RangeSet. |
| 1152 | return intersect(F, F.intersect(LHS: Head, RHS: Second), Tail...); |
| 1153 | } |
| 1154 | |
| 1155 | template <class SecondTy, class... RestTy> |
| 1156 | [[nodiscard]] inline RangeSet intersect(RangeSet::Factory &F, RangeSet Head, |
| 1157 | SecondTy Second, RestTy... Tail) { |
| 1158 | if (Second) { |
| 1159 | // Here we call the <RangeSet,RangeSet,...> version of the function... |
| 1160 | return intersect(F, Head, *Second, Tail...); |
| 1161 | } |
| 1162 | // ...and here it is either <RangeSet,RangeSet,...> or <RangeSet,...>, which |
| 1163 | // means that the result is definitely RangeSet. |
| 1164 | return intersect(F, Head, Tail...); |
| 1165 | } |
| 1166 | |
| 1167 | /// Main generic intersect function. |
| 1168 | /// It intersects all of the given range sets. If some of the given arguments |
| 1169 | /// don't hold a range set (nullptr or std::nullopt), the function will skip |
| 1170 | /// them. |
| 1171 | /// |
| 1172 | /// Available representations for the arguments are: |
| 1173 | /// * RangeSet |
| 1174 | /// * std::optional<RangeSet> |
| 1175 | /// * RangeSet * |
| 1176 | /// Pointer to a RangeSet is automatically assumed to be nullable and will get |
| 1177 | /// checked as well as the optional version. If this behaviour is undesired, |
| 1178 | /// please dereference the pointer in the call. |
| 1179 | /// |
| 1180 | /// Return type depends on the arguments' types. If we can be sure in compile |
| 1181 | /// time that there will be a range set as a result, the returning type is |
| 1182 | /// simply RangeSet, in other cases we have to back off to |
| 1183 | /// std::optional<RangeSet>. |
| 1184 | /// |
| 1185 | /// Please, prefer optional range sets to raw pointers. If the last argument is |
| 1186 | /// a raw pointer and all previous arguments are std::nullopt, it will cost one |
| 1187 | /// additional check to convert RangeSet * into std::optional<RangeSet>. |
| 1188 | template <class HeadTy, class SecondTy, class... RestTy> |
| 1189 | [[nodiscard]] inline |
| 1190 | typename IntersectionTraits<HeadTy, SecondTy, RestTy...>::Type |
| 1191 | intersect(RangeSet::Factory &F, HeadTy Head, SecondTy Second, |
| 1192 | RestTy... Tail) { |
| 1193 | if (Head) { |
| 1194 | return intersect(F, *Head, Second, Tail...); |
| 1195 | } |
| 1196 | return intersect(F, Second, Tail...); |
| 1197 | } |
| 1198 | |
| 1199 | //===----------------------------------------------------------------------===// |
| 1200 | // Symbolic reasoning logic |
| 1201 | //===----------------------------------------------------------------------===// |
| 1202 | |
| 1203 | /// A little component aggregating all of the reasoning we have about |
| 1204 | /// the ranges of symbolic expressions. |
| 1205 | /// |
| 1206 | /// Even when we don't know the exact values of the operands, we still |
| 1207 | /// can get a pretty good estimate of the result's range. |
| 1208 | class SymbolicRangeInferrer |
| 1209 | : public SymExprVisitor<SymbolicRangeInferrer, RangeSet> { |
| 1210 | public: |
| 1211 | template <class SourceType> |
| 1212 | static RangeSet inferRange(RangeSet::Factory &F, ProgramStateRef State, |
| 1213 | SourceType Origin) { |
| 1214 | SymbolicRangeInferrer Inferrer(F, State); |
| 1215 | return Inferrer.infer(Origin); |
| 1216 | } |
| 1217 | |
| 1218 | RangeSet VisitSymExpr(SymbolRef Sym) { |
| 1219 | if (std::optional<RangeSet> RS = getRangeForNegatedSym(Sym)) |
| 1220 | return *RS; |
| 1221 | // If we've reached this line, the actual type of the symbolic |
| 1222 | // expression is not supported for advanced inference. |
| 1223 | // In this case, we simply backoff to the default "let's simply |
| 1224 | // infer the range from the expression's type". |
| 1225 | return infer(T: Sym->getType()); |
| 1226 | } |
| 1227 | |
| 1228 | RangeSet VisitUnarySymExpr(const UnarySymExpr *USE) { |
| 1229 | if (std::optional<RangeSet> RS = getRangeForNegatedUnarySym(USE)) |
| 1230 | return *RS; |
| 1231 | return infer(T: USE->getType()); |
| 1232 | } |
| 1233 | |
| 1234 | RangeSet VisitSymIntExpr(const SymIntExpr *Sym) { |
| 1235 | return VisitBinaryOperator(Sym); |
| 1236 | } |
| 1237 | |
| 1238 | RangeSet VisitIntSymExpr(const IntSymExpr *Sym) { |
| 1239 | return VisitBinaryOperator(Sym); |
| 1240 | } |
| 1241 | |
| 1242 | RangeSet VisitSymSymExpr(const SymSymExpr *SSE) { |
| 1243 | return intersect( |
| 1244 | F&: RangeFactory, |
| 1245 | // If Sym is a difference of symbols A - B, then maybe we have range |
| 1246 | // set stored for B - A. |
| 1247 | // |
| 1248 | // If we have range set stored for both A - B and B - A then |
| 1249 | // calculate the effective range set by intersecting the range set |
| 1250 | // for A - B and the negated range set of B - A. |
| 1251 | Head: getRangeForNegatedSymSym(SSE), |
| 1252 | // If commutative, we may have constaints for the commuted variant. |
| 1253 | Second: getRangeCommutativeSymSym(SSE), |
| 1254 | // If Sym is a comparison expression (except <=>), |
| 1255 | // find any other comparisons with the same operands. |
| 1256 | // See function description. |
| 1257 | Tail: getRangeForComparisonSymbol(SSE), |
| 1258 | // If Sym is (dis)equality, we might have some information |
| 1259 | // on that in our equality classes data structure. |
| 1260 | Tail: getRangeForEqualities(Sym: SSE), |
| 1261 | // And we should always check what we can get from the operands. |
| 1262 | Tail: VisitBinaryOperator(Sym: SSE)); |
| 1263 | } |
| 1264 | |
| 1265 | private: |
| 1266 | SymbolicRangeInferrer(RangeSet::Factory &F, ProgramStateRef S) |
| 1267 | : ValueFactory(F.getValueFactory()), RangeFactory(F), State(S) {} |
| 1268 | |
| 1269 | /// Infer range information from the given integer constant. |
| 1270 | /// |
| 1271 | /// It's not a real "inference", but is here for operating with |
| 1272 | /// sub-expressions in a more polymorphic manner. |
| 1273 | RangeSet inferAs(const llvm::APSInt &Val, QualType) { |
| 1274 | return {RangeFactory, Val}; |
| 1275 | } |
| 1276 | |
| 1277 | /// Infer range information from symbol in the context of the given type. |
| 1278 | RangeSet inferAs(SymbolRef Sym, QualType DestType) { |
| 1279 | QualType ActualType = Sym->getType(); |
| 1280 | // Check that we can reason about the symbol at all. |
| 1281 | if (ActualType->isIntegralOrEnumerationType() || |
| 1282 | Loc::isLocType(T: ActualType)) { |
| 1283 | return infer(Sym); |
| 1284 | } |
| 1285 | // Otherwise, let's simply infer from the destination type. |
| 1286 | // We couldn't figure out nothing else about that expression. |
| 1287 | return infer(T: DestType); |
| 1288 | } |
| 1289 | |
| 1290 | RangeSet infer(SymbolRef Sym) { |
| 1291 | return intersect(F&: RangeFactory, |
| 1292 | // Of course, we should take the constraint directly |
| 1293 | // associated with this symbol into consideration. |
| 1294 | Head: getConstraint(State, Sym), |
| 1295 | // Apart from the Sym itself, we can infer quite a lot if |
| 1296 | // we look into subexpressions of Sym. |
| 1297 | Second: Visit(S: Sym)); |
| 1298 | } |
| 1299 | |
| 1300 | RangeSet infer(EquivalenceClass Class) { |
| 1301 | if (const RangeSet *AssociatedConstraint = getConstraint(State, Class)) |
| 1302 | return *AssociatedConstraint; |
| 1303 | |
| 1304 | return infer(T: Class.getType()); |
| 1305 | } |
| 1306 | |
| 1307 | /// Infer range information solely from the type. |
| 1308 | RangeSet infer(QualType T) { |
| 1309 | // Lazily generate a new RangeSet representing all possible values for the |
| 1310 | // given symbol type. |
| 1311 | RangeSet Result(RangeFactory, ValueFactory.getMinValue(T), |
| 1312 | ValueFactory.getMaxValue(T)); |
| 1313 | |
| 1314 | // References are known to be non-zero. |
| 1315 | if (T->isReferenceType()) |
| 1316 | return assumeNonZero(Domain: Result, T); |
| 1317 | |
| 1318 | return Result; |
| 1319 | } |
| 1320 | |
| 1321 | template <class BinarySymExprTy> |
| 1322 | RangeSet VisitBinaryOperator(const BinarySymExprTy *Sym) { |
| 1323 | // TODO #1: VisitBinaryOperator implementation might not make a good |
| 1324 | // use of the inferred ranges. In this case, we might be calculating |
| 1325 | // everything for nothing. This being said, we should introduce some |
| 1326 | // sort of laziness mechanism here. |
| 1327 | // |
| 1328 | // TODO #2: We didn't go into the nested expressions before, so it |
| 1329 | // might cause us spending much more time doing the inference. |
| 1330 | // This can be a problem for deeply nested expressions that are |
| 1331 | // involved in conditions and get tested continuously. We definitely |
| 1332 | // need to address this issue and introduce some sort of caching |
| 1333 | // in here. |
| 1334 | QualType ResultType = Sym->getType(); |
| 1335 | return VisitBinaryOperator(inferAs(Sym->getLHS(), ResultType), |
| 1336 | Sym->getOpcode(), |
| 1337 | inferAs(Sym->getRHS(), ResultType), ResultType); |
| 1338 | } |
| 1339 | |
| 1340 | RangeSet VisitBinaryOperator(RangeSet LHS, BinaryOperator::Opcode Op, |
| 1341 | RangeSet RHS, QualType T); |
| 1342 | |
| 1343 | //===----------------------------------------------------------------------===// |
| 1344 | // Ranges and operators |
| 1345 | //===----------------------------------------------------------------------===// |
| 1346 | |
| 1347 | /// Return a rough approximation of the given range set. |
| 1348 | /// |
| 1349 | /// For the range set: |
| 1350 | /// { [x_0, y_0], [x_1, y_1], ... , [x_N, y_N] } |
| 1351 | /// it will return the range [x_0, y_N]. |
| 1352 | static Range fillGaps(RangeSet Origin) { |
| 1353 | assert(!Origin.isEmpty()); |
| 1354 | return {Origin.getMinValue(), Origin.getMaxValue()}; |
| 1355 | } |
| 1356 | |
| 1357 | /// Try to convert given range into the given type. |
| 1358 | /// |
| 1359 | /// It will return std::nullopt only when the trivial conversion is possible. |
| 1360 | std::optional<Range> convert(const Range &Origin, APSIntType To) { |
| 1361 | if (To.testInRange(Val: Origin.From(), AllowMixedSign: false) != APSIntType::RTR_Within || |
| 1362 | To.testInRange(Val: Origin.To(), AllowMixedSign: false) != APSIntType::RTR_Within) { |
| 1363 | return std::nullopt; |
| 1364 | } |
| 1365 | return Range(ValueFactory.Convert(TargetType: To, From: Origin.From()), |
| 1366 | ValueFactory.Convert(TargetType: To, From: Origin.To())); |
| 1367 | } |
| 1368 | |
| 1369 | template <BinaryOperator::Opcode Op> |
| 1370 | RangeSet VisitBinaryOperator(RangeSet LHS, RangeSet RHS, QualType T) { |
| 1371 | assert(!LHS.isEmpty() && !RHS.isEmpty()); |
| 1372 | |
| 1373 | Range CoarseLHS = fillGaps(Origin: LHS); |
| 1374 | Range CoarseRHS = fillGaps(Origin: RHS); |
| 1375 | |
| 1376 | APSIntType ResultType = ValueFactory.getAPSIntType(T); |
| 1377 | |
| 1378 | // We need to convert ranges to the resulting type, so we can compare values |
| 1379 | // and combine them in a meaningful (in terms of the given operation) way. |
| 1380 | auto ConvertedCoarseLHS = convert(Origin: CoarseLHS, To: ResultType); |
| 1381 | auto ConvertedCoarseRHS = convert(Origin: CoarseRHS, To: ResultType); |
| 1382 | |
| 1383 | // It is hard to reason about ranges when conversion changes |
| 1384 | // borders of the ranges. |
| 1385 | if (!ConvertedCoarseLHS || !ConvertedCoarseRHS) { |
| 1386 | return infer(T); |
| 1387 | } |
| 1388 | |
| 1389 | return VisitBinaryOperator<Op>(*ConvertedCoarseLHS, *ConvertedCoarseRHS, T); |
| 1390 | } |
| 1391 | |
| 1392 | template <BinaryOperator::Opcode Op> |
| 1393 | RangeSet VisitBinaryOperator(Range LHS, Range RHS, QualType T) { |
| 1394 | return infer(T); |
| 1395 | } |
| 1396 | |
| 1397 | /// Return a symmetrical range for the given range and type. |
| 1398 | /// |
| 1399 | /// If T is signed, return the smallest range [-x..x] that covers the original |
| 1400 | /// range, or [-min(T), max(T)] if the aforementioned symmetric range doesn't |
| 1401 | /// exist due to original range covering min(T)). |
| 1402 | /// |
| 1403 | /// If T is unsigned, return the smallest range [0..x] that covers the |
| 1404 | /// original range. |
| 1405 | Range getSymmetricalRange(Range Origin, QualType T) { |
| 1406 | APSIntType RangeType = ValueFactory.getAPSIntType(T); |
| 1407 | |
| 1408 | if (RangeType.isUnsigned()) { |
| 1409 | return Range(ValueFactory.getMinValue(T: RangeType), Origin.To()); |
| 1410 | } |
| 1411 | |
| 1412 | if (Origin.From().isMinSignedValue()) { |
| 1413 | // If mini is a minimal signed value, absolute value of it is greater |
| 1414 | // than the maximal signed value. In order to avoid these |
| 1415 | // complications, we simply return the whole range. |
| 1416 | return {ValueFactory.getMinValue(T: RangeType), |
| 1417 | ValueFactory.getMaxValue(T: RangeType)}; |
| 1418 | } |
| 1419 | |
| 1420 | // At this point, we are sure that the type is signed and we can safely |
| 1421 | // use unary - operator. |
| 1422 | // |
| 1423 | // While calculating absolute maximum, we can use the following formula |
| 1424 | // because of these reasons: |
| 1425 | // * If From >= 0 then To >= From and To >= -From. |
| 1426 | // AbsMax == To == max(To, -From) |
| 1427 | // * If To <= 0 then -From >= -To and -From >= From. |
