| 1 | //===- llvm/Analysis/IVDescriptors.cpp - IndVar Descriptors -----*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file "describes" induction and recurrence variables. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/Analysis/IVDescriptors.h" |
| 14 | #include "llvm/Analysis/DemandedBits.h" |
| 15 | #include "llvm/Analysis/LoopInfo.h" |
| 16 | #include "llvm/Analysis/ScalarEvolution.h" |
| 17 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| 18 | #include "llvm/Analysis/ValueTracking.h" |
| 19 | #include "llvm/IR/Dominators.h" |
| 20 | #include "llvm/IR/Instructions.h" |
| 21 | #include "llvm/IR/PatternMatch.h" |
| 22 | #include "llvm/IR/ValueHandle.h" |
| 23 | #include "llvm/Support/Debug.h" |
| 24 | #include "llvm/Support/KnownBits.h" |
| 25 | |
| 26 | using namespace llvm; |
| 27 | using namespace llvm::PatternMatch; |
| 28 | |
| 29 | #define DEBUG_TYPE "iv-descriptors" |
| 30 | |
| 31 | bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, |
| 32 | SmallPtrSetImpl<Instruction *> &Set) { |
| 33 | for (const Use &Use : I->operands()) |
| 34 | if (!Set.count(Ptr: dyn_cast<Instruction>(Val: Use))) |
| 35 | return false; |
| 36 | return true; |
| 37 | } |
| 38 | |
| 39 | bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurKind Kind) { |
| 40 | switch (Kind) { |
| 41 | default: |
| 42 | break; |
| 43 | case RecurKind::Add: |
| 44 | case RecurKind::Mul: |
| 45 | case RecurKind::Or: |
| 46 | case RecurKind::And: |
| 47 | case RecurKind::Xor: |
| 48 | case RecurKind::SMax: |
| 49 | case RecurKind::SMin: |
| 50 | case RecurKind::UMax: |
| 51 | case RecurKind::UMin: |
| 52 | case RecurKind::AnyOf: |
| 53 | case RecurKind::FindFirstIVSMin: |
| 54 | case RecurKind::FindLastIVSMax: |
| 55 | case RecurKind::FindLastIVUMax: |
| 56 | return true; |
| 57 | } |
| 58 | return false; |
| 59 | } |
| 60 | |
| 61 | bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurKind Kind) { |
| 62 | return (Kind != RecurKind::None) && !isIntegerRecurrenceKind(Kind); |
| 63 | } |
| 64 | |
| 65 | /// Determines if Phi may have been type-promoted. If Phi has a single user |
| 66 | /// that ANDs the Phi with a type mask, return the user. RT is updated to |
| 67 | /// account for the narrower bit width represented by the mask, and the AND |
| 68 | /// instruction is added to CI. |
| 69 | static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT, |
| 70 | SmallPtrSetImpl<Instruction *> &Visited, |
| 71 | SmallPtrSetImpl<Instruction *> &CI) { |
| 72 | if (!Phi->hasOneUse()) |
| 73 | return Phi; |
| 74 | |
| 75 | const APInt *M = nullptr; |
| 76 | Instruction *I, *J = cast<Instruction>(Val: Phi->use_begin()->getUser()); |
| 77 | |
| 78 | // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT |
| 79 | // with a new integer type of the corresponding bit width. |
| 80 | if (match(V: J, P: m_And(L: m_Instruction(I), R: m_APInt(Res&: M)))) { |
| 81 | int32_t Bits = (*M + 1).exactLogBase2(); |
| 82 | if (Bits > 0) { |
| 83 | RT = IntegerType::get(C&: Phi->getContext(), NumBits: Bits); |
| 84 | Visited.insert(Ptr: Phi); |
| 85 | CI.insert(Ptr: J); |
| 86 | return J; |
| 87 | } |
| 88 | } |
| 89 | return Phi; |
| 90 | } |
| 91 | |
| 92 | /// Compute the minimal bit width needed to represent a reduction whose exit |
| 93 | /// instruction is given by Exit. |
| 94 | static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit, |
| 95 | DemandedBits *DB, |
| 96 | AssumptionCache *AC, |
| 97 | DominatorTree *DT) { |
| 98 | bool IsSigned = false; |
| 99 | const DataLayout &DL = Exit->getDataLayout(); |
| 100 | uint64_t MaxBitWidth = DL.getTypeSizeInBits(Ty: Exit->getType()); |
| 101 | |
| 102 | if (DB) { |
| 103 | // Use the demanded bits analysis to determine the bits that are live out |
| 104 | // of the exit instruction, rounding up to the nearest power of two. If the |
| 105 | // use of demanded bits results in a smaller bit width, we know the value |
| 106 | // must be positive (i.e., IsSigned = false), because if this were not the |
| 107 | // case, the sign bit would have been demanded. |
| 108 | auto Mask = DB->getDemandedBits(I: Exit); |
| 109 | MaxBitWidth = Mask.getBitWidth() - Mask.countl_zero(); |
| 110 | } |
| 111 | |
| 112 | if (MaxBitWidth == DL.getTypeSizeInBits(Ty: Exit->getType()) && AC && DT) { |
| 113 | // If demanded bits wasn't able to limit the bit width, we can try to use |
| 114 | // value tracking instead. This can be the case, for example, if the value |
| 115 | // may be negative. |
| 116 | auto NumSignBits = ComputeNumSignBits(Op: Exit, DL, AC, CxtI: nullptr, DT); |
| 117 | auto NumTypeBits = DL.getTypeSizeInBits(Ty: Exit->getType()); |
| 118 | MaxBitWidth = NumTypeBits - NumSignBits; |
| 119 | KnownBits Bits = computeKnownBits(V: Exit, DL); |
| 120 | if (!Bits.isNonNegative()) { |
| 121 | // If the value is not known to be non-negative, we set IsSigned to true, |
| 122 | // meaning that we will use sext instructions instead of zext |
