| 1 | //===- InputSection.cpp ---------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "InputSection.h" |
| 10 | #include "Config.h" |
| 11 | #include "InputFiles.h" |
| 12 | #include "OutputSections.h" |
| 13 | #include "Relocations.h" |
| 14 | #include "SymbolTable.h" |
| 15 | #include "Symbols.h" |
| 16 | #include "SyntheticSections.h" |
| 17 | #include "Target.h" |
| 18 | #include "lld/Common/DWARF.h" |
| 19 | #include "llvm/Support/Compiler.h" |
| 20 | #include "llvm/Support/Compression.h" |
| 21 | #include "llvm/Support/Endian.h" |
| 22 | #include "llvm/Support/xxhash.h" |
| 23 | #include <algorithm> |
| 24 | #include <optional> |
| 25 | #include <vector> |
| 26 | |
| 27 | using namespace llvm; |
| 28 | using namespace llvm::ELF; |
| 29 | using namespace llvm::object; |
| 30 | using namespace llvm::support; |
| 31 | using namespace llvm::support::endian; |
| 32 | using namespace llvm::sys; |
| 33 | using namespace lld; |
| 34 | using namespace lld::elf; |
| 35 | |
| 36 | // Returns a string to construct an error message. |
| 37 | std::string elf::toStr(Ctx &ctx, const InputSectionBase *sec) { |
| 38 | return (toStr(ctx, f: sec->file) + ":(" + sec->name + ")" ).str(); |
| 39 | } |
| 40 | |
| 41 | const ELFSyncStream &elf::operator<<(const ELFSyncStream &s, |
| 42 | const InputSectionBase *sec) { |
| 43 | return s << toStr(ctx&: s.ctx, sec); |
| 44 | } |
| 45 | |
| 46 | template <class ELFT> |
| 47 | static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file, |
| 48 | const typename ELFT::Shdr &hdr) { |
| 49 | if (hdr.sh_type == SHT_NOBITS) |
| 50 | return ArrayRef<uint8_t>(nullptr, hdr.sh_size); |
| 51 | return check(file.getObj().getSectionContents(hdr)); |
| 52 | } |
| 53 | |
| 54 | InputSectionBase::InputSectionBase(InputFile *file, StringRef name, |
| 55 | uint32_t type, uint64_t flags, uint32_t link, |
| 56 | uint32_t info, uint32_t addralign, |
| 57 | uint32_t entsize, ArrayRef<uint8_t> data, |
| 58 | Kind sectionKind) |
| 59 | : SectionBase(sectionKind, file, name, type, flags, link, info, addralign, |
| 60 | entsize), |
| 61 | bss(0), decodedCrel(0), keepUnique(0), nopFiller(0), |
| 62 | content_(data.data()), size(data.size()) { |
| 63 | // In order to reduce memory allocation, we assume that mergeable |
| 64 | // sections are smaller than 4 GiB, which is not an unreasonable |
| 65 | // assumption as of 2017. |
| 66 | if (sectionKind == SectionBase::Merge && content().size() > UINT32_MAX) |
| 67 | ErrAlways(ctx&: getCtx()) << this << ": section too large" ; |
| 68 | |
| 69 | // The ELF spec states that a value of 0 means the section has |
| 70 | // no alignment constraints. |
| 71 | uint32_t v = std::max<uint32_t>(a: addralign, b: 1); |
| 72 | if (!isPowerOf2_64(Value: v)) { |
| 73 | Err(ctx&: getCtx()) << this << ": sh_addralign is not a power of 2" ; |
| 74 | v = 1; |
| 75 | } |
| 76 | this->addralign = v; |
| 77 | |
| 78 | // If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no |
| 79 | // longer supported. |
| 80 | if (flags & SHF_COMPRESSED) { |
| 81 | Ctx &ctx = file->ctx; |
| 82 | invokeELFT(parseCompressedHeader, ctx); |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | // SHF_INFO_LINK and SHF_GROUP are normally resolved and not copied to the |
| 87 | // output section. However, for relocatable linking without |
| 88 | // --force-group-allocation, the SHF_GROUP flag and section groups are retained. |
| 89 | static uint64_t getFlags(Ctx &ctx, uint64_t flags) { |
| 90 | flags &= ~(uint64_t)SHF_INFO_LINK; |
| 91 | if (ctx.arg.resolveGroups) |
| 92 | flags &= ~(uint64_t)SHF_GROUP; |
| 93 | return flags; |
| 94 | } |
| 95 | |
| 96 | template <class ELFT> |
| 97 | InputSectionBase::InputSectionBase(ObjFile<ELFT> &file, |
| 98 | const typename ELFT::Shdr &hdr, |
| 99 | StringRef name, Kind sectionKind) |
| 100 | : InputSectionBase(&file, name, hdr.sh_type, |
| 101 | getFlags(file.ctx, hdr.sh_flags), hdr.sh_link, |
| 102 | hdr.sh_info, hdr.sh_addralign, hdr.sh_entsize, |
| 103 | getSectionContents(file, hdr), sectionKind) { |
| 104 | // We reject object files having insanely large alignments even though |
| 105 | // they are allowed by the spec. I think 4GB is a reasonable limitation. |
| 106 | // We might want to relax this in the future. |
| 107 | if (hdr.sh_addralign > UINT32_MAX) { |
| 108 | Err(ctx&: getCtx()) << &file << ": section sh_addralign is too large" ; |
| 109 | addralign = 1; |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | size_t InputSectionBase::getSize() const { |
| 114 | if (auto *s = dyn_cast<SyntheticSection>(Val: this)) |
| 115 | return s->getSize(); |
| 116 | return size - bytesDropped; |
| 117 | } |
| 118 | |
| 119 | template <class ELFT> |
| 120 | static void decompressAux(Ctx &ctx, const InputSectionBase &sec, uint8_t *out, |
| 121 | size_t size) { |
| 122 | auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(sec.content_); |
| 123 | auto compressed = ArrayRef<uint8_t>(sec.content_, sec.compressedSize) |
| 124 | .slice(N: sizeof(typename ELFT::Chdr)); |
| 125 | if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB |
| 126 | ? compression::zlib::decompress(Input: compressed, Output: out, UncompressedSize&: size) |
| 127 | : compression::zstd::decompress(Input: compressed, Output: out, UncompressedSize&: size)) |
| 128 | Err(ctx) << &sec << ": decompress failed: " << std::move(e); |
| 129 | } |
| 130 | |
| 131 | void InputSectionBase::decompress() const { |
| 132 | Ctx &ctx = getCtx(); |
| 133 | uint8_t *buf = makeThreadLocalN<uint8_t>(n: size); |
| 134 | invokeELFT(decompressAux, ctx, *this, buf, size); |
| 135 | content_ = buf; |
| 136 | compressed = false; |
| 137 | } |
| 138 | |
| 139 | template <class ELFT> |
| 140 | RelsOrRelas<ELFT> InputSectionBase::relsOrRelas(bool supportsCrel) const { |
| 141 | if (relSecIdx == 0) |
| 142 | return {}; |
| 143 | RelsOrRelas<ELFT> ret; |
| 144 | auto *f = cast<ObjFile<ELFT>>(file); |
| 145 | typename ELFT::Shdr shdr = f->template getELFShdrs<ELFT>()[relSecIdx]; |
| 146 | if (shdr.sh_type == SHT_CREL) { |
| 147 | // Return an iterator if supported by caller. |
| 148 | if (supportsCrel) { |
| 149 | ret.crels = Relocs<typename ELFT::Crel>( |
| 150 | (const uint8_t *)f->mb.getBufferStart() + shdr.sh_offset); |
| 151 | return ret; |
| 152 | } |
| 153 | InputSectionBase *const &relSec = f->getSections()[relSecIdx]; |
| 154 | // Otherwise, allocate a buffer to hold the decoded RELA relocations. When |
| 155 | // called for the first time, relSec is null (without --emit-relocs) or an |
| 156 | // InputSection with false decodedCrel. |
| 157 | if (!relSec || !cast<InputSection>(Val: relSec)->decodedCrel) { |
| 158 | auto *sec = makeThreadLocal<InputSection>(*f, shdr, name); |
| 159 | f->cacheDecodedCrel(relSecIdx, sec); |
| 160 | sec->type = SHT_RELA; |
| 161 | sec->decodedCrel = true; |
| 162 | |
| 163 | RelocsCrel<ELFT::Is64Bits> entries(sec->content_); |
| 164 | sec->size = entries.size() * sizeof(typename ELFT::Rela); |
| 165 | auto *relas = makeThreadLocalN<typename ELFT::Rela>(entries.size()); |
| 166 | sec->content_ = reinterpret_cast<uint8_t *>(relas); |
| 167 | for (auto [i, r] : llvm::enumerate(entries)) { |
| 168 | relas[i].r_offset = r.r_offset; |
| 169 | relas[i].setSymbolAndType(r.r_symidx, r.r_type, false); |
| 170 | relas[i].r_addend = r.r_addend; |
| 171 | } |
| 172 | } |
| 173 | ret.relas = {ArrayRef( |
| 174 | reinterpret_cast<const typename ELFT::Rela *>(relSec->content_), |
| 175 | relSec->size / sizeof(typename ELFT::Rela))}; |
| 176 | return ret; |
| 177 | } |
| 178 | |
| 179 | const void *content = f->mb.getBufferStart() + shdr.sh_offset; |
| 180 | size_t size = shdr.sh_size; |
| 181 | if (shdr.sh_type == SHT_REL) { |
| 182 | ret.rels = {ArrayRef(reinterpret_cast<const typename ELFT::Rel *>(content), |
| 183 | size / sizeof(typename ELFT::Rel))}; |
| 184 | } else { |
| 185 | assert(shdr.sh_type == SHT_RELA); |
| 186 | ret.relas = { |
| 187 | ArrayRef(reinterpret_cast<const typename ELFT::Rela *>(content), |
| 188 | size / sizeof(typename ELFT::Rela))}; |
| 189 | } |
| 190 | return ret; |
| 191 | } |
| 192 | |
| 193 | Ctx &SectionBase::getCtx() const { return file->ctx; } |
| 194 | |
| 195 | uint64_t SectionBase::getOffset(uint64_t offset) const { |
| 196 | switch (kind()) { |
| 197 | case Output: { |
| 198 | auto *os = cast<OutputSection>(Val: this); |
| 199 | // For output sections we treat offset -1 as the end of the section. |
| 200 | return offset == uint64_t(-1) ? os->size : offset; |
| 201 | } |
| 202 | case Class: |
| 203 | llvm_unreachable("section classes do not have offsets" ); |
| 204 | case Regular: |
| 205 | case Synthetic: |
| 206 | case Spill: |
| 207 | return cast<InputSection>(Val: this)->outSecOff + offset; |
| 208 | case EHFrame: { |
| 209 | // Two code paths may reach here. First, clang_rt.crtbegin.o and GCC |
| 210 | // crtbeginT.o may reference the start of an empty .eh_frame to identify the |
| 211 | // start of the output .eh_frame. Just return offset. |
| 212 | // |
