| 1 | //===- BlockFrequencyImplInfo.cpp - Block Frequency Info Implementation ---===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Loops should be simplified before this analysis. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/Analysis/BlockFrequencyInfoImpl.h" |
| 14 | #include "llvm/ADT/APInt.h" |
| 15 | #include "llvm/ADT/DenseMap.h" |
| 16 | #include "llvm/ADT/SCCIterator.h" |
| 17 | #include "llvm/ADT/SmallString.h" |
| 18 | #include "llvm/Config/llvm-config.h" |
| 19 | #include "llvm/IR/Function.h" |
| 20 | #include "llvm/Support/BlockFrequency.h" |
| 21 | #include "llvm/Support/BranchProbability.h" |
| 22 | #include "llvm/Support/Compiler.h" |
| 23 | #include "llvm/Support/Debug.h" |
| 24 | #include "llvm/Support/MathExtras.h" |
| 25 | #include "llvm/Support/ScaledNumber.h" |
| 26 | #include "llvm/Support/raw_ostream.h" |
| 27 | #include <algorithm> |
| 28 | #include <cassert> |
| 29 | #include <cstddef> |
| 30 | #include <cstdint> |
| 31 | #include <iterator> |
| 32 | #include <list> |
| 33 | #include <numeric> |
| 34 | #include <optional> |
| 35 | #include <utility> |
| 36 | #include <vector> |
| 37 | |
| 38 | using namespace llvm; |
| 39 | using namespace llvm::bfi_detail; |
| 40 | |
| 41 | #define DEBUG_TYPE "block-freq" |
| 42 | |
| 43 | namespace llvm { |
| 44 | cl::opt<bool> CheckBFIUnknownBlockQueries( |
| 45 | "check-bfi-unknown-block-queries" , |
| 46 | cl::init(Val: false), cl::Hidden, |
| 47 | cl::desc("Check if block frequency is queried for an unknown block " |
| 48 | "for debugging missed BFI updates" )); |
| 49 | |
| 50 | cl::opt<bool> UseIterativeBFIInference( |
| 51 | "use-iterative-bfi-inference" , cl::Hidden, |
| 52 | cl::desc("Apply an iterative post-processing to infer correct BFI counts" )); |
| 53 | |
| 54 | cl::opt<unsigned> IterativeBFIMaxIterationsPerBlock( |
| 55 | "iterative-bfi-max-iterations-per-block" , cl::init(Val: 1000), cl::Hidden, |
| 56 | cl::desc("Iterative inference: maximum number of update iterations " |
| 57 | "per block" )); |
| 58 | |
| 59 | cl::opt<double> IterativeBFIPrecision( |
| 60 | "iterative-bfi-precision" , cl::init(Val: 1e-12), cl::Hidden, |
| 61 | cl::desc("Iterative inference: delta convergence precision; smaller values " |
| 62 | "typically lead to better results at the cost of worsen runtime" )); |
| 63 | } // namespace llvm |
| 64 | |
| 65 | ScaledNumber<uint64_t> BlockMass::toScaled() const { |
| 66 | if (isFull()) |
| 67 | return ScaledNumber<uint64_t>(1, 0); |
| 68 | return ScaledNumber<uint64_t>(getMass() + 1, -64); |
| 69 | } |
| 70 | |
| 71 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 72 | LLVM_DUMP_METHOD void BlockMass::dump() const { print(dbgs()); } |
| 73 | #endif |
| 74 | |
| 75 | static char getHexDigit(int N) { |
| 76 | assert(N < 16); |
| 77 | if (N < 10) |
| 78 | return '0' + N; |
| 79 | return 'a' + N - 10; |
| 80 | } |
| 81 | |
| 82 | raw_ostream &BlockMass::print(raw_ostream &OS) const { |
| 83 | for (int Digits = 0; Digits < 16; ++Digits) |
| 84 | OS << getHexDigit(N: Mass >> (60 - Digits * 4) & 0xf); |
| 85 | return OS; |
| 86 | } |
| 87 | |
| 88 | namespace { |
| 89 | |
| 90 | using BlockNode = BlockFrequencyInfoImplBase::BlockNode; |
| 91 | using Distribution = BlockFrequencyInfoImplBase::Distribution; |
| 92 | using WeightList = BlockFrequencyInfoImplBase::Distribution::WeightList; |
| 93 | using Scaled64 = BlockFrequencyInfoImplBase::Scaled64; |
| 94 | using LoopData = BlockFrequencyInfoImplBase::LoopData; |
| 95 | using Weight = BlockFrequencyInfoImplBase::Weight; |
| 96 | using FrequencyData = BlockFrequencyInfoImplBase::FrequencyData; |
| 97 | |
| 98 | /// Dithering mass distributer. |
| 99 | /// |
| 100 | /// This class splits up a single mass into portions by weight, dithering to |
| 101 | /// spread out error. No mass is lost. The dithering precision depends on the |
| 102 | /// precision of the product of \a BlockMass and \a BranchProbability. |
| 103 | /// |
| 104 | /// The distribution algorithm follows. |
| 105 | /// |
| 106 | /// 1. Initialize by saving the sum of the weights in \a RemWeight and the |
| 107 | /// mass to distribute in \a RemMass. |
| 108 | /// |
| 109 | /// 2. For each portion: |
| 110 | /// |
| 111 | /// 1. Construct a branch probability, P, as the portion's weight divided |
| 112 | /// by the current value of \a RemWeight. |
