| 1 | //===- PPC64.cpp ----------------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "InputFiles.h" |
| 10 | #include "OutputSections.h" |
| 11 | #include "SymbolTable.h" |
| 12 | #include "Symbols.h" |
| 13 | #include "SyntheticSections.h" |
| 14 | #include "Target.h" |
| 15 | #include "Thunks.h" |
| 16 | |
| 17 | using namespace llvm; |
| 18 | using namespace llvm::object; |
| 19 | using namespace llvm::support::endian; |
| 20 | using namespace llvm::ELF; |
| 21 | using namespace lld; |
| 22 | using namespace lld::elf; |
| 23 | |
| 24 | constexpr uint64_t ppc64TocOffset = 0x8000; |
| 25 | constexpr uint64_t dynamicThreadPointerOffset = 0x8000; |
| 26 | |
| 27 | namespace { |
| 28 | // The instruction encoding of bits 21-30 from the ISA for the Xform and Dform |
| 29 | // instructions that can be used as part of the initial exec TLS sequence. |
| 30 | enum XFormOpcd { |
| 31 | LBZX = 87, |
| 32 | LHZX = 279, |
| 33 | LWZX = 23, |
| 34 | LDX = 21, |
| 35 | STBX = 215, |
| 36 | STHX = 407, |
| 37 | STWX = 151, |
| 38 | STDX = 149, |
| 39 | LHAX = 343, |
| 40 | LWAX = 341, |
| 41 | LFSX = 535, |
| 42 | LFDX = 599, |
| 43 | STFSX = 663, |
| 44 | STFDX = 727, |
| 45 | ADD = 266, |
| 46 | }; |
| 47 | |
| 48 | enum DFormOpcd { |
| 49 | LBZ = 34, |
| 50 | LBZU = 35, |
| 51 | LHZ = 40, |
| 52 | LHZU = 41, |
| 53 | LHAU = 43, |
| 54 | LWZ = 32, |
| 55 | LWZU = 33, |
| 56 | LFSU = 49, |
| 57 | LFDU = 51, |
| 58 | STB = 38, |
| 59 | STBU = 39, |
| 60 | STH = 44, |
| 61 | STHU = 45, |
| 62 | STW = 36, |
| 63 | STWU = 37, |
| 64 | STFSU = 53, |
| 65 | STFDU = 55, |
| 66 | LHA = 42, |
| 67 | LFS = 48, |
| 68 | LFD = 50, |
| 69 | STFS = 52, |
| 70 | STFD = 54, |
| 71 | ADDI = 14 |
| 72 | }; |
| 73 | |
| 74 | enum DSFormOpcd { |
| 75 | LD = 58, |
| 76 | LWA = 58, |
| 77 | STD = 62 |
| 78 | }; |
| 79 | |
| 80 | constexpr uint32_t NOP = 0x60000000; |
| 81 | |
| 82 | enum class PPCLegacyInsn : uint32_t { |
| 83 | NOINSN = 0, |
| 84 | // Loads. |
| 85 | LBZ = 0x88000000, |
| 86 | LHZ = 0xa0000000, |
| 87 | LWZ = 0x80000000, |
| 88 | LHA = 0xa8000000, |
| 89 | LWA = 0xe8000002, |
| 90 | LD = 0xe8000000, |
| 91 | LFS = 0xC0000000, |
| 92 | LXSSP = 0xe4000003, |
| 93 | LFD = 0xc8000000, |
| 94 | LXSD = 0xe4000002, |
| 95 | LXV = 0xf4000001, |
| 96 | LXVP = 0x18000000, |
| 97 | |
| 98 | // Stores. |
| 99 | STB = 0x98000000, |
| 100 | STH = 0xb0000000, |
| 101 | STW = 0x90000000, |
| 102 | STD = 0xf8000000, |
| 103 | STFS = 0xd0000000, |
| 104 | STXSSP = 0xf4000003, |
| 105 | STFD = 0xd8000000, |
| 106 | STXSD = 0xf4000002, |
| 107 | STXV = 0xf4000005, |
| 108 | STXVP = 0x18000001 |
| 109 | }; |
| 110 | enum class PPCPrefixedInsn : uint64_t { |
| 111 | NOINSN = 0, |
| 112 | PREFIX_MLS = 0x0610000000000000, |
| 113 | PREFIX_8LS = 0x0410000000000000, |
| 114 | |
| 115 | // Loads. |
| 116 | PLBZ = PREFIX_MLS, |
| 117 | PLHZ = PREFIX_MLS, |
| 118 | PLWZ = PREFIX_MLS, |
| 119 | PLHA = PREFIX_MLS, |
| 120 | PLWA = PREFIX_8LS | 0xa4000000, |
| 121 | PLD = PREFIX_8LS | 0xe4000000, |
| 122 | PLFS = PREFIX_MLS, |
| 123 | PLXSSP = PREFIX_8LS | 0xac000000, |
| 124 | PLFD = PREFIX_MLS, |
| 125 | PLXSD = PREFIX_8LS | 0xa8000000, |
| 126 | PLXV = PREFIX_8LS | 0xc8000000, |
| 127 | PLXVP = PREFIX_8LS | 0xe8000000, |
| 128 | |
| 129 | // Stores. |
| 130 | PSTB = PREFIX_MLS, |
| 131 | PSTH = PREFIX_MLS, |
| 132 | PSTW = PREFIX_MLS, |
| 133 | PSTD = PREFIX_8LS | 0xf4000000, |
| 134 | PSTFS = PREFIX_MLS, |
| 135 | PSTXSSP = PREFIX_8LS | 0xbc000000, |
| 136 | PSTFD = PREFIX_MLS, |
| 137 | PSTXSD = PREFIX_8LS | 0xb8000000, |
| 138 | PSTXV = PREFIX_8LS | 0xd8000000, |
| 139 | PSTXVP = PREFIX_8LS | 0xf8000000 |
| 140 | }; |
| 141 | |
| 142 | static bool checkPPCLegacyInsn(uint32_t encoding) { |
| 143 | PPCLegacyInsn insn = static_cast<PPCLegacyInsn>(encoding); |
| 144 | if (insn == PPCLegacyInsn::NOINSN) |
| 145 | return false; |
| 146 | #define PCREL_OPT(Legacy, PCRel, InsnMask) \ |
| 147 | if (insn == PPCLegacyInsn::Legacy) \ |
| 148 | return true; |
| 149 | #include "PPCInsns.def" |
| 150 | #undef PCREL_OPT |
| 151 | return false; |
| 152 | } |
| 153 | |
| 154 | // Masks to apply to legacy instructions when converting them to prefixed, |
| 155 | // pc-relative versions. For the most part, the primary opcode is shared |
| 156 | // between the legacy instruction and the suffix of its prefixed version. |
| 157 | // However, there are some instances where that isn't the case (DS-Form and |
| 158 | // DQ-form instructions). |
| 159 | enum class LegacyToPrefixMask : uint64_t { |
| 160 | NOMASK = 0x0, |
| 161 | OPC_AND_RST = 0xffe00000, // Primary opc (0-5) and R[ST] (6-10). |
| 162 | ONLY_RST = 0x3e00000, // [RS]T (6-10). |
| 163 | ST_STX28_TO5 = |
| 164 | 0x8000000003e00000, // S/T (6-10) - The [S/T]X bit moves from 28 to 5. |
| 165 | }; |
| 166 | |
| 167 | class PPC64 final : public TargetInfo { |
| 168 | public: |
| 169 | PPC64(Ctx &); |
| 170 | int getTlsGdRelaxSkip(RelType type) const override; |
| 171 | uint32_t calcEFlags() const override; |
| 172 | RelExpr getRelExpr(RelType type, const Symbol &s, |
| 173 | const uint8_t *loc) const override; |
| 174 | RelType getDynRel(RelType type) const override; |
| 175 | int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override; |
| 176 | void writePltHeader(uint8_t *buf) const override; |
| 177 | void writePlt(uint8_t *buf, const Symbol &sym, |
| 178 | uint64_t pltEntryAddr) const override; |
| 179 | void writeIplt(uint8_t *buf, const Symbol &sym, |
| 180 | uint64_t pltEntryAddr) const override; |
| 181 | void relocate(uint8_t *loc, const Relocation &rel, |
| 182 | uint64_t val) const override; |
| 183 | void writeGotHeader(uint8_t *buf) const override; |
| 184 | bool needsThunk(RelExpr expr, RelType type, const InputFile *file, |
| 185 | uint64_t branchAddr, const Symbol &s, |
| 186 | int64_t a) const override; |
| 187 | uint32_t getThunkSectionSpacing() const override; |
| 188 | bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override; |
| 189 | RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override; |
| 190 | RelExpr adjustGotPcExpr(RelType type, int64_t addend, |
| 191 | const uint8_t *loc) const override; |
| 192 | void relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| 193 | void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override; |
| 194 | |
| 195 | bool adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, |
| 196 | uint8_t stOther) const override; |
| 197 | |
| 198 | private: |
| 199 | void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| 200 | void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| 201 | void relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| 202 | void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const; |
| 203 | }; |
| 204 | } // namespace |
| 205 | |
| 206 | uint64_t elf::getPPC64TocBase(Ctx &ctx) { |
| 207 | // The TOC consists of sections .got, .toc, .tocbss, .plt in that order. The |
| 208 | // TOC starts where the first of these sections starts. We always create a |
| 209 | // .got when we see a relocation that uses it, so for us the start is always |
| 210 | // the .got. |
| 211 | uint64_t tocVA = ctx.in.got->getVA(); |
| 212 | |
| 213 | // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000 |
| 214 | // thus permitting a full 64 Kbytes segment. Note that the glibc startup |
| 215 | // code (crt1.o) assumes that you can get from the TOC base to the |
| 216 | // start of the .toc section with only a single (signed) 16-bit relocation. |
| 217 | return tocVA + ppc64TocOffset; |
| 218 | } |
| 219 | |
| 220 | unsigned elf::getPPC64GlobalEntryToLocalEntryOffset(Ctx &ctx, uint8_t stOther) { |
| 221 | // The offset is encoded into the 3 most significant bits of the st_other |
| 222 | // field, with some special values described in section 3.4.1 of the ABI: |
| 223 | // 0 --> Zero offset between the GEP and LEP, and the function does NOT use |
| 224 | // the TOC pointer (r2). r2 will hold the same value on returning from |
| 225 | // the function as it did on entering the function. |
| 226 | // 1 --> Zero offset between the GEP and LEP, and r2 should be treated as a |
| 227 | // caller-saved register for all callers. |
| 228 | // 2-6 --> The binary logarithm of the offset eg: |
| 229 | // 2 --> 2^2 = 4 bytes --> 1 instruction. |
| 230 | // 6 --> 2^6 = 64 bytes --> 16 instructions. |
| 231 | // 7 --> Reserved. |
| 232 | uint8_t gepToLep = (stOther >> 5) & 7; |
| 233 | if (gepToLep < 2) |
| 234 | return 0; |
| 235 | |
| 236 | // The value encoded in the st_other bits is the |
| 237 | // log-base-2(offset). |
| 238 | if (gepToLep < 7) |
| 239 | return 1 << gepToLep; |
| 240 | |
| 241 | ErrAlways(ctx) |
| 242 | << "reserved value of 7 in the 3 most-significant-bits of st_other" ; |
| 243 | return 0; |
| 244 | } |
| 245 | |
| 246 | void elf::writePrefixedInst(Ctx &ctx, uint8_t *loc, uint64_t insn) { |
| 247 | insn = ctx.arg.isLE ? insn << 32 | insn >> 32 : insn; |
| 248 | write64(ctx, p: loc, v: insn); |
| 249 | } |
| 250 | |
| 251 | static bool addOptional(Ctx &ctx, StringRef name, uint64_t value, |
| 252 | std::vector<Defined *> &defined) { |
| 253 | Symbol *sym = ctx.symtab->find(name); |
| 254 | if (!sym || sym->isDefined()) |
| 255 | return false; |
| 256 | sym->resolve(ctx, other: Defined{ctx, ctx.internalFile, StringRef(), STB_GLOBAL, |
| 257 | STV_HIDDEN, STT_FUNC, value, |
| 258 | /*size=*/0, /*section=*/nullptr}); |
