| 1 | //===- CallGraphSort.cpp --------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// The file is responsible for sorting sections using LLVM call graph profile |
| 10 | /// data by placing frequently executed code sections together. The goal of the |
| 11 | /// placement is to improve the runtime performance of the final executable by |
| 12 | /// arranging code sections so that i-TLB misses and i-cache misses are reduced. |
| 13 | /// |
| 14 | /// The algorithm first builds a call graph based on the profile data and then |
| 15 | /// iteratively merges "chains" (ordered lists) of input sections which will be |
| 16 | /// laid out as a unit. There are two implementations for deciding how to |
| 17 | /// merge a pair of chains: |
| 18 | /// - a simpler one, referred to as Call-Chain Clustering (C^3), that follows |
| 19 | /// "Optimizing Function Placement for Large-Scale Data-Center Applications" |
| 20 | /// https://research.fb.com/wp-content/uploads/2017/01/cgo2017-hfsort-final1.pdf |
| 21 | /// - a more advanced one, referred to as Cache-Directed-Sort (CDSort), which |
| 22 | /// typically produces layouts with higher locality, and hence, yields fewer |
| 23 | /// instruction cache misses on large binaries. |
| 24 | //===----------------------------------------------------------------------===// |
| 25 | |
| 26 | #include "CallGraphSort.h" |
| 27 | #include "InputFiles.h" |
| 28 | #include "InputSection.h" |
| 29 | #include "Symbols.h" |
| 30 | #include "llvm/Support/FileSystem.h" |
| 31 | #include "llvm/Transforms/Utils/CodeLayout.h" |
| 32 | |
| 33 | #include <numeric> |
| 34 | |
| 35 | using namespace llvm; |
| 36 | using namespace lld; |
| 37 | using namespace lld::elf; |
| 38 | |
| 39 | namespace { |
| 40 | struct Edge { |
| 41 | int from; |
| 42 | uint64_t weight; |
| 43 | }; |
| 44 | |
| 45 | struct Cluster { |
| 46 | Cluster(int sec, size_t s) : next(sec), prev(sec), size(s) {} |
| 47 | |
| 48 | double getDensity() const { |
| 49 | if (size == 0) |
| 50 | return 0; |
| 51 | return double(weight) / double(size); |
| 52 | } |
| 53 | |
| 54 | int next; |
| 55 | int prev; |
| 56 | uint64_t size; |
| 57 | uint64_t weight = 0; |
| 58 | uint64_t initialWeight = 0; |
| 59 | Edge bestPred = {.from: -1, .weight: 0}; |
| 60 | }; |
| 61 | |
| 62 | /// Implementation of the Call-Chain Clustering (C^3). The goal of this |
| 63 | /// algorithm is to improve runtime performance of the executable by arranging |
| 64 | /// code sections such that page table and i-cache misses are minimized. |
| 65 | /// |
| 66 | /// Definitions: |
| 67 | /// * Cluster |
| 68 | /// * An ordered list of input sections which are laid out as a unit. At the |
| 69 | /// beginning of the algorithm each input section has its own cluster and |
| 70 | /// the weight of the cluster is the sum of the weight of all incoming |
| 71 | /// edges. |
| 72 | /// * Call-Chain Clustering (C³) Heuristic |
| 73 | /// * Defines when and how clusters are combined. Pick the highest weighted |
| 74 | /// input section then add it to its most likely predecessor if it wouldn't |
| 75 | /// penalize it too much. |
| 76 | /// * Density |
| 77 | /// * The weight of the cluster divided by the size of the cluster. This is a |
| 78 | /// proxy for the amount of execution time spent per byte of the cluster. |
| 79 | /// |
| 80 | /// It does so given a call graph profile by the following: |
| 81 | /// * Build a weighted call graph from the call graph profile |
| 82 | /// * Sort input sections by weight |
| 83 | /// * For each input section starting with the highest weight |
| 84 | /// * Find its most likely predecessor cluster |
| 85 | /// * Check if the combined cluster would be too large, or would have too low |
