| 1 | //===- AArch64.cpp --------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "InputFiles.h" |
| 10 | #include "OutputSections.h" |
| 11 | #include "Symbols.h" |
| 12 | #include "SyntheticSections.h" |
| 13 | #include "Target.h" |
| 14 | #include "TargetImpl.h" |
| 15 | #include "llvm/BinaryFormat/ELF.h" |
| 16 | #include "llvm/Support/Endian.h" |
| 17 | |
| 18 | using namespace llvm; |
| 19 | using namespace llvm::support::endian; |
| 20 | using namespace llvm::ELF; |
| 21 | using namespace lld; |
| 22 | using namespace lld::elf; |
| 23 | |
| 24 | // Page(Expr) is the page address of the expression Expr, defined |
| 25 | // as (Expr & ~0xFFF). (This applies even if the machine page size |
| 26 | // supported by the platform has a different value.) |
| 27 | uint64_t elf::getAArch64Page(uint64_t expr) { |
| 28 | return expr & ~static_cast<uint64_t>(0xFFF); |
| 29 | } |
| 30 | |
| 31 | // A BTI landing pad is a valid target for an indirect branch when the Branch |
| 32 | // Target Identification has been enabled. As linker generated branches are |
| 33 | // via x16 the BTI landing pads are defined as: BTI C, BTI J, BTI JC, PACIASP, |
| 34 | // PACIBSP. |
| 35 | bool elf::isAArch64BTILandingPad(Ctx &ctx, Symbol &s, int64_t a) { |
| 36 | // PLT entries accessed indirectly have a BTI c. |
| 37 | if (s.isInPlt(ctx)) |
| 38 | return true; |
| 39 | Defined *d = dyn_cast<Defined>(Val: &s); |
| 40 | if (!isa_and_nonnull<InputSection>(Val: d->section)) |
| 41 | // All places that we cannot disassemble are responsible for making |
| 42 | // the target a BTI landing pad. |
| 43 | return true; |
| 44 | InputSection *isec = cast<InputSection>(Val: d->section); |
| 45 | uint64_t off = d->value + a; |
| 46 | // Likely user error, but protect ourselves against out of bounds |
| 47 | // access. |
| 48 | if (off >= isec->getSize()) |
| 49 | return true; |
| 50 | const uint8_t *buf = isec->content().begin(); |
| 51 | const uint32_t instr = read32le(P: buf + off); |
| 52 | // All BTI instructions are HINT instructions which all have same encoding |
| 53 | // apart from bits [11:5] |
| 54 | if ((instr & 0xd503201f) == 0xd503201f && |
| 55 | is_contained(Set: {/*PACIASP*/ 0xd503233f, /*PACIBSP*/ 0xd503237f, |
| 56 | /*BTI C*/ 0xd503245f, /*BTI J*/ 0xd503249f, |
| 57 | /*BTI JC*/ 0xd50324df}, |
| 58 | Element: instr)) |
| 59 | return true; |
| 60 | return false; |
| 61 | } |
| 62 | |
| 63 | namespace { |
| 64 | class AArch64 : public TargetInfo { |
| 65 | public: |
| 66 | AArch64(Ctx &); |
| 67 | RelExpr getRelExpr(RelType type, const Symbol &s, |
| 68 | const uint8_t *loc) const override; |
| 69 | RelType getDynRel(RelType type) const override; |
| 70 | int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; |
| 71 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
| 72 | void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; |
| 73 | void writePltHeader(uint8_t *buf) const override; |
| 74 | void writePlt(uint8_t *buf, const Symbol &sym, |
| 75 | uint64_t pltEntryAddr) const override; |
| 76 | bool needsThunk(RelExpr expr, RelType type, const InputFile *file, |
| 77 | uint64_t branchAddr, const Symbol &s, |
| 78 | int64_t a) const override; |
| 79 | uint32_t getThunkSectionSpacing() const override; |
| 80 | bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; |
| 81 | bool usesOnlyLowPageBits(RelType type) const override; |
| 82 | void relocate(uint8_t *loc, const Relocation &rel, |
| 83 | uint64_t val) const override; |
| 84 | RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override; |
| 85 | void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; |
| 86 | void applyBranchToBranchOpt() const override; |
| 87 | |
| 88 | private: |
| 89 | void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| 90 | void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| 91 | void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| 92 | }; |
| 93 | |
| 94 | struct AArch64Relaxer { |
| 95 | Ctx &ctx; |
| 96 | bool safeToRelaxAdrpLdr = false; |
| 97 | |
| 98 | AArch64Relaxer(Ctx &ctx, ArrayRef<Relocation> relocs); |
| 99 | bool tryRelaxAdrpAdd(const Relocation &adrpRel, const Relocation &addRel, |
| 100 | uint64_t secAddr, uint8_t *buf) const; |
| 101 | bool tryRelaxAdrpLdr(const Relocation &adrpRel, const Relocation &ldrRel, |
| 102 | uint64_t secAddr, uint8_t *buf) const; |
| 103 | }; |
| 104 | } // namespace |
| 105 | |
| 106 | // Return the bits [Start, End] from Val shifted Start bits. |
| 107 | // For instance, getBits(0xF0, 4, 8) returns 0xF. |
| 108 | static uint64_t getBits(uint64_t val, int start, int end) { |
| 109 | uint64_t mask = ((uint64_t)1 << (end + 1 - start)) - 1; |
| 110 | return (val >> start) & mask; |
| 111 | } |
| 112 | |
| 113 | AArch64::AArch64(Ctx &ctx) : TargetInfo(ctx) { |
| 114 | copyRel = R_AARCH64_COPY; |
| 115 | relativeRel = R_AARCH64_RELATIVE; |
| 116 | iRelativeRel = R_AARCH64_IRELATIVE; |
| 117 | gotRel = R_AARCH64_GLOB_DAT; |
| 118 | pltRel = R_AARCH64_JUMP_SLOT; |
| 119 | symbolicRel = R_AARCH64_ABS64; |
| 120 | tlsDescRel = R_AARCH64_TLSDESC; |
| 121 | tlsGotRel = R_AARCH64_TLS_TPREL64; |
| 122 | pltHeaderSize = 32; |
| 123 | pltEntrySize = 16; |
| 124 | ipltEntrySize = 16; |
| 125 | defaultMaxPageSize = 65536; |
| 126 | |
| 127 | // Align to the 2 MiB page size (known as a superpage or huge page). |
| 128 | // FreeBSD automatically promotes 2 MiB-aligned allocations. |
| 129 | defaultImageBase = 0x200000; |
| 130 | |
| 131 | needsThunks = true; |
| 132 | } |
| 133 | |
| 134 | RelExpr AArch64::getRelExpr(RelType type, const Symbol &s, |
| 135 | const uint8_t *loc) const { |
| 136 | switch (type) { |
| 137 | case R_AARCH64_ABS16: |
| 138 | case R_AARCH64_ABS32: |
| 139 | case R_AARCH64_ABS64: |
| 140 | case R_AARCH64_ADD_ABS_LO12_NC: |
| 141 | case R_AARCH64_LDST128_ABS_LO12_NC: |
| 142 | case R_AARCH64_LDST16_ABS_LO12_NC: |
| 143 | case R_AARCH64_LDST32_ABS_LO12_NC: |
| 144 | case R_AARCH64_LDST64_ABS_LO12_NC: |
| 145 | case R_AARCH64_LDST8_ABS_LO12_NC: |
| 146 | case R_AARCH64_MOVW_SABS_G0: |
| 147 | case R_AARCH64_MOVW_SABS_G1: |
| 148 | case R_AARCH64_MOVW_SABS_G2: |
| 149 | case R_AARCH64_MOVW_UABS_G0: |
| 150 | case R_AARCH64_MOVW_UABS_G0_NC: |
| 151 | case R_AARCH64_MOVW_UABS_G1: |
| 152 | case R_AARCH64_MOVW_UABS_G1_NC: |
| 153 | case R_AARCH64_MOVW_UABS_G2: |
| 154 | case R_AARCH64_MOVW_UABS_G2_NC: |
| 155 | case R_AARCH64_MOVW_UABS_G3: |
| 156 | return R_ABS; |
| 157 | case R_AARCH64_AUTH_ABS64: |
| 158 | return RE_AARCH64_AUTH; |
| 159 | case R_AARCH64_TLSDESC_ADR_PAGE21: |
| 160 | return RE_AARCH64_TLSDESC_PAGE; |
| 161 | case R_AARCH64_AUTH_TLSDESC_ADR_PAGE21: |
| 162 | return RE_AARCH64_AUTH_TLSDESC_PAGE; |
| 163 | case R_AARCH64_TLSDESC_LD64_LO12: |
| 164 | case R_AARCH64_TLSDESC_ADD_LO12: |
| 165 | return R_TLSDESC; |
| 166 | case R_AARCH64_AUTH_TLSDESC_LD64_LO12: |
| 167 | case R_AARCH64_AUTH_TLSDESC_ADD_LO12: |
| 168 | return RE_AARCH64_AUTH_TLSDESC; |
| 169 | case R_AARCH64_TLSDESC_CALL: |
| 170 | return R_TLSDESC_CALL; |
| 171 | case R_AARCH64_TLSLE_ADD_TPREL_HI12: |
| 172 | case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: |
| 173 | case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC: |
| 174 | case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC: |
| 175 | case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC: |
| 176 | case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC: |
| 177 | case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC: |
| 178 | case R_AARCH64_TLSLE_MOVW_TPREL_G0: |