| 259 | defined.push_back(x: cast<Defined>(Val: sym)); |
| 260 | return true; |
| 261 | } |
| 262 | |
| 263 | // If from is 14, write ${prefix}14: firstInsn; ${prefix}15: |
| 264 | // firstInsn+0x200008; ...; ${prefix}31: firstInsn+(31-14)*0x200008; $tail |
| 265 | // The labels are defined only if they exist in the symbol table. |
| 266 | static void writeSequence(Ctx &ctx, const char *prefix, int from, |
| 267 | uint32_t firstInsn, ArrayRef<uint32_t> tail) { |
| 268 | std::vector<Defined *> defined; |
| 269 | char name[16]; |
| 270 | int first; |
| 271 | const size_t size = 32 - from + tail.size(); |
| 272 | MutableArrayRef<uint32_t> buf(ctx.bAlloc.Allocate<uint32_t>(Num: size), size); |
| 273 | uint32_t *ptr = buf.data(); |
| 274 | for (int r = from; r < 32; ++r) { |
| 275 | format(Fmt: "%s%d" , Vals: prefix, Vals: r).snprint(Buffer: name, BufferSize: sizeof(name)); |
| 276 | if (addOptional(ctx, name, value: 4 * (r - from), defined) && defined.size() == 1) |
| 277 | first = r - from; |
| 278 | write32(ctx, p: ptr++, v: firstInsn + 0x200008 * (r - from)); |
| 279 | } |
| 280 | for (uint32_t insn : tail) |
| 281 | write32(ctx, p: ptr++, v: insn); |
| 282 | assert(ptr == &*buf.end()); |
| 283 | |
| 284 | if (defined.empty()) |
| 285 | return; |
| 286 | // The full section content has the extent of [begin, end). We drop unused |
| 287 | // instructions and write [first,end). |
| 288 | auto *sec = make<InputSection>( |
| 289 | args&: ctx.internalFile, args: ".text" , args: SHT_PROGBITS, args: SHF_ALLOC, /*addralign=*/args: 4, |
| 290 | /*entsize=*/args: 0, |
| 291 | args: ArrayRef(reinterpret_cast<uint8_t *>(buf.data() + first), |
| 292 | 4 * (buf.size() - first))); |
| 293 | ctx.inputSections.push_back(Elt: sec); |
| 294 | for (Defined *sym : defined) { |
| 295 | sym->section = sec; |
| 296 | sym->value -= 4 * first; |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | // Implements some save and restore functions as described by ELF V2 ABI to be |
| 301 | // compatible with GCC. With GCC -Os, when the number of call-saved registers |
| 302 | // exceeds a certain threshold, GCC generates _savegpr0_* _restgpr0_* calls and |
| 303 | // expects the linker to define them. See |
| 304 | // https://sourceware.org/pipermail/binutils/2002-February/017444.html and |
| 305 | // https://sourceware.org/pipermail/binutils/2004-August/036765.html . This is |
| 306 | // weird because libgcc.a would be the natural place. The linker generation |
| 307 | // approach has the advantage that the linker can generate multiple copies to |
| 308 | // avoid long branch thunks. However, we don't consider the advantage |
| 309 | // significant enough to complicate our trunk implementation, so we take the |
| 310 | // simple approach and synthesize .text sections providing the implementation. |
| 311 | void elf::addPPC64SaveRestore(Ctx &ctx) { |
| 312 | constexpr uint32_t blr = 0x4e800020, mtlr_0 = 0x7c0803a6; |
| 313 | |
| 314 | // _restgpr0_14: ld 14, -144(1); _restgpr0_15: ld 15, -136(1); ... |
| 315 | // Tail: ld 0, 16(1); mtlr 0; blr |
| 316 | writeSequence(ctx, prefix: "_restgpr0_" , from: 14, firstInsn: 0xe9c1ff70, tail: {0xe8010010, mtlr_0, blr}); |
| 317 | // _restgpr1_14: ld 14, -144(12); _restgpr1_15: ld 15, -136(12); ... |
| 318 | // Tail: blr |
| 319 | writeSequence(ctx, prefix: "_restgpr1_" , from: 14, firstInsn: 0xe9ccff70, tail: {blr}); |
| 320 | // _savegpr0_14: std 14, -144(1); _savegpr0_15: std 15, -136(1); ... |
| 321 | // Tail: std 0, 16(1); blr |
| 322 | writeSequence(ctx, prefix: "_savegpr0_" , from: 14, firstInsn: 0xf9c1ff70, tail: {0xf8010010, blr}); |
| 323 | // _savegpr1_14: std 14, -144(12); _savegpr1_15: std 15, -136(12); ... |
| 324 | // Tail: blr |
| 325 | writeSequence(ctx, prefix: "_savegpr1_" , from: 14, firstInsn: 0xf9ccff70, tail: {blr}); |
| 326 | } |
| 327 | |
| 328 | // Find the R_PPC64_ADDR64 in .rela.toc with matching offset. |
| 329 | template <typename ELFT> |
| 330 | static std::pair<Defined *, int64_t> |
| 331 | getRelaTocSymAndAddend(InputSectionBase *tocSec, uint64_t offset) { |
| 332 | // .rela.toc contains exclusively R_PPC64_ADDR64 relocations sorted by |
| 333 | // r_offset: 0, 8, 16, etc. For a given Offset, Offset / 8 gives us the |
| 334 | // relocation index in most cases. |
| 335 | // |
| 336 | // In rare cases a TOC entry may store a constant that doesn't need an |
| 337 | // R_PPC64_ADDR64, the corresponding r_offset is therefore missing. Offset / 8 |
| 338 | // points to a relocation with larger r_offset. Do a linear probe then. |
| 339 | // Constants are extremely uncommon in .toc and the extra number of array |
| 340 | // accesses can be seen as a small constant. |
| 341 | ArrayRef<typename ELFT::Rela> relas = |
| 342 | tocSec->template relsOrRelas<ELFT>().relas; |
| 343 | if (relas.empty()) |
| 344 | return {}; |
| 345 | uint64_t index = std::min<uint64_t>(offset / 8, relas.size() - 1); |
| 346 | for (;;) { |
| 347 | if (relas[index].r_offset == offset) { |
| 348 | Symbol &sym = tocSec->file->getRelocTargetSym(relas[index]); |
| 349 | return {dyn_cast<Defined>(Val: &sym), getAddend<ELFT>(relas[index])}; |
| 350 | } |
| 351 | if (relas[index].r_offset < offset || index == 0) |
| 352 | break; |
| 353 | --index; |
| 354 | } |
| 355 | return {}; |
| 356 | } |
| 357 | |
| 358 | // When accessing a symbol defined in another translation unit, compilers |
| 359 | // reserve a .toc entry, allocate a local label and generate toc-indirect |
| 360 | // instructions: |
| 361 | // |
| 362 | // addis 3, 2, .LC0@toc@ha # R_PPC64_TOC16_HA |
| 363 | // ld 3, .LC0@toc@l(3) # R_PPC64_TOC16_LO_DS, load the address from a .toc entry |
| 364 | // ld/lwa 3, 0(3) # load the value from the address |
| 365 | // |
| 366 | // .section .toc,"aw",@progbits |
| 367 | // .LC0: .tc var[TC],var |
| 368 | // |
| 369 | // If var is defined, non-preemptable and addressable with a 32-bit signed |
| 370 | // offset from the toc base, the address of var can be computed by adding an |
| 371 | // offset to the toc base, saving a load. |
| 372 | // |
| 373 | // addis 3,2,var@toc@ha # this may be relaxed to a nop, |
| 374 | // addi 3,3,var@toc@l # then this becomes addi 3,2,var@toc |
| 375 | // ld/lwa 3, 0(3) # load the value from the address |
| 376 | // |
| 377 | // Returns true if the relaxation is performed. |
| 378 | static bool tryRelaxPPC64TocIndirection(Ctx &ctx, const Relocation &rel, |
| 379 | uint8_t *bufLoc) { |
| 380 | assert(ctx.arg.tocOptimize); |
| 381 | if (rel.addend < 0) |
| 382 | return false; |
| 383 | |
| 384 | // If the symbol is not the .toc section, this isn't a toc-indirection. |
| 385 | Defined *defSym = dyn_cast<Defined>(Val: rel.sym); |
| 386 | if (!defSym || !defSym->isSection() || defSym->section->name != ".toc" ) |
| 387 | return false; |
| 388 | |
| 389 | Defined *d; |
| 390 | int64_t addend; |
| 391 | auto *tocISB = cast<InputSectionBase>(Val: defSym->section); |
| 392 | std::tie(args&: d, args&: addend) = |
| 393 | ctx.arg.isLE ? getRelaTocSymAndAddend<ELF64LE>(tocSec: tocISB, offset: rel.addend) |
| 394 | : getRelaTocSymAndAddend<ELF64BE>(tocSec: tocISB, offset: rel.addend); |
| 395 | |
| 396 | // Only non-preemptable defined symbols can be relaxed. |
| 397 | if (!d || d->isPreemptible) |
| 398 | return false; |
| 399 | |
| 400 | // R_PPC64_ADDR64 should have created a canonical PLT for the non-preemptable |
| 401 | // ifunc and changed its type to STT_FUNC. |
| 402 | assert(!d->isGnuIFunc()); |
| 403 | |
| 404 | // Two instructions can materialize a 32-bit signed offset from the toc base. |
| 405 | uint64_t tocRelative = d->getVA(ctx, addend) - getPPC64TocBase(ctx); |
| 406 | if (!isInt<32>(x: tocRelative)) |
| 407 | return false; |
| 408 | |
| 409 | // Add PPC64TocOffset that will be subtracted by PPC64::relocate(). |
| 410 | static_cast<const PPC64 &>(*ctx.target) |
| 411 | .relaxGot(loc: bufLoc, rel, val: tocRelative + ppc64TocOffset); |
| 412 | return true; |
| 413 | } |
| 414 | |
| 415 | // Relocation masks following the #lo(value), #hi(value), #ha(value), |
| 416 | // #higher(value), #highera(value), #highest(value), and #highesta(value) |
| 417 | // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi |
| 418 | // document. |
| 419 | static uint16_t lo(uint64_t v) { return v; } |
| 420 | static uint16_t hi(uint64_t v) { return v >> 16; } |
| 421 | static uint64_t ha(uint64_t v) { return (v + 0x8000) >> 16; } |
| 422 | static uint16_t higher(uint64_t v) { return v >> 32; } |
| 423 | static uint16_t highera(uint64_t v) { return (v + 0x8000) >> 32; } |
| 424 | static uint16_t highest(uint64_t v) { return v >> 48; } |
| 425 | static uint16_t highesta(uint64_t v) { return (v + 0x8000) >> 48; } |
| 426 | |
| 427 | // Extracts the 'PO' field of an instruction encoding. |
| 428 | static uint8_t getPrimaryOpCode(uint32_t encoding) { return (encoding >> 26); } |
| 429 | |
| 430 | static bool isDQFormInstruction(uint32_t encoding) { |
| 431 | switch (getPrimaryOpCode(encoding)) { |
| 432 | default: |
| 433 | return false; |
| 434 | case 6: // Power10 paired loads/stores (lxvp, stxvp). |
| 435 | case 56: |
| 436 | // The only instruction with a primary opcode of 56 is `lq`. |
| 437 | return true; |
| 438 | case 61: |
| 439 | // There are both DS and DQ instruction forms with this primary opcode. |
| 440 | // Namely `lxv` and `stxv` are the DQ-forms that use it. |
| 441 | // The DS 'XO' bits being set to 01 is restricted to DQ form. |