| 213 | // Second, InputSection::copyRelocations on .eh_frame. Some pieces may be |
| 214 | // discarded due to GC/ICF. We should compute the output section offset. |
| 215 | const EhInputSection *es = cast<EhInputSection>(Val: this); |
| 216 | if (!es->content().empty()) |
| 217 | if (InputSection *isec = es->getParent()) |
| 218 | return isec->outSecOff + es->getParentOffset(offset); |
| 219 | return offset; |
| 220 | } |
| 221 | case Merge: |
| 222 | const MergeInputSection *ms = cast<MergeInputSection>(Val: this); |
| 223 | if (InputSection *isec = ms->getParent()) |
| 224 | return isec->outSecOff + ms->getParentOffset(offset); |
| 225 | return ms->getParentOffset(offset); |
| 226 | } |
| 227 | llvm_unreachable("invalid section kind" ); |
| 228 | } |
| 229 | |
| 230 | uint64_t SectionBase::getVA(uint64_t offset) const { |
| 231 | const OutputSection *out = getOutputSection(); |
| 232 | return (out ? out->addr : 0) + getOffset(offset); |
| 233 | } |
| 234 | |
| 235 | OutputSection *SectionBase::getOutputSection() { |
| 236 | InputSection *sec; |
| 237 | if (auto *isec = dyn_cast<InputSection>(Val: this)) |
| 238 | sec = isec; |
| 239 | else if (auto *ms = dyn_cast<MergeInputSection>(Val: this)) |
| 240 | sec = ms->getParent(); |
| 241 | else if (auto *eh = dyn_cast<EhInputSection>(Val: this)) |
| 242 | sec = eh->getParent(); |
| 243 | else |
| 244 | return cast<OutputSection>(Val: this); |
| 245 | return sec ? sec->getParent() : nullptr; |
| 246 | } |
| 247 | |
| 248 | // When a section is compressed, `rawData` consists with a header followed |
| 249 | // by zlib-compressed data. This function parses a header to initialize |
| 250 | // `uncompressedSize` member and remove the header from `rawData`. |
| 251 | template <typename ELFT> |
| 252 | void InputSectionBase::(Ctx &ctx) { |
| 253 | flags &= ~(uint64_t)SHF_COMPRESSED; |
| 254 | |
| 255 | // New-style header |
| 256 | if (content().size() < sizeof(typename ELFT::Chdr)) { |
| 257 | ErrAlways(ctx) << this << ": corrupted compressed section" ; |
| 258 | return; |
| 259 | } |
| 260 | |
| 261 | auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content().data()); |
| 262 | if (hdr->ch_type == ELFCOMPRESS_ZLIB) { |
| 263 | if (!compression::zlib::isAvailable()) |
| 264 | ErrAlways(ctx) << this |
| 265 | << " is compressed with ELFCOMPRESS_ZLIB, but lld is " |
| 266 | "not built with zlib support" ; |
| 267 | } else if (hdr->ch_type == ELFCOMPRESS_ZSTD) { |
| 268 | if (!compression::zstd::isAvailable()) |
| 269 | ErrAlways(ctx) << this |
| 270 | << " is compressed with ELFCOMPRESS_ZSTD, but lld is " |
| 271 | "not built with zstd support" ; |
| 272 | } else { |
| 273 | ErrAlways(ctx) << this << ": unsupported compression type (" |
| 274 | << uint32_t(hdr->ch_type) << ")" ; |
| 275 | return; |
| 276 | } |
| 277 | |
| 278 | compressed = true; |
| 279 | compressedSize = size; |
| 280 | size = hdr->ch_size; |
| 281 | addralign = std::max<uint32_t>(hdr->ch_addralign, 1); |
| 282 | } |
| 283 | |
| 284 | InputSection *InputSectionBase::getLinkOrderDep() const { |
| 285 | assert(flags & SHF_LINK_ORDER); |
| 286 | if (!link) |
| 287 | return nullptr; |
| 288 | return cast<InputSection>(Val: file->getSections()[link]); |
| 289 | } |
| 290 | |
| 291 | // Find a symbol that encloses a given location. |
| 292 | Defined *InputSectionBase::getEnclosingSymbol(uint64_t offset, |
| 293 | uint8_t type) const { |
| 294 | if (file->isInternal()) |
| 295 | return nullptr; |
| 296 | for (Symbol *b : file->getSymbols()) |
| 297 | if (Defined *d = dyn_cast<Defined>(Val: b)) |
| 298 | if (d->section == this && d->value <= offset && |
| 299 | offset < d->value + d->size && (type == 0 || type == d->type)) |
| 300 | return d; |
| 301 | return nullptr; |
| 302 | } |
| 303 | |
| 304 | // Returns an object file location string. Used to construct an error message. |
| 305 | std::string InputSectionBase::getLocation(uint64_t offset) const { |
| 306 | std::string secAndOffset = |
| 307 | (name + "+0x" + Twine::utohexstr(Val: offset) + ")" ).str(); |
| 308 | |
| 309 | std::string filename = toStr(getCtx(), f: file); |
| 310 | if (Defined *d = getEnclosingFunction(offset)) |
| 311 | return filename + ":(function " + toStr(getCtx(), *d) + ": " + secAndOffset; |
| 312 | |
| 313 | return filename + ":(" + secAndOffset; |
| 314 | } |
| 315 | |
| 316 | static void printFileLine(const ELFSyncStream &s, StringRef path, |
| 317 | unsigned line) { |
| 318 | StringRef filename = path::filename(path); |
| 319 | s << filename << ':' << line; |
| 320 | if (filename != path) |
| 321 | s << " (" << path << ':' << line << ')'; |
| 322 | } |
| 323 | |
| 324 | // Print an error message that looks like this: |
| 325 | // |
| 326 | // foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42) |
| 327 | const ELFSyncStream &elf::operator<<(const ELFSyncStream &s, |
| 328 | InputSectionBase::SrcMsg &&msg) { |
| 329 | auto &sec = msg.sec; |
| 330 | if (sec.file->kind() != InputFile::ObjKind) |
| 331 | return s; |
| 332 | auto &file = cast<ELFFileBase>(Val&: *sec.file); |
| 333 | |
| 334 | // First, look up the DWARF line table. |
| 335 | ArrayRef<InputSectionBase *> sections = file.getSections(); |
| 336 | auto it = llvm::find(Range&: sections, Val: &sec); |
| 337 | uint64_t sectionIndex = it != sections.end() |
| 338 | ? it - sections.begin() |
| 339 | : object::SectionedAddress::UndefSection; |
| 340 | DWARFCache *dwarf = file.getDwarf(); |
| 341 | if (auto info = dwarf->getDILineInfo(offset: msg.offset, sectionIndex)) |
| 342 | printFileLine(s, path: info->FileName, line: info->Line); |
| 343 | else if (auto fileLine = dwarf->getVariableLoc(name: msg.sym.getName())) |
| 344 | // If it failed, look up again as a variable. |
| 345 | printFileLine(s, path: fileLine->first, line: fileLine->second); |
| 346 | else |
| 347 | // File.sourceFile contains STT_FILE symbol, and that is a last resort. |
| 348 | s << file.sourceFile; |
| 349 | return s; |
| 350 | } |
| 351 | |
| 352 | // Returns a filename string along with an optional section name. This |
| 353 | // function is intended to be used for constructing an error |
| 354 | // message. The returned message looks like this: |
| 355 | // |
| 356 | // path/to/foo.o:(function bar) |
| 357 | // |
| 358 | // or |
| 359 | // |
| 360 | // path/to/foo.o:(function bar) in archive path/to/bar.a |
| 361 | const ELFSyncStream &elf::operator<<(const ELFSyncStream &s, |
| 362 | InputSectionBase::ObjMsg &&msg) { |
| 363 | auto *sec = msg.sec; |
| 364 | s << sec->file->getName() << ":(" ; |
| 365 | |
| 366 | // Find a symbol that encloses a given location. getObjMsg may be called |
| 367 | // before ObjFile::initSectionsAndLocalSyms where local symbols are |
| 368 | // initialized. |
| 369 | if (Defined *d = sec->getEnclosingSymbol(offset: msg.offset)) |
| 370 | s << d; |
| 371 | else |
| 372 | s << sec->name << "+0x" << Twine::utohexstr(Val: msg.offset); |
| 373 | s << ')'; |
| 374 | if (!sec->file->archiveName.empty()) |
| 375 | s << (" in archive " + sec->file->archiveName).str(); |
| 376 | return s; |
| 377 | } |
| 378 | |
| 379 | PotentialSpillSection::PotentialSpillSection(const InputSectionBase &source, |
| 380 | InputSectionDescription &isd) |
| 381 | : InputSection(source.file, source.name, source.type, source.flags, |
| 382 | source.addralign, source.addralign, {}, SectionBase::Spill), |
| 383 | isd(&isd) {} |
| 384 | |
| 385 | InputSection InputSection::discarded(nullptr, "" , 0, 0, 0, 0, |
| 386 | ArrayRef<uint8_t>()); |
| 387 | |
| 388 | InputSection::InputSection(InputFile *f, StringRef name, uint32_t type, |
| 389 | uint64_t flags, uint32_t addralign, uint32_t entsize, |
| 390 | ArrayRef<uint8_t> data, Kind k) |
| 391 | : InputSectionBase(f, name, type, flags, |
| 392 | /*link=*/0, /*info=*/0, addralign, /*entsize=*/entsize, |
| 393 | data, k) { |
| 394 | assert(f || this == &InputSection::discarded); |
| 395 | } |
| 396 | |
| 397 | template <class ELFT> |
| 398 | InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &, |
| 399 | StringRef name) |
| 400 | : InputSectionBase(f, header, name, InputSectionBase::Regular) {} |
| 401 | |
| 402 | // Copy SHT_GROUP section contents. Used only for the -r option. |
| 403 | template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) { |
| 404 | // ELFT::Word is the 32-bit integral type in the target endianness. |
| 405 | using u32 = typename ELFT::Word; |
| 406 | ArrayRef<u32> from = getDataAs<u32>(); |
| 407 | auto *to = reinterpret_cast<u32 *>(buf); |
| 408 | |
| 409 | // The first entry is not a section number but a flag. |
| 410 | *to++ = from[0]; |
| 411 | |
| 412 | // Adjust section numbers because section numbers in an input object files are |
| 413 | // different in the output. We also need to handle combined or discarded |
| 414 | // members. |
| 415 | ArrayRef<InputSectionBase *> sections = file->getSections(); |
| 416 | DenseSet<uint32_t> seen; |
| 417 | for (uint32_t idx : from.slice(1)) { |
| 418 | OutputSection *osec = sections[idx]->getOutputSection(); |