| 179 | case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC: |
| 180 | case R_AARCH64_TLSLE_MOVW_TPREL_G1: |
| 181 | case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC: |
| 182 | case R_AARCH64_TLSLE_MOVW_TPREL_G2: |
| 183 | return R_TPREL; |
| 184 | case R_AARCH64_CALL26: |
| 185 | case R_AARCH64_CONDBR19: |
| 186 | case R_AARCH64_JUMP26: |
| 187 | case R_AARCH64_TSTBR14: |
| 188 | return R_PLT_PC; |
| 189 | case R_AARCH64_PLT32: |
| 190 | const_cast<Symbol &>(s).thunkAccessed = true; |
| 191 | return R_PLT_PC; |
| 192 | case R_AARCH64_PREL16: |
| 193 | case R_AARCH64_PREL32: |
| 194 | case R_AARCH64_PREL64: |
| 195 | case R_AARCH64_ADR_PREL_LO21: |
| 196 | case R_AARCH64_LD_PREL_LO19: |
| 197 | case R_AARCH64_MOVW_PREL_G0: |
| 198 | case R_AARCH64_MOVW_PREL_G0_NC: |
| 199 | case R_AARCH64_MOVW_PREL_G1: |
| 200 | case R_AARCH64_MOVW_PREL_G1_NC: |
| 201 | case R_AARCH64_MOVW_PREL_G2: |
| 202 | case R_AARCH64_MOVW_PREL_G2_NC: |
| 203 | case R_AARCH64_MOVW_PREL_G3: |
| 204 | return R_PC; |
| 205 | case R_AARCH64_ADR_PREL_PG_HI21: |
| 206 | case R_AARCH64_ADR_PREL_PG_HI21_NC: |
| 207 | return RE_AARCH64_PAGE_PC; |
| 208 | case R_AARCH64_LD64_GOT_LO12_NC: |
| 209 | case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: |
| 210 | return R_GOT; |
| 211 | case R_AARCH64_AUTH_LD64_GOT_LO12_NC: |
| 212 | case R_AARCH64_AUTH_GOT_ADD_LO12_NC: |
| 213 | return RE_AARCH64_AUTH_GOT; |
| 214 | case R_AARCH64_AUTH_GOT_LD_PREL19: |
| 215 | case R_AARCH64_AUTH_GOT_ADR_PREL_LO21: |
| 216 | return RE_AARCH64_AUTH_GOT_PC; |
| 217 | case R_AARCH64_LD64_GOTPAGE_LO15: |
| 218 | return RE_AARCH64_GOT_PAGE; |
| 219 | case R_AARCH64_ADR_GOT_PAGE: |
| 220 | case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: |
| 221 | return RE_AARCH64_GOT_PAGE_PC; |
| 222 | case R_AARCH64_AUTH_ADR_GOT_PAGE: |
| 223 | return RE_AARCH64_AUTH_GOT_PAGE_PC; |
| 224 | case R_AARCH64_GOTPCREL32: |
| 225 | case R_AARCH64_GOT_LD_PREL19: |
| 226 | return R_GOT_PC; |
| 227 | case R_AARCH64_NONE: |
| 228 | return R_NONE; |
| 229 | default: |
| 230 | Err(ctx) << getErrorLoc(ctx, loc) << "unknown relocation (" << type.v |
| 231 | << ") against symbol " << &s; |
| 232 | return R_NONE; |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | RelExpr AArch64::adjustTlsExpr(RelType type, RelExpr expr) const { |
| 237 | if (expr == R_RELAX_TLS_GD_TO_IE) { |
| 238 | if (type == R_AARCH64_TLSDESC_ADR_PAGE21) |
| 239 | return RE_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC; |
| 240 | return R_RELAX_TLS_GD_TO_IE_ABS; |
| 241 | } |
| 242 | return expr; |
| 243 | } |
| 244 | |
| 245 | bool AArch64::usesOnlyLowPageBits(RelType type) const { |
| 246 | switch (type) { |
| 247 | default: |
| 248 | return false; |
| 249 | case R_AARCH64_ADD_ABS_LO12_NC: |
| 250 | case R_AARCH64_LD64_GOT_LO12_NC: |
| 251 | case R_AARCH64_LDST128_ABS_LO12_NC: |
| 252 | case R_AARCH64_LDST16_ABS_LO12_NC: |
| 253 | case R_AARCH64_LDST32_ABS_LO12_NC: |
| 254 | case R_AARCH64_LDST64_ABS_LO12_NC: |
| 255 | case R_AARCH64_LDST8_ABS_LO12_NC: |
| 256 | case R_AARCH64_TLSDESC_ADD_LO12: |
| 257 | case R_AARCH64_TLSDESC_LD64_LO12: |
| 258 | case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: |
| 259 | return true; |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | RelType AArch64::getDynRel(RelType type) const { |
| 264 | if (type == R_AARCH64_ABS64 || type == R_AARCH64_AUTH_ABS64) |
| 265 | return type; |
| 266 | return R_AARCH64_NONE; |
| 267 | } |
| 268 | |
| 269 | int64_t AArch64::getImplicitAddend(const uint8_t *buf, RelType type) const { |
| 270 | switch (type) { |
| 271 | case R_AARCH64_TLSDESC: |
| 272 | return read64(ctx, p: buf + 8); |
| 273 | case R_AARCH64_NONE: |
| 274 | case R_AARCH64_GLOB_DAT: |
| 275 | case R_AARCH64_AUTH_GLOB_DAT: |
| 276 | case R_AARCH64_JUMP_SLOT: |
| 277 | return 0; |
| 278 | case R_AARCH64_ABS16: |
| 279 | case R_AARCH64_PREL16: |
| 280 | return SignExtend64<16>(x: read16(ctx, p: buf)); |
| 281 | case R_AARCH64_ABS32: |
| 282 | case R_AARCH64_PREL32: |
| 283 | return SignExtend64<32>(x: read32(ctx, p: buf)); |
| 284 | case R_AARCH64_ABS64: |
| 285 | case R_AARCH64_PREL64: |
| 286 | case R_AARCH64_RELATIVE: |
| 287 | case R_AARCH64_IRELATIVE: |
| 288 | case R_AARCH64_TLS_TPREL64: |
| 289 | return read64(ctx, p: buf); |
| 290 | |
| 291 | // The following relocation types all point at instructions, and |
| 292 | // relocate an immediate field in the instruction. |
| 293 | // |
| 294 | // The general rule, from AAELF64 §5.7.2 "Addends and PC-bias", |
| 295 | // says: "If the relocation relocates an instruction the immediate |
| 296 | // field of the instruction is extracted, scaled as required by |
| 297 | // the instruction field encoding, and sign-extended to 64 bits". |
| 298 | |
| 299 | // The R_AARCH64_MOVW family operates on wide MOV/MOVK/MOVZ |
| 300 | // instructions, which have a 16-bit immediate field with its low |
| 301 | // bit in bit 5 of the instruction encoding. When the immediate |
| 302 | // field is used as an implicit addend for REL-type relocations, |
| 303 | // it is treated as added to the low bits of the output value, not |
| 304 | // shifted depending on the relocation type. |
| 305 | // |
| 306 | // This allows REL relocations to express the requirement 'please |
| 307 | // add 12345 to this symbol value and give me the four 16-bit |
| 308 | // chunks of the result', by putting the same addend 12345 in all |
| 309 | // four instructions. Carries between the 16-bit chunks are |
| 310 | // handled correctly, because the whole 64-bit addition is done |
| 311 | // once per relocation. |
| 312 | case R_AARCH64_MOVW_UABS_G0: |
| 313 | case R_AARCH64_MOVW_UABS_G0_NC: |
| 314 | case R_AARCH64_MOVW_UABS_G1: |
| 315 | case R_AARCH64_MOVW_UABS_G1_NC: |
| 316 | case R_AARCH64_MOVW_UABS_G2: |
| 317 | case R_AARCH64_MOVW_UABS_G2_NC: |
| 318 | case R_AARCH64_MOVW_UABS_G3: |
| 319 | return SignExtend64<16>(x: getBits(val: read32le(P: buf), start: 5, end: 20)); |
| 320 | |
| 321 | // R_AARCH64_TSTBR14 points at a TBZ or TBNZ instruction, which |
| 322 | // has a 14-bit offset measured in instructions, i.e. shifted left |
| 323 | // by 2. |
| 324 | case R_AARCH64_TSTBR14: |
| 325 | return SignExtend64<16>(x: getBits(val: read32le(P: buf), start: 5, end: 18) << 2); |
| 326 | |
| 327 | // R_AARCH64_CONDBR19 operates on the ordinary B.cond instruction, |
| 328 | // which has a 19-bit offset measured in instructions. |
| 329 | // |
| 330 | // R_AARCH64_LD_PREL_LO19 operates on the LDR (literal) |
| 331 | // instruction, which also has a 19-bit offset, measured in 4-byte |
| 332 | // chunks. So the calculation is the same as for |
| 333 | // R_AARCH64_CONDBR19. |
| 334 | case R_AARCH64_CONDBR19: |
| 335 | case R_AARCH64_LD_PREL_LO19: |
| 336 | return SignExtend64<21>(x: getBits(val: read32le(P: buf), start: 5, end: 23) << 2); |
| 337 | |
| 338 | // R_AARCH64_ADD_ABS_LO12_NC operates on ADD (immediate). The |
| 339 | // immediate can optionally be shifted left by 12 bits, but this |
| 340 | // relocation is intended for the case where it is not. |
| 341 | case R_AARCH64_ADD_ABS_LO12_NC: |
| 342 | return SignExtend64<12>(x: getBits(val: read32le(P: buf), start: 10, end: 21)); |
| 343 | |
| 344 | // R_AARCH64_ADR_PREL_LO21 operates on an ADR instruction, whose |
| 345 | // 21-bit immediate is split between two bits high up in the word |
| 346 | // (in fact the two _lowest_ order bits of the value) and 19 bits |
| 347 | // lower down. |
| 348 | // |
| 349 | // R_AARCH64_ADR_PREL_PG_HI21[_NC] operate on an ADRP instruction, |