| 442 | return (encoding & 3) == 0x1; |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | static bool isDSFormInstruction(PPCLegacyInsn insn) { |
| 447 | switch (insn) { |
| 448 | default: |
| 449 | return false; |
| 450 | case PPCLegacyInsn::LWA: |
| 451 | case PPCLegacyInsn::LD: |
| 452 | case PPCLegacyInsn::LXSD: |
| 453 | case PPCLegacyInsn::LXSSP: |
| 454 | case PPCLegacyInsn::STD: |
| 455 | case PPCLegacyInsn::STXSD: |
| 456 | case PPCLegacyInsn::STXSSP: |
| 457 | return true; |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | static PPCLegacyInsn getPPCLegacyInsn(uint32_t encoding) { |
| 462 | uint32_t opc = encoding & 0xfc000000; |
| 463 | |
| 464 | // If the primary opcode is shared between multiple instructions, we need to |
| 465 | // fix it up to match the actual instruction we are after. |
| 466 | if ((opc == 0xe4000000 || opc == 0xe8000000 || opc == 0xf4000000 || |
| 467 | opc == 0xf8000000) && |
| 468 | !isDQFormInstruction(encoding)) |
| 469 | opc = encoding & 0xfc000003; |
| 470 | else if (opc == 0xf4000000) |
| 471 | opc = encoding & 0xfc000007; |
| 472 | else if (opc == 0x18000000) |
| 473 | opc = encoding & 0xfc00000f; |
| 474 | |
| 475 | // If the value is not one of the enumerators in PPCLegacyInsn, we want to |
| 476 | // return PPCLegacyInsn::NOINSN. |
| 477 | if (!checkPPCLegacyInsn(encoding: opc)) |
| 478 | return PPCLegacyInsn::NOINSN; |
| 479 | return static_cast<PPCLegacyInsn>(opc); |
| 480 | } |
| 481 | |
| 482 | static PPCPrefixedInsn getPCRelativeForm(PPCLegacyInsn insn) { |
| 483 | switch (insn) { |
| 484 | #define PCREL_OPT(Legacy, PCRel, InsnMask) \ |
| 485 | case PPCLegacyInsn::Legacy: \ |
| 486 | return PPCPrefixedInsn::PCRel |
| 487 | #include "PPCInsns.def" |
| 488 | #undef PCREL_OPT |
| 489 | } |
| 490 | return PPCPrefixedInsn::NOINSN; |
| 491 | } |
| 492 | |
| 493 | static LegacyToPrefixMask getInsnMask(PPCLegacyInsn insn) { |
| 494 | switch (insn) { |
| 495 | #define PCREL_OPT(Legacy, PCRel, InsnMask) \ |
| 496 | case PPCLegacyInsn::Legacy: \ |
| 497 | return LegacyToPrefixMask::InsnMask |
| 498 | #include "PPCInsns.def" |
| 499 | #undef PCREL_OPT |
| 500 | } |
| 501 | return LegacyToPrefixMask::NOMASK; |
| 502 | } |
| 503 | static uint64_t getPCRelativeForm(uint32_t encoding) { |
| 504 | PPCLegacyInsn origInsn = getPPCLegacyInsn(encoding); |
| 505 | PPCPrefixedInsn pcrelInsn = getPCRelativeForm(insn: origInsn); |
| 506 | if (pcrelInsn == PPCPrefixedInsn::NOINSN) |
| 507 | return UINT64_C(-1); |
| 508 | LegacyToPrefixMask origInsnMask = getInsnMask(insn: origInsn); |
| 509 | uint64_t pcrelEncoding = |
| 510 | (uint64_t)pcrelInsn | (encoding & (uint64_t)origInsnMask); |
| 511 | |
| 512 | // If the mask requires moving bit 28 to bit 5, do that now. |
| 513 | if (origInsnMask == LegacyToPrefixMask::ST_STX28_TO5) |
| 514 | pcrelEncoding |= (encoding & 0x8) << 23; |
| 515 | return pcrelEncoding; |
| 516 | } |
| 517 | |
| 518 | static bool isInstructionUpdateForm(uint32_t encoding) { |
| 519 | switch (getPrimaryOpCode(encoding)) { |
| 520 | default: |
| 521 | return false; |
| 522 | case LBZU: |
| 523 | case LHAU: |
| 524 | case LHZU: |
| 525 | case LWZU: |
| 526 | case LFSU: |
| 527 | case LFDU: |
| 528 | case STBU: |
| 529 | case STHU: |
| 530 | case STWU: |
| 531 | case STFSU: |
| 532 | case STFDU: |
| 533 | return true; |
| 534 | // LWA has the same opcode as LD, and the DS bits is what differentiates |
| 535 | // between LD/LDU/LWA |
| 536 | case LD: |
| 537 | case STD: |
| 538 | return (encoding & 3) == 1; |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | // Compute the total displacement between the prefixed instruction that gets |
| 543 | // to the start of the data and the load/store instruction that has the offset |
| 544 | // into the data structure. |
| 545 | // For example: |
| 546 | // paddi 3, 0, 1000, 1 |
| 547 | // lwz 3, 20(3) |
| 548 | // Should add up to 1020 for total displacement. |
| 549 | static int64_t getTotalDisp(uint64_t prefixedInsn, uint32_t accessInsn) { |
| 550 | int64_t disp34 = llvm::SignExtend64( |
| 551 | X: ((prefixedInsn & 0x3ffff00000000) >> 16) | (prefixedInsn & 0xffff), B: 34); |
| 552 | int32_t disp16 = llvm::SignExtend32(X: accessInsn & 0xffff, B: 16); |
| 553 | // For DS and DQ form instructions, we need to mask out the XO bits. |
| 554 | if (isDQFormInstruction(encoding: accessInsn)) |
| 555 | disp16 &= ~0xf; |
| 556 | else if (isDSFormInstruction(insn: getPPCLegacyInsn(encoding: accessInsn))) |
| 557 | disp16 &= ~0x3; |
| 558 | return disp34 + disp16; |
| 559 | } |
| 560 | |
| 561 | // There are a number of places when we either want to read or write an |
| 562 | // instruction when handling a half16 relocation type. On big-endian the buffer |
| 563 | // pointer is pointing into the middle of the word we want to extract, and on |
| 564 | // little-endian it is pointing to the start of the word. These 2 helpers are to |
| 565 | // simplify reading and writing in that context. |
| 566 | static void writeFromHalf16(Ctx &ctx, uint8_t *loc, uint32_t insn) { |
| 567 | write32(ctx, p: ctx.arg.isLE ? loc : loc - 2, v: insn); |
| 568 | } |
| 569 | |
| 570 | static uint32_t readFromHalf16(Ctx &ctx, const uint8_t *loc) { |
| 571 | return read32(ctx, p: ctx.arg.isLE ? loc : loc - 2); |
| 572 | } |
| 573 | |
| 574 | static uint64_t readPrefixedInst(Ctx &ctx, const uint8_t *loc) { |
| 575 | uint64_t fullInstr = read64(ctx, p: loc); |
| 576 | return ctx.arg.isLE ? (fullInstr << 32 | fullInstr >> 32) : fullInstr; |
| 577 | } |
| 578 | |
| 579 | PPC64::PPC64(Ctx &ctx) : TargetInfo(ctx) { |
| 580 | copyRel = R_PPC64_COPY; |
| 581 | gotRel = R_PPC64_GLOB_DAT; |
| 582 | pltRel = R_PPC64_JMP_SLOT; |
| 583 | relativeRel = R_PPC64_RELATIVE; |
| 584 | iRelativeRel = R_PPC64_IRELATIVE; |
| 585 | symbolicRel = R_PPC64_ADDR64; |
| 586 | pltHeaderSize = 60; |
| 587 | pltEntrySize = 4; |
| 588 | ipltEntrySize = 16; // PPC64PltCallStub::size |
| 589 | gotHeaderEntriesNum = 1; |
| 590 | gotPltHeaderEntriesNum = 2; |
| 591 | needsThunks = true; |
| 592 | |
| 593 | tlsModuleIndexRel = R_PPC64_DTPMOD64; |
| 594 | tlsOffsetRel = R_PPC64_DTPREL64; |
| 595 | |
| 596 | tlsGotRel = R_PPC64_TPREL64; |
| 597 | |
| 598 | needsMoreStackNonSplit = false; |
| 599 | |
| 600 | // We need 64K pages (at least under glibc/Linux, the loader won't |
| 601 | // set different permissions on a finer granularity than that). |
| 602 | defaultMaxPageSize = 65536; |
| 603 | |
| 604 | // The PPC64 ELF ABI v1 spec, says: |
| 605 | // |
| 606 | // It is normally desirable to put segments with different characteristics |
| 607 | // in separate 256 Mbyte portions of the address space, to give the |
| 608 | // operating system full paging flexibility in the 64-bit address space. |
| 609 | // |
| 610 | // And because the lowest non-zero 256M boundary is 0x10000000, PPC64 linkers |
| 611 | // use 0x10000000 as the starting address. |
| 612 | defaultImageBase = 0x10000000; |
| 613 | |
| 614 | write32(ctx, p: trapInstr.data(), v: 0x7fe00008); |
| 615 | } |
| 616 | |
| 617 | int PPC64::getTlsGdRelaxSkip(RelType type) const { |
| 618 | // A __tls_get_addr call instruction is marked with 2 relocations: |
| 619 | // |
| 620 | // R_PPC64_TLSGD / R_PPC64_TLSLD: marker relocation |
| 621 | // R_PPC64_REL24: __tls_get_addr |
| 622 | // |
| 623 | // After the relaxation we no longer call __tls_get_addr and should skip both |
| 624 | // relocations to not create a false dependence on __tls_get_addr being |
| 625 | // defined. |
| 626 | if (type == R_PPC64_TLSGD || type == R_PPC64_TLSLD) |
| 627 | return 2; |
| 628 | return 1; |
| 629 | } |
| 630 | |
| 631 | static uint32_t getEFlags(InputFile *file) { |
| 632 | if (file->ekind == ELF64BEKind) |
| 633 | return cast<ObjFile<ELF64BE>>(Val: file)->getObj().getHeader().e_flags; |
| 634 | return cast<ObjFile<ELF64LE>>(Val: file)->getObj().getHeader().e_flags; |
| 635 | } |
| 636 | |
| 637 | // This file implements v2 ABI. This function makes sure that all |
| 638 | // object files have v2 or an unspecified version as an ABI version. |
| 639 | uint32_t PPC64::calcEFlags() const { |
| 640 | for (InputFile *f : ctx.objectFiles) { |
| 641 | uint32_t flag = getEFlags(file: f); |
| 642 | if (flag == 1) |
| 643 | ErrAlways(ctx) << f << ": ABI version 1 is not supported" ; |
| 644 | else if (flag > 2) |
| 645 | ErrAlways(ctx) << f << ": unrecognized e_flags: " << flag; |
| 646 | } |
| 647 | return 2; |
| 648 | } |
| 649 | |
| 650 | void PPC64::relaxGot(uint8_t *loc, const Relocation &rel, uint64_t val) const { |
| 651 | switch (rel.type) { |
| 652 | case R_PPC64_TOC16_HA: |
| 653 | // Convert "addis reg, 2, .LC0@toc@h" to "addis reg, 2, var@toc@h" or "nop". |
| 654 | relocate(loc, rel, val); |
| 655 | break; |
| 656 | case R_PPC64_TOC16_LO_DS: { |
| 657 | // Convert "ld reg, .LC0@toc@l(reg)" to "addi reg, reg, var@toc@l" or |
| 658 | // "addi reg, 2, var@toc". |
| 659 | uint32_t insn = readFromHalf16(ctx, loc); |
| 660 | if (getPrimaryOpCode(encoding: insn) != LD) |
| 661 | ErrAlways(ctx) |
| 662 | << "expected a 'ld' for got-indirect to toc-relative relaxing" ; |
| 663 | writeFromHalf16(ctx, loc, insn: (insn & 0x03ffffff) | 0x38000000); |
| 664 | relocateNoSym(loc, type: R_PPC64_TOC16_LO, val); |
| 665 | break; |
| 666 | } |
| 667 | case R_PPC64_GOT_PCREL34: { |
| 668 | // Clear the first 8 bits of the prefix and the first 6 bits of the |