| 1428 | // AbsMax == -From == max(-From, To) |
| 1429 | // * Otherwise, From <= 0, To >= 0, and |
| 1430 | // AbsMax == max(abs(From), abs(To)) |
| 1431 | llvm::APSInt AbsMax = std::max(a: -Origin.From(), b: Origin.To()); |
| 1432 | |
| 1433 | // Intersection is guaranteed to be non-empty. |
| 1434 | return {ValueFactory.getValue(X: -AbsMax), ValueFactory.getValue(X: AbsMax)}; |
| 1435 | } |
| 1436 | |
| 1437 | /// Return a range set subtracting zero from \p Domain. |
| 1438 | RangeSet assumeNonZero(RangeSet Domain, QualType T) { |
| 1439 | APSIntType IntType = ValueFactory.getAPSIntType(T); |
| 1440 | return RangeFactory.deletePoint(From: Domain, Point: IntType.getZeroValue()); |
| 1441 | } |
| 1442 | |
| 1443 | template <typename ProduceNegatedSymFunc> |
| 1444 | std::optional<RangeSet> getRangeForNegatedExpr(ProduceNegatedSymFunc F, |
| 1445 | QualType T) { |
| 1446 | // Do not negate if the type cannot be meaningfully negated. |
| 1447 | if (!T->isUnsignedIntegerOrEnumerationType() && |
| 1448 | !T->isSignedIntegerOrEnumerationType()) |
| 1449 | return std::nullopt; |
| 1450 | |
| 1451 | if (SymbolRef NegatedSym = F()) |
| 1452 | if (const RangeSet *NegatedRange = getConstraint(State, Sym: NegatedSym)) |
| 1453 | return RangeFactory.negate(What: *NegatedRange); |
| 1454 | |
| 1455 | return std::nullopt; |
| 1456 | } |
| 1457 | |
| 1458 | std::optional<RangeSet> getRangeForNegatedUnarySym(const UnarySymExpr *USE) { |
| 1459 | // Just get the operand when we negate a symbol that is already negated. |
| 1460 | // -(-a) == a |
| 1461 | return getRangeForNegatedExpr( |
| 1462 | F: [USE]() -> SymbolRef { |
| 1463 | if (USE->getOpcode() == UO_Minus) |
| 1464 | return USE->getOperand(); |
| 1465 | return nullptr; |
| 1466 | }, |
| 1467 | T: USE->getType()); |
| 1468 | } |
| 1469 | |
| 1470 | std::optional<RangeSet> getRangeForNegatedSymSym(const SymSymExpr *SSE) { |
| 1471 | return getRangeForNegatedExpr( |
| 1472 | F: [SSE, State = this->State]() -> SymbolRef { |
| 1473 | if (SSE->getOpcode() == BO_Sub) |
| 1474 | return State->getSymbolManager().acquire<SymSymExpr>( |
| 1475 | args: SSE->getRHS(), args: BO_Sub, args: SSE->getLHS(), args: SSE->getType()); |
| 1476 | return nullptr; |
| 1477 | }, |
| 1478 | T: SSE->getType()); |
| 1479 | } |
| 1480 | |
| 1481 | std::optional<RangeSet> getRangeForNegatedSym(SymbolRef Sym) { |
| 1482 | return getRangeForNegatedExpr( |
| 1483 | F: [Sym, State = this->State]() { |
| 1484 | return State->getSymbolManager().acquire<UnarySymExpr>( |
| 1485 | args: Sym, args: UO_Minus, args: Sym->getType()); |
| 1486 | }, |
| 1487 | T: Sym->getType()); |
| 1488 | } |
| 1489 | |
| 1490 | std::optional<RangeSet> getRangeCommutativeSymSym(const SymSymExpr *SSE) { |
| 1491 | auto Op = SSE->getOpcode(); |
| 1492 | bool IsCommutative = llvm::is_contained( |
| 1493 | // ==, !=, |, &, +, *, ^ |
| 1494 | Set: {BO_EQ, BO_NE, BO_Or, BO_And, BO_Add, BO_Mul, BO_Xor}, Element: Op); |
| 1495 | if (!IsCommutative) |
| 1496 | return std::nullopt; |
| 1497 | |
| 1498 | SymbolRef Commuted = State->getSymbolManager().acquire<SymSymExpr>( |
| 1499 | args: SSE->getRHS(), args&: Op, args: SSE->getLHS(), args: SSE->getType()); |
| 1500 | if (const RangeSet *Range = getConstraint(State, Sym: Commuted)) |
| 1501 | return *Range; |
| 1502 | return std::nullopt; |
| 1503 | } |
| 1504 | |
| 1505 | // Returns ranges only for binary comparison operators (except <=>) |
| 1506 | // when left and right operands are symbolic values. |
| 1507 | // Finds any other comparisons with the same operands. |
| 1508 | // Then do logical calculations and refuse impossible branches. |
| 1509 | // E.g. (x < y) and (x > y) at the same time are impossible. |
| 1510 | // E.g. (x >= y) and (x != y) at the same time makes (x > y) true only. |
| 1511 | // E.g. (x == y) and (y == x) are just reversed but the same. |
| 1512 | // It covers all possible combinations (see CmpOpTable description). |
| 1513 | // Note that `x` and `y` can also stand for subexpressions, |
| 1514 | // not only for actual symbols. |
| 1515 | std::optional<RangeSet> getRangeForComparisonSymbol(const SymSymExpr *SSE) { |
| 1516 | const BinaryOperatorKind CurrentOP = SSE->getOpcode(); |
| 1517 | |
| 1518 | // We currently do not support <=> (C++20). |
| 1519 | if (!BinaryOperator::isComparisonOp(Opc: CurrentOP) || (CurrentOP == BO_Cmp)) |
| 1520 | return std::nullopt; |
| 1521 | |
| 1522 | static const OperatorRelationsTable CmpOpTable{}; |
| 1523 | |
| 1524 | const SymExpr *LHS = SSE->getLHS(); |
| 1525 | const SymExpr *RHS = SSE->getRHS(); |
| 1526 | QualType T = SSE->getType(); |
| 1527 | |
| 1528 | SymbolManager &SymMgr = State->getSymbolManager(); |
| 1529 | |
| 1530 | // We use this variable to store the last queried operator (`QueriedOP`) |
| 1531 | // for which the `getCmpOpState` returned with `Unknown`. If there are two |
| 1532 | // different OPs that returned `Unknown` then we have to query the special |
| 1533 | // `UnknownX2` column. We assume that `getCmpOpState(CurrentOP, CurrentOP)` |
| 1534 | // never returns `Unknown`, so `CurrentOP` is a good initial value. |
| 1535 | BinaryOperatorKind LastQueriedOpToUnknown = CurrentOP; |
| 1536 | |
| 1537 | // Loop goes through all of the columns exept the last one ('UnknownX2'). |
| 1538 | // We treat `UnknownX2` column separately at the end of the loop body. |
| 1539 | for (size_t i = 0; i < CmpOpTable.getCmpOpCount(); ++i) { |
| 1540 | |
| 1541 | // Let's find an expression e.g. (x < y). |
| 1542 | BinaryOperatorKind QueriedOP = OperatorRelationsTable::getOpFromIndex(Index: i); |
| 1543 | const SymSymExpr *SymSym = |
| 1544 | SymMgr.acquire<SymSymExpr>(args&: LHS, args&: QueriedOP, args&: RHS, args&: T); |
| 1545 | const RangeSet *QueriedRangeSet = getConstraint(State, Sym: SymSym); |
| 1546 | |
| 1547 | // If ranges were not previously found, |
| 1548 | // try to find a reversed expression (y > x). |
| 1549 | if (!QueriedRangeSet) { |
| 1550 | const BinaryOperatorKind ROP = |
| 1551 | BinaryOperator::reverseComparisonOp(Opc: QueriedOP); |
| 1552 | SymSym = SymMgr.acquire<SymSymExpr>(args&: RHS, args: ROP, args&: LHS, args&: T); |
| 1553 | QueriedRangeSet = getConstraint(State, Sym: SymSym); |
| 1554 | } |
| 1555 | |
| 1556 | if (!QueriedRangeSet || QueriedRangeSet->isEmpty()) |
| 1557 | continue; |
| 1558 | |
| 1559 | const llvm::APSInt *ConcreteValue = QueriedRangeSet->getConcreteValue(); |
| 1560 | const bool isInFalseBranch = |
| 1561 | ConcreteValue ? (*ConcreteValue == 0) : false; |
| 1562 | |
| 1563 | // If it is a false branch, we shall be guided by opposite operator, |
| 1564 | // because the table is made assuming we are in the true branch. |
| 1565 | // E.g. when (x <= y) is false, then (x > y) is true. |
| 1566 | if (isInFalseBranch) |
| 1567 | QueriedOP = BinaryOperator::negateComparisonOp(Opc: QueriedOP); |
| 1568 | |
| 1569 | OperatorRelationsTable::TriStateKind BranchState = |
| 1570 | CmpOpTable.getCmpOpState(CurrentOP, QueriedOP); |
| 1571 | |
| 1572 | if (BranchState == OperatorRelationsTable::Unknown) { |
| 1573 | if (LastQueriedOpToUnknown != CurrentOP && |
| 1574 | LastQueriedOpToUnknown != QueriedOP) { |
| 1575 | // If we got the Unknown state for both different operators. |
| 1576 | // if (x <= y) // assume true |
| 1577 | // if (x != y) // assume true |
| 1578 | // if (x < y) // would be also true |
| 1579 | // Get a state from `UnknownX2` column. |
| 1580 | BranchState = CmpOpTable.getCmpOpStateForUnknownX2(CurrentOP); |
| 1581 | } else { |
| 1582 | LastQueriedOpToUnknown = QueriedOP; |
| 1583 | continue; |
| 1584 | } |
| 1585 | } |
| 1586 | |
| 1587 | return (BranchState == OperatorRelationsTable::True) ? getTrueRange(T) |
| 1588 | : getFalseRange(T); |
| 1589 | } |
| 1590 | |
| 1591 | return std::nullopt; |
| 1592 | } |
| 1593 | |
| 1594 | std::optional<RangeSet> getRangeForEqualities(const SymSymExpr *Sym) { |
| 1595 | std::optional<bool> Equality = meansEquality(Sym); |
| 1596 | |
| 1597 | if (!Equality) |
| 1598 | return std::nullopt; |
| 1599 | |
| 1600 | if (std::optional<bool> AreEqual = |
| 1601 | EquivalenceClass::areEqual(State, First: Sym->getLHS(), Second: Sym->getRHS())) { |
| 1602 | // Here we cover two cases at once: |
| 1603 | // * if Sym is equality and its operands are known to be equal -> true |
| 1604 | // * if Sym is disequality and its operands are disequal -> true |
| 1605 | if (*AreEqual == *Equality) { |
| 1606 | return getTrueRange(T: Sym->getType()); |
| 1607 | } |
| 1608 | // Opposite combinations result in false. |
| 1609 | return getFalseRange(T: Sym->getType()); |
| 1610 | } |
| 1611 | |
| 1612 | return std::nullopt; |
| 1613 | } |
| 1614 | |
| 1615 | RangeSet getTrueRange(QualType T) { |
| 1616 | RangeSet TypeRange = infer(T); |
| 1617 | return assumeNonZero(Domain: TypeRange, T); |
| 1618 | } |
| 1619 | |
| 1620 | RangeSet getFalseRange(QualType T) { |
| 1621 | const llvm::APSInt &Zero = ValueFactory.getValue(X: 0, T); |
| 1622 | return RangeSet(RangeFactory, Zero); |
| 1623 | } |
| 1624 | |
| 1625 | BasicValueFactory &ValueFactory; |
| 1626 | RangeSet::Factory &RangeFactory; |
| 1627 | ProgramStateRef State; |
| 1628 | }; |
| 1629 | |
| 1630 | //===----------------------------------------------------------------------===// |
| 1631 | // Range-based reasoning about symbolic operations |
| 1632 | //===----------------------------------------------------------------------===// |
| 1633 | |
| 1634 | template <> |
| 1635 | RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_NE>(RangeSet LHS, |
| 1636 | RangeSet RHS, |
| 1637 | QualType T) { |
| 1638 | assert(!LHS.isEmpty() && !RHS.isEmpty()); |
| 1639 | |
| 1640 | if (LHS.getAPSIntType() == RHS.getAPSIntType()) { |
| 1641 | if (intersect(F&: RangeFactory, Head: LHS, Second: RHS).isEmpty()) |
| 1642 | return getTrueRange(T); |
| 1643 | |
| 1644 | } else { |
| 1645 | // We can only lose information if we are casting smaller signed type to |
| 1646 | // bigger unsigned type. For e.g., |
| 1647 | // LHS (unsigned short): [2, USHRT_MAX] |
| 1648 | // RHS (signed short): [SHRT_MIN, 0] |
| 1649 | // |
| 1650 | // Casting RHS to LHS type will leave us with overlapping values |
| 1651 | // CastedRHS : [0, 0] U [SHRT_MAX + 1, USHRT_MAX] |
| 1652 | // |
| 1653 | // We can avoid this by checking if signed type's maximum value is lesser |
| 1654 | // than unsigned type's minimum value. |
| 1655 | |
| 1656 | // If both have different signs then only we can get more information. |
| 1657 | if (LHS.isUnsigned() != RHS.isUnsigned()) { |
| 1658 | if (LHS.isUnsigned() && (LHS.getBitWidth() >= RHS.getBitWidth())) { |
| 1659 | if (RHS.getMaxValue().isNegative() || |
| 1660 | LHS.getAPSIntType().convert(Value: RHS.getMaxValue()) < LHS.getMinValue()) |
| 1661 | return getTrueRange(T); |
| 1662 | |
| 1663 | } else if (RHS.isUnsigned() && (LHS.getBitWidth() <= RHS.getBitWidth())) { |
| 1664 | if (LHS.getMaxValue().isNegative() || |
| 1665 | RHS.getAPSIntType().convert(Value: LHS.getMaxValue()) < RHS.getMinValue()) |
| 1666 | return getTrueRange(T); |
| 1667 | } |
| 1668 | } |
| 1669 | |
| 1670 | // Both RangeSets should be casted to bigger unsigned type. |
| 1671 | APSIntType CastingType(std::max(a: LHS.getBitWidth(), b: RHS.getBitWidth()), |
| 1672 | LHS.isUnsigned() || RHS.isUnsigned()); |
| 1673 | |
| 1674 | RangeSet CastedLHS = RangeFactory.castTo(What: LHS, Ty: CastingType); |
| 1675 | RangeSet CastedRHS = RangeFactory.castTo(What: RHS, Ty: CastingType); |
| 1676 | |
| 1677 | if (intersect(F&: RangeFactory, Head: CastedLHS, Second: CastedRHS).isEmpty()) |
| 1678 | return getTrueRange(T); |
| 1679 | } |
| 1680 | |
| 1681 | // In all other cases, the resulting range cannot be deduced. |
| 1682 | return infer(T); |
| 1683 | } |
| 1684 | |
| 1685 | template <> |
| 1686 | RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Or>(Range LHS, Range RHS, |
| 1687 | QualType T) { |
| 1688 | APSIntType ResultType = ValueFactory.getAPSIntType(T); |
| 1689 | llvm::APSInt Zero = ResultType.getZeroValue(); |
| 1690 | |
| 1691 | bool IsLHSPositiveOrZero = LHS.From() >= Zero; |
| 1692 | bool IsRHSPositiveOrZero = RHS.From() >= Zero; |
| 1693 | |
| 1694 | bool IsLHSNegative = LHS.To() < Zero; |
| 1695 | bool IsRHSNegative = RHS.To() < Zero; |
| 1696 | |
| 1697 | // Check if both ranges have the same sign. |
| 1698 | if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) || |
| 1699 | (IsLHSNegative && IsRHSNegative)) { |
| 1700 | // The result is definitely greater or equal than any of the operands. |
| 1701 | const llvm::APSInt &Min = std::max(a: LHS.From(), b: RHS.From()); |
| 1702 | |
| 1703 | // We estimate maximal value for positives as the maximal value for the |
| 1704 | // given type. For negatives, we estimate it with -1 (e.g. 0x11111111). |
| 1705 | // |
| 1706 | // TODO: We basically, limit the resulting range from below, but don't do |
| 1707 | // anything with the upper bound. |
| 1708 | // |
| 1709 | // For positive operands, it can be done as follows: for the upper |
| 1710 | // bound of LHS and RHS we calculate the most significant bit set. |
| 1711 | // Let's call it the N-th bit. Then we can estimate the maximal |
