| 1 | //===- OutputSections.cpp -------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "OutputSections.h" |
| 10 | #include "Config.h" |
| 11 | #include "InputFiles.h" |
| 12 | #include "LinkerScript.h" |
| 13 | #include "Symbols.h" |
| 14 | #include "SyntheticSections.h" |
| 15 | #include "Target.h" |
| 16 | #include "lld/Common/Arrays.h" |
| 17 | #include "lld/Common/Memory.h" |
| 18 | #include "llvm/BinaryFormat/Dwarf.h" |
| 19 | #include "llvm/Config/llvm-config.h" // LLVM_ENABLE_ZLIB, LLVM_ENABLE_ZSTD |
| 20 | #include "llvm/Support/Compression.h" |
| 21 | #include "llvm/Support/LEB128.h" |
| 22 | #include "llvm/Support/Parallel.h" |
| 23 | #include "llvm/Support/Path.h" |
| 24 | #include "llvm/Support/TimeProfiler.h" |
| 25 | #undef in |
| 26 | #if LLVM_ENABLE_ZLIB |
| 27 | // Avoid introducing max as a macro from Windows headers. |
| 28 | #define NOMINMAX |
| 29 | #include <zlib.h> |
| 30 | #endif |
| 31 | #if LLVM_ENABLE_ZSTD |
| 32 | #include <zstd.h> |
| 33 | #endif |
| 34 | |
| 35 | using namespace llvm; |
| 36 | using namespace llvm::dwarf; |
| 37 | using namespace llvm::object; |
| 38 | using namespace llvm::support::endian; |
| 39 | using namespace llvm::ELF; |
| 40 | using namespace lld; |
| 41 | using namespace lld::elf; |
| 42 | |
| 43 | uint32_t OutputSection::getPhdrFlags() const { |
| 44 | uint32_t ret = 0; |
| 45 | bool purecode = |
| 46 | (ctx.arg.emachine == EM_ARM && (flags & SHF_ARM_PURECODE)) || |
| 47 | (ctx.arg.emachine == EM_AARCH64 && (flags & SHF_AARCH64_PURECODE)); |
| 48 | if (!purecode) |
| 49 | ret |= PF_R; |
| 50 | if (flags & SHF_WRITE) |
| 51 | ret |= PF_W; |
| 52 | if (flags & SHF_EXECINSTR) |
| 53 | ret |= PF_X; |
| 54 | return ret; |
| 55 | } |
| 56 | |
| 57 | template <class ELFT> |
| 58 | void OutputSection::(typename ELFT::Shdr *shdr) { |
| 59 | shdr->sh_entsize = entsize; |
| 60 | shdr->sh_addralign = addralign; |
| 61 | shdr->sh_type = type; |
| 62 | shdr->sh_offset = offset; |
| 63 | shdr->sh_flags = flags; |
| 64 | shdr->sh_info = info; |
| 65 | shdr->sh_link = link; |
| 66 | shdr->sh_addr = addr; |
| 67 | shdr->sh_size = size; |
| 68 | shdr->sh_name = shName; |
| 69 | } |
| 70 | |
| 71 | OutputSection::OutputSection(Ctx &ctx, StringRef name, uint32_t type, |
| 72 | uint64_t flags) |
| 73 | : SectionBase(Output, ctx.internalFile, name, type, flags, /*link=*/0, |
| 74 | /*info=*/0, /*addralign=*/1, /*entsize=*/0), |
| 75 | ctx(ctx) {} |
| 76 | |
| 77 | uint64_t OutputSection::getLMA() const { |
| 78 | return ptLoad ? addr + ptLoad->lmaOffset : addr; |
| 79 | } |
| 80 | |
| 81 | // We allow sections of types listed below to merged into a |
| 82 | // single progbits section. This is typically done by linker |
| 83 | // scripts. Merging nobits and progbits will force disk space |
| 84 | // to be allocated for nobits sections. Other ones don't require |
| 85 | // any special treatment on top of progbits, so there doesn't |
| 86 | // seem to be a harm in merging them. |
| 87 | // |
| 88 | // NOTE: clang since rL252300 emits SHT_X86_64_UNWIND .eh_frame sections. Allow |
| 89 | // them to be merged into SHT_PROGBITS .eh_frame (GNU as .cfi_*). |
| 90 | static bool canMergeToProgbits(Ctx &ctx, unsigned type) { |
| 91 | return type == SHT_NOBITS || type == SHT_PROGBITS || type == SHT_INIT_ARRAY || |
| 92 | type == SHT_PREINIT_ARRAY || type == SHT_FINI_ARRAY || |
| 93 | type == SHT_NOTE || |
| 94 | (type == SHT_X86_64_UNWIND && ctx.arg.emachine == EM_X86_64); |
| 95 | } |
| 96 | |
| 97 | // Record that isec will be placed in the OutputSection. isec does not become |
| 98 | // permanent until finalizeInputSections() is called. The function should not be |
| 99 | // used after finalizeInputSections() is called. If you need to add an |
| 100 | // InputSection post finalizeInputSections(), then you must do the following: |
| 101 | // |
| 102 | // 1. Find or create an InputSectionDescription to hold InputSection. |
| 103 | // 2. Add the InputSection to the InputSectionDescription::sections. |
| 104 | // 3. Call commitSection(isec). |
| 105 | void OutputSection::recordSection(InputSectionBase *isec) { |
| 106 | partition = isec->partition; |
| 107 | isec->parent = this; |
| 108 | if (commands.empty() || !isa<InputSectionDescription>(Val: commands.back())) |
| 109 | commands.push_back(Elt: make<InputSectionDescription>(args: "" )); |
| 110 | auto *isd = cast<InputSectionDescription>(Val: commands.back()); |
| 111 | isd->sectionBases.push_back(Elt: isec); |
| 112 | } |
| 113 | |
| 114 | // Update fields (type, flags, alignment, etc) according to the InputSection |
| 115 | // isec. Also check whether the InputSection flags and type are consistent with |
| 116 | // other InputSections. |
| 117 | void OutputSection::commitSection(InputSection *isec) { |
| 118 | if (LLVM_UNLIKELY(type != isec->type)) { |
| 119 | if (!hasInputSections && !typeIsSet) { |
| 120 | type = isec->type; |
| 121 | } else if (isStaticRelSecType(type) && isStaticRelSecType(type: isec->type) && |
| 122 | (type == SHT_CREL) != (isec->type == SHT_CREL)) { |
| 123 | // Combine mixed SHT_REL[A] and SHT_CREL to SHT_CREL. |
| 124 | type = SHT_CREL; |
| 125 | if (type == SHT_REL) { |
| 126 | if (name.consume_front(Prefix: ".rel" )) |
| 127 | name = ctx.saver.save(S: ".crel" + name); |
| 128 | } else if (name.consume_front(Prefix: ".rela" )) { |
| 129 | name = ctx.saver.save(S: ".crel" + name); |
