1 | //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file "describes" induction and recurrence variables. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "llvm/Analysis/IVDescriptors.h" |
14 | #include "llvm/Analysis/DemandedBits.h" |
15 | #include "llvm/Analysis/LoopInfo.h" |
16 | #include "llvm/Analysis/ScalarEvolution.h" |
17 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
18 | #include "llvm/Analysis/ValueTracking.h" |
19 | #include "llvm/IR/Dominators.h" |
20 | #include "llvm/IR/Instructions.h" |
21 | #include "llvm/IR/PatternMatch.h" |
22 | #include "llvm/IR/ValueHandle.h" |
23 | #include "llvm/Support/Debug.h" |
24 | #include "llvm/Support/KnownBits.h" |
25 | |
26 | using namespace llvm; |
27 | using namespace llvm::PatternMatch; |
28 | |
29 | #define DEBUG_TYPE "iv-descriptors" |
30 | |
31 | bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, |
32 | SmallPtrSetImpl<Instruction *> &Set) { |
33 | for (const Use &Use : I->operands()) |
34 | if (!Set.count(Ptr: dyn_cast<Instruction>(Val: Use))) |
35 | return false; |
36 | return true; |
37 | } |
38 | |
39 | bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) { |
40 | switch (Kind) { |
41 | default: |
42 | break; |
43 | case RecurKind::Add: |
44 | case RecurKind::Mul: |
45 | case RecurKind::Or: |
46 | case RecurKind::And: |
47 | case RecurKind::Xor: |
48 | case RecurKind::SMax: |
49 | case RecurKind::SMin: |
50 | case RecurKind::UMax: |
51 | case RecurKind::UMin: |
52 | case RecurKind::AnyOf: |
53 | case RecurKind::FindFirstIVSMin: |
54 | case RecurKind::FindLastIVSMax: |
55 | case RecurKind::FindLastIVUMax: |
56 | return true; |
57 | } |
58 | return false; |
59 | } |
60 | |
61 | bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) { |
62 | return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind); |
63 | } |
64 | |
65 | /// Determines if Phi may have been type-promoted. If Phi has a single user |
66 | /// that ANDs the Phi with a type mask, return the user. RT is updated to |
67 | /// account for the narrower bit width represented by the mask, and the AND |
68 | /// instruction is added to CI. |
69 | static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, |
70 | SmallPtrSetImpl<Instruction *> &Visited, |
71 | SmallPtrSetImpl<Instruction *> &CI) { |
72 | if (!Phi->hasOneUse()) |
73 | return Phi; |
74 | |
75 | const APInt *M = nullptr; |
76 | Instruction *I, *J = cast<Instruction>(Val: Phi->use_begin()->getUser()); |
77 | |
78 | // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT |
79 | // with a new integer type of the corresponding bit width. |
80 | if (match(V: J, P: m_And(L: m_Instruction(I), R: m_APInt(Res&: M)))) { |
81 | int32_t Bits = (*M + 1).exactLogBase2(); |
82 | if (Bits > 0) { |
83 | RT = IntegerType::get(C&: Phi->getContext(), NumBits: Bits); |
84 | Visited.insert(Ptr: Phi); |
85 | CI.insert(Ptr: J); |
86 | return J; |
87 | } |
88 | } |
89 | return Phi; |
90 | } |
91 | |
92 | /// Compute the minimal bit width needed to represent a reduction whose exit |
93 | /// instruction is given by Exit. |
94 | static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, |
95 | DemandedBits *DB, |
96 | AssumptionCache *AC, |
97 | DominatorTree *DT) { |
98 | bool IsSigned = false; |
99 | const DataLayout &DL = Exit->getDataLayout(); |
100 | uint64_t MaxBitWidth = DL.getTypeSizeInBits(Ty: Exit->getType()); |
101 | |
102 | if (DB) { |
103 | // Use the demanded bits analysis to determine the bits that are live out |
104 | // of the exit instruction, rounding up to the nearest power of two. If the |
105 | // use of demanded bits results in a smaller bit width, we know the value |
106 | // must be positive (i.e., IsSigned = false), because if this were not the |
107 | // case, the sign bit would have been demanded. |
108 | auto Mask = DB->getDemandedBits(I: Exit); |
109 | MaxBitWidth = Mask.getBitWidth() - Mask.countl_zero(); |
110 | } |
111 | |
112 | if (MaxBitWidth == DL.getTypeSizeInBits(Ty: Exit->getType()) && AC && DT) { |
113 | // If demanded bits wasn't able to limit the bit width, we can try to use |
114 | // value tracking instead. This can be the case, for example, if the value |
115 | // may be negative. |
116 | auto NumSignBits = ComputeNumSignBits(Op: Exit, DL, AC, CxtI: nullptr, DT); |
117 | auto NumTypeBits = DL.getTypeSizeInBits(Ty: Exit->getType()); |
118 | MaxBitWidth = NumTypeBits - NumSignBits; |
119 | KnownBits Bits = computeKnownBits(V: Exit, DL); |
120 | if (!Bits.isNonNegative()) { |
121 | // If the value is not known to be non-negative, we set IsSigned to true, |
122 | // meaning that we will use sext instructions instead of zext |
123 | // instructions to restore the original type. |
124 | IsSigned = true; |
125 | // Make sure at least one sign bit is included in the result, so it |
126 | // will get properly sign-extended. |
127 | ++MaxBitWidth; |
128 | } |
129 | } |
130 | MaxBitWidth = llvm::bit_ceil(Value: MaxBitWidth); |
131 | |
132 | return std::make_pair(x: Type::getIntNTy(C&: Exit->getContext(), N: MaxBitWidth), |
133 | y&: IsSigned); |
134 | } |
135 | |
136 | /// Collect cast instructions that can be ignored in the vectorizer's cost |
137 | /// model, given a reduction exit value and the minimal type in which the |
138 | // reduction can be represented. Also search casts to the recurrence type |
139 | // to find the minimum width used by the recurrence. |
140 | static void collectCastInstrs(Loop *TheLoop, Instruction *Exit, |
141 | Type *RecurrenceType, |
142 | SmallPtrSetImpl<Instruction *> &Casts, |
143 | unsigned &MinWidthCastToRecurTy) { |
144 | |
145 | SmallVector<Instruction *, 8> Worklist; |
146 | SmallPtrSet<Instruction *, 8> Visited; |
147 | Worklist.push_back(Elt: Exit); |
148 | MinWidthCastToRecurTy = -1U; |
149 | |
150 | while (!Worklist.empty()) { |
151 | Instruction *Val = Worklist.pop_back_val(); |
152 | Visited.insert(Ptr: Val); |
153 | if (auto *Cast = dyn_cast<CastInst>(Val)) { |
154 | if (Cast->getSrcTy() == RecurrenceType) { |
155 | // If the source type of a cast instruction is equal to the recurrence |
156 | // type, it will be eliminated, and should be ignored in the vectorizer |
157 | // cost model. |
158 | Casts.insert(Ptr: Cast); |
159 | continue; |
160 | } |
161 | if (Cast->getDestTy() == RecurrenceType) { |
162 | // The minimum width used by the recurrence is found by checking for |
163 | // casts on its operands. The minimum width is used by the vectorizer |
164 | // when finding the widest type for in-loop reductions without any |
165 | // loads/stores. |
166 | MinWidthCastToRecurTy = std::min<unsigned>( |
167 | a: MinWidthCastToRecurTy, b: Cast->getSrcTy()->getScalarSizeInBits()); |
168 | continue; |
169 | } |
170 | } |
171 | // Add all operands to the work list if they are loop-varying values that |
172 | // we haven't yet visited. |
173 | for (Value *O : cast<User>(Val)->operands()) |
174 | if (auto *I = dyn_cast<Instruction>(Val: O)) |
175 | if (TheLoop->contains(Inst: I) && !Visited.count(Ptr: I)) |
176 | Worklist.push_back(Elt: I); |
177 | } |
178 | } |
179 | |
180 | // Check if a given Phi node can be recognized as an ordered reduction for |
181 | // vectorizing floating point operations without unsafe math. |
182 | static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst, |
183 | Instruction *Exit, PHINode *Phi) { |
184 | // Currently only FAdd and FMulAdd are supported. |
185 | if (Kind != RecurKind::FAdd && Kind != RecurKind::FMulAdd) |
186 | return false; |
187 | |
188 | if (Kind == RecurKind::FAdd && Exit->getOpcode() != Instruction::FAdd) |
189 | return false; |
190 | |
191 | if (Kind == RecurKind::FMulAdd && |
192 | !RecurrenceDescriptor::isFMulAddIntrinsic(I: Exit)) |
193 | return false; |
194 | |
195 | // Ensure the exit instruction has only one user other than the reduction PHI |
196 | if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(N: 3)) |
197 | return false; |
198 | |
199 | // The only pattern accepted is the one in which the reduction PHI |
200 | // is used as one of the operands of the exit instruction |
201 | auto *Op0 = Exit->getOperand(i: 0); |
202 | auto *Op1 = Exit->getOperand(i: 1); |
203 | if (Kind == RecurKind::FAdd && Op0 != Phi && Op1 != Phi) |
204 | return false; |
205 | if (Kind == RecurKind::FMulAdd && Exit->getOperand(i: 2) != Phi) |
206 | return false; |
207 | |
208 | LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi |
209 | << ", ExitInst: " << *Exit << "\n" ); |
210 | |
211 | return true; |
212 | } |
213 | |
214 | bool RecurrenceDescriptor::AddReductionVar( |
215 | PHINode *Phi, RecurKind Kind, Loop *TheLoop, FastMathFlags FuncFMF, |
216 | RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC, |
217 | DominatorTree *DT, ScalarEvolution *SE) { |
218 | if (Phi->getNumIncomingValues() != 2) |
219 | return false; |
220 | |
221 | // Reduction variables are only found in the loop header block. |
222 | if (Phi->getParent() != TheLoop->getHeader()) |
223 | return false; |
224 | |
