| 1 | //===- DemandedBits.cpp - Determine demanded bits -------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass implements a demanded bits analysis. A demanded bit is one that |
| 10 | // contributes to a result; bits that are not demanded can be either zero or |
| 11 | // one without affecting control or data flow. For example in this sequence: |
| 12 | // |
| 13 | // %1 = add i32 %x, %y |
| 14 | // %2 = trunc i32 %1 to i16 |
| 15 | // |
| 16 | // Only the lowest 16 bits of %1 are demanded; the rest are removed by the |
| 17 | // trunc. |
| 18 | // |
| 19 | //===----------------------------------------------------------------------===// |
| 20 | |
| 21 | #include "llvm/Analysis/DemandedBits.h" |
| 22 | #include "llvm/ADT/APInt.h" |
| 23 | #include "llvm/ADT/SetVector.h" |
| 24 | #include "llvm/Analysis/AssumptionCache.h" |
| 25 | #include "llvm/Analysis/ValueTracking.h" |
| 26 | #include "llvm/IR/DataLayout.h" |
| 27 | #include "llvm/IR/Dominators.h" |
| 28 | #include "llvm/IR/InstIterator.h" |
| 29 | #include "llvm/IR/Instruction.h" |
| 30 | #include "llvm/IR/IntrinsicInst.h" |
| 31 | #include "llvm/IR/Operator.h" |
| 32 | #include "llvm/IR/PassManager.h" |
| 33 | #include "llvm/IR/PatternMatch.h" |
| 34 | #include "llvm/IR/Type.h" |
| 35 | #include "llvm/IR/Use.h" |
| 36 | #include "llvm/Support/Casting.h" |
| 37 | #include "llvm/Support/Debug.h" |
| 38 | #include "llvm/Support/KnownBits.h" |
| 39 | #include "llvm/Support/raw_ostream.h" |
| 40 | #include <algorithm> |
| 41 | #include <cstdint> |
| 42 | |
| 43 | using namespace llvm; |
| 44 | using namespace llvm::PatternMatch; |
| 45 | |
| 46 | #define DEBUG_TYPE "demanded-bits" |
| 47 | |
| 48 | static bool isAlwaysLive(Instruction *I) { |
| 49 | return I->isTerminator() || I->isEHPad() || I->mayHaveSideEffects(); |
| 50 | } |
| 51 | |
| 52 | void DemandedBits::determineLiveOperandBits( |
| 53 | const Instruction *UserI, const Value *Val, unsigned OperandNo, |
| 54 | const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2, |
| 55 | bool &KnownBitsComputed) { |
| 56 | unsigned BitWidth = AB.getBitWidth(); |
| 57 | |
| 58 | // We're called once per operand, but for some instructions, we need to |
| 59 | // compute known bits of both operands in order to determine the live bits of |
| 60 | // either (when both operands are instructions themselves). We don't, |
| 61 | // however, want to do this twice, so we cache the result in APInts that live |
| 62 | // in the caller. For the two-relevant-operands case, both operand values are |
| 63 | // provided here. |
| 64 | auto ComputeKnownBits = |
| 65 | [&](unsigned BitWidth, const Value *V1, const Value *V2) { |
| 66 | if (KnownBitsComputed) |
| 67 | return; |
| 68 | KnownBitsComputed = true; |
| 69 | |
| 70 | const DataLayout &DL = UserI->getDataLayout(); |
| 71 | Known = KnownBits(BitWidth); |
| 72 | computeKnownBits(V: V1, Known, DL, AC: &AC, CxtI: UserI, DT: &DT); |
| 73 | |
| 74 | if (V2) { |
| 75 | Known2 = KnownBits(BitWidth); |
| 76 | computeKnownBits(V: V2, Known&: Known2, DL, AC: &AC, CxtI: UserI, DT: &DT); |
| 77 | } |
| 78 | }; |
| 79 | |
| 80 | switch (UserI->getOpcode()) { |
| 81 | default: break; |
| 82 | case Instruction::Call: |
| 83 | case Instruction::Invoke: |
| 84 | if (const auto *II = dyn_cast<IntrinsicInst>(Val: UserI)) { |