| 113 | /// 2. Calculate the portion's mass as \a RemMass times P. |
| 114 | /// 3. Update \a RemWeight and \a RemMass at each portion by subtracting |
| 115 | /// the current portion's weight and mass. |
| 116 | struct DitheringDistributer { |
| 117 | uint32_t RemWeight; |
| 118 | BlockMass RemMass; |
| 119 | |
| 120 | DitheringDistributer(Distribution &Dist, const BlockMass &Mass); |
| 121 | |
| 122 | BlockMass takeMass(uint32_t Weight); |
| 123 | }; |
| 124 | |
| 125 | } // end anonymous namespace |
| 126 | |
| 127 | DitheringDistributer::DitheringDistributer(Distribution &Dist, |
| 128 | const BlockMass &Mass) { |
| 129 | Dist.normalize(); |
| 130 | RemWeight = Dist.Total; |
| 131 | RemMass = Mass; |
| 132 | } |
| 133 | |
| 134 | BlockMass DitheringDistributer::takeMass(uint32_t Weight) { |
| 135 | assert(Weight && "invalid weight" ); |
| 136 | assert(Weight <= RemWeight); |
| 137 | BlockMass Mass = RemMass * BranchProbability(Weight, RemWeight); |
| 138 | |
| 139 | // Decrement totals (dither). |
| 140 | RemWeight -= Weight; |
| 141 | RemMass -= Mass; |
| 142 | return Mass; |
| 143 | } |
| 144 | |
| 145 | void Distribution::add(const BlockNode &Node, uint64_t Amount, |
| 146 | Weight::DistType Type) { |
| 147 | assert(Amount && "invalid weight of 0" ); |
| 148 | uint64_t NewTotal = Total + Amount; |
| 149 | |
| 150 | // Check for overflow. It should be impossible to overflow twice. |
| 151 | bool IsOverflow = NewTotal < Total; |
| 152 | assert(!(DidOverflow && IsOverflow) && "unexpected repeated overflow" ); |
| 153 | DidOverflow |= IsOverflow; |
| 154 | |
| 155 | // Update the total. |
| 156 | Total = NewTotal; |
| 157 | |
| 158 | // Save the weight. |
| 159 | Weights.push_back(Elt: Weight(Type, Node, Amount)); |
| 160 | } |
| 161 | |
| 162 | static void combineWeight(Weight &W, const Weight &OtherW) { |
| 163 | assert(OtherW.TargetNode.isValid()); |
| 164 | if (!W.Amount) { |
| 165 | W = OtherW; |
| 166 | return; |
| 167 | } |
| 168 | assert(W.Type == OtherW.Type); |
| 169 | assert(W.TargetNode == OtherW.TargetNode); |
| 170 | assert(OtherW.Amount && "Expected non-zero weight" ); |
| 171 | if (W.Amount > W.Amount + OtherW.Amount) |
| 172 | // Saturate on overflow. |
| 173 | W.Amount = UINT64_MAX; |
| 174 | else |
| 175 | W.Amount += OtherW.Amount; |
| 176 | } |
| 177 | |
| 178 | static void combineWeightsBySorting(WeightList &Weights) { |
| 179 | // Sort so edges to the same node are adjacent. |
| 180 | llvm::sort(C&: Weights, Comp: [](const Weight &L, const Weight &R) { |
| 181 | return L.TargetNode < R.TargetNode; |
| 182 | }); |
| 183 | |
| 184 | // Combine adjacent edges. |
| 185 | WeightList::iterator O = Weights.begin(); |
| 186 | for (WeightList::const_iterator I = O, L = O, E = Weights.end(); I != E; |
| 187 | ++O, (I = L)) { |
| 188 | *O = *I; |
| 189 | |
| 190 | // Find the adjacent weights to the same node. |
| 191 | for (++L; L != E && I->TargetNode == L->TargetNode; ++L) |
| 192 | combineWeight(W&: *O, OtherW: *L); |
| 193 | } |
| 194 | |
| 195 | // Erase extra entries. |
| 196 | Weights.erase(CS: O, CE: Weights.end()); |
| 197 | } |
| 198 | |
| 199 | static void combineWeightsByHashing(WeightList &Weights) { |
| 200 | // Collect weights into a DenseMap. |
| 201 | using HashTable = DenseMap<BlockNode::IndexType, Weight>; |
| 202 | |
| 203 | HashTable Combined(NextPowerOf2(A: 2 * Weights.size())); |
| 204 | for (const Weight &W : Weights) |
| 205 | combineWeight(W&: Combined[W.TargetNode.Index], OtherW: W); |
| 206 | |
| 207 | // Check whether anything changed. |
| 208 | if (Weights.size() == Combined.size()) |
| 209 | return; |
| 210 | |
| 211 | // Fill in the new weights. |
| 212 | Weights.clear(); |
| 213 | Weights.reserve(N: Combined.size()); |
| 214 | for (const auto &I : Combined) |
| 215 | Weights.push_back(Elt: I.second); |
| 216 | } |
| 217 | |
| 218 | static void combineWeights(WeightList &Weights) { |
| 219 | // Use a hash table for many successors to keep this linear. |
| 220 | if (Weights.size() > 128) { |
| 221 | combineWeightsByHashing(Weights); |
| 222 | return; |
| 223 | } |
| 224 | |
| 225 | combineWeightsBySorting(Weights); |
| 226 | } |
| 227 | |
| 228 | static uint64_t shiftRightAndRound(uint64_t N, int Shift) { |
| 229 | assert(Shift >= 0); |
| 230 | assert(Shift < 64); |
| 231 | if (!Shift) |
| 232 | return N; |
| 233 | return (N >> Shift) + (UINT64_C(1) & N >> (Shift - 1)); |