| 1712 | // number to be 2^(N+1)-1, i.e. the number with all the bits up to |
| 1713 | // the N-th bit set. |
| 1714 | const llvm::APSInt &Max = IsLHSNegative |
| 1715 | ? ValueFactory.getValue(X: --Zero) |
| 1716 | : ValueFactory.getMaxValue(T: ResultType); |
| 1717 | |
| 1718 | return {RangeFactory, ValueFactory.getValue(X: Min), Max}; |
| 1719 | } |
| 1720 | |
| 1721 | // Otherwise, let's check if at least one of the operands is negative. |
| 1722 | if (IsLHSNegative || IsRHSNegative) { |
| 1723 | // This means that the result is definitely negative as well. |
| 1724 | return {RangeFactory, ValueFactory.getMinValue(T: ResultType), |
| 1725 | ValueFactory.getValue(X: --Zero)}; |
| 1726 | } |
| 1727 | |
| 1728 | RangeSet DefaultRange = infer(T); |
| 1729 | |
| 1730 | // It is pretty hard to reason about operands with different signs |
| 1731 | // (and especially with possibly different signs). We simply check if it |
| 1732 | // can be zero. In order to conclude that the result could not be zero, |
| 1733 | // at least one of the operands should be definitely not zero itself. |
| 1734 | if (!LHS.Includes(Point: Zero) || !RHS.Includes(Point: Zero)) { |
| 1735 | return assumeNonZero(Domain: DefaultRange, T); |
| 1736 | } |
| 1737 | |
| 1738 | // Nothing much else to do here. |
| 1739 | return DefaultRange; |
| 1740 | } |
| 1741 | |
| 1742 | template <> |
| 1743 | RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_And>(Range LHS, |
| 1744 | Range RHS, |
| 1745 | QualType T) { |
| 1746 | APSIntType ResultType = ValueFactory.getAPSIntType(T); |
| 1747 | llvm::APSInt Zero = ResultType.getZeroValue(); |
| 1748 | |
| 1749 | bool IsLHSPositiveOrZero = LHS.From() >= Zero; |
| 1750 | bool IsRHSPositiveOrZero = RHS.From() >= Zero; |
| 1751 | |
| 1752 | bool IsLHSNegative = LHS.To() < Zero; |
| 1753 | bool IsRHSNegative = RHS.To() < Zero; |
| 1754 | |
| 1755 | // Check if both ranges have the same sign. |
| 1756 | if ((IsLHSPositiveOrZero && IsRHSPositiveOrZero) || |
| 1757 | (IsLHSNegative && IsRHSNegative)) { |
| 1758 | // The result is definitely less or equal than any of the operands. |
| 1759 | const llvm::APSInt &Max = std::min(a: LHS.To(), b: RHS.To()); |
| 1760 | |
| 1761 | // We conservatively estimate lower bound to be the smallest positive |
| 1762 | // or negative value corresponding to the sign of the operands. |
| 1763 | const llvm::APSInt &Min = IsLHSNegative |
| 1764 | ? ValueFactory.getMinValue(T: ResultType) |
| 1765 | : ValueFactory.getValue(X: Zero); |
| 1766 | |
| 1767 | return {RangeFactory, Min, Max}; |
| 1768 | } |
| 1769 | |
| 1770 | // Otherwise, let's check if at least one of the operands is positive. |
| 1771 | if (IsLHSPositiveOrZero || IsRHSPositiveOrZero) { |
| 1772 | // This makes result definitely positive. |
| 1773 | // |
| 1774 | // We can also reason about a maximal value by finding the maximal |
| 1775 | // value of the positive operand. |
| 1776 | const llvm::APSInt &Max = IsLHSPositiveOrZero ? LHS.To() : RHS.To(); |
| 1777 | |
| 1778 | // The minimal value on the other hand is much harder to reason about. |
| 1779 | // The only thing we know for sure is that the result is positive. |
| 1780 | return {RangeFactory, ValueFactory.getValue(X: Zero), |
| 1781 | ValueFactory.getValue(X: Max)}; |
| 1782 | } |
| 1783 | |
| 1784 | // Nothing much else to do here. |
| 1785 | return infer(T); |
| 1786 | } |
| 1787 | |
| 1788 | template <> |
| 1789 | RangeSet SymbolicRangeInferrer::VisitBinaryOperator<BO_Rem>(Range LHS, |
| 1790 | Range RHS, |
| 1791 | QualType T) { |
| 1792 | llvm::APSInt Zero = ValueFactory.getAPSIntType(T).getZeroValue(); |
| 1793 | |
| 1794 | Range ConservativeRange = getSymmetricalRange(Origin: RHS, T); |
| 1795 | |
| 1796 | llvm::APSInt Max = ConservativeRange.To(); |
| 1797 | llvm::APSInt Min = ConservativeRange.From(); |
| 1798 | |
| 1799 | if (Max == Zero) { |
| 1800 | // It's an undefined behaviour to divide by 0 and it seems like we know |
| 1801 | // for sure that RHS is 0. Let's say that the resulting range is |
| 1802 | // simply infeasible for that matter. |
| 1803 | return RangeFactory.getEmptySet(); |
| 1804 | } |
| 1805 | |
| 1806 | // At this point, our conservative range is closed. The result, however, |
| 1807 | // couldn't be greater than the RHS' maximal absolute value. Because of |
| 1808 | // this reason, we turn the range into open (or half-open in case of |
| 1809 | // unsigned integers). |
| 1810 | // |
| 1811 | // While we operate on integer values, an open interval (a, b) can be easily |
| 1812 | // represented by the closed interval [a + 1, b - 1]. And this is exactly |
| 1813 | // what we do next. |
| 1814 | // |
| 1815 | // If we are dealing with unsigned case, we shouldn't move the lower bound. |
| 1816 | if (Min.isSigned()) { |
| 1817 | ++Min; |
| 1818 | } |
| 1819 | --Max; |
| 1820 | |
| 1821 | bool IsLHSPositiveOrZero = LHS.From() >= Zero; |
| 1822 | bool IsRHSPositiveOrZero = RHS.From() >= Zero; |
| 1823 | |
| 1824 | // Remainder operator results with negative operands is implementation |
| 1825 | // defined. Positive cases are much easier to reason about though. |
| 1826 | if (IsLHSPositiveOrZero && IsRHSPositiveOrZero) { |
| 1827 | // If maximal value of LHS is less than maximal value of RHS, |
| 1828 | // the result won't get greater than LHS.To(). |
| 1829 | Max = std::min(a: LHS.To(), b: Max); |
| 1830 | // We want to check if it is a situation similar to the following: |
| 1831 | // |
| 1832 | // <------------|---[ LHS ]--------[ RHS ]-----> |
| 1833 | // -INF 0 +INF |
| 1834 | // |
| 1835 | // In this situation, we can conclude that (LHS / RHS) == 0 and |
| 1836 | // (LHS % RHS) == LHS. |
| 1837 | Min = LHS.To() < RHS.From() ? LHS.From() : Zero; |
| 1838 | } |
| 1839 | |
| 1840 | // Nevertheless, the symmetrical range for RHS is a conservative estimate |
| 1841 | // for any sign of either LHS, or RHS. |
| 1842 | return {RangeFactory, ValueFactory.getValue(X: Min), ValueFactory.getValue(X: Max)}; |
| 1843 | } |
| 1844 | |
| 1845 | RangeSet SymbolicRangeInferrer::VisitBinaryOperator(RangeSet LHS, |
| 1846 | BinaryOperator::Opcode Op, |
| 1847 | RangeSet RHS, QualType T) { |
| 1848 | // We should propagate information about unfeasbility of one of the |
| 1849 | // operands to the resulting range. |
| 1850 | if (LHS.isEmpty() || RHS.isEmpty()) { |
| 1851 | return RangeFactory.getEmptySet(); |
| 1852 | } |
| 1853 | |
| 1854 | switch (Op) { |
| 1855 | case BO_NE: |
| 1856 | return VisitBinaryOperator<BO_NE>(LHS, RHS, T); |
| 1857 | case BO_Or: |
| 1858 | return VisitBinaryOperator<BO_Or>(LHS, RHS, T); |
| 1859 | case BO_And: |
| 1860 | return VisitBinaryOperator<BO_And>(LHS, RHS, T); |
| 1861 | case BO_Rem: |
| 1862 | return VisitBinaryOperator<BO_Rem>(LHS, RHS, T); |
| 1863 | default: |
| 1864 | return infer(T); |
| 1865 | } |
| 1866 | } |
| 1867 | |
| 1868 | //===----------------------------------------------------------------------===// |
| 1869 | // Constraint manager implementation details |
| 1870 | //===----------------------------------------------------------------------===// |
| 1871 | |
| 1872 | class RangeConstraintManager : public RangedConstraintManager { |
| 1873 | public: |
| 1874 | RangeConstraintManager(ExprEngine *EE, SValBuilder &SVB) |
| 1875 | : RangedConstraintManager(EE, SVB), F(getBasicVals()) {} |
| 1876 | |
| 1877 | //===------------------------------------------------------------------===// |
| 1878 | // Implementation for interface from ConstraintManager. |
| 1879 | //===------------------------------------------------------------------===// |
| 1880 | |
| 1881 | bool haveEqualConstraints(ProgramStateRef S1, |
| 1882 | ProgramStateRef S2) const override { |
| 1883 | // NOTE: ClassMembers are as simple as back pointers for ClassMap, |
| 1884 | // so comparing constraint ranges and class maps should be |
| 1885 | // sufficient. |
| 1886 | return S1->get<ConstraintRange>() == S2->get<ConstraintRange>() && |
| 1887 | S1->get<ClassMap>() == S2->get<ClassMap>(); |
| 1888 | } |
| 1889 | |
| 1890 | bool canReasonAbout(SVal X) const override; |
| 1891 | |
| 1892 | ConditionTruthVal checkNull(ProgramStateRef State, SymbolRef Sym) override; |
| 1893 | |
| 1894 | const llvm::APSInt *getSymVal(ProgramStateRef State, |
| 1895 | SymbolRef Sym) const override; |
| 1896 | |
| 1897 | const llvm::APSInt *getSymMinVal(ProgramStateRef State, |
| 1898 | SymbolRef Sym) const override; |
| 1899 | |
| 1900 | const llvm::APSInt *getSymMaxVal(ProgramStateRef State, |
| 1901 | SymbolRef Sym) const override; |
| 1902 | |
| 1903 | ProgramStateRef removeDeadBindings(ProgramStateRef State, |
| 1904 | SymbolReaper &SymReaper) override; |
| 1905 | |
| 1906 | void printJson(raw_ostream &Out, ProgramStateRef State, const char *NL = "\n" , |
| 1907 | unsigned int Space = 0, bool IsDot = false) const override; |
| 1908 | void printValue(raw_ostream &Out, ProgramStateRef State, |
| 1909 | SymbolRef Sym) override; |
| 1910 | void printConstraints(raw_ostream &Out, ProgramStateRef State, |
| 1911 | const char *NL = "\n" , unsigned int Space = 0, |
| 1912 | bool IsDot = false) const; |
| 1913 | void printEquivalenceClasses(raw_ostream &Out, ProgramStateRef State, |
| 1914 | const char *NL = "\n" , unsigned int Space = 0, |
| 1915 | bool IsDot = false) const; |
| 1916 | void printDisequalities(raw_ostream &Out, ProgramStateRef State, |
| 1917 | const char *NL = "\n" , unsigned int Space = 0, |
| 1918 | bool IsDot = false) const; |
| 1919 | |
| 1920 | //===------------------------------------------------------------------===// |
| 1921 | // Implementation for interface from RangedConstraintManager. |
| 1922 | //===------------------------------------------------------------------===// |
| 1923 | |
| 1924 | ProgramStateRef assumeSymNE(ProgramStateRef State, SymbolRef Sym, |
| 1925 | const llvm::APSInt &V, |
| 1926 | const llvm::APSInt &Adjustment) override; |
| 1927 | |
| 1928 | ProgramStateRef assumeSymEQ(ProgramStateRef State, SymbolRef Sym, |
| 1929 | const llvm::APSInt &V, |
| 1930 | const llvm::APSInt &Adjustment) override; |
| 1931 | |
| 1932 | ProgramStateRef assumeSymLT(ProgramStateRef State, SymbolRef Sym, |
| 1933 | const llvm::APSInt &V, |
| 1934 | const llvm::APSInt &Adjustment) override; |
| 1935 | |
| 1936 | ProgramStateRef assumeSymGT(ProgramStateRef State, SymbolRef Sym, |
| 1937 | const llvm::APSInt &V, |
| 1938 | const llvm::APSInt &Adjustment) override; |
| 1939 | |
| 1940 | ProgramStateRef assumeSymLE(ProgramStateRef State, SymbolRef Sym, |
| 1941 | const llvm::APSInt &V, |
| 1942 | const llvm::APSInt &Adjustment) override; |
| 1943 | |
| 1944 | ProgramStateRef assumeSymGE(ProgramStateRef State, SymbolRef Sym, |
| 1945 | const llvm::APSInt &V, |
| 1946 | const llvm::APSInt &Adjustment) override; |
| 1947 | |
| 1948 | ProgramStateRef assumeSymWithinInclusiveRange( |
| 1949 | ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, |
| 1950 | const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; |
| 1951 | |
| 1952 | ProgramStateRef assumeSymOutsideInclusiveRange( |
| 1953 | ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, |
| 1954 | const llvm::APSInt &To, const llvm::APSInt &Adjustment) override; |
| 1955 | |
| 1956 | private: |
| 1957 | mutable RangeSet::Factory F; |
| 1958 | |
| 1959 | RangeSet getRange(ProgramStateRef State, SymbolRef Sym) const; |
| 1960 | ProgramStateRef setRange(ProgramStateRef State, SymbolRef Sym, |
| 1961 | RangeSet Range); |
| 1962 | |
| 1963 | RangeSet getSymLTRange(ProgramStateRef St, SymbolRef Sym, |
| 1964 | const llvm::APSInt &Int, |
| 1965 | const llvm::APSInt &Adjustment) const; |
| 1966 | RangeSet getSymGTRange(ProgramStateRef St, SymbolRef Sym, |
| 1967 | const llvm::APSInt &Int, |
| 1968 | const llvm::APSInt &Adjustment) const; |
| 1969 | RangeSet getSymLERange(ProgramStateRef St, SymbolRef Sym, |
| 1970 | const llvm::APSInt &Int, |
| 1971 | const llvm::APSInt &Adjustment) const; |
| 1972 | RangeSet getSymLERange(llvm::function_ref<RangeSet()> RS, |
| 1973 | const llvm::APSInt &Int, |
| 1974 | const llvm::APSInt &Adjustment) const; |
| 1975 | RangeSet getSymGERange(ProgramStateRef St, SymbolRef Sym, |
| 1976 | const llvm::APSInt &Int, |
| 1977 | const llvm::APSInt &Adjustment) const; |
| 1978 | }; |
| 1979 | |
| 1980 | //===----------------------------------------------------------------------===// |
| 1981 | // Constraint assignment logic |
| 1982 | //===----------------------------------------------------------------------===// |
| 1983 | |
| 1984 | /// ConstraintAssignorBase is a small utility class that unifies visitor |
| 1985 | /// for ranges with a visitor for constraints (rangeset/range/constant). |
| 1986 | /// |
| 1987 | /// It is designed to have one derived class, but generally it can have more. |
| 1988 | /// Derived class can control which types we handle by defining methods of the |
| 1989 | /// following form: |
| 1990 | /// |
| 1991 | /// bool handle${SYMBOL}To${CONSTRAINT}(const SYMBOL *Sym, |
| 1992 | /// CONSTRAINT Constraint); |
| 1993 | /// |
| 1994 | /// where SYMBOL is the type of the symbol (e.g. SymSymExpr, SymbolCast, etc.) |
| 1995 | /// CONSTRAINT is the type of constraint (RangeSet/Range/Const) |