| 85 | switch (II->getIntrinsicID()) { |
| 86 | default: break; |
| 87 | case Intrinsic::bswap: |
| 88 | // The alive bits of the input are the swapped alive bits of |
| 89 | // the output. |
| 90 | AB = AOut.byteSwap(); |
| 91 | break; |
| 92 | case Intrinsic::bitreverse: |
| 93 | // The alive bits of the input are the reversed alive bits of |
| 94 | // the output. |
| 95 | AB = AOut.reverseBits(); |
| 96 | break; |
| 97 | case Intrinsic::ctlz: |
| 98 | if (OperandNo == 0) { |
| 99 | // We need some output bits, so we need all bits of the |
| 100 | // input to the left of, and including, the leftmost bit |
| 101 | // known to be one. |
| 102 | ComputeKnownBits(BitWidth, Val, nullptr); |
| 103 | AB = APInt::getHighBitsSet(numBits: BitWidth, |
| 104 | hiBitsSet: std::min(a: BitWidth, b: Known.countMaxLeadingZeros()+1)); |
| 105 | } |
| 106 | break; |
| 107 | case Intrinsic::cttz: |
| 108 | if (OperandNo == 0) { |
| 109 | // We need some output bits, so we need all bits of the |
| 110 | // input to the right of, and including, the rightmost bit |
| 111 | // known to be one. |
| 112 | ComputeKnownBits(BitWidth, Val, nullptr); |
| 113 | AB = APInt::getLowBitsSet(numBits: BitWidth, |
| 114 | loBitsSet: std::min(a: BitWidth, b: Known.countMaxTrailingZeros()+1)); |
| 115 | } |
| 116 | break; |
| 117 | case Intrinsic::fshl: |
| 118 | case Intrinsic::fshr: { |
| 119 | const APInt *SA; |
| 120 | if (OperandNo == 2) { |
| 121 | // Shift amount is modulo the bitwidth. For powers of two we have |
| 122 | // SA % BW == SA & (BW - 1). |
| 123 | if (isPowerOf2_32(Value: BitWidth)) |
| 124 | AB = BitWidth - 1; |
| 125 | } else if (match(V: II->getOperand(i_nocapture: 2), P: m_APInt(Res&: SA))) { |
| 126 | // Normalize to funnel shift left. APInt shifts of BitWidth are well- |
| 127 | // defined, so no need to special-case zero shifts here. |
| 128 | uint64_t ShiftAmt = SA->urem(RHS: BitWidth); |
| 129 | if (II->getIntrinsicID() == Intrinsic::fshr) |
| 130 | ShiftAmt = BitWidth - ShiftAmt; |
| 131 | |
| 132 | if (OperandNo == 0) |
| 133 | AB = AOut.lshr(shiftAmt: ShiftAmt); |
| 134 | else if (OperandNo == 1) |
| 135 | AB = AOut.shl(shiftAmt: BitWidth - ShiftAmt); |
| 136 | } |
| 137 | break; |
| 138 | } |
| 139 | case Intrinsic::umax: |
| 140 | case Intrinsic::umin: |
| 141 | case Intrinsic::smax: |
| 142 | case Intrinsic::smin: |
| 143 | // If low bits of result are not demanded, they are also not demanded |
| 144 | // for the min/max operands. |
| 145 | AB = APInt::getBitsSetFrom(numBits: BitWidth, loBit: AOut.countr_zero()); |
| 146 | break; |
| 147 | } |
| 148 | } |
| 149 | break; |
| 150 | case Instruction::Add: |
| 151 | if (AOut.isMask()) { |
| 152 | AB = AOut; |
| 153 | } else { |
| 154 | ComputeKnownBits(BitWidth, UserI->getOperand(i: 0), UserI->getOperand(i: 1)); |
| 155 | AB = determineLiveOperandBitsAdd(OperandNo, AOut, LHS: Known, RHS: Known2); |
| 156 | } |
| 157 | break; |
| 158 | case Instruction::Sub: |
| 159 | if (AOut.isMask()) { |
| 160 | AB = AOut; |
| 161 | } else { |
| 162 | ComputeKnownBits(BitWidth, UserI->getOperand(i: 0), UserI->getOperand(i: 1)); |
| 163 | AB = determineLiveOperandBitsSub(OperandNo, AOut, LHS: Known, RHS: Known2); |
| 164 | } |
| 165 | break; |
| 166 | case Instruction::Mul: |
| 167 | // Find the highest live output bit. We don't need any more input |