| 419 | if (osec && seen.insert(V: osec->sectionIndex).second) |
| 420 | *to++ = osec->sectionIndex; |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | InputSectionBase *InputSection::getRelocatedSection() const { |
| 425 | if (file->isInternal() || !isStaticRelSecType(type)) |
| 426 | return nullptr; |
| 427 | ArrayRef<InputSectionBase *> sections = file->getSections(); |
| 428 | return sections[info]; |
| 429 | } |
| 430 | |
| 431 | template <class ELFT, class RelTy> |
| 432 | void InputSection::copyRelocations(Ctx &ctx, uint8_t *buf) { |
| 433 | bool linkerRelax = |
| 434 | ctx.arg.relax && is_contained(Set: {EM_RISCV, EM_LOONGARCH}, Element: ctx.arg.emachine); |
| 435 | if (!ctx.arg.relocatable && (linkerRelax || ctx.arg.branchToBranch)) { |
| 436 | // On LoongArch and RISC-V, relaxation might change relocations: copy |
| 437 | // from internal ones that are updated by relaxation. |
| 438 | InputSectionBase *sec = getRelocatedSection(); |
| 439 | copyRelocations<ELFT, RelTy>( |
| 440 | ctx, buf, |
| 441 | llvm::make_range(x: sec->relocations.begin(), y: sec->relocations.end())); |
| 442 | } else { |
| 443 | // Convert the raw relocations in the input section into Relocation objects |
| 444 | // suitable to be used by copyRelocations below. |
| 445 | struct MapRel { |
| 446 | Ctx &ctx; |
| 447 | const ObjFile<ELFT> &file; |
| 448 | Relocation operator()(const RelTy &rel) const { |
| 449 | // RelExpr is not used so set to a dummy value. |
| 450 | return Relocation{R_NONE, rel.getType(ctx.arg.isMips64EL), rel.r_offset, |
| 451 | getAddend<ELFT>(rel), &file.getRelocTargetSym(rel)}; |
| 452 | } |
| 453 | }; |
| 454 | |
| 455 | using RawRels = ArrayRef<RelTy>; |
| 456 | using MapRelIter = |
| 457 | llvm::mapped_iterator<typename RawRels::iterator, MapRel>; |
| 458 | auto mapRel = MapRel{ctx, *getFile<ELFT>()}; |
| 459 | RawRels rawRels = getDataAs<RelTy>(); |
| 460 | auto rels = llvm::make_range(MapRelIter(rawRels.begin(), mapRel), |
| 461 | MapRelIter(rawRels.end(), mapRel)); |
| 462 | copyRelocations<ELFT, RelTy>(ctx, buf, rels); |
| 463 | } |
| 464 | } |
| 465 | |
| 466 | // This is used for -r and --emit-relocs. We can't use memcpy to copy |
| 467 | // relocations because we need to update symbol table offset and section index |
| 468 | // for each relocation. So we copy relocations one by one. |
| 469 | template <class ELFT, class RelTy, class RelIt> |
| 470 | void InputSection::copyRelocations(Ctx &ctx, uint8_t *buf, |
| 471 | llvm::iterator_range<RelIt> rels) { |
| 472 | const TargetInfo &target = *ctx.target; |
| 473 | InputSectionBase *sec = getRelocatedSection(); |
| 474 | (void)sec->contentMaybeDecompress(); // uncompress if needed |
| 475 | |
| 476 | for (const Relocation &rel : rels) { |
| 477 | RelType type = rel.type; |
| 478 | const ObjFile<ELFT> *file = getFile<ELFT>(); |
| 479 | Symbol &sym = *rel.sym; |
| 480 | |
| 481 | auto *p = reinterpret_cast<typename ELFT::Rela *>(buf); |
| 482 | buf += sizeof(RelTy); |
| 483 | |
| 484 | if (RelTy::HasAddend) |
| 485 | p->r_addend = rel.addend; |
| 486 | |
| 487 | // Output section VA is zero for -r, so r_offset is an offset within the |
| 488 | // section, but for --emit-relocs it is a virtual address. |
| 489 | p->r_offset = sec->getVA(offset: rel.offset); |
| 490 | p->setSymbolAndType(ctx.in.symTab->getSymbolIndex(sym), type, |
| 491 | ctx.arg.isMips64EL); |
| 492 | |
| 493 | if (sym.type == STT_SECTION) { |
| 494 | // We combine multiple section symbols into only one per |
| 495 | // section. This means we have to update the addend. That is |
| 496 | // trivial for Elf_Rela, but for Elf_Rel we have to write to the |
| 497 | // section data. We do that by adding to the Relocation vector. |
| 498 | |
| 499 | // .eh_frame is horribly special and can reference discarded sections. To |
| 500 | // avoid having to parse and recreate .eh_frame, we just replace any |
| 501 | // relocation in it pointing to discarded sections with R_*_NONE, which |
| 502 | // hopefully creates a frame that is ignored at runtime. Also, don't warn |
| 503 | // on .gcc_except_table and debug sections. |
| 504 | // |
| 505 | // See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc |
| 506 | auto *d = dyn_cast<Defined>(Val: &sym); |
| 507 | if (!d) { |
| 508 | if (!isDebugSection(sec: *sec) && sec->name != ".eh_frame" && |
| 509 | sec->name != ".gcc_except_table" && sec->name != ".got2" && |
| 510 | sec->name != ".toc" ) { |
| 511 | uint32_t secIdx = cast<Undefined>(Val&: sym).discardedSecIdx; |
| 512 | Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx]; |
| 513 | Warn(ctx) << "relocation refers to a discarded section: " |
| 514 | << CHECK2(file->getObj().getSectionName(sec), file) |
| 515 | << "\n>>> referenced by " << getObjMsg(offset: p->r_offset); |
| 516 | } |
| 517 | p->setSymbolAndType(0, 0, false); |
| 518 | continue; |
| 519 | } |
| 520 | SectionBase *section = d->section; |
| 521 | assert(section->isLive()); |
| 522 | |
| 523 | int64_t addend = rel.addend; |
| 524 | const uint8_t *bufLoc = sec->content().begin() + rel.offset; |
| 525 | if (!RelTy::HasAddend) |
| 526 | addend = target.getImplicitAddend(buf: bufLoc, type); |
| 527 | |
| 528 | if (ctx.arg.emachine == EM_MIPS && |
| 529 | target.getRelExpr(type, s: sym, loc: bufLoc) == RE_MIPS_GOTREL) { |
| 530 | // Some MIPS relocations depend on "gp" value. By default, |
| 531 | // this value has 0x7ff0 offset from a .got section. But |
| 532 | // relocatable files produced by a compiler or a linker |
| 533 | // might redefine this default value and we must use it |
| 534 | // for a calculation of the relocation result. When we |
| 535 | // generate EXE or DSO it's trivial. Generating a relocatable |
| 536 | // output is more difficult case because the linker does |
| 537 | // not calculate relocations in this mode and loses |
| 538 | // individual "gp" values used by each input object file. |
| 539 | // As a workaround we add the "gp" value to the relocation |
| 540 | // addend and save it back to the file. |
| 541 | addend += sec->getFile<ELFT>()->mipsGp0; |
| 542 | } |
| 543 | |
| 544 | if (RelTy::HasAddend) |
| 545 | p->r_addend = |
| 546 | sym.getVA(ctx, addend) - section->getOutputSection()->addr; |
| 547 | // For SHF_ALLOC sections relocated by REL, append a relocation to |
| 548 | // sec->relocations so that relocateAlloc transitively called by |
| 549 | // writeSections will update the implicit addend. Non-SHF_ALLOC sections |
| 550 | // utilize relocateNonAlloc to process raw relocations and do not need |
| 551 | // this sec->relocations change. |
| 552 | else if (ctx.arg.relocatable && (sec->flags & SHF_ALLOC) && |
| 553 | type != target.noneRel) |
| 554 | sec->addReloc(r: {.expr: R_ABS, .type: type, .offset: rel.offset, .addend: addend, .sym: &sym}); |
| 555 | } else if (ctx.arg.emachine == EM_PPC && type == R_PPC_PLTREL24 && |
| 556 | p->r_addend >= 0x8000 && sec->file->ppc32Got2) { |
| 557 | // Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24 |
| 558 | // indicates that r30 is relative to the input section .got2 |
| 559 | // (r_addend>=0x8000), after linking, r30 should be relative to the output |
| 560 | // section .got2 . To compensate for the shift, adjust r_addend by |
| 561 | // ppc32Got->outSecOff. |
| 562 | p->r_addend += sec->file->ppc32Got2->outSecOff; |
| 563 | } |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | // The ARM and AArch64 ABI handle pc-relative relocations to undefined weak |
| 568 | // references specially. The general rule is that the value of the symbol in |
| 569 | // this context is the address of the place P. A further special case is that |
| 570 | // branch relocations to an undefined weak reference resolve to the next |
| 571 | // instruction. |
| 572 | static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a, |
| 573 | uint32_t p) { |
| 574 | switch (type) { |
| 575 | // Unresolved branch relocations to weak references resolve to next |
| 576 | // instruction, this will be either 2 or 4 bytes on from P. |
| 577 | case R_ARM_THM_JUMP8: |
| 578 | case R_ARM_THM_JUMP11: |
| 579 | return p + 2 + a; |
| 580 | case R_ARM_CALL: |
| 581 | case R_ARM_JUMP24: |
| 582 | case R_ARM_PC24: |
| 583 | case R_ARM_PLT32: |
| 584 | case R_ARM_PREL31: |
| 585 | case R_ARM_THM_JUMP19: |
| 586 | case R_ARM_THM_JUMP24: |
| 587 | return p + 4 + a; |
| 588 | case R_ARM_THM_CALL: |
| 589 | // We don't want an interworking BLX to ARM |
| 590 | return p + 5 + a; |
| 591 | // Unresolved non branch pc-relative relocations |
| 592 | // R_ARM_TARGET2 which can be resolved relatively is not present as it never |
| 593 | // targets a weak-reference. |
| 594 | case R_ARM_MOVW_PREL_NC: |
| 595 | case R_ARM_MOVT_PREL: |
| 596 | case R_ARM_REL32: |
| 597 | case R_ARM_THM_ALU_PREL_11_0: |
| 598 | case R_ARM_THM_MOVW_PREL_NC: |
| 599 | case R_ARM_THM_MOVT_PREL: |
| 600 | case R_ARM_THM_PC12: |
| 601 | return p + a; |
| 602 | // p + a is unrepresentable as negative immediates can't be encoded. |