| 669 | // instruction (the primary opcode). |
| 670 | uint64_t insn = readPrefixedInst(ctx, loc); |
| 671 | if ((insn & 0xfc000000) != 0xe4000000) |
| 672 | ErrAlways(ctx) |
| 673 | << "expected a 'pld' for got-indirect to pc-relative relaxing" ; |
| 674 | insn &= ~0xff000000fc000000; |
| 675 | |
| 676 | // Replace the cleared bits with the values for PADDI (0x600000038000000); |
| 677 | insn |= 0x600000038000000; |
| 678 | writePrefixedInst(ctx, loc, insn); |
| 679 | relocate(loc, rel, val); |
| 680 | break; |
| 681 | } |
| 682 | case R_PPC64_PCREL_OPT: { |
| 683 | // We can only relax this if the R_PPC64_GOT_PCREL34 at this offset can |
| 684 | // be relaxed. The eligibility for the relaxation needs to be determined |
| 685 | // on that relocation since this one does not relocate a symbol. |
| 686 | uint64_t insn = readPrefixedInst(ctx, loc); |
| 687 | uint32_t accessInsn = read32(ctx, p: loc + rel.addend); |
| 688 | uint64_t pcRelInsn = getPCRelativeForm(encoding: accessInsn); |
| 689 | |
| 690 | // This error is not necessary for correctness but is emitted for now |
| 691 | // to ensure we don't miss these opportunities in real code. It can be |
| 692 | // removed at a later date. |
| 693 | if (pcRelInsn == UINT64_C(-1)) { |
| 694 | Err(ctx) |
| 695 | << "unrecognized instruction for R_PPC64_PCREL_OPT relaxation: 0x" |
| 696 | << utohexstr(X: accessInsn, LowerCase: true); |
| 697 | break; |
| 698 | } |
| 699 | |
| 700 | int64_t totalDisp = getTotalDisp(prefixedInsn: insn, accessInsn); |
| 701 | if (!isInt<34>(x: totalDisp)) |
| 702 | break; // Displacement doesn't fit. |
| 703 | // Convert the PADDI to the prefixed version of accessInsn and convert |
| 704 | // accessInsn to a nop. |
| 705 | writePrefixedInst(ctx, loc, |
| 706 | insn: pcRelInsn | ((totalDisp & 0x3ffff0000) << 16) | |
| 707 | (totalDisp & 0xffff)); |
| 708 | write32(ctx, p: loc + rel.addend, v: NOP); // nop accessInsn. |
| 709 | break; |
| 710 | } |
| 711 | default: |
| 712 | llvm_unreachable("unexpected relocation type" ); |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | void PPC64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, |
| 717 | uint64_t val) const { |
| 718 | // Reference: 3.7.4.2 of the 64-bit ELF V2 abi supplement. |
| 719 | // The general dynamic code sequence for a global `x` will look like: |
| 720 | // Instruction Relocation Symbol |
| 721 | // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x |
| 722 | // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x |
| 723 | // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x |
| 724 | // R_PPC64_REL24 __tls_get_addr |
| 725 | // nop None None |
| 726 | |
| 727 | // Relaxing to local exec entails converting: |
| 728 | // addis r3, r2, x@got@tlsgd@ha into nop |
| 729 | // addi r3, r3, x@got@tlsgd@l into addis r3, r13, x@tprel@ha |
| 730 | // bl __tls_get_addr(x@tlsgd) into nop |
| 731 | // nop into addi r3, r3, x@tprel@l |
| 732 | |
| 733 | switch (rel.type) { |
| 734 | case R_PPC64_GOT_TLSGD16_HA: |
| 735 | writeFromHalf16(ctx, loc, insn: NOP); |
| 736 | break; |
| 737 | case R_PPC64_GOT_TLSGD16: |
| 738 | case R_PPC64_GOT_TLSGD16_LO: |
| 739 | writeFromHalf16(ctx, loc, insn: 0x3c6d0000); // addis r3, r13 |
| 740 | relocateNoSym(loc, type: R_PPC64_TPREL16_HA, val); |
| 741 | break; |
| 742 | case R_PPC64_GOT_TLSGD_PCREL34: |
| 743 | // Relax from paddi r3, 0, x@got@tlsgd@pcrel, 1 to |
| 744 | // paddi r3, r13, x@tprel, 0 |
| 745 | writePrefixedInst(ctx, loc, insn: 0x06000000386d0000); |
| 746 | relocateNoSym(loc, type: R_PPC64_TPREL34, val); |
| 747 | break; |
| 748 | case R_PPC64_TLSGD: { |
| 749 | // PC Relative Relaxation: |
| 750 | // Relax from bl __tls_get_addr@notoc(x@tlsgd) to |
| 751 | // nop |
| 752 | // TOC Relaxation: |
| 753 | // Relax from bl __tls_get_addr(x@tlsgd) |
| 754 | // nop |
| 755 | // to |
| 756 | // nop |
| 757 | // addi r3, r3, x@tprel@l |
| 758 | const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); |
| 759 | if (locAsInt % 4 == 0) { |
| 760 | write32(ctx, p: loc, v: NOP); // nop |
| 761 | write32(ctx, p: loc + 4, v: 0x38630000); // addi r3, r3 |
| 762 | // Since we are relocating a half16 type relocation and Loc + 4 points to |
| 763 | // the start of an instruction we need to advance the buffer by an extra |
| 764 | // 2 bytes on BE. |
| 765 | relocateNoSym(loc: loc + 4 + (ctx.arg.ekind == ELF64BEKind ? 2 : 0), |
| 766 | type: R_PPC64_TPREL16_LO, val); |
| 767 | } else if (locAsInt % 4 == 1) { |
| 768 | write32(ctx, p: loc - 1, v: NOP); |
| 769 | } else { |
| 770 | Err(ctx) << "R_PPC64_TLSGD has unexpected byte alignment" ; |
| 771 | } |
| 772 | break; |
| 773 | } |
| 774 | default: |
| 775 | llvm_unreachable("unsupported relocation for TLS GD to LE relaxation" ); |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | void PPC64::relaxTlsLdToLe(uint8_t *loc, const Relocation &rel, |
| 780 | uint64_t val) const { |
| 781 | // Reference: 3.7.4.3 of the 64-bit ELF V2 abi supplement. |
| 782 | // The local dynamic code sequence for a global `x` will look like: |
| 783 | // Instruction Relocation Symbol |
| 784 | // addis r3, r2, x@got@tlsld@ha R_PPC64_GOT_TLSLD16_HA x |
| 785 | // addi r3, r3, x@got@tlsld@l R_PPC64_GOT_TLSLD16_LO x |
| 786 | // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSLD x |
| 787 | // R_PPC64_REL24 __tls_get_addr |
| 788 | // nop None None |
| 789 | |
| 790 | // Relaxing to local exec entails converting: |
| 791 | // addis r3, r2, x@got@tlsld@ha into nop |
| 792 | // addi r3, r3, x@got@tlsld@l into addis r3, r13, 0 |
| 793 | // bl __tls_get_addr(x@tlsgd) into nop |
| 794 | // nop into addi r3, r3, 4096 |
| 795 | |
| 796 | switch (rel.type) { |
| 797 | case R_PPC64_GOT_TLSLD16_HA: |
| 798 | writeFromHalf16(ctx, loc, insn: NOP); |
| 799 | break; |
| 800 | case R_PPC64_GOT_TLSLD16_LO: |
| 801 | writeFromHalf16(ctx, loc, insn: 0x3c6d0000); // addis r3, r13, 0 |
| 802 | break; |
| 803 | case R_PPC64_GOT_TLSLD_PCREL34: |
| 804 | // Relax from paddi r3, 0, x1@got@tlsld@pcrel, 1 to |
| 805 | // paddi r3, r13, 0x1000, 0 |
| 806 | writePrefixedInst(ctx, loc, insn: 0x06000000386d1000); |
| 807 | break; |
| 808 | case R_PPC64_TLSLD: { |
| 809 | // PC Relative Relaxation: |
| 810 | // Relax from bl __tls_get_addr@notoc(x@tlsld) |
| 811 | // to |
| 812 | // nop |
| 813 | // TOC Relaxation: |
| 814 | // Relax from bl __tls_get_addr(x@tlsld) |
| 815 | // nop |
| 816 | // to |
| 817 | // nop |
| 818 | // addi r3, r3, 4096 |
| 819 | const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); |
| 820 | if (locAsInt % 4 == 0) { |
| 821 | write32(ctx, p: loc, v: NOP); |
| 822 | write32(ctx, p: loc + 4, v: 0x38631000); // addi r3, r3, 4096 |
| 823 | } else if (locAsInt % 4 == 1) { |
| 824 | write32(ctx, p: loc - 1, v: NOP); |
| 825 | } else { |
| 826 | Err(ctx) << "R_PPC64_TLSLD has unexpected byte alignment" ; |
| 827 | } |
| 828 | break; |
| 829 | } |
| 830 | case R_PPC64_DTPREL16: |
| 831 | case R_PPC64_DTPREL16_HA: |
| 832 | case R_PPC64_DTPREL16_HI: |
| 833 | case R_PPC64_DTPREL16_DS: |
| 834 | case R_PPC64_DTPREL16_LO: |
| 835 | case R_PPC64_DTPREL16_LO_DS: |
| 836 | case R_PPC64_DTPREL34: |
| 837 | relocate(loc, rel, val); |
| 838 | break; |
| 839 | default: |
| 840 | llvm_unreachable("unsupported relocation for TLS LD to LE relaxation" ); |
| 841 | } |
| 842 | } |
| 843 | |
| 844 | // Map X-Form instructions to their DS-Form counterparts, if applicable. |
| 845 | // The full encoding is returned here to distinguish between the different |
| 846 | // DS-Form instructions. |
| 847 | unsigned elf::getPPCDSFormOp(unsigned secondaryOp) { |
| 848 | switch (secondaryOp) { |
| 849 | case LWAX: |
| 850 | return (LWA << 26) | 0x2; |
| 851 | case LDX: |
| 852 | return LD << 26; |
| 853 | case STDX: |
| 854 | return STD << 26; |
| 855 | default: |
| 856 | return 0; |
| 857 | } |
| 858 | } |
| 859 | |
| 860 | unsigned elf::getPPCDFormOp(unsigned secondaryOp) { |
| 861 | switch (secondaryOp) { |
| 862 | case LBZX: |
| 863 | return LBZ << 26; |
| 864 | case LHZX: |
| 865 | return LHZ << 26; |
| 866 | case LWZX: |
| 867 | return LWZ << 26; |
| 868 | case STBX: |
| 869 | return STB << 26; |
| 870 | case STHX: |
| 871 | return STH << 26; |
| 872 | case STWX: |
| 873 | return STW << 26; |
| 874 | case LHAX: |
| 875 | return LHA << 26; |
| 876 | case LFSX: |
| 877 | return LFS << 26; |
| 878 | case LFDX: |
| 879 | return LFD << 26; |
| 880 | case STFSX: |
| 881 | return STFS << 26; |
| 882 | case STFDX: |
| 883 | return STFD << 26; |
| 884 | case ADD: |
| 885 | return ADDI << 26; |
| 886 | default: |
| 887 | return 0; |
| 888 | } |
| 889 | } |
| 890 | |
| 891 | void PPC64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, |
| 892 | uint64_t val) const { |
| 893 | // The initial exec code sequence for a global `x` will look like: |
| 894 | // Instruction Relocation Symbol |
| 895 | // addis r9, r2, x@got@tprel@ha R_PPC64_GOT_TPREL16_HA x |
| 896 | // ld r9, x@got@tprel@l(r9) R_PPC64_GOT_TPREL16_LO_DS x |
| 897 | // add r9, r9, x@tls R_PPC64_TLS x |
| 898 | |
| 899 | // Relaxing to local exec entails converting: |
| 900 | // addis r9, r2, x@got@tprel@ha into nop |
| 901 | // ld r9, x@got@tprel@l(r9) into addis r9, r13, x@tprel@ha |
| 902 | // add r9, r9, x@tls into addi r9, r9, x@tprel@l |
| 903 | |
| 904 | // x@tls R_PPC64_TLS is a relocation which does not compute anything, |
| 905 | // it is replaced with r13 (thread pointer). |
| 906 | |