| 234 | } |
| 235 | |
| 236 | void Distribution::normalize() { |
| 237 | // Early exit for termination nodes. |
| 238 | if (Weights.empty()) |
| 239 | return; |
| 240 | |
| 241 | // Only bother if there are multiple successors. |
| 242 | if (Weights.size() > 1) |
| 243 | combineWeights(Weights); |
| 244 | |
| 245 | // Early exit when combined into a single successor. |
| 246 | if (Weights.size() == 1) { |
| 247 | Total = 1; |
| 248 | Weights.front().Amount = 1; |
| 249 | return; |
| 250 | } |
| 251 | |
| 252 | // Determine how much to shift right so that the total fits into 32-bits. |
| 253 | // |
| 254 | // If we shift at all, shift by 1 extra. Otherwise, the lower limit of 1 |
| 255 | // for each weight can cause a 32-bit overflow. |
| 256 | int Shift = 0; |
| 257 | if (DidOverflow) |
| 258 | Shift = 33; |
| 259 | else if (Total > UINT32_MAX) |
| 260 | Shift = 33 - llvm::countl_zero(Val: Total); |
| 261 | |
| 262 | // Early exit if nothing needs to be scaled. |
| 263 | if (!Shift) { |
| 264 | // If we didn't overflow then combineWeights() shouldn't have changed the |
| 265 | // sum of the weights, but let's double-check. |
| 266 | assert(Total == std::accumulate(Weights.begin(), Weights.end(), UINT64_C(0), |
| 267 | [](uint64_t Sum, const Weight &W) { |
| 268 | return Sum + W.Amount; |
| 269 | }) && |
| 270 | "Expected total to be correct" ); |
| 271 | return; |
| 272 | } |
| 273 | |
| 274 | // Recompute the total through accumulation (rather than shifting it) so that |
| 275 | // it's accurate after shifting and any changes combineWeights() made above. |
| 276 | Total = 0; |
| 277 | |
| 278 | // Sum the weights to each node and shift right if necessary. |
| 279 | for (Weight &W : Weights) { |
| 280 | // Scale down below UINT32_MAX. Since Shift is larger than necessary, we |
| 281 | // can round here without concern about overflow. |
| 282 | assert(W.TargetNode.isValid()); |
| 283 | W.Amount = std::max(UINT64_C(1), b: shiftRightAndRound(N: W.Amount, Shift)); |
| 284 | assert(W.Amount <= UINT32_MAX); |
| 285 | |
| 286 | // Update the total. |
| 287 | Total += W.Amount; |
| 288 | } |
| 289 | assert(Total <= UINT32_MAX); |
| 290 | } |
| 291 | |
| 292 | void BlockFrequencyInfoImplBase::clear() { |
| 293 | // Swap with a default-constructed std::vector, since std::vector<>::clear() |
| 294 | // does not actually clear heap storage. |
| 295 | std::vector<FrequencyData>().swap(x&: Freqs); |
| 296 | IsIrrLoopHeader.clear(); |
| 297 | std::vector<WorkingData>().swap(x&: Working); |
| 298 | Loops.clear(); |
| 299 | } |
| 300 | |
| 301 | /// Clear all memory not needed downstream. |
| 302 | /// |
| 303 | /// Releases all memory not used downstream. In particular, saves Freqs. |
| 304 | static void cleanup(BlockFrequencyInfoImplBase &BFI) { |
| 305 | std::vector<FrequencyData> SavedFreqs(std::move(BFI.Freqs)); |
| 306 | SparseBitVector<> (std::move(BFI.IsIrrLoopHeader)); |
| 307 | BFI.clear(); |
| 308 | BFI.Freqs = std::move(SavedFreqs); |
| 309 | BFI.IsIrrLoopHeader = std::move(SavedIsIrrLoopHeader); |
| 310 | } |
| 311 | |
| 312 | bool BlockFrequencyInfoImplBase::addToDist(Distribution &Dist, |
| 313 | const LoopData *OuterLoop, |
| 314 | const BlockNode &Pred, |
| 315 | const BlockNode &Succ, |
| 316 | uint64_t Weight) { |
| 317 | if (!Weight) |
| 318 | Weight = 1; |
| 319 | |
| 320 | auto = [&OuterLoop](const BlockNode &Node) { |
| 321 | return OuterLoop && OuterLoop->isHeader(Node); |
| 322 | }; |
| 323 | |
| 324 | BlockNode Resolved = Working[Succ.Index].getResolvedNode(); |
| 325 | |
| 326 | #ifndef NDEBUG |
| 327 | auto debugSuccessor = [&](const char *Type) { |
| 328 | dbgs() << " =>" |
| 329 | << " [" << Type << "] weight = " << Weight; |
| 330 | if (!isLoopHeader(Resolved)) |
| 331 | dbgs() << ", succ = " << getBlockName(Succ); |
| 332 | if (Resolved != Succ) |
| 333 | dbgs() << ", resolved = " << getBlockName(Resolved); |
| 334 | dbgs() << "\n" ; |
| 335 | }; |
| 336 | (void)debugSuccessor; |
| 337 | #endif |
| 338 | |
| 339 | if (isLoopHeader(Resolved)) { |
| 340 | LLVM_DEBUG(debugSuccessor("backedge" )); |
| 341 | Dist.addBackedge(Node: Resolved, Amount: Weight); |
| 342 | return true; |
| 343 | } |
| 344 | |
| 345 | if (Working[Resolved.Index].getContainingLoop() != OuterLoop) { |
| 346 | LLVM_DEBUG(debugSuccessor(" exit " )); |