| 350 | // which encodes the immediate in the same way, but will shift it |
| 351 | // left by 12 bits when the instruction executes. For the same |
| 352 | // reason as the MOVW family, we don't apply that left shift here. |
| 353 | case R_AARCH64_ADR_PREL_LO21: |
| 354 | case R_AARCH64_ADR_PREL_PG_HI21: |
| 355 | case R_AARCH64_ADR_PREL_PG_HI21_NC: |
| 356 | return SignExtend64<21>(x: (getBits(val: read32le(P: buf), start: 5, end: 23) << 2) | |
| 357 | getBits(val: read32le(P: buf), start: 29, end: 30)); |
| 358 | |
| 359 | // R_AARCH64_{JUMP,CALL}26 operate on B and BL, which have a |
| 360 | // 26-bit offset measured in instructions. |
| 361 | case R_AARCH64_JUMP26: |
| 362 | case R_AARCH64_CALL26: |
| 363 | return SignExtend64<28>(x: getBits(val: read32le(P: buf), start: 0, end: 25) << 2); |
| 364 | |
| 365 | default: |
| 366 | InternalErr(ctx, buf) << "cannot read addend for relocation " << type; |
| 367 | return 0; |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | void AArch64::writeGotPlt(uint8_t *buf, const Symbol &) const { |
| 372 | write64(ctx, p: buf, v: ctx.in.plt->getVA()); |
| 373 | } |
| 374 | |
| 375 | void AArch64::writeIgotPlt(uint8_t *buf, const Symbol &s) const { |
| 376 | if (ctx.arg.writeAddends) |
| 377 | write64(ctx, p: buf, v: s.getVA(ctx)); |
| 378 | } |
| 379 | |
| 380 | void AArch64::(uint8_t *buf) const { |
| 381 | const uint8_t pltData[] = { |
| 382 | 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]! |
| 383 | 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2])) |
| 384 | 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))] |
| 385 | 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2])) |
| 386 | 0x20, 0x02, 0x1f, 0xd6, // br x17 |
| 387 | 0x1f, 0x20, 0x03, 0xd5, // nop |
| 388 | 0x1f, 0x20, 0x03, 0xd5, // nop |
| 389 | 0x1f, 0x20, 0x03, 0xd5 // nop |
| 390 | }; |
| 391 | memcpy(dest: buf, src: pltData, n: sizeof(pltData)); |
| 392 | |
| 393 | uint64_t got = ctx.in.gotPlt->getVA(); |
| 394 | uint64_t plt = ctx.in.plt->getVA(); |
| 395 | relocateNoSym(loc: buf + 4, type: R_AARCH64_ADR_PREL_PG_HI21, |
| 396 | val: getAArch64Page(expr: got + 16) - getAArch64Page(expr: plt + 4)); |
| 397 | relocateNoSym(loc: buf + 8, type: R_AARCH64_LDST64_ABS_LO12_NC, val: got + 16); |
| 398 | relocateNoSym(loc: buf + 12, type: R_AARCH64_ADD_ABS_LO12_NC, val: got + 16); |
| 399 | } |
| 400 | |
| 401 | void AArch64::writePlt(uint8_t *buf, const Symbol &sym, |
| 402 | uint64_t pltEntryAddr) const { |
| 403 | const uint8_t inst[] = { |
| 404 | 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n])) |
| 405 | 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))] |
| 406 | 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[n])) |
| 407 | 0x20, 0x02, 0x1f, 0xd6 // br x17 |
| 408 | }; |
| 409 | memcpy(dest: buf, src: inst, n: sizeof(inst)); |
| 410 | |
| 411 | uint64_t gotPltEntryAddr = sym.getGotPltVA(ctx); |
| 412 | relocateNoSym(loc: buf, type: R_AARCH64_ADR_PREL_PG_HI21, |
| 413 | val: getAArch64Page(expr: gotPltEntryAddr) - getAArch64Page(expr: pltEntryAddr)); |
| 414 | relocateNoSym(loc: buf + 4, type: R_AARCH64_LDST64_ABS_LO12_NC, val: gotPltEntryAddr); |
| 415 | relocateNoSym(loc: buf + 8, type: R_AARCH64_ADD_ABS_LO12_NC, val: gotPltEntryAddr); |
| 416 | } |
| 417 | |
| 418 | bool AArch64::needsThunk(RelExpr expr, RelType type, const InputFile *file, |
| 419 | uint64_t branchAddr, const Symbol &s, |
| 420 | int64_t a) const { |
| 421 | // If s is an undefined weak symbol and does not have a PLT entry then it will |
| 422 | // be resolved as a branch to the next instruction. If it is hidden, its |
| 423 | // binding has been converted to local, so we just check isUndefined() here. A |
| 424 | // undefined non-weak symbol will have been errored. |
| 425 | if (s.isUndefined() && !s.isInPlt(ctx)) |
| 426 | return false; |
| 427 | // ELF for the ARM 64-bit architecture, section Call and Jump relocations |
| 428 | // only permits range extension thunks for R_AARCH64_CALL26 and |
| 429 | // R_AARCH64_JUMP26 relocation types. |
| 430 | if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 && |
| 431 | type != R_AARCH64_PLT32) |
| 432 | return false; |
| 433 | uint64_t dst = expr == R_PLT_PC ? s.getPltVA(ctx) : s.getVA(ctx, addend: a); |
| 434 | return !inBranchRange(type, src: branchAddr, dst); |
| 435 | } |
| 436 | |
| 437 | uint32_t AArch64::getThunkSectionSpacing() const { |
| 438 | // See comment in Arch/ARM.cpp for a more detailed explanation of |
| 439 | // getThunkSectionSpacing(). For AArch64 the only branches we are permitted to |
| 440 | // Thunk have a range of +/- 128 MiB |
| 441 | return (128 * 1024 * 1024) - 0x30000; |
| 442 | } |
| 443 | |
| 444 | bool AArch64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { |
| 445 | if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 && |
| 446 | type != R_AARCH64_PLT32) |
| 447 | return true; |
| 448 | // The AArch64 call and unconditional branch instructions have a range of |
| 449 | // +/- 128 MiB. The PLT32 relocation supports a range up to +/- 2 GiB. |
| 450 | uint64_t range = |
| 451 | type == R_AARCH64_PLT32 ? (UINT64_C(1) << 31) : (128 * 1024 * 1024); |
| 452 | if (dst > src) { |
| 453 | // Immediate of branch is signed. |
| 454 | range -= 4; |
| 455 | return dst - src <= range; |
| 456 | } |
| 457 | return src - dst <= range; |
| 458 | } |
| 459 | |
| 460 | static void write32AArch64Addr(uint8_t *l, uint64_t imm) { |
| 461 | uint32_t immLo = (imm & 0x3) << 29; |
| 462 | uint32_t immHi = (imm & 0x1FFFFC) << 3; |
| 463 | uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3); |
| 464 | write32le(P: l, V: (read32le(P: l) & ~mask) | immLo | immHi); |
| 465 | } |
| 466 | |
| 467 | static void writeMaskedBits32le(uint8_t *p, int32_t v, uint32_t mask) { |
| 468 | write32le(P: p, V: (read32le(P: p) & ~mask) | v); |
| 469 | } |
| 470 | |
| 471 | // Update the immediate field in a AARCH64 ldr, str, and add instruction. |
| 472 | static void write32Imm12(uint8_t *l, uint64_t imm) { |
| 473 | writeMaskedBits32le(p: l, v: (imm & 0xFFF) << 10, mask: 0xFFF << 10); |
| 474 | } |
| 475 | |
| 476 | // Update the immediate field in an AArch64 movk, movn or movz instruction |
| 477 | // for a signed relocation, and update the opcode of a movn or movz instruction |
| 478 | // to match the sign of the operand. |
| 479 | static void writeSMovWImm(uint8_t *loc, uint32_t imm) { |
| 480 | uint32_t inst = read32le(P: loc); |
| 481 | // Opcode field is bits 30, 29, with 10 = movz, 00 = movn and 11 = movk. |
| 482 | if (!(inst & (1 << 29))) { |
| 483 | // movn or movz. |
| 484 | if (imm & 0x10000) { |
| 485 | // Change opcode to movn, which takes an inverted operand. |
| 486 | imm ^= 0xFFFF; |
| 487 | inst &= ~(1 << 30); |
| 488 | } else { |
| 489 | // Change opcode to movz. |
| 490 | inst |= 1 << 30; |
| 491 | } |
| 492 | } |
| 493 | write32le(P: loc, V: inst | ((imm & 0xFFFF) << 5)); |
| 494 | } |
| 495 | |
| 496 | void AArch64::relocate(uint8_t *loc, const Relocation &rel, |
| 497 | uint64_t val) const { |
| 498 | switch (rel.type) { |
| 499 | case R_AARCH64_ABS16: |
| 500 | case R_AARCH64_PREL16: |
| 501 | checkIntUInt(ctx, loc, v: val, n: 16, rel); |
| 502 | write16(ctx, p: loc, v: val); |
| 503 | break; |
| 504 | case R_AARCH64_ABS32: |
| 505 | case R_AARCH64_PREL32: |
| 506 | checkIntUInt(ctx, loc, v: val, n: 32, rel); |
| 507 | write32(ctx, p: loc, v: val); |
| 508 | break; |
| 509 | case R_AARCH64_PLT32: |
| 510 | case R_AARCH64_GOTPCREL32: |
