1 | //===- AArch64.cpp --------------------------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | |
9 | #include "InputFiles.h" |
10 | #include "OutputSections.h" |
11 | #include "Symbols.h" |
12 | #include "SyntheticSections.h" |
13 | #include "Target.h" |
14 | #include "TargetImpl.h" |
15 | #include "llvm/BinaryFormat/ELF.h" |
16 | #include "llvm/Support/Endian.h" |
17 | |
18 | using namespace llvm; |
19 | using namespace llvm::support::endian; |
20 | using namespace llvm::ELF; |
21 | using namespace lld; |
22 | using namespace lld::elf; |
23 | |
24 | // Page(Expr) is the page address of the expression Expr, defined |
25 | // as (Expr & ~0xFFF). (This applies even if the machine page size |
26 | // supported by the platform has a different value.) |
27 | uint64_t elf::getAArch64Page(uint64_t expr) { |
28 | return expr & ~static_cast<uint64_t>(0xFFF); |
29 | } |
30 | |
31 | // A BTI landing pad is a valid target for an indirect branch when the Branch |
32 | // Target Identification has been enabled. As linker generated branches are |
33 | // via x16 the BTI landing pads are defined as: BTI C, BTI J, BTI JC, PACIASP, |
34 | // PACIBSP. |
35 | bool elf::isAArch64BTILandingPad(Ctx &ctx, Symbol &s, int64_t a) { |
36 | // PLT entries accessed indirectly have a BTI c. |
37 | if (s.isInPlt(ctx)) |
38 | return true; |
39 | Defined *d = dyn_cast<Defined>(Val: &s); |
40 | if (!isa_and_nonnull<InputSection>(Val: d->section)) |
41 | // All places that we cannot disassemble are responsible for making |
42 | // the target a BTI landing pad. |
43 | return true; |
44 | InputSection *isec = cast<InputSection>(Val: d->section); |
45 | uint64_t off = d->value + a; |
46 | // Likely user error, but protect ourselves against out of bounds |
47 | // access. |
48 | if (off >= isec->getSize()) |
49 | return true; |
50 | const uint8_t *buf = isec->content().begin(); |
51 | const uint32_t instr = read32le(P: buf + off); |
52 | // All BTI instructions are HINT instructions which all have same encoding |
53 | // apart from bits [11:5] |
54 | if ((instr & 0xd503201f) == 0xd503201f && |
55 | is_contained(Set: {/*PACIASP*/ 0xd503233f, /*PACIBSP*/ 0xd503237f, |
56 | /*BTI C*/ 0xd503245f, /*BTI J*/ 0xd503249f, |
57 | /*BTI JC*/ 0xd50324df}, |
58 | Element: instr)) |
59 | return true; |
60 | return false; |
61 | } |
62 | |
63 | namespace { |
64 | class AArch64 : public TargetInfo { |
65 | public: |
66 | AArch64(Ctx &); |
67 | RelExpr getRelExpr(RelType type, const Symbol &s, |
68 | const uint8_t *loc) const override; |
69 | RelType getDynRel(RelType type) const override; |
70 | int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; |
71 | void writeGotPlt(uint8_t *buf, const Symbol &s) const override; |
72 | void writeIgotPlt(uint8_t *buf, const Symbol &s) const override; |
73 | void writePltHeader(uint8_t *buf) const override; |
74 | void writePlt(uint8_t *buf, const Symbol &sym, |
75 | uint64_t pltEntryAddr) const override; |
76 | bool needsThunk(RelExpr expr, RelType type, const InputFile *file, |
77 | uint64_t branchAddr, const Symbol &s, |
78 | int64_t a) const override; |
79 | uint32_t getThunkSectionSpacing() const override; |
80 | bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; |
81 | bool usesOnlyLowPageBits(RelType type) const override; |
82 | void relocate(uint8_t *loc, const Relocation &rel, |
83 | uint64_t val) const override; |
84 | RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override; |
85 | void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; |
86 | void applyBranchToBranchOpt() const override; |
87 | |
88 | private: |
89 | void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
90 | void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
91 | void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
92 | }; |
93 | |
94 | struct AArch64Relaxer { |
95 | Ctx &ctx; |
96 | bool safeToRelaxAdrpLdr = false; |
97 | |
98 | AArch64Relaxer(Ctx &ctx, ArrayRef<Relocation> relocs); |
99 | bool tryRelaxAdrpAdd(const Relocation &adrpRel, const Relocation &addRel, |
100 | uint64_t secAddr, uint8_t *buf) const; |
101 | bool tryRelaxAdrpLdr(const Relocation &adrpRel, const Relocation &ldrRel, |
102 | uint64_t secAddr, uint8_t *buf) const; |
103 | }; |
104 | } // namespace |
105 | |
106 | // Return the bits [Start, End] from Val shifted Start bits. |
107 | // For instance, getBits(0xF0, 4, 8) returns 0xF. |
108 | static uint64_t getBits(uint64_t val, int start, int end) { |
109 | uint64_t mask = ((uint64_t)1 << (end + 1 - start)) - 1; |
110 | return (val >> start) & mask; |
111 | } |
112 | |
113 | AArch64::AArch64(Ctx &ctx) : TargetInfo(ctx) { |
114 | copyRel = R_AARCH64_COPY; |
115 | relativeRel = R_AARCH64_RELATIVE; |
116 | iRelativeRel = R_AARCH64_IRELATIVE; |
117 | gotRel = R_AARCH64_GLOB_DAT; |
118 | pltRel = R_AARCH64_JUMP_SLOT; |
119 | symbolicRel = R_AARCH64_ABS64; |
120 | tlsDescRel = R_AARCH64_TLSDESC; |
121 | tlsGotRel = R_AARCH64_TLS_TPREL64; |
122 | pltHeaderSize = 32; |
123 | pltEntrySize = 16; |
124 | ipltEntrySize = 16; |
125 | defaultMaxPageSize = 65536; |
126 | |
127 | // Align to the 2 MiB page size (known as a superpage or huge page). |
128 | // FreeBSD automatically promotes 2 MiB-aligned allocations. |
129 | defaultImageBase = 0x200000; |
130 | |
131 | needsThunks = true; |
132 | } |
133 | |
134 | RelExpr AArch64::getRelExpr(RelType type, const Symbol &s, |
135 | const uint8_t *loc) const { |
136 | switch (type) { |
137 | case R_AARCH64_ABS16: |
138 | case R_AARCH64_ABS32: |
139 | case R_AARCH64_ABS64: |
140 | case R_AARCH64_ADD_ABS_LO12_NC: |
141 | case R_AARCH64_LDST128_ABS_LO12_NC: |
142 | case R_AARCH64_LDST16_ABS_LO12_NC: |
143 | case R_AARCH64_LDST32_ABS_LO12_NC: |
144 | case R_AARCH64_LDST64_ABS_LO12_NC: |
145 | case R_AARCH64_LDST8_ABS_LO12_NC: |
146 | case R_AARCH64_MOVW_SABS_G0: |
147 | case R_AARCH64_MOVW_SABS_G1: |
148 | case R_AARCH64_MOVW_SABS_G2: |
149 | case R_AARCH64_MOVW_UABS_G0: |
150 | case R_AARCH64_MOVW_UABS_G0_NC: |
151 | case R_AARCH64_MOVW_UABS_G1: |
152 | case R_AARCH64_MOVW_UABS_G1_NC: |
153 | case R_AARCH64_MOVW_UABS_G2: |
154 | case R_AARCH64_MOVW_UABS_G2_NC: |
155 | case R_AARCH64_MOVW_UABS_G3: |
156 | return R_ABS; |
157 | case R_AARCH64_AUTH_ABS64: |
158 | return RE_AARCH64_AUTH; |
159 | case R_AARCH64_TLSDESC_ADR_PAGE21: |
160 | return RE_AARCH64_TLSDESC_PAGE; |
161 | case R_AARCH64_AUTH_TLSDESC_ADR_PAGE21: |
162 | return RE_AARCH64_AUTH_TLSDESC_PAGE; |
163 | case R_AARCH64_TLSDESC_LD64_LO12: |
164 | case R_AARCH64_TLSDESC_ADD_LO12: |
165 | return R_TLSDESC; |
166 | case R_AARCH64_AUTH_TLSDESC_LD64_LO12: |
167 | case R_AARCH64_AUTH_TLSDESC_ADD_LO12: |
168 | return RE_AARCH64_AUTH_TLSDESC; |
169 | case R_AARCH64_TLSDESC_CALL: |
170 | return R_TLSDESC_CALL; |
171 | case R_AARCH64_TLSLE_ADD_TPREL_HI12: |
172 | case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: |
173 | case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC: |
174 | case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC: |
175 | case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC: |
176 | case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC: |
177 | case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC: |