| 1996 | /// return value signifies whether we should try other handle methods |
| 1997 | /// (i.e. false would mean to stop right after calling this method) |
| 1998 | template <class Derived> class ConstraintAssignorBase { |
| 1999 | public: |
| 2000 | using Const = const llvm::APSInt &; |
| 2001 | |
| 2002 | #define DISPATCH(CLASS) return assign##CLASS##Impl(cast<CLASS>(Sym), Constraint) |
| 2003 | |
| 2004 | #define ASSIGN(CLASS, TO, SYM, CONSTRAINT) \ |
| 2005 | if (!static_cast<Derived *>(this)->assign##CLASS##To##TO(SYM, CONSTRAINT)) \ |
| 2006 | return false |
| 2007 | |
| 2008 | void assign(SymbolRef Sym, RangeSet Constraint) { |
| 2009 | assignImpl(Sym, Constraint); |
| 2010 | } |
| 2011 | |
| 2012 | bool assignImpl(SymbolRef Sym, RangeSet Constraint) { |
| 2013 | switch (Sym->getKind()) { |
| 2014 | #define SYMBOL(Id, Parent) \ |
| 2015 | case SymExpr::Id##Kind: \ |
| 2016 | DISPATCH(Id); |
| 2017 | #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def" |
| 2018 | } |
| 2019 | llvm_unreachable("Unknown SymExpr kind!" ); |
| 2020 | } |
| 2021 | |
| 2022 | #define DEFAULT_ASSIGN(Id) \ |
| 2023 | bool assign##Id##To##RangeSet(const Id *Sym, RangeSet Constraint) { \ |
| 2024 | return true; \ |
| 2025 | } \ |
| 2026 | bool assign##Id##To##Range(const Id *Sym, Range Constraint) { return true; } \ |
| 2027 | bool assign##Id##To##Const(const Id *Sym, Const Constraint) { return true; } |
| 2028 | |
| 2029 | // When we dispatch for constraint types, we first try to check |
| 2030 | // if the new constraint is the constant and try the corresponding |
| 2031 | // assignor methods. If it didn't interrupt, we can proceed to the |
| 2032 | // range, and finally to the range set. |
| 2033 | #define CONSTRAINT_DISPATCH(Id) \ |
| 2034 | if (const llvm::APSInt *Const = Constraint.getConcreteValue()) { \ |
| 2035 | ASSIGN(Id, Const, Sym, *Const); \ |
| 2036 | } \ |
| 2037 | if (Constraint.size() == 1) { \ |
| 2038 | ASSIGN(Id, Range, Sym, *Constraint.begin()); \ |
| 2039 | } \ |
| 2040 | ASSIGN(Id, RangeSet, Sym, Constraint) |
| 2041 | |
| 2042 | // Our internal assign method first tries to call assignor methods for all |
| 2043 | // constraint types that apply. And if not interrupted, continues with its |
| 2044 | // parent class. |
| 2045 | #define SYMBOL(Id, Parent) \ |
| 2046 | bool assign##Id##Impl(const Id *Sym, RangeSet Constraint) { \ |
| 2047 | CONSTRAINT_DISPATCH(Id); \ |
| 2048 | DISPATCH(Parent); \ |
| 2049 | } \ |
| 2050 | DEFAULT_ASSIGN(Id) |
| 2051 | #define ABSTRACT_SYMBOL(Id, Parent) SYMBOL(Id, Parent) |
| 2052 | #include "clang/StaticAnalyzer/Core/PathSensitive/Symbols.def" |
| 2053 | |
| 2054 | // Default implementations for the top class that doesn't have parents. |
| 2055 | bool assignSymExprImpl(const SymExpr *Sym, RangeSet Constraint) { |
| 2056 | CONSTRAINT_DISPATCH(SymExpr); |
| 2057 | return true; |
| 2058 | } |
| 2059 | DEFAULT_ASSIGN(SymExpr); |
| 2060 | |
| 2061 | #undef DISPATCH |
| 2062 | #undef CONSTRAINT_DISPATCH |
| 2063 | #undef DEFAULT_ASSIGN |
| 2064 | #undef ASSIGN |
| 2065 | }; |
| 2066 | |
| 2067 | /// A little component aggregating all of the reasoning we have about |
| 2068 | /// assigning new constraints to symbols. |
| 2069 | /// |
| 2070 | /// The main purpose of this class is to associate constraints to symbols, |
| 2071 | /// and impose additional constraints on other symbols, when we can imply |
| 2072 | /// them. |
| 2073 | /// |
| 2074 | /// It has a nice symmetry with SymbolicRangeInferrer. When the latter |
| 2075 | /// can provide more precise ranges by looking into the operands of the |
| 2076 | /// expression in question, ConstraintAssignor looks into the operands |
| 2077 | /// to see if we can imply more from the new constraint. |
| 2078 | class ConstraintAssignor : public ConstraintAssignorBase<ConstraintAssignor> { |
| 2079 | public: |
| 2080 | template <class ClassOrSymbol> |
| 2081 | [[nodiscard]] static ProgramStateRef |
| 2082 | assign(ProgramStateRef State, SValBuilder &Builder, RangeSet::Factory &F, |
| 2083 | ClassOrSymbol CoS, RangeSet NewConstraint) { |
| 2084 | if (!State || NewConstraint.isEmpty()) |
| 2085 | return nullptr; |
| 2086 | |
| 2087 | ConstraintAssignor Assignor{State, Builder, F}; |
| 2088 | return Assignor.assign(CoS, NewConstraint); |
| 2089 | } |
| 2090 | |
| 2091 | /// Handle expressions like: a % b != 0. |
| 2092 | template <typename SymT> |
| 2093 | bool handleRemainderOp(const SymT *Sym, RangeSet Constraint) { |
| 2094 | if (Sym->getOpcode() != BO_Rem) |
| 2095 | return true; |
| 2096 | // a % b != 0 implies that a != 0. |
| 2097 | if (!Constraint.containsZero()) { |
| 2098 | SVal SymSVal = Builder.makeSymbolVal(Sym: Sym->getLHS()); |
| 2099 | if (auto NonLocSymSVal = SymSVal.getAs<nonloc::SymbolVal>()) { |
| 2100 | State = State->assume(Cond: *NonLocSymSVal, Assumption: true); |
| 2101 | if (!State) |
| 2102 | return false; |
| 2103 | } |
| 2104 | } |
| 2105 | return true; |
| 2106 | } |
| 2107 | |
| 2108 | inline bool assignSymExprToConst(const SymExpr *Sym, Const Constraint); |
| 2109 | inline bool assignSymIntExprToRangeSet(const SymIntExpr *Sym, |
| 2110 | RangeSet Constraint) { |
| 2111 | return handleRemainderOp(Sym, Constraint); |
| 2112 | } |
| 2113 | inline bool assignSymSymExprToRangeSet(const SymSymExpr *Sym, |
| 2114 | RangeSet Constraint); |
| 2115 | |
| 2116 | private: |
| 2117 | ConstraintAssignor(ProgramStateRef State, SValBuilder &Builder, |
| 2118 | RangeSet::Factory &F) |
| 2119 | : State(State), Builder(Builder), RangeFactory(F) {} |
| 2120 | using Base = ConstraintAssignorBase<ConstraintAssignor>; |
| 2121 | |
| 2122 | /// Base method for handling new constraints for symbols. |
| 2123 | [[nodiscard]] ProgramStateRef assign(SymbolRef Sym, RangeSet NewConstraint) { |
| 2124 | // All constraints are actually associated with equivalence classes, and |
| 2125 | // that's what we are going to do first. |
| 2126 | State = assign(Class: EquivalenceClass::find(State, Sym), NewConstraint); |
| 2127 | if (!State) |
| 2128 | return nullptr; |
| 2129 | |
| 2130 | // And after that we can check what other things we can get from this |
| 2131 | // constraint. |
| 2132 | Base::assign(Sym, Constraint: NewConstraint); |
| 2133 | return State; |
| 2134 | } |
| 2135 | |
| 2136 | /// Base method for handling new constraints for classes. |
| 2137 | [[nodiscard]] ProgramStateRef assign(EquivalenceClass Class, |
| 2138 | RangeSet NewConstraint) { |
| 2139 | // There is a chance that we might need to update constraints for the |
| 2140 | // classes that are known to be disequal to Class. |
| 2141 | // |
| 2142 | // In order for this to be even possible, the new constraint should |
| 2143 | // be simply a constant because we can't reason about range disequalities. |
| 2144 | if (const llvm::APSInt *Point = NewConstraint.getConcreteValue()) { |
| 2145 | |
| 2146 | ConstraintRangeTy Constraints = State->get<ConstraintRange>(); |
| 2147 | ConstraintRangeTy::Factory &CF = State->get_context<ConstraintRange>(); |
| 2148 | |
| 2149 | // Add new constraint. |
| 2150 | Constraints = CF.add(Old: Constraints, K: Class, D: NewConstraint); |
| 2151 | |
| 2152 | for (EquivalenceClass DisequalClass : Class.getDisequalClasses(State)) { |
| 2153 | RangeSet UpdatedConstraint = SymbolicRangeInferrer::inferRange( |
| 2154 | F&: RangeFactory, State, Origin: DisequalClass); |
| 2155 | |
| 2156 | UpdatedConstraint = RangeFactory.deletePoint(From: UpdatedConstraint, Point: *Point); |
| 2157 | |
| 2158 | // If we end up with at least one of the disequal classes to be |
| 2159 | // constrained with an empty range-set, the state is infeasible. |
| 2160 | if (UpdatedConstraint.isEmpty()) |
| 2161 | return nullptr; |
| 2162 | |
| 2163 | Constraints = CF.add(Old: Constraints, K: DisequalClass, D: UpdatedConstraint); |
| 2164 | } |
| 2165 | assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " |
| 2166 | "a state with infeasible constraints" ); |
| 2167 | |
| 2168 | return setConstraints(State, Constraints); |
| 2169 | } |
| 2170 | |
| 2171 | return setConstraint(State, Class, Constraint: NewConstraint); |
| 2172 | } |
| 2173 | |
| 2174 | ProgramStateRef trackDisequality(ProgramStateRef State, SymbolRef LHS, |
| 2175 | SymbolRef RHS) { |
| 2176 | return EquivalenceClass::markDisequal(F&: RangeFactory, State, First: LHS, Second: RHS); |
| 2177 | } |
| 2178 | |
| 2179 | ProgramStateRef trackEquality(ProgramStateRef State, SymbolRef LHS, |
| 2180 | SymbolRef RHS) { |
| 2181 | return EquivalenceClass::merge(F&: RangeFactory, State, First: LHS, Second: RHS); |
| 2182 | } |
| 2183 | |
| 2184 | [[nodiscard]] std::optional<bool> interpreteAsBool(RangeSet Constraint) { |
| 2185 | assert(!Constraint.isEmpty() && "Empty ranges shouldn't get here" ); |
| 2186 | |
| 2187 | if (Constraint.getConcreteValue()) |
| 2188 | return !Constraint.getConcreteValue()->isZero(); |
| 2189 | |
| 2190 | if (!Constraint.containsZero()) |
| 2191 | return true; |
| 2192 | |
| 2193 | return std::nullopt; |
| 2194 | } |
| 2195 | |
| 2196 | ProgramStateRef State; |
| 2197 | SValBuilder &Builder; |
| 2198 | RangeSet::Factory &RangeFactory; |
| 2199 | }; |
| 2200 | |
| 2201 | bool ConstraintAssignor::assignSymExprToConst(const SymExpr *Sym, |
| 2202 | const llvm::APSInt &Constraint) { |
| 2203 | llvm::SmallSet<EquivalenceClass, 4> SimplifiedClasses; |
| 2204 | // Iterate over all equivalence classes and try to simplify them. |
| 2205 | ClassMembersTy Members = State->get<ClassMembers>(); |
| 2206 | for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) { |
| 2207 | EquivalenceClass Class = ClassToSymbolSet.first; |
| 2208 | State = EquivalenceClass::simplify(SVB&: Builder, F&: RangeFactory, State, Class); |
| 2209 | if (!State) |
| 2210 | return false; |
| 2211 | SimplifiedClasses.insert(V: Class); |
| 2212 | } |
| 2213 | |
| 2214 | // Trivial equivalence classes (those that have only one symbol member) are |
| 2215 | // not stored in the State. Thus, we must skim through the constraints as |
| 2216 | // well. And we try to simplify symbols in the constraints. |
| 2217 | ConstraintRangeTy Constraints = State->get<ConstraintRange>(); |
| 2218 | for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) { |
| 2219 | EquivalenceClass Class = ClassConstraint.first; |
| 2220 | if (SimplifiedClasses.count(V: Class)) // Already simplified. |
| 2221 | continue; |
| 2222 | State = EquivalenceClass::simplify(SVB&: Builder, F&: RangeFactory, State, Class); |
| 2223 | if (!State) |
| 2224 | return false; |
| 2225 | } |
| 2226 | |
| 2227 | // We may have trivial equivalence classes in the disequality info as |
| 2228 | // well, and we need to simplify them. |
| 2229 | DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); |
| 2230 | for (std::pair<EquivalenceClass, ClassSet> DisequalityEntry : |
| 2231 | DisequalityInfo) { |
| 2232 | EquivalenceClass Class = DisequalityEntry.first; |
| 2233 | ClassSet DisequalClasses = DisequalityEntry.second; |
| 2234 | State = EquivalenceClass::simplify(SVB&: Builder, F&: RangeFactory, State, Class); |
| 2235 | if (!State) |
| 2236 | return false; |
| 2237 | } |
| 2238 | |
| 2239 | return true; |
| 2240 | } |
| 2241 | |
| 2242 | bool ConstraintAssignor::assignSymSymExprToRangeSet(const SymSymExpr *Sym, |
| 2243 | RangeSet Constraint) { |
| 2244 | if (!handleRemainderOp(Sym, Constraint)) |
| 2245 | return false; |
| 2246 | |
| 2247 | std::optional<bool> ConstraintAsBool = interpreteAsBool(Constraint); |
| 2248 | |
| 2249 | if (!ConstraintAsBool) |
| 2250 | return true; |
| 2251 | |
| 2252 | if (std::optional<bool> Equality = meansEquality(Sym)) { |
| 2253 | // Here we cover two cases: |
| 2254 | // * if Sym is equality and the new constraint is true -> Sym's operands |
| 2255 | // should be marked as equal |
| 2256 | // * if Sym is disequality and the new constraint is false -> Sym's |
| 2257 | // operands should be also marked as equal |
| 2258 | if (*Equality == *ConstraintAsBool) { |
| 2259 | State = trackEquality(State, LHS: Sym->getLHS(), RHS: Sym->getRHS()); |
| 2260 | } else { |
| 2261 | // Other combinations leave as with disequal operands. |
| 2262 | State = trackDisequality(State, LHS: Sym->getLHS(), RHS: Sym->getRHS()); |
| 2263 | } |
| 2264 | |
| 2265 | if (!State) |
| 2266 | return false; |
| 2267 | } |
| 2268 | |
| 2269 | return true; |
| 2270 | } |
| 2271 | |
| 2272 | } // end anonymous namespace |
| 2273 | |
| 2274 | std::unique_ptr<ConstraintManager> |
| 2275 | ento::CreateRangeConstraintManager(ProgramStateManager &StMgr, |
| 2276 | ExprEngine *Eng) { |
| 2277 | return std::make_unique<RangeConstraintManager>(args&: Eng, args&: StMgr.getSValBuilder()); |
| 2278 | } |
| 2279 | |
| 2280 | ConstraintMap ento::getConstraintMap(ProgramStateRef State) { |
| 2281 | ConstraintMap::Factory &F = State->get_context<ConstraintMap>(); |
| 2282 | ConstraintMap Result = F.getEmptyMap(); |
| 2283 | |
| 2284 | ConstraintRangeTy Constraints = State->get<ConstraintRange>(); |
| 2285 | for (std::pair<EquivalenceClass, RangeSet> ClassConstraint : Constraints) { |
| 2286 | EquivalenceClass Class = ClassConstraint.first; |