| 603 | case R_ARM_THM_PC8: |
| 604 | return p; |
| 605 | } |
| 606 | llvm_unreachable("ARM pc-relative relocation expected\n" ); |
| 607 | } |
| 608 | |
| 609 | // The comment above getARMUndefinedRelativeWeakVA applies to this function. |
| 610 | static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) { |
| 611 | switch (type) { |
| 612 | // Unresolved branch relocations to weak references resolve to next |
| 613 | // instruction, this is 4 bytes on from P. |
| 614 | case R_AARCH64_CALL26: |
| 615 | case R_AARCH64_CONDBR19: |
| 616 | case R_AARCH64_JUMP26: |
| 617 | case R_AARCH64_TSTBR14: |
| 618 | return p + 4; |
| 619 | // Unresolved non branch pc-relative relocations |
| 620 | case R_AARCH64_PREL16: |
| 621 | case R_AARCH64_PREL32: |
| 622 | case R_AARCH64_PREL64: |
| 623 | case R_AARCH64_ADR_PREL_LO21: |
| 624 | case R_AARCH64_LD_PREL_LO19: |
| 625 | case R_AARCH64_PLT32: |
| 626 | return p; |
| 627 | } |
| 628 | llvm_unreachable("AArch64 pc-relative relocation expected\n" ); |
| 629 | } |
| 630 | |
| 631 | static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) { |
| 632 | switch (type) { |
| 633 | case R_RISCV_BRANCH: |
| 634 | case R_RISCV_JAL: |
| 635 | case R_RISCV_CALL: |
| 636 | case R_RISCV_CALL_PLT: |
| 637 | case R_RISCV_RVC_BRANCH: |
| 638 | case R_RISCV_RVC_JUMP: |
| 639 | case R_RISCV_PLT32: |
| 640 | return p; |
| 641 | default: |
| 642 | return 0; |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | // ARM SBREL relocations are of the form S + A - B where B is the static base |
| 647 | // The ARM ABI defines base to be "addressing origin of the output segment |
| 648 | // defining the symbol S". We defined the "addressing origin"/static base to be |
| 649 | // the base of the PT_LOAD segment containing the Sym. |
| 650 | // The procedure call standard only defines a Read Write Position Independent |
| 651 | // RWPI variant so in practice we should expect the static base to be the base |
| 652 | // of the RW segment. |
| 653 | static uint64_t getARMStaticBase(const Symbol &sym) { |
| 654 | OutputSection *os = sym.getOutputSection(); |
| 655 | if (!os || !os->ptLoad || !os->ptLoad->firstSec) { |
| 656 | Err(ctx&: os->ctx) << "SBREL relocation to " << sym.getName() |
| 657 | << " without static base" ; |
| 658 | return 0; |
| 659 | } |
| 660 | return os->ptLoad->firstSec->addr; |
| 661 | } |
| 662 | |
| 663 | // For RE_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually |
| 664 | // points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA |
| 665 | // is calculated using PCREL_HI20's symbol. |
| 666 | // |
| 667 | // This function returns the R_RISCV_PCREL_HI20 relocation from the |
| 668 | // R_RISCV_PCREL_LO12 relocation. |
| 669 | static Relocation *getRISCVPCRelHi20(Ctx &ctx, const InputSectionBase *loSec, |
| 670 | const Relocation &loReloc) { |
| 671 | uint64_t addend = loReloc.addend; |
| 672 | Symbol *sym = loReloc.sym; |
| 673 | |
| 674 | const Defined *d = cast<Defined>(Val: sym); |
| 675 | if (!d->section) { |
| 676 | Err(ctx) << loSec->getLocation(offset: loReloc.offset) |
| 677 | << ": R_RISCV_PCREL_LO12 relocation points to an absolute symbol: " |
| 678 | << sym->getName(); |
| 679 | return nullptr; |
| 680 | } |
| 681 | InputSection *hiSec = cast<InputSection>(Val: d->section); |
| 682 | |
| 683 | if (hiSec != loSec) |
| 684 | Err(ctx) << loSec->getLocation(offset: loReloc.offset) |
| 685 | << ": R_RISCV_PCREL_LO12 relocation points to a symbol '" |
| 686 | << sym->getName() << "' in a different section '" << hiSec->name |
| 687 | << "'" ; |
| 688 | |
| 689 | if (addend != 0) |
| 690 | Warn(ctx) << loSec->getLocation(offset: loReloc.offset) |
| 691 | << ": non-zero addend in R_RISCV_PCREL_LO12 relocation to " |
| 692 | << hiSec->getObjMsg(offset: d->value) << " is ignored" ; |
| 693 | |
| 694 | // Relocations are sorted by offset, so we can use std::equal_range to do |
| 695 | // binary search. |
| 696 | Relocation hiReloc; |
| 697 | hiReloc.offset = d->value; |
| 698 | auto range = |
| 699 | std::equal_range(first: hiSec->relocs().begin(), last: hiSec->relocs().end(), val: hiReloc, |
| 700 | comp: [](const Relocation &lhs, const Relocation &rhs) { |
| 701 | return lhs.offset < rhs.offset; |
| 702 | }); |
| 703 | |
| 704 | for (auto it = range.first; it != range.second; ++it) |
| 705 | if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 || |
| 706 | it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20) |
| 707 | return &*it; |
| 708 | |
| 709 | Err(ctx) << loSec->getLocation(offset: loReloc.offset) |
| 710 | << ": R_RISCV_PCREL_LO12 relocation points to " |
| 711 | << hiSec->getObjMsg(offset: d->value) |
| 712 | << " without an associated R_RISCV_PCREL_HI20 relocation" ; |
| 713 | return nullptr; |
| 714 | } |
| 715 | |
| 716 | // A TLS symbol's virtual address is relative to the TLS segment. Add a |
| 717 | // target-specific adjustment to produce a thread-pointer-relative offset. |
| 718 | static int64_t getTlsTpOffset(Ctx &ctx, const Symbol &s) { |
| 719 | // On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0. |
| 720 | if (&s == ctx.sym.tlsModuleBase) |
| 721 | return 0; |
| 722 | |
| 723 | // There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2 |
| 724 | // while most others use Variant 1. At run time TP will be aligned to p_align. |
| 725 | |
| 726 | // Variant 1. TP will be followed by an optional gap (which is the size of 2 |
| 727 | // pointers on ARM/AArch64, 0 on other targets), followed by alignment |
| 728 | // padding, then the static TLS blocks. The alignment padding is added so that |
| 729 | // (TP + gap + padding) is congruent to p_vaddr modulo p_align. |
| 730 | // |
| 731 | // Variant 2. Static TLS blocks, followed by alignment padding are placed |
| 732 | // before TP. The alignment padding is added so that (TP - padding - |
| 733 | // p_memsz) is congruent to p_vaddr modulo p_align. |
| 734 | PhdrEntry *tls = ctx.tlsPhdr; |
| 735 | if (!tls) // Reported an error in getSymVA |
| 736 | return 0; |
| 737 | switch (ctx.arg.emachine) { |
| 738 | // Variant 1. |
| 739 | case EM_ARM: |
| 740 | case EM_AARCH64: |
| 741 | return s.getVA(ctx, addend: 0) + ctx.arg.wordsize * 2 + |
| 742 | ((tls->p_vaddr - ctx.arg.wordsize * 2) & (tls->p_align - 1)); |
| 743 | case EM_MIPS: |
| 744 | case EM_PPC: |
| 745 | case EM_PPC64: |
| 746 | // Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is |
| 747 | // to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library |
| 748 | // data and 0xf000 of the program's TLS segment. |
| 749 | return s.getVA(ctx, addend: 0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000; |
| 750 | case EM_LOONGARCH: |
| 751 | case EM_RISCV: |
| 752 | // See the comment in handleTlsRelocation. For TLSDESC=>IE, |
| 753 | // R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} also reach here. While |
| 754 | // `tls` may be null, the return value is ignored. |
| 755 | if (s.type != STT_TLS) |
| 756 | return 0; |
| 757 | return s.getVA(ctx, addend: 0) + (tls->p_vaddr & (tls->p_align - 1)); |
| 758 | |
| 759 | // Variant 2. |
| 760 | case EM_HEXAGON: |
| 761 | case EM_S390: |
| 762 | case EM_SPARCV9: |
| 763 | case EM_386: |
| 764 | case EM_X86_64: |
| 765 | return s.getVA(ctx, addend: 0) - tls->p_memsz - |
| 766 | ((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1)); |
| 767 | default: |
| 768 | llvm_unreachable("unhandled ctx.arg.emachine" ); |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | uint64_t InputSectionBase::getRelocTargetVA(Ctx &ctx, const Relocation &r, |
| 773 | uint64_t p) const { |
| 774 | int64_t a = r.addend; |
| 775 | switch (r.expr) { |
| 776 | case R_ABS: |
| 777 | case R_DTPREL: |
| 778 | case R_RELAX_TLS_LD_TO_LE_ABS: |
| 779 | case R_RELAX_GOT_PC_NOPIC: |
| 780 | case RE_AARCH64_AUTH: |
| 781 | case RE_RISCV_ADD: |
| 782 | case RE_RISCV_LEB128: |
| 783 | return r.sym->getVA(ctx, addend: a); |
| 784 | case R_ADDEND: |
| 785 | return a; |
| 786 | case R_RELAX_HINT: |
| 787 | return 0; |
| 788 | case RE_ARM_SBREL: |
| 789 | return r.sym->getVA(ctx, addend: a) - getARMStaticBase(sym: *r.sym); |
| 790 | case R_GOT: |
| 791 | case RE_AARCH64_AUTH_GOT: |
| 792 | case R_RELAX_TLS_GD_TO_IE_ABS: |
| 793 | return r.sym->getGotVA(ctx) + a; |
| 794 | case RE_LOONGARCH_GOT: |
| 795 | // The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc r.type |
| 796 | // for their page offsets. The arithmetics are different in the TLS case |
| 797 | // so we have to duplicate some logic here. |
| 798 | if (r.sym->hasFlag(bit: NEEDS_TLSGD) && r.type != R_LARCH_TLS_IE_PC_LO12) |
| 799 | // Like RE_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value. |
| 800 | return ctx.in.got->getGlobalDynAddr(b: *r.sym) + a; |
| 801 | return r.sym->getGotVA(ctx) + a; |
| 802 | case R_GOTONLY_PC: |
| 803 | return ctx.in.got->getVA() + a - p; |
| 804 | case R_GOTPLTONLY_PC: |
| 805 | return ctx.in.gotPlt->getVA() + a - p; |
| 806 | case R_GOTREL: |
| 807 | case RE_PPC64_RELAX_TOC: |
| 808 | return r.sym->getVA(ctx, addend: a) - ctx.in.got->getVA(); |