178 | case R_AARCH64_TLSLE_MOVW_TPREL_G0: |
179 | case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC: |
180 | case R_AARCH64_TLSLE_MOVW_TPREL_G1: |
181 | case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC: |
182 | case R_AARCH64_TLSLE_MOVW_TPREL_G2: |
183 | return R_TPREL; |
184 | case R_AARCH64_CALL26: |
185 | case R_AARCH64_CONDBR19: |
186 | case R_AARCH64_JUMP26: |
187 | case R_AARCH64_TSTBR14: |
188 | return R_PLT_PC; |
189 | case R_AARCH64_PLT32: |
190 | const_cast<Symbol &>(s).thunkAccessed = true; |
191 | return R_PLT_PC; |
192 | case R_AARCH64_PREL16: |
193 | case R_AARCH64_PREL32: |
194 | case R_AARCH64_PREL64: |
195 | case R_AARCH64_ADR_PREL_LO21: |
196 | case R_AARCH64_LD_PREL_LO19: |
197 | case R_AARCH64_MOVW_PREL_G0: |
198 | case R_AARCH64_MOVW_PREL_G0_NC: |
199 | case R_AARCH64_MOVW_PREL_G1: |
200 | case R_AARCH64_MOVW_PREL_G1_NC: |
201 | case R_AARCH64_MOVW_PREL_G2: |
202 | case R_AARCH64_MOVW_PREL_G2_NC: |
203 | case R_AARCH64_MOVW_PREL_G3: |
204 | return R_PC; |
205 | case R_AARCH64_ADR_PREL_PG_HI21: |
206 | case R_AARCH64_ADR_PREL_PG_HI21_NC: |
207 | return RE_AARCH64_PAGE_PC; |
208 | case R_AARCH64_LD64_GOT_LO12_NC: |
209 | case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: |
210 | return R_GOT; |
211 | case R_AARCH64_AUTH_LD64_GOT_LO12_NC: |
212 | case R_AARCH64_AUTH_GOT_ADD_LO12_NC: |
213 | return RE_AARCH64_AUTH_GOT; |
214 | case R_AARCH64_AUTH_GOT_LD_PREL19: |
215 | case R_AARCH64_AUTH_GOT_ADR_PREL_LO21: |
216 | return RE_AARCH64_AUTH_GOT_PC; |
217 | case R_AARCH64_LD64_GOTPAGE_LO15: |
218 | return RE_AARCH64_GOT_PAGE; |
219 | case R_AARCH64_ADR_GOT_PAGE: |
220 | case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: |
221 | return RE_AARCH64_GOT_PAGE_PC; |
222 | case R_AARCH64_AUTH_ADR_GOT_PAGE: |
223 | return RE_AARCH64_AUTH_GOT_PAGE_PC; |
224 | case R_AARCH64_GOTPCREL32: |
225 | case R_AARCH64_GOT_LD_PREL19: |
226 | return R_GOT_PC; |
227 | case R_AARCH64_NONE: |
228 | return R_NONE; |
229 | default: |
230 | Err(ctx) << getErrorLoc(ctx, loc) << "unknown relocation (" << type.v |
231 | << ") against symbol " << &s; |
232 | return R_NONE; |
233 | } |
234 | } |
235 | |
236 | RelExpr AArch64::adjustTlsExpr(RelType type, RelExpr expr) const { |
237 | if (expr == R_RELAX_TLS_GD_TO_IE) { |
238 | if (type == R_AARCH64_TLSDESC_ADR_PAGE21) |
239 | return RE_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC; |
240 | return R_RELAX_TLS_GD_TO_IE_ABS; |
241 | } |
242 | return expr; |
243 | } |
244 | |
245 | bool AArch64::usesOnlyLowPageBits(RelType type) const { |
246 | switch (type) { |
247 | default: |
248 | return false; |
249 | case R_AARCH64_ADD_ABS_LO12_NC: |
250 | case R_AARCH64_LD64_GOT_LO12_NC: |
251 | case R_AARCH64_LDST128_ABS_LO12_NC: |
252 | case R_AARCH64_LDST16_ABS_LO12_NC: |
253 | case R_AARCH64_LDST32_ABS_LO12_NC: |
254 | case R_AARCH64_LDST64_ABS_LO12_NC: |
255 | case R_AARCH64_LDST8_ABS_LO12_NC: |
256 | case R_AARCH64_TLSDESC_ADD_LO12: |
257 | case R_AARCH64_TLSDESC_LD64_LO12: |
258 | case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: |
259 | return true; |
260 | } |
261 | } |
262 | |
263 | RelType AArch64::getDynRel(RelType type) const { |
264 | if (type == R_AARCH64_ABS64 || type == R_AARCH64_AUTH_ABS64) |
265 | return type; |
266 | return R_AARCH64_NONE; |
267 | } |
268 | |
269 | int64_t AArch64::getImplicitAddend(const uint8_t *buf, RelType type) const { |
270 | switch (type) { |
271 | case R_AARCH64_TLSDESC: |
272 | return read64(ctx, p: buf + 8); |
273 | case R_AARCH64_NONE: |
274 | case R_AARCH64_GLOB_DAT: |
275 | case R_AARCH64_AUTH_GLOB_DAT: |
276 | case R_AARCH64_JUMP_SLOT: |
277 | return 0; |
278 | case R_AARCH64_ABS16: |
279 | case R_AARCH64_PREL16: |
280 | return SignExtend64<16>(x: read16(ctx, p: buf)); |
281 | case R_AARCH64_ABS32: |
282 | case R_AARCH64_PREL32: |
283 | return SignExtend64<32>(x: read32(ctx, p: buf)); |
284 | case R_AARCH64_ABS64: |
285 | case R_AARCH64_PREL64: |
286 | case R_AARCH64_RELATIVE: |
287 | case R_AARCH64_IRELATIVE: |
288 | case R_AARCH64_TLS_TPREL64: |
289 | return read64(ctx, p: buf); |
290 | |
291 | // The following relocation types all point at instructions, and |
292 | // relocate an immediate field in the instruction. |
293 | // |
294 | // The general rule, from AAELF64 §5.7.2 "Addends and PC-bias", |
295 | // says: "If the relocation relocates an instruction the immediate |
296 | // field of the instruction is extracted, scaled as required by |
297 | // the instruction field encoding, and sign-extended to 64 bits". |
298 | |
299 | // The R_AARCH64_MOVW family operates on wide MOV/MOVK/MOVZ |
300 | // instructions, which have a 16-bit immediate field with its low |
301 | // bit in bit 5 of the instruction encoding. When the immediate |
302 | // field is used as an implicit addend for REL-type relocations, |
303 | // it is treated as added to the low bits of the output value, not |
304 | // shifted depending on the relocation type. |
305 | // |
306 | // This allows REL relocations to express the requirement 'please |
307 | // add 12345 to this symbol value and give me the four 16-bit |
308 | // chunks of the result', by putting the same addend 12345 in all |
309 | // four instructions. Carries between the 16-bit chunks are |
310 | // handled correctly, because the whole 64-bit addition is done |
311 | // once per relocation. |
312 | case R_AARCH64_MOVW_UABS_G0: |
313 | case R_AARCH64_MOVW_UABS_G0_NC: |
314 | case R_AARCH64_MOVW_UABS_G1: |
315 | case R_AARCH64_MOVW_UABS_G1_NC: |
316 | case R_AARCH64_MOVW_UABS_G2: |
317 | case R_AARCH64_MOVW_UABS_G2_NC: |
318 | case R_AARCH64_MOVW_UABS_G3: |
319 | return SignExtend64<16>(x: getBits(val: read32le(P: buf), start: 5, end: 20)); |
320 | |
321 | // R_AARCH64_TSTBR14 points at a TBZ or TBNZ instruction, which |
322 | // has a 14-bit offset measured in instructions, i.e. shifted left |
323 | // by 2. |
324 | case R_AARCH64_TSTBR14: |
325 | return SignExtend64<16>(x: getBits(val: read32le(P: buf), start: 5, end: 18) << 2); |
326 | |
327 | // R_AARCH64_CONDBR19 operates on the ordinary B.cond instruction, |
328 | // which has a 19-bit offset measured in instructions. |
329 | // |
330 | // R_AARCH64_LD_PREL_LO19 operates on the LDR (literal) |
331 | // instruction, which also has a 19-bit offset, measured in 4-byte |
332 | // chunks. So the calculation is the same as for |
333 | // R_AARCH64_CONDBR19. |
334 | case R_AARCH64_CONDBR19: |
335 | case R_AARCH64_LD_PREL_LO19: |
336 | return SignExtend64<21>(x: getBits(val: read32le(P: buf), start: 5, end: 23) << 2); |
337 | |
338 | // R_AARCH64_ADD_ABS_LO12_NC operates on ADD (immediate). The |
339 | // immediate can optionally be shifted left by 12 bits, but this |
340 | // relocation is intended for the case where it is not. |
341 | case R_AARCH64_ADD_ABS_LO12_NC: |
342 | return SignExtend64<12>(x: getBits(val: read32le(P: buf), start: 10, end: 21)); |
343 | |
344 | // R_AARCH64_ADR_PREL_LO21 operates on an ADR instruction, whose |
345 | // 21-bit immediate is split between two bits high up in the word |
346 | // (in fact the two _lowest_ order bits of the value) and 19 bits |
347 | // lower down. |
348 | // |