| 168 | // bits than that (adds, and thus subtracts, ripple only to the |
| 169 | // left). |
| 170 | AB = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: AOut.getActiveBits()); |
| 171 | break; |
| 172 | case Instruction::Shl: |
| 173 | if (OperandNo == 0) { |
| 174 | const APInt *ShiftAmtC; |
| 175 | if (match(V: UserI->getOperand(i: 1), P: m_APInt(Res&: ShiftAmtC))) { |
| 176 | uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(Limit: BitWidth - 1); |
| 177 | AB = AOut.lshr(shiftAmt: ShiftAmt); |
| 178 | |
| 179 | // If the shift is nuw/nsw, then the high bits are not dead |
| 180 | // (because we've promised that they *must* be zero). |
| 181 | const auto *S = cast<ShlOperator>(Val: UserI); |
| 182 | if (S->hasNoSignedWrap()) |
| 183 | AB |= APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: ShiftAmt+1); |
| 184 | else if (S->hasNoUnsignedWrap()) |
| 185 | AB |= APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: ShiftAmt); |
| 186 | } |
| 187 | } |
| 188 | break; |
| 189 | case Instruction::LShr: |
| 190 | if (OperandNo == 0) { |
| 191 | const APInt *ShiftAmtC; |
| 192 | if (match(V: UserI->getOperand(i: 1), P: m_APInt(Res&: ShiftAmtC))) { |
| 193 | uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(Limit: BitWidth - 1); |
| 194 | AB = AOut.shl(shiftAmt: ShiftAmt); |
| 195 | |
| 196 | // If the shift is exact, then the low bits are not dead |
| 197 | // (they must be zero). |
| 198 | if (cast<LShrOperator>(Val: UserI)->isExact()) |
| 199 | AB |= APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: ShiftAmt); |
| 200 | } |
| 201 | } |
| 202 | break; |
| 203 | case Instruction::AShr: |
| 204 | if (OperandNo == 0) { |
| 205 | const APInt *ShiftAmtC; |
| 206 | if (match(V: UserI->getOperand(i: 1), P: m_APInt(Res&: ShiftAmtC))) { |
| 207 | uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(Limit: BitWidth - 1); |
| 208 | AB = AOut.shl(shiftAmt: ShiftAmt); |
| 209 | // Because the high input bit is replicated into the |
| 210 | // high-order bits of the result, if we need any of those |
| 211 | // bits, then we must keep the highest input bit. |
| 212 | if ((AOut & APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: ShiftAmt)) |
| 213 | .getBoolValue()) |
| 214 | AB.setSignBit(); |
| 215 | |
| 216 | // If the shift is exact, then the low bits are not dead |
| 217 | // (they must be zero). |
| 218 | if (cast<AShrOperator>(Val: UserI)->isExact()) |
| 219 | AB |= APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: ShiftAmt); |
| 220 | } |
| 221 | } |
| 222 | break; |
| 223 | case Instruction::And: |
| 224 | AB = AOut; |
| 225 | |
| 226 | // For bits that are known zero, the corresponding bits in the |
| 227 | // other operand are dead (unless they're both zero, in which |
| 228 | // case they can't both be dead, so just mark the LHS bits as |
| 229 | // dead). |
| 230 | ComputeKnownBits(BitWidth, UserI->getOperand(i: 0), UserI->getOperand(i: 1)); |
| 231 | if (OperandNo == 0) |
| 232 | AB &= ~Known2.Zero; |
| 233 | else |
| 234 | AB &= ~(Known.Zero & ~Known2.Zero); |
| 235 | break; |
| 236 | case Instruction::Or: |
| 237 | AB = AOut; |
| 238 | |
| 239 | // For bits that are known one, the corresponding bits in the |
| 240 | // other operand are dead (unless they're both one, in which |