| 123 | // instructions to restore the original type. |
| 124 | IsSigned = true; |
| 125 | // Make sure at least one sign bit is included in the result, so it |
| 126 | // will get properly sign-extended. |
| 127 | ++MaxBitWidth; |
| 128 | } |
| 129 | } |
| 130 | MaxBitWidth = llvm::bit_ceil(Value: MaxBitWidth); |
| 131 | |
| 132 | return std::make_pair(x: Type::getIntNTy(C&: Exit->getContext(), N: MaxBitWidth), |
| 133 | y&: IsSigned); |
| 134 | } |
| 135 | |
| 136 | /// Collect cast instructions that can be ignored in the vectorizer's cost |
| 137 | /// model, given a reduction exit value and the minimal type in which the |
| 138 | // reduction can be represented. Also search casts to the recurrence type |
| 139 | // to find the minimum width used by the recurrence. |
| 140 | static void collectCastInstrs(Loop *TheLoop, Instruction *Exit, |
| 141 | Type *RecurrenceType, |
| 142 | SmallPtrSetImpl<Instruction *> &Casts, |
| 143 | unsigned &MinWidthCastToRecurTy) { |
| 144 | |
| 145 | SmallVector<Instruction *, 8> Worklist; |
| 146 | SmallPtrSet<Instruction *, 8> Visited; |
| 147 | Worklist.push_back(Elt: Exit); |
| 148 | MinWidthCastToRecurTy = -1U; |
| 149 | |
| 150 | while (!Worklist.empty()) { |
| 151 | Instruction *Val = Worklist.pop_back_val(); |
| 152 | Visited.insert(Ptr: Val); |
| 153 | if (auto *Cast = dyn_cast<CastInst>(Val)) { |
| 154 | if (Cast->getSrcTy() == RecurrenceType) { |
| 155 | // If the source type of a cast instruction is equal to the recurrence |
| 156 | // type, it will be eliminated, and should be ignored in the vectorizer |
| 157 | // cost model. |
| 158 | Casts.insert(Ptr: Cast); |
| 159 | continue; |
| 160 | } |
| 161 | if (Cast->getDestTy() == RecurrenceType) { |
| 162 | // The minimum width used by the recurrence is found by checking for |
| 163 | // casts on its operands. The minimum width is used by the vectorizer |
| 164 | // when finding the widest type for in-loop reductions without any |
| 165 | // loads/stores. |
| 166 | MinWidthCastToRecurTy = std::min<unsigned>( |
| 167 | a: MinWidthCastToRecurTy, b: Cast->getSrcTy()->getScalarSizeInBits()); |
| 168 | continue; |
| 169 | } |
| 170 | } |
| 171 | // Add all operands to the work list if they are loop-varying values that |
| 172 | // we haven't yet visited. |
| 173 | for (Value *O : cast<User>(Val)->operands()) |
| 174 | if (auto *I = dyn_cast<Instruction>(Val: O)) |
| 175 | if (TheLoop->contains(Inst: I) && !Visited.count(Ptr: I)) |
| 176 | Worklist.push_back(Elt: I); |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | // Check if a given Phi node can be recognized as an ordered reduction for |
| 181 | // vectorizing floating point operations without unsafe math. |
| 182 | static bool checkOrderedReduction(RecurKind Kind, Instruction *ExactFPMathInst, |
| 183 | Instruction *Exit, PHINode *Phi) { |
| 184 | // Currently only FAdd and FMulAdd are supported. |
| 185 | if (Kind != RecurKind::FAdd && Kind != RecurKind::FMulAdd) |
| 186 | return false; |
| 187 | |
| 188 | if (Kind == RecurKind::FAdd && Exit->getOpcode() != Instruction::FAdd) |
| 189 | return false; |
| 190 | |
| 191 | if (Kind == RecurKind::FMulAdd && |
| 192 | !RecurrenceDescriptor::isFMulAddIntrinsic(I: Exit)) |
| 193 | return false; |
| 194 | |
| 195 | // Ensure the exit instruction has only one user other than the reduction PHI |
| 196 | if (Exit != ExactFPMathInst || Exit->hasNUsesOrMore(N: 3)) |
| 197 | return false; |
| 198 | |
| 199 | // The only pattern accepted is the one in which the reduction PHI |
| 200 | // is used as one of the operands of the exit instruction |
| 201 | auto *Op0 = Exit->getOperand(i: 0); |
| 202 | auto *Op1 = Exit->getOperand(i: 1); |
| 203 | if (Kind == RecurKind::FAdd && Op0 != Phi && Op1 != Phi) |
| 204 | return false; |
| 205 | if (Kind == RecurKind::FMulAdd && Exit->getOperand(i: 2) != Phi) |
| 206 | return false; |
| 207 | |
| 208 | LLVM_DEBUG(dbgs() << "LV: Found an ordered reduction: Phi: " << *Phi |
| 209 | << ", ExitInst: " << *Exit << "\n" ); |
| 210 | |
| 211 | return true; |
| 212 | } |
| 213 | |
| 214 | bool RecurrenceDescriptor::AddReductionVar( |
| 215 | PHINode *Phi, RecurKind Kind, Loop *TheLoop, FastMathFlags FuncFMF, |
| 216 | RecurrenceDescriptor &RedDes, DemandedBits *DB, AssumptionCache *AC, |
| 217 | DominatorTree *DT, ScalarEvolution *SE) { |
| 218 | if (Phi->getNumIncomingValues() != 2) |
| 219 | return false; |
| 220 | |
| 221 | // Reduction variables are only found in the loop header block. |
| 222 | if (Phi->getParent() != TheLoop->getHeader()) |
| 223 | return false; |
| 224 | |
| 225 | // Obtain the reduction start value from the value that comes from the loop |
| 226 | // preheader. |
| 227 | Value *RdxStart = Phi->getIncomingValueForBlock(BB: TheLoop->getLoopPreheader()); |
| 228 | |
| 229 | // ExitInstruction is the single value which is used outside the loop. |
| 230 | // We only allow for a single reduction value to be used outside the loop. |
| 231 | // This includes users of the reduction, variables (which form a cycle |