349 | // R_AARCH64_ADR_PREL_PG_HI21[_NC] operate on an ADRP instruction, |
350 | // which encodes the immediate in the same way, but will shift it |
351 | // left by 12 bits when the instruction executes. For the same |
352 | // reason as the MOVW family, we don't apply that left shift here. |
353 | case R_AARCH64_ADR_PREL_LO21: |
354 | case R_AARCH64_ADR_PREL_PG_HI21: |
355 | case R_AARCH64_ADR_PREL_PG_HI21_NC: |
356 | return SignExtend64<21>(x: (getBits(val: read32le(P: buf), start: 5, end: 23) << 2) | |
357 | getBits(val: read32le(P: buf), start: 29, end: 30)); |
358 | |
359 | // R_AARCH64_{JUMP,CALL}26 operate on B and BL, which have a |
360 | // 26-bit offset measured in instructions. |
361 | case R_AARCH64_JUMP26: |
362 | case R_AARCH64_CALL26: |
363 | return SignExtend64<28>(x: getBits(val: read32le(P: buf), start: 0, end: 25) << 2); |
364 | |
365 | default: |
366 | InternalErr(ctx, buf) << "cannot read addend for relocation " << type; |
367 | return 0; |
368 | } |
369 | } |
370 | |
371 | void AArch64::writeGotPlt(uint8_t *buf, const Symbol &) const { |
372 | write64(ctx, p: buf, v: ctx.in.plt->getVA()); |
373 | } |
374 | |
375 | void AArch64::writeIgotPlt(uint8_t *buf, const Symbol &s) const { |
376 | if (ctx.arg.writeAddends) |
377 | write64(ctx, p: buf, v: s.getVA(ctx)); |
378 | } |
379 | |
380 | void AArch64::(uint8_t *buf) const { |
381 | const uint8_t pltData[] = { |
382 | 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]! |
383 | 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2])) |
384 | 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))] |
385 | 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2])) |
386 | 0x20, 0x02, 0x1f, 0xd6, // br x17 |
387 | 0x1f, 0x20, 0x03, 0xd5, // nop |
388 | 0x1f, 0x20, 0x03, 0xd5, // nop |
389 | 0x1f, 0x20, 0x03, 0xd5 // nop |
390 | }; |
391 | memcpy(dest: buf, src: pltData, n: sizeof(pltData)); |
392 | |
393 | uint64_t got = ctx.in.gotPlt->getVA(); |
394 | uint64_t plt = ctx.in.plt->getVA(); |
395 | relocateNoSym(loc: buf + 4, type: R_AARCH64_ADR_PREL_PG_HI21, |
396 | val: getAArch64Page(expr: got + 16) - getAArch64Page(expr: plt + 4)); |
397 | relocateNoSym(loc: buf + 8, type: R_AARCH64_LDST64_ABS_LO12_NC, val: got + 16); |
398 | relocateNoSym(loc: buf + 12, type: R_AARCH64_ADD_ABS_LO12_NC, val: got + 16); |
399 | } |
400 | |
401 | void AArch64::writePlt(uint8_t *buf, const Symbol &sym, |
402 | uint64_t pltEntryAddr) const { |
403 | const uint8_t inst[] = { |
404 | 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n])) |
405 | 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))] |
406 | 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[n])) |
407 | 0x20, 0x02, 0x1f, 0xd6 // br x17 |
408 | }; |
409 | memcpy(dest: buf, src: inst, n: sizeof(inst)); |
410 | |
411 | uint64_t gotPltEntryAddr = sym.getGotPltVA(ctx); |
412 | relocateNoSym(loc: buf, type: R_AARCH64_ADR_PREL_PG_HI21, |
413 | val: getAArch64Page(expr: gotPltEntryAddr) - getAArch64Page(expr: pltEntryAddr)); |
414 | relocateNoSym(loc: buf + 4, type: R_AARCH64_LDST64_ABS_LO12_NC, val: gotPltEntryAddr); |
415 | relocateNoSym(loc: buf + 8, type: R_AARCH64_ADD_ABS_LO12_NC, val: gotPltEntryAddr); |
416 | } |
417 | |
418 | bool AArch64::needsThunk(RelExpr expr, RelType type, const InputFile *file, |
419 | uint64_t branchAddr, const Symbol &s, |
420 | int64_t a) const { |
421 | // If s is an undefined weak symbol and does not have a PLT entry then it will |
422 | // be resolved as a branch to the next instruction. If it is hidden, its |
423 | // binding has been converted to local, so we just check isUndefined() here. A |
424 | // undefined non-weak symbol will have been errored. |
425 | if (s.isUndefined() && !s.isInPlt(ctx)) |
426 | return false; |
427 | // ELF for the ARM 64-bit architecture, section Call and Jump relocations |
428 | // only permits range extension thunks for R_AARCH64_CALL26 and |
429 | // R_AARCH64_JUMP26 relocation types. |
430 | if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 && |
431 | type != R_AARCH64_PLT32) |
432 | return false; |
433 | uint64_t dst = expr == R_PLT_PC ? s.getPltVA(ctx) : s.getVA(ctx, addend: a); |
434 | return !inBranchRange(type, src: branchAddr, dst); |
435 | } |
436 | |
437 | uint32_t AArch64::getThunkSectionSpacing() const { |
438 | // See comment in Arch/ARM.cpp for a more detailed explanation of |
439 | // getThunkSectionSpacing(). For AArch64 the only branches we are permitted to |
440 | // Thunk have a range of +/- 128 MiB |
441 | return (128 * 1024 * 1024) - 0x30000; |
442 | } |
443 | |
444 | bool AArch64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { |
445 | if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 && |
446 | type != R_AARCH64_PLT32) |
447 | return true; |
448 | // The AArch64 call and unconditional branch instructions have a range of |
449 | // +/- 128 MiB. The PLT32 relocation supports a range up to +/- 2 GiB. |
450 | uint64_t range = |
451 | type == R_AARCH64_PLT32 ? (UINT64_C(1) << 31) : (128 * 1024 * 1024); |
452 | if (dst > src) { |
453 | // Immediate of branch is signed. |
454 | range -= 4; |
455 | return dst - src <= range; |
456 | } |
457 | return src - dst <= range; |
458 | } |
459 | |
460 | static void write32AArch64Addr(uint8_t *l, uint64_t imm) { |
461 | uint32_t immLo = (imm & 0x3) << 29; |
462 | uint32_t immHi = (imm & 0x1FFFFC) << 3; |
463 | uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3); |
464 | write32le(P: l, V: (read32le(P: l) & ~mask) | immLo | immHi); |
465 | } |
466 | |
467 | static void writeMaskedBits32le(uint8_t *p, int32_t v, uint32_t mask) { |
468 | write32le(P: p, V: (read32le(P: p) & ~mask) | v); |
469 | } |
470 | |
471 | // Update the immediate field in a AARCH64 ldr, str, and add instruction. |
472 | static void write32Imm12(uint8_t *l, uint64_t imm) { |
473 | writeMaskedBits32le(p: l, v: (imm & 0xFFF) << 10, mask: 0xFFF << 10); |
474 | } |
475 | |
476 | // Update the immediate field in an AArch64 movk, movn or movz instruction |
477 | // for a signed relocation, and update the opcode of a movn or movz instruction |
478 | // to match the sign of the operand. |
479 | static void writeSMovWImm(uint8_t *loc, uint32_t imm) { |
480 | uint32_t inst = read32le(P: loc); |
481 | // Opcode field is bits 30, 29, with 10 = movz, 00 = movn and 11 = movk. |
482 | if (!(inst & (1 << 29))) { |
483 | // movn or movz. |
484 | if (imm & 0x10000) { |
485 | // Change opcode to movn, which takes an inverted operand. |
486 | imm ^= 0xFFFF; |
487 | inst &= ~(1 << 30); |
488 | } else { |
489 | // Change opcode to movz. |
490 | inst |= 1 << 30; |
491 | } |
492 | } |
493 | write32le(P: loc, V: inst | ((imm & 0xFFFF) << 5)); |
494 | } |
495 | |
496 | void AArch64::relocate(uint8_t *loc, const Relocation &rel, |
497 | uint64_t val) const { |
498 | switch (rel.type) { |
499 | case R_AARCH64_ABS16: |
500 | case R_AARCH64_PREL16: |
501 | checkIntUInt(ctx, loc, v: val, n: 16, rel); |
502 | write16(ctx, p: loc, v: val); |
503 | break; |
504 | case R_AARCH64_ABS32: |
505 | case R_AARCH64_PREL32: |
506 | checkIntUInt(ctx, loc, v: val, n: 32, rel); |
507 | write32(ctx, p: loc, v: val); |
508 | break; |
509 | case R_AARCH64_PLT32: |
510 | case R_AARCH64_GOTPCREL32: |