225 | // Obtain the reduction start value from the value that comes from the loop |
226 | // preheader. |
227 | Value *RdxStart = Phi->getIncomingValueForBlock(BB: TheLoop->getLoopPreheader()); |
228 | |
229 | // ExitInstruction is the single value which is used outside the loop. |
230 | // We only allow for a single reduction value to be used outside the loop. |
231 | // This includes users of the reduction, variables (which form a cycle |
232 | // which ends in the phi node). |
233 | Instruction *ExitInstruction = nullptr; |
234 | |
235 | // Variable to keep last visited store instruction. By the end of the |
236 | // algorithm this variable will be either empty or having intermediate |
237 | // reduction value stored in invariant address. |
238 | StoreInst *IntermediateStore = nullptr; |
239 | |
240 | // Indicates that we found a reduction operation in our scan. |
241 | bool FoundReduxOp = false; |
242 | |
243 | // We start with the PHI node and scan for all of the users of this |
244 | // instruction. All users must be instructions that can be used as reduction |
245 | // variables (such as ADD). We must have a single out-of-block user. The cycle |
246 | // must include the original PHI. |
247 | bool FoundStartPHI = false; |
248 | |
249 | // To recognize min/max patterns formed by a icmp select sequence, we store |
250 | // the number of instruction we saw from the recognized min/max pattern, |
251 | // to make sure we only see exactly the two instructions. |
252 | unsigned NumCmpSelectPatternInst = 0; |
253 | InstDesc ReduxDesc(false, nullptr); |
254 | |
255 | // Data used for determining if the recurrence has been type-promoted. |
256 | Type *RecurrenceType = Phi->getType(); |
257 | SmallPtrSet<Instruction *, 4> CastInsts; |
258 | unsigned MinWidthCastToRecurrenceType; |
259 | Instruction *Start = Phi; |
260 | bool IsSigned = false; |
261 | |
262 | SmallPtrSet<Instruction *, 8> VisitedInsts; |
263 | SmallVector<Instruction *, 8> Worklist; |
264 | |
265 | // Return early if the recurrence kind does not match the type of Phi. If the |
266 | // recurrence kind is arithmetic, we attempt to look through AND operations |
267 | // resulting from the type promotion performed by InstCombine. Vector |
268 | // operations are not limited to the legal integer widths, so we may be able |
269 | // to evaluate the reduction in the narrower width. |
270 | if (RecurrenceType->isFloatingPointTy()) { |
271 | if (!isFloatingPointRecurrenceKind(Kind)) |
272 | return false; |
273 | } else if (RecurrenceType->isIntegerTy()) { |
274 | if (!isIntegerRecurrenceKind(Kind)) |
275 | return false; |
276 | if (!isMinMaxRecurrenceKind(Kind)) |
277 | Start = lookThroughAnd(Phi, RT&: RecurrenceType, Visited&: VisitedInsts, CI&: CastInsts); |
278 | } else { |
279 | // Pointer min/max may exist, but it is not supported as a reduction op. |
280 | return false; |
281 | } |
282 | |
283 | Worklist.push_back(Elt: Start); |
284 | VisitedInsts.insert(Ptr: Start); |
285 | |
286 | // Start with all flags set because we will intersect this with the reduction |
287 | // flags from all the reduction operations. |
288 | FastMathFlags FMF = FastMathFlags::getFast(); |
289 | |
290 | // The first instruction in the use-def chain of the Phi node that requires |
291 | // exact floating point operations. |
292 | Instruction *ExactFPMathInst = nullptr; |
293 | |
294 | // A value in the reduction can be used: |
295 | // - By the reduction: |
296 | // - Reduction operation: |
297 | // - One use of reduction value (safe). |
298 | // - Multiple use of reduction value (not safe). |
299 | // - PHI: |
300 | // - All uses of the PHI must be the reduction (safe). |
301 | // - Otherwise, not safe. |
302 | // - By instructions outside of the loop (safe). |
303 | // * One value may have several outside users, but all outside |
304 | // uses must be of the same value. |
305 | // - By store instructions with a loop invariant address (safe with |
306 | // the following restrictions): |
307 | // * If there are several stores, all must have the same address. |
308 | // * Final value should be stored in that loop invariant address. |
309 | // - By an instruction that is not part of the reduction (not safe). |
310 | // This is either: |
311 | // * An instruction type other than PHI or the reduction operation. |
312 | // * A PHI in the header other than the initial PHI. |
313 | while (!Worklist.empty()) { |
314 | Instruction *Cur = Worklist.pop_back_val(); |
315 | |
316 | // Store instructions are allowed iff it is the store of the reduction |
317 | // value to the same loop invariant memory location. |
318 | if (auto *SI = dyn_cast<StoreInst>(Val: Cur)) { |
319 | if (!SE) { |
320 | LLVM_DEBUG(dbgs() << "Store instructions are not processed without " |
321 | << "Scalar Evolution Analysis\n" ); |
322 | return false; |
323 | } |
324 | |
325 | const SCEV *PtrScev = SE->getSCEV(V: SI->getPointerOperand()); |
326 | // Check it is the same address as previous stores |
327 | if (IntermediateStore) { |
328 | const SCEV *OtherScev = |
329 | SE->getSCEV(V: IntermediateStore->getPointerOperand()); |
330 | |
331 | if (OtherScev != PtrScev) { |
332 | LLVM_DEBUG(dbgs() << "Storing reduction value to different addresses " |
333 | << "inside the loop: " << *SI->getPointerOperand() |
334 | << " and " |
335 | << *IntermediateStore->getPointerOperand() << '\n'); |
336 | return false; |
337 | } |
338 | } |
339 | |
340 | // Check the pointer is loop invariant |
341 | if (!SE->isLoopInvariant(S: PtrScev, L: TheLoop)) { |
342 | LLVM_DEBUG(dbgs() << "Storing reduction value to non-uniform address " |
343 | << "inside the loop: " << *SI->getPointerOperand() |
344 | << '\n'); |
345 | return false; |
346 | } |
347 | |
348 | // IntermediateStore is always the last store in the loop. |
349 | IntermediateStore = SI; |
350 | continue; |
351 | } |
352 | |
353 | // No Users. |
354 | // If the instruction has no users then this is a broken chain and can't be |
355 | // a reduction variable. |
356 | if (Cur->use_empty()) |
357 | return false; |
358 | |
359 | bool IsAPhi = isa<PHINode>(Val: Cur); |
360 | |
361 | // A header PHI use other than the original PHI. |
362 | if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) |
363 | return false; |
364 | |
365 | // Reductions of instructions such as Div, and Sub is only possible if the |
366 | // LHS is the reduction variable. |
367 | if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Val: Cur) && |
368 | !isa<ICmpInst>(Val: Cur) && !isa<FCmpInst>(Val: Cur) && |
369 | !VisitedInsts.count(Ptr: dyn_cast<Instruction>(Val: Cur->getOperand(i: 0)))) |
370 | return false; |
371 | |
372 | // Any reduction instruction must be of one of the allowed kinds. We ignore |
373 | // the starting value (the Phi or an AND instruction if the Phi has been |
374 | // type-promoted). |
375 | if (Cur != Start) { |
376 | ReduxDesc = |
377 | isRecurrenceInstr(L: TheLoop, Phi, I: Cur, Kind, Prev&: ReduxDesc, FuncFMF, SE); |
378 | ExactFPMathInst = ExactFPMathInst == nullptr |
379 | ? ReduxDesc.getExactFPMathInst() |
380 | : ExactFPMathInst; |
381 | if (!ReduxDesc.isRecurrence()) |
382 | return false; |
383 | // FIXME: FMF is allowed on phi, but propagation is not handled correctly. |
384 | if (isa<FPMathOperator>(Val: ReduxDesc.getPatternInst()) && !IsAPhi) { |
385 | FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags(); |
386 | if (auto *Sel = dyn_cast<SelectInst>(Val: ReduxDesc.getPatternInst())) { |
387 | // Accept FMF on either fcmp or select of a min/max idiom. |
388 | // TODO: This is a hack to work-around the fact that FMF may not be |
389 | // assigned/propagated correctly. If that problem is fixed or we |
390 | // standardize on fmin/fmax via intrinsics, this can be removed. |
391 | if (auto *FCmp = dyn_cast<FCmpInst>(Val: Sel->getCondition())) |
392 | CurFMF |= FCmp->getFastMathFlags(); |
393 | } |
394 | FMF &= CurFMF; |
395 | } |
396 | // Update this reduction kind if we matched a new instruction. |
397 | // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind' |
398 | // state accurate while processing the worklist? |
399 | if (ReduxDesc.getRecKind() != RecurKind::None) |
400 | Kind = ReduxDesc.getRecKind(); |
401 | } |
402 | |
403 | bool IsASelect = isa<SelectInst>(Val: Cur); |
404 | |
405 | // A conditional reduction operation must only have 2 or less uses in |
406 | // VisitedInsts. |
407 | if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) && |
408 | hasMultipleUsesOf(I: Cur, Insts&: VisitedInsts, MaxNumUses: 2)) |
409 | return false; |
410 | |
411 | // A reduction operation must only have one use of the reduction value. |
412 | if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) && |
413 | !isAnyOfRecurrenceKind(Kind) && hasMultipleUsesOf(I: Cur, Insts&: VisitedInsts, MaxNumUses: 1)) |
414 | return false; |
415 | |
416 | // All inputs to a PHI node must be a reduction value. |
417 | if (IsAPhi && Cur != Phi && !areAllUsesIn(I: Cur, Set&: VisitedInsts)) |