| 232 | // which ends in the phi node). |
| 233 | Instruction *ExitInstruction = nullptr; |
| 234 | |
| 235 | // Variable to keep last visited store instruction. By the end of the |
| 236 | // algorithm this variable will be either empty or having intermediate |
| 237 | // reduction value stored in invariant address. |
| 238 | StoreInst *IntermediateStore = nullptr; |
| 239 | |
| 240 | // Indicates that we found a reduction operation in our scan. |
| 241 | bool FoundReduxOp = false; |
| 242 | |
| 243 | // We start with the PHI node and scan for all of the users of this |
| 244 | // instruction. All users must be instructions that can be used as reduction |
| 245 | // variables (such as ADD). We must have a single out-of-block user. The cycle |
| 246 | // must include the original PHI. |
| 247 | bool FoundStartPHI = false; |
| 248 | |
| 249 | // To recognize min/max patterns formed by a icmp select sequence, we store |
| 250 | // the number of instruction we saw from the recognized min/max pattern, |
| 251 | // to make sure we only see exactly the two instructions. |
| 252 | unsigned NumCmpSelectPatternInst = 0; |
| 253 | InstDesc ReduxDesc(false, nullptr); |
| 254 | |
| 255 | // Data used for determining if the recurrence has been type-promoted. |
| 256 | Type *RecurrenceType = Phi->getType(); |
| 257 | SmallPtrSet<Instruction *, 4> CastInsts; |
| 258 | unsigned MinWidthCastToRecurrenceType; |
| 259 | Instruction *Start = Phi; |
| 260 | bool IsSigned = false; |
| 261 | |
| 262 | SmallPtrSet<Instruction *, 8> VisitedInsts; |
| 263 | SmallVector<Instruction *, 8> Worklist; |
| 264 | |
| 265 | // Return early if the recurrence kind does not match the type of Phi. If the |
| 266 | // recurrence kind is arithmetic, we attempt to look through AND operations |
| 267 | // resulting from the type promotion performed by InstCombine. Vector |
| 268 | // operations are not limited to the legal integer widths, so we may be able |
| 269 | // to evaluate the reduction in the narrower width. |
| 270 | if (RecurrenceType->isFloatingPointTy()) { |
| 271 | if (!isFloatingPointRecurrenceKind(Kind)) |
| 272 | return false; |
| 273 | } else if (RecurrenceType->isIntegerTy()) { |
| 274 | if (!isIntegerRecurrenceKind(Kind)) |
| 275 | return false; |
| 276 | if (!isMinMaxRecurrenceKind(Kind)) |
| 277 | Start = lookThroughAnd(Phi, RT&: RecurrenceType, Visited&: VisitedInsts, CI&: CastInsts); |
| 278 | } else { |
| 279 | // Pointer min/max may exist, but it is not supported as a reduction op. |
| 280 | return false; |
| 281 | } |
| 282 | |
| 283 | Worklist.push_back(Elt: Start); |
| 284 | VisitedInsts.insert(Ptr: Start); |
| 285 | |
| 286 | // Start with all flags set because we will intersect this with the reduction |
| 287 | // flags from all the reduction operations. |
| 288 | FastMathFlags FMF = FastMathFlags::getFast(); |
| 289 | |
| 290 | // The first instruction in the use-def chain of the Phi node that requires |
| 291 | // exact floating point operations. |
| 292 | Instruction *ExactFPMathInst = nullptr; |
| 293 | |
| 294 | // A value in the reduction can be used: |
| 295 | // - By the reduction: |
| 296 | // - Reduction operation: |
| 297 | // - One use of reduction value (safe). |
| 298 | // - Multiple use of reduction value (not safe). |
| 299 | // - PHI: |
| 300 | // - All uses of the PHI must be the reduction (safe). |
| 301 | // - Otherwise, not safe. |
| 302 | // - By instructions outside of the loop (safe). |
| 303 | // * One value may have several outside users, but all outside |
| 304 | // uses must be of the same value. |
| 305 | // - By store instructions with a loop invariant address (safe with |
| 306 | // the following restrictions): |
| 307 | // * If there are several stores, all must have the same address. |
| 308 | // * Final value should be stored in that loop invariant address. |
| 309 | // - By an instruction that is not part of the reduction (not safe). |
| 310 | // This is either: |
| 311 | // * An instruction type other than PHI or the reduction operation. |
| 312 | // * A PHI in the header other than the initial PHI. |
| 313 | while (!Worklist.empty()) { |
| 314 | Instruction *Cur = Worklist.pop_back_val(); |
| 315 | |
| 316 | // Store instructions are allowed iff it is the store of the reduction |
| 317 | // value to the same loop invariant memory location. |
| 318 | if (auto *SI = dyn_cast<StoreInst>(Val: Cur)) { |
| 319 | if (!SE) { |
| 320 | LLVM_DEBUG(dbgs() << "Store instructions are not processed without " |
| 321 | << "Scalar Evolution Analysis\n" ); |
| 322 | return false; |
| 323 | } |
| 324 | |
| 325 | const SCEV *PtrScev = SE->getSCEV(V: SI->getPointerOperand()); |
| 326 | // Check it is the same address as previous stores |
| 327 | if (IntermediateStore) { |
| 328 | const SCEV *OtherScev = |
| 329 | SE->getSCEV(V: IntermediateStore->getPointerOperand()); |
| 330 | |
| 331 | if (OtherScev != PtrScev) { |