511 | checkInt(ctx, loc, v: val, n: 32, rel); |
512 | write32(ctx, p: loc, v: val); |
513 | break; |
514 | case R_AARCH64_ABS64: |
515 | // AArch64 relocations to tagged symbols have extended semantics, as |
516 | // described here: |
517 | // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#841extended-semantics-of-r_aarch64_relative. |
518 | // tl;dr: encode the symbol's special addend in the place, which is an |
519 | // offset to the point where the logical tag is derived from. Quick hack, if |
520 | // the addend is within the symbol's bounds, no need to encode the tag |
521 | // derivation offset. |
522 | if (rel.sym && rel.sym->isTagged() && |
523 | (rel.addend < 0 || |
524 | rel.addend >= static_cast<int64_t>(rel.sym->getSize()))) |
525 | write64(ctx, p: loc, v: -rel.addend); |
526 | else |
527 | write64(ctx, p: loc, v: val); |
528 | break; |
529 | case R_AARCH64_PREL64: |
530 | write64(ctx, p: loc, v: val); |
531 | break; |
532 | case R_AARCH64_AUTH_ABS64: |
533 | // If val is wider than 32 bits, the relocation must have been moved from |
534 | // .relr.auth.dyn to .rela.dyn, and the addend write is not needed. |
535 | // |
536 | // If val fits in 32 bits, we have two potential scenarios: |
537 | // * True RELR: Write the 32-bit `val`. |
538 | // * RELA: Even if the value now fits in 32 bits, it might have been |
539 | // converted from RELR during an iteration in |
540 | // finalizeAddressDependentContent(). Writing the value is harmless |
541 | // because dynamic linking ignores it. |
542 | if (isInt<32>(x: val)) |
543 | write32(ctx, p: loc, v: val); |
544 | break; |
545 | case R_AARCH64_ADD_ABS_LO12_NC: |
546 | case R_AARCH64_AUTH_GOT_ADD_LO12_NC: |
547 | write32Imm12(l: loc, imm: val); |
548 | break; |
549 | case R_AARCH64_ADR_GOT_PAGE: |
550 | case R_AARCH64_AUTH_ADR_GOT_PAGE: |
551 | case R_AARCH64_ADR_PREL_PG_HI21: |
552 | case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: |
553 | case R_AARCH64_TLSDESC_ADR_PAGE21: |
554 | case R_AARCH64_AUTH_TLSDESC_ADR_PAGE21: |
555 | checkInt(ctx, loc, v: val, n: 33, rel); |
556 | [[fallthrough]]; |
557 | case R_AARCH64_ADR_PREL_PG_HI21_NC: |
558 | write32AArch64Addr(l: loc, imm: val >> 12); |
559 | break; |
560 | case R_AARCH64_ADR_PREL_LO21: |
561 | case R_AARCH64_AUTH_GOT_ADR_PREL_LO21: |
562 | checkInt(ctx, loc, v: val, n: 21, rel); |
563 | write32AArch64Addr(l: loc, imm: val); |
564 | break; |
565 | case R_AARCH64_JUMP26: |
566 | // Normally we would just write the bits of the immediate field, however |
567 | // when patching instructions for the cpu errata fix -fix-cortex-a53-843419 |
568 | // we want to replace a non-branch instruction with a branch immediate |
569 | // instruction. By writing all the bits of the instruction including the |
570 | // opcode and the immediate (0 001 | 01 imm26) we can do this |
571 | // transformation by placing a R_AARCH64_JUMP26 relocation at the offset of |
572 | // the instruction we want to patch. |
573 | write32le(P: loc, V: 0x14000000); |
574 | [[fallthrough]]; |
575 | case R_AARCH64_CALL26: |
576 | checkInt(ctx, loc, v: val, n: 28, rel); |
577 | writeMaskedBits32le(p: loc, v: (val & 0x0FFFFFFC) >> 2, mask: 0x0FFFFFFC >> 2); |
578 | break; |
579 | case R_AARCH64_CONDBR19: |
580 | case R_AARCH64_LD_PREL_LO19: |
581 | case R_AARCH64_GOT_LD_PREL19: |
582 | case R_AARCH64_AUTH_GOT_LD_PREL19: |
583 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
584 | checkInt(ctx, loc, v: val, n: 21, rel); |
585 | writeMaskedBits32le(p: loc, v: (val & 0x1FFFFC) << 3, mask: 0x1FFFFC << 3); |
586 | break; |
587 | case R_AARCH64_LDST8_ABS_LO12_NC: |
588 | case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC: |
589 | write32Imm12(l: loc, imm: getBits(val, start: 0, end: 11)); |
590 | break; |
591 | case R_AARCH64_LDST16_ABS_LO12_NC: |
592 | case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC: |
593 | checkAlignment(ctx, loc, v: val, n: 2, rel); |
594 | write32Imm12(l: loc, imm: getBits(val, start: 1, end: 11)); |
595 | break; |
596 | case R_AARCH64_LDST32_ABS_LO12_NC: |
597 | case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC: |
598 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
599 | write32Imm12(l: loc, imm: getBits(val, start: 2, end: 11)); |
600 | break; |
601 | case R_AARCH64_LDST64_ABS_LO12_NC: |
602 | case R_AARCH64_LD64_GOT_LO12_NC: |
603 | case R_AARCH64_AUTH_LD64_GOT_LO12_NC: |
604 | case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: |
605 | case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC: |
606 | case R_AARCH64_TLSDESC_LD64_LO12: |
607 | case R_AARCH64_AUTH_TLSDESC_LD64_LO12: |
608 | checkAlignment(ctx, loc, v: val, n: 8, rel); |
609 | write32Imm12(l: loc, imm: getBits(val, start: 3, end: 11)); |
610 | break; |
611 | case R_AARCH64_LDST128_ABS_LO12_NC: |
612 | case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC: |
613 | checkAlignment(ctx, loc, v: val, n: 16, rel); |
614 | write32Imm12(l: loc, imm: getBits(val, start: 4, end: 11)); |
615 | break; |
616 | case R_AARCH64_LD64_GOTPAGE_LO15: |
617 | checkAlignment(ctx, loc, v: val, n: 8, rel); |
618 | write32Imm12(l: loc, imm: getBits(val, start: 3, end: 14)); |
619 | break; |
620 | case R_AARCH64_MOVW_UABS_G0: |
621 | checkUInt(ctx, loc, v: val, n: 16, rel); |
622 | [[fallthrough]]; |
623 | case R_AARCH64_MOVW_UABS_G0_NC: |
624 | writeMaskedBits32le(p: loc, v: (val & 0xFFFF) << 5, mask: 0xFFFF << 5); |
625 | break; |
626 | case R_AARCH64_MOVW_UABS_G1: |
627 | checkUInt(ctx, loc, v: val, n: 32, rel); |
628 | [[fallthrough]]; |
629 | case R_AARCH64_MOVW_UABS_G1_NC: |
630 | writeMaskedBits32le(p: loc, v: (val & 0xFFFF0000) >> 11, mask: 0xFFFF0000 >> 11); |
631 | break; |
632 | case R_AARCH64_MOVW_UABS_G2: |
633 | checkUInt(ctx, loc, v: val, n: 48, rel); |
634 | [[fallthrough]]; |
635 | case R_AARCH64_MOVW_UABS_G2_NC: |
636 | writeMaskedBits32le(p: loc, v: (val & 0xFFFF00000000) >> 27, |
637 | mask: 0xFFFF00000000 >> 27); |
638 | break; |
639 | case R_AARCH64_MOVW_UABS_G3: |
640 | writeMaskedBits32le(p: loc, v: (val & 0xFFFF000000000000) >> 43, |
641 | mask: 0xFFFF000000000000 >> 43); |
642 | break; |
643 | case R_AARCH64_MOVW_PREL_G0: |
644 | case R_AARCH64_MOVW_SABS_G0: |
645 | case R_AARCH64_TLSLE_MOVW_TPREL_G0: |
646 | checkInt(ctx, loc, v: val, n: 17, rel); |
647 | [[fallthrough]]; |
648 | case R_AARCH64_MOVW_PREL_G0_NC: |
649 | case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC: |
650 | writeSMovWImm(loc, imm: val); |
651 | break; |
652 | case R_AARCH64_MOVW_PREL_G1: |
653 | case R_AARCH64_MOVW_SABS_G1: |
654 | case R_AARCH64_TLSLE_MOVW_TPREL_G1: |
655 | checkInt(ctx, loc, v: val, n: 33, rel); |
656 | [[fallthrough]]; |
657 | case R_AARCH64_MOVW_PREL_G1_NC: |
658 | case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC: |
659 | writeSMovWImm(loc, imm: val >> 16); |
660 | break; |
661 | case R_AARCH64_MOVW_PREL_G2: |
662 | case R_AARCH64_MOVW_SABS_G2: |
663 | case R_AARCH64_TLSLE_MOVW_TPREL_G2: |
664 | checkInt(ctx, loc, v: val, n: 49, rel); |
665 | [[fallthrough]]; |
666 | case R_AARCH64_MOVW_PREL_G2_NC: |
667 | writeSMovWImm(loc, imm: val >> 32); |
668 | break; |
669 | case R_AARCH64_MOVW_PREL_G3: |
670 | writeSMovWImm(loc, imm: val >> 48); |