| 347 | Dist.addExit(Node: Resolved, Amount: Weight); |
| 348 | return true; |
| 349 | } |
| 350 | |
| 351 | if (Resolved < Pred) { |
| 352 | if (!isLoopHeader(Pred)) { |
| 353 | // If OuterLoop is an irreducible loop, we can't actually handle this. |
| 354 | assert((!OuterLoop || !OuterLoop->isIrreducible()) && |
| 355 | "unhandled irreducible control flow" ); |
| 356 | |
| 357 | // Irreducible backedge. Abort. |
| 358 | LLVM_DEBUG(debugSuccessor("abort!!!" )); |
| 359 | return false; |
| 360 | } |
| 361 | |
| 362 | // If "Pred" is a loop header, then this isn't really a backedge; rather, |
| 363 | // OuterLoop must be irreducible. These false backedges can come only from |
| 364 | // secondary loop headers. |
| 365 | assert(OuterLoop && OuterLoop->isIrreducible() && !isLoopHeader(Resolved) && |
| 366 | "unhandled irreducible control flow" ); |
| 367 | } |
| 368 | |
| 369 | LLVM_DEBUG(debugSuccessor(" local " )); |
| 370 | Dist.addLocal(Node: Resolved, Amount: Weight); |
| 371 | return true; |
| 372 | } |
| 373 | |
| 374 | bool BlockFrequencyInfoImplBase::addLoopSuccessorsToDist( |
| 375 | const LoopData *OuterLoop, LoopData &Loop, Distribution &Dist) { |
| 376 | // Copy the exit map into Dist. |
| 377 | for (const auto &I : Loop.Exits) |
| 378 | if (!addToDist(Dist, OuterLoop, Pred: Loop.getHeader(), Succ: I.first, |
| 379 | Weight: I.second.getMass())) |
| 380 | // Irreducible backedge. |
| 381 | return false; |
| 382 | |
| 383 | return true; |
| 384 | } |
| 385 | |
| 386 | /// Compute the loop scale for a loop. |
| 387 | void BlockFrequencyInfoImplBase::computeLoopScale(LoopData &Loop) { |
| 388 | // Compute loop scale. |
| 389 | LLVM_DEBUG(dbgs() << "compute-loop-scale: " << getLoopName(Loop) << "\n" ); |
| 390 | |
| 391 | // Infinite loops need special handling. If we give the back edge an infinite |
| 392 | // mass, they may saturate all the other scales in the function down to 1, |
| 393 | // making all the other region temperatures look exactly the same. Choose an |
| 394 | // arbitrary scale to avoid these issues. |
| 395 | // |
| 396 | // FIXME: An alternate way would be to select a symbolic scale which is later |
| 397 | // replaced to be the maximum of all computed scales plus 1. This would |
| 398 | // appropriately describe the loop as having a large scale, without skewing |
| 399 | // the final frequency computation. |
| 400 | const Scaled64 InfiniteLoopScale(1, 12); |
| 401 | |
| 402 | // LoopScale == 1 / ExitMass |
| 403 | // ExitMass == HeadMass - BackedgeMass |
| 404 | BlockMass TotalBackedgeMass; |
| 405 | for (auto &Mass : Loop.BackedgeMass) |
| 406 | TotalBackedgeMass += Mass; |
| 407 | BlockMass ExitMass = BlockMass::getFull() - TotalBackedgeMass; |
| 408 | |
| 409 | // Block scale stores the inverse of the scale. If this is an infinite loop, |
| 410 | // its exit mass will be zero. In this case, use an arbitrary scale for the |
| 411 | // loop scale. |
| 412 | Loop.Scale = |
| 413 | ExitMass.isEmpty() ? InfiniteLoopScale : ExitMass.toScaled().inverse(); |
| 414 | |
| 415 | LLVM_DEBUG(dbgs() << " - exit-mass = " << ExitMass << " (" |
| 416 | << BlockMass::getFull() << " - " << TotalBackedgeMass |
| 417 | << ")\n" |
| 418 | << " - scale = " << Loop.Scale << "\n" ); |
| 419 | } |
| 420 | |
| 421 | /// Package up a loop. |
| 422 | void BlockFrequencyInfoImplBase::packageLoop(LoopData &Loop) { |
| 423 | LLVM_DEBUG(dbgs() << "packaging-loop: " << getLoopName(Loop) << "\n" ); |
| 424 | |
| 425 | // Clear the subloop exits to prevent quadratic memory usage. |
| 426 | for (const BlockNode &M : Loop.Nodes) { |
| 427 | if (auto *Loop = Working[M.Index].getPackagedLoop()) |
| 428 | Loop->Exits.clear(); |
| 429 | LLVM_DEBUG(dbgs() << " - node: " << getBlockName(M.Index) << "\n" ); |
| 430 | } |
| 431 | Loop.IsPackaged = true; |
| 432 | } |
| 433 | |
| 434 | #ifndef NDEBUG |
| 435 | static void debugAssign(const BlockFrequencyInfoImplBase &BFI, |
| 436 | const DitheringDistributer &D, const BlockNode &T, |
| 437 | const BlockMass &M, const char *Desc) { |
| 438 | dbgs() << " => assign " << M << " (" << D.RemMass << ")" ; |
| 439 | if (Desc) |
| 440 | dbgs() << " [" << Desc << "]" ; |
| 441 | if (T.isValid()) |
| 442 | dbgs() << " to " << BFI.getBlockName(T); |
| 443 | dbgs() << "\n" ; |
| 444 | } |
| 445 | #endif |
| 446 | |
| 447 | void BlockFrequencyInfoImplBase::distributeMass(const BlockNode &Source, |