| 332 | LLVM_DEBUG(dbgs() << "Storing reduction value to different addresses " |
| 333 | << "inside the loop: " << *SI->getPointerOperand() |
| 334 | << " and " |
| 335 | << *IntermediateStore->getPointerOperand() << '\n'); |
| 336 | return false; |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | // Check the pointer is loop invariant |
| 341 | if (!SE->isLoopInvariant(S: PtrScev, L: TheLoop)) { |
| 342 | LLVM_DEBUG(dbgs() << "Storing reduction value to non-uniform address " |
| 343 | << "inside the loop: " << *SI->getPointerOperand() |
| 344 | << '\n'); |
| 345 | return false; |
| 346 | } |
| 347 | |
| 348 | // IntermediateStore is always the last store in the loop. |
| 349 | IntermediateStore = SI; |
| 350 | continue; |
| 351 | } |
| 352 | |
| 353 | // No Users. |
| 354 | // If the instruction has no users then this is a broken chain and can't be |
| 355 | // a reduction variable. |
| 356 | if (Cur->use_empty()) |
| 357 | return false; |
| 358 | |
| 359 | bool IsAPhi = isa<PHINode>(Val: Cur); |
| 360 | |
| 361 | // A header PHI use other than the original PHI. |
| 362 | if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) |
| 363 | return false; |
| 364 | |
| 365 | // Reductions of instructions such as Div, and Sub is only possible if the |
| 366 | // LHS is the reduction variable. |
| 367 | if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Val: Cur) && |
| 368 | !isa<ICmpInst>(Val: Cur) && !isa<FCmpInst>(Val: Cur) && |
| 369 | !VisitedInsts.count(Ptr: dyn_cast<Instruction>(Val: Cur->getOperand(i: 0)))) |
| 370 | return false; |
| 371 | |
| 372 | // Any reduction instruction must be of one of the allowed kinds. We ignore |
| 373 | // the starting value (the Phi or an AND instruction if the Phi has been |
| 374 | // type-promoted). |
| 375 | if (Cur != Start) { |
| 376 | ReduxDesc = |
| 377 | isRecurrenceInstr(L: TheLoop, Phi, I: Cur, Kind, Prev&: ReduxDesc, FuncFMF, SE); |
| 378 | ExactFPMathInst = ExactFPMathInst == nullptr |
| 379 | ? ReduxDesc.getExactFPMathInst() |
| 380 | : ExactFPMathInst; |
| 381 | if (!ReduxDesc.isRecurrence()) |
| 382 | return false; |
| 383 | // FIXME: FMF is allowed on phi, but propagation is not handled correctly. |
| 384 | if (isa<FPMathOperator>(Val: ReduxDesc.getPatternInst()) && !IsAPhi) { |
| 385 | FastMathFlags CurFMF = ReduxDesc.getPatternInst()->getFastMathFlags(); |
| 386 | if (auto *Sel = dyn_cast<SelectInst>(Val: ReduxDesc.getPatternInst())) { |
| 387 | // Accept FMF on either fcmp or select of a min/max idiom. |
| 388 | // TODO: This is a hack to work-around the fact that FMF may not be |
| 389 | // assigned/propagated correctly. If that problem is fixed or we |
| 390 | // standardize on fmin/fmax via intrinsics, this can be removed. |
| 391 | if (auto *FCmp = dyn_cast<FCmpInst>(Val: Sel->getCondition())) |
| 392 | CurFMF |= FCmp->getFastMathFlags(); |
| 393 | } |
| 394 | FMF &= CurFMF; |
| 395 | } |
| 396 | // Update this reduction kind if we matched a new instruction. |
| 397 | // TODO: Can we eliminate the need for a 2nd InstDesc by keeping 'Kind' |
| 398 | // state accurate while processing the worklist? |
| 399 | if (ReduxDesc.getRecKind() != RecurKind::None) |
| 400 | Kind = ReduxDesc.getRecKind(); |
| 401 | } |
| 402 | |
| 403 | bool IsASelect = isa<SelectInst>(Val: Cur); |
| 404 | |
| 405 | // A conditional reduction operation must only have 2 or less uses in |
| 406 | // VisitedInsts. |
| 407 | if (IsASelect && (Kind == RecurKind::FAdd || Kind == RecurKind::FMul) && |
| 408 | hasMultipleUsesOf(I: Cur, Insts&: VisitedInsts, MaxNumUses: 2)) |
| 409 | return false; |
| 410 | |
| 411 | // A reduction operation must only have one use of the reduction value. |
| 412 | if (!IsAPhi && !IsASelect && !isMinMaxRecurrenceKind(Kind) && |
| 413 | !isAnyOfRecurrenceKind(Kind) && hasMultipleUsesOf(I: Cur, Insts&: VisitedInsts, MaxNumUses: 1)) |
| 414 | return false; |
| 415 | |
| 416 | // All inputs to a PHI node must be a reduction value. |
| 417 | if (IsAPhi && Cur != Phi && !areAllUsesIn(I: Cur, Set&: VisitedInsts)) |
| 418 | return false; |
| 419 | |
| 420 | if (isIntMinMaxRecurrenceKind(Kind) && (isa<ICmpInst>(Val: Cur) || IsASelect)) |
| 421 | ++NumCmpSelectPatternInst; |
| 422 | if (isFPMinMaxRecurrenceKind(Kind) && (isa<FCmpInst>(Val: Cur) || IsASelect)) |
| 423 | ++NumCmpSelectPatternInst; |
| 424 | if (isAnyOfRecurrenceKind(Kind) && IsASelect) |
| 425 | ++NumCmpSelectPatternInst; |
| 426 | |
| 427 | // Check whether we found a reduction operator. |
| 428 | FoundReduxOp |= !IsAPhi && Cur != Start; |
| 429 | |
| 430 | // Process users of current instruction. Push non-PHI nodes after PHI nodes |
| 431 | // onto the stack. This way we are going to have seen all inputs to PHI |
| 432 | // nodes once we get to them. |
| 433 | SmallVector<Instruction *, 8> NonPHIs; |
| 434 | SmallVector<Instruction *, 8> PHIs; |
| 435 | for (User *U : Cur->users()) { |
| 436 | Instruction *UI = cast<Instruction>(Val: U); |
| 437 | |