418 | return false; |
419 | |
420 | if (isIntMinMaxRecurrenceKind(Kind) && (isa<ICmpInst>(Val: Cur) || IsASelect)) |
421 | ++NumCmpSelectPatternInst; |
422 | if (isFPMinMaxRecurrenceKind(Kind) && (isa<FCmpInst>(Val: Cur) || IsASelect)) |
423 | ++NumCmpSelectPatternInst; |
424 | if (isAnyOfRecurrenceKind(Kind) && IsASelect) |
425 | ++NumCmpSelectPatternInst; |
426 | |
427 | // Check whether we found a reduction operator. |
428 | FoundReduxOp |= !IsAPhi && Cur != Start; |
429 | |
430 | // Process users of current instruction. Push non-PHI nodes after PHI nodes |
431 | // onto the stack. This way we are going to have seen all inputs to PHI |
432 | // nodes once we get to them. |
433 | SmallVector<Instruction *, 8> NonPHIs; |
434 | SmallVector<Instruction *, 8> PHIs; |
435 | for (User *U : Cur->users()) { |
436 | Instruction *UI = cast<Instruction>(Val: U); |
437 | |
438 | // If the user is a call to llvm.fmuladd then the instruction can only be |
439 | // the final operand. |
440 | if (isFMulAddIntrinsic(I: UI)) |
441 | if (Cur == UI->getOperand(i: 0) || Cur == UI->getOperand(i: 1)) |
442 | return false; |
443 | |
444 | // Check if we found the exit user. |
445 | BasicBlock *Parent = UI->getParent(); |
446 | if (!TheLoop->contains(BB: Parent)) { |
447 | // If we already know this instruction is used externally, move on to |
448 | // the next user. |
449 | if (ExitInstruction == Cur) |
450 | continue; |
451 | |
452 | // Exit if you find multiple values used outside or if the header phi |
453 | // node is being used. In this case the user uses the value of the |
454 | // previous iteration, in which case we would loose "VF-1" iterations of |
455 | // the reduction operation if we vectorize. |
456 | if (ExitInstruction != nullptr || Cur == Phi) |
457 | return false; |
458 | |
459 | // The instruction used by an outside user must be the last instruction |
460 | // before we feed back to the reduction phi. Otherwise, we loose VF-1 |
461 | // operations on the value. |
462 | if (!is_contained(Range: Phi->operands(), Element: Cur)) |
463 | return false; |
464 | |
465 | ExitInstruction = Cur; |
466 | continue; |
467 | } |
468 | |
469 | // Process instructions only once (termination). Each reduction cycle |
470 | // value must only be used once, except by phi nodes and min/max |
471 | // reductions which are represented as a cmp followed by a select. |
472 | InstDesc IgnoredVal(false, nullptr); |
473 | if (VisitedInsts.insert(Ptr: UI).second) { |
474 | if (isa<PHINode>(Val: UI)) { |
475 | PHIs.push_back(Elt: UI); |
476 | } else { |
477 | StoreInst *SI = dyn_cast<StoreInst>(Val: UI); |
478 | if (SI && SI->getPointerOperand() == Cur) { |
479 | // Reduction variable chain can only be stored somewhere but it |
480 | // can't be used as an address. |
481 | return false; |
482 | } |
483 | NonPHIs.push_back(Elt: UI); |
484 | } |
485 | } else if (!isa<PHINode>(Val: UI) && |
486 | ((!isa<FCmpInst>(Val: UI) && !isa<ICmpInst>(Val: UI) && |
487 | !isa<SelectInst>(Val: UI)) || |
488 | (!isConditionalRdxPattern(I: UI).isRecurrence() && |
489 | !isAnyOfPattern(Loop: TheLoop, OrigPhi: Phi, I: UI, Prev&: IgnoredVal) |
490 | .isRecurrence() && |
491 | !isMinMaxPattern(I: UI, Kind, Prev: IgnoredVal).isRecurrence()))) |
492 | return false; |
493 | |
494 | // Remember that we completed the cycle. |
495 | if (UI == Phi) |
496 | FoundStartPHI = true; |
497 | } |
498 | Worklist.append(in_start: PHIs.begin(), in_end: PHIs.end()); |
499 | Worklist.append(in_start: NonPHIs.begin(), in_end: NonPHIs.end()); |
500 | } |
501 | |
502 | // This means we have seen one but not the other instruction of the |
503 | // pattern or more than just a select and cmp. Zero implies that we saw a |
504 | // llvm.min/max intrinsic, which is always OK. |
505 | if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 && |
506 | NumCmpSelectPatternInst != 0) |
507 | return false; |
508 | |
509 | if (isAnyOfRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1) |
510 | return false; |
511 | |
512 | if (IntermediateStore) { |
513 | // Check that stored value goes to the phi node again. This way we make sure |
514 | // that the value stored in IntermediateStore is indeed the final reduction |
515 | // value. |
516 | if (!is_contained(Range: Phi->operands(), Element: IntermediateStore->getValueOperand())) { |
517 | LLVM_DEBUG(dbgs() << "Not a final reduction value stored: " |
518 | << *IntermediateStore << '\n'); |
519 | return false; |
520 | } |
521 | |
522 | // If there is an exit instruction it's value should be stored in |
523 | // IntermediateStore |
524 | if (ExitInstruction && |
525 | IntermediateStore->getValueOperand() != ExitInstruction) { |
526 | LLVM_DEBUG(dbgs() << "Last store Instruction of reduction value does not " |
527 | "store last calculated value of the reduction: " |
528 | << *IntermediateStore << '\n'); |
529 | return false; |
530 | } |
531 | |
532 | // If all uses are inside the loop (intermediate stores), then the |
533 | // reduction value after the loop will be the one used in the last store. |
534 | if (!ExitInstruction) |
535 | ExitInstruction = cast<Instruction>(Val: IntermediateStore->getValueOperand()); |
536 | } |
537 | |
538 | if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) |
539 | return false; |
540 | |
541 | const bool IsOrdered = |
542 | checkOrderedReduction(Kind, ExactFPMathInst, Exit: ExitInstruction, Phi); |
543 | |
544 | if (Start != Phi) { |
545 | // If the starting value is not the same as the phi node, we speculatively |
546 | // looked through an 'and' instruction when evaluating a potential |
547 | // arithmetic reduction to determine if it may have been type-promoted. |
548 | // |
549 | // We now compute the minimal bit width that is required to represent the |
550 | // reduction. If this is the same width that was indicated by the 'and', we |
551 | // can represent the reduction in the smaller type. The 'and' instruction |
552 | // will be eliminated since it will essentially be a cast instruction that |
553 | // can be ignore in the cost model. If we compute a different type than we |
554 | // did when evaluating the 'and', the 'and' will not be eliminated, and we |
555 | // will end up with different kinds of operations in the recurrence |
556 | // expression (e.g., IntegerAND, IntegerADD). We give up if this is |
557 | // the case. |
558 | // |
559 | // The vectorizer relies on InstCombine to perform the actual |
560 | // type-shrinking. It does this by inserting instructions to truncate the |
561 | // exit value of the reduction to the width indicated by RecurrenceType and |
562 | // then extend this value back to the original width. If IsSigned is false, |
563 | // a 'zext' instruction will be generated; otherwise, a 'sext' will be |
564 | // used. |
565 | // |
566 | // TODO: We should not rely on InstCombine to rewrite the reduction in the |
567 | // smaller type. We should just generate a correctly typed expression |
568 | // to begin with. |
569 | Type *ComputedType; |
570 | std::tie(args&: ComputedType, args&: IsSigned) = |
571 | computeRecurrenceType(Exit: ExitInstruction, DB, AC, DT); |
572 | if (ComputedType != RecurrenceType) |
573 | return false; |
574 | } |
575 | |
576 | // Collect cast instructions and the minimum width used by the recurrence. |
577 | // If the starting value is not the same as the phi node and the computed |
578 | // recurrence type is equal to the recurrence type, the recurrence expression |
579 | // will be represented in a narrower or wider type. If there are any cast |
580 | // instructions that will be unnecessary, collect them in CastsFromRecurTy. |
581 | // Note that the 'and' instruction was already included in this list. |
582 | // |
583 | // TODO: A better way to represent this may be to tag in some way all the |
584 | // instructions that are a part of the reduction. The vectorizer cost |
585 | // model could then apply the recurrence type to these instructions, |
586 | // without needing a white list of instructions to ignore. |
587 | // This may also be useful for the inloop reductions, if it can be |
588 | // kept simple enough. |
589 | collectCastInstrs(TheLoop, Exit: ExitInstruction, RecurrenceType, Casts&: CastInsts, |
590 | MinWidthCastToRecurTy&: MinWidthCastToRecurrenceType); |
591 | |
592 | // We found a reduction var if we have reached the original phi node and we |
593 | // only have a single instruction with out-of-loop users. |
594 | |
595 | // The ExitInstruction(Instruction which is allowed to have out-of-loop users) |
596 | // is saved as part of the RecurrenceDescriptor. |
597 | |
598 | // Save the description of this reduction variable. |
599 | RecurrenceDescriptor RD(RdxStart, ExitInstruction, IntermediateStore, Kind, |
600 | FMF, ExactFPMathInst, RecurrenceType, IsSigned, |
601 | IsOrdered, CastInsts, MinWidthCastToRecurrenceType); |
602 | RedDes = RD; |
603 | |
604 | return true; |
605 | } |