| 809 | case R_GOTPLTREL: |
| 810 | return r.sym->getVA(ctx, addend: a) - ctx.in.gotPlt->getVA(); |
| 811 | case R_GOTPLT: |
| 812 | case R_RELAX_TLS_GD_TO_IE_GOTPLT: |
| 813 | return r.sym->getGotVA(ctx) + a - ctx.in.gotPlt->getVA(); |
| 814 | case R_TLSLD_GOT_OFF: |
| 815 | case R_GOT_OFF: |
| 816 | case R_RELAX_TLS_GD_TO_IE_GOT_OFF: |
| 817 | return r.sym->getGotOffset(ctx) + a; |
| 818 | case RE_AARCH64_GOT_PAGE_PC: |
| 819 | case RE_AARCH64_AUTH_GOT_PAGE_PC: |
| 820 | case RE_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC: |
| 821 | return getAArch64Page(expr: r.sym->getGotVA(ctx) + a) - getAArch64Page(expr: p); |
| 822 | case RE_AARCH64_GOT_PAGE: |
| 823 | return r.sym->getGotVA(ctx) + a - getAArch64Page(expr: ctx.in.got->getVA()); |
| 824 | case R_GOT_PC: |
| 825 | case RE_AARCH64_AUTH_GOT_PC: |
| 826 | case R_RELAX_TLS_GD_TO_IE: |
| 827 | return r.sym->getGotVA(ctx) + a - p; |
| 828 | case R_GOTPLT_GOTREL: |
| 829 | return r.sym->getGotPltVA(ctx) + a - ctx.in.got->getVA(); |
| 830 | case R_GOTPLT_PC: |
| 831 | return r.sym->getGotPltVA(ctx) + a - p; |
| 832 | case RE_LOONGARCH_GOT_PAGE_PC: |
| 833 | case RE_LOONGARCH_RELAX_TLS_GD_TO_IE_PAGE_PC: |
| 834 | if (r.sym->hasFlag(bit: NEEDS_TLSGD)) |
| 835 | return getLoongArchPageDelta(dest: ctx.in.got->getGlobalDynAddr(b: *r.sym) + a, pc: p, |
| 836 | type: r.type); |
| 837 | return getLoongArchPageDelta(dest: r.sym->getGotVA(ctx) + a, pc: p, type: r.type); |
| 838 | case RE_MIPS_GOTREL: |
| 839 | return r.sym->getVA(ctx, addend: a) - ctx.in.mipsGot->getGp(f: file); |
| 840 | case RE_MIPS_GOT_GP: |
| 841 | return ctx.in.mipsGot->getGp(f: file) + a; |
| 842 | case RE_MIPS_GOT_GP_PC: { |
| 843 | // R_MIPS_LO16 expression has RE_MIPS_GOT_GP_PC r.type iif the target |
| 844 | // is _gp_disp symbol. In that case we should use the following |
| 845 | // formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at |
| 846 | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| 847 | // microMIPS variants of these relocations use slightly different |
| 848 | // expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi() |
| 849 | // to correctly handle less-significant bit of the microMIPS symbol. |
| 850 | uint64_t v = ctx.in.mipsGot->getGp(f: file) + a - p; |
| 851 | if (r.type == R_MIPS_LO16 || r.type == R_MICROMIPS_LO16) |
| 852 | v += 4; |
| 853 | if (r.type == R_MICROMIPS_LO16 || r.type == R_MICROMIPS_HI16) |
| 854 | v -= 1; |
| 855 | return v; |
| 856 | } |
| 857 | case RE_MIPS_GOT_LOCAL_PAGE: |
| 858 | // If relocation against MIPS local symbol requires GOT entry, this entry |
| 859 | // should be initialized by 'page address'. This address is high 16-bits |
| 860 | // of sum the symbol's value and the addend. |
| 861 | return ctx.in.mipsGot->getVA() + |
| 862 | ctx.in.mipsGot->getPageEntryOffset(f: file, s: *r.sym, addend: a) - |
| 863 | ctx.in.mipsGot->getGp(f: file); |
| 864 | case RE_MIPS_GOT_OFF: |
| 865 | case RE_MIPS_GOT_OFF32: |
| 866 | // In case of MIPS if a GOT relocation has non-zero addend this addend |
| 867 | // should be applied to the GOT entry content not to the GOT entry offset. |
| 868 | // That is why we use separate expression r.type. |
| 869 | return ctx.in.mipsGot->getVA() + |
| 870 | ctx.in.mipsGot->getSymEntryOffset(f: file, s: *r.sym, addend: a) - |
| 871 | ctx.in.mipsGot->getGp(f: file); |
| 872 | case RE_MIPS_TLSGD: |
| 873 | return ctx.in.mipsGot->getVA() + |
| 874 | ctx.in.mipsGot->getGlobalDynOffset(f: file, s: *r.sym) - |
| 875 | ctx.in.mipsGot->getGp(f: file); |
| 876 | case RE_MIPS_TLSLD: |
| 877 | return ctx.in.mipsGot->getVA() + ctx.in.mipsGot->getTlsIndexOffset(f: file) - |
| 878 | ctx.in.mipsGot->getGp(f: file); |
| 879 | case RE_AARCH64_PAGE_PC: { |
| 880 | uint64_t val = r.sym->isUndefWeak() ? p + a : r.sym->getVA(ctx, addend: a); |
| 881 | return getAArch64Page(expr: val) - getAArch64Page(expr: p); |
| 882 | } |
| 883 | case RE_RISCV_PC_INDIRECT: { |
| 884 | if (const Relocation *hiRel = getRISCVPCRelHi20(ctx, loSec: this, loReloc: r)) |
| 885 | return getRelocTargetVA(ctx, r: *hiRel, p: r.sym->getVA(ctx)); |
| 886 | return 0; |
| 887 | } |
| 888 | case RE_LOONGARCH_PAGE_PC: |
| 889 | return getLoongArchPageDelta(dest: r.sym->getVA(ctx, addend: a), pc: p, type: r.type); |
| 890 | case R_PC: |
| 891 | case RE_ARM_PCA: { |
| 892 | uint64_t dest; |
| 893 | if (r.expr == RE_ARM_PCA) |
| 894 | // Some PC relative ARM (Thumb) relocations align down the place. |
| 895 | p = p & 0xfffffffc; |
| 896 | if (r.sym->isUndefined()) { |
| 897 | // On ARM and AArch64 a branch to an undefined weak resolves to the next |
| 898 | // instruction, otherwise the place. On RISC-V, resolve an undefined weak |
| 899 | // to the same instruction to cause an infinite loop (making the user |
| 900 | // aware of the issue) while ensuring no overflow. |
| 901 | // Note: if the symbol is hidden, its binding has been converted to local, |
| 902 | // so we just check isUndefined() here. |
| 903 | if (ctx.arg.emachine == EM_ARM) |
| 904 | dest = getARMUndefinedRelativeWeakVA(type: r.type, a, p); |
| 905 | else if (ctx.arg.emachine == EM_AARCH64) |
| 906 | dest = getAArch64UndefinedRelativeWeakVA(type: r.type, p) + a; |
| 907 | else if (ctx.arg.emachine == EM_PPC) |
| 908 | dest = p; |
| 909 | else if (ctx.arg.emachine == EM_RISCV) |
| 910 | dest = getRISCVUndefinedRelativeWeakVA(type: r.type, p) + a; |
| 911 | else |
| 912 | dest = r.sym->getVA(ctx, addend: a); |
| 913 | } else { |
| 914 | dest = r.sym->getVA(ctx, addend: a); |
| 915 | } |
| 916 | return dest - p; |
| 917 | } |
| 918 | case R_PLT: |
| 919 | return r.sym->getPltVA(ctx) + a; |
| 920 | case R_PLT_PC: |
| 921 | case RE_PPC64_CALL_PLT: |
| 922 | return r.sym->getPltVA(ctx) + a - p; |
| 923 | case RE_LOONGARCH_PLT_PAGE_PC: |
| 924 | return getLoongArchPageDelta(dest: r.sym->getPltVA(ctx) + a, pc: p, type: r.type); |
| 925 | case R_PLT_GOTPLT: |
| 926 | return r.sym->getPltVA(ctx) + a - ctx.in.gotPlt->getVA(); |
| 927 | case R_PLT_GOTREL: |
| 928 | return r.sym->getPltVA(ctx) + a - ctx.in.got->getVA(); |
| 929 | case RE_PPC32_PLTREL: |
| 930 | // R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30 |
| 931 | // stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for |
| 932 | // target VA computation. |
| 933 | return r.sym->getPltVA(ctx) - p; |
| 934 | case RE_PPC64_CALL: { |
| 935 | uint64_t symVA = r.sym->getVA(ctx, addend: a); |
| 936 | // If we have an undefined weak symbol, we might get here with a symbol |
| 937 | // address of zero. That could overflow, but the code must be unreachable, |
| 938 | // so don't bother doing anything at all. |
| 939 | if (!symVA) |
| 940 | return 0; |
| 941 | |
| 942 | // PPC64 V2 ABI describes two entry points to a function. The global entry |
| 943 | // point is used for calls where the caller and callee (may) have different |
| 944 | // TOC base pointers and r2 needs to be modified to hold the TOC base for |
| 945 | // the callee. For local calls the caller and callee share the same |
| 946 | // TOC base and so the TOC pointer initialization code should be skipped by |
| 947 | // branching to the local entry point. |
| 948 | return symVA - p + |
| 949 | getPPC64GlobalEntryToLocalEntryOffset(ctx, stOther: r.sym->stOther); |
| 950 | } |
| 951 | case RE_PPC64_TOCBASE: |
| 952 | return getPPC64TocBase(ctx) + a; |
| 953 | case R_RELAX_GOT_PC: |
| 954 | case RE_PPC64_RELAX_GOT_PC: |
| 955 | return r.sym->getVA(ctx, addend: a) - p; |
| 956 | case R_RELAX_TLS_GD_TO_LE: |
| 957 | case R_RELAX_TLS_IE_TO_LE: |
| 958 | case R_RELAX_TLS_LD_TO_LE: |
| 959 | case R_TPREL: |
| 960 | // It is not very clear what to return if the symbol is undefined. With |
| 961 | // --noinhibit-exec, even a non-weak undefined reference may reach here. |
| 962 | // Just return A, which matches R_ABS, and the behavior of some dynamic |
| 963 | // loaders. |
| 964 | if (r.sym->isUndefined()) |
| 965 | return a; |
| 966 | return getTlsTpOffset(ctx, s: *r.sym) + a; |
| 967 | case R_RELAX_TLS_GD_TO_LE_NEG: |
| 968 | case R_TPREL_NEG: |
| 969 | if (r.sym->isUndefined()) |
| 970 | return a; |
| 971 | return -getTlsTpOffset(ctx, s: *r.sym) + a; |
| 972 | case R_SIZE: |
| 973 | return r.sym->getSize() + a; |
| 974 | case R_TLSDESC: |
| 975 | case RE_AARCH64_AUTH_TLSDESC: |
| 976 | return ctx.in.got->getTlsDescAddr(sym: *r.sym) + a; |
| 977 | case R_TLSDESC_PC: |
| 978 | return ctx.in.got->getTlsDescAddr(sym: *r.sym) + a - p; |
| 979 | case R_TLSDESC_GOTPLT: |
| 980 | return ctx.in.got->getTlsDescAddr(sym: *r.sym) + a - ctx.in.gotPlt->getVA(); |
| 981 | case RE_AARCH64_TLSDESC_PAGE: |
| 982 | case RE_AARCH64_AUTH_TLSDESC_PAGE: |
| 983 | return getAArch64Page(expr: ctx.in.got->getTlsDescAddr(sym: *r.sym) + a) - |
| 984 | getAArch64Page(expr: p); |
| 985 | case RE_LOONGARCH_TLSDESC_PAGE_PC: |
| 986 | return getLoongArchPageDelta(dest: ctx.in.got->getTlsDescAddr(sym: *r.sym) + a, pc: p, |
| 987 | type: r.type); |
| 988 | case R_TLSGD_GOT: |