| 907 | // The add instruction in the initial exec sequence has multiple variations |
| 908 | // that need to be handled. If we are building an address it will use an add |
| 909 | // instruction, if we are accessing memory it will use any of the X-form |
| 910 | // indexed load or store instructions. |
| 911 | |
| 912 | unsigned offset = (ctx.arg.ekind == ELF64BEKind) ? 2 : 0; |
| 913 | switch (rel.type) { |
| 914 | case R_PPC64_GOT_TPREL16_HA: |
| 915 | write32(ctx, p: loc - offset, v: NOP); |
| 916 | break; |
| 917 | case R_PPC64_GOT_TPREL16_LO_DS: |
| 918 | case R_PPC64_GOT_TPREL16_DS: { |
| 919 | uint32_t regNo = read32(ctx, p: loc - offset) & 0x03e00000; // bits 6-10 |
| 920 | write32(ctx, p: loc - offset, v: 0x3c0d0000 | regNo); // addis RegNo, r13 |
| 921 | relocateNoSym(loc, type: R_PPC64_TPREL16_HA, val); |
| 922 | break; |
| 923 | } |
| 924 | case R_PPC64_GOT_TPREL_PCREL34: { |
| 925 | const uint64_t pldRT = readPrefixedInst(ctx, loc) & 0x0000000003e00000; |
| 926 | // paddi RT(from pld), r13, symbol@tprel, 0 |
| 927 | writePrefixedInst(ctx, loc, insn: 0x06000000380d0000 | pldRT); |
| 928 | relocateNoSym(loc, type: R_PPC64_TPREL34, val); |
| 929 | break; |
| 930 | } |
| 931 | case R_PPC64_TLS: { |
| 932 | const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); |
| 933 | if (locAsInt % 4 == 0) { |
| 934 | uint32_t primaryOp = getPrimaryOpCode(encoding: read32(ctx, p: loc)); |
| 935 | if (primaryOp != 31) |
| 936 | ErrAlways(ctx) << "unrecognized instruction for IE to LE R_PPC64_TLS" ; |
| 937 | uint32_t secondaryOp = (read32(ctx, p: loc) & 0x000007fe) >> 1; // bits 21-30 |
| 938 | uint32_t dFormOp = getPPCDFormOp(secondaryOp); |
| 939 | uint32_t finalReloc; |
| 940 | if (dFormOp == 0) { // Expecting a DS-Form instruction. |
| 941 | dFormOp = getPPCDSFormOp(secondaryOp); |
| 942 | if (dFormOp == 0) |
| 943 | ErrAlways(ctx) << "unrecognized instruction for IE to LE R_PPC64_TLS" ; |
| 944 | finalReloc = R_PPC64_TPREL16_LO_DS; |
| 945 | } else |
| 946 | finalReloc = R_PPC64_TPREL16_LO; |
| 947 | write32(ctx, p: loc, v: dFormOp | (read32(ctx, p: loc) & 0x03ff0000)); |
| 948 | relocateNoSym(loc: loc + offset, type: finalReloc, val); |
| 949 | } else if (locAsInt % 4 == 1) { |
| 950 | // If the offset is not 4 byte aligned then we have a PCRel type reloc. |
| 951 | // This version of the relocation is offset by one byte from the |
| 952 | // instruction it references. |
| 953 | uint32_t tlsInstr = read32(ctx, p: loc - 1); |
| 954 | uint32_t primaryOp = getPrimaryOpCode(encoding: tlsInstr); |
| 955 | if (primaryOp != 31) |
| 956 | Err(ctx) << "unrecognized instruction for IE to LE R_PPC64_TLS" ; |
| 957 | uint32_t secondaryOp = (tlsInstr & 0x000007FE) >> 1; // bits 21-30 |
| 958 | // The add is a special case and should be turned into a nop. The paddi |
| 959 | // that comes before it will already have computed the address of the |
| 960 | // symbol. |
| 961 | if (secondaryOp == 266) { |
| 962 | // Check if the add uses the same result register as the input register. |
| 963 | uint32_t rt = (tlsInstr & 0x03E00000) >> 21; // bits 6-10 |
| 964 | uint32_t ra = (tlsInstr & 0x001F0000) >> 16; // bits 11-15 |
| 965 | if (ra == rt) { |
| 966 | write32(ctx, p: loc - 1, v: NOP); |
| 967 | } else { |
| 968 | // mr rt, ra |
| 969 | write32(ctx, p: loc - 1, |
| 970 | v: 0x7C000378 | (rt << 16) | (ra << 21) | (ra << 11)); |
| 971 | } |
| 972 | } else { |
| 973 | uint32_t dFormOp = getPPCDFormOp(secondaryOp); |
| 974 | if (dFormOp == 0) { // Expecting a DS-Form instruction. |
| 975 | dFormOp = getPPCDSFormOp(secondaryOp); |
| 976 | if (dFormOp == 0) |
| 977 | Err(ctx) << "unrecognized instruction for IE to LE R_PPC64_TLS" ; |
| 978 | } |
| 979 | write32(ctx, p: loc - 1, v: (dFormOp | (tlsInstr & 0x03ff0000))); |
| 980 | } |
| 981 | } else { |
| 982 | Err(ctx) << "R_PPC64_TLS must be either 4 byte aligned or one byte " |
| 983 | "offset from 4 byte aligned" ; |
| 984 | } |
| 985 | break; |
| 986 | } |
| 987 | default: |
| 988 | llvm_unreachable("unknown relocation for IE to LE" ); |
| 989 | break; |
| 990 | } |
| 991 | } |
| 992 | |
| 993 | RelExpr PPC64::getRelExpr(RelType type, const Symbol &s, |
| 994 | const uint8_t *loc) const { |
| 995 | switch (type) { |
| 996 | case R_PPC64_NONE: |
| 997 | return R_NONE; |
| 998 | case R_PPC64_ADDR16: |
| 999 | case R_PPC64_ADDR16_DS: |
| 1000 | case R_PPC64_ADDR16_HA: |
| 1001 | case R_PPC64_ADDR16_HI: |
| 1002 | case R_PPC64_ADDR16_HIGH: |
| 1003 | case R_PPC64_ADDR16_HIGHER: |
| 1004 | case R_PPC64_ADDR16_HIGHERA: |
| 1005 | case R_PPC64_ADDR16_HIGHEST: |
| 1006 | case R_PPC64_ADDR16_HIGHESTA: |
| 1007 | case R_PPC64_ADDR16_LO: |
| 1008 | case R_PPC64_ADDR16_LO_DS: |
| 1009 | case R_PPC64_ADDR32: |
| 1010 | case R_PPC64_ADDR64: |
| 1011 | return R_ABS; |
| 1012 | case R_PPC64_GOT16: |
| 1013 | case R_PPC64_GOT16_DS: |
| 1014 | case R_PPC64_GOT16_HA: |
| 1015 | case R_PPC64_GOT16_HI: |
| 1016 | case R_PPC64_GOT16_LO: |
| 1017 | case R_PPC64_GOT16_LO_DS: |
| 1018 | return R_GOT_OFF; |
| 1019 | case R_PPC64_TOC16: |
| 1020 | case R_PPC64_TOC16_DS: |
| 1021 | case R_PPC64_TOC16_HI: |
| 1022 | case R_PPC64_TOC16_LO: |
| 1023 | return R_GOTREL; |
| 1024 | case R_PPC64_GOT_PCREL34: |
| 1025 | case R_PPC64_GOT_TPREL_PCREL34: |
| 1026 | case R_PPC64_PCREL_OPT: |
| 1027 | return R_GOT_PC; |
| 1028 | case R_PPC64_TOC16_HA: |
| 1029 | case R_PPC64_TOC16_LO_DS: |
| 1030 | return ctx.arg.tocOptimize ? RE_PPC64_RELAX_TOC : R_GOTREL; |
| 1031 | case R_PPC64_TOC: |
| 1032 | return RE_PPC64_TOCBASE; |
| 1033 | case R_PPC64_REL14: |
| 1034 | case R_PPC64_REL24: |
| 1035 | return RE_PPC64_CALL_PLT; |
| 1036 | case R_PPC64_REL24_NOTOC: |
| 1037 | return R_PLT_PC; |
| 1038 | case R_PPC64_REL16_LO: |
| 1039 | case R_PPC64_REL16_HA: |
| 1040 | case R_PPC64_REL16_HI: |
| 1041 | case R_PPC64_REL32: |
| 1042 | case R_PPC64_REL64: |
| 1043 | case R_PPC64_PCREL34: |
| 1044 | return R_PC; |
| 1045 | case R_PPC64_GOT_TLSGD16: |
| 1046 | case R_PPC64_GOT_TLSGD16_HA: |
| 1047 | case R_PPC64_GOT_TLSGD16_HI: |
| 1048 | case R_PPC64_GOT_TLSGD16_LO: |
| 1049 | return R_TLSGD_GOT; |
| 1050 | case R_PPC64_GOT_TLSGD_PCREL34: |
| 1051 | return R_TLSGD_PC; |
| 1052 | case R_PPC64_GOT_TLSLD16: |
| 1053 | case R_PPC64_GOT_TLSLD16_HA: |
| 1054 | case R_PPC64_GOT_TLSLD16_HI: |
| 1055 | case R_PPC64_GOT_TLSLD16_LO: |
| 1056 | return R_TLSLD_GOT; |
| 1057 | case R_PPC64_GOT_TLSLD_PCREL34: |
| 1058 | return R_TLSLD_PC; |
| 1059 | case R_PPC64_GOT_TPREL16_HA: |
| 1060 | case R_PPC64_GOT_TPREL16_LO_DS: |
| 1061 | case R_PPC64_GOT_TPREL16_DS: |
| 1062 | case R_PPC64_GOT_TPREL16_HI: |
| 1063 | return R_GOT_OFF; |
| 1064 | case R_PPC64_GOT_DTPREL16_HA: |
| 1065 | case R_PPC64_GOT_DTPREL16_LO_DS: |
| 1066 | case R_PPC64_GOT_DTPREL16_DS: |
| 1067 | case R_PPC64_GOT_DTPREL16_HI: |
| 1068 | return R_TLSLD_GOT_OFF; |
| 1069 | case R_PPC64_TPREL16: |
| 1070 | case R_PPC64_TPREL16_HA: |
| 1071 | case R_PPC64_TPREL16_LO: |
| 1072 | case R_PPC64_TPREL16_HI: |
| 1073 | case R_PPC64_TPREL16_DS: |
| 1074 | case R_PPC64_TPREL16_LO_DS: |
| 1075 | case R_PPC64_TPREL16_HIGHER: |
| 1076 | case R_PPC64_TPREL16_HIGHERA: |
| 1077 | case R_PPC64_TPREL16_HIGHEST: |
| 1078 | case R_PPC64_TPREL16_HIGHESTA: |
| 1079 | case R_PPC64_TPREL34: |
| 1080 | return R_TPREL; |
| 1081 | case R_PPC64_DTPREL16: |
| 1082 | case R_PPC64_DTPREL16_DS: |
| 1083 | case R_PPC64_DTPREL16_HA: |
| 1084 | case R_PPC64_DTPREL16_HI: |
| 1085 | case R_PPC64_DTPREL16_HIGHER: |
| 1086 | case R_PPC64_DTPREL16_HIGHERA: |
| 1087 | case R_PPC64_DTPREL16_HIGHEST: |
| 1088 | case R_PPC64_DTPREL16_HIGHESTA: |
| 1089 | case R_PPC64_DTPREL16_LO: |
| 1090 | case R_PPC64_DTPREL16_LO_DS: |
| 1091 | case R_PPC64_DTPREL64: |
| 1092 | case R_PPC64_DTPREL34: |
| 1093 | return R_DTPREL; |
| 1094 | case R_PPC64_TLSGD: |
| 1095 | return R_TLSDESC_CALL; |
| 1096 | case R_PPC64_TLSLD: |
| 1097 | return R_TLSLD_HINT; |
| 1098 | case R_PPC64_TLS: |
| 1099 | return R_TLSIE_HINT; |
| 1100 | default: |
| 1101 | Err(ctx) << getErrorLoc(ctx, loc) << "unknown relocation (" << type.v |
| 1102 | << ") against symbol " << &s; |
| 1103 | return R_NONE; |
| 1104 | } |
| 1105 | } |
| 1106 | |
| 1107 | RelType PPC64::getDynRel(RelType type) const { |
| 1108 | if (type == R_PPC64_ADDR64 || type == R_PPC64_TOC) |
| 1109 | return R_PPC64_ADDR64; |
| 1110 | return R_PPC64_NONE; |
| 1111 | } |
| 1112 | |
| 1113 | int64_t PPC64::getImplicitAddend(const uint8_t *buf, RelType type) const { |
| 1114 | switch (type) { |
| 1115 | case R_PPC64_NONE: |
| 1116 | case R_PPC64_GLOB_DAT: |
| 1117 | case R_PPC64_JMP_SLOT: |
| 1118 | return 0; |
| 1119 | case R_PPC64_REL32: |
| 1120 | return SignExtend64<32>(x: read32(ctx, p: buf)); |
| 1121 | case R_PPC64_ADDR64: |
| 1122 | case R_PPC64_REL64: |
| 1123 | case R_PPC64_RELATIVE: |
| 1124 | case R_PPC64_IRELATIVE: |
| 1125 | case R_PPC64_DTPMOD64: |
| 1126 | case R_PPC64_DTPREL64: |
| 1127 | case R_PPC64_TPREL64: |
| 1128 | return read64(ctx, p: buf); |
| 1129 | default: |
| 1130 | InternalErr(ctx, buf) << "cannot read addend for relocation " << type; |
| 1131 | return 0; |
| 1132 | } |
| 1133 | } |
| 1134 | |
| 1135 | void PPC64::(uint8_t *buf) const { |
| 1136 | write64(ctx, p: buf, v: getPPC64TocBase(ctx)); |
| 1137 | } |
| 1138 | |
| 1139 | void PPC64::(uint8_t *buf) const { |
| 1140 | // The generic resolver stub goes first. |
| 1141 | write32(ctx, p: buf + 0, v: 0x7c0802a6); // mflr r0 |