606 | |
607 | // We are looking for loops that do something like this: |
608 | // int r = 0; |
609 | // for (int i = 0; i < n; i++) { |
610 | // if (src[i] > 3) |
611 | // r = 3; |
612 | // } |
613 | // where the reduction value (r) only has two states, in this example 0 or 3. |
614 | // The generated LLVM IR for this type of loop will be like this: |
615 | // for.body: |
616 | // %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ] |
617 | // ... |
618 | // %cmp = icmp sgt i32 %5, 3 |
619 | // %spec.select = select i1 %cmp, i32 3, i32 %r |
620 | // ... |
621 | // In general we can support vectorization of loops where 'r' flips between |
622 | // any two non-constants, provided they are loop invariant. The only thing |
623 | // we actually care about at the end of the loop is whether or not any lane |
624 | // in the selected vector is different from the start value. The final |
625 | // across-vector reduction after the loop simply involves choosing the start |
626 | // value if nothing changed (0 in the example above) or the other selected |
627 | // value (3 in the example above). |
628 | RecurrenceDescriptor::InstDesc |
629 | RecurrenceDescriptor::isAnyOfPattern(Loop *Loop, PHINode *OrigPhi, |
630 | Instruction *I, InstDesc &Prev) { |
631 | // We must handle the select(cmp(),x,y) as a single instruction. Advance to |
632 | // the select. |
633 | if (match(V: I, P: m_OneUse(SubPattern: m_Cmp()))) { |
634 | if (auto *Select = dyn_cast<SelectInst>(Val: *I->user_begin())) |
635 | return InstDesc(Select, Prev.getRecKind()); |
636 | } |
637 | |
638 | if (!match(V: I, P: m_Select(C: m_Cmp(), L: m_Value(), R: m_Value()))) |
639 | return InstDesc(false, I); |
640 | |
641 | SelectInst *SI = cast<SelectInst>(Val: I); |
642 | Value *NonPhi = nullptr; |
643 | |
644 | if (OrigPhi == dyn_cast<PHINode>(Val: SI->getTrueValue())) |
645 | NonPhi = SI->getFalseValue(); |
646 | else if (OrigPhi == dyn_cast<PHINode>(Val: SI->getFalseValue())) |
647 | NonPhi = SI->getTrueValue(); |
648 | else |
649 | return InstDesc(false, I); |
650 | |
651 | // We are looking for selects of the form: |
652 | // select(cmp(), phi, loop_invariant) or |
653 | // select(cmp(), loop_invariant, phi) |
654 | if (!Loop->isLoopInvariant(V: NonPhi)) |
655 | return InstDesc(false, I); |
656 | |
657 | return InstDesc(I, RecurKind::AnyOf); |
658 | } |
659 | |
660 | // We are looking for loops that do something like this: |
661 | // int r = 0; |
662 | // for (int i = 0; i < n; i++) { |
663 | // if (src[i] > 3) |
664 | // r = i; |
665 | // } |
666 | // The reduction value (r) is derived from either the values of an increasing |
667 | // induction variable (i) sequence, or from the start value (0). |
668 | // The LLVM IR generated for such loops would be as follows: |
669 | // for.body: |
670 | // %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ] |
671 | // %i = phi i32 [ %inc, %for.body ], [ 0, %entry ] |
672 | // ... |
673 | // %cmp = icmp sgt i32 %5, 3 |
674 | // %spec.select = select i1 %cmp, i32 %i, i32 %r |
675 | // %inc = add nsw i32 %i, 1 |
676 | // ... |
677 | // Since 'i' is an increasing induction variable, the reduction value after the |
678 | // loop will be the maximum value of 'i' that the condition (src[i] > 3) is |
679 | // satisfied, or the start value (0 in the example above). When the start value |
680 | // of the increasing induction variable 'i' is greater than the minimum value of |
681 | // the data type, we can use the minimum value of the data type as a sentinel |
682 | // value to replace the start value. This allows us to perform a single |
683 | // reduction max operation to obtain the final reduction result. |
684 | // TODO: It is possible to solve the case where the start value is the minimum |
685 | // value of the data type or a non-constant value by using mask and multiple |
686 | // reduction operations. |
687 | RecurrenceDescriptor::InstDesc |
688 | RecurrenceDescriptor::isFindIVPattern(RecurKind Kind, Loop *TheLoop, |
689 | PHINode *OrigPhi, Instruction *I, |
690 | ScalarEvolution &SE) { |
691 | // TODO: Support the vectorization of FindLastIV when the reduction phi is |
692 | // used by more than one select instruction. This vectorization is only |
693 | // performed when the SCEV of each increasing induction variable used by the |
694 | // select instructions is identical. |
695 | if (!OrigPhi->hasOneUse()) |
696 | return InstDesc(false, I); |
697 | |
698 | // TODO: Match selects with multi-use cmp conditions. |
699 | Value *NonRdxPhi = nullptr; |
700 | if (!match(V: I, P: m_CombineOr(L: m_Select(C: m_OneUse(SubPattern: m_Cmp()), L: m_Value(V&: NonRdxPhi), |
701 | R: m_Specific(V: OrigPhi)), |
702 | R: m_Select(C: m_OneUse(SubPattern: m_Cmp()), L: m_Specific(V: OrigPhi), |
703 | R: m_Value(V&: NonRdxPhi))))) |
704 | return InstDesc(false, I); |
705 | |
706 | // Returns a non-nullopt boolean indicating the signedness of the recurrence |
707 | // when a valid FindLastIV pattern is found. |
708 | auto GetRecurKind = [&](Value *V) -> std::optional<RecurKind> { |
709 | Type *Ty = V->getType(); |
710 | if (!SE.isSCEVable(Ty)) |
711 | return std::nullopt; |
712 | |
713 | auto *AR = dyn_cast<SCEVAddRecExpr>(Val: SE.getSCEV(V)); |
714 | if (!AR || AR->getLoop() != TheLoop) |
715 | return std::nullopt; |
716 | |
717 | const SCEV *Step = AR->getStepRecurrence(SE); |
718 | if ((isFindFirstIVRecurrenceKind(Kind) && !SE.isKnownNegative(S: Step)) || |
719 | (isFindLastIVRecurrenceKind(Kind) && !SE.isKnownPositive(S: Step))) |
720 | return std::nullopt; |
721 | |
722 | // Keep the minimum value of the recurrence type as the sentinel value. |
723 | // The maximum acceptable range for the increasing induction variable, |
724 | // called the valid range, will be defined as |
725 | |
726 | // Keep the minimum (FindLast) or maximum (FindFirst) value of the |
727 | // recurrence type as the sentinel value. The maximum acceptable range for |
728 | // the induction variable, called the valid range, will be defined as |
729 | // [<sentinel value> + 1, <sentinel value>) |
730 | // where <sentinel value> is [Signed|Unsigned]Min(<recurrence type>) for |
731 | // FindLastIV or [Signed|Unsigned]Max(<recurrence type>) for FindFirstIV. |
732 | // TODO: This range restriction can be lifted by adding an additional |
733 | // virtual OR reduction. |
734 | auto CheckRange = [&](bool IsSigned) { |
735 | const ConstantRange IVRange = |
736 | IsSigned ? SE.getSignedRange(S: AR) : SE.getUnsignedRange(S: AR); |
737 | unsigned NumBits = Ty->getIntegerBitWidth(); |
738 | ConstantRange ValidRange = ConstantRange::getEmpty(BitWidth: NumBits); |
739 | if (isFindLastIVRecurrenceKind(Kind)) { |
740 | APInt Sentinel = IsSigned ? APInt::getSignedMinValue(numBits: NumBits) |
741 | : APInt::getMinValue(numBits: NumBits); |
742 | ValidRange = ConstantRange::getNonEmpty(Lower: Sentinel + 1, Upper: Sentinel); |
743 | } else { |
744 | assert(IsSigned && "Only FindFirstIV with SMax is supported currently" ); |
745 | ValidRange = |
746 | ConstantRange::getNonEmpty(Lower: APInt::getSignedMinValue(numBits: NumBits), |
747 | Upper: APInt::getSignedMaxValue(numBits: NumBits) - 1); |
748 | } |
749 | |
750 | LLVM_DEBUG(dbgs() << "LV: " |
751 | << (isFindLastIVRecurrenceKind(Kind) ? "FindLastIV" |
752 | : "FindFirstIV" ) |
753 | << " valid range is " << ValidRange |
754 | << ", and the range of " << *AR << " is " << IVRange |
755 | << "\n" ); |
756 | |
757 | // Ensure the induction variable does not wrap around by verifying that |
758 | // its range is fully contained within the valid range. |
759 | return ValidRange.contains(CR: IVRange); |
760 | }; |
761 | if (isFindLastIVRecurrenceKind(Kind)) { |
762 | if (CheckRange(true)) |
763 | return RecurKind::FindLastIVSMax; |
764 | if (CheckRange(false)) |
765 | return RecurKind::FindLastIVUMax; |
766 | return std::nullopt; |
767 | } |
768 | assert(isFindFirstIVRecurrenceKind(Kind) && |
769 | "Kind must either be a FindLastIV or FindFirstIV" ); |
770 | |
771 | if (CheckRange(true)) |
772 | return RecurKind::FindFirstIVSMin; |
773 | return std::nullopt; |
774 | }; |
775 | |
776 | // We are looking for selects of the form: |
777 | // select(cmp(), phi, increasing_loop_induction) or |
778 | // select(cmp(), increasing_loop_induction, phi) |
779 | // TODO: Support for monotonically decreasing induction variable |
780 | if (auto RK = GetRecurKind(NonRdxPhi)) |
781 | return InstDesc(I, *RK); |
782 | |
783 | return InstDesc(false, I); |
784 | } |
785 | |
786 | RecurrenceDescriptor::InstDesc |
787 | RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind, |
788 | const InstDesc &Prev) { |
789 | assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) && |
790 | "Expected a cmp or select or call instruction" ); |
791 | if (!isMinMaxRecurrenceKind(Kind)) |
792 | return InstDesc(false, I); |
793 | |
794 | // We must handle the select(cmp()) as a single instruction. Advance to the |
795 | // select. |