| 130 | } |
| 131 | } else { |
| 132 | if (typeIsSet || !canMergeToProgbits(ctx, type) || |
| 133 | !canMergeToProgbits(ctx, type: isec->type)) { |
| 134 | // The (NOLOAD) changes the section type to SHT_NOBITS, the intention is |
| 135 | // that the contents at that address is provided by some other means. |
| 136 | // Some projects (e.g. |
| 137 | // https://github.com/ClangBuiltLinux/linux/issues/1597) rely on the |
| 138 | // behavior. Other types get an error. |
| 139 | if (type != SHT_NOBITS) { |
| 140 | Err(ctx) << "section type mismatch for " << isec->name << "\n>>> " |
| 141 | << isec << ": " |
| 142 | << getELFSectionTypeName(Machine: ctx.arg.emachine, Type: isec->type) |
| 143 | << "\n>>> output section " << name << ": " |
| 144 | << getELFSectionTypeName(Machine: ctx.arg.emachine, Type: type); |
| 145 | } |
| 146 | } |
| 147 | if (!typeIsSet) |
| 148 | type = SHT_PROGBITS; |
| 149 | } |
| 150 | } |
| 151 | if (!hasInputSections) { |
| 152 | // If IS is the first section to be added to this section, |
| 153 | // initialize type, entsize and flags from isec. |
| 154 | hasInputSections = true; |
| 155 | entsize = isec->entsize; |
| 156 | flags = isec->flags; |
| 157 | } else { |
| 158 | // Otherwise, check if new type or flags are compatible with existing ones. |
| 159 | if ((flags ^ isec->flags) & SHF_TLS) |
| 160 | ErrAlways(ctx) << "incompatible section flags for " << name << "\n>>> " |
| 161 | << isec << ": 0x" << utohexstr(X: isec->flags, LowerCase: true) |
| 162 | << "\n>>> output section " << name << ": 0x" |
| 163 | << utohexstr(X: flags, LowerCase: true); |
| 164 | } |
| 165 | |
| 166 | isec->parent = this; |
| 167 | uint64_t andMask = 0; |
| 168 | if (ctx.arg.emachine == EM_ARM) |
| 169 | andMask |= (uint64_t)SHF_ARM_PURECODE; |
| 170 | if (ctx.arg.emachine == EM_AARCH64) |
| 171 | andMask |= (uint64_t)SHF_AARCH64_PURECODE; |
| 172 | uint64_t orMask = ~andMask; |
| 173 | uint64_t andFlags = (flags & isec->flags) & andMask; |
| 174 | uint64_t orFlags = (flags | isec->flags) & orMask; |
| 175 | flags = andFlags | orFlags; |
| 176 | if (nonAlloc) |
| 177 | flags &= ~(uint64_t)SHF_ALLOC; |
| 178 | |
| 179 | addralign = std::max(a: addralign, b: isec->addralign); |
| 180 | |
| 181 | // If this section contains a table of fixed-size entries, sh_entsize |
| 182 | // holds the element size. If it contains elements of different size we |
| 183 | // set sh_entsize to 0. |
| 184 | if (entsize != isec->entsize) |
| 185 | entsize = 0; |
| 186 | } |
| 187 | |
| 188 | static MergeSyntheticSection *createMergeSynthetic(Ctx &ctx, StringRef name, |
| 189 | uint32_t type, |
| 190 | uint64_t flags, |
| 191 | uint32_t addralign) { |
| 192 | if ((flags & SHF_STRINGS) && ctx.arg.optimize >= 2) |
| 193 | return make<MergeTailSection>(args&: ctx, args&: name, args&: type, args&: flags, args&: addralign); |
| 194 | return make<MergeNoTailSection>(args&: ctx, args&: name, args&: type, args&: flags, args&: addralign); |
| 195 | } |
| 196 | |
| 197 | // This function scans over the InputSectionBase list sectionBases to create |
| 198 | // InputSectionDescription::sections. |
| 199 | // |
| 200 | // It removes MergeInputSections from the input section array and adds |
| 201 | // new synthetic sections at the location of the first input section |
| 202 | // that it replaces. It then finalizes each synthetic section in order |
| 203 | // to compute an output offset for each piece of each input section. |
| 204 | void OutputSection::finalizeInputSections() { |
| 205 | auto *script = ctx.script; |
| 206 | std::vector<MergeSyntheticSection *> mergeSections; |
| 207 | for (SectionCommand *cmd : commands) { |
| 208 | auto *isd = dyn_cast<InputSectionDescription>(Val: cmd); |
| 209 | if (!isd) |
| 210 | continue; |
| 211 | isd->sections.reserve(N: isd->sectionBases.size()); |
| 212 | for (InputSectionBase *s : isd->sectionBases) { |
| 213 | MergeInputSection *ms = dyn_cast<MergeInputSection>(Val: s); |
| 214 | if (!ms) { |
| 215 | isd->sections.push_back(Elt: cast<InputSection>(Val: s)); |
| 216 | continue; |
| 217 | } |
| 218 | |
| 219 | // We do not want to handle sections that are not alive, so just remove |
| 220 | // them instead of trying to merge. |
| 221 | if (!ms->isLive()) |
| 222 | continue; |
| 223 | |
| 224 | auto i = llvm::find_if(Range&: mergeSections, P: [=](MergeSyntheticSection *sec) { |
| 225 | // While we could create a single synthetic section for two different |
| 226 | // values of Entsize, it is better to take Entsize into consideration. |
| 227 | // |
| 228 | // With a single synthetic section no two pieces with different Entsize |
| 229 | // could be equal, so we may as well have two sections. |
| 230 | // |
| 231 | // Using Entsize in here also allows us to propagate it to the synthetic |
| 232 | // section. |
| 233 | // |
| 234 | // SHF_STRINGS section with different alignments should not be merged. |
| 235 | return sec->flags == ms->flags && sec->entsize == ms->entsize && |
| 236 | (sec->addralign == ms->addralign || !(sec->flags & SHF_STRINGS)); |
| 237 | }); |
| 238 | if (i == mergeSections.end()) { |
| 239 | MergeSyntheticSection *syn = createMergeSynthetic( |
| 240 | ctx, name: s->name, type: ms->type, flags: ms->flags, addralign: ms->addralign); |
| 241 | mergeSections.push_back(x: syn); |
| 242 | i = std::prev(x: mergeSections.end()); |
| 243 | syn->entsize = ms->entsize; |