| 241 | // case they can't both be dead, so just mark the LHS bits as |
| 242 | // dead). |
| 243 | ComputeKnownBits(BitWidth, UserI->getOperand(i: 0), UserI->getOperand(i: 1)); |
| 244 | if (OperandNo == 0) |
| 245 | AB &= ~Known2.One; |
| 246 | else |
| 247 | AB &= ~(Known.One & ~Known2.One); |
| 248 | break; |
| 249 | case Instruction::Xor: |
| 250 | case Instruction::PHI: |
| 251 | AB = AOut; |
| 252 | break; |
| 253 | case Instruction::Trunc: |
| 254 | AB = AOut.zext(width: BitWidth); |
| 255 | break; |
| 256 | case Instruction::ZExt: |
| 257 | AB = AOut.trunc(width: BitWidth); |
| 258 | break; |
| 259 | case Instruction::SExt: |
| 260 | AB = AOut.trunc(width: BitWidth); |
| 261 | // Because the high input bit is replicated into the |
| 262 | // high-order bits of the result, if we need any of those |
| 263 | // bits, then we must keep the highest input bit. |
| 264 | if ((AOut & APInt::getHighBitsSet(numBits: AOut.getBitWidth(), |
| 265 | hiBitsSet: AOut.getBitWidth() - BitWidth)) |
| 266 | .getBoolValue()) |
| 267 | AB.setSignBit(); |
| 268 | break; |
| 269 | case Instruction::Select: |
| 270 | if (OperandNo != 0) |
| 271 | AB = AOut; |
| 272 | break; |
| 273 | case Instruction::ExtractElement: |
| 274 | if (OperandNo == 0) |
| 275 | AB = AOut; |
| 276 | break; |
| 277 | case Instruction::InsertElement: |
| 278 | case Instruction::ShuffleVector: |
| 279 | if (OperandNo == 0 || OperandNo == 1) |
| 280 | AB = AOut; |
| 281 | break; |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | void DemandedBits::performAnalysis() { |
| 286 | if (Analyzed) |
| 287 | // Analysis already completed for this function. |
| 288 | return; |
| 289 | Analyzed = true; |
| 290 | |
| 291 | Visited.clear(); |
| 292 | AliveBits.clear(); |
| 293 | DeadUses.clear(); |
| 294 | |
| 295 | SmallSetVector<Instruction*, 16> Worklist; |
| 296 | |
| 297 | // Collect the set of "root" instructions that are known live. |
| 298 | for (Instruction &I : instructions(F)) { |
| 299 | if (!isAlwaysLive(I: &I)) |
| 300 | continue; |
| 301 | |
| 302 | LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n" ); |
| 303 | // For integer-valued instructions, set up an initial empty set of alive |
| 304 | // bits and add the instruction to the work list. For other instructions |
| 305 | // add their operands to the work list (for integer values operands, mark |
| 306 | // all bits as live). |
| 307 | Type *T = I.getType(); |
| 308 | if (T->isIntOrIntVectorTy()) { |
| 309 | if (AliveBits.try_emplace(Key: &I, Args: T->getScalarSizeInBits(), Args: 0).second) |
| 310 | Worklist.insert(X: &I); |
| 311 | |
| 312 | continue; |
| 313 | } |
| 314 | |
| 315 | // Non-integer-typed instructions... |
| 316 | for (Use &OI : I.operands()) { |
| 317 | if (auto *J = dyn_cast<Instruction>(Val&: OI)) { |
| 318 | Type *T = J->getType(); |
| 319 | if (T->isIntOrIntVectorTy()) |
| 320 | AliveBits[J] = APInt::getAllOnes(numBits: T->getScalarSizeInBits()); |
| 321 | else |
| 322 | Visited.insert(Ptr: J); |
| 323 | Worklist.insert(X: J); |
| 324 | } |
| 325 | } |
| 326 | // To save memory, we don't add I to the Visited set here. Instead, we |
| 327 | // check isAlwaysLive on every instruction when searching for dead |
| 328 | // instructions later (we need to check isAlwaysLive for the |
| 329 | // integer-typed instructions anyway). |
| 330 | } |