| 2287 | SymbolSet ClassMembers = Class.getClassMembers(State); |
| 2288 | assert(!ClassMembers.isEmpty() && |
| 2289 | "Class must always have at least one member!" ); |
| 2290 | |
| 2291 | SymbolRef Representative = *ClassMembers.begin(); |
| 2292 | Result = F.add(Old: Result, K: Representative, D: ClassConstraint.second); |
| 2293 | } |
| 2294 | |
| 2295 | return Result; |
| 2296 | } |
| 2297 | |
| 2298 | //===----------------------------------------------------------------------===// |
| 2299 | // EqualityClass implementation details |
| 2300 | //===----------------------------------------------------------------------===// |
| 2301 | |
| 2302 | LLVM_DUMP_METHOD void EquivalenceClass::dumpToStream(ProgramStateRef State, |
| 2303 | raw_ostream &os) const { |
| 2304 | SymbolSet ClassMembers = getClassMembers(State); |
| 2305 | for (const SymbolRef &MemberSym : ClassMembers) { |
| 2306 | MemberSym->dump(); |
| 2307 | os << "\n" ; |
| 2308 | } |
| 2309 | } |
| 2310 | |
| 2311 | inline EquivalenceClass EquivalenceClass::find(ProgramStateRef State, |
| 2312 | SymbolRef Sym) { |
| 2313 | assert(State && "State should not be null" ); |
| 2314 | assert(Sym && "Symbol should not be null" ); |
| 2315 | // We store far from all Symbol -> Class mappings |
| 2316 | if (const EquivalenceClass *NontrivialClass = State->get<ClassMap>(key: Sym)) |
| 2317 | return *NontrivialClass; |
| 2318 | |
| 2319 | // This is a trivial class of Sym. |
| 2320 | return Sym; |
| 2321 | } |
| 2322 | |
| 2323 | inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F, |
| 2324 | ProgramStateRef State, |
| 2325 | SymbolRef First, |
| 2326 | SymbolRef Second) { |
| 2327 | EquivalenceClass FirstClass = find(State, Sym: First); |
| 2328 | EquivalenceClass SecondClass = find(State, Sym: Second); |
| 2329 | |
| 2330 | return FirstClass.merge(F, State, Other: SecondClass); |
| 2331 | } |
| 2332 | |
| 2333 | inline ProgramStateRef EquivalenceClass::merge(RangeSet::Factory &F, |
| 2334 | ProgramStateRef State, |
| 2335 | EquivalenceClass Other) { |
| 2336 | // It is already the same class. |
| 2337 | if (*this == Other) |
| 2338 | return State; |
| 2339 | |
| 2340 | // FIXME: As of now, we support only equivalence classes of the same type. |
| 2341 | // This limitation is connected to the lack of explicit casts in |
| 2342 | // our symbolic expression model. |
| 2343 | // |
| 2344 | // That means that for `int x` and `char y` we don't distinguish |
| 2345 | // between these two very different cases: |
| 2346 | // * `x == y` |
| 2347 | // * `(char)x == y` |
| 2348 | // |
| 2349 | // The moment we introduce symbolic casts, this restriction can be |
| 2350 | // lifted. |
| 2351 | if (getType()->getCanonicalTypeUnqualified() != |
| 2352 | Other.getType()->getCanonicalTypeUnqualified()) |
| 2353 | return State; |
| 2354 | |
| 2355 | SymbolSet Members = getClassMembers(State); |
| 2356 | SymbolSet OtherMembers = Other.getClassMembers(State); |
| 2357 | |
| 2358 | // We estimate the size of the class by the height of tree containing |
| 2359 | // its members. Merging is not a trivial operation, so it's easier to |
| 2360 | // merge the smaller class into the bigger one. |
| 2361 | if (Members.getHeight() >= OtherMembers.getHeight()) { |
| 2362 | return mergeImpl(F, State, Members, Other, OtherMembers); |
| 2363 | } else { |
| 2364 | return Other.mergeImpl(F, State, Members: OtherMembers, Other: *this, OtherMembers: Members); |
| 2365 | } |
| 2366 | } |
| 2367 | |
| 2368 | inline ProgramStateRef |
| 2369 | EquivalenceClass::mergeImpl(RangeSet::Factory &RangeFactory, |
| 2370 | ProgramStateRef State, SymbolSet MyMembers, |
| 2371 | EquivalenceClass Other, SymbolSet OtherMembers) { |
| 2372 | // Essentially what we try to recreate here is some kind of union-find |
| 2373 | // data structure. It does have certain limitations due to persistence |
| 2374 | // and the need to remove elements from classes. |
| 2375 | // |
| 2376 | // In this setting, EquialityClass object is the representative of the class |
| 2377 | // or the parent element. ClassMap is a mapping of class members to their |
| 2378 | // parent. Unlike the union-find structure, they all point directly to the |
| 2379 | // class representative because we don't have an opportunity to actually do |
| 2380 | // path compression when dealing with immutability. This means that we |
| 2381 | // compress paths every time we do merges. It also means that we lose |
| 2382 | // the main amortized complexity benefit from the original data structure. |
| 2383 | ConstraintRangeTy Constraints = State->get<ConstraintRange>(); |
| 2384 | ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>(); |
| 2385 | |
| 2386 | // 1. If the merged classes have any constraints associated with them, we |
| 2387 | // need to transfer them to the class we have left. |
| 2388 | // |
| 2389 | // Intersection here makes perfect sense because both of these constraints |
| 2390 | // must hold for the whole new class. |
| 2391 | if (std::optional<RangeSet> NewClassConstraint = |
| 2392 | intersect(F&: RangeFactory, Head: getConstraint(State, Class: *this), |
| 2393 | Second: getConstraint(State, Class: Other))) { |
| 2394 | // NOTE: Essentially, NewClassConstraint should NEVER be infeasible because |
| 2395 | // range inferrer shouldn't generate ranges incompatible with |
| 2396 | // equivalence classes. However, at the moment, due to imperfections |
| 2397 | // in the solver, it is possible and the merge function can also |
| 2398 | // return infeasible states aka null states. |
| 2399 | if (NewClassConstraint->isEmpty()) |
| 2400 | // Infeasible state |
| 2401 | return nullptr; |
| 2402 | |
| 2403 | // No need in tracking constraints of a now-dissolved class. |
| 2404 | Constraints = CRF.remove(Old: Constraints, K: Other); |
| 2405 | // Assign new constraints for this class. |
| 2406 | Constraints = CRF.add(Old: Constraints, K: *this, D: *NewClassConstraint); |
| 2407 | |
| 2408 | assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " |
| 2409 | "a state with infeasible constraints" ); |
| 2410 | |
| 2411 | State = State->set<ConstraintRange>(Constraints); |
| 2412 | } |
| 2413 | |
| 2414 | // 2. Get ALL equivalence-related maps |
| 2415 | ClassMapTy Classes = State->get<ClassMap>(); |
| 2416 | ClassMapTy::Factory &CMF = State->get_context<ClassMap>(); |
| 2417 | |
| 2418 | ClassMembersTy Members = State->get<ClassMembers>(); |
| 2419 | ClassMembersTy::Factory &MF = State->get_context<ClassMembers>(); |
| 2420 | |
| 2421 | DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); |
| 2422 | DisequalityMapTy::Factory &DF = State->get_context<DisequalityMap>(); |
| 2423 | |
| 2424 | ClassSet::Factory &CF = State->get_context<ClassSet>(); |
| 2425 | SymbolSet::Factory &F = getMembersFactory(State); |
| 2426 | |
| 2427 | // 2. Merge members of the Other class into the current class. |
| 2428 | SymbolSet NewClassMembers = MyMembers; |
| 2429 | for (SymbolRef Sym : OtherMembers) { |
| 2430 | NewClassMembers = F.add(Old: NewClassMembers, V: Sym); |
| 2431 | // *this is now the class for all these new symbols. |
| 2432 | Classes = CMF.add(Old: Classes, K: Sym, D: *this); |
| 2433 | } |
| 2434 | |
| 2435 | // 3. Adjust member mapping. |
| 2436 | // |
| 2437 | // No need in tracking members of a now-dissolved class. |
| 2438 | Members = MF.remove(Old: Members, K: Other); |
| 2439 | // Now only the current class is mapped to all the symbols. |
| 2440 | Members = MF.add(Old: Members, K: *this, D: NewClassMembers); |
| 2441 | |
| 2442 | // 4. Update disequality relations |
| 2443 | ClassSet DisequalToOther = Other.getDisequalClasses(Map: DisequalityInfo, Factory&: CF); |
| 2444 | // We are about to merge two classes but they are already known to be |
| 2445 | // non-equal. This is a contradiction. |
| 2446 | if (DisequalToOther.contains(V: *this)) |
| 2447 | return nullptr; |
| 2448 | |
| 2449 | if (!DisequalToOther.isEmpty()) { |
| 2450 | ClassSet DisequalToThis = getDisequalClasses(Map: DisequalityInfo, Factory&: CF); |
| 2451 | DisequalityInfo = DF.remove(Old: DisequalityInfo, K: Other); |
| 2452 | |
| 2453 | for (EquivalenceClass DisequalClass : DisequalToOther) { |
| 2454 | DisequalToThis = CF.add(Old: DisequalToThis, V: DisequalClass); |
| 2455 | |
| 2456 | // Disequality is a symmetric relation meaning that if |
| 2457 | // DisequalToOther not null then the set for DisequalClass is not |
| 2458 | // empty and has at least Other. |
| 2459 | ClassSet OriginalSetLinkedToOther = |
| 2460 | *DisequalityInfo.lookup(K: DisequalClass); |
| 2461 | |
| 2462 | // Other will be eliminated and we should replace it with the bigger |
| 2463 | // united class. |
| 2464 | ClassSet NewSet = CF.remove(Old: OriginalSetLinkedToOther, V: Other); |
| 2465 | NewSet = CF.add(Old: NewSet, V: *this); |
| 2466 | |
| 2467 | DisequalityInfo = DF.add(Old: DisequalityInfo, K: DisequalClass, D: NewSet); |
| 2468 | } |
| 2469 | |
| 2470 | DisequalityInfo = DF.add(Old: DisequalityInfo, K: *this, D: DisequalToThis); |
| 2471 | State = State->set<DisequalityMap>(DisequalityInfo); |
| 2472 | } |
| 2473 | |
| 2474 | // 5. Update the state |
| 2475 | State = State->set<ClassMap>(Classes); |
| 2476 | State = State->set<ClassMembers>(Members); |
| 2477 | |
| 2478 | return State; |
| 2479 | } |
| 2480 | |
| 2481 | inline SymbolSet::Factory & |
| 2482 | EquivalenceClass::getMembersFactory(ProgramStateRef State) { |
| 2483 | return State->get_context<SymbolSet>(); |
| 2484 | } |
| 2485 | |
| 2486 | SymbolSet EquivalenceClass::getClassMembers(ProgramStateRef State) const { |
| 2487 | if (const SymbolSet *Members = State->get<ClassMembers>(key: *this)) |
| 2488 | return *Members; |
| 2489 | |
| 2490 | // This class is trivial, so we need to construct a set |
| 2491 | // with just that one symbol from the class. |
| 2492 | SymbolSet::Factory &F = getMembersFactory(State); |
| 2493 | return F.add(Old: F.getEmptySet(), V: getRepresentativeSymbol()); |
| 2494 | } |
| 2495 | |
| 2496 | bool EquivalenceClass::isTrivial(ProgramStateRef State) const { |
| 2497 | return State->get<ClassMembers>(key: *this) == nullptr; |
| 2498 | } |
| 2499 | |
| 2500 | bool EquivalenceClass::isTriviallyDead(ProgramStateRef State, |
| 2501 | SymbolReaper &Reaper) const { |
| 2502 | return isTrivial(State) && Reaper.isDead(sym: getRepresentativeSymbol()); |
| 2503 | } |
| 2504 | |
| 2505 | inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF, |
| 2506 | ProgramStateRef State, |
| 2507 | SymbolRef First, |
| 2508 | SymbolRef Second) { |
| 2509 | return markDisequal(F&: RF, State, First: find(State, Sym: First), Second: find(State, Sym: Second)); |
| 2510 | } |
| 2511 | |
| 2512 | inline ProgramStateRef EquivalenceClass::markDisequal(RangeSet::Factory &RF, |
| 2513 | ProgramStateRef State, |
| 2514 | EquivalenceClass First, |
| 2515 | EquivalenceClass Second) { |
| 2516 | return First.markDisequal(F&: RF, State, Other: Second); |
| 2517 | } |
| 2518 | |
| 2519 | inline ProgramStateRef |
| 2520 | EquivalenceClass::markDisequal(RangeSet::Factory &RF, ProgramStateRef State, |
| 2521 | EquivalenceClass Other) const { |
| 2522 | // If we know that two classes are equal, we can only produce an infeasible |
| 2523 | // state. |
| 2524 | if (*this == Other) { |
| 2525 | return nullptr; |
| 2526 | } |
| 2527 | |
| 2528 | DisequalityMapTy DisequalityInfo = State->get<DisequalityMap>(); |
| 2529 | ConstraintRangeTy Constraints = State->get<ConstraintRange>(); |
| 2530 | |
| 2531 | // Disequality is a symmetric relation, so if we mark A as disequal to B, |
| 2532 | // we should also mark B as disequalt to A. |
| 2533 | if (!addToDisequalityInfo(Info&: DisequalityInfo, Constraints, F&: RF, State, First: *this, |
| 2534 | Second: Other) || |
| 2535 | !addToDisequalityInfo(Info&: DisequalityInfo, Constraints, F&: RF, State, First: Other, |
| 2536 | Second: *this)) |
| 2537 | return nullptr; |
| 2538 | |
| 2539 | assert(areFeasible(Constraints) && "Constraint manager shouldn't produce " |
| 2540 | "a state with infeasible constraints" ); |
| 2541 | |
| 2542 | State = State->set<DisequalityMap>(DisequalityInfo); |
| 2543 | State = State->set<ConstraintRange>(Constraints); |
| 2544 | |
| 2545 | return State; |
| 2546 | } |
| 2547 | |
| 2548 | inline bool EquivalenceClass::addToDisequalityInfo( |
| 2549 | DisequalityMapTy &Info, ConstraintRangeTy &Constraints, |
| 2550 | RangeSet::Factory &RF, ProgramStateRef State, EquivalenceClass First, |
| 2551 | EquivalenceClass Second) { |
| 2552 | |
| 2553 | // 1. Get all of the required factories. |
| 2554 | DisequalityMapTy::Factory &F = State->get_context<DisequalityMap>(); |
| 2555 | ClassSet::Factory &CF = State->get_context<ClassSet>(); |
| 2556 | ConstraintRangeTy::Factory &CRF = State->get_context<ConstraintRange>(); |
| 2557 | |
| 2558 | // 2. Add Second to the set of classes disequal to First. |
| 2559 | const ClassSet *CurrentSet = Info.lookup(K: First); |
| 2560 | ClassSet NewSet = CurrentSet ? *CurrentSet : CF.getEmptySet(); |
| 2561 | NewSet = CF.add(Old: NewSet, V: Second); |
| 2562 | |
| 2563 | Info = F.add(Old: Info, K: First, D: NewSet); |
| 2564 | |
| 2565 | // 3. If Second is known to be a constant, we can delete this point |