| 244 | isd->sections.push_back(Elt: syn); |
| 245 | // The merge synthetic section inherits the potential spill locations of |
| 246 | // its first contained section. |
| 247 | auto it = script->potentialSpillLists.find(Val: ms); |
| 248 | if (it != script->potentialSpillLists.end()) |
| 249 | script->potentialSpillLists.try_emplace(Key: syn, Args&: it->second); |
| 250 | } |
| 251 | (*i)->addSection(ms); |
| 252 | } |
| 253 | |
| 254 | // sectionBases should not be used from this point onwards. Clear it to |
| 255 | // catch misuses. |
| 256 | isd->sectionBases.clear(); |
| 257 | |
| 258 | // Some input sections may be removed from the list after ICF. |
| 259 | for (InputSection *s : isd->sections) |
| 260 | commitSection(isec: s); |
| 261 | } |
| 262 | for (auto *ms : mergeSections) { |
| 263 | // Merging may have increased the alignment of a spillable section. Update |
| 264 | // the alignment of potential spill sections and their containing output |
| 265 | // sections. |
| 266 | if (auto it = script->potentialSpillLists.find(Val: ms); |
| 267 | it != script->potentialSpillLists.end()) { |
| 268 | for (PotentialSpillSection *s = it->second.head; s; s = s->next) { |
| 269 | s->addralign = std::max(a: s->addralign, b: ms->addralign); |
| 270 | s->parent->addralign = std::max(a: s->parent->addralign, b: s->addralign); |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | ms->finalizeContents(); |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | static void sortByOrder(MutableArrayRef<InputSection *> in, |
| 279 | llvm::function_ref<int(InputSectionBase *s)> order) { |
| 280 | std::vector<std::pair<int, InputSection *>> v; |
| 281 | for (InputSection *s : in) |
| 282 | v.emplace_back(args: order(s), args&: s); |
| 283 | llvm::stable_sort(Range&: v, C: less_first()); |
| 284 | |
| 285 | for (size_t i = 0; i < v.size(); ++i) |
| 286 | in[i] = v[i].second; |
| 287 | } |
| 288 | |
| 289 | uint64_t elf::(Ctx &ctx) { |
| 290 | if (ctx.arg.oFormatBinary) |
| 291 | return 0; |
| 292 | return ctx.out.elfHeader->size + ctx.out.programHeaders->size; |
| 293 | } |
| 294 | |
| 295 | void OutputSection::sort(llvm::function_ref<int(InputSectionBase *s)> order) { |
| 296 | assert(isLive()); |
| 297 | for (SectionCommand *b : commands) |
| 298 | if (auto *isd = dyn_cast<InputSectionDescription>(Val: b)) |
| 299 | sortByOrder(in: isd->sections, order); |
| 300 | } |
| 301 | |
| 302 | static void nopInstrFill(Ctx &ctx, uint8_t *buf, size_t size) { |
| 303 | if (size == 0) |
| 304 | return; |
| 305 | unsigned i = 0; |
| 306 | if (size == 0) |
| 307 | return; |
| 308 | std::vector<std::vector<uint8_t>> nopFiller = *ctx.target->nopInstrs; |
| 309 | unsigned num = size / nopFiller.back().size(); |
| 310 | for (unsigned c = 0; c < num; ++c) { |
| 311 | memcpy(dest: buf + i, src: nopFiller.back().data(), n: nopFiller.back().size()); |
| 312 | i += nopFiller.back().size(); |
| 313 | } |
| 314 | unsigned remaining = size - i; |
| 315 | if (!remaining) |
| 316 | return; |
| 317 | assert(nopFiller[remaining - 1].size() == remaining); |
| 318 | memcpy(dest: buf + i, src: nopFiller[remaining - 1].data(), n: remaining); |
| 319 | } |
| 320 | |
| 321 | // Fill [Buf, Buf + Size) with Filler. |
| 322 | // This is used for linker script "=fillexp" command. |
| 323 | static void fill(uint8_t *buf, size_t size, |
| 324 | const std::array<uint8_t, 4> &filler) { |
| 325 | size_t i = 0; |
| 326 | for (; i + 4 < size; i += 4) |
| 327 | memcpy(dest: buf + i, src: filler.data(), n: 4); |
| 328 | memcpy(dest: buf + i, src: filler.data(), n: size - i); |
| 329 | } |
| 330 | |
| 331 | #if LLVM_ENABLE_ZLIB |
| 332 | static SmallVector<uint8_t, 0> deflateShard(Ctx &ctx, ArrayRef<uint8_t> in, |
| 333 | int level, int flush) { |
| 334 | // 15 and 8 are default. windowBits=-15 is negative to generate raw deflate |
| 335 | // data with no zlib header or trailer. |
| 336 | z_stream s = {}; |
| 337 | auto res = deflateInit2(&s, level, Z_DEFLATED, -15, 8, Z_DEFAULT_STRATEGY); |
| 338 | if (res != 0) { |
| 339 | Err(ctx) << "--compress-sections: deflateInit2 returned " << res; |
| 340 | return {}; |
| 341 | } |
| 342 | s.next_in = const_cast<uint8_t *>(in.data()); |
| 343 | s.avail_in = in.size(); |
| 344 | |
| 345 | // Allocate a buffer of half of the input size, and grow it by 1.5x if |
| 346 | // insufficient. |
| 347 | SmallVector<uint8_t, 0> out; |
| 348 | size_t pos = 0; |
| 349 | out.resize_for_overwrite(N: std::max<size_t>(a: in.size() / 2, b: 64)); |
| 350 | do { |
| 351 | if (pos == out.size()) |
| 352 | out.resize_for_overwrite(N: out.size() * 3 / 2); |
| 353 | s.next_out = out.data() + pos; |
| 354 | s.avail_out = out.size() - pos; |
| 355 | (void)deflate(strm: &s, flush); |
| 356 | pos = s.next_out - out.data(); |
| 357 | } while (s.avail_out == 0); |
| 358 | assert(s.avail_in == 0); |
| 359 | |
| 360 | out.truncate(N: pos); |
| 361 | deflateEnd(strm: &s); |
| 362 | return out; |
| 363 | } |
| 364 | #endif |
| 365 | |
| 366 | // Compress certain non-SHF_ALLOC sections: |
| 367 | // |
| 368 | // * (if --compress-debug-sections is specified) non-empty .debug_* sections |
| 369 | // * (if --compress-sections is specified) matched sections |
| 370 | template <class ELFT> void OutputSection::maybeCompress(Ctx &ctx) { |
| 371 | using Elf_Chdr = typename ELFT::Chdr; |
| 372 | (void)sizeof(Elf_Chdr); |
| 373 | |