| 1142 | write32(ctx, p: buf + 4, v: 0x429f0005); // bcl 20,4*cr7+so,8 <_glink+0x8> |
| 1143 | write32(ctx, p: buf + 8, v: 0x7d6802a6); // mflr r11 |
| 1144 | write32(ctx, p: buf + 12, v: 0x7c0803a6); // mtlr r0 |
| 1145 | write32(ctx, p: buf + 16, v: 0x7d8b6050); // subf r12, r11, r12 |
| 1146 | write32(ctx, p: buf + 20, v: 0x380cffcc); // subi r0,r12,52 |
| 1147 | write32(ctx, p: buf + 24, v: 0x7800f082); // srdi r0,r0,62,2 |
| 1148 | write32(ctx, p: buf + 28, v: 0xe98b002c); // ld r12,44(r11) |
| 1149 | write32(ctx, p: buf + 32, v: 0x7d6c5a14); // add r11,r12,r11 |
| 1150 | write32(ctx, p: buf + 36, v: 0xe98b0000); // ld r12,0(r11) |
| 1151 | write32(ctx, p: buf + 40, v: 0xe96b0008); // ld r11,8(r11) |
| 1152 | write32(ctx, p: buf + 44, v: 0x7d8903a6); // mtctr r12 |
| 1153 | write32(ctx, p: buf + 48, v: 0x4e800420); // bctr |
| 1154 | |
| 1155 | // The 'bcl' instruction will set the link register to the address of the |
| 1156 | // following instruction ('mflr r11'). Here we store the offset from that |
| 1157 | // instruction to the first entry in the GotPlt section. |
| 1158 | int64_t gotPltOffset = ctx.in.gotPlt->getVA() - (ctx.in.plt->getVA() + 8); |
| 1159 | write64(ctx, p: buf + 52, v: gotPltOffset); |
| 1160 | } |
| 1161 | |
| 1162 | void PPC64::writePlt(uint8_t *buf, const Symbol &sym, |
| 1163 | uint64_t /*pltEntryAddr*/) const { |
| 1164 | int32_t offset = pltHeaderSize + sym.getPltIdx(ctx) * pltEntrySize; |
| 1165 | // bl __glink_PLTresolve |
| 1166 | write32(ctx, p: buf, v: 0x48000000 | ((-offset) & 0x03fffffc)); |
| 1167 | } |
| 1168 | |
| 1169 | void PPC64::writeIplt(uint8_t *buf, const Symbol &sym, |
| 1170 | uint64_t /*pltEntryAddr*/) const { |
| 1171 | writePPC64LoadAndBranch(ctx, buf, |
| 1172 | offset: sym.getGotPltVA(ctx) - getPPC64TocBase(ctx)); |
| 1173 | } |
| 1174 | |
| 1175 | static std::pair<RelType, uint64_t> toAddr16Rel(RelType type, uint64_t val) { |
| 1176 | // Relocations relative to the toc-base need to be adjusted by the Toc offset. |
| 1177 | uint64_t tocBiasedVal = val - ppc64TocOffset; |
| 1178 | // Relocations relative to dtv[dtpmod] need to be adjusted by the DTP offset. |
| 1179 | uint64_t dtpBiasedVal = val - dynamicThreadPointerOffset; |
| 1180 | |
| 1181 | switch (type) { |
| 1182 | // TOC biased relocation. |
| 1183 | case R_PPC64_GOT16: |
| 1184 | case R_PPC64_GOT_TLSGD16: |
| 1185 | case R_PPC64_GOT_TLSLD16: |
| 1186 | case R_PPC64_TOC16: |
| 1187 | return {R_PPC64_ADDR16, tocBiasedVal}; |
| 1188 | case R_PPC64_GOT16_DS: |
| 1189 | case R_PPC64_TOC16_DS: |
| 1190 | case R_PPC64_GOT_TPREL16_DS: |
| 1191 | case R_PPC64_GOT_DTPREL16_DS: |
| 1192 | return {R_PPC64_ADDR16_DS, tocBiasedVal}; |
| 1193 | case R_PPC64_GOT16_HA: |
| 1194 | case R_PPC64_GOT_TLSGD16_HA: |
| 1195 | case R_PPC64_GOT_TLSLD16_HA: |
| 1196 | case R_PPC64_GOT_TPREL16_HA: |
| 1197 | case R_PPC64_GOT_DTPREL16_HA: |
| 1198 | case R_PPC64_TOC16_HA: |
| 1199 | return {R_PPC64_ADDR16_HA, tocBiasedVal}; |
| 1200 | case R_PPC64_GOT16_HI: |
| 1201 | case R_PPC64_GOT_TLSGD16_HI: |
| 1202 | case R_PPC64_GOT_TLSLD16_HI: |
| 1203 | case R_PPC64_GOT_TPREL16_HI: |
| 1204 | case R_PPC64_GOT_DTPREL16_HI: |
| 1205 | case R_PPC64_TOC16_HI: |
| 1206 | return {R_PPC64_ADDR16_HI, tocBiasedVal}; |
| 1207 | case R_PPC64_GOT16_LO: |
| 1208 | case R_PPC64_GOT_TLSGD16_LO: |
| 1209 | case R_PPC64_GOT_TLSLD16_LO: |
| 1210 | case R_PPC64_TOC16_LO: |
| 1211 | return {R_PPC64_ADDR16_LO, tocBiasedVal}; |
| 1212 | case R_PPC64_GOT16_LO_DS: |
| 1213 | case R_PPC64_TOC16_LO_DS: |
| 1214 | case R_PPC64_GOT_TPREL16_LO_DS: |
| 1215 | case R_PPC64_GOT_DTPREL16_LO_DS: |
| 1216 | return {R_PPC64_ADDR16_LO_DS, tocBiasedVal}; |
| 1217 | |
| 1218 | // Dynamic Thread pointer biased relocation types. |
| 1219 | case R_PPC64_DTPREL16: |
| 1220 | return {R_PPC64_ADDR16, dtpBiasedVal}; |
| 1221 | case R_PPC64_DTPREL16_DS: |
| 1222 | return {R_PPC64_ADDR16_DS, dtpBiasedVal}; |
| 1223 | case R_PPC64_DTPREL16_HA: |
| 1224 | return {R_PPC64_ADDR16_HA, dtpBiasedVal}; |
| 1225 | case R_PPC64_DTPREL16_HI: |
| 1226 | return {R_PPC64_ADDR16_HI, dtpBiasedVal}; |
| 1227 | case R_PPC64_DTPREL16_HIGHER: |
| 1228 | return {R_PPC64_ADDR16_HIGHER, dtpBiasedVal}; |
| 1229 | case R_PPC64_DTPREL16_HIGHERA: |
| 1230 | return {R_PPC64_ADDR16_HIGHERA, dtpBiasedVal}; |
| 1231 | case R_PPC64_DTPREL16_HIGHEST: |
| 1232 | return {R_PPC64_ADDR16_HIGHEST, dtpBiasedVal}; |
| 1233 | case R_PPC64_DTPREL16_HIGHESTA: |
| 1234 | return {R_PPC64_ADDR16_HIGHESTA, dtpBiasedVal}; |
| 1235 | case R_PPC64_DTPREL16_LO: |
| 1236 | return {R_PPC64_ADDR16_LO, dtpBiasedVal}; |
| 1237 | case R_PPC64_DTPREL16_LO_DS: |
| 1238 | return {R_PPC64_ADDR16_LO_DS, dtpBiasedVal}; |
| 1239 | case R_PPC64_DTPREL64: |
| 1240 | return {R_PPC64_ADDR64, dtpBiasedVal}; |
| 1241 | |
| 1242 | default: |
| 1243 | return {type, val}; |
| 1244 | } |
| 1245 | } |
| 1246 | |
| 1247 | static bool isTocOptType(RelType type) { |
| 1248 | switch (type) { |
| 1249 | case R_PPC64_GOT16_HA: |
| 1250 | case R_PPC64_GOT16_LO_DS: |
| 1251 | case R_PPC64_TOC16_HA: |
| 1252 | case R_PPC64_TOC16_LO_DS: |
| 1253 | case R_PPC64_TOC16_LO: |
| 1254 | return true; |
| 1255 | default: |
| 1256 | return false; |
| 1257 | } |
| 1258 | } |
| 1259 | |
| 1260 | void PPC64::relocate(uint8_t *loc, const Relocation &rel, uint64_t val) const { |
| 1261 | RelType type = rel.type; |
| 1262 | bool shouldTocOptimize = isTocOptType(type); |
| 1263 | // For dynamic thread pointer relative, toc-relative, and got-indirect |
| 1264 | // relocations, proceed in terms of the corresponding ADDR16 relocation type. |
| 1265 | std::tie(args&: type, args&: val) = toAddr16Rel(type, val); |
| 1266 | |
| 1267 | switch (type) { |
| 1268 | case R_PPC64_ADDR14: { |
| 1269 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
| 1270 | // Preserve the AA/LK bits in the branch instruction |
| 1271 | uint8_t aalk = loc[3]; |
| 1272 | write16(ctx, p: loc + 2, v: (aalk & 3) | (val & 0xfffc)); |
| 1273 | break; |
| 1274 | } |
| 1275 | case R_PPC64_ADDR16: |
| 1276 | checkIntUInt(ctx, loc, v: val, n: 16, rel); |
| 1277 | write16(ctx, p: loc, v: val); |
| 1278 | break; |
| 1279 | case R_PPC64_ADDR32: |
| 1280 | checkIntUInt(ctx, loc, v: val, n: 32, rel); |
| 1281 | write32(ctx, p: loc, v: val); |
| 1282 | break; |
| 1283 | case R_PPC64_ADDR16_DS: |
| 1284 | case R_PPC64_TPREL16_DS: { |
| 1285 | checkInt(ctx, loc, v: val, n: 16, rel); |
| 1286 | // DQ-form instructions use bits 28-31 as part of the instruction encoding |
| 1287 | // DS-form instructions only use bits 30-31. |
| 1288 | uint16_t mask = isDQFormInstruction(encoding: readFromHalf16(ctx, loc)) ? 0xf : 0x3; |
| 1289 | checkAlignment(ctx, loc, v: lo(v: val), n: mask + 1, rel); |
| 1290 | write16(ctx, p: loc, v: (read16(ctx, p: loc) & mask) | lo(v: val)); |
| 1291 | } break; |
| 1292 | case R_PPC64_ADDR16_HA: |
| 1293 | case R_PPC64_REL16_HA: |
| 1294 | case R_PPC64_TPREL16_HA: |
| 1295 | if (ctx.arg.tocOptimize && shouldTocOptimize && ha(v: val) == 0) |
| 1296 | writeFromHalf16(ctx, loc, insn: NOP); |
| 1297 | else { |
| 1298 | checkInt(ctx, loc, v: val + 0x8000, n: 32, rel); |
| 1299 | write16(ctx, p: loc, v: ha(v: val)); |
| 1300 | } |
| 1301 | break; |
| 1302 | case R_PPC64_ADDR16_HI: |
| 1303 | case R_PPC64_REL16_HI: |
| 1304 | case R_PPC64_TPREL16_HI: |
| 1305 | checkInt(ctx, loc, v: val, n: 32, rel); |
| 1306 | write16(ctx, p: loc, v: hi(v: val)); |
| 1307 | break; |
| 1308 | case R_PPC64_ADDR16_HIGH: |
| 1309 | write16(ctx, p: loc, v: hi(v: val)); |
| 1310 | break; |
| 1311 | case R_PPC64_ADDR16_HIGHER: |
| 1312 | case R_PPC64_TPREL16_HIGHER: |
| 1313 | write16(ctx, p: loc, v: higher(v: val)); |
| 1314 | break; |
| 1315 | case R_PPC64_ADDR16_HIGHERA: |
| 1316 | case R_PPC64_TPREL16_HIGHERA: |
| 1317 | write16(ctx, p: loc, v: highera(v: val)); |
| 1318 | break; |
| 1319 | case R_PPC64_ADDR16_HIGHEST: |
| 1320 | case R_PPC64_TPREL16_HIGHEST: |
| 1321 | write16(ctx, p: loc, v: highest(v: val)); |
| 1322 | break; |
| 1323 | case R_PPC64_ADDR16_HIGHESTA: |
| 1324 | case R_PPC64_TPREL16_HIGHESTA: |
| 1325 | write16(ctx, p: loc, v: highesta(v: val)); |
| 1326 | break; |
| 1327 | case R_PPC64_ADDR16_LO: |
| 1328 | case R_PPC64_REL16_LO: |
| 1329 | case R_PPC64_TPREL16_LO: |
| 1330 | // When the high-adjusted part of a toc relocation evaluates to 0, it is |
| 1331 | // changed into a nop. The lo part then needs to be updated to use the |
| 1332 | // toc-pointer register r2, as the base register. |
| 1333 | if (ctx.arg.tocOptimize && shouldTocOptimize && ha(v: val) == 0) { |
| 1334 | uint32_t insn = readFromHalf16(ctx, loc); |
| 1335 | if (isInstructionUpdateForm(encoding: insn)) |
| 1336 | Err(ctx) << getErrorLoc(ctx, loc) |
| 1337 | << "can't toc-optimize an update instruction: 0x" |
| 1338 | << utohexstr(X: insn, LowerCase: true); |
| 1339 | writeFromHalf16(ctx, loc, insn: (insn & 0xffe00000) | 0x00020000 | lo(v: val)); |
| 1340 | } else { |
| 1341 | write16(ctx, p: loc, v: lo(v: val)); |
| 1342 | } |
| 1343 | break; |
| 1344 | case R_PPC64_ADDR16_LO_DS: |
| 1345 | case R_PPC64_TPREL16_LO_DS: { |
| 1346 | // DQ-form instructions use bits 28-31 as part of the instruction encoding |
| 1347 | // DS-form instructions only use bits 30-31. |
| 1348 | uint32_t insn = readFromHalf16(ctx, loc); |
| 1349 | uint16_t mask = isDQFormInstruction(encoding: insn) ? 0xf : 0x3; |
| 1350 | checkAlignment(ctx, loc, v: lo(v: val), n: mask + 1, rel); |