| 2566 | // from the constraint asociated with First. |
| 2567 | // |
| 2568 | // So, if Second == 10, it means that First != 10. |
| 2569 | // At the same time, the same logic does not apply to ranges. |
| 2570 | if (const RangeSet *SecondConstraint = Constraints.lookup(K: Second)) |
| 2571 | if (const llvm::APSInt *Point = SecondConstraint->getConcreteValue()) { |
| 2572 | |
| 2573 | RangeSet FirstConstraint = SymbolicRangeInferrer::inferRange( |
| 2574 | F&: RF, State, Origin: First.getRepresentativeSymbol()); |
| 2575 | |
| 2576 | FirstConstraint = RF.deletePoint(From: FirstConstraint, Point: *Point); |
| 2577 | |
| 2578 | // If the First class is about to be constrained with an empty |
| 2579 | // range-set, the state is infeasible. |
| 2580 | if (FirstConstraint.isEmpty()) |
| 2581 | return false; |
| 2582 | |
| 2583 | Constraints = CRF.add(Old: Constraints, K: First, D: FirstConstraint); |
| 2584 | } |
| 2585 | |
| 2586 | return true; |
| 2587 | } |
| 2588 | |
| 2589 | inline std::optional<bool> EquivalenceClass::areEqual(ProgramStateRef State, |
| 2590 | SymbolRef FirstSym, |
| 2591 | SymbolRef SecondSym) { |
| 2592 | return EquivalenceClass::areEqual(State, First: find(State, Sym: FirstSym), |
| 2593 | Second: find(State, Sym: SecondSym)); |
| 2594 | } |
| 2595 | |
| 2596 | inline std::optional<bool> EquivalenceClass::areEqual(ProgramStateRef State, |
| 2597 | EquivalenceClass First, |
| 2598 | EquivalenceClass Second) { |
| 2599 | // The same equivalence class => symbols are equal. |
| 2600 | if (First == Second) |
| 2601 | return true; |
| 2602 | |
| 2603 | // Let's check if we know anything about these two classes being not equal to |
| 2604 | // each other. |
| 2605 | ClassSet DisequalToFirst = First.getDisequalClasses(State); |
| 2606 | if (DisequalToFirst.contains(V: Second)) |
| 2607 | return false; |
| 2608 | |
| 2609 | // It is not clear. |
| 2610 | return std::nullopt; |
| 2611 | } |
| 2612 | |
| 2613 | [[nodiscard]] ProgramStateRef |
| 2614 | EquivalenceClass::removeMember(ProgramStateRef State, const SymbolRef Old) { |
| 2615 | |
| 2616 | SymbolSet ClsMembers = getClassMembers(State); |
| 2617 | assert(ClsMembers.contains(Old)); |
| 2618 | |
| 2619 | // Remove `Old`'s Class->Sym relation. |
| 2620 | SymbolSet::Factory &F = getMembersFactory(State); |
| 2621 | ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>(); |
| 2622 | ClsMembers = F.remove(Old: ClsMembers, V: Old); |
| 2623 | // Ensure another precondition of the removeMember function (we can check |
| 2624 | // this only with isEmpty, thus we have to do the remove first). |
| 2625 | assert(!ClsMembers.isEmpty() && |
| 2626 | "Class should have had at least two members before member removal" ); |
| 2627 | // Overwrite the existing members assigned to this class. |
| 2628 | ClassMembersTy ClassMembersMap = State->get<ClassMembers>(); |
| 2629 | ClassMembersMap = EMFactory.add(Old: ClassMembersMap, K: *this, D: ClsMembers); |
| 2630 | State = State->set<ClassMembers>(ClassMembersMap); |
| 2631 | |
| 2632 | // Remove `Old`'s Sym->Class relation. |
| 2633 | ClassMapTy Classes = State->get<ClassMap>(); |
| 2634 | ClassMapTy::Factory &CMF = State->get_context<ClassMap>(); |
| 2635 | Classes = CMF.remove(Old: Classes, K: Old); |
| 2636 | State = State->set<ClassMap>(Classes); |
| 2637 | |
| 2638 | return State; |
| 2639 | } |
| 2640 | |
| 2641 | // Re-evaluate an SVal with top-level `State->assume` logic. |
| 2642 | [[nodiscard]] static ProgramStateRef |
| 2643 | reAssume(ProgramStateRef State, const RangeSet *Constraint, SVal TheValue) { |
| 2644 | if (!Constraint) |
| 2645 | return State; |
| 2646 | |
| 2647 | const auto DefinedVal = TheValue.castAs<DefinedSVal>(); |
| 2648 | |
| 2649 | // If the SVal is 0, we can simply interpret that as `false`. |
| 2650 | if (Constraint->encodesFalseRange()) |
| 2651 | return State->assume(Cond: DefinedVal, Assumption: false); |
| 2652 | |
| 2653 | // If the constraint does not encode 0 then we can interpret that as `true` |
| 2654 | // AND as a Range(Set). |
| 2655 | if (Constraint->encodesTrueRange()) { |
| 2656 | State = State->assume(Cond: DefinedVal, Assumption: true); |
| 2657 | if (!State) |
| 2658 | return nullptr; |
| 2659 | // Fall through, re-assume based on the range values as well. |
| 2660 | } |
| 2661 | // Overestimate the individual Ranges with the RangeSet' lowest and |
| 2662 | // highest values. |
| 2663 | return State->assumeInclusiveRange(Val: DefinedVal, From: Constraint->getMinValue(), |
| 2664 | To: Constraint->getMaxValue(), Assumption: true); |
| 2665 | } |
| 2666 | |
| 2667 | // Iterate over all symbols and try to simplify them. Once a symbol is |
| 2668 | // simplified then we check if we can merge the simplified symbol's equivalence |
| 2669 | // class to this class. This way, we simplify not just the symbols but the |
| 2670 | // classes as well: we strive to keep the number of the classes to be the |
| 2671 | // absolute minimum. |
| 2672 | [[nodiscard]] ProgramStateRef |
| 2673 | EquivalenceClass::simplify(SValBuilder &SVB, RangeSet::Factory &F, |
| 2674 | ProgramStateRef State, EquivalenceClass Class) { |
| 2675 | SymbolSet ClassMembers = Class.getClassMembers(State); |
| 2676 | for (const SymbolRef &MemberSym : ClassMembers) { |
| 2677 | |
| 2678 | const SVal SimplifiedMemberVal = simplifyToSVal(State, Sym: MemberSym); |
| 2679 | const SymbolRef SimplifiedMemberSym = SimplifiedMemberVal.getAsSymbol(); |
| 2680 | |
| 2681 | // The symbol is collapsed to a constant, check if the current State is |
| 2682 | // still feasible. |
| 2683 | if (const auto CI = SimplifiedMemberVal.getAs<nonloc::ConcreteInt>()) { |
| 2684 | const llvm::APSInt &SV = CI->getValue(); |
| 2685 | const RangeSet *ClassConstraint = getConstraint(State, Class); |
| 2686 | // We have found a contradiction. |
| 2687 | if (ClassConstraint && !ClassConstraint->contains(Point: SV)) |
| 2688 | return nullptr; |
| 2689 | } |
| 2690 | |
| 2691 | if (SimplifiedMemberSym && MemberSym != SimplifiedMemberSym) { |
| 2692 | // The simplified symbol should be the member of the original Class, |
| 2693 | // however, it might be in another existing class at the moment. We |
| 2694 | // have to merge these classes. |
| 2695 | ProgramStateRef OldState = State; |
| 2696 | State = merge(F, State, First: MemberSym, Second: SimplifiedMemberSym); |
| 2697 | if (!State) |
| 2698 | return nullptr; |
| 2699 | // No state change, no merge happened actually. |
| 2700 | if (OldState == State) |
| 2701 | continue; |
| 2702 | |
| 2703 | // Be aware that `SimplifiedMemberSym` might refer to an already dead |
| 2704 | // symbol. In that case, the eqclass of that might not be the same as the |
| 2705 | // eqclass of `MemberSym`. This is because the dead symbols are not |
| 2706 | // preserved in the `ClassMap`, hence |
| 2707 | // `find(State, SimplifiedMemberSym)` will result in a trivial eqclass |
| 2708 | // compared to the eqclass of `MemberSym`. |
| 2709 | // These eqclasses should be the same if `SimplifiedMemberSym` is alive. |
| 2710 | // --> assert(find(State, MemberSym) == find(State, SimplifiedMemberSym)) |
| 2711 | // |
| 2712 | // Note that `MemberSym` must be alive here since that is from the |
| 2713 | // `ClassMembers` where all the symbols are alive. |
| 2714 | |
| 2715 | // Remove the old and more complex symbol. |
| 2716 | State = find(State, Sym: MemberSym).removeMember(State, Old: MemberSym); |
| 2717 | |
| 2718 | // Query the class constraint again b/c that may have changed during the |
| 2719 | // merge above. |
| 2720 | const RangeSet *ClassConstraint = getConstraint(State, Class); |
| 2721 | |
| 2722 | // Re-evaluate an SVal with top-level `State->assume`, this ignites |
| 2723 | // a RECURSIVE algorithm that will reach a FIXPOINT. |
| 2724 | // |
| 2725 | // About performance and complexity: Let us assume that in a State we |
| 2726 | // have N non-trivial equivalence classes and that all constraints and |
| 2727 | // disequality info is related to non-trivial classes. In the worst case, |
| 2728 | // we can simplify only one symbol of one class in each iteration. The |
| 2729 | // number of symbols in one class cannot grow b/c we replace the old |
| 2730 | // symbol with the simplified one. Also, the number of the equivalence |
| 2731 | // classes can decrease only, b/c the algorithm does a merge operation |
| 2732 | // optionally. We need N iterations in this case to reach the fixpoint. |
| 2733 | // Thus, the steps needed to be done in the worst case is proportional to |
| 2734 | // N*N. |
| 2735 | // |
| 2736 | // This worst case scenario can be extended to that case when we have |
| 2737 | // trivial classes in the constraints and in the disequality map. This |
| 2738 | // case can be reduced to the case with a State where there are only |
| 2739 | // non-trivial classes. This is because a merge operation on two trivial |
| 2740 | // classes results in one non-trivial class. |
| 2741 | State = reAssume(State, Constraint: ClassConstraint, TheValue: SimplifiedMemberVal); |
| 2742 | if (!State) |
| 2743 | return nullptr; |
| 2744 | } |
| 2745 | } |
| 2746 | return State; |
| 2747 | } |
| 2748 | |
| 2749 | inline ClassSet EquivalenceClass::getDisequalClasses(ProgramStateRef State, |
| 2750 | SymbolRef Sym) { |
| 2751 | return find(State, Sym).getDisequalClasses(State); |
| 2752 | } |
| 2753 | |
| 2754 | inline ClassSet |
| 2755 | EquivalenceClass::getDisequalClasses(ProgramStateRef State) const { |
| 2756 | return getDisequalClasses(Map: State->get<DisequalityMap>(), |
| 2757 | Factory&: State->get_context<ClassSet>()); |
| 2758 | } |
| 2759 | |
| 2760 | inline ClassSet |
| 2761 | EquivalenceClass::getDisequalClasses(DisequalityMapTy Map, |
| 2762 | ClassSet::Factory &Factory) const { |
| 2763 | if (const ClassSet *DisequalClasses = Map.lookup(K: *this)) |
| 2764 | return *DisequalClasses; |
| 2765 | |
| 2766 | return Factory.getEmptySet(); |
| 2767 | } |
| 2768 | |
| 2769 | bool EquivalenceClass::isClassDataConsistent(ProgramStateRef State) { |
| 2770 | ClassMembersTy Members = State->get<ClassMembers>(); |
| 2771 | |
| 2772 | for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : Members) { |
| 2773 | for (SymbolRef Member : ClassMembersPair.second) { |
| 2774 | // Every member of the class should have a mapping back to the class. |
| 2775 | if (find(State, Sym: Member) == ClassMembersPair.first) { |
| 2776 | continue; |
| 2777 | } |
| 2778 | |
| 2779 | return false; |
| 2780 | } |
| 2781 | } |
| 2782 | |
| 2783 | DisequalityMapTy Disequalities = State->get<DisequalityMap>(); |
| 2784 | for (std::pair<EquivalenceClass, ClassSet> DisequalityInfo : Disequalities) { |
| 2785 | EquivalenceClass Class = DisequalityInfo.first; |
| 2786 | ClassSet DisequalClasses = DisequalityInfo.second; |
| 2787 | |
| 2788 | // There is no use in keeping empty sets in the map. |
| 2789 | if (DisequalClasses.isEmpty()) |
| 2790 | return false; |
| 2791 | |
| 2792 | // Disequality is symmetrical, i.e. for every Class A and B that A != B, |
| 2793 | // B != A should also be true. |
| 2794 | for (EquivalenceClass DisequalClass : DisequalClasses) { |
| 2795 | const ClassSet *DisequalToDisequalClasses = |
| 2796 | Disequalities.lookup(K: DisequalClass); |
| 2797 | |
| 2798 | // It should be a set of at least one element: Class |
| 2799 | if (!DisequalToDisequalClasses || |
| 2800 | !DisequalToDisequalClasses->contains(V: Class)) |
| 2801 | return false; |
| 2802 | } |
| 2803 | } |
| 2804 | |
| 2805 | return true; |
| 2806 | } |
| 2807 | |
| 2808 | //===----------------------------------------------------------------------===// |
| 2809 | // RangeConstraintManager implementation |
| 2810 | //===----------------------------------------------------------------------===// |
| 2811 | |
| 2812 | bool RangeConstraintManager::canReasonAbout(SVal X) const { |
| 2813 | std::optional<nonloc::SymbolVal> SymVal = X.getAs<nonloc::SymbolVal>(); |
| 2814 | if (SymVal && SymVal->isExpression()) { |
| 2815 | const SymExpr *SE = SymVal->getSymbol(); |
| 2816 | |
| 2817 | if (const SymIntExpr *SIE = dyn_cast<SymIntExpr>(Val: SE)) { |
| 2818 | switch (SIE->getOpcode()) { |
| 2819 | // We don't reason yet about bitwise-constraints on symbolic values. |
| 2820 | case BO_And: |
| 2821 | case BO_Or: |
| 2822 | case BO_Xor: |
| 2823 | return false; |
| 2824 | // We don't reason yet about these arithmetic constraints on |
| 2825 | // symbolic values. |
| 2826 | case BO_Mul: |
| 2827 | case BO_Div: |
| 2828 | case BO_Rem: |
| 2829 | case BO_Shl: |
| 2830 | case BO_Shr: |
| 2831 | return false; |
| 2832 | // All other cases. |
| 2833 | default: |
| 2834 | return true; |
| 2835 | } |
| 2836 | } |
| 2837 | |
| 2838 | if (const SymSymExpr *SSE = dyn_cast<SymSymExpr>(Val: SE)) { |
| 2839 | // FIXME: Handle <=> here. |
| 2840 | if (BinaryOperator::isEqualityOp(Opc: SSE->getOpcode()) || |
| 2841 | BinaryOperator::isRelationalOp(Opc: SSE->getOpcode())) { |
| 2842 | // We handle Loc <> Loc comparisons, but not (yet) NonLoc <> NonLoc. |
| 2843 | // We've recently started producing Loc <> NonLoc comparisons (that |