796 | if (match(V: I, P: m_OneUse(SubPattern: m_Cmp()))) { |
797 | if (auto *Select = dyn_cast<SelectInst>(Val: *I->user_begin())) |
798 | return InstDesc(Select, Prev.getRecKind()); |
799 | } |
800 | |
801 | // Only match select with single use cmp condition, or a min/max intrinsic. |
802 | if (!isa<IntrinsicInst>(Val: I) && |
803 | !match(V: I, P: m_Select(C: m_OneUse(SubPattern: m_Cmp()), L: m_Value(), R: m_Value()))) |
804 | return InstDesc(false, I); |
805 | |
806 | // Look for a min/max pattern. |
807 | if (match(V: I, P: m_UMin(L: m_Value(), R: m_Value()))) |
808 | return InstDesc(Kind == RecurKind::UMin, I); |
809 | if (match(V: I, P: m_UMax(L: m_Value(), R: m_Value()))) |
810 | return InstDesc(Kind == RecurKind::UMax, I); |
811 | if (match(V: I, P: m_SMax(L: m_Value(), R: m_Value()))) |
812 | return InstDesc(Kind == RecurKind::SMax, I); |
813 | if (match(V: I, P: m_SMin(L: m_Value(), R: m_Value()))) |
814 | return InstDesc(Kind == RecurKind::SMin, I); |
815 | if (match(V: I, P: m_OrdOrUnordFMin(L: m_Value(), R: m_Value()))) |
816 | return InstDesc(Kind == RecurKind::FMin, I); |
817 | if (match(V: I, P: m_OrdOrUnordFMax(L: m_Value(), R: m_Value()))) |
818 | return InstDesc(Kind == RecurKind::FMax, I); |
819 | if (match(V: I, P: m_FMinNum(Op0: m_Value(), Op1: m_Value()))) |
820 | return InstDesc(Kind == RecurKind::FMin, I); |
821 | if (match(V: I, P: m_FMaxNum(Op0: m_Value(), Op1: m_Value()))) |
822 | return InstDesc(Kind == RecurKind::FMax, I); |
823 | if (match(V: I, P: m_FMinimumNum(Op0: m_Value(), Op1: m_Value()))) |
824 | return InstDesc(Kind == RecurKind::FMinimumNum, I); |
825 | if (match(V: I, P: m_FMaximumNum(Op0: m_Value(), Op1: m_Value()))) |
826 | return InstDesc(Kind == RecurKind::FMaximumNum, I); |
827 | if (match(V: I, P: m_FMinimum(Op0: m_Value(), Op1: m_Value()))) |
828 | return InstDesc(Kind == RecurKind::FMinimum, I); |
829 | if (match(V: I, P: m_FMaximum(Op0: m_Value(), Op1: m_Value()))) |
830 | return InstDesc(Kind == RecurKind::FMaximum, I); |
831 | |
832 | return InstDesc(false, I); |
833 | } |
834 | |
835 | /// Returns true if the select instruction has users in the compare-and-add |
836 | /// reduction pattern below. The select instruction argument is the last one |
837 | /// in the sequence. |
838 | /// |
839 | /// %sum.1 = phi ... |
840 | /// ... |
841 | /// %cmp = fcmp pred %0, %CFP |
842 | /// %add = fadd %0, %sum.1 |
843 | /// %sum.2 = select %cmp, %add, %sum.1 |
844 | RecurrenceDescriptor::InstDesc |
845 | RecurrenceDescriptor::isConditionalRdxPattern(Instruction *I) { |
846 | SelectInst *SI = dyn_cast<SelectInst>(Val: I); |
847 | if (!SI) |
848 | return InstDesc(false, I); |
849 | |
850 | CmpInst *CI = dyn_cast<CmpInst>(Val: SI->getCondition()); |
851 | // Only handle single use cases for now. |
852 | if (!CI || !CI->hasOneUse()) |
853 | return InstDesc(false, I); |
854 | |
855 | Value *TrueVal = SI->getTrueValue(); |
856 | Value *FalseVal = SI->getFalseValue(); |
857 | // Handle only when either of operands of select instruction is a PHI |
858 | // node for now. |
859 | if ((isa<PHINode>(Val: TrueVal) && isa<PHINode>(Val: FalseVal)) || |
860 | (!isa<PHINode>(Val: TrueVal) && !isa<PHINode>(Val: FalseVal))) |
861 | return InstDesc(false, I); |
862 | |
863 | Instruction *I1 = isa<PHINode>(Val: TrueVal) ? dyn_cast<Instruction>(Val: FalseVal) |
864 | : dyn_cast<Instruction>(Val: TrueVal); |
865 | if (!I1 || !I1->isBinaryOp()) |
866 | return InstDesc(false, I); |
867 | |
868 | Value *Op1, *Op2; |
869 | if (!(((m_FAdd(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1) || |
870 | m_FSub(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1)) && |
871 | I1->isFast()) || |
872 | (m_FMul(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1) && (I1->isFast())) || |
873 | ((m_Add(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1) || |
874 | m_Sub(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1))) || |
875 | (m_Mul(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1)))) |
876 | return InstDesc(false, I); |
877 | |
878 | Instruction *IPhi = isa<PHINode>(Val: Op1) ? dyn_cast<Instruction>(Val: Op1) |
879 | : dyn_cast<Instruction>(Val: Op2); |
880 | if (!IPhi || IPhi != FalseVal) |
881 | return InstDesc(false, I); |
882 | |
883 | return InstDesc(true, SI); |
884 | } |
885 | |
886 | RecurrenceDescriptor::InstDesc RecurrenceDescriptor::isRecurrenceInstr( |
887 | Loop *L, PHINode *OrigPhi, Instruction *I, RecurKind Kind, InstDesc &Prev, |
888 | FastMathFlags FuncFMF, ScalarEvolution *SE) { |
889 | assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind); |
890 | switch (I->getOpcode()) { |
891 | default: |
892 | return InstDesc(false, I); |
893 | case Instruction::PHI: |
894 | return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst()); |
895 | case Instruction::Sub: |
896 | case Instruction::Add: |
897 | return InstDesc(Kind == RecurKind::Add, I); |
898 | case Instruction::Mul: |
899 | return InstDesc(Kind == RecurKind::Mul, I); |
900 | case Instruction::And: |
901 | return InstDesc(Kind == RecurKind::And, I); |
902 | case Instruction::Or: |
903 | return InstDesc(Kind == RecurKind::Or, I); |
904 | case Instruction::Xor: |
905 | return InstDesc(Kind == RecurKind::Xor, I); |
906 | case Instruction::FDiv: |
907 | case Instruction::FMul: |
908 | return InstDesc(Kind == RecurKind::FMul, I, |
909 | I->hasAllowReassoc() ? nullptr : I); |
910 | case Instruction::FSub: |
911 | case Instruction::FAdd: |
912 | return InstDesc(Kind == RecurKind::FAdd, I, |
913 | I->hasAllowReassoc() ? nullptr : I); |
914 | case Instruction::Select: |
915 | if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul || |
916 | Kind == RecurKind::Add || Kind == RecurKind::Mul) |
917 | return isConditionalRdxPattern(I); |
918 | if (isFindIVRecurrenceKind(Kind) && SE) |
919 | return isFindIVPattern(Kind, TheLoop: L, OrigPhi, I, SE&: *SE); |
920 | [[fallthrough]]; |
921 | case Instruction::FCmp: |
922 | case Instruction::ICmp: |
923 | case Instruction::Call: |
924 | if (isAnyOfRecurrenceKind(Kind)) |
925 | return isAnyOfPattern(Loop: L, OrigPhi, I, Prev); |
926 | auto HasRequiredFMF = [&]() { |
927 | if (FuncFMF.noNaNs() && FuncFMF.noSignedZeros()) |
928 | return true; |
929 | if (isa<FPMathOperator>(Val: I) && I->hasNoNaNs() && I->hasNoSignedZeros()) |
930 | return true; |
931 | // minimum/minnum and maximum/maxnum intrinsics do not require nsz and nnan |
932 | // flags since NaN and signed zeroes are propagated in the intrinsic |
933 | // implementation. |
934 | return match(V: I, P: m_Intrinsic<Intrinsic::minimum>(Op0: m_Value(), Op1: m_Value())) || |
935 | match(V: I, P: m_Intrinsic<Intrinsic::maximum>(Op0: m_Value(), Op1: m_Value())) || |
936 | match(V: I, |
937 | P: m_Intrinsic<Intrinsic::minimumnum>(Op0: m_Value(), Op1: m_Value())) || |
938 | match(V: I, P: m_Intrinsic<Intrinsic::maximumnum>(Op0: m_Value(), Op1: m_Value())); |
939 | }; |
940 | if (isIntMinMaxRecurrenceKind(Kind) || |
941 | (HasRequiredFMF() && isFPMinMaxRecurrenceKind(Kind))) |
942 | return isMinMaxPattern(I, Kind, Prev); |
943 | else if (isFMulAddIntrinsic(I)) |
944 | return InstDesc(Kind == RecurKind::FMulAdd, I, |
945 | I->hasAllowReassoc() ? nullptr : I); |
946 | return InstDesc(false, I); |
947 | } |
948 | } |
949 | |
950 | bool RecurrenceDescriptor::hasMultipleUsesOf( |
951 | Instruction *I, SmallPtrSetImpl<Instruction *> &Insts, |
952 | unsigned MaxNumUses) { |
953 | unsigned NumUses = 0; |
954 | for (const Use &U : I->operands()) { |
955 | if (Insts.count(Ptr: dyn_cast<Instruction>(Val: U))) |
956 | ++NumUses; |
957 | if (NumUses > MaxNumUses) |
958 | return true; |
959 | } |
960 | |
961 | return false; |
962 | } |
963 | |
964 | bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, |
965 | RecurrenceDescriptor &RedDes, |
966 | DemandedBits *DB, AssumptionCache *AC, |
967 | DominatorTree *DT, |
968 | ScalarEvolution *SE) { |
969 | BasicBlock * = TheLoop->getHeader(); |
970 | Function &F = *Header->getParent(); |
971 | FastMathFlags FMF; |
972 | FMF.setNoNaNs( |
973 | F.getFnAttribute(Kind: "no-nans-fp-math" ).getValueAsBool()); |
974 | FMF.setNoSignedZeros( |
975 | F.getFnAttribute(Kind: "no-signed-zeros-fp-math" ).getValueAsBool()); |
976 | |
977 | if (AddReductionVar(Phi, Kind: RecurKind::Add, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
978 | SE)) { |
979 | LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n" ); |
980 | return true; |
981 | } |
982 | if (AddReductionVar(Phi, Kind: RecurKind::Mul, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
983 | SE)) { |
984 | LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n" ); |
985 | return true; |
986 | } |
987 | if (AddReductionVar(Phi, Kind: RecurKind::Or, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
988 | SE)) { |
989 | LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n" ); |
990 | return true; |
991 | } |
992 | if (AddReductionVar(Phi, Kind: RecurKind::And, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
993 | SE)) { |