| 86 | /// a density. |
| 87 | /// * If not, then combine the clusters. |
| 88 | /// * Sort non-empty clusters by density |
| 89 | class CallGraphSort { |
| 90 | public: |
| 91 | CallGraphSort(Ctx &); |
| 92 | |
| 93 | DenseMap<const InputSectionBase *, int> run(); |
| 94 | |
| 95 | private: |
| 96 | Ctx &ctx; |
| 97 | std::vector<Cluster> clusters; |
| 98 | std::vector<const InputSectionBase *> sections; |
| 99 | }; |
| 100 | |
| 101 | // Maximum amount the combined cluster density can be worse than the original |
| 102 | // cluster to consider merging. |
| 103 | constexpr int MAX_DENSITY_DEGRADATION = 8; |
| 104 | |
| 105 | // Maximum cluster size in bytes. |
| 106 | constexpr uint64_t MAX_CLUSTER_SIZE = 1024 * 1024; |
| 107 | } // end anonymous namespace |
| 108 | |
| 109 | using SectionPair = |
| 110 | std::pair<const InputSectionBase *, const InputSectionBase *>; |
| 111 | |
| 112 | // Take the edge list in ctx.arg.callGraphProfile, resolve symbol names to |
| 113 | // Symbols, and generate a graph between InputSections with the provided |
| 114 | // weights. |
| 115 | CallGraphSort::CallGraphSort(Ctx &ctx) : ctx(ctx) { |
| 116 | MapVector<SectionPair, uint64_t> &profile = ctx.arg.callGraphProfile; |
| 117 | DenseMap<const InputSectionBase *, int> secToCluster; |
| 118 | |
| 119 | auto getOrCreateNode = [&](const InputSectionBase *isec) -> int { |
| 120 | auto res = secToCluster.try_emplace(Key: isec, Args: clusters.size()); |
| 121 | if (res.second) { |
| 122 | sections.push_back(x: isec); |
| 123 | clusters.emplace_back(args: clusters.size(), args: isec->getSize()); |
| 124 | } |
| 125 | return res.first->second; |
| 126 | }; |
| 127 | |
| 128 | // Create the graph. |
| 129 | for (std::pair<SectionPair, uint64_t> &c : profile) { |
| 130 | const auto *fromSB = cast<InputSectionBase>(Val: c.first.first); |
| 131 | const auto *toSB = cast<InputSectionBase>(Val: c.first.second); |
| 132 | uint64_t weight = c.second; |
| 133 | |
| 134 | // Ignore edges between input sections belonging to different output |
| 135 | // sections. This is done because otherwise we would end up with clusters |
| 136 | // containing input sections that can't actually be placed adjacently in the |
| 137 | // output. This messes with the cluster size and density calculations. We |
| 138 | // would also end up moving input sections in other output sections without |
| 139 | // moving them closer to what calls them. |
| 140 | if (fromSB->getOutputSection() != toSB->getOutputSection()) |
| 141 | continue; |
| 142 | |
| 143 | int from = getOrCreateNode(fromSB); |
| 144 | int to = getOrCreateNode(toSB); |
| 145 | |
| 146 | clusters[to].weight += weight; |
| 147 | |
| 148 | if (from == to) |
| 149 | continue; |
| 150 | |
| 151 | // Remember the best edge. |
| 152 | Cluster &toC = clusters[to]; |
| 153 | if (toC.bestPred.from == -1 || toC.bestPred.weight < weight) { |
| 154 | toC.bestPred.from = from; |
| 155 | toC.bestPred.weight = weight; |
| 156 | } |
| 157 | } |
| 158 | for (Cluster &c : clusters) |
| 159 | c.initialWeight = c.weight; |
| 160 | } |
| 161 | |
| 162 | // It's bad to merge clusters which would degrade the density too much. |
| 163 | static bool isNewDensityBad(Cluster &a, Cluster &b) { |
| 164 | double newDensity = double(a.weight + b.weight) / double(a.size + b.size); |
| 165 | return newDensity < a.getDensity() / MAX_DENSITY_DEGRADATION; |
| 166 | } |
| 167 | |
| 168 | // Find the leader of V's belonged cluster (represented as an equivalence |
| 169 | // class). We apply union-find path-halving technique (simple to implement) in |
| 170 | // the meantime as it decreases depths and the time complexity. |
| 171 | static int getLeader(int *leaders, int v) { |