| 331 | |
| 332 | // Propagate liveness backwards to operands. |
| 333 | while (!Worklist.empty()) { |
| 334 | Instruction *UserI = Worklist.pop_back_val(); |
| 335 | |
| 336 | LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI); |
| 337 | APInt AOut; |
| 338 | bool InputIsKnownDead = false; |
| 339 | if (UserI->getType()->isIntOrIntVectorTy()) { |
| 340 | AOut = AliveBits[UserI]; |
| 341 | LLVM_DEBUG(dbgs() << " Alive Out: 0x" |
| 342 | << Twine::utohexstr(AOut.getLimitedValue())); |
| 343 | |
| 344 | // If all bits of the output are dead, then all bits of the input |
| 345 | // are also dead. |
| 346 | InputIsKnownDead = !AOut && !isAlwaysLive(I: UserI); |
| 347 | } |
| 348 | LLVM_DEBUG(dbgs() << "\n" ); |
| 349 | |
| 350 | KnownBits Known, Known2; |
| 351 | bool KnownBitsComputed = false; |
| 352 | // Compute the set of alive bits for each operand. These are anded into the |
| 353 | // existing set, if any, and if that changes the set of alive bits, the |
| 354 | // operand is added to the work-list. |
| 355 | for (Use &OI : UserI->operands()) { |
| 356 | // We also want to detect dead uses of arguments, but will only store |
| 357 | // demanded bits for instructions. |
| 358 | auto *I = dyn_cast<Instruction>(Val&: OI); |
| 359 | if (!I && !isa<Argument>(Val: OI)) |
| 360 | continue; |
| 361 | |
| 362 | Type *T = OI->getType(); |
| 363 | if (T->isIntOrIntVectorTy()) { |
| 364 | unsigned BitWidth = T->getScalarSizeInBits(); |
| 365 | APInt AB = APInt::getAllOnes(numBits: BitWidth); |
| 366 | if (InputIsKnownDead) { |
| 367 | AB = APInt(BitWidth, 0); |
| 368 | } else { |
| 369 | // Bits of each operand that are used to compute alive bits of the |
| 370 | // output are alive, all others are dead. |
| 371 | determineLiveOperandBits(UserI, Val: OI, OperandNo: OI.getOperandNo(), AOut, AB, |
| 372 | Known, Known2, KnownBitsComputed); |
| 373 | |
| 374 | // Keep track of uses which have no demanded bits. |
| 375 | if (AB.isZero()) |
| 376 | DeadUses.insert(Ptr: &OI); |
| 377 | else |
| 378 | DeadUses.erase(Ptr: &OI); |
| 379 | } |
| 380 | |
| 381 | if (I) { |
| 382 | // If we've added to the set of alive bits (or the operand has not |
| 383 | // been previously visited), then re-queue the operand to be visited |
| 384 | // again. |
| 385 | auto Res = AliveBits.try_emplace(Key: I); |
| 386 | if (Res.second || (AB |= Res.first->second) != Res.first->second) { |
| 387 | Res.first->second = std::move(AB); |
| 388 | Worklist.insert(X: I); |
| 389 | } |
| 390 | } |
| 391 | } else if (I && Visited.insert(Ptr: I).second) { |
| 392 | Worklist.insert(X: I); |
| 393 | } |
| 394 | } |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | APInt DemandedBits::getDemandedBits(Instruction *I) { |
| 399 | performAnalysis(); |
| 400 | |
| 401 | auto Found = AliveBits.find(Val: I); |
| 402 | if (Found != AliveBits.end()) |
| 403 | return Found->second; |
| 404 | |
| 405 | const DataLayout &DL = I->getDataLayout(); |
| 406 | return APInt::getAllOnes(numBits: DL.getTypeSizeInBits(Ty: I->getType()->getScalarType())); |
| 407 | } |
| 408 | |
| 409 | APInt DemandedBits::getDemandedBits(Use *U) { |
| 410 | Type *T = (*U)->getType(); |
| 411 | auto *UserI = cast<Instruction>(Val: U->getUser()); |
| 412 | const DataLayout &DL = UserI->getDataLayout(); |