| 438 | // If the user is a call to llvm.fmuladd then the instruction can only be |
| 439 | // the final operand. |
| 440 | if (isFMulAddIntrinsic(I: UI)) |
| 441 | if (Cur == UI->getOperand(i: 0) || Cur == UI->getOperand(i: 1)) |
| 442 | return false; |
| 443 | |
| 444 | // Check if we found the exit user. |
| 445 | BasicBlock *Parent = UI->getParent(); |
| 446 | if (!TheLoop->contains(BB: Parent)) { |
| 447 | // If we already know this instruction is used externally, move on to |
| 448 | // the next user. |
| 449 | if (ExitInstruction == Cur) |
| 450 | continue; |
| 451 | |
| 452 | // Exit if you find multiple values used outside or if the header phi |
| 453 | // node is being used. In this case the user uses the value of the |
| 454 | // previous iteration, in which case we would loose "VF-1" iterations of |
| 455 | // the reduction operation if we vectorize. |
| 456 | if (ExitInstruction != nullptr || Cur == Phi) |
| 457 | return false; |
| 458 | |
| 459 | // The instruction used by an outside user must be the last instruction |
| 460 | // before we feed back to the reduction phi. Otherwise, we loose VF-1 |
| 461 | // operations on the value. |
| 462 | if (!is_contained(Range: Phi->operands(), Element: Cur)) |
| 463 | return false; |
| 464 | |
| 465 | ExitInstruction = Cur; |
| 466 | continue; |
| 467 | } |
| 468 | |
| 469 | // Process instructions only once (termination). Each reduction cycle |
| 470 | // value must only be used once, except by phi nodes and min/max |
| 471 | // reductions which are represented as a cmp followed by a select. |
| 472 | InstDesc IgnoredVal(false, nullptr); |
| 473 | if (VisitedInsts.insert(Ptr: UI).second) { |
| 474 | if (isa<PHINode>(Val: UI)) { |
| 475 | PHIs.push_back(Elt: UI); |
| 476 | } else { |
| 477 | StoreInst *SI = dyn_cast<StoreInst>(Val: UI); |
| 478 | if (SI && SI->getPointerOperand() == Cur) { |
| 479 | // Reduction variable chain can only be stored somewhere but it |
| 480 | // can't be used as an address. |
| 481 | return false; |
| 482 | } |
| 483 | NonPHIs.push_back(Elt: UI); |
| 484 | } |
| 485 | } else if (!isa<PHINode>(Val: UI) && |
| 486 | ((!isa<FCmpInst>(Val: UI) && !isa<ICmpInst>(Val: UI) && |
| 487 | !isa<SelectInst>(Val: UI)) || |
| 488 | (!isConditionalRdxPattern(I: UI).isRecurrence() && |
| 489 | !isAnyOfPattern(Loop: TheLoop, OrigPhi: Phi, I: UI, Prev&: IgnoredVal) |
| 490 | .isRecurrence() && |
| 491 | !isMinMaxPattern(I: UI, Kind, Prev: IgnoredVal).isRecurrence()))) |
| 492 | return false; |
| 493 | |
| 494 | // Remember that we completed the cycle. |
| 495 | if (UI == Phi) |
| 496 | FoundStartPHI = true; |
| 497 | } |
| 498 | Worklist.append(in_start: PHIs.begin(), in_end: PHIs.end()); |
| 499 | Worklist.append(in_start: NonPHIs.begin(), in_end: NonPHIs.end()); |
| 500 | } |
| 501 | |
| 502 | // This means we have seen one but not the other instruction of the |
| 503 | // pattern or more than just a select and cmp. Zero implies that we saw a |
| 504 | // llvm.min/max intrinsic, which is always OK. |
| 505 | if (isMinMaxRecurrenceKind(Kind) && NumCmpSelectPatternInst != 2 && |
| 506 | NumCmpSelectPatternInst != 0) |
| 507 | return false; |
| 508 | |
| 509 | if (isAnyOfRecurrenceKind(Kind) && NumCmpSelectPatternInst != 1) |
| 510 | return false; |
| 511 | |
| 512 | if (IntermediateStore) { |
| 513 | // Check that stored value goes to the phi node again. This way we make sure |
| 514 | // that the value stored in IntermediateStore is indeed the final reduction |
| 515 | // value. |
| 516 | if (!is_contained(Range: Phi->operands(), Element: IntermediateStore->getValueOperand())) { |
| 517 | LLVM_DEBUG(dbgs() << "Not a final reduction value stored: " |
| 518 | << *IntermediateStore << '\n'); |
| 519 | return false; |
| 520 | } |
| 521 | |
| 522 | // If there is an exit instruction it's value should be stored in |
| 523 | // IntermediateStore |
| 524 | if (ExitInstruction && |
| 525 | IntermediateStore->getValueOperand() != ExitInstruction) { |
| 526 | LLVM_DEBUG(dbgs() << "Last store Instruction of reduction value does not " |
| 527 | "store last calculated value of the reduction: " |
| 528 | << *IntermediateStore << '\n'); |
| 529 | return false; |
| 530 | } |
| 531 | |
| 532 | // If all uses are inside the loop (intermediate stores), then the |
| 533 | // reduction value after the loop will be the one used in the last store. |
| 534 | if (!ExitInstruction) |
| 535 | ExitInstruction = cast<Instruction>(Val: IntermediateStore->getValueOperand()); |
| 536 | } |
| 537 | |
| 538 | if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) |
| 539 | return false; |
| 540 | |
| 541 | const bool IsOrdered = |
| 542 | checkOrderedReduction(Kind, ExactFPMathInst, Exit: ExitInstruction, Phi); |
| 543 | |
| 544 | if (Start != Phi) { |
| 545 | // If the starting value is not the same as the phi node, we speculatively |
| 546 | // looked through an 'and' instruction when evaluating a potential |
| 547 | // arithmetic reduction to determine if it may have been type-promoted. |