| 1351 | if (ctx.arg.tocOptimize && shouldTocOptimize && ha(v: val) == 0) { |
| 1352 | // When the high-adjusted part of a toc relocation evaluates to 0, it is |
| 1353 | // changed into a nop. The lo part then needs to be updated to use the toc |
| 1354 | // pointer register r2, as the base register. |
| 1355 | if (isInstructionUpdateForm(encoding: insn)) |
| 1356 | Err(ctx) << getErrorLoc(ctx, loc) |
| 1357 | << "can't toc-optimize an update instruction: 0x" |
| 1358 | << utohexstr(X: insn, LowerCase: true); |
| 1359 | insn &= 0xffe00000 | mask; |
| 1360 | writeFromHalf16(ctx, loc, insn: insn | 0x00020000 | lo(v: val)); |
| 1361 | } else { |
| 1362 | write16(ctx, p: loc, v: (read16(ctx, p: loc) & mask) | lo(v: val)); |
| 1363 | } |
| 1364 | } break; |
| 1365 | case R_PPC64_TPREL16: |
| 1366 | checkInt(ctx, loc, v: val, n: 16, rel); |
| 1367 | write16(ctx, p: loc, v: val); |
| 1368 | break; |
| 1369 | case R_PPC64_REL32: |
| 1370 | checkInt(ctx, loc, v: val, n: 32, rel); |
| 1371 | write32(ctx, p: loc, v: val); |
| 1372 | break; |
| 1373 | case R_PPC64_ADDR64: |
| 1374 | case R_PPC64_REL64: |
| 1375 | case R_PPC64_TOC: |
| 1376 | write64(ctx, p: loc, v: val); |
| 1377 | break; |
| 1378 | case R_PPC64_REL14: { |
| 1379 | uint32_t mask = 0x0000FFFC; |
| 1380 | checkInt(ctx, loc, v: val, n: 16, rel); |
| 1381 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
| 1382 | write32(ctx, p: loc, v: (read32(ctx, p: loc) & ~mask) | (val & mask)); |
| 1383 | break; |
| 1384 | } |
| 1385 | case R_PPC64_REL24: |
| 1386 | case R_PPC64_REL24_NOTOC: { |
| 1387 | uint32_t mask = 0x03FFFFFC; |
| 1388 | checkInt(ctx, loc, v: val, n: 26, rel); |
| 1389 | checkAlignment(ctx, loc, v: val, n: 4, rel); |
| 1390 | write32(ctx, p: loc, v: (read32(ctx, p: loc) & ~mask) | (val & mask)); |
| 1391 | break; |
| 1392 | } |
| 1393 | case R_PPC64_DTPREL64: |
| 1394 | write64(ctx, p: loc, v: val - dynamicThreadPointerOffset); |
| 1395 | break; |
| 1396 | case R_PPC64_DTPREL34: |
| 1397 | // The Dynamic Thread Vector actually points 0x8000 bytes past the start |
| 1398 | // of the TLS block. Therefore, in the case of R_PPC64_DTPREL34 we first |
| 1399 | // need to subtract that value then fallthrough to the general case. |
| 1400 | val -= dynamicThreadPointerOffset; |
| 1401 | [[fallthrough]]; |
| 1402 | case R_PPC64_PCREL34: |
| 1403 | case R_PPC64_GOT_PCREL34: |
| 1404 | case R_PPC64_GOT_TLSGD_PCREL34: |
| 1405 | case R_PPC64_GOT_TLSLD_PCREL34: |
| 1406 | case R_PPC64_GOT_TPREL_PCREL34: |
| 1407 | case R_PPC64_TPREL34: { |
| 1408 | const uint64_t si0Mask = 0x00000003ffff0000; |
| 1409 | const uint64_t si1Mask = 0x000000000000ffff; |
| 1410 | const uint64_t fullMask = 0x0003ffff0000ffff; |
| 1411 | checkInt(ctx, loc, v: val, n: 34, rel); |
| 1412 | |
| 1413 | uint64_t instr = readPrefixedInst(ctx, loc) & ~fullMask; |
| 1414 | writePrefixedInst(ctx, loc, |
| 1415 | insn: instr | ((val & si0Mask) << 16) | (val & si1Mask)); |
| 1416 | break; |
| 1417 | } |
| 1418 | // If we encounter a PCREL_OPT relocation that we won't optimize. |
| 1419 | case R_PPC64_PCREL_OPT: |
| 1420 | break; |
| 1421 | default: |
| 1422 | llvm_unreachable("unknown relocation" ); |
| 1423 | } |
| 1424 | } |
| 1425 | |
| 1426 | bool PPC64::needsThunk(RelExpr expr, RelType type, const InputFile *file, |
| 1427 | uint64_t branchAddr, const Symbol &s, int64_t a) const { |
| 1428 | if (type != R_PPC64_REL14 && type != R_PPC64_REL24 && |
| 1429 | type != R_PPC64_REL24_NOTOC) |
| 1430 | return false; |
| 1431 | |
| 1432 | // If a function is in the Plt it needs to be called with a call-stub. |
| 1433 | if (s.isInPlt(ctx)) |
| 1434 | return true; |
| 1435 | |
| 1436 | // This check looks at the st_other bits of the callee with relocation |
| 1437 | // R_PPC64_REL14 or R_PPC64_REL24. If the value is 1, then the callee |
| 1438 | // clobbers the TOC and we need an R2 save stub. |
| 1439 | if (type != R_PPC64_REL24_NOTOC && (s.stOther >> 5) == 1) |
| 1440 | return true; |
| 1441 | |
| 1442 | if (type == R_PPC64_REL24_NOTOC && (s.stOther >> 5) > 1) |
| 1443 | return true; |
| 1444 | |
| 1445 | // An undefined weak symbol not in a PLT does not need a thunk. If it is |
| 1446 | // hidden, its binding has been converted to local, so we just check |
| 1447 | // isUndefined() here. A undefined non-weak symbol has been errored. |
| 1448 | if (s.isUndefined()) |
| 1449 | return false; |
| 1450 | |
| 1451 | // If the offset exceeds the range of the branch type then it will need |
| 1452 | // a range-extending thunk. |
| 1453 | // See the comment in getRelocTargetVA() about RE_PPC64_CALL. |
| 1454 | return !inBranchRange( |
| 1455 | type, src: branchAddr, |
| 1456 | dst: s.getVA(ctx, addend: a) + getPPC64GlobalEntryToLocalEntryOffset(ctx, stOther: s.stOther)); |
| 1457 | } |
| 1458 | |
| 1459 | uint32_t PPC64::getThunkSectionSpacing() const { |
| 1460 | // See comment in Arch/ARM.cpp for a more detailed explanation of |
| 1461 | // getThunkSectionSpacing(). For PPC64 we pick the constant here based on |
| 1462 | // R_PPC64_REL24, which is used by unconditional branch instructions. |
| 1463 | // 0x2000000 = (1 << 24-1) * 4 |
| 1464 | return 0x2000000; |
| 1465 | } |
| 1466 | |
| 1467 | bool PPC64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const { |
| 1468 | int64_t offset = dst - src; |
| 1469 | if (type == R_PPC64_REL14) |
| 1470 | return isInt<16>(x: offset); |
| 1471 | if (type == R_PPC64_REL24 || type == R_PPC64_REL24_NOTOC) |
| 1472 | return isInt<26>(x: offset); |
| 1473 | llvm_unreachable("unsupported relocation type used in branch" ); |
| 1474 | } |
| 1475 | |
| 1476 | RelExpr PPC64::adjustTlsExpr(RelType type, RelExpr expr) const { |
| 1477 | if (type != R_PPC64_GOT_TLSGD_PCREL34 && expr == R_RELAX_TLS_GD_TO_IE) |
| 1478 | return R_RELAX_TLS_GD_TO_IE_GOT_OFF; |
| 1479 | if (expr == R_RELAX_TLS_LD_TO_LE) |
| 1480 | return R_RELAX_TLS_LD_TO_LE_ABS; |
| 1481 | return expr; |
| 1482 | } |
| 1483 | |
| 1484 | RelExpr PPC64::adjustGotPcExpr(RelType type, int64_t addend, |
| 1485 | const uint8_t *loc) const { |
| 1486 | if ((type == R_PPC64_GOT_PCREL34 || type == R_PPC64_PCREL_OPT) && |
| 1487 | ctx.arg.pcRelOptimize) { |
| 1488 | // It only makes sense to optimize pld since paddi means that the address |
| 1489 | // of the object in the GOT is required rather than the object itself. |
| 1490 | if ((readPrefixedInst(ctx, loc) & 0xfc000000) == 0xe4000000) |
| 1491 | return RE_PPC64_RELAX_GOT_PC; |
| 1492 | } |
| 1493 | return R_GOT_PC; |
| 1494 | } |
| 1495 | |
| 1496 | // Reference: 3.7.4.1 of the 64-bit ELF V2 abi supplement. |
| 1497 | // The general dynamic code sequence for a global `x` uses 4 instructions. |
| 1498 | // Instruction Relocation Symbol |
| 1499 | // addis r3, r2, x@got@tlsgd@ha R_PPC64_GOT_TLSGD16_HA x |
| 1500 | // addi r3, r3, x@got@tlsgd@l R_PPC64_GOT_TLSGD16_LO x |
| 1501 | // bl __tls_get_addr(x@tlsgd) R_PPC64_TLSGD x |
| 1502 | // R_PPC64_REL24 __tls_get_addr |
| 1503 | // nop None None |
| 1504 | // |
| 1505 | // Relaxing to initial-exec entails: |
| 1506 | // 1) Convert the addis/addi pair that builds the address of the tls_index |
| 1507 | // struct for 'x' to an addis/ld pair that loads an offset from a got-entry. |
| 1508 | // 2) Convert the call to __tls_get_addr to a nop. |
| 1509 | // 3) Convert the nop following the call to an add of the loaded offset to the |
| 1510 | // thread pointer. |
| 1511 | // Since the nop must directly follow the call, the R_PPC64_TLSGD relocation is |
| 1512 | // used as the relaxation hint for both steps 2 and 3. |
| 1513 | void PPC64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, |
| 1514 | uint64_t val) const { |
| 1515 | switch (rel.type) { |
| 1516 | case R_PPC64_GOT_TLSGD16_HA: |
| 1517 | // This is relaxed from addis rT, r2, sym@got@tlsgd@ha to |
| 1518 | // addis rT, r2, sym@got@tprel@ha. |
| 1519 | relocateNoSym(loc, type: R_PPC64_GOT_TPREL16_HA, val); |
| 1520 | return; |
| 1521 | case R_PPC64_GOT_TLSGD16: |
| 1522 | case R_PPC64_GOT_TLSGD16_LO: { |
| 1523 | // Relax from addi r3, rA, sym@got@tlsgd@l to |
| 1524 | // ld r3, sym@got@tprel@l(rA) |
| 1525 | uint32_t ra = (readFromHalf16(ctx, loc) & (0x1f << 16)); |
| 1526 | writeFromHalf16(ctx, loc, insn: 0xe8600000 | ra); |
| 1527 | relocateNoSym(loc, type: R_PPC64_GOT_TPREL16_LO_DS, val); |
| 1528 | return; |
| 1529 | } |
| 1530 | case R_PPC64_GOT_TLSGD_PCREL34: { |
| 1531 | // Relax from paddi r3, 0, sym@got@tlsgd@pcrel, 1 to |
| 1532 | // pld r3, sym@got@tprel@pcrel |
| 1533 | writePrefixedInst(ctx, loc, insn: 0x04100000e4600000); |
| 1534 | relocateNoSym(loc, type: R_PPC64_GOT_TPREL_PCREL34, val); |
| 1535 | return; |
| 1536 | } |
| 1537 | case R_PPC64_TLSGD: { |
| 1538 | // PC Relative Relaxation: |
| 1539 | // Relax from bl __tls_get_addr@notoc(x@tlsgd) to |
| 1540 | // nop |
| 1541 | // TOC Relaxation: |
| 1542 | // Relax from bl __tls_get_addr(x@tlsgd) |
| 1543 | // nop |
| 1544 | // to |
| 1545 | // nop |
| 1546 | // add r3, r3, r13 |
| 1547 | const uintptr_t locAsInt = reinterpret_cast<uintptr_t>(loc); |
| 1548 | if (locAsInt % 4 == 0) { |
| 1549 | write32(ctx, p: loc, v: NOP); // bl __tls_get_addr(sym@tlsgd) --> nop |
| 1550 | write32(ctx, p: loc + 4, v: 0x7c636a14); // nop --> add r3, r3, r13 |
| 1551 | } else if (locAsInt % 4 == 1) { |
| 1552 | // bl __tls_get_addr(sym@tlsgd) --> add r3, r3, r13 |
| 1553 | write32(ctx, p: loc - 1, v: 0x7c636a14); |
| 1554 | } else { |