| 374 | DebugCompressionType ctype = DebugCompressionType::None; |
| 375 | size_t compressedSize = sizeof(Elf_Chdr); |
| 376 | unsigned level = 0; // default compression level |
| 377 | if (!(flags & SHF_ALLOC) && ctx.arg.compressDebugSections && |
| 378 | name.starts_with(Prefix: ".debug_" )) |
| 379 | ctype = *ctx.arg.compressDebugSections; |
| 380 | for (auto &[glob, t, l] : ctx.arg.compressSections) |
| 381 | if (glob.match(S: name)) |
| 382 | std::tie(args&: ctype, args&: level) = {t, l}; |
| 383 | if (ctype == DebugCompressionType::None) |
| 384 | return; |
| 385 | if (flags & SHF_ALLOC) { |
| 386 | Err(ctx) << "--compress-sections: section '" << name |
| 387 | << "' with the SHF_ALLOC flag cannot be compressed" ; |
| 388 | return; |
| 389 | } |
| 390 | |
| 391 | llvm::TimeTraceScope timeScope("Compress sections" ); |
| 392 | auto buf = std::make_unique<uint8_t[]>(num: size); |
| 393 | // Write uncompressed data to a temporary zero-initialized buffer. |
| 394 | { |
| 395 | parallel::TaskGroup tg; |
| 396 | writeTo<ELFT>(ctx, buf.get(), tg); |
| 397 | } |
| 398 | // The generic ABI specifies "The sh_size and sh_addralign fields of the |
| 399 | // section header for a compressed section reflect the requirements of the |
| 400 | // compressed section." However, 1-byte alignment has been wildly accepted |
| 401 | // and utilized for a long time. Removing alignment padding is particularly |
| 402 | // useful when there are many compressed output sections. |
| 403 | addralign = 1; |
| 404 | |
| 405 | // Split input into 1-MiB shards. |
| 406 | [[maybe_unused]] constexpr size_t shardSize = 1 << 20; |
| 407 | auto shardsIn = split(arr: ArrayRef<uint8_t>(buf.get(), size), chunkSize: shardSize); |
| 408 | const size_t numShards = shardsIn.size(); |
| 409 | auto shardsOut = std::make_unique<SmallVector<uint8_t, 0>[]>(num: numShards); |
| 410 | |
| 411 | #if LLVM_ENABLE_ZSTD |
| 412 | // Use ZSTD's streaming compression API. See |
| 413 | // http://facebook.github.io/zstd/zstd_manual.html "Streaming compression - |
| 414 | // HowTo". |
| 415 | if (ctype == DebugCompressionType::Zstd) { |
| 416 | parallelFor(0, numShards, [&](size_t i) { |
| 417 | SmallVector<uint8_t, 0> out; |
| 418 | ZSTD_CCtx *cctx = ZSTD_createCCtx(); |
| 419 | ZSTD_CCtx_setParameter(cctx, param: ZSTD_c_compressionLevel, value: level); |
| 420 | ZSTD_inBuffer zib = {.src: shardsIn[i].data(), .size: shardsIn[i].size(), .pos: 0}; |
| 421 | ZSTD_outBuffer zob = {.dst: nullptr, .size: 0, .pos: 0}; |
| 422 | size_t size; |
| 423 | do { |
| 424 | // Allocate a buffer of half of the input size, and grow it by 1.5x if |
| 425 | // insufficient. |
| 426 | if (zob.pos == zob.size) { |
| 427 | out.resize_for_overwrite( |
| 428 | N: zob.size ? zob.size * 3 / 2 : std::max<size_t>(a: zib.size / 4, b: 64)); |
| 429 | zob = {.dst: out.data(), .size: out.size(), .pos: zob.pos}; |
| 430 | } |
| 431 | size = ZSTD_compressStream2(cctx, output: &zob, input: &zib, endOp: ZSTD_e_end); |
| 432 | assert(!ZSTD_isError(size)); |
| 433 | } while (size != 0); |
| 434 | out.truncate(N: zob.pos); |
| 435 | ZSTD_freeCCtx(cctx); |
| 436 | shardsOut[i] = std::move(out); |
| 437 | }); |
| 438 | compressed.type = ELFCOMPRESS_ZSTD; |
| 439 | for (size_t i = 0; i != numShards; ++i) |
| 440 | compressedSize += shardsOut[i].size(); |
| 441 | } |
| 442 | #endif |
| 443 | |
| 444 | #if LLVM_ENABLE_ZLIB |
| 445 | // We chose 1 (Z_BEST_SPEED) as the default compression level because it is |
| 446 | // fast and provides decent compression ratios. |
| 447 | if (ctype == DebugCompressionType::Zlib) { |
| 448 | if (!level) |
| 449 | level = Z_BEST_SPEED; |
| 450 | |
| 451 | // Compress shards and compute Alder-32 checksums. Use Z_SYNC_FLUSH for all |
| 452 | // shards but the last to flush the output to a byte boundary to be |
| 453 | // concatenated with the next shard. |
| 454 | auto shardsAdler = std::make_unique<uint32_t[]>(num: numShards); |
| 455 | parallelFor(0, numShards, [&](size_t i) { |
| 456 | shardsOut[i] = deflateShard(ctx, in: shardsIn[i], level, |
| 457 | flush: i != numShards - 1 ? Z_SYNC_FLUSH : Z_FINISH); |
| 458 | shardsAdler[i] = adler32(adler: 1, buf: shardsIn[i].data(), len: shardsIn[i].size()); |
| 459 | }); |
| 460 | |
| 461 | // Update section size and combine Alder-32 checksums. |
| 462 | uint32_t checksum = 1; // Initial Adler-32 value |
| 463 | compressedSize += 2; // Elf_Chdir and zlib header |
| 464 | for (size_t i = 0; i != numShards; ++i) { |
| 465 | compressedSize += shardsOut[i].size(); |
| 466 | checksum = adler32_combine(checksum, shardsAdler[i], shardsIn[i].size()); |
| 467 | } |
| 468 | compressedSize += 4; // checksum |
| 469 | compressed.type = ELFCOMPRESS_ZLIB; |
| 470 | compressed.checksum = checksum; |
| 471 | } |
| 472 | #endif |
| 473 | |
| 474 | if (compressedSize >= size) |
| 475 | return; |
| 476 | compressed.uncompressedSize = size; |
| 477 | compressed.shards = std::move(shardsOut); |
| 478 | compressed.numShards = numShards; |
| 479 | size = compressedSize; |
| 480 | flags |= SHF_COMPRESSED; |
| 481 | } |
| 482 | |
| 483 | static void writeInt(Ctx &ctx, uint8_t *buf, uint64_t data, uint64_t size) { |
| 484 | if (size == 1) |
| 485 | *buf = data; |
| 486 | else if (size == 2) |
| 487 | write16(ctx, p: buf, v: data); |
| 488 | else if (size == 4) |
| 489 | write32(ctx, p: buf, v: data); |
| 490 | else if (size == 8) |