| 413 | unsigned BitWidth = DL.getTypeSizeInBits(Ty: T->getScalarType()); |
| 414 | |
| 415 | // We only track integer uses, everything else produces a mask with all bits |
| 416 | // set |
| 417 | if (!T->isIntOrIntVectorTy()) |
| 418 | return APInt::getAllOnes(numBits: BitWidth); |
| 419 | |
| 420 | if (isUseDead(U)) |
| 421 | return APInt(BitWidth, 0); |
| 422 | |
| 423 | performAnalysis(); |
| 424 | |
| 425 | APInt AOut = getDemandedBits(I: UserI); |
| 426 | APInt AB = APInt::getAllOnes(numBits: BitWidth); |
| 427 | KnownBits Known, Known2; |
| 428 | bool KnownBitsComputed = false; |
| 429 | |
| 430 | determineLiveOperandBits(UserI, Val: *U, OperandNo: U->getOperandNo(), AOut, AB, Known, |
| 431 | Known2, KnownBitsComputed); |
| 432 | |
| 433 | return AB; |
| 434 | } |
| 435 | |
| 436 | bool DemandedBits::isInstructionDead(Instruction *I) { |
| 437 | performAnalysis(); |
| 438 | |
| 439 | return !Visited.count(Ptr: I) && !AliveBits.contains(Val: I) && !isAlwaysLive(I); |
| 440 | } |
| 441 | |
| 442 | bool DemandedBits::isUseDead(Use *U) { |
| 443 | // We only track integer uses, everything else is assumed live. |
| 444 | if (!(*U)->getType()->isIntOrIntVectorTy()) |
| 445 | return false; |
| 446 | |
| 447 | // Uses by always-live instructions are never dead. |
| 448 | auto *UserI = cast<Instruction>(Val: U->getUser()); |
| 449 | if (isAlwaysLive(I: UserI)) |
| 450 | return false; |
| 451 | |
| 452 | performAnalysis(); |
| 453 | if (DeadUses.count(Ptr: U)) |
| 454 | return true; |
| 455 | |
| 456 | // If no output bits are demanded, no input bits are demanded and the use |
| 457 | // is dead. These uses might not be explicitly present in the DeadUses map. |
| 458 | if (UserI->getType()->isIntOrIntVectorTy()) { |
| 459 | auto Found = AliveBits.find(Val: UserI); |
| 460 | if (Found != AliveBits.end() && Found->second.isZero()) |
| 461 | return true; |
| 462 | } |
| 463 | |
| 464 | return false; |
| 465 | } |
| 466 | |
| 467 | void DemandedBits::print(raw_ostream &OS) { |
| 468 | auto PrintDB = [&](const Instruction *I, const APInt &A, Value *V = nullptr) { |
| 469 | OS << "DemandedBits: 0x" << Twine::utohexstr(Val: A.getLimitedValue()) |
| 470 | << " for " ; |
| 471 | if (V) { |
| 472 | V->printAsOperand(O&: OS, PrintType: false); |
| 473 | OS << " in " ; |
| 474 | } |
| 475 | OS << *I << '\n'; |
| 476 | }; |
| 477 | |
| 478 | OS << "Printing analysis 'Demanded Bits Analysis' for function '" << F.getName() << "':\n" ; |
| 479 | performAnalysis(); |
| 480 | for (auto &KV : AliveBits) { |
| 481 | Instruction *I = KV.first; |
| 482 | PrintDB(I, KV.second); |
| 483 | |
| 484 | for (Use &OI : I->operands()) { |
| 485 | PrintDB(I, getDemandedBits(U: &OI), OI); |
| 486 | } |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | static APInt determineLiveOperandBitsAddCarry(unsigned OperandNo, |
| 491 | const APInt &AOut, |
| 492 | const KnownBits &LHS, |
| 493 | const KnownBits &RHS, |
| 494 | bool CarryZero, bool CarryOne) { |
| 495 | assert(!(CarryZero && CarryOne) && |
| 496 | "Carry can't be zero and one at the same time" ); |
| 497 | |
| 498 | // The following check should be done by the caller, as it also indicates |
| 499 | // that LHS and RHS don't need to be computed. |
| 500 | // |
| 501 | // if (AOut.isMask()) |
| 502 | // return AOut; |
| 503 | |
| 504 | // Boundary bits' carry out is unaffected by their carry in. |