| 2844 | // result from casts of one of the operands between eg. intptr_t and |
| 2845 | // void *), but we can't reason about them yet. |
| 2846 | if (Loc::isLocType(T: SSE->getLHS()->getType())) { |
| 2847 | return Loc::isLocType(T: SSE->getRHS()->getType()); |
| 2848 | } |
| 2849 | } |
| 2850 | } |
| 2851 | |
| 2852 | return false; |
| 2853 | } |
| 2854 | |
| 2855 | return true; |
| 2856 | } |
| 2857 | |
| 2858 | ConditionTruthVal RangeConstraintManager::checkNull(ProgramStateRef State, |
| 2859 | SymbolRef Sym) { |
| 2860 | const RangeSet *Ranges = getConstraint(State, Sym); |
| 2861 | |
| 2862 | // If we don't have any information about this symbol, it's underconstrained. |
| 2863 | if (!Ranges) |
| 2864 | return ConditionTruthVal(); |
| 2865 | |
| 2866 | // If we have a concrete value, see if it's zero. |
| 2867 | if (const llvm::APSInt *Value = Ranges->getConcreteValue()) |
| 2868 | return *Value == 0; |
| 2869 | |
| 2870 | BasicValueFactory &BV = getBasicVals(); |
| 2871 | APSIntType IntType = BV.getAPSIntType(T: Sym->getType()); |
| 2872 | llvm::APSInt Zero = IntType.getZeroValue(); |
| 2873 | |
| 2874 | // Check if zero is in the set of possible values. |
| 2875 | if (!Ranges->contains(Point: Zero)) |
| 2876 | return false; |
| 2877 | |
| 2878 | // Zero is a possible value, but it is not the /only/ possible value. |
| 2879 | return ConditionTruthVal(); |
| 2880 | } |
| 2881 | |
| 2882 | const llvm::APSInt *RangeConstraintManager::getSymVal(ProgramStateRef St, |
| 2883 | SymbolRef Sym) const { |
| 2884 | return getRange(State: St, Sym).getConcreteValue(); |
| 2885 | } |
| 2886 | |
| 2887 | const llvm::APSInt *RangeConstraintManager::getSymMinVal(ProgramStateRef St, |
| 2888 | SymbolRef Sym) const { |
| 2889 | RangeSet Range = getRange(State: St, Sym); |
| 2890 | return Range.isEmpty() ? nullptr : &Range.getMinValue(); |
| 2891 | } |
| 2892 | |
| 2893 | const llvm::APSInt *RangeConstraintManager::getSymMaxVal(ProgramStateRef St, |
| 2894 | SymbolRef Sym) const { |
| 2895 | RangeSet Range = getRange(State: St, Sym); |
| 2896 | return Range.isEmpty() ? nullptr : &Range.getMaxValue(); |
| 2897 | } |
| 2898 | |
| 2899 | //===----------------------------------------------------------------------===// |
| 2900 | // Remove dead symbols from existing constraints |
| 2901 | //===----------------------------------------------------------------------===// |
| 2902 | |
| 2903 | /// Scan all symbols referenced by the constraints. If the symbol is not alive |
| 2904 | /// as marked in LSymbols, mark it as dead in DSymbols. |
| 2905 | ProgramStateRef |
| 2906 | RangeConstraintManager::removeDeadBindings(ProgramStateRef State, |
| 2907 | SymbolReaper &SymReaper) { |
| 2908 | ClassMembersTy ClassMembersMap = State->get<ClassMembers>(); |
| 2909 | ClassMembersTy NewClassMembersMap = ClassMembersMap; |
| 2910 | ClassMembersTy::Factory &EMFactory = State->get_context<ClassMembers>(); |
| 2911 | SymbolSet::Factory &SetFactory = State->get_context<SymbolSet>(); |
| 2912 | |
| 2913 | ConstraintRangeTy Constraints = State->get<ConstraintRange>(); |
| 2914 | ConstraintRangeTy NewConstraints = Constraints; |
| 2915 | ConstraintRangeTy::Factory &ConstraintFactory = |
| 2916 | State->get_context<ConstraintRange>(); |
| 2917 | |
| 2918 | ClassMapTy Map = State->get<ClassMap>(); |
| 2919 | ClassMapTy NewMap = Map; |
| 2920 | ClassMapTy::Factory &ClassFactory = State->get_context<ClassMap>(); |
| 2921 | |
| 2922 | DisequalityMapTy Disequalities = State->get<DisequalityMap>(); |
| 2923 | DisequalityMapTy::Factory &DisequalityFactory = |
| 2924 | State->get_context<DisequalityMap>(); |
| 2925 | ClassSet::Factory &ClassSetFactory = State->get_context<ClassSet>(); |
| 2926 | |
| 2927 | bool ClassMapChanged = false; |
| 2928 | bool MembersMapChanged = false; |
| 2929 | bool ConstraintMapChanged = false; |
| 2930 | bool DisequalitiesChanged = false; |
| 2931 | |
| 2932 | auto removeDeadClass = [&](EquivalenceClass Class) { |
| 2933 | // Remove associated constraint ranges. |
| 2934 | Constraints = ConstraintFactory.remove(Old: Constraints, K: Class); |
| 2935 | ConstraintMapChanged = true; |
| 2936 | |
| 2937 | // Update disequality information to not hold any information on the |
| 2938 | // removed class. |
| 2939 | ClassSet DisequalClasses = |
| 2940 | Class.getDisequalClasses(Map: Disequalities, Factory&: ClassSetFactory); |
| 2941 | if (!DisequalClasses.isEmpty()) { |
| 2942 | for (EquivalenceClass DisequalClass : DisequalClasses) { |
| 2943 | ClassSet DisequalToDisequalSet = |
| 2944 | DisequalClass.getDisequalClasses(Map: Disequalities, Factory&: ClassSetFactory); |
| 2945 | // DisequalToDisequalSet is guaranteed to be non-empty for consistent |
| 2946 | // disequality info. |
| 2947 | assert(!DisequalToDisequalSet.isEmpty()); |
| 2948 | ClassSet NewSet = ClassSetFactory.remove(Old: DisequalToDisequalSet, V: Class); |
| 2949 | |
| 2950 | // No need in keeping an empty set. |
| 2951 | if (NewSet.isEmpty()) { |
| 2952 | Disequalities = |
| 2953 | DisequalityFactory.remove(Old: Disequalities, K: DisequalClass); |
| 2954 | } else { |
| 2955 | Disequalities = |
| 2956 | DisequalityFactory.add(Old: Disequalities, K: DisequalClass, D: NewSet); |
| 2957 | } |
| 2958 | } |
| 2959 | // Remove the data for the class |
| 2960 | Disequalities = DisequalityFactory.remove(Old: Disequalities, K: Class); |
| 2961 | DisequalitiesChanged = true; |
| 2962 | } |
| 2963 | }; |
| 2964 | |
| 2965 | // 1. Let's see if dead symbols are trivial and have associated constraints. |
| 2966 | for (std::pair<EquivalenceClass, RangeSet> ClassConstraintPair : |
| 2967 | Constraints) { |
| 2968 | EquivalenceClass Class = ClassConstraintPair.first; |
| 2969 | if (Class.isTriviallyDead(State, Reaper&: SymReaper)) { |
| 2970 | // If this class is trivial, we can remove its constraints right away. |
| 2971 | removeDeadClass(Class); |
| 2972 | } |
| 2973 | } |
| 2974 | |
| 2975 | // 2. We don't need to track classes for dead symbols. |
| 2976 | for (std::pair<SymbolRef, EquivalenceClass> SymbolClassPair : Map) { |
| 2977 | SymbolRef Sym = SymbolClassPair.first; |
| 2978 | |
| 2979 | if (SymReaper.isDead(sym: Sym)) { |
| 2980 | ClassMapChanged = true; |
| 2981 | NewMap = ClassFactory.remove(Old: NewMap, K: Sym); |
| 2982 | } |
| 2983 | } |
| 2984 | |
| 2985 | // 3. Remove dead members from classes and remove dead non-trivial classes |
| 2986 | // and their constraints. |
| 2987 | for (std::pair<EquivalenceClass, SymbolSet> ClassMembersPair : |
| 2988 | ClassMembersMap) { |
| 2989 | EquivalenceClass Class = ClassMembersPair.first; |
| 2990 | SymbolSet LiveMembers = ClassMembersPair.second; |
| 2991 | bool MembersChanged = false; |
| 2992 | |
| 2993 | for (SymbolRef Member : ClassMembersPair.second) { |
| 2994 | if (SymReaper.isDead(sym: Member)) { |
| 2995 | MembersChanged = true; |
| 2996 | LiveMembers = SetFactory.remove(Old: LiveMembers, V: Member); |
| 2997 | } |
| 2998 | } |
| 2999 | |
| 3000 | // Check if the class changed. |
| 3001 | if (!MembersChanged) |
| 3002 | continue; |
| 3003 | |
| 3004 | MembersMapChanged = true; |
| 3005 | |
| 3006 | if (LiveMembers.isEmpty()) { |
| 3007 | // The class is dead now, we need to wipe it out of the members map... |
| 3008 | NewClassMembersMap = EMFactory.remove(Old: NewClassMembersMap, K: Class); |
| 3009 | |
| 3010 | // ...and remove all of its constraints. |
| 3011 | removeDeadClass(Class); |
| 3012 | } else { |
| 3013 | // We need to change the members associated with the class. |
| 3014 | NewClassMembersMap = |
| 3015 | EMFactory.add(Old: NewClassMembersMap, K: Class, D: LiveMembers); |
| 3016 | } |
| 3017 | } |
| 3018 | |
| 3019 | // 4. Update the state with new maps. |
| 3020 | // |
| 3021 | // Here we try to be humble and update a map only if it really changed. |
| 3022 | if (ClassMapChanged) |
| 3023 | State = State->set<ClassMap>(NewMap); |
| 3024 | |
| 3025 | if (MembersMapChanged) |
| 3026 | State = State->set<ClassMembers>(NewClassMembersMap); |
| 3027 | |
| 3028 | if (ConstraintMapChanged) |
| 3029 | State = State->set<ConstraintRange>(Constraints); |
| 3030 | |
| 3031 | if (DisequalitiesChanged) |
| 3032 | State = State->set<DisequalityMap>(Disequalities); |
| 3033 | |
| 3034 | assert(EquivalenceClass::isClassDataConsistent(State)); |
| 3035 | |
| 3036 | return State; |
| 3037 | } |
| 3038 | |
| 3039 | RangeSet RangeConstraintManager::getRange(ProgramStateRef State, |
| 3040 | SymbolRef Sym) const { |
| 3041 | return SymbolicRangeInferrer::inferRange(F, State, Origin: Sym); |
| 3042 | } |
| 3043 | |
| 3044 | ProgramStateRef RangeConstraintManager::setRange(ProgramStateRef State, |
| 3045 | SymbolRef Sym, |
| 3046 | RangeSet Range) { |
| 3047 | return ConstraintAssignor::assign(State, Builder&: getSValBuilder(), F, CoS: Sym, NewConstraint: Range); |
| 3048 | } |
| 3049 | |
| 3050 | //===------------------------------------------------------------------------=== |
| 3051 | // assumeSymX methods: protected interface for RangeConstraintManager. |
| 3052 | //===------------------------------------------------------------------------=== |
| 3053 | |
| 3054 | // The syntax for ranges below is mathematical, using [x, y] for closed ranges |
| 3055 | // and (x, y) for open ranges. These ranges are modular, corresponding with |
| 3056 | // a common treatment of C integer overflow. This means that these methods |
| 3057 | // do not have to worry about overflow; RangeSet::Intersect can handle such a |
| 3058 | // "wraparound" range. |
| 3059 | // As an example, the range [UINT_MAX-1, 3) contains five values: UINT_MAX-1, |
| 3060 | // UINT_MAX, 0, 1, and 2. |
| 3061 | |
| 3062 | ProgramStateRef |
| 3063 | RangeConstraintManager::assumeSymNE(ProgramStateRef St, SymbolRef Sym, |
| 3064 | const llvm::APSInt &Int, |
| 3065 | const llvm::APSInt &Adjustment) { |
| 3066 | // Before we do any real work, see if the value can even show up. |
| 3067 | APSIntType AdjustmentType(Adjustment); |
| 3068 | if (AdjustmentType.testInRange(Val: Int, AllowMixedSign: true) != APSIntType::RTR_Within) |
| 3069 | return St; |
| 3070 | |
| 3071 | llvm::APSInt Point = AdjustmentType.convert(Value: Int) - Adjustment; |
| 3072 | RangeSet New = getRange(State: St, Sym); |
| 3073 | New = F.deletePoint(From: New, Point); |
| 3074 | |
| 3075 | return setRange(State: St, Sym, Range: New); |
| 3076 | } |
| 3077 | |
| 3078 | ProgramStateRef |
| 3079 | RangeConstraintManager::assumeSymEQ(ProgramStateRef St, SymbolRef Sym, |
| 3080 | const llvm::APSInt &Int, |
| 3081 | const llvm::APSInt &Adjustment) { |
| 3082 | // Before we do any real work, see if the value can even show up. |
| 3083 | APSIntType AdjustmentType(Adjustment); |
| 3084 | if (AdjustmentType.testInRange(Val: Int, AllowMixedSign: true) != APSIntType::RTR_Within) |
| 3085 | return nullptr; |
| 3086 | |
| 3087 | // [Int-Adjustment, Int-Adjustment] |
| 3088 | llvm::APSInt AdjInt = AdjustmentType.convert(Value: Int) - Adjustment; |
| 3089 | RangeSet New = getRange(State: St, Sym); |
| 3090 | New = F.intersect(LHS: New, Point: AdjInt); |
| 3091 | |
| 3092 | return setRange(State: St, Sym, Range: New); |
| 3093 | } |
| 3094 | |
| 3095 | RangeSet |
| 3096 | RangeConstraintManager::getSymLTRange(ProgramStateRef St, SymbolRef Sym, |
| 3097 | const llvm::APSInt &Int, |
| 3098 | const llvm::APSInt &Adjustment) const { |
| 3099 | // Before we do any real work, see if the value can even show up. |
| 3100 | APSIntType AdjustmentType(Adjustment); |
| 3101 | switch (AdjustmentType.testInRange(Val: Int, AllowMixedSign: true)) { |
| 3102 | case APSIntType::RTR_Below: |
| 3103 | return F.getEmptySet(); |
| 3104 | case APSIntType::RTR_Within: |
| 3105 | break; |
| 3106 | case APSIntType::RTR_Above: |
| 3107 | return getRange(State: St, Sym); |
| 3108 | } |
| 3109 | |
| 3110 | // Special case for Int == Min. This is always false. |
| 3111 | llvm::APSInt ComparisonVal = AdjustmentType.convert(Value: Int); |
| 3112 | llvm::APSInt Min = AdjustmentType.getMinValue(); |
| 3113 | if (ComparisonVal == Min) |
| 3114 | return F.getEmptySet(); |
| 3115 | |
| 3116 | llvm::APSInt Lower = Min - Adjustment; |
| 3117 | llvm::APSInt Upper = ComparisonVal - Adjustment; |
| 3118 | --Upper; |
| 3119 | |
| 3120 | RangeSet Result = getRange(State: St, Sym); |
| 3121 | return F.intersect(What: Result, Lower, Upper); |
| 3122 | } |
| 3123 | |
| 3124 | ProgramStateRef |
| 3125 | RangeConstraintManager::assumeSymLT(ProgramStateRef St, SymbolRef Sym, |
| 3126 | const llvm::APSInt &Int, |
| 3127 | const llvm::APSInt &Adjustment) { |
| 3128 | RangeSet New = getSymLTRange(St, Sym, Int, Adjustment); |
| 3129 | return setRange(State: St, Sym, Range: New); |
| 3130 | } |
| 3131 | |
| 3132 | RangeSet |
| 3133 | RangeConstraintManager::getSymGTRange(ProgramStateRef St, SymbolRef Sym, |
| 3134 | const llvm::APSInt &Int, |
| 3135 | const llvm::APSInt &Adjustment) const { |
| 3136 | // Before we do any real work, see if the value can even show up. |
| 3137 | APSIntType AdjustmentType(Adjustment); |
| 3138 | switch (AdjustmentType.testInRange(Val: Int, AllowMixedSign: true)) { |
| 3139 | case APSIntType::RTR_Below: |
| 3140 | return getRange(State: St, Sym); |
| 3141 | case APSIntType::RTR_Within: |