| 491 | write64(ctx, p: buf, v: data); |
| 492 | else |
| 493 | llvm_unreachable("unsupported Size argument" ); |
| 494 | } |
| 495 | |
| 496 | template <class ELFT> |
| 497 | void OutputSection::writeTo(Ctx &ctx, uint8_t *buf, parallel::TaskGroup &tg) { |
| 498 | llvm::TimeTraceScope timeScope("Write sections" , name); |
| 499 | if (type == SHT_NOBITS) |
| 500 | return; |
| 501 | if (type == SHT_CREL && !(flags & SHF_ALLOC)) { |
| 502 | buf += encodeULEB128(Value: crelHeader, p: buf); |
| 503 | memcpy(dest: buf, src: crelBody.data(), n: crelBody.size()); |
| 504 | return; |
| 505 | } |
| 506 | |
| 507 | // If the section is compressed due to |
| 508 | // --compress-debug-section/--compress-sections, the content is already known. |
| 509 | if (compressed.shards) { |
| 510 | auto *chdr = reinterpret_cast<typename ELFT::Chdr *>(buf); |
| 511 | chdr->ch_type = compressed.type; |
| 512 | chdr->ch_size = compressed.uncompressedSize; |
| 513 | chdr->ch_addralign = addralign; |
| 514 | buf += sizeof(*chdr); |
| 515 | |
| 516 | auto offsets = std::make_unique<size_t[]>(num: compressed.numShards); |
| 517 | if (compressed.type == ELFCOMPRESS_ZLIB) { |
| 518 | buf[0] = 0x78; // CMF |
| 519 | buf[1] = 0x01; // FLG: best speed |
| 520 | offsets[0] = 2; // zlib header |
| 521 | write32be(P: buf + (size - sizeof(*chdr) - 4), V: compressed.checksum); |
| 522 | } |
| 523 | |
| 524 | // Compute shard offsets. |
| 525 | for (size_t i = 1; i != compressed.numShards; ++i) |
| 526 | offsets[i] = offsets[i - 1] + compressed.shards[i - 1].size(); |
| 527 | parallelFor(0, compressed.numShards, [&](size_t i) { |
| 528 | memcpy(dest: buf + offsets[i], src: compressed.shards[i].data(), |
| 529 | n: compressed.shards[i].size()); |
| 530 | }); |
| 531 | return; |
| 532 | } |
| 533 | |
| 534 | // Write leading padding. |
| 535 | ArrayRef<InputSection *> sections = getInputSections(os: *this, storage); |
| 536 | std::array<uint8_t, 4> filler = getFiller(ctx); |
| 537 | bool nonZeroFiller = read32(ctx, p: filler.data()) != 0; |
| 538 | if (nonZeroFiller) |
| 539 | fill(buf, size: sections.empty() ? size : sections[0]->outSecOff, filler); |
| 540 | |
| 541 | if (type == SHT_CREL && !(flags & SHF_ALLOC)) { |
| 542 | buf += encodeULEB128(Value: crelHeader, p: buf); |
| 543 | memcpy(dest: buf, src: crelBody.data(), n: crelBody.size()); |
| 544 | return; |
| 545 | } |
| 546 | |
| 547 | auto fn = [=, &ctx](size_t begin, size_t end) { |
| 548 | size_t numSections = sections.size(); |
| 549 | for (size_t i = begin; i != end; ++i) { |
| 550 | InputSection *isec = sections[i]; |
| 551 | if (auto *s = dyn_cast<SyntheticSection>(Val: isec)) |
| 552 | s->writeTo(buf: buf + isec->outSecOff); |
| 553 | else |
| 554 | isec->writeTo<ELFT>(ctx, buf + isec->outSecOff); |
| 555 | |
| 556 | // When in Arm BE8 mode, the linker has to convert the big-endian |
| 557 | // instructions to little-endian, leaving the data big-endian. |
| 558 | if (ctx.arg.emachine == EM_ARM && !ctx.arg.isLE && ctx.arg.armBe8 && |
| 559 | (flags & SHF_EXECINSTR)) |
| 560 | convertArmInstructionstoBE8(ctx, sec: isec, buf: buf + isec->outSecOff); |
| 561 | |
| 562 | // Fill gaps between sections. |
| 563 | if (nonZeroFiller) { |
| 564 | uint8_t *start = buf + isec->outSecOff + isec->getSize(); |
| 565 | uint8_t *end; |
| 566 | if (i + 1 == numSections) |
| 567 | end = buf + size; |
| 568 | else |
| 569 | end = buf + sections[i + 1]->outSecOff; |
| 570 | if (isec->nopFiller) { |
| 571 | assert(ctx.target->nopInstrs); |
| 572 | nopInstrFill(ctx, buf: start, size: end - start); |
| 573 | } else |
| 574 | fill(buf: start, size: end - start, filler); |
| 575 | } |
| 576 | } |
| 577 | }; |
| 578 | |
| 579 | // If there is any BYTE()-family command (rare), write the section content |
| 580 | // first then process BYTE to overwrite the filler content. The write is |
| 581 | // serial due to the limitation of llvm/Support/Parallel.h. |
| 582 | bool written = false; |
| 583 | size_t numSections = sections.size(); |
| 584 | for (SectionCommand *cmd : commands) |
| 585 | if (auto *data = dyn_cast<ByteCommand>(Val: cmd)) { |
| 586 | if (!std::exchange(obj&: written, new_val: true)) |
| 587 | fn(0, numSections); |
| 588 | writeInt(ctx, buf: buf + data->offset, data: data->expression().getValue(), |
| 589 | size: data->size); |
| 590 | } |
| 591 | if (written || !numSections) |
| 592 | return; |
| 593 | |
| 594 | // There is no data command. Write content asynchronously to overlap the write |
| 595 | // time with other output sections. Note, if a linker script specifies |
| 596 | // overlapping output sections (needs --noinhibit-exec or --no-check-sections |
| 597 | // to supress the error), the output may be non-deterministic. |
| 598 | const size_t taskSizeLimit = 4 << 20; |
| 599 | for (size_t begin = 0, i = 0, taskSize = 0;;) { |
| 600 | taskSize += sections[i]->getSize(); |
| 601 | bool done = ++i == numSections; |
| 602 | if (done || taskSize >= taskSizeLimit) { |
| 603 | tg.spawn(f: [=] { fn(begin, i); }); |
| 604 | if (done) |
| 605 | break; |
| 606 | begin = i; |
| 607 | taskSize = 0; |
| 608 | } |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | static void finalizeShtGroup(Ctx &ctx, OutputSection *os, |
| 613 | InputSection *section) { |
| 614 | // sh_link field for SHT_GROUP sections should contain the section index of |
| 615 | // the symbol table. |