| 1555 | Err(ctx) << "R_PPC64_TLSGD has unexpected byte alignment" ; |
| 1556 | } |
| 1557 | return; |
| 1558 | } |
| 1559 | default: |
| 1560 | llvm_unreachable("unsupported relocation for TLS GD to IE relaxation" ); |
| 1561 | } |
| 1562 | } |
| 1563 | |
| 1564 | void PPC64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const { |
| 1565 | uint64_t secAddr = sec.getOutputSection()->addr; |
| 1566 | if (auto *s = dyn_cast<InputSection>(Val: &sec)) |
| 1567 | secAddr += s->outSecOff; |
| 1568 | else if (auto *ehIn = dyn_cast<EhInputSection>(Val: &sec)) |
| 1569 | secAddr += ehIn->getParent()->outSecOff; |
| 1570 | uint64_t lastPPCRelaxedRelocOff = -1; |
| 1571 | for (const Relocation &rel : sec.relocs()) { |
| 1572 | uint8_t *loc = buf + rel.offset; |
| 1573 | const uint64_t val = sec.getRelocTargetVA(ctx, r: rel, p: secAddr + rel.offset); |
| 1574 | switch (rel.expr) { |
| 1575 | case RE_PPC64_RELAX_GOT_PC: { |
| 1576 | // The R_PPC64_PCREL_OPT relocation must appear immediately after |
| 1577 | // R_PPC64_GOT_PCREL34 in the relocations table at the same offset. |
| 1578 | // We can only relax R_PPC64_PCREL_OPT if we have also relaxed |
| 1579 | // the associated R_PPC64_GOT_PCREL34 since only the latter has an |
| 1580 | // associated symbol. So save the offset when relaxing R_PPC64_GOT_PCREL34 |
| 1581 | // and only relax the other if the saved offset matches. |
| 1582 | if (rel.type == R_PPC64_GOT_PCREL34) |
| 1583 | lastPPCRelaxedRelocOff = rel.offset; |
| 1584 | if (rel.type == R_PPC64_PCREL_OPT && rel.offset != lastPPCRelaxedRelocOff) |
| 1585 | break; |
| 1586 | relaxGot(loc, rel, val); |
| 1587 | break; |
| 1588 | } |
| 1589 | case RE_PPC64_RELAX_TOC: |
| 1590 | // rel.sym refers to the STT_SECTION symbol associated to the .toc input |
| 1591 | // section. If an R_PPC64_TOC16_LO (.toc + addend) references the TOC |
| 1592 | // entry, there may be R_PPC64_TOC16_HA not paired with |
| 1593 | // R_PPC64_TOC16_LO_DS. Don't relax. This loses some relaxation |
| 1594 | // opportunities but is safe. |
| 1595 | if (ctx.ppc64noTocRelax.count(V: {rel.sym, rel.addend}) || |
| 1596 | !tryRelaxPPC64TocIndirection(ctx, rel, bufLoc: loc)) |
| 1597 | relocate(loc, rel, val); |
| 1598 | break; |
| 1599 | case RE_PPC64_CALL: |
| 1600 | // If this is a call to __tls_get_addr, it may be part of a TLS |
| 1601 | // sequence that has been relaxed and turned into a nop. In this |
| 1602 | // case, we don't want to handle it as a call. |
| 1603 | if (read32(ctx, p: loc) == 0x60000000) // nop |
| 1604 | break; |
| 1605 | |
| 1606 | // Patch a nop (0x60000000) to a ld. |
| 1607 | if (rel.sym->needsTocRestore()) { |
| 1608 | // gcc/gfortran 5.4, 6.3 and earlier versions do not add nop for |
| 1609 | // recursive calls even if the function is preemptible. This is not |
| 1610 | // wrong in the common case where the function is not preempted at |
| 1611 | // runtime. Just ignore. |
| 1612 | if ((rel.offset + 8 > sec.content().size() || |
| 1613 | read32(ctx, p: loc + 4) != 0x60000000) && |
| 1614 | rel.sym->file != sec.file) { |
| 1615 | // Use substr(6) to remove the "__plt_" prefix. |
| 1616 | Err(ctx) << getErrorLoc(ctx, loc) << "call to " |
| 1617 | << toStr(ctx, *rel.sym).substr(pos: 6) |
| 1618 | << " lacks nop, can't restore toc" ; |
| 1619 | break; |
| 1620 | } |
| 1621 | write32(ctx, p: loc + 4, v: 0xe8410018); // ld %r2, 24(%r1) |
| 1622 | } |
| 1623 | relocate(loc, rel, val); |
| 1624 | break; |
| 1625 | case R_RELAX_TLS_GD_TO_IE: |
| 1626 | case R_RELAX_TLS_GD_TO_IE_GOT_OFF: |
| 1627 | relaxTlsGdToIe(loc, rel, val); |
| 1628 | break; |
| 1629 | case R_RELAX_TLS_GD_TO_LE: |
| 1630 | relaxTlsGdToLe(loc, rel, val); |
| 1631 | break; |
| 1632 | case R_RELAX_TLS_LD_TO_LE_ABS: |
| 1633 | relaxTlsLdToLe(loc, rel, val); |
| 1634 | break; |
| 1635 | case R_RELAX_TLS_IE_TO_LE: |
| 1636 | relaxTlsIeToLe(loc, rel, val); |
| 1637 | break; |
| 1638 | default: |
| 1639 | relocate(loc, rel, val); |
| 1640 | break; |
| 1641 | } |
| 1642 | } |
| 1643 | } |
| 1644 | |
| 1645 | // The prologue for a split-stack function is expected to look roughly |
| 1646 | // like this: |
| 1647 | // .Lglobal_entry_point: |
| 1648 | // # TOC pointer initialization. |
| 1649 | // ... |
| 1650 | // .Llocal_entry_point: |
| 1651 | // # load the __private_ss member of the threads tcbhead. |
| 1652 | // ld r0,-0x7000-64(r13) |
| 1653 | // # subtract the functions stack size from the stack pointer. |
| 1654 | // addis r12, r1, ha(-stack-frame size) |
| 1655 | // addi r12, r12, l(-stack-frame size) |
| 1656 | // # compare needed to actual and branch to allocate_more_stack if more |
| 1657 | // # space is needed, otherwise fallthrough to 'normal' function body. |
| 1658 | // cmpld cr7,r12,r0 |
| 1659 | // blt- cr7, .Lallocate_more_stack |
| 1660 | // |
| 1661 | // -) The allocate_more_stack block might be placed after the split-stack |
| 1662 | // prologue and the `blt-` replaced with a `bge+ .Lnormal_func_body` |
| 1663 | // instead. |
| 1664 | // -) If either the addis or addi is not needed due to the stack size being |
| 1665 | // smaller then 32K or a multiple of 64K they will be replaced with a nop, |
| 1666 | // but there will always be 2 instructions the linker can overwrite for the |
| 1667 | // adjusted stack size. |
| 1668 | // |
| 1669 | // The linkers job here is to increase the stack size used in the addis/addi |
| 1670 | // pair by split-stack-size-adjust. |
| 1671 | // addis r12, r1, ha(-stack-frame size - split-stack-adjust-size) |
| 1672 | // addi r12, r12, l(-stack-frame size - split-stack-adjust-size) |
| 1673 | bool PPC64::adjustPrologueForCrossSplitStack(uint8_t *loc, uint8_t *end, |
| 1674 | uint8_t stOther) const { |
| 1675 | // If the caller has a global entry point adjust the buffer past it. The start |
| 1676 | // of the split-stack prologue will be at the local entry point. |
| 1677 | loc += getPPC64GlobalEntryToLocalEntryOffset(ctx, stOther); |
| 1678 | |
| 1679 | // At the very least we expect to see a load of some split-stack data from the |
| 1680 | // tcb, and 2 instructions that calculate the ending stack address this |
| 1681 | // function will require. If there is not enough room for at least 3 |
| 1682 | // instructions it can't be a split-stack prologue. |
| 1683 | if (loc + 12 >= end) |
| 1684 | return false; |
| 1685 | |
| 1686 | // First instruction must be `ld r0, -0x7000-64(r13)` |
| 1687 | if (read32(ctx, p: loc) != 0xe80d8fc0) |
| 1688 | return false; |
| 1689 | |
| 1690 | int16_t hiImm = 0; |
| 1691 | int16_t loImm = 0; |
| 1692 | // First instruction can be either an addis if the frame size is larger then |
| 1693 | // 32K, or an addi if the size is less then 32K. |
| 1694 | int32_t firstInstr = read32(ctx, p: loc + 4); |
| 1695 | if (getPrimaryOpCode(encoding: firstInstr) == 15) { |
| 1696 | hiImm = firstInstr & 0xFFFF; |
| 1697 | } else if (getPrimaryOpCode(encoding: firstInstr) == 14) { |
| 1698 | loImm = firstInstr & 0xFFFF; |
| 1699 | } else { |
| 1700 | return false; |
| 1701 | } |
| 1702 | |
| 1703 | // Second instruction is either an addi or a nop. If the first instruction was |
| 1704 | // an addi then LoImm is set and the second instruction must be a nop. |
| 1705 | uint32_t secondInstr = read32(ctx, p: loc + 8); |
| 1706 | if (!loImm && getPrimaryOpCode(encoding: secondInstr) == 14) { |
| 1707 | loImm = secondInstr & 0xFFFF; |
| 1708 | } else if (secondInstr != NOP) { |
| 1709 | return false; |
| 1710 | } |
| 1711 | |
| 1712 | // The register operands of the first instruction should be the stack-pointer |
| 1713 | // (r1) as the input (RA) and r12 as the output (RT). If the second |
| 1714 | // instruction is not a nop, then it should use r12 as both input and output. |
| 1715 | auto checkRegOperands = [](uint32_t instr, uint8_t expectedRT, |
| 1716 | uint8_t expectedRA) { |
| 1717 | return ((instr & 0x3E00000) >> 21 == expectedRT) && |
| 1718 | ((instr & 0x1F0000) >> 16 == expectedRA); |
| 1719 | }; |
| 1720 | if (!checkRegOperands(firstInstr, 12, 1)) |
| 1721 | return false; |
| 1722 | if (secondInstr != NOP && !checkRegOperands(secondInstr, 12, 12)) |
| 1723 | return false; |
| 1724 | |
| 1725 | int32_t stackFrameSize = (hiImm * 65536) + loImm; |
| 1726 | // Check that the adjusted size doesn't overflow what we can represent with 2 |
| 1727 | // instructions. |
| 1728 | if (stackFrameSize < ctx.arg.splitStackAdjustSize + INT32_MIN) { |
| 1729 | Err(ctx) << getErrorLoc(ctx, loc) |
| 1730 | << "split-stack prologue adjustment overflows" ; |
| 1731 | return false; |
| 1732 | } |
| 1733 | |
| 1734 | int32_t adjustedStackFrameSize = |
| 1735 | stackFrameSize - ctx.arg.splitStackAdjustSize; |
| 1736 | |
| 1737 | loImm = adjustedStackFrameSize & 0xFFFF; |
| 1738 | hiImm = (adjustedStackFrameSize + 0x8000) >> 16; |
| 1739 | if (hiImm) { |
| 1740 | write32(ctx, p: loc + 4, v: 0x3d810000 | (uint16_t)hiImm); |
| 1741 | // If the low immediate is zero the second instruction will be a nop. |
| 1742 | secondInstr = loImm ? 0x398C0000 | (uint16_t)loImm : NOP; |
| 1743 | write32(ctx, p: loc + 8, v: secondInstr); |
| 1744 | } else { |
| 1745 | // addi r12, r1, imm |
| 1746 | write32(ctx, p: loc + 4, v: (0x39810000) | (uint16_t)loImm); |
| 1747 | write32(ctx, p: loc + 8, v: NOP); |
| 1748 | } |
| 1749 | |
| 1750 | return true; |
| 1751 | } |
| 1752 | |
| 1753 | void elf::setPPC64TargetInfo(Ctx &ctx) { ctx.target.reset(p: new PPC64(ctx)); } |
| 1754 | |