| 989 | return ctx.in.got->getGlobalDynOffset(b: *r.sym) + a; |
| 990 | case R_TLSGD_GOTPLT: |
| 991 | return ctx.in.got->getGlobalDynAddr(b: *r.sym) + a - ctx.in.gotPlt->getVA(); |
| 992 | case R_TLSGD_PC: |
| 993 | return ctx.in.got->getGlobalDynAddr(b: *r.sym) + a - p; |
| 994 | case RE_LOONGARCH_TLSGD_PAGE_PC: |
| 995 | return getLoongArchPageDelta(dest: ctx.in.got->getGlobalDynAddr(b: *r.sym) + a, pc: p, |
| 996 | type: r.type); |
| 997 | case R_TLSLD_GOTPLT: |
| 998 | return ctx.in.got->getVA() + ctx.in.got->getTlsIndexOff() + a - |
| 999 | ctx.in.gotPlt->getVA(); |
| 1000 | case R_TLSLD_GOT: |
| 1001 | return ctx.in.got->getTlsIndexOff() + a; |
| 1002 | case R_TLSLD_PC: |
| 1003 | return ctx.in.got->getTlsIndexVA() + a - p; |
| 1004 | default: |
| 1005 | llvm_unreachable("invalid expression" ); |
| 1006 | } |
| 1007 | } |
| 1008 | |
| 1009 | // This function applies relocations to sections without SHF_ALLOC bit. |
| 1010 | // Such sections are never mapped to memory at runtime. Debug sections are |
| 1011 | // an example. Relocations in non-alloc sections are much easier to |
| 1012 | // handle than in allocated sections because it will never need complex |
| 1013 | // treatment such as GOT or PLT (because at runtime no one refers them). |
| 1014 | // So, we handle relocations for non-alloc sections directly in this |
| 1015 | // function as a performance optimization. |
| 1016 | template <class ELFT, class RelTy> |
| 1017 | void InputSection::relocateNonAlloc(Ctx &ctx, uint8_t *buf, |
| 1018 | Relocs<RelTy> rels) { |
| 1019 | const unsigned bits = sizeof(typename ELFT::uint) * 8; |
| 1020 | const TargetInfo &target = *ctx.target; |
| 1021 | const auto emachine = ctx.arg.emachine; |
| 1022 | const bool isDebug = isDebugSection(sec: *this); |
| 1023 | const bool isDebugLine = isDebug && name == ".debug_line" ; |
| 1024 | std::optional<uint64_t> tombstone; |
| 1025 | if (isDebug) { |
| 1026 | if (name == ".debug_loc" || name == ".debug_ranges" ) |
| 1027 | tombstone = 1; |
| 1028 | else if (name == ".debug_names" ) |
| 1029 | tombstone = UINT64_MAX; // tombstone value |
| 1030 | else |
| 1031 | tombstone = 0; |
| 1032 | } |
| 1033 | for (const auto &patAndValue : llvm::reverse(C&: ctx.arg.deadRelocInNonAlloc)) |
| 1034 | if (patAndValue.first.match(S: this->name)) { |
| 1035 | tombstone = patAndValue.second; |
| 1036 | break; |
| 1037 | } |
| 1038 | |
| 1039 | const InputFile *f = this->file; |
| 1040 | for (auto it = rels.begin(), end = rels.end(); it != end; ++it) { |
| 1041 | const RelTy &rel = *it; |
| 1042 | const RelType type = rel.getType(ctx.arg.isMips64EL); |
| 1043 | const uint64_t offset = rel.r_offset; |
| 1044 | uint8_t *bufLoc = buf + offset; |
| 1045 | int64_t addend = getAddend<ELFT>(rel); |
| 1046 | if (!RelTy::HasAddend) |
| 1047 | addend += target.getImplicitAddend(buf: bufLoc, type); |
| 1048 | |
| 1049 | Symbol &sym = f->getRelocTargetSym(rel); |
| 1050 | RelExpr expr = target.getRelExpr(type, s: sym, loc: bufLoc); |
| 1051 | if (expr == R_NONE) |
| 1052 | continue; |
| 1053 | auto *ds = dyn_cast<Defined>(Val: &sym); |
| 1054 | |
| 1055 | if (emachine == EM_RISCV && type == R_RISCV_SET_ULEB128) { |
| 1056 | if (++it != end && |
| 1057 | it->getType(/*isMips64EL=*/false) == R_RISCV_SUB_ULEB128 && |
| 1058 | it->r_offset == offset) { |
| 1059 | uint64_t val; |
| 1060 | if (!ds && tombstone) { |
| 1061 | val = *tombstone; |
| 1062 | } else { |
| 1063 | val = sym.getVA(ctx, addend) - |
| 1064 | (f->getRelocTargetSym(*it).getVA(ctx) + getAddend<ELFT>(*it)); |
| 1065 | } |
| 1066 | if (overwriteULEB128(bufLoc, val) >= 0x80) |
| 1067 | Err(ctx) << getLocation(offset) << ": ULEB128 value " << val |
| 1068 | << " exceeds available space; references '" << &sym << "'" ; |
| 1069 | continue; |
| 1070 | } |
| 1071 | Err(ctx) << getLocation(offset) |
| 1072 | << ": R_RISCV_SET_ULEB128 not paired with R_RISCV_SUB_SET128" ; |
| 1073 | return; |
| 1074 | } |
| 1075 | |
| 1076 | if (tombstone && (expr == R_ABS || expr == R_DTPREL)) { |
| 1077 | // Resolve relocations in .debug_* referencing (discarded symbols or ICF |
| 1078 | // folded section symbols) to a tombstone value. Resolving to addend is |
| 1079 | // unsatisfactory because the result address range may collide with a |
| 1080 | // valid range of low address, or leave multiple CUs claiming ownership of |
| 1081 | // the same range of code, which may confuse consumers. |
| 1082 | // |
| 1083 | // To address the problems, we use -1 as a tombstone value for most |
| 1084 | // .debug_* sections. We have to ignore the addend because we don't want |
| 1085 | // to resolve an address attribute (which may have a non-zero addend) to |
| 1086 | // -1+addend (wrap around to a low address). |
| 1087 | // |
| 1088 | // R_DTPREL type relocations represent an offset into the dynamic thread |
| 1089 | // vector. The computed value is st_value plus a non-negative offset. |
| 1090 | // Negative values are invalid, so -1 can be used as the tombstone value. |
| 1091 | // |
| 1092 | // If the referenced symbol is relative to a discarded section (due to |
| 1093 | // --gc-sections, COMDAT, etc), it has been converted to a Undefined. |
| 1094 | // `ds->folded` catches the ICF folded case. However, resolving a |
| 1095 | // relocation in .debug_line to -1 would stop debugger users from setting |
| 1096 | // breakpoints on the folded-in function, so exclude .debug_line. |
| 1097 | // |
| 1098 | // For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value |
| 1099 | // (base address selection entry), use 1 (which is used by GNU ld for |
| 1100 | // .debug_ranges). |
| 1101 | // |
| 1102 | // TODO To reduce disruption, we use 0 instead of -1 as the tombstone |
| 1103 | // value. Enable -1 in a future release. |
| 1104 | if (!ds || (ds->folded && !isDebugLine)) { |
| 1105 | // If -z dead-reloc-in-nonalloc= is specified, respect it. |
| 1106 | uint64_t value = SignExtend64<bits>(*tombstone); |
| 1107 | // For a 32-bit local TU reference in .debug_names, X86_64::relocate |
| 1108 | // requires that the unsigned value for R_X86_64_32 is truncated to |
| 1109 | // 32-bit. Other 64-bit targets's don't discern signed/unsigned 32-bit |
| 1110 | // absolute relocations and do not need this change. |
| 1111 | if (emachine == EM_X86_64 && type == R_X86_64_32) |
| 1112 | value = static_cast<uint32_t>(value); |
| 1113 | target.relocateNoSym(loc: bufLoc, type, val: value); |
| 1114 | continue; |
| 1115 | } |
| 1116 | } |
| 1117 | |
| 1118 | // For a relocatable link, content relocated by relocation types with an |
| 1119 | // explicit addend, such as RELA, remain unchanged and we can stop here. |
| 1120 | // While content relocated by relocation types with an implicit addend, such |
| 1121 | // as REL, needs the implicit addend updated. |
| 1122 | if (ctx.arg.relocatable && (RelTy::HasAddend || sym.type != STT_SECTION)) |
| 1123 | continue; |
| 1124 | |
| 1125 | // R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC |
| 1126 | // sections. |
| 1127 | if (LLVM_LIKELY(expr == R_ABS) || expr == R_DTPREL || expr == R_GOTPLTREL || |
| 1128 | expr == RE_RISCV_ADD || expr == RE_ARM_SBREL) { |
| 1129 | target.relocateNoSym(loc: bufLoc, type, |
| 1130 | val: SignExtend64<bits>(sym.getVA(ctx, addend))); |
| 1131 | continue; |
| 1132 | } |
| 1133 | |
| 1134 | if (expr == R_SIZE) { |
| 1135 | target.relocateNoSym(loc: bufLoc, type, |
| 1136 | val: SignExtend64<bits>(sym.getSize() + addend)); |
| 1137 | continue; |
| 1138 | } |
| 1139 | |
| 1140 | // If the control reaches here, we found a PC-relative relocation in a |
| 1141 | // non-ALLOC section. Since non-ALLOC section is not loaded into memory |
| 1142 | // at runtime, the notion of PC-relative doesn't make sense here. So, |
| 1143 | // this is a usage error. However, GNU linkers historically accept such |
| 1144 | // relocations without any errors and relocate them as if they were at |
| 1145 | // address 0. For bug-compatibility, we accept them with warnings. We |
| 1146 | // know Steel Bank Common Lisp as of 2018 have this bug. |
| 1147 | // |
| 1148 | // GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations |
| 1149 | // against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed in |
| 1150 | // 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we need to |
| 1151 | // keep this bug-compatible code for a while. |
| 1152 | bool isErr = expr != R_PC && !(emachine == EM_386 && type == R_386_GOTPC); |
| 1153 | { |
| 1154 | ELFSyncStream diag(ctx, isErr && !ctx.arg.noinhibitExec |
| 1155 | ? DiagLevel::Err |
| 1156 | : DiagLevel::Warn); |
| 1157 | diag << getLocation(offset) << ": has non-ABS relocation " << type |
| 1158 | << " against symbol '" << &sym << "'" ; |
| 1159 | } |
| 1160 | if (!isErr) |
| 1161 | target.relocateNoSym( |
| 1162 | loc: bufLoc, type, |
| 1163 | val: SignExtend64<bits>(sym.getVA(ctx, addend: addend - offset - outSecOff))); |
| 1164 | } |
| 1165 | } |
| 1166 | |
| 1167 | template <class ELFT> |
| 1168 | void InputSectionBase::relocate(Ctx &ctx, uint8_t *buf, uint8_t *bufEnd) { |