| 616 | os->link = ctx.in.symTab->getParent()->sectionIndex; |
| 617 | |
| 618 | if (!section) |
| 619 | return; |
| 620 | |
| 621 | // sh_info then contain index of an entry in symbol table section which |
| 622 | // provides signature of the section group. |
| 623 | ArrayRef<Symbol *> symbols = section->file->getSymbols(); |
| 624 | os->info = ctx.in.symTab->getSymbolIndex(sym: *symbols[section->info]); |
| 625 | |
| 626 | // Some group members may be combined or discarded, so we need to compute the |
| 627 | // new size. The content will be rewritten in InputSection::copyShtGroup. |
| 628 | DenseSet<uint32_t> seen; |
| 629 | ArrayRef<InputSectionBase *> sections = section->file->getSections(); |
| 630 | for (const uint32_t &idx : section->getDataAs<uint32_t>().slice(N: 1)) |
| 631 | if (OutputSection *osec = sections[read32(ctx, p: &idx)]->getOutputSection()) |
| 632 | seen.insert(V: osec->sectionIndex); |
| 633 | os->size = (1 + seen.size()) * sizeof(uint32_t); |
| 634 | } |
| 635 | |
| 636 | template <class uint> |
| 637 | LLVM_ATTRIBUTE_ALWAYS_INLINE static void |
| 638 | encodeOneCrel(Ctx &ctx, raw_svector_ostream &os, |
| 639 | Elf_Crel<sizeof(uint) == 8> &out, uint offset, const Symbol &sym, |
| 640 | uint32_t type, uint addend) { |
| 641 | const auto deltaOffset = static_cast<uint64_t>(offset - out.r_offset); |
| 642 | out.r_offset = offset; |
| 643 | int64_t symidx = ctx.in.symTab->getSymbolIndex(sym); |
| 644 | if (sym.type == STT_SECTION) { |
| 645 | auto *d = dyn_cast<Defined>(Val: &sym); |
| 646 | if (d) { |
| 647 | SectionBase *section = d->section; |
| 648 | assert(section->isLive()); |
| 649 | addend = sym.getVA(ctx, addend) - section->getOutputSection()->addr; |
| 650 | } else { |
| 651 | // Encode R_*_NONE(symidx=0). |
| 652 | symidx = type = addend = 0; |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | // Similar to llvm::ELF::encodeCrel. |
| 657 | uint8_t b = deltaOffset * 8 + (out.r_symidx != symidx) + |
| 658 | (out.r_type != type ? 2 : 0) + |
| 659 | (uint(out.r_addend) != addend ? 4 : 0); |
| 660 | if (deltaOffset < 0x10) { |
| 661 | os << char(b); |
| 662 | } else { |
| 663 | os << char(b | 0x80); |
| 664 | encodeULEB128(Value: deltaOffset >> 4, OS&: os); |
| 665 | } |
| 666 | if (b & 1) { |
| 667 | encodeSLEB128(Value: static_cast<int32_t>(symidx - out.r_symidx), OS&: os); |
| 668 | out.r_symidx = symidx; |
| 669 | } |
| 670 | if (b & 2) { |
| 671 | encodeSLEB128(Value: static_cast<int32_t>(type - out.r_type), OS&: os); |
| 672 | out.r_type = type; |
| 673 | } |
| 674 | if (b & 4) { |
| 675 | encodeSLEB128(std::make_signed_t<uint>(addend - out.r_addend), os); |
| 676 | out.r_addend = addend; |
| 677 | } |
| 678 | } |
| 679 | |
| 680 | template <class ELFT> |
| 681 | static size_t relToCrel(Ctx &ctx, raw_svector_ostream &os, |
| 682 | Elf_Crel<ELFT::Is64Bits> &out, InputSection *relSec, |
| 683 | InputSectionBase *sec) { |
| 684 | const auto &file = *cast<ELFFileBase>(Val: relSec->file); |
| 685 | if (relSec->type == SHT_REL) { |
| 686 | // REL conversion is complex and unsupported yet. |
| 687 | Err(ctx) << relSec << ": REL cannot be converted to CREL" ; |
| 688 | return 0; |
| 689 | } |
| 690 | auto rels = relSec->getDataAs<typename ELFT::Rela>(); |
| 691 | for (auto rel : rels) { |
| 692 | encodeOneCrel<typename ELFT::uint>( |
| 693 | ctx, os, out, sec->getVA(offset: rel.r_offset), file.getRelocTargetSym(rel), |
| 694 | rel.getType(ctx.arg.isMips64EL), getAddend<ELFT>(rel)); |
| 695 | } |
| 696 | return rels.size(); |
| 697 | } |
| 698 | |
| 699 | // Compute the content of a non-alloc CREL section due to -r or --emit-relocs. |
| 700 | // Input CREL sections are decoded while REL[A] need to be converted. |
| 701 | template <bool is64> void OutputSection::finalizeNonAllocCrel(Ctx &ctx) { |
| 702 | using uint = typename Elf_Crel_Impl<is64>::uint; |
| 703 | raw_svector_ostream os(crelBody); |
| 704 | uint64_t totalCount = 0; |
| 705 | Elf_Crel<is64> out{}; |
| 706 | assert(commands.size() == 1); |
| 707 | auto *isd = cast<InputSectionDescription>(Val: commands[0]); |
| 708 | for (InputSection *relSec : isd->sections) { |
| 709 | const auto &file = *cast<ELFFileBase>(Val: relSec->file); |
| 710 | InputSectionBase *sec = relSec->getRelocatedSection(); |
| 711 | if (relSec->type == SHT_CREL) { |
| 712 | RelocsCrel<is64> entries(relSec->content_); |
| 713 | totalCount += entries.size(); |
| 714 | for (Elf_Crel_Impl<is64> r : entries) { |
| 715 | encodeOneCrel<uint>(ctx, os, out, uint(sec->getVA(offset: r.r_offset)), |
| 716 | file.getSymbol(symbolIndex: r.r_symidx), r.r_type, r.r_addend); |
| 717 | } |
| 718 | continue; |
| 719 | } |
| 720 | |
| 721 | // Convert REL[A] to CREL. |
| 722 | if constexpr (is64) { |
| 723 | totalCount += ctx.arg.isLE |
| 724 | ? relToCrel<ELF64LE>(ctx, os, out, relSec, sec) |
| 725 | : relToCrel<ELF64BE>(ctx, os, out, relSec, sec); |
| 726 | } else { |
| 727 | totalCount += ctx.arg.isLE |
| 728 | ? relToCrel<ELF32LE>(ctx, os, out, relSec, sec) |
| 729 | : relToCrel<ELF32BE>(ctx, os, out, relSec, sec); |
| 730 | } |
| 731 | } |
| 732 | |
| 733 | crelHeader = totalCount * 8 + 4; |
| 734 | size = getULEB128Size(Value: crelHeader) + crelBody.size(); |
| 735 | } |
| 736 | |
| 737 | void OutputSection::finalize(Ctx &ctx) { |
| 738 | InputSection *first = getFirstInputSection(os: this); |
| 739 | |
| 740 | if (flags & SHF_LINK_ORDER) { |