671 | break; |
672 | case R_AARCH64_TSTBR14: |
673 | checkInt(ctx, loc, v: val, n: 16, rel); |
674 | writeMaskedBits32le(p: loc, v: (val & 0xFFFC) << 3, mask: 0xFFFC << 3); |
675 | break; |
676 | case R_AARCH64_TLSLE_ADD_TPREL_HI12: |
677 | checkUInt(ctx, loc, v: val, n: 24, rel); |
678 | write32Imm12(l: loc, imm: val >> 12); |
679 | break; |
680 | case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: |
681 | case R_AARCH64_TLSDESC_ADD_LO12: |
682 | case R_AARCH64_AUTH_TLSDESC_ADD_LO12: |
683 | write32Imm12(l: loc, imm: val); |
684 | break; |
685 | case R_AARCH64_TLSDESC: |
686 | // For R_AARCH64_TLSDESC the addend is stored in the second 64-bit word. |
687 | write64(ctx, p: loc + 8, v: val); |
688 | break; |
689 | default: |
690 | llvm_unreachable("unknown relocation" ); |
691 | } |
692 | } |
693 | |
694 | void AArch64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, |
695 | uint64_t val) const { |
696 | // TLSDESC Global-Dynamic relocation are in the form: |
697 | // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] |
698 | // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12] |
699 | // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12] |
700 | // .tlsdesccall [R_AARCH64_TLSDESC_CALL] |
701 | // blr x1 |
702 | // And it can optimized to: |
703 | // movz x0, #0x0, lsl #16 |
704 | // movk x0, #0x10 |
705 | // nop |
706 | // nop |
707 | checkUInt(ctx, loc, v: val, n: 32, rel); |
708 | |
709 | switch (rel.type) { |
710 | case R_AARCH64_TLSDESC_ADD_LO12: |
711 | case R_AARCH64_TLSDESC_CALL: |
712 | write32le(P: loc, V: 0xd503201f); // nop |
713 | return; |
714 | case R_AARCH64_TLSDESC_ADR_PAGE21: |
715 | write32le(P: loc, V: 0xd2a00000 | (((val >> 16) & 0xffff) << 5)); // movz |
716 | return; |
717 | case R_AARCH64_TLSDESC_LD64_LO12: |
718 | write32le(P: loc, V: 0xf2800000 | ((val & 0xffff) << 5)); // movk |
719 | return; |
720 | default: |
721 | llvm_unreachable("unsupported relocation for TLS GD to LE relaxation" ); |
722 | } |
723 | } |
724 | |
725 | void AArch64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, |
726 | uint64_t val) const { |
727 | // TLSDESC Global-Dynamic relocation are in the form: |
728 | // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21] |
729 | // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12] |
730 | // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12] |
731 | // .tlsdesccall [R_AARCH64_TLSDESC_CALL] |
732 | // blr x1 |
733 | // And it can optimized to: |
734 | // adrp x0, :gottprel:v |
735 | // ldr x0, [x0, :gottprel_lo12:v] |
736 | // nop |
737 | // nop |
738 | |
739 | switch (rel.type) { |
740 | case R_AARCH64_TLSDESC_ADD_LO12: |
741 | case R_AARCH64_TLSDESC_CALL: |
742 | write32le(P: loc, V: 0xd503201f); // nop |
743 | break; |
744 | case R_AARCH64_TLSDESC_ADR_PAGE21: |
745 | write32le(P: loc, V: 0x90000000); // adrp |
746 | relocateNoSym(loc, type: R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, val); |
747 | break; |
748 | case R_AARCH64_TLSDESC_LD64_LO12: |
749 | write32le(P: loc, V: 0xf9400000); // ldr |
750 | relocateNoSym(loc, type: R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, val); |
751 | break; |
752 | default: |
753 | llvm_unreachable("unsupported relocation for TLS GD to LE relaxation" ); |
754 | } |
755 | } |
756 | |
757 | void AArch64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, |
758 | uint64_t val) const { |
759 | checkUInt(ctx, loc, v: val, n: 32, rel); |
760 | |
761 | if (rel.type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) { |
762 | // Generate MOVZ. |
763 | uint32_t regNo = read32le(P: loc) & 0x1f; |
764 | write32le(P: loc, V: (0xd2a00000 | regNo) | (((val >> 16) & 0xffff) << 5)); |
765 | return; |
766 | } |
767 | if (rel.type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) { |
768 | // Generate MOVK. |
769 | uint32_t regNo = read32le(P: loc) & 0x1f; |
770 | write32le(P: loc, V: (0xf2800000 | regNo) | ((val & 0xffff) << 5)); |
771 | return; |
772 | } |
773 | llvm_unreachable("invalid relocation for TLS IE to LE relaxation" ); |
774 | } |
775 | |
776 | AArch64Relaxer::AArch64Relaxer(Ctx &ctx, ArrayRef<Relocation> relocs) |
777 | : ctx(ctx) { |
778 | if (!ctx.arg.relax) |
779 | return; |
780 | // Check if R_AARCH64_ADR_GOT_PAGE and R_AARCH64_LD64_GOT_LO12_NC |
781 | // always appear in pairs. |
782 | size_t i = 0; |
783 | const size_t size = relocs.size(); |
784 | for (; i != size; ++i) { |
785 | if (relocs[i].type == R_AARCH64_ADR_GOT_PAGE) { |
786 | if (i + 1 < size && relocs[i + 1].type == R_AARCH64_LD64_GOT_LO12_NC) { |
787 | ++i; |
788 | continue; |
789 | } |
790 | break; |
791 | } else if (relocs[i].type == R_AARCH64_LD64_GOT_LO12_NC) { |
792 | break; |
793 | } |
794 | } |
795 | safeToRelaxAdrpLdr = i == size; |
796 | } |
797 | |
798 | bool AArch64Relaxer::tryRelaxAdrpAdd(const Relocation &adrpRel, |
799 | const Relocation &addRel, uint64_t secAddr, |
800 | uint8_t *buf) const { |
801 | // When the address of sym is within the range of ADR then |
802 | // we may relax |
803 | // ADRP xn, sym |
804 | // ADD xn, xn, :lo12: sym |
805 | // to |
806 | // NOP |
807 | // ADR xn, sym |
808 | if (!ctx.arg.relax || adrpRel.type != R_AARCH64_ADR_PREL_PG_HI21 || |
809 | addRel.type != R_AARCH64_ADD_ABS_LO12_NC) |
810 | return false; |
811 | // Check if the relocations apply to consecutive instructions. |
812 | if (adrpRel.offset + 4 != addRel.offset) |
813 | return false; |
814 | if (adrpRel.sym != addRel.sym) |
815 | return false; |
816 | if (adrpRel.addend != 0 || addRel.addend != 0) |
817 | return false; |
818 | |
819 | uint32_t adrpInstr = read32le(P: buf + adrpRel.offset); |
820 | uint32_t addInstr = read32le(P: buf + addRel.offset); |
821 | // Check if the first instruction is ADRP and the second instruction is ADD. |
822 | if ((adrpInstr & 0x9f000000) != 0x90000000 || |
823 | (addInstr & 0xffc00000) != 0x91000000) |
824 | return false; |
825 | uint32_t adrpDestReg = adrpInstr & 0x1f; |
826 | uint32_t addDestReg = addInstr & 0x1f; |
827 | uint32_t addSrcReg = (addInstr >> 5) & 0x1f; |
828 | if (adrpDestReg != addDestReg || adrpDestReg != addSrcReg) |
829 | return false; |
830 | |
831 | Symbol &sym = *adrpRel.sym; |
832 | // Check if the address difference is within 1MiB range. |
833 | int64_t val = sym.getVA(ctx) - (secAddr + addRel.offset); |
834 | if (val < -1024 * 1024 || val >= 1024 * 1024) |
835 | return false; |
836 | |
837 | Relocation adrRel = {.expr: R_ABS, .type: R_AARCH64_ADR_PREL_LO21, .offset: addRel.offset, |
838 | /*addend=*/0, .sym: &sym}; |
839 | // nop |
840 | write32le(P: buf + adrpRel.offset, V: 0xd503201f); |
841 | // adr x_<dest_reg> |
842 | write32le(P: buf + adrRel.offset, V: 0x10000000 | adrpDestReg); |
843 | ctx.target->relocate(loc: buf + adrRel.offset, rel: adrRel, val); |
844 | return true; |
845 | } |
846 | |
847 | bool AArch64Relaxer::tryRelaxAdrpLdr(const Relocation &adrpRel, |
848 | const Relocation &ldrRel, uint64_t secAddr, |
849 | uint8_t *buf) const { |
850 | if (!safeToRelaxAdrpLdr) |
851 | return false; |
852 | |
853 | // When the definition of sym is not preemptible then we may |
854 | // be able to relax |
855 | // ADRP xn, :got: sym |
856 | // LDR xn, [ xn :got_lo12: sym] |