| 548 | // |
| 549 | // We now compute the minimal bit width that is required to represent the |
| 550 | // reduction. If this is the same width that was indicated by the 'and', we |
| 551 | // can represent the reduction in the smaller type. The 'and' instruction |
| 552 | // will be eliminated since it will essentially be a cast instruction that |
| 553 | // can be ignore in the cost model. If we compute a different type than we |
| 554 | // did when evaluating the 'and', the 'and' will not be eliminated, and we |
| 555 | // will end up with different kinds of operations in the recurrence |
| 556 | // expression (e.g., IntegerAND, IntegerADD). We give up if this is |
| 557 | // the case. |
| 558 | // |
| 559 | // The vectorizer relies on InstCombine to perform the actual |
| 560 | // type-shrinking. It does this by inserting instructions to truncate the |
| 561 | // exit value of the reduction to the width indicated by RecurrenceType and |
| 562 | // then extend this value back to the original width. If IsSigned is false, |
| 563 | // a 'zext' instruction will be generated; otherwise, a 'sext' will be |
| 564 | // used. |
| 565 | // |
| 566 | // TODO: We should not rely on InstCombine to rewrite the reduction in the |
| 567 | // smaller type. We should just generate a correctly typed expression |
| 568 | // to begin with. |
| 569 | Type *ComputedType; |
| 570 | std::tie(args&: ComputedType, args&: IsSigned) = |
| 571 | computeRecurrenceType(Exit: ExitInstruction, DB, AC, DT); |
| 572 | if (ComputedType != RecurrenceType) |
| 573 | return false; |
| 574 | } |
| 575 | |
| 576 | // Collect cast instructions and the minimum width used by the recurrence. |
| 577 | // If the starting value is not the same as the phi node and the computed |
| 578 | // recurrence type is equal to the recurrence type, the recurrence expression |
| 579 | // will be represented in a narrower or wider type. If there are any cast |
| 580 | // instructions that will be unnecessary, collect them in CastsFromRecurTy. |
| 581 | // Note that the 'and' instruction was already included in this list. |
| 582 | // |
| 583 | // TODO: A better way to represent this may be to tag in some way all the |
| 584 | // instructions that are a part of the reduction. The vectorizer cost |
| 585 | // model could then apply the recurrence type to these instructions, |
| 586 | // without needing a white list of instructions to ignore. |
| 587 | // This may also be useful for the inloop reductions, if it can be |
| 588 | // kept simple enough. |
| 589 | collectCastInstrs(TheLoop, Exit: ExitInstruction, RecurrenceType, Casts&: CastInsts, |
| 590 | MinWidthCastToRecurTy&: MinWidthCastToRecurrenceType); |
| 591 | |
| 592 | // We found a reduction var if we have reached the original phi node and we |
| 593 | // only have a single instruction with out-of-loop users. |
| 594 | |
| 595 | // The ExitInstruction(Instruction which is allowed to have out-of-loop users) |
| 596 | // is saved as part of the RecurrenceDescriptor. |
| 597 | |
| 598 | // Save the description of this reduction variable. |
| 599 | RecurrenceDescriptor RD(RdxStart, ExitInstruction, IntermediateStore, Kind, |
| 600 | FMF, ExactFPMathInst, RecurrenceType, IsSigned, |
| 601 | IsOrdered, CastInsts, MinWidthCastToRecurrenceType); |
| 602 | RedDes = RD; |
| 603 | |
| 604 | return true; |
| 605 | } |
| 606 | |
| 607 | // We are looking for loops that do something like this: |
| 608 | // int r = 0; |
| 609 | // for (int i = 0; i < n; i++) { |
| 610 | // if (src[i] > 3) |
| 611 | // r = 3; |
| 612 | // } |
| 613 | // where the reduction value (r) only has two states, in this example 0 or 3. |
| 614 | // The generated LLVM IR for this type of loop will be like this: |
| 615 | // for.body: |
| 616 | // %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ] |
| 617 | // ... |
| 618 | // %cmp = icmp sgt i32 %5, 3 |
| 619 | // %spec.select = select i1 %cmp, i32 3, i32 %r |
| 620 | // ... |
| 621 | // In general we can support vectorization of loops where 'r' flips between |
| 622 | // any two non-constants, provided they are loop invariant. The only thing |
| 623 | // we actually care about at the end of the loop is whether or not any lane |
| 624 | // in the selected vector is different from the start value. The final |
| 625 | // across-vector reduction after the loop simply involves choosing the start |
| 626 | // value if nothing changed (0 in the example above) or the other selected |
| 627 | // value (3 in the example above). |
| 628 | RecurrenceDescriptor::InstDesc |
| 629 | RecurrenceDescriptor::isAnyOfPattern(Loop *Loop, PHINode *OrigPhi, |
| 630 | Instruction *I, InstDesc &Prev) { |
| 631 | // We must handle the select(cmp(),x,y) as a single instruction. Advance to |
| 632 | // the select. |
| 633 | if (match(V: I, P: m_OneUse(SubPattern: m_Cmp()))) { |
| 634 | if (auto *Select = dyn_cast<SelectInst>(Val: *I->user_begin())) |