| 511 | checkInt(ctx, loc, v: val, n: 32, rel); |
| 512 | write32(ctx, p: loc, v: val); |
| 513 | break; |
| 514 | case R_AARCH64_ABS64: |
| 515 | // AArch64 relocations to tagged symbols have extended semantics, as |
| 516 | // described here: |
| 517 | // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#841extended-semantics-of-r_aarch64_relative. |
| 518 | // tl;dr: encode the symbol's special addend in the place, which is an |
| 519 | // offset to the point where the logical tag is derived from. Quick hack, if |
| 520 | // the addend is within the symbol's bounds, no need to encode the tag |
| 521 | // derivation offset. |
| 522 | if (rel.sym && rel.sym->isTagged() && |
| 523 | (rel.addend < 0 || |
| 524 | rel.addend >= static_cast<int64_t>(rel.sym->getSize()))) |
| 525 | write64(ctx, p: loc, v: -rel.addend); |
| 526 | else |
| 527 | write64(ctx, p: loc, v: val); |
| 528 | break; |
| 529 | case R_AARCH64_PREL64: |
| 530 | write64(ctx, p: loc, v: val); |
| 531 | break; |
| 532 | case R_AARCH64_AUTH_ABS64: |
| 533 | // If val is wider than 32 bits, the relocation must have been moved from |
| 534 | // .relr.auth.dyn to .rela.dyn, and the addend write is not needed. |
| 535 | // |
| 536 | // If val fits in 32 bits, we have two potential scenarios: |
| 537 | // * True RELR: Write the 32-bit `val`. |
| 538 | // * RELA: Even if the value now fits in 32 bits, it might have been |
| 539 | // converted from RELR during an iteration in |
| 540 | // finalizeAddressDependentContent(). Writing the value is harmless |
| 541 | // because dynamic linking ignores it. |
| 542 | if (isInt<32>(x: val)) |
| 543 | write32(ctx, p: loc, v: val); |
| 544 | break; |
| 545 | case R_AARCH64_ADD_ABS_LO12_NC: |
| 546 | case R_AARCH64_AUTH_GOT_ADD_LO12_NC: |
| 547 | write32Imm12(l: loc, imm: val); |
| 548 | break; |
| 549 | case R_AARCH64_ADR_GOT_PAGE: |
| 550 | case R_AARCH64_AUTH_ADR_GOT_PAGE: |
| 551 | case R_AARCH64_ADR_PREL_PG_HI21: |
| 552 | case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: |
| 553 | case R_AARCH64_TLSDESC_ADR_PAGE21: |
| 554 | case R_AARCH64_AUTH_TLSDESC_ADR_PAGE21: |
| 555 | checkInt(ctx, loc, v: val, n: 33, rel); |
| 556 | [[fallthrough]]; |
| 557 | case R_AARCH64_ADR_PREL_PG_HI21_NC: |
| 558 | write32AArch64Addr(l: loc, imm: val >> 12); |
| 559 | break; |
| 560 | case R_AARCH64_ADR_PREL_LO21: |
| 561 | case R_AARCH64_AUTH_GOT_ADR_PREL_LO21: |
| 562 | checkInt(ctx, loc, v: val, n: 21, rel); |
| 563 | write32AArch64Addr(l: loc, imm: val); |
| 564 | break; |
| 565 | case R_AARCH64_JUMP26: |
| 566 | // Normally we would just write the bits of the immediate field, however |
| 567 | // when patching instructions for the cpu errata fix -fix-cortex-a53-843419 |
| 568 | // we want to replace a non-branch instruction with a branch immediate |
| 569 | // instruction. By writing all the bits of the instruction including the |
| 570 | // opcode and the immediate (0 001 | 01 imm26) we can do this |
| 571 | // transformation by placing a R_AARCH64_JUMP26 relocation at the offset of |
| 572 | // the instruction we want to patch. |
| 573 | write32le(P: loc, V: 0x14000000); |
| 574 | [[fallthrough]]; |
| 575 | case R_AARCH64_CALL26: |
| 576 | checkInt(ctx, loc, v: val, n: 28, rel); |
| 577 | writeMaskedBits32le(p: loc, v: (val & 0x0FFFFFFC) >> 2, mask: 0x0FFFFFFC >> 2); |
| 578 | break; |
| 579 | case R_AARCH64_CONDBR19: |
| 580 | case R_AARCH64_LD_PREL_LO19: |
| 581 | case R_AARCH64_GOT_LD_PREL19: |
| 582 | case R_AARCH64_AUTH_GOT_LD_PREL19: |
| 583 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
| 584 | checkInt(ctx, loc, v: val, n: 21, rel); |
| 585 | writeMaskedBits32le(p: loc, v: (val & 0x1FFFFC) << 3, mask: 0x1FFFFC << 3); |
| 586 | break; |
| 587 | case R_AARCH64_LDST8_ABS_LO12_NC: |
| 588 | case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC: |
| 589 | write32Imm12(l: loc, imm: getBits(val, start: 0, end: 11)); |
| 590 | break; |
| 591 | case R_AARCH64_LDST16_ABS_LO12_NC: |
| 592 | case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC: |
| 593 | checkAlignment(ctx, loc, v: val, n: 2, rel); |
| 594 | write32Imm12(l: loc, imm: getBits(val, start: 1, end: 11)); |
| 595 | break; |
| 596 | case R_AARCH64_LDST32_ABS_LO12_NC: |
| 597 | case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC: |
| 598 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
| 599 | write32Imm12(l: loc, imm: getBits(val, start: 2, end: 11)); |
| 600 | break; |
| 601 | case R_AARCH64_LDST64_ABS_LO12_NC: |
| 602 | case R_AARCH64_LD64_GOT_LO12_NC: |
| 603 | case R_AARCH64_AUTH_LD64_GOT_LO12_NC: |
| 604 | case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: |
| 605 | case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC: |
| 606 | case R_AARCH64_TLSDESC_LD64_LO12: |
| 607 | case R_AARCH64_AUTH_TLSDESC_LD64_LO12: |
| 608 | checkAlignment(ctx, loc, v: val, n: 8, rel); |
| 609 | write32Imm12(l: loc, imm: getBits(val, start: 3, end: 11)); |
| 610 | break; |
| 611 | case R_AARCH64_LDST128_ABS_LO12_NC: |
| 612 | case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC: |
| 613 | checkAlignment(ctx, loc, v: val, n: 16, rel); |
| 614 | write32Imm12(l: loc, imm: getBits(val, start: 4, end: 11)); |
| 615 | break; |
| 616 | case R_AARCH64_LD64_GOTPAGE_LO15: |
| 617 | checkAlignment(ctx, loc, v: val, n: 8, rel); |
| 618 | write32Imm12(l: loc, imm: getBits(val, start: 3, end: 14)); |
| 619 | break; |
| 620 | case R_AARCH64_MOVW_UABS_G0: |
| 621 | checkUInt(ctx, loc, v: val, n: 16, rel); |
| 622 | [[fallthrough]]; |
| 623 | case R_AARCH64_MOVW_UABS_G0_NC: |
| 624 | writeMaskedBits32le(p: loc, v: (val & 0xFFFF) << 5, mask: 0xFFFF << 5); |
| 625 | break; |
| 626 | case R_AARCH64_MOVW_UABS_G1: |
| 627 | checkUInt(ctx, loc, v: val, n: 32, rel); |
| 628 | [[fallthrough]]; |
| 629 | case R_AARCH64_MOVW_UABS_G1_NC: |
| 630 | writeMaskedBits32le(p: loc, v: (val & 0xFFFF0000) >> 11, mask: 0xFFFF0000 >> 11); |
| 631 | break; |
| 632 | case R_AARCH64_MOVW_UABS_G2: |
| 633 | checkUInt(ctx, loc, v: val, n: 48, rel); |
| 634 | [[fallthrough]]; |
| 635 | case R_AARCH64_MOVW_UABS_G2_NC: |
| 636 | writeMaskedBits32le(p: loc, v: (val & 0xFFFF00000000) >> 27, |
| 637 | mask: 0xFFFF00000000 >> 27); |
| 638 | break; |
| 639 | case R_AARCH64_MOVW_UABS_G3: |
| 640 | writeMaskedBits32le(p: loc, v: (val & 0xFFFF000000000000) >> 43, |
| 641 | mask: 0xFFFF000000000000 >> 43); |
| 642 | break; |
| 643 | case R_AARCH64_MOVW_PREL_G0: |
| 644 | case R_AARCH64_MOVW_SABS_G0: |
| 645 | case R_AARCH64_TLSLE_MOVW_TPREL_G0: |
| 646 | checkInt(ctx, loc, v: val, n: 17, rel); |
| 647 | [[fallthrough]]; |
| 648 | case R_AARCH64_MOVW_PREL_G0_NC: |
| 649 | case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC: |
| 650 | writeSMovWImm(loc, imm: val); |
| 651 | break; |
| 652 | case R_AARCH64_MOVW_PREL_G1: |
| 653 | case R_AARCH64_MOVW_SABS_G1: |
| 654 | case R_AARCH64_TLSLE_MOVW_TPREL_G1: |
| 655 | checkInt(ctx, loc, v: val, n: 33, rel); |
| 656 | [[fallthrough]]; |
| 657 | case R_AARCH64_MOVW_PREL_G1_NC: |
| 658 | case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC: |
| 659 | writeSMovWImm(loc, imm: val >> 16); |
| 660 | break; |
| 661 | case R_AARCH64_MOVW_PREL_G2: |
| 662 | case R_AARCH64_MOVW_SABS_G2: |
| 663 | case R_AARCH64_TLSLE_MOVW_TPREL_G2: |
| 664 | checkInt(ctx, loc, v: val, n: 49, rel); |
| 665 | [[fallthrough]]; |
| 666 | case R_AARCH64_MOVW_PREL_G2_NC: |
| 667 | writeSMovWImm(loc, imm: val >> 32); |
| 668 | break; |
| 669 | case R_AARCH64_MOVW_PREL_G3: |
| 670 | writeSMovWImm(loc, imm: val >> 48); |