| 172 | while (leaders[v] != v) { |
| 173 | leaders[v] = leaders[leaders[v]]; |
| 174 | v = leaders[v]; |
| 175 | } |
| 176 | return v; |
| 177 | } |
| 178 | |
| 179 | static void mergeClusters(std::vector<Cluster> &cs, Cluster &into, int intoIdx, |
| 180 | Cluster &from, int fromIdx) { |
| 181 | int tail1 = into.prev, tail2 = from.prev; |
| 182 | into.prev = tail2; |
| 183 | cs[tail2].next = intoIdx; |
| 184 | from.prev = tail1; |
| 185 | cs[tail1].next = fromIdx; |
| 186 | into.size += from.size; |
| 187 | into.weight += from.weight; |
| 188 | from.size = 0; |
| 189 | from.weight = 0; |
| 190 | } |
| 191 | |
| 192 | // Group InputSections into clusters using the Call-Chain Clustering heuristic |
| 193 | // then sort the clusters by density. |
| 194 | DenseMap<const InputSectionBase *, int> CallGraphSort::run() { |
| 195 | std::vector<int> sorted(clusters.size()); |
| 196 | std::unique_ptr<int[]> leaders(new int[clusters.size()]); |
| 197 | |
| 198 | std::iota(first: leaders.get(), last: leaders.get() + clusters.size(), value: 0); |
| 199 | std::iota(first: sorted.begin(), last: sorted.end(), value: 0); |
| 200 | llvm::stable_sort(Range&: sorted, C: [&](int a, int b) { |
| 201 | return clusters[a].getDensity() > clusters[b].getDensity(); |
| 202 | }); |
| 203 | |
| 204 | for (int l : sorted) { |
| 205 | // The cluster index is the same as the index of its leader here because |
| 206 | // clusters[L] has not been merged into another cluster yet. |
| 207 | Cluster &c = clusters[l]; |
| 208 | |
| 209 | // Don't consider merging if the edge is unlikely. |
| 210 | if (c.bestPred.from == -1 || c.bestPred.weight * 10 <= c.initialWeight) |
| 211 | continue; |
| 212 | |
| 213 | int predL = getLeader(leaders: leaders.get(), v: c.bestPred.from); |
| 214 | if (l == predL) |
| 215 | continue; |
| 216 | |
| 217 | Cluster *predC = &clusters[predL]; |
| 218 | if (c.size + predC->size > MAX_CLUSTER_SIZE) |
| 219 | continue; |
| 220 | |
| 221 | if (isNewDensityBad(a&: *predC, b&: c)) |
| 222 | continue; |
| 223 | |
| 224 | leaders[l] = predL; |
| 225 | mergeClusters(cs&: clusters, into&: *predC, intoIdx: predL, from&: c, fromIdx: l); |
| 226 | } |
| 227 | |
| 228 | // Sort remaining non-empty clusters by density. |
| 229 | sorted.clear(); |
| 230 | for (int i = 0, e = (int)clusters.size(); i != e; ++i) |
| 231 | if (clusters[i].size > 0) |
| 232 | sorted.push_back(x: i); |
| 233 | llvm::stable_sort(Range&: sorted, C: [&](int a, int b) { |
| 234 | return clusters[a].getDensity() > clusters[b].getDensity(); |
| 235 | }); |
| 236 | |
| 237 | DenseMap<const InputSectionBase *, int> orderMap; |
| 238 | int curOrder = -clusters.size(); |
| 239 | for (int leader : sorted) { |
| 240 | for (int i = leader;;) { |
| 241 | orderMap[sections[i]] = curOrder++; |
| 242 | i = clusters[i].next; |
| 243 | if (i == leader) |
| 244 | break; |
| 245 | } |
| 246 | } |
| 247 | if (!ctx.arg.printSymbolOrder.empty()) { |
| 248 | std::error_code ec; |
| 249 | raw_fd_ostream os(ctx.arg.printSymbolOrder, ec, sys::fs::OF_None); |
| 250 | if (ec) { |
| 251 | ErrAlways(ctx) << "cannot open " << ctx.arg.printSymbolOrder << ": " |
| 252 | << ec.message(); |
| 253 | return orderMap; |
| 254 | } |
| 255 | |
| 256 | // Print the symbols ordered by C3, in the order of increasing curOrder |
| 257 | // Instead of sorting all the orderMap, just repeat the loops above. |
| 258 | for (int leader : sorted) |
| 259 | for (int i = leader;;) { |
| 260 | // Search all the symbols in the file of the section |
| 261 | // and find out a Defined symbol with name that is within the section. |
| 262 | for (Symbol *sym : sections[i]->file->getSymbols()) |
| 263 | if (!sym->isSection()) // Filter out section-type symbols here. |