857 | // to |
858 | // ADRP xn, sym |
859 | // ADD xn, xn, :lo_12: sym |
860 | |
861 | if (adrpRel.type != R_AARCH64_ADR_GOT_PAGE || |
862 | ldrRel.type != R_AARCH64_LD64_GOT_LO12_NC) |
863 | return false; |
864 | // Check if the relocations apply to consecutive instructions. |
865 | if (adrpRel.offset + 4 != ldrRel.offset) |
866 | return false; |
867 | // Check if the relocations reference the same symbol and |
868 | // skip undefined, preemptible and STT_GNU_IFUNC symbols. |
869 | if (!adrpRel.sym || adrpRel.sym != ldrRel.sym || !adrpRel.sym->isDefined() || |
870 | adrpRel.sym->isPreemptible || adrpRel.sym->isGnuIFunc()) |
871 | return false; |
872 | // Check if the addends of the both relocations are zero. |
873 | if (adrpRel.addend != 0 || ldrRel.addend != 0) |
874 | return false; |
875 | uint32_t adrpInstr = read32le(P: buf + adrpRel.offset); |
876 | uint32_t ldrInstr = read32le(P: buf + ldrRel.offset); |
877 | // Check if the first instruction is ADRP and the second instruction is LDR. |
878 | if ((adrpInstr & 0x9f000000) != 0x90000000 || |
879 | (ldrInstr & 0x3b000000) != 0x39000000) |
880 | return false; |
881 | // Check the value of the sf bit. |
882 | if (!(ldrInstr >> 31)) |
883 | return false; |
884 | uint32_t adrpDestReg = adrpInstr & 0x1f; |
885 | uint32_t ldrDestReg = ldrInstr & 0x1f; |
886 | uint32_t ldrSrcReg = (ldrInstr >> 5) & 0x1f; |
887 | // Check if ADPR and LDR use the same register. |
888 | if (adrpDestReg != ldrDestReg || adrpDestReg != ldrSrcReg) |
889 | return false; |
890 | |
891 | Symbol &sym = *adrpRel.sym; |
892 | // GOT references to absolute symbols can't be relaxed to use ADRP/ADD in |
893 | // position-independent code because these instructions produce a relative |
894 | // address. |
895 | if (ctx.arg.isPic && !cast<Defined>(Val&: sym).section) |
896 | return false; |
897 | // Check if the address difference is within 4GB range. |
898 | int64_t val = |
899 | getAArch64Page(expr: sym.getVA(ctx)) - getAArch64Page(expr: secAddr + adrpRel.offset); |
900 | if (val != llvm::SignExtend64(X: val, B: 33)) |
901 | return false; |
902 | |
903 | Relocation adrpSymRel = {.expr: RE_AARCH64_PAGE_PC, .type: R_AARCH64_ADR_PREL_PG_HI21, |
904 | .offset: adrpRel.offset, /*addend=*/0, .sym: &sym}; |
905 | Relocation addRel = {.expr: R_ABS, .type: R_AARCH64_ADD_ABS_LO12_NC, .offset: ldrRel.offset, |
906 | /*addend=*/0, .sym: &sym}; |
907 | |
908 | // adrp x_<dest_reg> |
909 | write32le(P: buf + adrpSymRel.offset, V: 0x90000000 | adrpDestReg); |
910 | // add x_<dest reg>, x_<dest reg> |
911 | write32le(P: buf + addRel.offset, V: 0x91000000 | adrpDestReg | (adrpDestReg << 5)); |
912 | |
913 | ctx.target->relocate( |
914 | loc: buf + adrpSymRel.offset, rel: adrpSymRel, |
915 | val: SignExtend64(X: getAArch64Page(expr: sym.getVA(ctx)) - |
916 | getAArch64Page(expr: secAddr + adrpSymRel.offset), |
917 | B: 64)); |
918 | ctx.target->relocate(loc: buf + addRel.offset, rel: addRel, |
919 | val: SignExtend64(X: sym.getVA(ctx), B: 64)); |
920 | tryRelaxAdrpAdd(adrpRel: adrpSymRel, addRel, secAddr, buf); |
921 | return true; |
922 | } |
923 | |
924 | // Tagged symbols have upper address bits that are added by the dynamic loader, |
925 | // and thus need the full 64-bit GOT entry. Do not relax such symbols. |
926 | static bool needsGotForMemtag(const Relocation &rel) { |
927 | return rel.sym->isTagged() && needsGot(expr: rel.expr); |
928 | } |
929 | |
930 | void AArch64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { |
931 | uint64_t secAddr = sec.getOutputSection()->addr; |
932 | if (auto *s = dyn_cast<InputSection>(Val: &sec)) |
933 | secAddr += s->outSecOff; |
934 | else if (auto *ehIn = dyn_cast<EhInputSection>(Val: &sec)) |
935 | secAddr += ehIn->getParent()->outSecOff; |
936 | AArch64Relaxer relaxer(ctx, sec.relocs()); |
937 | for (size_t i = 0, size = sec.relocs().size(); i != size; ++i) { |
938 | const Relocation &rel = sec.relocs()[i]; |
939 | uint8_t *loc = buf + rel.offset; |
940 | const uint64_t val = sec.getRelocTargetVA(ctx, r: rel, p: secAddr + rel.offset); |
941 | |
942 | if (needsGotForMemtag(rel)) { |
943 | relocate(loc, rel, val); |
944 | continue; |
945 | } |
946 | |
947 | switch (rel.expr) { |
948 | case RE_AARCH64_GOT_PAGE_PC: |
949 | if (i + 1 < size && |
950 | relaxer.tryRelaxAdrpLdr(adrpRel: rel, ldrRel: sec.relocs()[i + 1], secAddr, buf)) { |
951 | ++i; |
952 | continue; |
953 | } |
954 | break; |
955 | case RE_AARCH64_PAGE_PC: |
956 | if (i + 1 < size && |
957 | relaxer.tryRelaxAdrpAdd(adrpRel: rel, addRel: sec.relocs()[i + 1], secAddr, buf)) { |
958 | ++i; |
959 | continue; |
960 | } |
961 | break; |
962 | case RE_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: |
963 | case R_RELAX_TLS_GD_TO_IE_ABS: |
964 | relaxTlsGdToIe(loc, rel, val); |
965 | continue; |
966 | case R_RELAX_TLS_GD_TO_LE: |
967 | relaxTlsGdToLe(loc, rel, val); |
968 | continue; |
969 | case R_RELAX_TLS_IE_TO_LE: |
970 | relaxTlsIeToLe(loc, rel, val); |
971 | continue; |
972 | default: |
973 | break; |
974 | } |
975 | relocate(loc, rel, val); |
976 | } |
977 | } |
978 | |
979 | static std::optional<uint64_t> getControlTransferAddend(InputSection &is, |
980 | Relocation &r) { |
981 | // Identify a control transfer relocation for the branch-to-branch |
982 | // optimization. A "control transfer relocation" means a B or BL |
983 | // target but it also includes relative vtable relocations for example. |
984 | // |
985 | // We require the relocation type to be JUMP26, CALL26 or PLT32. With a |
986 | // relocation type of PLT32 the value may be assumed to be used for branching |
987 | // directly to the symbol and the addend is only used to produce the relocated |
988 | // value (hence the effective addend is always 0). This is because if a PLT is |
989 | // needed the addend will be added to the address of the PLT, and it doesn't |
990 | // make sense to branch into the middle of a PLT. For example, relative vtable |
991 | // relocations use PLT32 and 0 or a positive value as the addend but still are |
992 | // used to branch to the symbol. |
993 | // |
994 | // With JUMP26 or CALL26 the only reasonable interpretation of a non-zero |
995 | // addend is that we are branching to symbol+addend so that becomes the |
996 | // effective addend. |
997 | if (r.type == R_AARCH64_PLT32) |
998 | return 0; |
999 | if (r.type == R_AARCH64_JUMP26 || r.type == R_AARCH64_CALL26) |
1000 | return r.addend; |
1001 | return std::nullopt; |
1002 | } |
1003 | |
1004 | static std::pair<Relocation *, uint64_t> |
1005 | getBranchInfoAtTarget(InputSection &is, uint64_t offset) { |
1006 | auto *i = llvm::partition_point( |
1007 | Range&: is.relocations, P: [&](Relocation &r) { return r.offset < offset; }); |
1008 | if (i != is.relocations.end() && i->offset == offset && |
1009 | i->type == R_AARCH64_JUMP26) { |
1010 | return {i, i->addend}; |
1011 | } |
1012 | return {nullptr, 0}; |
1013 | } |
1014 | |
1015 | static void redirectControlTransferRelocations(Relocation &r1, |
1016 | const Relocation &r2) { |
1017 | r1.expr = r2.expr; |
1018 | r1.sym = r2.sym; |
1019 | // With PLT32 we must respect the original addend as that affects the value's |