| 448 | LoopData *OuterLoop, |
| 449 | Distribution &Dist) { |
| 450 | BlockMass Mass = Working[Source.Index].getMass(); |
| 451 | LLVM_DEBUG(dbgs() << " => mass: " << Mass << "\n" ); |
| 452 | |
| 453 | // Distribute mass to successors as laid out in Dist. |
| 454 | DitheringDistributer D(Dist, Mass); |
| 455 | |
| 456 | for (const Weight &W : Dist.Weights) { |
| 457 | // Check for a local edge (non-backedge and non-exit). |
| 458 | BlockMass Taken = D.takeMass(Weight: W.Amount); |
| 459 | if (W.Type == Weight::Local) { |
| 460 | Working[W.TargetNode.Index].getMass() += Taken; |
| 461 | LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); |
| 462 | continue; |
| 463 | } |
| 464 | |
| 465 | // Backedges and exits only make sense if we're processing a loop. |
| 466 | assert(OuterLoop && "backedge or exit outside of loop" ); |
| 467 | |
| 468 | // Check for a backedge. |
| 469 | if (W.Type == Weight::Backedge) { |
| 470 | OuterLoop->BackedgeMass[OuterLoop->getHeaderIndex(B: W.TargetNode)] += Taken; |
| 471 | LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "back" )); |
| 472 | continue; |
| 473 | } |
| 474 | |
| 475 | // This must be an exit. |
| 476 | assert(W.Type == Weight::Exit); |
| 477 | OuterLoop->Exits.push_back(Elt: std::make_pair(x: W.TargetNode, y&: Taken)); |
| 478 | LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, "exit" )); |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | static void convertFloatingToInteger(BlockFrequencyInfoImplBase &BFI, |
| 483 | const Scaled64 &Min, const Scaled64 &Max) { |
| 484 | // Scale the Factor to a size that creates integers. If possible scale |
| 485 | // integers so that Max == UINT64_MAX so that they can be best differentiated. |
| 486 | // Is is possible that the range between min and max cannot be accurately |
| 487 | // represented in a 64bit integer without either loosing precision for small |
| 488 | // values (so small unequal numbers all map to 1) or saturaturing big numbers |
| 489 | // loosing precision for big numbers (so unequal big numbers may map to |
| 490 | // UINT64_MAX). We choose to loose precision for small numbers. |
| 491 | const unsigned MaxBits = sizeof(Scaled64::DigitsType) * CHAR_BIT; |
| 492 | // Users often add up multiple BlockFrequency values or multiply them with |
| 493 | // things like instruction costs. Leave some room to avoid saturating |
| 494 | // operations reaching UIN64_MAX too early. |
| 495 | const unsigned Slack = 10; |
| 496 | Scaled64 ScalingFactor = Scaled64(1, MaxBits - Slack) / Max; |
| 497 | |
| 498 | // Translate the floats to integers. |
| 499 | LLVM_DEBUG(dbgs() << "float-to-int: min = " << Min << ", max = " << Max |
| 500 | << ", factor = " << ScalingFactor << "\n" ); |
| 501 | (void)Min; |
| 502 | for (size_t Index = 0; Index < BFI.Freqs.size(); ++Index) { |
| 503 | Scaled64 Scaled = BFI.Freqs[Index].Scaled * ScalingFactor; |
| 504 | BFI.Freqs[Index].Integer = std::max(UINT64_C(1), b: Scaled.toInt<uint64_t>()); |
| 505 | LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(Index) << ": float = " |
| 506 | << BFI.Freqs[Index].Scaled << ", scaled = " << Scaled |
| 507 | << ", int = " << BFI.Freqs[Index].Integer << "\n" ); |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | /// Unwrap a loop package. |
| 512 | /// |
| 513 | /// Visits all the members of a loop, adjusting their BlockData according to |
| 514 | /// the loop's pseudo-node. |
| 515 | static void unwrapLoop(BlockFrequencyInfoImplBase &BFI, LoopData &Loop) { |
| 516 | LLVM_DEBUG(dbgs() << "unwrap-loop-package: " << BFI.getLoopName(Loop) |
| 517 | << ": mass = " << Loop.Mass << ", scale = " << Loop.Scale |
| 518 | << "\n" ); |
| 519 | Loop.Scale *= Loop.Mass.toScaled(); |
| 520 | Loop.IsPackaged = false; |
| 521 | LLVM_DEBUG(dbgs() << " => combined-scale = " << Loop.Scale << "\n" ); |
| 522 | |
| 523 | // Propagate the head scale through the loop. Since members are visited in |
| 524 | // RPO, the head scale will be updated by the loop scale first, and then the |
| 525 | // final head scale will be used for updated the rest of the members. |
| 526 | for (const BlockNode &N : Loop.Nodes) { |
| 527 | const auto &Working = BFI.Working[N.Index]; |
| 528 | Scaled64 &F = Working.isAPackage() ? Working.getPackagedLoop()->Scale |
| 529 | : BFI.Freqs[N.Index].Scaled; |