| 3142 | break; |
| 3143 | case APSIntType::RTR_Above: |
| 3144 | return F.getEmptySet(); |
| 3145 | } |
| 3146 | |
| 3147 | // Special case for Int == Max. This is always false. |
| 3148 | llvm::APSInt ComparisonVal = AdjustmentType.convert(Value: Int); |
| 3149 | llvm::APSInt Max = AdjustmentType.getMaxValue(); |
| 3150 | if (ComparisonVal == Max) |
| 3151 | return F.getEmptySet(); |
| 3152 | |
| 3153 | llvm::APSInt Lower = ComparisonVal - Adjustment; |
| 3154 | llvm::APSInt Upper = Max - Adjustment; |
| 3155 | ++Lower; |
| 3156 | |
| 3157 | RangeSet SymRange = getRange(State: St, Sym); |
| 3158 | return F.intersect(What: SymRange, Lower, Upper); |
| 3159 | } |
| 3160 | |
| 3161 | ProgramStateRef |
| 3162 | RangeConstraintManager::assumeSymGT(ProgramStateRef St, SymbolRef Sym, |
| 3163 | const llvm::APSInt &Int, |
| 3164 | const llvm::APSInt &Adjustment) { |
| 3165 | RangeSet New = getSymGTRange(St, Sym, Int, Adjustment); |
| 3166 | return setRange(State: St, Sym, Range: New); |
| 3167 | } |
| 3168 | |
| 3169 | RangeSet |
| 3170 | RangeConstraintManager::getSymGERange(ProgramStateRef St, SymbolRef Sym, |
| 3171 | const llvm::APSInt &Int, |
| 3172 | const llvm::APSInt &Adjustment) const { |
| 3173 | // Before we do any real work, see if the value can even show up. |
| 3174 | APSIntType AdjustmentType(Adjustment); |
| 3175 | switch (AdjustmentType.testInRange(Val: Int, AllowMixedSign: true)) { |
| 3176 | case APSIntType::RTR_Below: |
| 3177 | return getRange(State: St, Sym); |
| 3178 | case APSIntType::RTR_Within: |
| 3179 | break; |
| 3180 | case APSIntType::RTR_Above: |
| 3181 | return F.getEmptySet(); |
| 3182 | } |
| 3183 | |
| 3184 | // Special case for Int == Min. This is always feasible. |
| 3185 | llvm::APSInt ComparisonVal = AdjustmentType.convert(Value: Int); |
| 3186 | llvm::APSInt Min = AdjustmentType.getMinValue(); |
| 3187 | if (ComparisonVal == Min) |
| 3188 | return getRange(State: St, Sym); |
| 3189 | |
| 3190 | llvm::APSInt Max = AdjustmentType.getMaxValue(); |
| 3191 | llvm::APSInt Lower = ComparisonVal - Adjustment; |
| 3192 | llvm::APSInt Upper = Max - Adjustment; |
| 3193 | |
| 3194 | RangeSet SymRange = getRange(State: St, Sym); |
| 3195 | return F.intersect(What: SymRange, Lower, Upper); |
| 3196 | } |
| 3197 | |
| 3198 | ProgramStateRef |
| 3199 | RangeConstraintManager::assumeSymGE(ProgramStateRef St, SymbolRef Sym, |
| 3200 | const llvm::APSInt &Int, |
| 3201 | const llvm::APSInt &Adjustment) { |
| 3202 | RangeSet New = getSymGERange(St, Sym, Int, Adjustment); |
| 3203 | return setRange(State: St, Sym, Range: New); |
| 3204 | } |
| 3205 | |
| 3206 | RangeSet |
| 3207 | RangeConstraintManager::getSymLERange(llvm::function_ref<RangeSet()> RS, |
| 3208 | const llvm::APSInt &Int, |
| 3209 | const llvm::APSInt &Adjustment) const { |
| 3210 | // Before we do any real work, see if the value can even show up. |
| 3211 | APSIntType AdjustmentType(Adjustment); |
| 3212 | switch (AdjustmentType.testInRange(Val: Int, AllowMixedSign: true)) { |
| 3213 | case APSIntType::RTR_Below: |
| 3214 | return F.getEmptySet(); |
| 3215 | case APSIntType::RTR_Within: |
| 3216 | break; |
| 3217 | case APSIntType::RTR_Above: |
| 3218 | return RS(); |
| 3219 | } |
| 3220 | |
| 3221 | // Special case for Int == Max. This is always feasible. |
| 3222 | llvm::APSInt ComparisonVal = AdjustmentType.convert(Value: Int); |
| 3223 | llvm::APSInt Max = AdjustmentType.getMaxValue(); |
| 3224 | if (ComparisonVal == Max) |
| 3225 | return RS(); |
| 3226 | |
| 3227 | llvm::APSInt Min = AdjustmentType.getMinValue(); |
| 3228 | llvm::APSInt Lower = Min - Adjustment; |
| 3229 | llvm::APSInt Upper = ComparisonVal - Adjustment; |
| 3230 | |
| 3231 | RangeSet Default = RS(); |
| 3232 | return F.intersect(What: Default, Lower, Upper); |
| 3233 | } |
| 3234 | |
| 3235 | RangeSet |
| 3236 | RangeConstraintManager::getSymLERange(ProgramStateRef St, SymbolRef Sym, |
| 3237 | const llvm::APSInt &Int, |
| 3238 | const llvm::APSInt &Adjustment) const { |
| 3239 | return getSymLERange(RS: [&] { return getRange(State: St, Sym); }, Int, Adjustment); |
| 3240 | } |
| 3241 | |
| 3242 | ProgramStateRef |
| 3243 | RangeConstraintManager::assumeSymLE(ProgramStateRef St, SymbolRef Sym, |
| 3244 | const llvm::APSInt &Int, |
| 3245 | const llvm::APSInt &Adjustment) { |
| 3246 | RangeSet New = getSymLERange(St, Sym, Int, Adjustment); |
| 3247 | return setRange(State: St, Sym, Range: New); |
| 3248 | } |
| 3249 | |
| 3250 | ProgramStateRef RangeConstraintManager::assumeSymWithinInclusiveRange( |
| 3251 | ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, |
| 3252 | const llvm::APSInt &To, const llvm::APSInt &Adjustment) { |
| 3253 | RangeSet New = getSymGERange(St: State, Sym, Int: From, Adjustment); |
| 3254 | if (New.isEmpty()) |
| 3255 | return nullptr; |
| 3256 | RangeSet Out = getSymLERange(RS: [&] { return New; }, Int: To, Adjustment); |
| 3257 | return setRange(State, Sym, Range: Out); |
| 3258 | } |
| 3259 | |
| 3260 | ProgramStateRef RangeConstraintManager::assumeSymOutsideInclusiveRange( |
| 3261 | ProgramStateRef State, SymbolRef Sym, const llvm::APSInt &From, |
| 3262 | const llvm::APSInt &To, const llvm::APSInt &Adjustment) { |
| 3263 | RangeSet RangeLT = getSymLTRange(St: State, Sym, Int: From, Adjustment); |
| 3264 | RangeSet RangeGT = getSymGTRange(St: State, Sym, Int: To, Adjustment); |
| 3265 | RangeSet New(F.add(LHS: RangeLT, RHS: RangeGT)); |
| 3266 | return setRange(State, Sym, Range: New); |
| 3267 | } |
| 3268 | |
| 3269 | //===----------------------------------------------------------------------===// |
| 3270 | // Pretty-printing. |
| 3271 | //===----------------------------------------------------------------------===// |
| 3272 | |
| 3273 | void RangeConstraintManager::printJson(raw_ostream &Out, ProgramStateRef State, |
| 3274 | const char *NL, unsigned int Space, |
| 3275 | bool IsDot) const { |
| 3276 | printConstraints(Out, State, NL, Space, IsDot); |
| 3277 | printEquivalenceClasses(Out, State, NL, Space, IsDot); |
| 3278 | printDisequalities(Out, State, NL, Space, IsDot); |
| 3279 | } |
| 3280 | |
| 3281 | void RangeConstraintManager::printValue(raw_ostream &Out, ProgramStateRef State, |
| 3282 | SymbolRef Sym) { |
| 3283 | const RangeSet RS = getRange(State, Sym); |
| 3284 | if (RS.isEmpty()) { |
| 3285 | Out << "<empty rangeset>" ; |
| 3286 | return; |
| 3287 | } |
| 3288 | Out << RS.getBitWidth() << (RS.isUnsigned() ? "u:" : "s:" ); |
| 3289 | RS.dump(OS&: Out); |
| 3290 | } |
| 3291 | |
| 3292 | static std::string toString(const SymbolRef &Sym) { |
| 3293 | std::string S; |
| 3294 | llvm::raw_string_ostream O(S); |
| 3295 | Sym->dumpToStream(os&: O); |
| 3296 | return S; |
| 3297 | } |
| 3298 | |
| 3299 | void RangeConstraintManager::printConstraints(raw_ostream &Out, |
| 3300 | ProgramStateRef State, |
| 3301 | const char *NL, |
| 3302 | unsigned int Space, |
| 3303 | bool IsDot) const { |
| 3304 | ConstraintRangeTy Constraints = State->get<ConstraintRange>(); |
| 3305 | |
| 3306 | Indent(Out, Space, IsDot) << "\"constraints\": " ; |
| 3307 | if (Constraints.isEmpty()) { |
| 3308 | Out << "null," << NL; |
| 3309 | return; |
| 3310 | } |
| 3311 | |
| 3312 | std::map<std::string, RangeSet> OrderedConstraints; |
| 3313 | for (std::pair<EquivalenceClass, RangeSet> P : Constraints) { |
| 3314 | SymbolSet ClassMembers = P.first.getClassMembers(State); |
| 3315 | for (const SymbolRef &ClassMember : ClassMembers) { |
| 3316 | bool insertion_took_place; |
| 3317 | std::tie(args: std::ignore, args&: insertion_took_place) = |
| 3318 | OrderedConstraints.insert(x: {toString(Sym: ClassMember), P.second}); |
| 3319 | assert(insertion_took_place && |
| 3320 | "two symbols should not have the same dump" ); |
| 3321 | } |
| 3322 | } |
| 3323 | |
| 3324 | ++Space; |
| 3325 | Out << '[' << NL; |
| 3326 | bool First = true; |
| 3327 | for (std::pair<std::string, RangeSet> P : OrderedConstraints) { |
| 3328 | if (First) { |
| 3329 | First = false; |
| 3330 | } else { |
| 3331 | Out << ','; |
| 3332 | Out << NL; |
| 3333 | } |
| 3334 | Indent(Out, Space, IsDot) |
| 3335 | << "{ \"symbol\": \"" << P.first << "\", \"range\": \"" ; |
| 3336 | P.second.dump(OS&: Out); |
| 3337 | Out << "\" }" ; |
| 3338 | } |
| 3339 | Out << NL; |
| 3340 | |
| 3341 | --Space; |
| 3342 | Indent(Out, Space, IsDot) << "]," << NL; |
| 3343 | } |
| 3344 | |
| 3345 | static std::string toString(ProgramStateRef State, EquivalenceClass Class) { |
| 3346 | SymbolSet ClassMembers = Class.getClassMembers(State); |
| 3347 | llvm::SmallVector<SymbolRef, 8> (ClassMembers.begin(), |
| 3348 | ClassMembers.end()); |
| 3349 | llvm::sort(C&: ClassMembersSorted, |
| 3350 | Comp: [](const SymbolRef &LHS, const SymbolRef &RHS) { |
| 3351 | return toString(Sym: LHS) < toString(Sym: RHS); |
| 3352 | }); |
| 3353 | |
| 3354 | bool FirstMember = true; |
| 3355 | |
| 3356 | std::string Str; |
| 3357 | llvm::raw_string_ostream Out(Str); |
| 3358 | Out << "[ " ; |
| 3359 | for (SymbolRef ClassMember : ClassMembersSorted) { |
| 3360 | if (FirstMember) |
| 3361 | FirstMember = false; |
| 3362 | else |
| 3363 | Out << ", " ; |
| 3364 | Out << "\"" << ClassMember << "\"" ; |
| 3365 | } |
| 3366 | Out << " ]" ; |
| 3367 | return Str; |
| 3368 | } |
| 3369 | |
| 3370 | void RangeConstraintManager::printEquivalenceClasses(raw_ostream &Out, |
| 3371 | ProgramStateRef State, |
| 3372 | const char *NL, |
| 3373 | unsigned int Space, |
| 3374 | bool IsDot) const { |
| 3375 | ClassMembersTy Members = State->get<ClassMembers>(); |
| 3376 | |
| 3377 | Indent(Out, Space, IsDot) << "\"equivalence_classes\": " ; |
| 3378 | if (Members.isEmpty()) { |
| 3379 | Out << "null," << NL; |
| 3380 | return; |
| 3381 | } |
| 3382 | |
| 3383 | std::set<std::string> ; |
| 3384 | for (std::pair<EquivalenceClass, SymbolSet> ClassToSymbolSet : Members) |
| 3385 | MembersStr.insert(x: toString(State, Class: ClassToSymbolSet.first)); |
| 3386 | |
| 3387 | ++Space; |
| 3388 | Out << '[' << NL; |
| 3389 | bool FirstClass = true; |
| 3390 | for (const std::string &Str : MembersStr) { |
| 3391 | if (FirstClass) { |
| 3392 | FirstClass = false; |
| 3393 | } else { |
| 3394 | Out << ','; |
| 3395 | Out << NL; |
| 3396 | } |
| 3397 | Indent(Out, Space, IsDot); |
| 3398 | Out << Str; |
| 3399 | } |
| 3400 | Out << NL; |
| 3401 | |
| 3402 | --Space; |
| 3403 | Indent(Out, Space, IsDot) << "]," << NL; |
| 3404 | } |
| 3405 | |
| 3406 | void RangeConstraintManager::printDisequalities(raw_ostream &Out, |
| 3407 | ProgramStateRef State, |
| 3408 | const char *NL, |
| 3409 | unsigned int Space, |
| 3410 | bool IsDot) const { |
| 3411 | DisequalityMapTy Disequalities = State->get<DisequalityMap>(); |
| 3412 | |
| 3413 | Indent(Out, Space, IsDot) << "\"disequality_info\": " ; |
| 3414 | if (Disequalities.isEmpty()) { |
| 3415 | Out << "null," << NL; |
| 3416 | return; |
| 3417 | } |
| 3418 | |
| 3419 | // Transform the disequality info to an ordered map of |
| 3420 | // [string -> (ordered set of strings)] |
| 3421 | using EqClassesStrTy = std::set<std::string>; |
| 3422 | using DisequalityInfoStrTy = std::map<std::string, EqClassesStrTy>; |
| 3423 | DisequalityInfoStrTy DisequalityInfoStr; |
| 3424 | for (std::pair<EquivalenceClass, ClassSet> ClassToDisEqSet : Disequalities) { |
| 3425 | EquivalenceClass Class = ClassToDisEqSet.first; |
| 3426 | ClassSet DisequalClasses = ClassToDisEqSet.second; |
| 3427 | EqClassesStrTy ; |
| 3428 | for (EquivalenceClass DisEqClass : DisequalClasses) |
| 3429 | MembersStr.insert(x: toString(State, Class: DisEqClass)); |
| 3430 | DisequalityInfoStr.insert(x: {toString(State, Class), MembersStr}); |
| 3431 | } |
| 3432 | |
| 3433 | ++Space; |
| 3434 | Out << '[' << NL; |
| 3435 | bool FirstClass = true; |
| 3436 | for (std::pair<std::string, EqClassesStrTy> ClassToDisEqSet : |
| 3437 | DisequalityInfoStr) { |
| 3438 | const std::string &Class = ClassToDisEqSet.first; |
| 3439 | if (FirstClass) { |
| 3440 | FirstClass = false; |
| 3441 | } else { |
| 3442 | Out << ','; |
| 3443 | Out << NL; |
| 3444 | } |
| 3445 | Indent(Out, Space, IsDot) << "{" << NL; |
| 3446 | unsigned int DisEqSpace = Space + 1; |
| 3447 | Indent(Out, Space: DisEqSpace, IsDot) << "\"class\": " ; |
| 3448 | Out << Class; |
| 3449 | const EqClassesStrTy &DisequalClasses = ClassToDisEqSet.second; |
| 3450 | if (!DisequalClasses.empty()) { |
| 3451 | Out << "," << NL; |
| 3452 | Indent(Out, Space: DisEqSpace, IsDot) << "\"disequal_to\": [" << NL; |
| 3453 | unsigned int DisEqClassSpace = DisEqSpace + 1; |
| 3454 | Indent(Out, Space: DisEqClassSpace, IsDot); |
| 3455 | bool FirstDisEqClass = true; |
| 3456 | for (const std::string &DisEqClass : DisequalClasses) { |
| 3457 | if (FirstDisEqClass) { |
| 3458 | FirstDisEqClass = false; |
| 3459 | } else { |
| 3460 | Out << ',' << NL; |
| 3461 | Indent(Out, Space: DisEqClassSpace, IsDot); |
| 3462 | } |
| 3463 | Out << DisEqClass; |
| 3464 | } |
| 3465 | Out << "]" << NL; |
| 3466 | } |
| 3467 | Indent(Out, Space, IsDot) << "}" ; |
| 3468 | } |
| 3469 | Out << NL; |
| 3470 | |
| 3471 | --Space; |
| 3472 | Indent(Out, Space, IsDot) << "]," << NL; |
| 3473 | } |
| 3474 | |