| 635 | return InstDesc(Select, Prev.getRecKind()); |
| 636 | } |
| 637 | |
| 638 | if (!match(V: I, P: m_Select(C: m_Cmp(), L: m_Value(), R: m_Value()))) |
| 639 | return InstDesc(false, I); |
| 640 | |
| 641 | SelectInst *SI = cast<SelectInst>(Val: I); |
| 642 | Value *NonPhi = nullptr; |
| 643 | |
| 644 | if (OrigPhi == dyn_cast<PHINode>(Val: SI->getTrueValue())) |
| 645 | NonPhi = SI->getFalseValue(); |
| 646 | else if (OrigPhi == dyn_cast<PHINode>(Val: SI->getFalseValue())) |
| 647 | NonPhi = SI->getTrueValue(); |
| 648 | else |
| 649 | return InstDesc(false, I); |
| 650 | |
| 651 | // We are looking for selects of the form: |
| 652 | // select(cmp(), phi, loop_invariant) or |
| 653 | // select(cmp(), loop_invariant, phi) |
| 654 | if (!Loop->isLoopInvariant(V: NonPhi)) |
| 655 | return InstDesc(false, I); |
| 656 | |
| 657 | return InstDesc(I, RecurKind::AnyOf); |
| 658 | } |
| 659 | |
| 660 | // We are looking for loops that do something like this: |
| 661 | // int r = 0; |
| 662 | // for (int i = 0; i < n; i++) { |
| 663 | // if (src[i] > 3) |
| 664 | // r = i; |
| 665 | // } |
| 666 | // The reduction value (r) is derived from either the values of an increasing |
| 667 | // induction variable (i) sequence, or from the start value (0). |
| 668 | // The LLVM IR generated for such loops would be as follows: |
| 669 | // for.body: |
| 670 | // %r = phi i32 [ %spec.select, %for.body ], [ 0, %entry ] |
| 671 | // %i = phi i32 [ %inc, %for.body ], [ 0, %entry ] |
| 672 | // ... |
| 673 | // %cmp = icmp sgt i32 %5, 3 |
| 674 | // %spec.select = select i1 %cmp, i32 %i, i32 %r |
| 675 | // %inc = add nsw i32 %i, 1 |
| 676 | // ... |
| 677 | // Since 'i' is an increasing induction variable, the reduction value after the |
| 678 | // loop will be the maximum value of 'i' that the condition (src[i] > 3) is |
| 679 | // satisfied, or the start value (0 in the example above). When the start value |
| 680 | // of the increasing induction variable 'i' is greater than the minimum value of |
| 681 | // the data type, we can use the minimum value of the data type as a sentinel |
| 682 | // value to replace the start value. This allows us to perform a single |
| 683 | // reduction max operation to obtain the final reduction result. |
| 684 | // TODO: It is possible to solve the case where the start value is the minimum |
| 685 | // value of the data type or a non-constant value by using mask and multiple |
| 686 | // reduction operations. |
| 687 | RecurrenceDescriptor::InstDesc |
| 688 | RecurrenceDescriptor::isFindIVPattern(RecurKind Kind, Loop *TheLoop, |
| 689 | PHINode *OrigPhi, Instruction *I, |
| 690 | ScalarEvolution &SE) { |
| 691 | // TODO: Support the vectorization of FindLastIV when the reduction phi is |
| 692 | // used by more than one select instruction. This vectorization is only |
| 693 | // performed when the SCEV of each increasing induction variable used by the |
| 694 | // select instructions is identical. |
| 695 | if (!OrigPhi->hasOneUse()) |
| 696 | return InstDesc(false, I); |
| 697 | |
| 698 | // TODO: Match selects with multi-use cmp conditions. |
| 699 | Value *NonRdxPhi = nullptr; |
| 700 | if (!match(V: I, P: m_CombineOr(L: m_Select(C: m_OneUse(SubPattern: m_Cmp()), L: m_Value(V&: NonRdxPhi), |
| 701 | R: m_Specific(V: OrigPhi)), |
| 702 | R: m_Select(C: m_OneUse(SubPattern: m_Cmp()), L: m_Specific(V: OrigPhi), |
| 703 | R: m_Value(V&: NonRdxPhi))))) |
| 704 | return InstDesc(false, I); |
| 705 | |
| 706 | // Returns a non-nullopt boolean indicating the signedness of the recurrence |
| 707 | // when a valid FindLastIV pattern is found. |
| 708 | auto GetRecurKind = [&](Value *V) -> std::optional<RecurKind> { |
| 709 | Type *Ty = V->getType(); |
| 710 | if (!SE.isSCEVable(Ty)) |
| 711 | return std::nullopt; |
| 712 | |
| 713 | auto *AR = dyn_cast<SCEVAddRecExpr>(Val: SE.getSCEV(V)); |
| 714 | if (!AR || AR->getLoop() != TheLoop) |
| 715 | return std::nullopt; |
| 716 | |
| 717 | const SCEV *Step = AR->getStepRecurrence(SE); |
| 718 | if ((isFindFirstIVRecurrenceKind(Kind) && !SE.isKnownNegative(S: Step)) || |
| 719 | (isFindLastIVRecurrenceKind(Kind) && !SE.isKnownPositive(S: Step))) |
| 720 | return std::nullopt; |
| 721 | |
| 722 | // Keep the minimum value of the recurrence type as the sentinel value. |
| 723 | // The maximum acceptable range for the increasing induction variable, |
| 724 | // called the valid range, will be defined as |
| 725 | |
| 726 | // Keep the minimum (FindLast) or maximum (FindFirst) value of the |
| 727 | // recurrence type as the sentinel value. The maximum acceptable range for |
| 728 | // the induction variable, called the valid range, will be defined as |
| 729 | // [<sentinel value> + 1, <sentinel value>) |
| 730 | // where <sentinel value> is [Signed|Unsigned]Min(<recurrence type>) for |
| 731 | // FindLastIV or [Signed|Unsigned]Max(<recurrence type>) for FindFirstIV. |
| 732 | // TODO: This range restriction can be lifted by adding an additional |