| 530 | Scaled64 New = Loop.Scale * F; |
| 531 | LLVM_DEBUG(dbgs() << " - " << BFI.getBlockName(N) << ": " << F << " => " |
| 532 | << New << "\n" ); |
| 533 | F = New; |
| 534 | } |
| 535 | } |
| 536 | |
| 537 | void BlockFrequencyInfoImplBase::unwrapLoops() { |
| 538 | // Set initial frequencies from loop-local masses. |
| 539 | for (size_t Index = 0; Index < Working.size(); ++Index) |
| 540 | Freqs[Index].Scaled = Working[Index].Mass.toScaled(); |
| 541 | |
| 542 | for (LoopData &Loop : Loops) |
| 543 | unwrapLoop(BFI&: *this, Loop); |
| 544 | } |
| 545 | |
| 546 | void BlockFrequencyInfoImplBase::finalizeMetrics() { |
| 547 | // Unwrap loop packages in reverse post-order, tracking min and max |
| 548 | // frequencies. |
| 549 | auto Min = Scaled64::getLargest(); |
| 550 | auto Max = Scaled64::getZero(); |
| 551 | for (size_t Index = 0; Index < Working.size(); ++Index) { |
| 552 | // Update min/max scale. |
| 553 | Min = std::min(a: Min, b: Freqs[Index].Scaled); |
| 554 | Max = std::max(a: Max, b: Freqs[Index].Scaled); |
| 555 | } |
| 556 | |
| 557 | // Convert to integers. |
| 558 | convertFloatingToInteger(BFI&: *this, Min, Max); |
| 559 | |
| 560 | // Clean up data structures. |
| 561 | cleanup(BFI&: *this); |
| 562 | |
| 563 | // Print out the final stats. |
| 564 | LLVM_DEBUG(dump()); |
| 565 | } |
| 566 | |
| 567 | BlockFrequency |
| 568 | BlockFrequencyInfoImplBase::getBlockFreq(const BlockNode &Node) const { |
| 569 | if (!Node.isValid()) { |
| 570 | #ifndef NDEBUG |
| 571 | if (CheckBFIUnknownBlockQueries) { |
| 572 | SmallString<256> Msg; |
| 573 | raw_svector_ostream OS(Msg); |
| 574 | OS << "*** Detected BFI query for unknown block " << getBlockName(Node); |
| 575 | report_fatal_error(OS.str()); |
| 576 | } |
| 577 | #endif |
| 578 | return BlockFrequency(0); |
| 579 | } |
| 580 | return BlockFrequency(Freqs[Node.Index].Integer); |
| 581 | } |
| 582 | |
| 583 | std::optional<uint64_t> |
| 584 | BlockFrequencyInfoImplBase::getBlockProfileCount(const Function &F, |
| 585 | const BlockNode &Node, |
| 586 | bool AllowSynthetic) const { |
| 587 | return getProfileCountFromFreq(F, Freq: getBlockFreq(Node), AllowSynthetic); |
| 588 | } |
| 589 | |
| 590 | std::optional<uint64_t> BlockFrequencyInfoImplBase::getProfileCountFromFreq( |
| 591 | const Function &F, BlockFrequency Freq, bool AllowSynthetic) const { |
| 592 | auto EntryCount = F.getEntryCount(AllowSynthetic); |
| 593 | if (!EntryCount) |
| 594 | return std::nullopt; |
| 595 | // Use 128 bit APInt to do the arithmetic to avoid overflow. |
| 596 | APInt BlockCount(128, EntryCount->getCount()); |
| 597 | APInt BlockFreq(128, Freq.getFrequency()); |
| 598 | APInt EntryFreq(128, getEntryFreq().getFrequency()); |
| 599 | BlockCount *= BlockFreq; |
| 600 | // Rounded division of BlockCount by EntryFreq. Since EntryFreq is unsigned |
| 601 | // lshr by 1 gives EntryFreq/2. |
| 602 | BlockCount = (BlockCount + EntryFreq.lshr(shiftAmt: 1)).udiv(RHS: EntryFreq); |
| 603 | return BlockCount.getLimitedValue(); |
| 604 | } |
| 605 | |
| 606 | bool |
| 607 | BlockFrequencyInfoImplBase::(const BlockNode &Node) { |
| 608 | if (!Node.isValid()) |
| 609 | return false; |
| 610 | return IsIrrLoopHeader.test(Idx: Node.Index); |
| 611 | } |
| 612 | |
| 613 | Scaled64 |
| 614 | BlockFrequencyInfoImplBase::getFloatingBlockFreq(const BlockNode &Node) const { |
| 615 | if (!Node.isValid()) |
| 616 | return Scaled64::getZero(); |
| 617 | return Freqs[Node.Index].Scaled; |
| 618 | } |
| 619 | |
| 620 | void BlockFrequencyInfoImplBase::setBlockFreq(const BlockNode &Node, |
| 621 | BlockFrequency Freq) { |
| 622 | assert(Node.isValid() && "Expected valid node" ); |
| 623 | assert(Node.Index < Freqs.size() && "Expected legal index" ); |
| 624 | Freqs[Node.Index].Integer = Freq.getFrequency(); |
| 625 | } |
| 626 | |
| 627 | std::string |
| 628 | BlockFrequencyInfoImplBase::getBlockName(const BlockNode &Node) const { |
| 629 | return {}; |
| 630 | } |
| 631 | |
| 632 | std::string |
| 633 | BlockFrequencyInfoImplBase::getLoopName(const LoopData &Loop) const { |
| 634 | return getBlockName(Node: Loop.getHeader()) + (Loop.isIrreducible() ? "**" : "*" ); |
| 635 | } |
| 636 | |
| 637 | void IrreducibleGraph::addNodesInLoop(const BFIBase::LoopData &OuterLoop) { |
| 638 | Start = OuterLoop.getHeader(); |
| 639 | Nodes.reserve(n: OuterLoop.Nodes.size()); |