994 | LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n" ); |
995 | return true; |
996 | } |
997 | if (AddReductionVar(Phi, Kind: RecurKind::Xor, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
998 | SE)) { |
999 | LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n" ); |
1000 | return true; |
1001 | } |
1002 | if (AddReductionVar(Phi, Kind: RecurKind::SMax, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
1003 | SE)) { |
1004 | LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n" ); |
1005 | return true; |
1006 | } |
1007 | if (AddReductionVar(Phi, Kind: RecurKind::SMin, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
1008 | SE)) { |
1009 | LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n" ); |
1010 | return true; |
1011 | } |
1012 | if (AddReductionVar(Phi, Kind: RecurKind::UMax, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
1013 | SE)) { |
1014 | LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n" ); |
1015 | return true; |
1016 | } |
1017 | if (AddReductionVar(Phi, Kind: RecurKind::UMin, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
1018 | SE)) { |
1019 | LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n" ); |
1020 | return true; |
1021 | } |
1022 | if (AddReductionVar(Phi, Kind: RecurKind::AnyOf, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
1023 | SE)) { |
1024 | LLVM_DEBUG(dbgs() << "Found a conditional select reduction PHI." << *Phi |
1025 | << "\n" ); |
1026 | return true; |
1027 | } |
1028 | if (AddReductionVar(Phi, Kind: RecurKind::FindLastIVSMax, TheLoop, FuncFMF: FMF, RedDes, DB, |
1029 | AC, DT, SE)) { |
1030 | LLVM_DEBUG(dbgs() << "Found a FindLastIV reduction PHI." << *Phi << "\n" ); |
1031 | return true; |
1032 | } |
1033 | if (AddReductionVar(Phi, Kind: RecurKind::FindFirstIVSMin, TheLoop, FuncFMF: FMF, RedDes, DB, |
1034 | AC, DT, SE)) { |
1035 | LLVM_DEBUG(dbgs() << "Found a FindFirstIV reduction PHI." << *Phi << "\n" ); |
1036 | return true; |
1037 | } |
1038 | if (AddReductionVar(Phi, Kind: RecurKind::FMul, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
1039 | SE)) { |
1040 | LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n" ); |
1041 | return true; |
1042 | } |
1043 | if (AddReductionVar(Phi, Kind: RecurKind::FAdd, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
1044 | SE)) { |
1045 | LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n" ); |
1046 | return true; |
1047 | } |
1048 | if (AddReductionVar(Phi, Kind: RecurKind::FMax, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
1049 | SE)) { |
1050 | LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n" ); |
1051 | return true; |
1052 | } |
1053 | if (AddReductionVar(Phi, Kind: RecurKind::FMin, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
1054 | SE)) { |
1055 | LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n" ); |
1056 | return true; |
1057 | } |
1058 | if (AddReductionVar(Phi, Kind: RecurKind::FMulAdd, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
1059 | SE)) { |
1060 | LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi << "\n" ); |
1061 | return true; |
1062 | } |
1063 | if (AddReductionVar(Phi, Kind: RecurKind::FMaximum, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
1064 | SE)) { |
1065 | LLVM_DEBUG(dbgs() << "Found a float MAXIMUM reduction PHI." << *Phi << "\n" ); |
1066 | return true; |
1067 | } |
1068 | if (AddReductionVar(Phi, Kind: RecurKind::FMinimum, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
1069 | SE)) { |
1070 | LLVM_DEBUG(dbgs() << "Found a float MINIMUM reduction PHI." << *Phi << "\n" ); |
1071 | return true; |
1072 | } |
1073 | if (AddReductionVar(Phi, Kind: RecurKind::FMaximumNum, TheLoop, FuncFMF: FMF, RedDes, DB, AC, |
1074 | DT, SE)) { |
1075 | LLVM_DEBUG(dbgs() << "Found a float MAXIMUMNUM reduction PHI." << *Phi |
1076 | << "\n" ); |
1077 | return true; |
1078 | } |
1079 | if (AddReductionVar(Phi, Kind: RecurKind::FMinimumNum, TheLoop, FuncFMF: FMF, RedDes, DB, AC, |
1080 | DT, SE)) { |
1081 | LLVM_DEBUG(dbgs() << "Found a float MINIMUMNUM reduction PHI." << *Phi |
1082 | << "\n" ); |
1083 | return true; |
1084 | } |
1085 | |
1086 | // Not a reduction of known type. |
1087 | return false; |
1088 | } |
1089 | |
1090 | bool RecurrenceDescriptor::isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop, |
1091 | DominatorTree *DT) { |
1092 | |
1093 | // Ensure the phi node is in the loop header and has two incoming values. |
1094 | if (Phi->getParent() != TheLoop->getHeader() || |
1095 | Phi->getNumIncomingValues() != 2) |
1096 | return false; |
1097 | |
1098 | // Ensure the loop has a preheader and a single latch block. The loop |
1099 | // vectorizer will need the latch to set up the next iteration of the loop. |
1100 | auto * = TheLoop->getLoopPreheader(); |
1101 | auto *Latch = TheLoop->getLoopLatch(); |
1102 | if (!Preheader || !Latch) |
1103 | return false; |
1104 | |
1105 | // Ensure the phi node's incoming blocks are the loop preheader and latch. |
1106 | if (Phi->getBasicBlockIndex(BB: Preheader) < 0 || |
1107 | Phi->getBasicBlockIndex(BB: Latch) < 0) |
1108 | return false; |
1109 | |
1110 | // Get the previous value. The previous value comes from the latch edge while |
1111 | // the initial value comes from the preheader edge. |
1112 | auto *Previous = dyn_cast<Instruction>(Val: Phi->getIncomingValueForBlock(BB: Latch)); |
1113 | |
1114 | // If Previous is a phi in the header, go through incoming values from the |
1115 | // latch until we find a non-phi value. Use this as the new Previous, all uses |
1116 | // in the header will be dominated by the original phi, but need to be moved |
1117 | // after the non-phi previous value. |
1118 | SmallPtrSet<PHINode *, 4> SeenPhis; |
1119 | while (auto *PrevPhi = dyn_cast_or_null<PHINode>(Val: Previous)) { |
1120 | if (PrevPhi->getParent() != Phi->getParent()) |
1121 | return false; |
1122 | if (!SeenPhis.insert(Ptr: PrevPhi).second) |
1123 | return false; |
1124 | Previous = dyn_cast<Instruction>(Val: PrevPhi->getIncomingValueForBlock(BB: Latch)); |
1125 | } |
1126 | |
1127 | if (!Previous || !TheLoop->contains(Inst: Previous) || isa<PHINode>(Val: Previous)) |
1128 | return false; |
1129 | |
1130 | // Ensure every user of the phi node (recursively) is dominated by the |
1131 | // previous value. The dominance requirement ensures the loop vectorizer will |
1132 | // not need to vectorize the initial value prior to the first iteration of the |
1133 | // loop. |
1134 | // TODO: Consider extending this sinking to handle memory instructions. |
1135 | |
1136 | SmallPtrSet<Value *, 8> Seen; |
1137 | BasicBlock *PhiBB = Phi->getParent(); |
1138 | SmallVector<Instruction *, 8> WorkList; |
1139 | auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) { |
1140 | // Cyclic dependence. |
1141 | if (Previous == SinkCandidate) |
1142 | return false; |
1143 | |
1144 | if (!Seen.insert(Ptr: SinkCandidate).second) |
1145 | return true; |
1146 | if (DT->dominates(Def: Previous, |
1147 | User: SinkCandidate)) // We already are good w/o sinking. |
1148 | return true; |
1149 | |
1150 | if (SinkCandidate->getParent() != PhiBB || |
1151 | SinkCandidate->mayHaveSideEffects() || |
1152 | SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator()) |
1153 | return false; |
1154 | |
1155 | // If we reach a PHI node that is not dominated by Previous, we reached a |
1156 | // header PHI. No need for sinking. |
1157 | if (isa<PHINode>(Val: SinkCandidate)) |
1158 | return true; |
1159 | |
1160 | // Sink User tentatively and check its users |
1161 | WorkList.push_back(Elt: SinkCandidate); |
1162 | return true; |
1163 | }; |
1164 | |
1165 | WorkList.push_back(Elt: Phi); |
1166 | // Try to recursively sink instructions and their users after Previous. |
1167 | while (!WorkList.empty()) { |
1168 | Instruction *Current = WorkList.pop_back_val(); |
1169 | for (User *User : Current->users()) { |
1170 | if (!TryToPushSinkCandidate(cast<Instruction>(Val: User))) |
1171 | return false; |
1172 | } |
1173 | } |
1174 | |
1175 | return true; |
1176 | } |
1177 | |
1178 | unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) { |
1179 | switch (Kind) { |
1180 | case RecurKind::Add: |
1181 | return Instruction::Add; |
1182 | case RecurKind::Mul: |
1183 | return Instruction::Mul; |
1184 | case RecurKind::AnyOf: |
1185 | case RecurKind::FindFirstIVSMin: |
1186 | case RecurKind::FindLastIVSMax: |
1187 | case RecurKind::FindLastIVUMax: |
1188 | case RecurKind::Or: |
1189 | return Instruction::Or; |
1190 | case RecurKind::And: |
1191 | return Instruction::And; |
1192 | case RecurKind::Xor: |
1193 | return Instruction::Xor; |
1194 | case RecurKind::FMul: |
1195 | return Instruction::FMul; |
1196 | case RecurKind::FMulAdd: |
1197 | case RecurKind::FAdd: |
1198 | return Instruction::FAdd; |
1199 | case RecurKind::SMax: |
1200 | case RecurKind::SMin: |
1201 | case RecurKind::UMax: |
1202 | case RecurKind::UMin: |
1203 | return Instruction::ICmp; |