1020 | // interpretation. With the other relocation types the original addend is |
1021 | // irrelevant because it referred to an offset within the original target |
1022 | // section so we overwrite it. |
1023 | if (r1.type == R_AARCH64_PLT32) |
1024 | r1.addend += r2.addend; |
1025 | else |
1026 | r1.addend = r2.addend; |
1027 | } |
1028 | |
1029 | void AArch64::applyBranchToBranchOpt() const { |
1030 | applyBranchToBranchOptImpl(ctx, getControlTransferAddend, |
1031 | getBranchInfoAtTarget, |
1032 | redirectControlTransferRelocations); |
1033 | } |
1034 | |
1035 | // AArch64 may use security features in variant PLT sequences. These are: |
1036 | // Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target |
1037 | // Indicator (BTI) introduced in armv8.5-a. The additional instructions used |
1038 | // in the variant Plt sequences are encoded in the Hint space so they can be |
1039 | // deployed on older architectures, which treat the instructions as a nop. |
1040 | // PAC and BTI can be combined leading to the following combinations: |
1041 | // writePltHeader |
1042 | // writePltHeaderBti (no PAC Header needed) |
1043 | // writePlt |
1044 | // writePltBti (BTI only) |
1045 | // writePltPac (PAC only) |
1046 | // writePltBtiPac (BTI and PAC) |
1047 | // |
1048 | // When PAC is enabled the dynamic loader encrypts the address that it places |
1049 | // in the .got.plt using the pacia1716 instruction which encrypts the value in |
1050 | // x17 using the modifier in x16. The static linker places autia1716 before the |
1051 | // indirect branch to x17 to authenticate the address in x17 with the modifier |
1052 | // in x16. This makes it more difficult for an attacker to modify the value in |
1053 | // the .got.plt. |
1054 | // |
1055 | // When BTI is enabled all indirect branches must land on a bti instruction. |
1056 | // The static linker must place a bti instruction at the start of any PLT entry |
1057 | // that may be the target of an indirect branch. As the PLT entries call the |
1058 | // lazy resolver indirectly this must have a bti instruction at start. In |
1059 | // general a bti instruction is not needed for a PLT entry as indirect calls |
1060 | // are resolved to the function address and not the PLT entry for the function. |
1061 | // There are a small number of cases where the PLT address can escape, such as |
1062 | // taking the address of a function or ifunc via a non got-generating |
1063 | // relocation, and a shared library refers to that symbol. |
1064 | // |
1065 | // We use the bti c variant of the instruction which permits indirect branches |
1066 | // (br) via x16/x17 and indirect function calls (blr) via any register. The ABI |
1067 | // guarantees that all indirect branches from code requiring BTI protection |
1068 | // will go via x16/x17 |
1069 | |
1070 | namespace { |
1071 | class AArch64BtiPac final : public AArch64 { |
1072 | public: |
1073 | AArch64BtiPac(Ctx &); |
1074 | void writePltHeader(uint8_t *buf) const override; |
1075 | void writePlt(uint8_t *buf, const Symbol &sym, |
1076 | uint64_t pltEntryAddr) const override; |
1077 | |
1078 | private: |
1079 | bool ; // bti instruction needed in PLT Header and Entry |
1080 | enum { |
1081 | PEK_NoAuth, |
1082 | PEK_AuthHint, // use autia1716 instr for authenticated branch in PLT entry |
1083 | PEK_Auth, // use braa instr for authenticated branch in PLT entry |
1084 | } pacEntryKind; |
1085 | }; |
1086 | } // namespace |
1087 | |
1088 | AArch64BtiPac::AArch64BtiPac(Ctx &ctx) : AArch64(ctx) { |
1089 | btiHeader = (ctx.arg.andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI); |
1090 | // A BTI (Branch Target Indicator) Plt Entry is only required if the |
1091 | // address of the PLT entry can be taken by the program, which permits an |
1092 | // indirect jump to the PLT entry. This can happen when the address |
1093 | // of the PLT entry for a function is canonicalised due to the address of |
1094 | // the function in an executable being taken by a shared library, or |
1095 | // non-preemptible ifunc referenced by non-GOT-generating, non-PLT-generating |
1096 | // relocations. |
1097 | // The PAC PLT entries require dynamic loader support and this isn't known |
1098 | // from properties in the objects, so we use the command line flag. |
1099 | // By default we only use hint-space instructions, but if we detect the |
1100 | // PAuthABI, which requires v8.3-A, we can use the non-hint space |
1101 | // instructions. |
1102 | |
1103 | if (ctx.arg.zPacPlt) { |
1104 | if (ctx.aarch64PauthAbiCoreInfo && ctx.aarch64PauthAbiCoreInfo->isValid()) |
1105 | pacEntryKind = PEK_Auth; |
1106 | else |
1107 | pacEntryKind = PEK_AuthHint; |
1108 | } else { |
1109 | pacEntryKind = PEK_NoAuth; |
1110 | } |
1111 | |
1112 | if (btiHeader || (pacEntryKind != PEK_NoAuth)) { |
1113 | pltEntrySize = 24; |
1114 | ipltEntrySize = 24; |
1115 | } |
1116 | } |
1117 | |
1118 | void AArch64BtiPac::(uint8_t *buf) const { |
1119 | const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c |
1120 | const uint8_t pltData[] = { |
1121 | 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]! |
1122 | 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2])) |
1123 | 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))] |
1124 | 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2])) |
1125 | 0x20, 0x02, 0x1f, 0xd6, // br x17 |
1126 | 0x1f, 0x20, 0x03, 0xd5, // nop |
1127 | 0x1f, 0x20, 0x03, 0xd5 // nop |
1128 | }; |
1129 | const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop |
1130 | |
1131 | uint64_t got = ctx.in.gotPlt->getVA(); |
1132 | uint64_t plt = ctx.in.plt->getVA(); |
1133 | |
1134 | if (btiHeader) { |
1135 | // PltHeader is called indirectly by plt[N]. Prefix pltData with a BTI C |
1136 | // instruction. |
1137 | memcpy(dest: buf, src: btiData, n: sizeof(btiData)); |
1138 | buf += sizeof(btiData); |
1139 | plt += sizeof(btiData); |
1140 | } |
1141 | memcpy(dest: buf, src: pltData, n: sizeof(pltData)); |
1142 | |
1143 | relocateNoSym(loc: buf + 4, type: R_AARCH64_ADR_PREL_PG_HI21, |
1144 | val: getAArch64Page(expr: got + 16) - getAArch64Page(expr: plt + 4)); |
1145 | relocateNoSym(loc: buf + 8, type: R_AARCH64_LDST64_ABS_LO12_NC, val: got + 16); |
1146 | relocateNoSym(loc: buf + 12, type: R_AARCH64_ADD_ABS_LO12_NC, val: got + 16); |
1147 | if (!btiHeader) |
1148 | // We didn't add the BTI c instruction so round out size with NOP. |
1149 | memcpy(dest: buf + sizeof(pltData), src: nopData, n: sizeof(nopData)); |
1150 | } |
1151 | |
1152 | void AArch64BtiPac::writePlt(uint8_t *buf, const Symbol &sym, |
1153 | uint64_t pltEntryAddr) const { |
1154 | // The PLT entry is of the form: |
1155 | // [btiData] addrInst (pacBr | stdBr) [nopData] |
1156 | const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c |
1157 | const uint8_t addrInst[] = { |
1158 | 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n])) |
1159 | 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))] |
1160 | 0x10, 0x02, 0x00, 0x91 // add x16, x16, Offset(&(.got.plt[n])) |
1161 | }; |
1162 | const uint8_t pacHintBr[] = { |
1163 | 0x9f, 0x21, 0x03, 0xd5, // autia1716 |
1164 | 0x20, 0x02, 0x1f, 0xd6 // br x17 |
1165 | }; |