| 741 | // We must preserve the link order dependency of sections with the |
| 742 | // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We |
| 743 | // need to translate the InputSection sh_link to the OutputSection sh_link, |
| 744 | // all InputSections in the OutputSection have the same dependency. |
| 745 | if (auto *ex = dyn_cast<ARMExidxSyntheticSection>(Val: first)) |
| 746 | link = ex->getLinkOrderDep()->getParent()->sectionIndex; |
| 747 | else if (first->flags & SHF_LINK_ORDER) |
| 748 | if (auto *d = first->getLinkOrderDep()) |
| 749 | link = d->getParent()->sectionIndex; |
| 750 | } |
| 751 | |
| 752 | if (type == SHT_GROUP) { |
| 753 | finalizeShtGroup(ctx, os: this, section: first); |
| 754 | return; |
| 755 | } |
| 756 | |
| 757 | if (!ctx.arg.copyRelocs || !isStaticRelSecType(type)) |
| 758 | return; |
| 759 | |
| 760 | // Skip if 'first' is synthetic, i.e. not a section created by --emit-relocs. |
| 761 | // Normally 'type' was changed by 'first' so 'first' should be non-null. |
| 762 | // However, if the output section is .rela.dyn, 'type' can be set by the empty |
| 763 | // synthetic .rela.plt and first can be null. |
| 764 | if (!first || isa<SyntheticSection>(Val: first)) |
| 765 | return; |
| 766 | |
| 767 | link = ctx.in.symTab->getParent()->sectionIndex; |
| 768 | // sh_info for SHT_REL[A] sections should contain the section header index of |
| 769 | // the section to which the relocation applies. |
| 770 | InputSectionBase *s = first->getRelocatedSection(); |
| 771 | info = s->getOutputSection()->sectionIndex; |
| 772 | flags |= SHF_INFO_LINK; |
| 773 | // Finalize the content of non-alloc CREL. |
| 774 | if (type == SHT_CREL) { |
| 775 | if (ctx.arg.is64) |
| 776 | finalizeNonAllocCrel<true>(ctx); |
| 777 | else |
| 778 | finalizeNonAllocCrel<false>(ctx); |
| 779 | } |
| 780 | } |
| 781 | |
| 782 | // Returns true if S is in one of the many forms the compiler driver may pass |
| 783 | // crtbegin files. |
| 784 | // |
| 785 | // Gcc uses any of crtbegin[<empty>|S|T].o. |
| 786 | // Clang uses Gcc's plus clang_rt.crtbegin[-<arch>|<empty>].o. |
| 787 | |
| 788 | static bool isCrt(StringRef s, StringRef beginEnd) { |
| 789 | s = sys::path::filename(path: s); |
| 790 | if (!s.consume_back(Suffix: ".o" )) |
| 791 | return false; |
| 792 | if (s.consume_front(Prefix: "clang_rt." )) |
| 793 | return s.consume_front(Prefix: beginEnd); |
| 794 | return s.consume_front(Prefix: beginEnd) && s.size() <= 1; |
| 795 | } |
| 796 | |
| 797 | // .ctors and .dtors are sorted by this order: |
| 798 | // |
| 799 | // 1. .ctors/.dtors in crtbegin (which contains a sentinel value -1). |
| 800 | // 2. The section is named ".ctors" or ".dtors" (priority: 65536). |
| 801 | // 3. The section has an optional priority value in the form of ".ctors.N" or |
| 802 | // ".dtors.N" where N is a number in the form of %05u (priority: 65535-N). |
| 803 | // 4. .ctors/.dtors in crtend (which contains a sentinel value 0). |
| 804 | // |
| 805 | // For 2 and 3, the sections are sorted by priority from high to low, e.g. |
| 806 | // .ctors (65536), .ctors.00100 (65436), .ctors.00200 (65336). In GNU ld's |
| 807 | // internal linker scripts, the sorting is by string comparison which can |
| 808 | // achieve the same goal given the optional priority values are of the same |
| 809 | // length. |
| 810 | // |
| 811 | // In an ideal world, we don't need this function because .init_array and |
| 812 | // .ctors are duplicate features (and .init_array is newer.) However, there |
| 813 | // are too many real-world use cases of .ctors, so we had no choice to |
| 814 | // support that with this rather ad-hoc semantics. |
| 815 | static bool compCtors(const InputSection *a, const InputSection *b) { |
| 816 | bool beginA = isCrt(s: a->file->getName(), beginEnd: "crtbegin" ); |
| 817 | bool beginB = isCrt(s: b->file->getName(), beginEnd: "crtbegin" ); |
| 818 | if (beginA != beginB) |
| 819 | return beginA; |
| 820 | bool endA = isCrt(s: a->file->getName(), beginEnd: "crtend" ); |
| 821 | bool endB = isCrt(s: b->file->getName(), beginEnd: "crtend" ); |
| 822 | if (endA != endB) |
| 823 | return endB; |
| 824 | return getPriority(s: a->name) > getPriority(s: b->name); |
| 825 | } |
| 826 | |
| 827 | // Sorts input sections by the special rules for .ctors and .dtors. |
| 828 | // Unfortunately, the rules are different from the one for .{init,fini}_array. |
| 829 | // Read the comment above. |
| 830 | void OutputSection::sortCtorsDtors() { |
| 831 | assert(commands.size() == 1); |
| 832 | auto *isd = cast<InputSectionDescription>(Val: commands[0]); |
| 833 | llvm::stable_sort(Range&: isd->sections, C: compCtors); |
| 834 | } |
| 835 | |
| 836 | // If an input string is in the form of "foo.N" where N is a number, return N |
| 837 | // (65535-N if .ctors.N or .dtors.N). Otherwise, returns 65536, which is one |
| 838 | // greater than the lowest priority. |
| 839 | int elf::getPriority(StringRef s) { |
| 840 | size_t pos = s.rfind(C: '.'); |
| 841 | if (pos == StringRef::npos) |
| 842 | return 65536; |
| 843 | int v = 65536; |
| 844 | if (to_integer(S: s.substr(Start: pos + 1), Num&: v, Base: 10) && |
| 845 | (pos == 6 && (s.starts_with(Prefix: ".ctors" ) || s.starts_with(Prefix: ".dtors" )))) |
| 846 | v = 65535 - v; |
| 847 | return v; |
| 848 | } |
| 849 | |
| 850 | InputSection *elf::getFirstInputSection(const OutputSection *os) { |