1204 | case RecurKind::FMax: |
1205 | case RecurKind::FMin: |
1206 | case RecurKind::FMaximum: |
1207 | case RecurKind::FMinimum: |
1208 | case RecurKind::FMaximumNum: |
1209 | case RecurKind::FMinimumNum: |
1210 | return Instruction::FCmp; |
1211 | default: |
1212 | llvm_unreachable("Unknown recurrence operation" ); |
1213 | } |
1214 | } |
1215 | |
1216 | SmallVector<Instruction *, 4> |
1217 | RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const { |
1218 | SmallVector<Instruction *, 4> ReductionOperations; |
1219 | const bool IsMinMax = isMinMaxRecurrenceKind(Kind); |
1220 | |
1221 | // Search down from the Phi to the LoopExitInstr, looking for instructions |
1222 | // with a single user of the correct type for the reduction. |
1223 | |
1224 | // Note that we check that the type of the operand is correct for each item in |
1225 | // the chain, including the last (the loop exit value). This can come up from |
1226 | // sub, which would otherwise be treated as an add reduction. MinMax also need |
1227 | // to check for a pair of icmp/select, for which we use getNextInstruction and |
1228 | // isCorrectOpcode functions to step the right number of instruction, and |
1229 | // check the icmp/select pair. |
1230 | // FIXME: We also do not attempt to look through Select's yet, which might |
1231 | // be part of the reduction chain, or attempt to looks through And's to find a |
1232 | // smaller bitwidth. Subs are also currently not allowed (which are usually |
1233 | // treated as part of a add reduction) as they are expected to generally be |
1234 | // more expensive than out-of-loop reductions, and need to be costed more |
1235 | // carefully. |
1236 | unsigned ExpectedUses = 1; |
1237 | if (IsMinMax) |
1238 | ExpectedUses = 2; |
1239 | |
1240 | auto getNextInstruction = [&](Instruction *Cur) -> Instruction * { |
1241 | for (auto *User : Cur->users()) { |
1242 | Instruction *UI = cast<Instruction>(Val: User); |
1243 | if (isa<PHINode>(Val: UI)) |
1244 | continue; |
1245 | if (IsMinMax) { |
1246 | // We are expecting a icmp/select pair, which we go to the next select |
1247 | // instruction if we can. We already know that Cur has 2 uses. |
1248 | if (isa<SelectInst>(Val: UI)) |
1249 | return UI; |
1250 | continue; |
1251 | } |
1252 | return UI; |
1253 | } |
1254 | return nullptr; |
1255 | }; |
1256 | auto isCorrectOpcode = [&](Instruction *Cur) { |
1257 | if (IsMinMax) { |
1258 | Value *LHS, *RHS; |
1259 | return SelectPatternResult::isMinOrMax( |
1260 | SPF: matchSelectPattern(V: Cur, LHS, RHS).Flavor); |
1261 | } |
1262 | // Recognize a call to the llvm.fmuladd intrinsic. |
1263 | if (isFMulAddIntrinsic(I: Cur)) |
1264 | return true; |
1265 | |
1266 | return Cur->getOpcode() == getOpcode(); |
1267 | }; |
1268 | |
1269 | // Attempt to look through Phis which are part of the reduction chain |
1270 | unsigned = 0; |
1271 | Instruction *RdxInstr = LoopExitInstr; |
1272 | if (auto ExitPhi = dyn_cast<PHINode>(Val: LoopExitInstr)) { |
1273 | if (ExitPhi->getNumIncomingValues() != 2) |
1274 | return {}; |
1275 | |
1276 | Instruction *Inc0 = dyn_cast<Instruction>(Val: ExitPhi->getIncomingValue(i: 0)); |
1277 | Instruction *Inc1 = dyn_cast<Instruction>(Val: ExitPhi->getIncomingValue(i: 1)); |
1278 | |
1279 | Instruction *Chain = nullptr; |
1280 | if (Inc0 == Phi) |
1281 | Chain = Inc1; |
1282 | else if (Inc1 == Phi) |
1283 | Chain = Inc0; |
1284 | else |
1285 | return {}; |
1286 | |
1287 | RdxInstr = Chain; |
1288 | ExtraPhiUses = 1; |
1289 | } |
1290 | |
1291 | // The loop exit instruction we check first (as a quick test) but add last. We |
1292 | // check the opcode is correct (and dont allow them to be Subs) and that they |
1293 | // have expected to have the expected number of uses. They will have one use |
1294 | // from the phi and one from a LCSSA value, no matter the type. |
1295 | if (!isCorrectOpcode(RdxInstr) || !LoopExitInstr->hasNUses(N: 2)) |
1296 | return {}; |
1297 | |
1298 | // Check that the Phi has one (or two for min/max) uses, plus an extra use |
1299 | // for conditional reductions. |
1300 | if (!Phi->hasNUses(N: ExpectedUses + ExtraPhiUses)) |
1301 | return {}; |
1302 | |
1303 | Instruction *Cur = getNextInstruction(Phi); |
1304 | |
1305 | // Each other instruction in the chain should have the expected number of uses |
1306 | // and be the correct opcode. |
1307 | while (Cur != RdxInstr) { |
1308 | if (!Cur || !isCorrectOpcode(Cur) || !Cur->hasNUses(N: ExpectedUses)) |
1309 | return {}; |
1310 | |
1311 | ReductionOperations.push_back(Elt: Cur); |
1312 | Cur = getNextInstruction(Cur); |
1313 | } |
1314 | |
1315 | ReductionOperations.push_back(Elt: Cur); |
1316 | return ReductionOperations; |
1317 | } |
1318 | |
1319 | InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, |
1320 | const SCEV *Step, BinaryOperator *BOp, |
1321 | SmallVectorImpl<Instruction *> *Casts) |
1322 | : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { |
1323 | assert(IK != IK_NoInduction && "Not an induction" ); |
1324 | |
1325 | // Start value type should match the induction kind and the value |
1326 | // itself should not be null. |
1327 | assert(StartValue && "StartValue is null" ); |
1328 | assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && |
1329 | "StartValue is not a pointer for pointer induction" ); |
1330 | assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && |
1331 | "StartValue is not an integer for integer induction" ); |
1332 | |
1333 | // Check the Step Value. It should be non-zero integer value. |
1334 | assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && |
1335 | "Step value is zero" ); |
1336 | |
1337 | assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && |
1338 | "StepValue is not an integer" ); |
1339 | |
1340 | assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && |
1341 | "StepValue is not FP for FpInduction" ); |
1342 | assert((IK != IK_FpInduction || |
1343 | (InductionBinOp && |
1344 | (InductionBinOp->getOpcode() == Instruction::FAdd || |
1345 | InductionBinOp->getOpcode() == Instruction::FSub))) && |
1346 | "Binary opcode should be specified for FP induction" ); |
1347 | |
1348 | if (Casts) |
1349 | llvm::append_range(C&: RedundantCasts, R&: *Casts); |
1350 | } |
1351 | |
1352 | ConstantInt *InductionDescriptor::getConstIntStepValue() const { |
1353 | if (isa<SCEVConstant>(Val: Step)) |
1354 | return dyn_cast<ConstantInt>(Val: cast<SCEVConstant>(Val: Step)->getValue()); |
1355 | return nullptr; |
1356 | } |
1357 | |
1358 | bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, |
1359 | ScalarEvolution *SE, |
1360 | InductionDescriptor &D) { |
1361 | |
1362 | // Here we only handle FP induction variables. |
1363 | assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type" ); |
1364 | |
1365 | if (TheLoop->getHeader() != Phi->getParent()) |
1366 | return false; |
1367 | |
1368 | // The loop may have multiple entrances or multiple exits; we can analyze |
1369 | // this phi if it has a unique entry value and a unique backedge value. |
1370 | if (Phi->getNumIncomingValues() != 2) |
1371 | return false; |
1372 | Value *BEValue = nullptr, *StartValue = nullptr; |
1373 | if (TheLoop->contains(BB: Phi->getIncomingBlock(i: 0))) { |
1374 | BEValue = Phi->getIncomingValue(i: 0); |
1375 | StartValue = Phi->getIncomingValue(i: 1); |
1376 | } else { |
1377 | assert(TheLoop->contains(Phi->getIncomingBlock(1)) && |
1378 | "Unexpected Phi node in the loop" ); |
1379 | BEValue = Phi->getIncomingValue(i: 1); |
1380 | StartValue = Phi->getIncomingValue(i: 0); |
1381 | } |
1382 | |
1383 | BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val: BEValue); |
1384 | if (!BOp) |
1385 | return false; |
1386 | |
1387 | Value *Addend = nullptr; |
1388 | if (BOp->getOpcode() == Instruction::FAdd) { |
1389 | if (BOp->getOperand(i_nocapture: 0) == Phi) |
1390 | Addend = BOp->getOperand(i_nocapture: 1); |
1391 | else if (BOp->getOperand(i_nocapture: 1) == Phi) |
1392 | Addend = BOp->getOperand(i_nocapture: 0); |
1393 | } else if (BOp->getOpcode() == Instruction::FSub) |
1394 | if (BOp->getOperand(i_nocapture: 0) == Phi) |
1395 | Addend = BOp->getOperand(i_nocapture: 1); |
1396 | |
1397 | if (!Addend) |
1398 | return false; |
1399 | |
1400 | // The addend should be loop invariant |
1401 | if (auto *I = dyn_cast<Instruction>(Val: Addend)) |
1402 | if (TheLoop->contains(Inst: I)) |
1403 | return false; |
1404 | |
1405 | // FP Step has unknown SCEV |
1406 | const SCEV *Step = SE->getUnknown(V: Addend); |
1407 | D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); |
1408 | return true; |
1409 | } |
1410 | |
1411 | /// This function is called when we suspect that the update-chain of a phi node |
1412 | /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, |
1413 | /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime |
1414 | /// predicate P under which the SCEV expression for the phi can be the |
1415 | /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the |