1166 | const uint8_t pacBr[] = { |
1167 | 0x30, 0x0a, 0x1f, 0xd7, // braa x17, x16 |
1168 | 0x1f, 0x20, 0x03, 0xd5 // nop |
1169 | }; |
1170 | const uint8_t stdBr[] = { |
1171 | 0x20, 0x02, 0x1f, 0xd6, // br x17 |
1172 | 0x1f, 0x20, 0x03, 0xd5 // nop |
1173 | }; |
1174 | const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop |
1175 | |
1176 | // NEEDS_COPY indicates a non-ifunc canonical PLT entry whose address may |
1177 | // escape to shared objects. isInIplt indicates a non-preemptible ifunc. Its |
1178 | // address may escape if referenced by a direct relocation. If relative |
1179 | // vtables are used then if the vtable is in a shared object the offsets will |
1180 | // be to the PLT entry. The condition is conservative. |
1181 | bool hasBti = btiHeader && |
1182 | (sym.hasFlag(bit: NEEDS_COPY) || sym.isInIplt || sym.thunkAccessed); |
1183 | if (hasBti) { |
1184 | memcpy(dest: buf, src: btiData, n: sizeof(btiData)); |
1185 | buf += sizeof(btiData); |
1186 | pltEntryAddr += sizeof(btiData); |
1187 | } |
1188 | |
1189 | uint64_t gotPltEntryAddr = sym.getGotPltVA(ctx); |
1190 | memcpy(dest: buf, src: addrInst, n: sizeof(addrInst)); |
1191 | relocateNoSym(loc: buf, type: R_AARCH64_ADR_PREL_PG_HI21, |
1192 | val: getAArch64Page(expr: gotPltEntryAddr) - getAArch64Page(expr: pltEntryAddr)); |
1193 | relocateNoSym(loc: buf + 4, type: R_AARCH64_LDST64_ABS_LO12_NC, val: gotPltEntryAddr); |
1194 | relocateNoSym(loc: buf + 8, type: R_AARCH64_ADD_ABS_LO12_NC, val: gotPltEntryAddr); |
1195 | |
1196 | if (pacEntryKind != PEK_NoAuth) |
1197 | memcpy(dest: buf + sizeof(addrInst), |
1198 | src: pacEntryKind == PEK_AuthHint ? pacHintBr : pacBr, |
1199 | n: sizeof(pacEntryKind == PEK_AuthHint ? pacHintBr : pacBr)); |
1200 | else |
1201 | memcpy(dest: buf + sizeof(addrInst), src: stdBr, n: sizeof(stdBr)); |
1202 | if (!hasBti) |
1203 | // We didn't add the BTI c instruction so round out size with NOP. |
1204 | memcpy(dest: buf + sizeof(addrInst) + sizeof(stdBr), src: nopData, n: sizeof(nopData)); |
1205 | } |
1206 | |
1207 | template <class ELFT> |
1208 | static void |
1209 | addTaggedSymbolReferences(Ctx &ctx, InputSectionBase &sec, |
1210 | DenseMap<Symbol *, unsigned> &referenceCount) { |
1211 | assert(sec.type == SHT_AARCH64_MEMTAG_GLOBALS_STATIC); |
1212 | |
1213 | const RelsOrRelas<ELFT> rels = sec.relsOrRelas<ELFT>(); |
1214 | if (rels.areRelocsRel()) |
1215 | ErrAlways(ctx) |
1216 | << "non-RELA relocations are not allowed with memtag globals" ; |
1217 | |
1218 | for (const typename ELFT::Rela &rel : rels.relas) { |
1219 | Symbol &sym = sec.file->getRelocTargetSym(rel); |
1220 | // Linker-synthesized symbols such as __executable_start may be referenced |
1221 | // as tagged in input objfiles, and we don't want them to be tagged. A |
1222 | // cheap way to exclude them is the type check, but their type is |
1223 | // STT_NOTYPE. In addition, this save us from checking untaggable symbols, |
1224 | // like functions or TLS symbols. |
1225 | if (sym.type != STT_OBJECT) |
1226 | continue; |
1227 | // STB_LOCAL symbols can't be referenced from outside the object file, and |
1228 | // thus don't need to be checked for references from other object files. |
1229 | if (sym.binding == STB_LOCAL) { |
1230 | sym.setIsTagged(true); |
1231 | continue; |
1232 | } |
1233 | ++referenceCount[&sym]; |
1234 | } |
1235 | sec.markDead(); |
1236 | } |
1237 | |
1238 | // A tagged symbol must be denoted as being tagged by all references and the |
1239 | // chosen definition. For simplicity, here, it must also be denoted as tagged |
1240 | // for all definitions. Otherwise: |
1241 | // |
1242 | // 1. A tagged definition can be used by an untagged declaration, in which case |
1243 | // the untagged access may be PC-relative, causing a tag mismatch at |
1244 | // runtime. |
1245 | // 2. An untagged definition can be used by a tagged declaration, where the |
1246 | // compiler has taken advantage of the increased alignment of the tagged |
1247 | // declaration, but the alignment at runtime is wrong, causing a fault. |
1248 | // |
1249 | // Ideally, this isn't a problem, as any TU that imports or exports tagged |
1250 | // symbols should also be built with tagging. But, to handle these cases, we |
1251 | // demote the symbol to be untagged. |
1252 | void elf::createTaggedSymbols(Ctx &ctx) { |
1253 | assert(hasMemtag(ctx)); |
1254 | |
1255 | // First, collect all symbols that are marked as tagged, and count how many |
1256 | // times they're marked as tagged. |
1257 | DenseMap<Symbol *, unsigned> taggedSymbolReferenceCount; |
1258 | for (InputFile *file : ctx.objectFiles) { |
1259 | if (file->kind() != InputFile::ObjKind) |
1260 | continue; |
1261 | for (InputSectionBase *section : file->getSections()) { |
1262 | if (!section || section->type != SHT_AARCH64_MEMTAG_GLOBALS_STATIC || |
1263 | section == &InputSection::discarded) |
1264 | continue; |
1265 | invokeELFT(addTaggedSymbolReferences, ctx, *section, |
1266 | taggedSymbolReferenceCount); |
1267 | } |
1268 | } |
1269 | |
1270 | // Now, go through all the symbols. If the number of declarations + |
1271 | // definitions to a symbol exceeds the amount of times they're marked as |
1272 | // tagged, it means we have an objfile that uses the untagged variant of the |
1273 | // symbol. |
1274 | for (InputFile *file : ctx.objectFiles) { |
1275 | if (file->kind() != InputFile::BinaryKind && |
1276 | file->kind() != InputFile::ObjKind) |
1277 | continue; |
1278 | |
1279 | for (Symbol *symbol : file->getSymbols()) { |
1280 | // See `addTaggedSymbolReferences` for more details. |
1281 | if (symbol->type != STT_OBJECT || |
1282 | symbol->binding == STB_LOCAL) |
1283 | continue; |
1284 | auto it = taggedSymbolReferenceCount.find(Val: symbol); |
1285 | if (it == taggedSymbolReferenceCount.end()) continue; |
1286 | unsigned &remainingAllowedTaggedRefs = it->second; |
1287 | if (remainingAllowedTaggedRefs == 0) { |
1288 | taggedSymbolReferenceCount.erase(I: it); |
1289 | continue; |
1290 | } |
1291 | --remainingAllowedTaggedRefs; |
1292 | } |
1293 | } |
1294 | |
1295 | // `addTaggedSymbolReferences` has already checked that we have RELA |
1296 | // relocations, the only other way to get written addends is with |
1297 | // --apply-dynamic-relocs. |
1298 | if (!taggedSymbolReferenceCount.empty() && ctx.arg.writeAddends) |
1299 | ErrAlways(ctx) << "--apply-dynamic-relocs cannot be used with MTE globals" ; |
1300 | |
1301 | // Now, `taggedSymbolReferenceCount` should only contain symbols that are |
1302 | // defined as tagged exactly the same amount as it's referenced, meaning all |
1303 | // uses are tagged. |
1304 | for (auto &[symbol, remainingTaggedRefs] : taggedSymbolReferenceCount) { |
1305 | assert(remainingTaggedRefs == 0 && |
1306 | "Symbol is defined as tagged more times than it's used" ); |
1307 | symbol->setIsTagged(true); |
1308 | } |
1309 | } |
1310 | |
1311 | void elf::setAArch64TargetInfo(Ctx &ctx) { |
1312 | if ((ctx.arg.andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) || |
1313 | ctx.arg.zPacPlt) |
1314 | ctx.target.reset(p: new AArch64BtiPac(ctx)); |
1315 | else |
1316 | ctx.target.reset(p: new AArch64(ctx)); |
1317 | } |
1318 | |