| 640 | for (auto N : OuterLoop.Nodes) |
| 641 | addNode(Node: N); |
| 642 | indexNodes(); |
| 643 | } |
| 644 | |
| 645 | void IrreducibleGraph::addNodesInFunction() { |
| 646 | Start = 0; |
| 647 | for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) |
| 648 | if (!BFI.Working[Index].isPackaged()) |
| 649 | addNode(Node: Index); |
| 650 | indexNodes(); |
| 651 | } |
| 652 | |
| 653 | void IrreducibleGraph::indexNodes() { |
| 654 | for (auto &I : Nodes) |
| 655 | Lookup[I.Node.Index] = &I; |
| 656 | } |
| 657 | |
| 658 | void IrreducibleGraph::addEdge(IrrNode &Irr, const BlockNode &Succ, |
| 659 | const BFIBase::LoopData *OuterLoop) { |
| 660 | if (OuterLoop && OuterLoop->isHeader(Node: Succ)) |
| 661 | return; |
| 662 | auto L = Lookup.find(Val: Succ.Index); |
| 663 | if (L == Lookup.end()) |
| 664 | return; |
| 665 | IrrNode &SuccIrr = *L->second; |
| 666 | Irr.Edges.push_back(x: &SuccIrr); |
| 667 | SuccIrr.Edges.push_front(x: &Irr); |
| 668 | ++SuccIrr.NumIn; |
| 669 | } |
| 670 | |
| 671 | namespace llvm { |
| 672 | |
| 673 | template <> struct GraphTraits<IrreducibleGraph> { |
| 674 | using GraphT = bfi_detail::IrreducibleGraph; |
| 675 | using NodeRef = const GraphT::IrrNode *; |
| 676 | using ChildIteratorType = GraphT::IrrNode::iterator; |
| 677 | |
| 678 | static NodeRef getEntryNode(const GraphT &G) { return G.StartIrr; } |
| 679 | static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } |
| 680 | static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } |
| 681 | }; |
| 682 | |
| 683 | } // end namespace llvm |
| 684 | |
| 685 | /// Find extra irreducible headers. |
| 686 | /// |
| 687 | /// Find entry blocks and other blocks with backedges, which exist when \c G |
| 688 | /// contains irreducible sub-SCCs. |
| 689 | static void ( |
| 690 | const BlockFrequencyInfoImplBase &BFI, |
| 691 | const IrreducibleGraph &G, |
| 692 | const std::vector<const IrreducibleGraph::IrrNode *> &SCC, |
| 693 | LoopData::NodeList &, LoopData::NodeList &Others) { |
| 694 | // Map from nodes in the SCC to whether it's an entry block. |
| 695 | SmallDenseMap<const IrreducibleGraph::IrrNode *, bool, 8> InSCC; |
| 696 | |
| 697 | // InSCC also acts the set of nodes in the graph. Seed it. |
| 698 | for (const auto *I : SCC) |
| 699 | InSCC[I] = false; |
| 700 | |
| 701 | for (auto I = InSCC.begin(), E = InSCC.end(); I != E; ++I) { |
| 702 | auto &Irr = *I->first; |
| 703 | for (const auto *P : make_range(x: Irr.pred_begin(), y: Irr.pred_end())) { |
| 704 | if (InSCC.count(Val: P)) |
| 705 | continue; |
| 706 | |
| 707 | // This is an entry block. |
| 708 | I->second = true; |
| 709 | Headers.push_back(Elt: Irr.Node); |
| 710 | LLVM_DEBUG(dbgs() << " => entry = " << BFI.getBlockName(Irr.Node) |
| 711 | << "\n" ); |
| 712 | break; |
| 713 | } |
| 714 | } |
| 715 | assert(Headers.size() >= 2 && |
| 716 | "Expected irreducible CFG; -loop-info is likely invalid" ); |
| 717 | if (Headers.size() == InSCC.size()) { |
| 718 | // Every block is a header. |
| 719 | llvm::sort(C&: Headers); |
| 720 | return; |
| 721 | } |
| 722 | |
| 723 | // Look for extra headers from irreducible sub-SCCs. |
| 724 | for (const auto &I : InSCC) { |
| 725 | // Entry blocks are already headers. |
| 726 | if (I.second) |
| 727 | continue; |
| 728 | |
| 729 | auto &Irr = *I.first; |
| 730 | for (const auto *P : make_range(x: Irr.pred_begin(), y: Irr.pred_end())) { |
| 731 | // Skip forward edges. |
| 732 | if (P->Node < Irr.Node) |
| 733 | continue; |
| 734 | |
| 735 | // Skip predecessors from entry blocks. These can have inverted |
| 736 | // ordering. |
| 737 | if (InSCC.lookup(Val: P)) |
| 738 | continue; |
| 739 | |
| 740 | // Store the extra header. |
| 741 | Headers.push_back(Elt: Irr.Node); |
| 742 | LLVM_DEBUG(dbgs() << " => extra = " << BFI.getBlockName(Irr.Node) |
| 743 | << "\n" ); |
| 744 | break; |
| 745 | } |
| 746 | if (Headers.back() == Irr.Node) |
| 747 | // Added this as a header. |
| 748 | continue; |
| 749 | |
| 750 | // This is not a header. |
| 751 | Others.push_back(Elt: Irr.Node); |
| 752 | LLVM_DEBUG(dbgs() << " => other = " << BFI.getBlockName(Irr.Node) << "\n" ); |
| 753 | } |
| 754 | llvm::sort(C&: Headers); |
| 755 | llvm::sort(C&: Others); |
| 756 | } |
| 757 | |
| 758 | static void createIrreducibleLoop( |
| 759 | BlockFrequencyInfoImplBase &BFI, const IrreducibleGraph &G, |