| 671 | break; |
| 672 | case R_AARCH64_TSTBR14: |
| 673 | checkInt(ctx, loc, v: val, n: 16, rel); |
| 674 | writeMaskedBits32le(p: loc, v: (val & 0xFFFC) << 3, mask: 0xFFFC << 3); |
| 675 | break; |
| 676 | case R_AARCH64_TLSLE_ADD_TPREL_HI12: |
| 677 | checkUInt(ctx, loc, v: val, n: 24, rel); |
| 678 | write32Imm12(l: loc, imm: val >> 12); |
| 679 | break; |
| 680 | case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: |
| 681 | case R_AARCH64_TLSDESC_ADD_LO12: |
| 682 | case R_AARCH64_AUTH_TLSDESC_ADD_LO12: |
| 683 | write32Imm12(l: loc, imm: val); |
| 684 | break; |
| 685 | case R_AARCH64_TLSDESC: |
| 686 | // For R_AARCH64_TLSDESC the addend is stored in the second 64-bit word. |
| 687 | write64(ctx, p: loc + 8, v: val); |
| 688 | break; |
| 689 | default: |
| 690 | llvm_unreachable("unknown relocation" ); |
| 691 | } |
| 692 | } |
| 693 | |
| 694 | void AArch64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, |
| 695 | uint64_t val) const { |
| 696 | // TLSDESC Global-Dynamic relocation are in the form: |
| 697 | // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] |
| 698 | // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12] |
| 699 | // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12] |
| 700 | // .tlsdesccall [R_AARCH64_TLSDESC_CALL] |
| 701 | // blr x1 |
| 702 | // And it can optimized to: |
| 703 | // movz x0, #0x0, lsl #16 |
| 704 | // movk x0, #0x10 |
| 705 | // nop |
| 706 | // nop |
| 707 | checkUInt(ctx, loc, v: val, n: 32, rel); |
| 708 | |
| 709 | switch (rel.type) { |
| 710 | case R_AARCH64_TLSDESC_ADD_LO12: |
| 711 | case R_AARCH64_TLSDESC_CALL: |
| 712 | write32le(P: loc, V: 0xd503201f); // nop |
| 713 | return; |
| 714 | case R_AARCH64_TLSDESC_ADR_PAGE21: |
| 715 | write32le(P: loc, V: 0xd2a00000 | (((val >> 16) & 0xffff) << 5)); // movz |
| 716 | return; |
| 717 | case R_AARCH64_TLSDESC_LD64_LO12: |
| 718 | write32le(P: loc, V: 0xf2800000 | ((val & 0xffff) << 5)); // movk |
| 719 | return; |
| 720 | default: |
| 721 | llvm_unreachable("unsupported relocation for TLS GD to LE relaxation" ); |
| 722 | } |
| 723 | } |
| 724 | |
| 725 | void AArch64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, |
| 726 | uint64_t val) const { |
| 727 | // TLSDESC Global-Dynamic relocation are in the form: |
| 728 | // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] |
| 729 | // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12] |
| 730 | // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12] |
| 731 | // .tlsdesccall [R_AARCH64_TLSDESC_CALL] |
| 732 | // blr x1 |
| 733 | // And it can optimized to: |
| 734 | // adrp x0, :gottprel:v |
| 735 | // ldr x0, [x0, :gottprel_lo12:v] |
| 736 | // nop |
| 737 | // nop |
| 738 | |
| 739 | switch (rel.type) { |
| 740 | case R_AARCH64_TLSDESC_ADD_LO12: |
| 741 | case R_AARCH64_TLSDESC_CALL: |
| 742 | write32le(P: loc, V: 0xd503201f); // nop |
| 743 | break; |
| 744 | case R_AARCH64_TLSDESC_ADR_PAGE21: |
| 745 | write32le(P: loc, V: 0x90000000); // adrp |
| 746 | relocateNoSym(loc, type: R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, val); |
| 747 | break; |
| 748 | case R_AARCH64_TLSDESC_LD64_LO12: |
| 749 | write32le(P: loc, V: 0xf9400000); // ldr |
| 750 | relocateNoSym(loc, type: R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, val); |
| 751 | break; |
| 752 | default: |
| 753 | llvm_unreachable("unsupported relocation for TLS GD to LE relaxation" ); |
| 754 | } |
| 755 | } |
| 756 | |
| 757 | void AArch64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, |
| 758 | uint64_t val) const { |
| 759 | checkUInt(ctx, loc, v: val, n: 32, rel); |
| 760 | |
| 761 | if (rel.type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) { |
| 762 | // Generate MOVZ. |
| 763 | uint32_t regNo = read32le(P: loc) & 0x1f; |
| 764 | write32le(P: loc, V: (0xd2a00000 | regNo) | (((val >> 16) & 0xffff) << 5)); |
| 765 | return; |
| 766 | } |
| 767 | if (rel.type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) { |
| 768 | // Generate MOVK. |
| 769 | uint32_t regNo = read32le(P: loc) & 0x1f; |
| 770 | write32le(P: loc, V: (0xf2800000 | regNo) | ((val & 0xffff) << 5)); |
| 771 | return; |
| 772 | } |
| 773 | llvm_unreachable("invalid relocation for TLS IE to LE relaxation" ); |
| 774 | } |
| 775 | |
| 776 | AArch64Relaxer::AArch64Relaxer(Ctx &ctx, ArrayRef<Relocation> relocs) |
| 777 | : ctx(ctx) { |
| 778 | if (!ctx.arg.relax) |
| 779 | return; |
| 780 | // Check if R_AARCH64_ADR_GOT_PAGE and R_AARCH64_LD64_GOT_LO12_NC |
| 781 | // always appear in pairs. |
| 782 | size_t i = 0; |
| 783 | const size_t size = relocs.size(); |
| 784 | for (; i != size; ++i) { |
| 785 | if (relocs[i].type == R_AARCH64_ADR_GOT_PAGE) { |
| 786 | if (i + 1 < size && relocs[i + 1].type == R_AARCH64_LD64_GOT_LO12_NC) { |
| 787 | ++i; |
| 788 | continue; |
| 789 | } |
| 790 | break; |
| 791 | } else if (relocs[i].type == R_AARCH64_LD64_GOT_LO12_NC) { |
| 792 | break; |
| 793 | } |
| 794 | } |
| 795 | safeToRelaxAdrpLdr = i == size; |
| 796 | } |
| 797 | |
| 798 | bool AArch64Relaxer::tryRelaxAdrpAdd(const Relocation &adrpRel, |
| 799 | const Relocation &addRel, uint64_t secAddr, |
| 800 | uint8_t *buf) const { |
| 801 | // When the address of sym is within the range of ADR then |
| 802 | // we may relax |
| 803 | // ADRP xn, sym |
| 804 | // ADD xn, xn, :lo12: sym |
| 805 | // to |
| 806 | // NOP |
| 807 | // ADR xn, sym |
| 808 | if (!ctx.arg.relax || adrpRel.type != R_AARCH64_ADR_PREL_PG_HI21 || |
| 809 | addRel.type != R_AARCH64_ADD_ABS_LO12_NC) |
| 810 | return false; |
| 811 | // Check if the relocations apply to consecutive instructions. |
| 812 | if (adrpRel.offset + 4 != addRel.offset) |
| 813 | return false; |
| 814 | if (adrpRel.sym != addRel.sym) |
| 815 | return false; |
| 816 | if (adrpRel.addend != 0 || addRel.addend != 0) |
| 817 | return false; |
| 818 | |
| 819 | uint32_t adrpInstr = read32le(P: buf + adrpRel.offset); |
| 820 | uint32_t addInstr = read32le(P: buf + addRel.offset); |
| 821 | // Check if the first instruction is ADRP and the second instruction is ADD. |
| 822 | if ((adrpInstr & 0x9f000000) != 0x90000000 || |
| 823 | (addInstr & 0xffc00000) != 0x91000000) |
| 824 | return false; |
| 825 | uint32_t adrpDestReg = adrpInstr & 0x1f; |
| 826 | uint32_t addDestReg = addInstr & 0x1f; |
| 827 | uint32_t addSrcReg = (addInstr >> 5) & 0x1f; |
| 828 | if (adrpDestReg != addDestReg || adrpDestReg != addSrcReg) |
| 829 | return false; |
| 830 | |
| 831 | Symbol &sym = *adrpRel.sym; |
| 832 | // Check if the address difference is within 1MiB range. |
| 833 | int64_t val = sym.getVA(ctx) - (secAddr + addRel.offset); |
| 834 | if (val < -1024 * 1024 || val >= 1024 * 1024) |
| 835 | return false; |
| 836 | |
| 837 | Relocation adrRel = {.expr: R_ABS, .type: R_AARCH64_ADR_PREL_LO21, .offset: addRel.offset, |
| 838 | /*addend=*/0, .sym: &sym}; |
| 839 | // nop |
| 840 | write32le(P: buf + adrpRel.offset, V: 0xd503201f); |
| 841 | // adr x_<dest_reg> |
| 842 | write32le(P: buf + adrRel.offset, V: 0x10000000 | adrpDestReg); |
| 843 | ctx.target->relocate(loc: buf + adrRel.offset, rel: adrRel, val); |
| 844 | return true; |
| 845 | } |
| 846 | |
| 847 | bool AArch64Relaxer::tryRelaxAdrpLdr(const Relocation &adrpRel, |
| 848 | const Relocation &ldrRel, uint64_t secAddr, |
| 849 | uint8_t *buf) const { |
| 850 | if (!safeToRelaxAdrpLdr) |
| 851 | return false; |
| 852 | |
| 853 | // When the definition of sym is not preemptible then we may |
| 854 | // be able to relax |
| 855 | // ADRP xn, :got: sym |