| 1169 | if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack)) |
| 1170 | adjustSplitStackFunctionPrologues<ELFT>(ctx, buf, bufEnd); |
| 1171 | |
| 1172 | if (flags & SHF_ALLOC) { |
| 1173 | ctx.target->relocateAlloc(sec&: *this, buf); |
| 1174 | return; |
| 1175 | } |
| 1176 | |
| 1177 | auto *sec = cast<InputSection>(Val: this); |
| 1178 | // For a relocatable link, also call relocateNonAlloc() to rewrite applicable |
| 1179 | // locations with tombstone values. |
| 1180 | invokeOnRelocs(*sec, sec->relocateNonAlloc<ELFT>, ctx, buf); |
| 1181 | } |
| 1182 | |
| 1183 | // For each function-defining prologue, find any calls to __morestack, |
| 1184 | // and replace them with calls to __morestack_non_split. |
| 1185 | static void switchMorestackCallsToMorestackNonSplit( |
| 1186 | Ctx &ctx, DenseSet<Defined *> &prologues, |
| 1187 | SmallVector<Relocation *, 0> &morestackCalls) { |
| 1188 | |
| 1189 | // If the target adjusted a function's prologue, all calls to |
| 1190 | // __morestack inside that function should be switched to |
| 1191 | // __morestack_non_split. |
| 1192 | Symbol *moreStackNonSplit = ctx.symtab->find(name: "__morestack_non_split" ); |
| 1193 | if (!moreStackNonSplit) { |
| 1194 | ErrAlways(ctx) << "mixing split-stack objects requires a definition of " |
| 1195 | "__morestack_non_split" ; |
| 1196 | return; |
| 1197 | } |
| 1198 | |
| 1199 | // Sort both collections to compare addresses efficiently. |
| 1200 | llvm::sort(C&: morestackCalls, Comp: [](const Relocation *l, const Relocation *r) { |
| 1201 | return l->offset < r->offset; |
| 1202 | }); |
| 1203 | std::vector<Defined *> functions(prologues.begin(), prologues.end()); |
| 1204 | llvm::sort(C&: functions, Comp: [](const Defined *l, const Defined *r) { |
| 1205 | return l->value < r->value; |
| 1206 | }); |
| 1207 | |
| 1208 | auto it = morestackCalls.begin(); |
| 1209 | for (Defined *f : functions) { |
| 1210 | // Find the first call to __morestack within the function. |
| 1211 | while (it != morestackCalls.end() && (*it)->offset < f->value) |
| 1212 | ++it; |
| 1213 | // Adjust all calls inside the function. |
| 1214 | while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) { |
| 1215 | (*it)->sym = moreStackNonSplit; |
| 1216 | ++it; |
| 1217 | } |
| 1218 | } |
| 1219 | } |
| 1220 | |
| 1221 | static bool enclosingPrologueAttempted(uint64_t offset, |
| 1222 | const DenseSet<Defined *> &prologues) { |
| 1223 | for (Defined *f : prologues) |
| 1224 | if (f->value <= offset && offset < f->value + f->size) |
| 1225 | return true; |
| 1226 | return false; |
| 1227 | } |
| 1228 | |
| 1229 | // If a function compiled for split stack calls a function not |
| 1230 | // compiled for split stack, then the caller needs its prologue |
| 1231 | // adjusted to ensure that the called function will have enough stack |
| 1232 | // available. Find those functions, and adjust their prologues. |
| 1233 | template <class ELFT> |
| 1234 | void InputSectionBase::adjustSplitStackFunctionPrologues(Ctx &ctx, uint8_t *buf, |
| 1235 | uint8_t *end) { |
| 1236 | DenseSet<Defined *> prologues; |
| 1237 | SmallVector<Relocation *, 0> morestackCalls; |
| 1238 | |
| 1239 | for (Relocation &rel : relocs()) { |
| 1240 | // Ignore calls into the split-stack api. |
| 1241 | if (rel.sym->getName().starts_with(Prefix: "__morestack" )) { |
| 1242 | if (rel.sym->getName() == "__morestack" ) |
| 1243 | morestackCalls.push_back(Elt: &rel); |
| 1244 | continue; |
| 1245 | } |
| 1246 | |
| 1247 | // A relocation to non-function isn't relevant. Sometimes |
| 1248 | // __morestack is not marked as a function, so this check comes |
| 1249 | // after the name check. |
| 1250 | if (rel.sym->type != STT_FUNC) |
| 1251 | continue; |
| 1252 | |
| 1253 | // If the callee's-file was compiled with split stack, nothing to do. In |
| 1254 | // this context, a "Defined" symbol is one "defined by the binary currently |
| 1255 | // being produced". So an "undefined" symbol might be provided by a shared |
| 1256 | // library. It is not possible to tell how such symbols were compiled, so be |
| 1257 | // conservative. |
| 1258 | if (Defined *d = dyn_cast<Defined>(Val: rel.sym)) |
| 1259 | if (InputSection *isec = cast_or_null<InputSection>(Val: d->section)) |
| 1260 | if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack) |
| 1261 | continue; |
| 1262 | |
| 1263 | if (enclosingPrologueAttempted(offset: rel.offset, prologues)) |
| 1264 | continue; |
| 1265 | |
| 1266 | if (Defined *f = getEnclosingFunction(offset: rel.offset)) { |
| 1267 | prologues.insert(V: f); |
| 1268 | if (ctx.target->adjustPrologueForCrossSplitStack(loc: buf + f->value, end, |
| 1269 | stOther: f->stOther)) |
| 1270 | continue; |
| 1271 | if (!getFile<ELFT>()->someNoSplitStack) |
| 1272 | Err(ctx) |
| 1273 | << this << ": " << f->getName() << " (with -fsplit-stack) calls " |
| 1274 | << rel.sym->getName() |
| 1275 | << " (without -fsplit-stack), but couldn't adjust its prologue" ; |
| 1276 | } |
| 1277 | } |
| 1278 | |
| 1279 | if (ctx.target->needsMoreStackNonSplit) |
| 1280 | switchMorestackCallsToMorestackNonSplit(ctx, prologues, morestackCalls); |
| 1281 | } |
| 1282 | |
| 1283 | template <class ELFT> void InputSection::writeTo(Ctx &ctx, uint8_t *buf) { |
| 1284 | if (LLVM_UNLIKELY(type == SHT_NOBITS)) |
| 1285 | return; |
| 1286 | // If -r or --emit-relocs is given, then an InputSection |
| 1287 | // may be a relocation section. |
| 1288 | if (LLVM_UNLIKELY(type == SHT_RELA)) { |
| 1289 | copyRelocations<ELFT, typename ELFT::Rela>(ctx, buf); |
| 1290 | return; |
| 1291 | } |
| 1292 | if (LLVM_UNLIKELY(type == SHT_REL)) { |
| 1293 | copyRelocations<ELFT, typename ELFT::Rel>(ctx, buf); |
| 1294 | return; |
| 1295 | } |
| 1296 | |
| 1297 | // If -r is given, we may have a SHT_GROUP section. |
| 1298 | if (LLVM_UNLIKELY(type == SHT_GROUP)) { |
| 1299 | copyShtGroup<ELFT>(buf); |
| 1300 | return; |
| 1301 | } |
| 1302 | |
| 1303 | // If this is a compressed section, uncompress section contents directly |
| 1304 | // to the buffer. |
| 1305 | if (compressed) { |
| 1306 | auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content_); |
| 1307 | auto compressed = ArrayRef<uint8_t>(content_, compressedSize) |
| 1308 | .slice(N: sizeof(typename ELFT::Chdr)); |
| 1309 | size_t size = this->size; |
| 1310 | if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB |
| 1311 | ? compression::zlib::decompress(Input: compressed, Output: buf, UncompressedSize&: size) |
| 1312 | : compression::zstd::decompress(Input: compressed, Output: buf, UncompressedSize&: size)) |
| 1313 | Err(ctx) << this << ": decompress failed: " << std::move(e); |
| 1314 | uint8_t *bufEnd = buf + size; |
| 1315 | relocate<ELFT>(ctx, buf, bufEnd); |
| 1316 | return; |
| 1317 | } |
| 1318 | |
| 1319 | // Copy section contents from source object file to output file |
| 1320 | // and then apply relocations. |
| 1321 | memcpy(dest: buf, src: content().data(), n: content().size()); |
| 1322 | relocate<ELFT>(ctx, buf, buf + content().size()); |
| 1323 | } |
| 1324 | |
| 1325 | void InputSection::replace(InputSection *other) { |
| 1326 | addralign = std::max(a: addralign, b: other->addralign); |
| 1327 | |
| 1328 | // When a section is replaced with another section that was allocated to |
| 1329 | // another partition, the replacement section (and its associated sections) |
| 1330 | // need to be placed in the main partition so that both partitions will be |
| 1331 | // able to access it. |
| 1332 | if (partition != other->partition) { |
| 1333 | partition = 1; |
| 1334 | for (InputSection *isec : dependentSections) |
| 1335 | isec->partition = 1; |
| 1336 | } |
| 1337 | |
| 1338 | other->repl = repl; |
| 1339 | other->markDead(); |
| 1340 | } |
| 1341 | |
| 1342 | template <class ELFT> |
| 1343 | EhInputSection::EhInputSection(ObjFile<ELFT> &f, |
| 1344 | const typename ELFT::Shdr &, |
| 1345 | StringRef name) |
| 1346 | : InputSectionBase(f, header, name, InputSectionBase::EHFrame) {} |
| 1347 | |
| 1348 | SyntheticSection *EhInputSection::getParent() const { |
| 1349 | return cast_or_null<SyntheticSection>(Val: parent); |
| 1350 | } |
| 1351 | |
| 1352 | // .eh_frame is a sequence of CIE or FDE records. |
| 1353 | // This function splits an input section into records and returns them. |
| 1354 | template <class ELFT> void EhInputSection::split() { |
| 1355 | const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(/*supportsCrel=*/false); |
| 1356 | // getReloc expects the relocations to be sorted by r_offset. See the comment |
| 1357 | // in scanRelocs. |
| 1358 | if (rels.areRelocsRel()) { |
| 1359 | SmallVector<typename ELFT::Rel, 0> storage; |
| 1360 | split<ELFT>(sortRels(rels.rels, storage)); |
| 1361 | } else { |
| 1362 | SmallVector<typename ELFT::Rela, 0> storage; |
| 1363 | split<ELFT>(sortRels(rels.relas, storage)); |
| 1364 | } |
| 1365 | } |
| 1366 | |
| 1367 | template <class ELFT, class RelTy> |