| 851 | for (SectionCommand *cmd : os->commands) |
| 852 | if (auto *isd = dyn_cast<InputSectionDescription>(Val: cmd)) |
| 853 | if (!isd->sections.empty()) |
| 854 | return isd->sections[0]; |
| 855 | return nullptr; |
| 856 | } |
| 857 | |
| 858 | ArrayRef<InputSection *> |
| 859 | elf::getInputSections(const OutputSection &os, |
| 860 | SmallVector<InputSection *, 0> &storage) { |
| 861 | ArrayRef<InputSection *> ret; |
| 862 | storage.clear(); |
| 863 | for (SectionCommand *cmd : os.commands) { |
| 864 | auto *isd = dyn_cast<InputSectionDescription>(Val: cmd); |
| 865 | if (!isd) |
| 866 | continue; |
| 867 | if (ret.empty()) { |
| 868 | ret = isd->sections; |
| 869 | } else { |
| 870 | if (storage.empty()) |
| 871 | storage.assign(in_start: ret.begin(), in_end: ret.end()); |
| 872 | storage.insert(I: storage.end(), From: isd->sections.begin(), To: isd->sections.end()); |
| 873 | } |
| 874 | } |
| 875 | return storage.empty() ? ret : ArrayRef(storage); |
| 876 | } |
| 877 | |
| 878 | // Sorts input sections by section name suffixes, so that .foo.N comes |
| 879 | // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. |
| 880 | // We want to keep the original order if the priorities are the same |
| 881 | // because the compiler keeps the original initialization order in a |
| 882 | // translation unit and we need to respect that. |
| 883 | // For more detail, read the section of the GCC's manual about init_priority. |
| 884 | void OutputSection::sortInitFini() { |
| 885 | // Sort sections by priority. |
| 886 | sort(order: [](InputSectionBase *s) { return getPriority(s: s->name); }); |
| 887 | } |
| 888 | |
| 889 | std::array<uint8_t, 4> OutputSection::getFiller(Ctx &ctx) { |
| 890 | if (filler) |
| 891 | return *filler; |
| 892 | if (flags & SHF_EXECINSTR) |
| 893 | return ctx.target->trapInstr; |
| 894 | return {0, 0, 0, 0}; |
| 895 | } |
| 896 | |
| 897 | void OutputSection::checkDynRelAddends(Ctx &ctx) { |
| 898 | assert(ctx.arg.writeAddends && ctx.arg.checkDynamicRelocs); |
| 899 | assert(isStaticRelSecType(type)); |
| 900 | SmallVector<InputSection *, 0> storage; |
| 901 | ArrayRef<InputSection *> sections = getInputSections(os: *this, storage); |
| 902 | parallelFor(Begin: 0, End: sections.size(), Fn: [&](size_t i) { |
| 903 | // When linking with -r or --emit-relocs we might also call this function |
| 904 | // for input .rel[a].<sec> sections which we simply pass through to the |
| 905 | // output. We skip over those and only look at the synthetic relocation |
| 906 | // sections created during linking. |
| 907 | if (!SyntheticSection::classof(sec: sections[i]) || |
| 908 | !is_contained(Set: {ELF::SHT_REL, ELF::SHT_RELA, ELF::SHT_RELR}, |
| 909 | Element: sections[i]->type)) |
| 910 | return; |
| 911 | const auto *sec = cast<RelocationBaseSection>(Val: sections[i]); |
| 912 | if (!sec) |
| 913 | return; |
| 914 | for (const DynamicReloc &rel : sec->relocs) { |
| 915 | int64_t addend = rel.addend; |
| 916 | const OutputSection *relOsec = rel.inputSec->getOutputSection(); |
| 917 | assert(relOsec != nullptr && "missing output section for relocation" ); |
| 918 | // Some targets have NOBITS synthetic sections with dynamic relocations |
| 919 | // with non-zero addends. Skip such sections. |
| 920 | if (is_contained(Set: {EM_PPC, EM_PPC64}, Element: ctx.arg.emachine) && |
| 921 | (rel.inputSec == ctx.in.ppc64LongBranchTarget.get() || |
| 922 | rel.inputSec == ctx.in.igotPlt.get())) |
| 923 | continue; |
| 924 | const uint8_t *relocTarget = ctx.bufferStart + relOsec->offset + |
| 925 | rel.inputSec->getOffset(offset: rel.offsetInSec); |
| 926 | // For SHT_NOBITS the written addend is always zero. |
| 927 | int64_t writtenAddend = |
| 928 | relOsec->type == SHT_NOBITS |
| 929 | ? 0 |
| 930 | : ctx.target->getImplicitAddend(buf: relocTarget, type: rel.type); |
| 931 | if (addend != writtenAddend) |
| 932 | InternalErr(ctx, buf: relocTarget) |
| 933 | << "wrote incorrect addend value 0x" << utohexstr(X: writtenAddend) |
| 934 | << " instead of 0x" << utohexstr(X: addend) |
| 935 | << " for dynamic relocation " << rel.type << " at offset 0x" |
| 936 | << utohexstr(X: rel.getOffset()) |
| 937 | << (rel.sym ? " against symbol " + rel.sym->getName() : "" ); |
| 938 | } |
| 939 | }); |
| 940 | } |
| 941 | |
| 942 | template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr); |
| 943 | template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr); |
| 944 | template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr); |
| 945 | template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr); |
| 946 | |
| 947 | template void OutputSection::writeTo<ELF32LE>(Ctx &, uint8_t *, |
| 948 | llvm::parallel::TaskGroup &); |
| 949 | template void OutputSection::writeTo<ELF32BE>(Ctx &, uint8_t *, |
| 950 | llvm::parallel::TaskGroup &); |
| 951 | template void OutputSection::writeTo<ELF64LE>(Ctx &, uint8_t *, |
| 952 | llvm::parallel::TaskGroup &); |
| 953 | template void OutputSection::writeTo<ELF64BE>(Ctx &, uint8_t *, |
| 954 | llvm::parallel::TaskGroup &); |
| 955 | |
| 956 | template void OutputSection::maybeCompress<ELF32LE>(Ctx &); |
| 957 | template void OutputSection::maybeCompress<ELF32BE>(Ctx &); |
| 958 | template void OutputSection::maybeCompress<ELF64LE>(Ctx &); |
| 959 | template void OutputSection::maybeCompress<ELF64BE>(Ctx &); |
| 960 | |