| 856 | // LDR xn, [ xn :got_lo12: sym] |
| 857 | // to |
| 858 | // ADRP xn, sym |
| 859 | // ADD xn, xn, :lo_12: sym |
| 860 | |
| 861 | if (adrpRel.type != R_AARCH64_ADR_GOT_PAGE || |
| 862 | ldrRel.type != R_AARCH64_LD64_GOT_LO12_NC) |
| 863 | return false; |
| 864 | // Check if the relocations apply to consecutive instructions. |
| 865 | if (adrpRel.offset + 4 != ldrRel.offset) |
| 866 | return false; |
| 867 | // Check if the relocations reference the same symbol and |
| 868 | // skip undefined, preemptible and STT_GNU_IFUNC symbols. |
| 869 | if (!adrpRel.sym || adrpRel.sym != ldrRel.sym || !adrpRel.sym->isDefined() || |
| 870 | adrpRel.sym->isPreemptible || adrpRel.sym->isGnuIFunc()) |
| 871 | return false; |
| 872 | // Check if the addends of the both relocations are zero. |
| 873 | if (adrpRel.addend != 0 || ldrRel.addend != 0) |
| 874 | return false; |
| 875 | uint32_t adrpInstr = read32le(P: buf + adrpRel.offset); |
| 876 | uint32_t ldrInstr = read32le(P: buf + ldrRel.offset); |
| 877 | // Check if the first instruction is ADRP and the second instruction is LDR. |
| 878 | if ((adrpInstr & 0x9f000000) != 0x90000000 || |
| 879 | (ldrInstr & 0x3b000000) != 0x39000000) |
| 880 | return false; |
| 881 | // Check the value of the sf bit. |
| 882 | if (!(ldrInstr >> 31)) |
| 883 | return false; |
| 884 | uint32_t adrpDestReg = adrpInstr & 0x1f; |
| 885 | uint32_t ldrDestReg = ldrInstr & 0x1f; |
| 886 | uint32_t ldrSrcReg = (ldrInstr >> 5) & 0x1f; |
| 887 | // Check if ADPR and LDR use the same register. |
| 888 | if (adrpDestReg != ldrDestReg || adrpDestReg != ldrSrcReg) |
| 889 | return false; |
| 890 | |
| 891 | Symbol &sym = *adrpRel.sym; |
| 892 | // GOT references to absolute symbols can't be relaxed to use ADRP/ADD in |
| 893 | // position-independent code because these instructions produce a relative |
| 894 | // address. |
| 895 | if (ctx.arg.isPic && !cast<Defined>(Val&: sym).section) |
| 896 | return false; |
| 897 | // Check if the address difference is within 4GB range. |
| 898 | int64_t val = |
| 899 | getAArch64Page(expr: sym.getVA(ctx)) - getAArch64Page(expr: secAddr + adrpRel.offset); |
| 900 | if (val != llvm::SignExtend64(X: val, B: 33)) |
| 901 | return false; |
| 902 | |
| 903 | Relocation adrpSymRel = {.expr: RE_AARCH64_PAGE_PC, .type: R_AARCH64_ADR_PREL_PG_HI21, |
| 904 | .offset: adrpRel.offset, /*addend=*/0, .sym: &sym}; |
| 905 | Relocation addRel = {.expr: R_ABS, .type: R_AARCH64_ADD_ABS_LO12_NC, .offset: ldrRel.offset, |
| 906 | /*addend=*/0, .sym: &sym}; |
| 907 | |
| 908 | // adrp x_<dest_reg> |
| 909 | write32le(P: buf + adrpSymRel.offset, V: 0x90000000 | adrpDestReg); |
| 910 | // add x_<dest reg>, x_<dest reg> |
| 911 | write32le(P: buf + addRel.offset, V: 0x91000000 | adrpDestReg | (adrpDestReg << 5)); |
| 912 | |
| 913 | ctx.target->relocate( |
| 914 | loc: buf + adrpSymRel.offset, rel: adrpSymRel, |
| 915 | val: SignExtend64(X: getAArch64Page(expr: sym.getVA(ctx)) - |
| 916 | getAArch64Page(expr: secAddr + adrpSymRel.offset), |
| 917 | B: 64)); |
| 918 | ctx.target->relocate(loc: buf + addRel.offset, rel: addRel, |
| 919 | val: SignExtend64(X: sym.getVA(ctx), B: 64)); |
| 920 | tryRelaxAdrpAdd(adrpRel: adrpSymRel, addRel, secAddr, buf); |
| 921 | return true; |
| 922 | } |
| 923 | |
| 924 | // Tagged symbols have upper address bits that are added by the dynamic loader, |
| 925 | // and thus need the full 64-bit GOT entry. Do not relax such symbols. |
| 926 | static bool needsGotForMemtag(const Relocation &rel) { |
| 927 | return rel.sym->isTagged() && needsGot(expr: rel.expr); |
| 928 | } |
| 929 | |
| 930 | void AArch64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { |
| 931 | uint64_t secAddr = sec.getOutputSection()->addr; |
| 932 | if (auto *s = dyn_cast<InputSection>(Val: &sec)) |
| 933 | secAddr += s->outSecOff; |
| 934 | else if (auto *ehIn = dyn_cast<EhInputSection>(Val: &sec)) |
| 935 | secAddr += ehIn->getParent()->outSecOff; |
| 936 | AArch64Relaxer relaxer(ctx, sec.relocs()); |
| 937 | for (size_t i = 0, size = sec.relocs().size(); i != size; ++i) { |
| 938 | const Relocation &rel = sec.relocs()[i]; |
| 939 | uint8_t *loc = buf + rel.offset; |
| 940 | const uint64_t val = sec.getRelocTargetVA(ctx, r: rel, p: secAddr + rel.offset); |
| 941 | |
| 942 | if (needsGotForMemtag(rel)) { |
| 943 | relocate(loc, rel, val); |
| 944 | continue; |
| 945 | } |
| 946 | |
| 947 | switch (rel.expr) { |
| 948 | case RE_AARCH64_GOT_PAGE_PC: |
| 949 | if (i + 1 < size && |
| 950 | relaxer.tryRelaxAdrpLdr(adrpRel: rel, ldrRel: sec.relocs()[i + 1], secAddr, buf)) { |
| 951 | ++i; |
| 952 | continue; |
| 953 | } |
| 954 | break; |
| 955 | case RE_AARCH64_PAGE_PC: |
| 956 | if (i + 1 < size && |
| 957 | relaxer.tryRelaxAdrpAdd(adrpRel: rel, addRel: sec.relocs()[i + 1], secAddr, buf)) { |
| 958 | ++i; |
| 959 | continue; |
| 960 | } |
| 961 | break; |
| 962 | case RE_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: |
| 963 | case R_RELAX_TLS_GD_TO_IE_ABS: |
| 964 | relaxTlsGdToIe(loc, rel, val); |
| 965 | continue; |
| 966 | case R_RELAX_TLS_GD_TO_LE: |
| 967 | relaxTlsGdToLe(loc, rel, val); |
| 968 | continue; |
| 969 | case R_RELAX_TLS_IE_TO_LE: |
| 970 | relaxTlsIeToLe(loc, rel, val); |
| 971 | continue; |
| 972 | default: |
| 973 | break; |
| 974 | } |
| 975 | relocate(loc, rel, val); |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | static std::optional<uint64_t> getControlTransferAddend(InputSection &is, |
| 980 | Relocation &r) { |
| 981 | // Identify a control transfer relocation for the branch-to-branch |
| 982 | // optimization. A "control transfer relocation" means a B or BL |
| 983 | // target but it also includes relative vtable relocations for example. |
| 984 | // |
| 985 | // We require the relocation type to be JUMP26, CALL26 or PLT32. With a |
| 986 | // relocation type of PLT32 the value may be assumed to be used for branching |
| 987 | // directly to the symbol and the addend is only used to produce the relocated |
| 988 | // value (hence the effective addend is always 0). This is because if a PLT is |
| 989 | // needed the addend will be added to the address of the PLT, and it doesn't |
| 990 | // make sense to branch into the middle of a PLT. For example, relative vtable |
| 991 | // relocations use PLT32 and 0 or a positive value as the addend but still are |
| 992 | // used to branch to the symbol. |
| 993 | // |
| 994 | // With JUMP26 or CALL26 the only reasonable interpretation of a non-zero |
| 995 | // addend is that we are branching to symbol+addend so that becomes the |
| 996 | // effective addend. |
| 997 | if (r.type == R_AARCH64_PLT32) |
| 998 | return 0; |
| 999 | if (r.type == R_AARCH64_JUMP26 || r.type == R_AARCH64_CALL26) |
| 1000 | return r.addend; |
| 1001 | return std::nullopt; |
| 1002 | } |
| 1003 | |
| 1004 | static std::pair<Relocation *, uint64_t> |
| 1005 | getBranchInfoAtTarget(InputSection &is, uint64_t offset) { |
| 1006 | auto *i = llvm::partition_point( |
| 1007 | Range&: is.relocations, P: [&](Relocation &r) { return r.offset < offset; }); |
| 1008 | if (i != is.relocations.end() && i->offset == offset && |
| 1009 | i->type == R_AARCH64_JUMP26) { |
| 1010 | return {i, i->addend}; |
| 1011 | } |
| 1012 | return {nullptr, 0}; |
| 1013 | } |
| 1014 | |
| 1015 | static void redirectControlTransferRelocations(Relocation &r1, |
| 1016 | const Relocation &r2) { |
| 1017 | r1.expr = r2.expr; |
| 1018 | r1.sym = r2.sym; |
| 1019 | // With PLT32 we must respect the original addend as that affects the value's |