| 760 | LoopData *OuterLoop, std::list<LoopData>::iterator Insert, |
| 761 | const std::vector<const IrreducibleGraph::IrrNode *> &SCC) { |
| 762 | // Translate the SCC into RPO. |
| 763 | LLVM_DEBUG(dbgs() << " - found-scc\n" ); |
| 764 | |
| 765 | LoopData::NodeList ; |
| 766 | LoopData::NodeList Others; |
| 767 | findIrreducibleHeaders(BFI, G, SCC, Headers, Others); |
| 768 | |
| 769 | auto Loop = BFI.Loops.emplace(position: Insert, args&: OuterLoop, args: Headers.begin(), |
| 770 | args: Headers.end(), args: Others.begin(), args: Others.end()); |
| 771 | |
| 772 | // Update loop hierarchy. |
| 773 | for (const auto &N : Loop->Nodes) |
| 774 | if (BFI.Working[N.Index].isLoopHeader()) |
| 775 | BFI.Working[N.Index].Loop->Parent = &*Loop; |
| 776 | else |
| 777 | BFI.Working[N.Index].Loop = &*Loop; |
| 778 | } |
| 779 | |
| 780 | iterator_range<std::list<LoopData>::iterator> |
| 781 | BlockFrequencyInfoImplBase::analyzeIrreducible( |
| 782 | const IrreducibleGraph &G, LoopData *OuterLoop, |
| 783 | std::list<LoopData>::iterator Insert) { |
| 784 | assert((OuterLoop == nullptr) == (Insert == Loops.begin())); |
| 785 | auto Prev = OuterLoop ? std::prev(x: Insert) : Loops.end(); |
| 786 | |
| 787 | for (auto I = scc_begin(G); !I.isAtEnd(); ++I) { |
| 788 | if (I->size() < 2) |
| 789 | continue; |
| 790 | |
| 791 | // Translate the SCC into RPO. |
| 792 | createIrreducibleLoop(BFI&: *this, G, OuterLoop, Insert, SCC: *I); |
| 793 | } |
| 794 | |
| 795 | if (OuterLoop) |
| 796 | return make_range(x: std::next(x: Prev), y: Insert); |
| 797 | return make_range(x: Loops.begin(), y: Insert); |
| 798 | } |
| 799 | |
| 800 | void |
| 801 | BlockFrequencyInfoImplBase::updateLoopWithIrreducible(LoopData &OuterLoop) { |
| 802 | OuterLoop.Exits.clear(); |
| 803 | for (auto &Mass : OuterLoop.BackedgeMass) |
| 804 | Mass = BlockMass::getEmpty(); |
| 805 | auto O = OuterLoop.Nodes.begin() + 1; |
| 806 | for (auto I = O, E = OuterLoop.Nodes.end(); I != E; ++I) |
| 807 | if (!Working[I->Index].isPackaged()) |
| 808 | *O++ = *I; |
| 809 | OuterLoop.Nodes.erase(CS: O, CE: OuterLoop.Nodes.end()); |
| 810 | } |
| 811 | |
| 812 | void BlockFrequencyInfoImplBase::(LoopData &Loop) { |
| 813 | assert(Loop.isIrreducible() && "this only makes sense on irreducible loops" ); |
| 814 | |
| 815 | // Since the loop has more than one header block, the mass flowing back into |
| 816 | // each header will be different. Adjust the mass in each header loop to |
| 817 | // reflect the masses flowing through back edges. |
| 818 | // |
| 819 | // To do this, we distribute the initial mass using the backedge masses |
| 820 | // as weights for the distribution. |
| 821 | BlockMass LoopMass = BlockMass::getFull(); |
| 822 | Distribution Dist; |
| 823 | |
| 824 | LLVM_DEBUG(dbgs() << "adjust-loop-header-mass:\n" ); |
| 825 | for (uint32_t H = 0; H < Loop.NumHeaders; ++H) { |
| 826 | auto & = Loop.Nodes[H]; |
| 827 | auto &BackedgeMass = Loop.BackedgeMass[Loop.getHeaderIndex(B: HeaderNode)]; |
| 828 | LLVM_DEBUG(dbgs() << " - Add back edge mass for node " |
| 829 | << getBlockName(HeaderNode) << ": " << BackedgeMass |
| 830 | << "\n" ); |
| 831 | if (BackedgeMass.getMass() > 0) |
| 832 | Dist.addLocal(Node: HeaderNode, Amount: BackedgeMass.getMass()); |
| 833 | else |
| 834 | LLVM_DEBUG(dbgs() << " Nothing added. Back edge mass is zero\n" ); |
| 835 | } |
| 836 | |
| 837 | DitheringDistributer D(Dist, LoopMass); |
| 838 | |
| 839 | LLVM_DEBUG(dbgs() << " Distribute loop mass " << LoopMass |
| 840 | << " to headers using above weights\n" ); |
| 841 | for (const Weight &W : Dist.Weights) { |
| 842 | BlockMass Taken = D.takeMass(Weight: W.Amount); |
| 843 | assert(W.Type == Weight::Local && "all weights should be local" ); |
| 844 | Working[W.TargetNode.Index].getMass() = Taken; |
| 845 | LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | void BlockFrequencyInfoImplBase::(Distribution &Dist) { |
| 850 | BlockMass LoopMass = BlockMass::getFull(); |
| 851 | DitheringDistributer D(Dist, LoopMass); |
| 852 | for (const Weight &W : Dist.Weights) { |
| 853 | BlockMass Taken = D.takeMass(Weight: W.Amount); |
| 854 | assert(W.Type == Weight::Local && "all weights should be local" ); |
| 855 | Working[W.TargetNode.Index].getMass() = Taken; |
| 856 | LLVM_DEBUG(debugAssign(*this, D, W.TargetNode, Taken, nullptr)); |
| 857 | } |
| 858 | } |
| 859 | |