1416 | /// cast instructions that are involved in the update-chain of this induction. |
1417 | /// A caller that adds the required runtime predicate can be free to drop these |
1418 | /// cast instructions, and compute the phi using \p AR (instead of some scev |
1419 | /// expression with casts). |
1420 | /// |
1421 | /// For example, without a predicate the scev expression can take the following |
1422 | /// form: |
1423 | /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) |
1424 | /// |
1425 | /// It corresponds to the following IR sequence: |
1426 | /// %for.body: |
1427 | /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] |
1428 | /// %casted_phi = "ExtTrunc i64 %x" |
1429 | /// %add = add i64 %casted_phi, %step |
1430 | /// |
1431 | /// where %x is given in \p PN, |
1432 | /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, |
1433 | /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of |
1434 | /// several forms, for example, such as: |
1435 | /// ExtTrunc1: %casted_phi = and %x, 2^n-1 |
1436 | /// or: |
1437 | /// ExtTrunc2: %t = shl %x, m |
1438 | /// %casted_phi = ashr %t, m |
1439 | /// |
1440 | /// If we are able to find such sequence, we return the instructions |
1441 | /// we found, namely %casted_phi and the instructions on its use-def chain up |
1442 | /// to the phi (not including the phi). |
1443 | static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, |
1444 | const SCEVUnknown *PhiScev, |
1445 | const SCEVAddRecExpr *AR, |
1446 | SmallVectorImpl<Instruction *> &CastInsts) { |
1447 | |
1448 | assert(CastInsts.empty() && "CastInsts is expected to be empty." ); |
1449 | auto *PN = cast<PHINode>(Val: PhiScev->getValue()); |
1450 | assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression" ); |
1451 | const Loop *L = AR->getLoop(); |
1452 | |
1453 | // Find any cast instructions that participate in the def-use chain of |
1454 | // PhiScev in the loop. |
1455 | // FORNOW/TODO: We currently expect the def-use chain to include only |
1456 | // two-operand instructions, where one of the operands is an invariant. |
1457 | // createAddRecFromPHIWithCasts() currently does not support anything more |
1458 | // involved than that, so we keep the search simple. This can be |
1459 | // extended/generalized as needed. |
1460 | |
1461 | auto getDef = [&](const Value *Val) -> Value * { |
1462 | const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); |
1463 | if (!BinOp) |
1464 | return nullptr; |
1465 | Value *Op0 = BinOp->getOperand(i_nocapture: 0); |
1466 | Value *Op1 = BinOp->getOperand(i_nocapture: 1); |
1467 | Value *Def = nullptr; |
1468 | if (L->isLoopInvariant(V: Op0)) |
1469 | Def = Op1; |
1470 | else if (L->isLoopInvariant(V: Op1)) |
1471 | Def = Op0; |
1472 | return Def; |
1473 | }; |
1474 | |
1475 | // Look for the instruction that defines the induction via the |
1476 | // loop backedge. |
1477 | BasicBlock *Latch = L->getLoopLatch(); |
1478 | if (!Latch) |
1479 | return false; |
1480 | Value *Val = PN->getIncomingValueForBlock(BB: Latch); |
1481 | if (!Val) |
1482 | return false; |
1483 | |
1484 | // Follow the def-use chain until the induction phi is reached. |
1485 | // If on the way we encounter a Value that has the same SCEV Expr as the |
1486 | // phi node, we can consider the instructions we visit from that point |
1487 | // as part of the cast-sequence that can be ignored. |
1488 | bool InCastSequence = false; |
1489 | auto *Inst = dyn_cast<Instruction>(Val); |
1490 | while (Val != PN) { |
1491 | // If we encountered a phi node other than PN, or if we left the loop, |
1492 | // we bail out. |
1493 | if (!Inst || !L->contains(Inst)) { |
1494 | return false; |
1495 | } |
1496 | auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: PSE.getSCEV(V: Val)); |
1497 | if (AddRec && PSE.areAddRecsEqualWithPreds(AR1: AddRec, AR2: AR)) |
1498 | InCastSequence = true; |
1499 | if (InCastSequence) { |
1500 | // Only the last instruction in the cast sequence is expected to have |
1501 | // uses outside the induction def-use chain. |
1502 | if (!CastInsts.empty()) |
1503 | if (!Inst->hasOneUse()) |
1504 | return false; |
1505 | CastInsts.push_back(Elt: Inst); |
1506 | } |
1507 | Val = getDef(Val); |
1508 | if (!Val) |
1509 | return false; |
1510 | Inst = dyn_cast<Instruction>(Val); |
1511 | } |
1512 | |
1513 | return InCastSequence; |
1514 | } |
1515 | |
1516 | bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, |
1517 | PredicatedScalarEvolution &PSE, |
1518 | InductionDescriptor &D, bool Assume) { |
1519 | Type *PhiTy = Phi->getType(); |
1520 | |
1521 | // Handle integer and pointer inductions variables. |
1522 | // Now we handle also FP induction but not trying to make a |
1523 | // recurrent expression from the PHI node in-place. |
1524 | |
1525 | if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() && |
1526 | !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) |
1527 | return false; |
1528 | |
1529 | if (PhiTy->isFloatingPointTy()) |
1530 | return isFPInductionPHI(Phi, TheLoop, SE: PSE.getSE(), D); |
1531 | |
1532 | const SCEV *PhiScev = PSE.getSCEV(V: Phi); |
1533 | const auto *AR = dyn_cast<SCEVAddRecExpr>(Val: PhiScev); |
1534 | |
1535 | // We need this expression to be an AddRecExpr. |
1536 | if (Assume && !AR) |
1537 | AR = PSE.getAsAddRec(V: Phi); |
1538 | |
1539 | if (!AR) { |
1540 | LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n" ); |
1541 | return false; |
1542 | } |
1543 | |
1544 | // Record any Cast instructions that participate in the induction update |
1545 | const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(Val: PhiScev); |
1546 | // If we started from an UnknownSCEV, and managed to build an addRecurrence |
1547 | // only after enabling Assume with PSCEV, this means we may have encountered |
1548 | // cast instructions that required adding a runtime check in order to |
1549 | // guarantee the correctness of the AddRecurrence respresentation of the |
1550 | // induction. |
1551 | if (PhiScev != AR && SymbolicPhi) { |
1552 | SmallVector<Instruction *, 2> Casts; |
1553 | if (getCastsForInductionPHI(PSE, PhiScev: SymbolicPhi, AR, CastInsts&: Casts)) |
1554 | return isInductionPHI(Phi, L: TheLoop, SE: PSE.getSE(), D, Expr: AR, CastsToIgnore: &Casts); |
1555 | } |
1556 | |
1557 | return isInductionPHI(Phi, L: TheLoop, SE: PSE.getSE(), D, Expr: AR); |
1558 | } |
1559 | |
1560 | bool InductionDescriptor::isInductionPHI( |
1561 | PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, |
1562 | InductionDescriptor &D, const SCEV *Expr, |
1563 | SmallVectorImpl<Instruction *> *CastsToIgnore) { |
1564 | Type *PhiTy = Phi->getType(); |
1565 | // isSCEVable returns true for integer and pointer types. |
1566 | if (!SE->isSCEVable(Ty: PhiTy)) |
1567 | return false; |
1568 | |
1569 | // Check that the PHI is consecutive. |
1570 | const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(V: Phi); |
1571 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: PhiScev); |
1572 | |
1573 | if (!AR) { |
1574 | LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n" ); |
1575 | return false; |
1576 | } |
1577 | |
1578 | if (AR->getLoop() != TheLoop) { |
1579 | // FIXME: We should treat this as a uniform. Unfortunately, we |
1580 | // don't currently know how to handled uniform PHIs. |
1581 | LLVM_DEBUG( |
1582 | dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n" ); |
1583 | return false; |
1584 | } |
1585 | |
1586 | // This function assumes that InductionPhi is called only on Phi nodes |
1587 | // present inside loop headers. Check for the same, and throw an assert if |
1588 | // the current Phi is not present inside the loop header. |
1589 | assert(Phi->getParent() == AR->getLoop()->getHeader() |
1590 | && "Invalid Phi node, not present in loop header" ); |
1591 | |
1592 | Value *StartValue = |
1593 | Phi->getIncomingValueForBlock(BB: AR->getLoop()->getLoopPreheader()); |
1594 | |
1595 | BasicBlock *Latch = AR->getLoop()->getLoopLatch(); |
1596 | if (!Latch) |
1597 | return false; |
1598 | |
1599 | const SCEV *Step = AR->getStepRecurrence(SE&: *SE); |
1600 | // Calculate the pointer stride and check if it is consecutive. |
1601 | // The stride may be a constant or a loop invariant integer value. |
1602 | const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Val: Step); |
1603 | if (!ConstStep && !SE->isLoopInvariant(S: Step, L: TheLoop)) |
1604 | return false; |
1605 | |
1606 | if (PhiTy->isIntegerTy()) { |
1607 | BinaryOperator *BOp = |
1608 | dyn_cast<BinaryOperator>(Val: Phi->getIncomingValueForBlock(BB: Latch)); |
1609 | D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp, |
1610 | CastsToIgnore); |
1611 | return true; |
1612 | } |
1613 | |
1614 | assert(PhiTy->isPointerTy() && "The PHI must be a pointer" ); |
1615 | |
1616 | // This allows induction variables w/non-constant steps. |
1617 | D = InductionDescriptor(StartValue, IK_PtrInduction, Step); |
1618 | return true; |
1619 | } |
1620 | |