| 1020 | // interpretation. With the other relocation types the original addend is |
| 1021 | // irrelevant because it referred to an offset within the original target |
| 1022 | // section so we overwrite it. |
| 1023 | if (r1.type == R_AARCH64_PLT32) |
| 1024 | r1.addend += r2.addend; |
| 1025 | else |
| 1026 | r1.addend = r2.addend; |
| 1027 | } |
| 1028 | |
| 1029 | void AArch64::applyBranchToBranchOpt() const { |
| 1030 | applyBranchToBranchOptImpl(ctx, getControlTransferAddend, |
| 1031 | getBranchInfoAtTarget, |
| 1032 | redirectControlTransferRelocations); |
| 1033 | } |
| 1034 | |
| 1035 | // AArch64 may use security features in variant PLT sequences. These are: |
| 1036 | // Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target |
| 1037 | // Indicator (BTI) introduced in armv8.5-a. The additional instructions used |
| 1038 | // in the variant Plt sequences are encoded in the Hint space so they can be |
| 1039 | // deployed on older architectures, which treat the instructions as a nop. |
| 1040 | // PAC and BTI can be combined leading to the following combinations: |
| 1041 | // writePltHeader |
| 1042 | // writePltHeaderBti (no PAC Header needed) |
| 1043 | // writePlt |
| 1044 | // writePltBti (BTI only) |
| 1045 | // writePltPac (PAC only) |
| 1046 | // writePltBtiPac (BTI and PAC) |
| 1047 | // |
| 1048 | // When PAC is enabled the dynamic loader encrypts the address that it places |
| 1049 | // in the .got.plt using the pacia1716 instruction which encrypts the value in |
| 1050 | // x17 using the modifier in x16. The static linker places autia1716 before the |
| 1051 | // indirect branch to x17 to authenticate the address in x17 with the modifier |
| 1052 | // in x16. This makes it more difficult for an attacker to modify the value in |
| 1053 | // the .got.plt. |
| 1054 | // |
| 1055 | // When BTI is enabled all indirect branches must land on a bti instruction. |
| 1056 | // The static linker must place a bti instruction at the start of any PLT entry |
| 1057 | // that may be the target of an indirect branch. As the PLT entries call the |
| 1058 | // lazy resolver indirectly this must have a bti instruction at start. In |
| 1059 | // general a bti instruction is not needed for a PLT entry as indirect calls |
| 1060 | // are resolved to the function address and not the PLT entry for the function. |
| 1061 | // There are a small number of cases where the PLT address can escape, such as |
| 1062 | // taking the address of a function or ifunc via a non got-generating |
| 1063 | // relocation, and a shared library refers to that symbol. |
| 1064 | // |
| 1065 | // We use the bti c variant of the instruction which permits indirect branches |
| 1066 | // (br) via x16/x17 and indirect function calls (blr) via any register. The ABI |
| 1067 | // guarantees that all indirect branches from code requiring BTI protection |
| 1068 | // will go via x16/x17 |
| 1069 | |
| 1070 | namespace { |
| 1071 | class AArch64BtiPac final : public AArch64 { |
| 1072 | public: |
| 1073 | AArch64BtiPac(Ctx &); |
| 1074 | void writePltHeader(uint8_t *buf) const override; |
| 1075 | void writePlt(uint8_t *buf, const Symbol &sym, |
| 1076 | uint64_t pltEntryAddr) const override; |
| 1077 | |
| 1078 | private: |
| 1079 | bool ; // bti instruction needed in PLT Header and Entry |
| 1080 | enum { |
| 1081 | PEK_NoAuth, |
| 1082 | PEK_AuthHint, // use autia1716 instr for authenticated branch in PLT entry |
| 1083 | PEK_Auth, // use braa instr for authenticated branch in PLT entry |
| 1084 | } pacEntryKind; |
| 1085 | }; |
| 1086 | } // namespace |
| 1087 | |
| 1088 | AArch64BtiPac::AArch64BtiPac(Ctx &ctx) : AArch64(ctx) { |
| 1089 | btiHeader = (ctx.arg.andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI); |
| 1090 | // A BTI (Branch Target Indicator) Plt Entry is only required if the |
| 1091 | // address of the PLT entry can be taken by the program, which permits an |
| 1092 | // indirect jump to the PLT entry. This can happen when the address |
| 1093 | // of the PLT entry for a function is canonicalised due to the address of |
| 1094 | // the function in an executable being taken by a shared library, or |
| 1095 | // non-preemptible ifunc referenced by non-GOT-generating, non-PLT-generating |
| 1096 | // relocations. |
| 1097 | // The PAC PLT entries require dynamic loader support and this isn't known |
| 1098 | // from properties in the objects, so we use the command line flag. |
| 1099 | // By default we only use hint-space instructions, but if we detect the |
| 1100 | // PAuthABI, which requires v8.3-A, we can use the non-hint space |
| 1101 | // instructions. |
| 1102 | |
| 1103 | if (ctx.arg.zPacPlt) { |
| 1104 | if (ctx.aarch64PauthAbiCoreInfo && ctx.aarch64PauthAbiCoreInfo->isValid()) |
| 1105 | pacEntryKind = PEK_Auth; |
| 1106 | else |
| 1107 | pacEntryKind = PEK_AuthHint; |
| 1108 | } else { |
| 1109 | pacEntryKind = PEK_NoAuth; |
| 1110 | } |
| 1111 | |
| 1112 | if (btiHeader || (pacEntryKind != PEK_NoAuth)) { |
| 1113 | pltEntrySize = 24; |
| 1114 | ipltEntrySize = 24; |
| 1115 | } |
| 1116 | } |
| 1117 | |
| 1118 | void AArch64BtiPac::(uint8_t *buf) const { |
| 1119 | const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c |
| 1120 | const uint8_t pltData[] = { |
| 1121 | 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]! |
| 1122 | 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2])) |
| 1123 | 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))] |
| 1124 | 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2])) |
| 1125 | 0x20, 0x02, 0x1f, 0xd6, // br x17 |
| 1126 | 0x1f, 0x20, 0x03, 0xd5, // nop |
| 1127 | 0x1f, 0x20, 0x03, 0xd5 // nop |
| 1128 | }; |
| 1129 | const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop |
| 1130 | |
| 1131 | uint64_t got = ctx.in.gotPlt->getVA(); |
| 1132 | uint64_t plt = ctx.in.plt->getVA(); |
| 1133 | |
| 1134 | if (btiHeader) { |
| 1135 | // PltHeader is called indirectly by plt[N]. Prefix pltData with a BTI C |
| 1136 | // instruction. |
| 1137 | memcpy(dest: buf, src: btiData, n: sizeof(btiData)); |
| 1138 | buf += sizeof(btiData); |
| 1139 | plt += sizeof(btiData); |
| 1140 | } |
| 1141 | memcpy(dest: buf, src: pltData, n: sizeof(pltData)); |
| 1142 | |
| 1143 | relocateNoSym(loc: buf + 4, type: R_AARCH64_ADR_PREL_PG_HI21, |
| 1144 | val: getAArch64Page(expr: got + 16) - getAArch64Page(expr: plt + 4)); |
| 1145 | relocateNoSym(loc: buf + 8, type: R_AARCH64_LDST64_ABS_LO12_NC, val: got + 16); |
| 1146 | relocateNoSym(loc: buf + 12, type: R_AARCH64_ADD_ABS_LO12_NC, val: got + 16); |
| 1147 | if (!btiHeader) |
| 1148 | // We didn't add the BTI c instruction so round out size with NOP. |
| 1149 | memcpy(dest: buf + sizeof(pltData), src: nopData, n: sizeof(nopData)); |
| 1150 | } |
| 1151 | |
| 1152 | void AArch64BtiPac::writePlt(uint8_t *buf, const Symbol &sym, |
| 1153 | uint64_t pltEntryAddr) const { |
| 1154 | // The PLT entry is of the form: |
| 1155 | // [btiData] addrInst (pacBr | stdBr) [nopData] |
| 1156 | const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c |
| 1157 | const uint8_t addrInst[] = { |
| 1158 | 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n])) |
| 1159 | 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))] |
| 1160 | 0x10, 0x02, 0x00, 0x91 // add x16, x16, Offset(&(.got.plt[n])) |
| 1161 | }; |
| 1162 | const uint8_t pacHintBr[] = { |
| 1163 | 0x9f, 0x21, 0x03, 0xd5, // autia1716 |
| 1164 | 0x20, 0x02, 0x1f, 0xd6 // br x17 |