| 505 | APInt Bound = (LHS.Zero & RHS.Zero) | (LHS.One & RHS.One); |
| 506 | |
| 507 | // First, the alive carry bits are determined from the alive output bits: |
| 508 | // Let demand ripple to the right but only up to any set bit in Bound. |
| 509 | // AOut = -1---- |
| 510 | // Bound = ----1- |
| 511 | // ACarry&~AOut = --111- |
| 512 | APInt RBound = Bound.reverseBits(); |
| 513 | APInt RAOut = AOut.reverseBits(); |
| 514 | APInt RProp = RAOut + (RAOut | ~RBound); |
| 515 | APInt RACarry = RProp ^ ~RBound; |
| 516 | APInt ACarry = RACarry.reverseBits(); |
| 517 | |
| 518 | // Then, the alive input bits are determined from the alive carry bits: |
| 519 | APInt NeededToMaintainCarryZero; |
| 520 | APInt NeededToMaintainCarryOne; |
| 521 | if (OperandNo == 0) { |
| 522 | NeededToMaintainCarryZero = LHS.Zero | ~RHS.Zero; |
| 523 | NeededToMaintainCarryOne = LHS.One | ~RHS.One; |
| 524 | } else { |
| 525 | NeededToMaintainCarryZero = RHS.Zero | ~LHS.Zero; |
| 526 | NeededToMaintainCarryOne = RHS.One | ~LHS.One; |
| 527 | } |
| 528 | |
| 529 | // As in computeForAddCarry |
| 530 | APInt PossibleSumZero = ~LHS.Zero + ~RHS.Zero + !CarryZero; |
| 531 | APInt PossibleSumOne = LHS.One + RHS.One + CarryOne; |
| 532 | |
| 533 | // The below is simplified from |
| 534 | // |
| 535 | // APInt CarryKnownZero = ~(PossibleSumZero ^ LHS.Zero ^ RHS.Zero); |
| 536 | // APInt CarryKnownOne = PossibleSumOne ^ LHS.One ^ RHS.One; |
| 537 | // APInt CarryUnknown = ~(CarryKnownZero | CarryKnownOne); |
| 538 | // |
| 539 | // APInt NeededToMaintainCarry = |
| 540 | // (CarryKnownZero & NeededToMaintainCarryZero) | |
| 541 | // (CarryKnownOne & NeededToMaintainCarryOne) | |
| 542 | // CarryUnknown; |
| 543 | |
| 544 | APInt NeededToMaintainCarry = (~PossibleSumZero | NeededToMaintainCarryZero) & |
| 545 | (PossibleSumOne | NeededToMaintainCarryOne); |
| 546 | |
| 547 | APInt AB = AOut | (ACarry & NeededToMaintainCarry); |
| 548 | return AB; |
| 549 | } |
| 550 | |
| 551 | APInt DemandedBits::determineLiveOperandBitsAdd(unsigned OperandNo, |
| 552 | const APInt &AOut, |
| 553 | const KnownBits &LHS, |
| 554 | const KnownBits &RHS) { |
| 555 | return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, RHS, CarryZero: true, |
| 556 | CarryOne: false); |
| 557 | } |
| 558 | |
| 559 | APInt DemandedBits::determineLiveOperandBitsSub(unsigned OperandNo, |
| 560 | const APInt &AOut, |
| 561 | const KnownBits &LHS, |
| 562 | const KnownBits &RHS) { |
| 563 | KnownBits NRHS; |
| 564 | NRHS.Zero = RHS.One; |
| 565 | NRHS.One = RHS.Zero; |
| 566 | return determineLiveOperandBitsAddCarry(OperandNo, AOut, LHS, RHS: NRHS, CarryZero: false, |
| 567 | CarryOne: true); |
| 568 | } |
| 569 | |
| 570 | AnalysisKey DemandedBitsAnalysis::Key; |
| 571 | |
| 572 | DemandedBits DemandedBitsAnalysis::run(Function &F, |
| 573 | FunctionAnalysisManager &AM) { |
| 574 | auto &AC = AM.getResult<AssumptionAnalysis>(IR&: F); |
| 575 | auto &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 576 | return DemandedBits(F, AC, DT); |
| 577 | } |
| 578 | |
| 579 | PreservedAnalyses DemandedBitsPrinterPass::run(Function &F, |
| 580 | FunctionAnalysisManager &AM) { |
| 581 | AM.getResult<DemandedBitsAnalysis>(IR&: F).print(OS); |
| 582 | return PreservedAnalyses::all(); |
| 583 | } |
| 584 | |