| 264 | if (auto *d = dyn_cast<Defined>(Val: sym)) |
| 265 | if (sections[i] == d->section) |
| 266 | os << sym->getName() << "\n" ; |
| 267 | i = clusters[i].next; |
| 268 | if (i == leader) |
| 269 | break; |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | return orderMap; |
| 274 | } |
| 275 | |
| 276 | // Sort sections by the profile data using the Cache-Directed Sort algorithm. |
| 277 | // The placement is done by optimizing the locality by co-locating frequently |
| 278 | // executed code sections together. |
| 279 | static DenseMap<const InputSectionBase *, int> |
| 280 | computeCacheDirectedSortOrder(Ctx &ctx) { |
| 281 | SmallVector<uint64_t, 0> funcSizes; |
| 282 | SmallVector<uint64_t, 0> funcCounts; |
| 283 | SmallVector<codelayout::EdgeCount, 0> callCounts; |
| 284 | SmallVector<uint64_t, 0> callOffsets; |
| 285 | SmallVector<const InputSectionBase *, 0> sections; |
| 286 | DenseMap<const InputSectionBase *, size_t> secToTargetId; |
| 287 | |
| 288 | auto getOrCreateNode = [&](const InputSectionBase *inSec) -> size_t { |
| 289 | auto res = secToTargetId.try_emplace(Key: inSec, Args: sections.size()); |
| 290 | if (res.second) { |
| 291 | // inSec does not appear before in the graph. |
| 292 | sections.push_back(Elt: inSec); |
| 293 | funcSizes.push_back(Elt: inSec->getSize()); |
| 294 | funcCounts.push_back(Elt: 0); |
| 295 | } |
| 296 | return res.first->second; |
| 297 | }; |
| 298 | |
| 299 | // Create the graph. |
| 300 | for (std::pair<SectionPair, uint64_t> &c : ctx.arg.callGraphProfile) { |
| 301 | const InputSectionBase *fromSB = cast<InputSectionBase>(Val: c.first.first); |
| 302 | const InputSectionBase *toSB = cast<InputSectionBase>(Val: c.first.second); |
| 303 | // Ignore edges between input sections belonging to different sections. |
| 304 | if (fromSB->getOutputSection() != toSB->getOutputSection()) |
| 305 | continue; |
| 306 | |
| 307 | uint64_t weight = c.second; |
| 308 | // Ignore edges with zero weight. |
| 309 | if (weight == 0) |
| 310 | continue; |
| 311 | |
| 312 | size_t from = getOrCreateNode(fromSB); |
| 313 | size_t to = getOrCreateNode(toSB); |
| 314 | // Ignore self-edges (recursive calls). |
| 315 | if (from == to) |
| 316 | continue; |
| 317 | |
| 318 | callCounts.push_back(Elt: {.src: from, .dst: to, .count: weight}); |
| 319 | // Assume that the jump is at the middle of the input section. The profile |
| 320 | // data does not contain jump offsets. |
| 321 | callOffsets.push_back(Elt: (funcSizes[from] + 1) / 2); |
| 322 | funcCounts[to] += weight; |
| 323 | } |
| 324 | |
| 325 | // Run the layout algorithm. |
| 326 | std::vector<uint64_t> sortedSections = codelayout::computeCacheDirectedLayout( |
| 327 | FuncSizes: funcSizes, FuncCounts: funcCounts, CallCounts: callCounts, CallOffsets: callOffsets); |
| 328 | |
| 329 | // Create the final order. |
| 330 | DenseMap<const InputSectionBase *, int> orderMap; |
| 331 | int curOrder = -sortedSections.size(); |
| 332 | for (uint64_t secIdx : sortedSections) |
| 333 | orderMap[sections[secIdx]] = curOrder++; |
| 334 | |
| 335 | return orderMap; |
| 336 | } |
| 337 | |
| 338 | // Sort sections by the profile data provided by --callgraph-profile-file. |
| 339 | // |
| 340 | // This first builds a call graph based on the profile data then merges sections |
| 341 | // according either to the C³ or Cache-Directed-Sort ordering algorithm. |
| 342 | DenseMap<const InputSectionBase *, int> |
| 343 | elf::computeCallGraphProfileOrder(Ctx &ctx) { |
| 344 | if (ctx.arg.callGraphProfileSort == CGProfileSortKind::Cdsort) |
| 345 | return computeCacheDirectedSortOrder(ctx); |
| 346 | return CallGraphSort(ctx).run(); |
| 347 | } |
| 348 | |