| 1368 | void EhInputSection::split(ArrayRef<RelTy> rels) { |
| 1369 | ArrayRef<uint8_t> d = content(); |
| 1370 | const char *msg = nullptr; |
| 1371 | unsigned relI = 0; |
| 1372 | while (!d.empty()) { |
| 1373 | if (d.size() < 4) { |
| 1374 | msg = "CIE/FDE too small" ; |
| 1375 | break; |
| 1376 | } |
| 1377 | uint64_t size = endian::read32<ELFT::Endianness>(d.data()); |
| 1378 | if (size == 0) // ZERO terminator |
| 1379 | break; |
| 1380 | uint32_t id = endian::read32<ELFT::Endianness>(d.data() + 4); |
| 1381 | size += 4; |
| 1382 | if (LLVM_UNLIKELY(size > d.size())) { |
| 1383 | // If it is 0xFFFFFFFF, the next 8 bytes contain the size instead, |
| 1384 | // but we do not support that format yet. |
| 1385 | msg = size == UINT32_MAX + uint64_t(4) |
| 1386 | ? "CIE/FDE too large" |
| 1387 | : "CIE/FDE ends past the end of the section" ; |
| 1388 | break; |
| 1389 | } |
| 1390 | |
| 1391 | // Find the first relocation that points to [off,off+size). Relocations |
| 1392 | // have been sorted by r_offset. |
| 1393 | const uint64_t off = d.data() - content().data(); |
| 1394 | while (relI != rels.size() && rels[relI].r_offset < off) |
| 1395 | ++relI; |
| 1396 | unsigned firstRel = -1; |
| 1397 | if (relI != rels.size() && rels[relI].r_offset < off + size) |
| 1398 | firstRel = relI; |
| 1399 | (id == 0 ? cies : fdes).emplace_back(Args: off, Args: this, Args&: size, Args&: firstRel); |
| 1400 | d = d.slice(N: size); |
| 1401 | } |
| 1402 | if (msg) |
| 1403 | Err(ctx&: file->ctx) << "corrupted .eh_frame: " << msg << "\n>>> defined in " |
| 1404 | << getObjMsg(offset: d.data() - content().data()); |
| 1405 | } |
| 1406 | |
| 1407 | // Return the offset in an output section for a given input offset. |
| 1408 | uint64_t EhInputSection::getParentOffset(uint64_t offset) const { |
| 1409 | auto it = partition_point( |
| 1410 | Range: fdes, P: [=](EhSectionPiece p) { return p.inputOff <= offset; }); |
| 1411 | if (it == fdes.begin() || it[-1].inputOff + it[-1].size <= offset) { |
| 1412 | it = partition_point( |
| 1413 | Range: cies, P: [=](EhSectionPiece p) { return p.inputOff <= offset; }); |
| 1414 | if (it == cies.begin()) // invalid piece |
| 1415 | return offset; |
| 1416 | } |
| 1417 | if (it[-1].outputOff == -1) // invalid piece |
| 1418 | return offset - it[-1].inputOff; |
| 1419 | return it[-1].outputOff + (offset - it[-1].inputOff); |
| 1420 | } |
| 1421 | |
| 1422 | static size_t findNull(StringRef s, size_t entSize) { |
| 1423 | for (unsigned i = 0, n = s.size(); i != n; i += entSize) { |
| 1424 | const char *b = s.begin() + i; |
| 1425 | if (std::all_of(first: b, last: b + entSize, pred: [](char c) { return c == 0; })) |
| 1426 | return i; |
| 1427 | } |
| 1428 | llvm_unreachable("" ); |
| 1429 | } |
| 1430 | |
| 1431 | // Split SHF_STRINGS section. Such section is a sequence of |
| 1432 | // null-terminated strings. |
| 1433 | void MergeInputSection::splitStrings(StringRef s, size_t entSize) { |
| 1434 | const bool live = !(flags & SHF_ALLOC) || !getCtx().arg.gcSections; |
| 1435 | const char *p = s.data(), *end = s.data() + s.size(); |
| 1436 | if (!std::all_of(first: end - entSize, last: end, pred: [](char c) { return c == 0; })) { |
| 1437 | Err(ctx&: getCtx()) << this << ": string is not null terminated" ; |
| 1438 | pieces.emplace_back(Args&: entSize, Args: 0, Args: false); |
| 1439 | return; |
| 1440 | } |
| 1441 | if (entSize == 1) { |
| 1442 | // Optimize the common case. |
| 1443 | do { |
| 1444 | size_t size = strlen(s: p); |
| 1445 | pieces.emplace_back(Args: p - s.begin(), Args: xxh3_64bits(data: StringRef(p, size)), Args: live); |
| 1446 | p += size + 1; |
| 1447 | } while (p != end); |
| 1448 | } else { |
| 1449 | do { |
| 1450 | size_t size = findNull(s: StringRef(p, end - p), entSize); |
| 1451 | pieces.emplace_back(Args: p - s.begin(), Args: xxh3_64bits(data: StringRef(p, size)), Args: live); |
| 1452 | p += size + entSize; |
| 1453 | } while (p != end); |
| 1454 | } |
| 1455 | } |
| 1456 | |
| 1457 | // Split non-SHF_STRINGS section. Such section is a sequence of |
| 1458 | // fixed size records. |
| 1459 | void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data, |
| 1460 | size_t entSize) { |
| 1461 | size_t size = data.size(); |
| 1462 | assert((size % entSize) == 0); |
| 1463 | const bool live = !(flags & SHF_ALLOC) || !getCtx().arg.gcSections; |
| 1464 | |
| 1465 | pieces.resize_for_overwrite(N: size / entSize); |
| 1466 | for (size_t i = 0, j = 0; i != size; i += entSize, j++) |
| 1467 | pieces[j] = {i, (uint32_t)xxh3_64bits(data: data.slice(N: i, M: entSize)), live}; |
| 1468 | } |
| 1469 | |
| 1470 | template <class ELFT> |
| 1471 | MergeInputSection::MergeInputSection(ObjFile<ELFT> &f, |
| 1472 | const typename ELFT::Shdr &, |
| 1473 | StringRef name) |
| 1474 | : InputSectionBase(f, header, name, InputSectionBase::Merge) {} |
| 1475 | |
| 1476 | MergeInputSection::MergeInputSection(Ctx &ctx, StringRef name, uint32_t type, |
| 1477 | uint64_t flags, uint64_t entsize, |
| 1478 | ArrayRef<uint8_t> data) |
| 1479 | : InputSectionBase(ctx.internalFile, name, type, flags, /*link=*/0, |
| 1480 | /*info=*/0, |
| 1481 | /*addralign=*/entsize, entsize, data, |
| 1482 | SectionBase::Merge) {} |
| 1483 | |
| 1484 | // This function is called after we obtain a complete list of input sections |
| 1485 | // that need to be linked. This is responsible to split section contents |
| 1486 | // into small chunks for further processing. |
| 1487 | // |
| 1488 | // Note that this function is called from parallelForEach. This must be |
| 1489 | // thread-safe (i.e. no memory allocation from the pools). |
| 1490 | void MergeInputSection::splitIntoPieces() { |
| 1491 | assert(pieces.empty()); |
| 1492 | |
| 1493 | if (flags & SHF_STRINGS) |
| 1494 | splitStrings(s: toStringRef(Input: contentMaybeDecompress()), entSize: entsize); |
| 1495 | else |
| 1496 | splitNonStrings(data: contentMaybeDecompress(), entSize: entsize); |
| 1497 | } |
| 1498 | |
| 1499 | SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) { |
| 1500 | if (content().size() <= offset) { |
| 1501 | Err(ctx&: getCtx()) << this << ": offset is outside the section" ; |
| 1502 | return pieces[0]; |
| 1503 | } |
| 1504 | return partition_point( |
| 1505 | Range&: pieces, P: [=](SectionPiece p) { return p.inputOff <= offset; })[-1]; |
| 1506 | } |
| 1507 | |
| 1508 | // Return the offset in an output section for a given input offset. |
| 1509 | uint64_t MergeInputSection::getParentOffset(uint64_t offset) const { |
| 1510 | const SectionPiece &piece = getSectionPiece(offset); |
| 1511 | return piece.outputOff + (offset - piece.inputOff); |
| 1512 | } |
| 1513 | |
| 1514 | template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &, |
| 1515 | StringRef); |
| 1516 | template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &, |
| 1517 | StringRef); |
| 1518 | template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &, |
| 1519 | StringRef); |
| 1520 | template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &, |
| 1521 | StringRef); |
| 1522 | |
| 1523 | template void InputSection::writeTo<ELF32LE>(Ctx &, uint8_t *); |
| 1524 | template void InputSection::writeTo<ELF32BE>(Ctx &, uint8_t *); |
| 1525 | template void InputSection::writeTo<ELF64LE>(Ctx &, uint8_t *); |
| 1526 | template void InputSection::writeTo<ELF64BE>(Ctx &, uint8_t *); |
| 1527 | |
| 1528 | template RelsOrRelas<ELF32LE> |
| 1529 | InputSectionBase::relsOrRelas<ELF32LE>(bool) const; |
| 1530 | template RelsOrRelas<ELF32BE> |
| 1531 | InputSectionBase::relsOrRelas<ELF32BE>(bool) const; |
| 1532 | template RelsOrRelas<ELF64LE> |
| 1533 | InputSectionBase::relsOrRelas<ELF64LE>(bool) const; |
| 1534 | template RelsOrRelas<ELF64BE> |
| 1535 | InputSectionBase::relsOrRelas<ELF64BE>(bool) const; |
| 1536 | |
| 1537 | template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &, |
| 1538 | const ELF32LE::Shdr &, StringRef); |
| 1539 | template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &, |
| 1540 | const ELF32BE::Shdr &, StringRef); |
| 1541 | template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &, |
| 1542 | const ELF64LE::Shdr &, StringRef); |
| 1543 | template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &, |
| 1544 | const ELF64BE::Shdr &, StringRef); |
| 1545 | |
| 1546 | template EhInputSection::EhInputSection(ObjFile<ELF32LE> &, |
| 1547 | const ELF32LE::Shdr &, StringRef); |
| 1548 | template EhInputSection::EhInputSection(ObjFile<ELF32BE> &, |
| 1549 | const ELF32BE::Shdr &, StringRef); |
| 1550 | template EhInputSection::EhInputSection(ObjFile<ELF64LE> &, |
| 1551 | const ELF64LE::Shdr &, StringRef); |
| 1552 | template EhInputSection::EhInputSection(ObjFile<ELF64BE> &, |
| 1553 | const ELF64BE::Shdr &, StringRef); |
| 1554 | |
| 1555 | template void EhInputSection::split<ELF32LE>(); |
| 1556 | template void EhInputSection::split<ELF32BE>(); |
| 1557 | template void EhInputSection::split<ELF64LE>(); |
| 1558 | template void EhInputSection::split<ELF64BE>(); |
| 1559 | |