| 1165 | }; |
| 1166 | const uint8_t pacBr[] = { |
| 1167 | 0x30, 0x0a, 0x1f, 0xd7, // braa x17, x16 |
| 1168 | 0x1f, 0x20, 0x03, 0xd5 // nop |
| 1169 | }; |
| 1170 | const uint8_t stdBr[] = { |
| 1171 | 0x20, 0x02, 0x1f, 0xd6, // br x17 |
| 1172 | 0x1f, 0x20, 0x03, 0xd5 // nop |
| 1173 | }; |
| 1174 | const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop |
| 1175 | |
| 1176 | // NEEDS_COPY indicates a non-ifunc canonical PLT entry whose address may |
| 1177 | // escape to shared objects. isInIplt indicates a non-preemptible ifunc. Its |
| 1178 | // address may escape if referenced by a direct relocation. If relative |
| 1179 | // vtables are used then if the vtable is in a shared object the offsets will |
| 1180 | // be to the PLT entry. The condition is conservative. |
| 1181 | bool hasBti = btiHeader && |
| 1182 | (sym.hasFlag(bit: NEEDS_COPY) || sym.isInIplt || sym.thunkAccessed); |
| 1183 | if (hasBti) { |
| 1184 | memcpy(dest: buf, src: btiData, n: sizeof(btiData)); |
| 1185 | buf += sizeof(btiData); |
| 1186 | pltEntryAddr += sizeof(btiData); |
| 1187 | } |
| 1188 | |
| 1189 | uint64_t gotPltEntryAddr = sym.getGotPltVA(ctx); |
| 1190 | memcpy(dest: buf, src: addrInst, n: sizeof(addrInst)); |
| 1191 | relocateNoSym(loc: buf, type: R_AARCH64_ADR_PREL_PG_HI21, |
| 1192 | val: getAArch64Page(expr: gotPltEntryAddr) - getAArch64Page(expr: pltEntryAddr)); |
| 1193 | relocateNoSym(loc: buf + 4, type: R_AARCH64_LDST64_ABS_LO12_NC, val: gotPltEntryAddr); |
| 1194 | relocateNoSym(loc: buf + 8, type: R_AARCH64_ADD_ABS_LO12_NC, val: gotPltEntryAddr); |
| 1195 | |
| 1196 | if (pacEntryKind != PEK_NoAuth) |
| 1197 | memcpy(dest: buf + sizeof(addrInst), |
| 1198 | src: pacEntryKind == PEK_AuthHint ? pacHintBr : pacBr, |
| 1199 | n: sizeof(pacEntryKind == PEK_AuthHint ? pacHintBr : pacBr)); |
| 1200 | else |
| 1201 | memcpy(dest: buf + sizeof(addrInst), src: stdBr, n: sizeof(stdBr)); |
| 1202 | if (!hasBti) |
| 1203 | // We didn't add the BTI c instruction so round out size with NOP. |
| 1204 | memcpy(dest: buf + sizeof(addrInst) + sizeof(stdBr), src: nopData, n: sizeof(nopData)); |
| 1205 | } |
| 1206 | |
| 1207 | template <class ELFT> |
| 1208 | static void |
| 1209 | addTaggedSymbolReferences(Ctx &ctx, InputSectionBase &sec, |
| 1210 | DenseMap<Symbol *, unsigned> &referenceCount) { |
| 1211 | assert(sec.type == SHT_AARCH64_MEMTAG_GLOBALS_STATIC); |
| 1212 | |
| 1213 | const RelsOrRelas<ELFT> rels = sec.relsOrRelas<ELFT>(); |
| 1214 | if (rels.areRelocsRel()) |
| 1215 | ErrAlways(ctx) |
| 1216 | << "non-RELA relocations are not allowed with memtag globals" ; |
| 1217 | |
| 1218 | for (const typename ELFT::Rela &rel : rels.relas) { |
| 1219 | Symbol &sym = sec.file->getRelocTargetSym(rel); |
| 1220 | // Linker-synthesized symbols such as __executable_start may be referenced |
| 1221 | // as tagged in input objfiles, and we don't want them to be tagged. A |
| 1222 | // cheap way to exclude them is the type check, but their type is |
| 1223 | // STT_NOTYPE. In addition, this save us from checking untaggable symbols, |
| 1224 | // like functions or TLS symbols. |
| 1225 | if (sym.type != STT_OBJECT) |
| 1226 | continue; |
| 1227 | // STB_LOCAL symbols can't be referenced from outside the object file, and |
| 1228 | // thus don't need to be checked for references from other object files. |
| 1229 | if (sym.binding == STB_LOCAL) { |
| 1230 | sym.setIsTagged(true); |
| 1231 | continue; |
| 1232 | } |
| 1233 | ++referenceCount[&sym]; |
| 1234 | } |
| 1235 | sec.markDead(); |
| 1236 | } |
| 1237 | |
| 1238 | // A tagged symbol must be denoted as being tagged by all references and the |
| 1239 | // chosen definition. For simplicity, here, it must also be denoted as tagged |
| 1240 | // for all definitions. Otherwise: |
| 1241 | // |
| 1242 | // 1. A tagged definition can be used by an untagged declaration, in which case |
| 1243 | // the untagged access may be PC-relative, causing a tag mismatch at |
| 1244 | // runtime. |
| 1245 | // 2. An untagged definition can be used by a tagged declaration, where the |
| 1246 | // compiler has taken advantage of the increased alignment of the tagged |
| 1247 | // declaration, but the alignment at runtime is wrong, causing a fault. |
| 1248 | // |
| 1249 | // Ideally, this isn't a problem, as any TU that imports or exports tagged |
| 1250 | // symbols should also be built with tagging. But, to handle these cases, we |
| 1251 | // demote the symbol to be untagged. |
| 1252 | void elf::createTaggedSymbols(Ctx &ctx) { |
| 1253 | assert(hasMemtag(ctx)); |
| 1254 | |
| 1255 | // First, collect all symbols that are marked as tagged, and count how many |
| 1256 | // times they're marked as tagged. |
| 1257 | DenseMap<Symbol *, unsigned> taggedSymbolReferenceCount; |
| 1258 | for (InputFile *file : ctx.objectFiles) { |
| 1259 | if (file->kind() != InputFile::ObjKind) |
| 1260 | continue; |
| 1261 | for (InputSectionBase *section : file->getSections()) { |
| 1262 | if (!section || section->type != SHT_AARCH64_MEMTAG_GLOBALS_STATIC || |
| 1263 | section == &InputSection::discarded) |
| 1264 | continue; |
| 1265 | invokeELFT(addTaggedSymbolReferences, ctx, *section, |
| 1266 | taggedSymbolReferenceCount); |
| 1267 | } |
| 1268 | } |
| 1269 | |
| 1270 | // Now, go through all the symbols. If the number of declarations + |
| 1271 | // definitions to a symbol exceeds the amount of times they're marked as |
| 1272 | // tagged, it means we have an objfile that uses the untagged variant of the |
| 1273 | // symbol. |
| 1274 | for (InputFile *file : ctx.objectFiles) { |
| 1275 | if (file->kind() != InputFile::BinaryKind && |
| 1276 | file->kind() != InputFile::ObjKind) |
| 1277 | continue; |
| 1278 | |
| 1279 | for (Symbol *symbol : file->getSymbols()) { |
| 1280 | // See `addTaggedSymbolReferences` for more details. |
| 1281 | if (symbol->type != STT_OBJECT || |
| 1282 | symbol->binding == STB_LOCAL) |
| 1283 | continue; |
| 1284 | auto it = taggedSymbolReferenceCount.find(Val: symbol); |
| 1285 | if (it == taggedSymbolReferenceCount.end()) continue; |
| 1286 | unsigned &remainingAllowedTaggedRefs = it->second; |
| 1287 | if (remainingAllowedTaggedRefs == 0) { |
| 1288 | taggedSymbolReferenceCount.erase(I: it); |
| 1289 | continue; |
| 1290 | } |
| 1291 | --remainingAllowedTaggedRefs; |
| 1292 | } |
| 1293 | } |
| 1294 | |
| 1295 | // `addTaggedSymbolReferences` has already checked that we have RELA |
| 1296 | // relocations, the only other way to get written addends is with |
| 1297 | // --apply-dynamic-relocs. |
| 1298 | if (!taggedSymbolReferenceCount.empty() && ctx.arg.writeAddends) |
| 1299 | ErrAlways(ctx) << "--apply-dynamic-relocs cannot be used with MTE globals" ; |
| 1300 | |
| 1301 | // Now, `taggedSymbolReferenceCount` should only contain symbols that are |
| 1302 | // defined as tagged exactly the same amount as it's referenced, meaning all |
| 1303 | // uses are tagged. |
| 1304 | for (auto &[symbol, remainingTaggedRefs] : taggedSymbolReferenceCount) { |
| 1305 | assert(remainingTaggedRefs == 0 && |
| 1306 | "Symbol is defined as tagged more times than it's used" ); |
| 1307 | symbol->setIsTagged(true); |
| 1308 | } |
| 1309 | } |
| 1310 | |
| 1311 | void elf::setAArch64TargetInfo(Ctx &ctx) { |
| 1312 | if ((ctx.arg.andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) || |
| 1313 | ctx.arg.zPacPlt) |
| 1314 | ctx.target.reset(p: new AArch64BtiPac(ctx)); |
| 1315 | else |
| 1316 | ctx.target.reset(p: new AArch64(ctx)); |
| 1317 | } |
| 1318 | |