| 733 | // virtual OR reduction. |
| 734 | auto CheckRange = [&](bool IsSigned) { |
| 735 | const ConstantRange IVRange = |
| 736 | IsSigned ? SE.getSignedRange(S: AR) : SE.getUnsignedRange(S: AR); |
| 737 | unsigned NumBits = Ty->getIntegerBitWidth(); |
| 738 | ConstantRange ValidRange = ConstantRange::getEmpty(BitWidth: NumBits); |
| 739 | if (isFindLastIVRecurrenceKind(Kind)) { |
| 740 | APInt Sentinel = IsSigned ? APInt::getSignedMinValue(numBits: NumBits) |
| 741 | : APInt::getMinValue(numBits: NumBits); |
| 742 | ValidRange = ConstantRange::getNonEmpty(Lower: Sentinel + 1, Upper: Sentinel); |
| 743 | } else { |
| 744 | assert(IsSigned && "Only FindFirstIV with SMax is supported currently" ); |
| 745 | ValidRange = |
| 746 | ConstantRange::getNonEmpty(Lower: APInt::getSignedMinValue(numBits: NumBits), |
| 747 | Upper: APInt::getSignedMaxValue(numBits: NumBits) - 1); |
| 748 | } |
| 749 | |
| 750 | LLVM_DEBUG(dbgs() << "LV: " |
| 751 | << (isFindLastIVRecurrenceKind(Kind) ? "FindLastIV" |
| 752 | : "FindFirstIV" ) |
| 753 | << " valid range is " << ValidRange |
| 754 | << ", and the range of " << *AR << " is " << IVRange |
| 755 | << "\n" ); |
| 756 | |
| 757 | // Ensure the induction variable does not wrap around by verifying that |
| 758 | // its range is fully contained within the valid range. |
| 759 | return ValidRange.contains(CR: IVRange); |
| 760 | }; |
| 761 | if (isFindLastIVRecurrenceKind(Kind)) { |
| 762 | if (CheckRange(true)) |
| 763 | return RecurKind::FindLastIVSMax; |
| 764 | if (CheckRange(false)) |
| 765 | return RecurKind::FindLastIVUMax; |
| 766 | return std::nullopt; |
| 767 | } |
| 768 | assert(isFindFirstIVRecurrenceKind(Kind) && |
| 769 | "Kind must either be a FindLastIV or FindFirstIV" ); |
| 770 | |
| 771 | if (CheckRange(true)) |
| 772 | return RecurKind::FindFirstIVSMin; |
| 773 | return std::nullopt; |
| 774 | }; |
| 775 | |
| 776 | // We are looking for selects of the form: |
| 777 | // select(cmp(), phi, increasing_loop_induction) or |
| 778 | // select(cmp(), increasing_loop_induction, phi) |
| 779 | // TODO: Support for monotonically decreasing induction variable |
| 780 | if (auto RK = GetRecurKind(NonRdxPhi)) |
| 781 | return InstDesc(I, *RK); |
| 782 | |
| 783 | return InstDesc(false, I); |
| 784 | } |
| 785 | |
| 786 | RecurrenceDescriptor::InstDesc |
| 787 | RecurrenceDescriptor::isMinMaxPattern(Instruction *I, RecurKind Kind, |
| 788 | const InstDesc &Prev) { |
| 789 | assert((isa<CmpInst>(I) || isa<SelectInst>(I) || isa<CallInst>(I)) && |
| 790 | "Expected a cmp or select or call instruction" ); |
| 791 | if (!isMinMaxRecurrenceKind(Kind)) |
| 792 | return InstDesc(false, I); |
| 793 | |
| 794 | // We must handle the select(cmp()) as a single instruction. Advance to the |
| 795 | // select. |
| 796 | if (match(V: I, P: m_OneUse(SubPattern: m_Cmp()))) { |
| 797 | if (auto *Select = dyn_cast<SelectInst>(Val: *I->user_begin())) |
| 798 | return InstDesc(Select, Prev.getRecKind()); |
| 799 | } |
| 800 | |
| 801 | // Only match select with single use cmp condition, or a min/max intrinsic. |
| 802 | if (!isa<IntrinsicInst>(Val: I) && |
| 803 | !match(V: I, P: m_Select(C: m_OneUse(SubPattern: m_Cmp()), L: m_Value(), R: m_Value()))) |
| 804 | return InstDesc(false, I); |
| 805 | |
| 806 | // Look for a min/max pattern. |
| 807 | if (match(V: I, P: m_UMin(L: m_Value(), R: m_Value()))) |
| 808 | return InstDesc(Kind == RecurKind::UMin, I); |
| 809 | if (match(V: I, P: m_UMax(L: m_Value(), R: m_Value()))) |
| 810 | return InstDesc(Kind == RecurKind::UMax, I); |
| 811 | if (match(V: I, P: m_SMax(L: m_Value(), R: m_Value()))) |
| 812 | return InstDesc(Kind == RecurKind::SMax, I); |
| 813 | if (match(V: I, P: m_SMin(L: m_Value(), R: m_Value()))) |
| 814 | return InstDesc(Kind == RecurKind::SMin, I); |
| 815 | if (match(V: I, P: m_OrdOrUnordFMin(L: m_Value(), R: m_Value()))) |
| 816 | return InstDesc(Kind == RecurKind::FMin, I); |
| 817 | if (match(V: I, P: m_OrdOrUnordFMax(L: m_Value(), R: m_Value()))) |
| 818 | return InstDesc(Kind == RecurKind::FMax, I); |
| 819 | if (match(V: I, P: m_FMinNum(Op0: m_Value(), Op1: m_Value()))) |
| 820 | return InstDesc(Kind == RecurKind::FMin, I); |
| 821 | if (match(V: I, P: m_FMaxNum(Op0: m_Value(), Op1: m_Value()))) |
| 822 | return InstDesc(Kind == RecurKind::FMax, I); |
| 823 | if (match(V: I, P: m_FMinimumNum(Op0: m_Value(), Op1: m_Value()))) |
| 824 | return InstDesc(Kind == RecurKind::FMinimumNum, I); |
| 825 | if (match(V: I, P: m_FMaximumNum(Op0: m_Value(), Op1: m_Value()))) |
| 826 | return InstDesc(Kind == RecurKind::FMaximumNum, I); |
| 827 | if (match(V: I, P: m_FMinimum(Op0: m_Value(), Op1: m_Value()))) |
| 828 | return InstDesc(Kind == RecurKind::FMinimum, I); |
| 829 | if (match(V: I, P: m_FMaximum(Op0: m_Value(), Op1: m_Value()))) |
| 830 | return InstDesc(Kind == RecurKind::FMaximum, I); |
| 831 | |
| 832 | return InstDesc(false, I); |
| 833 | } |
| 834 | |
| 835 | /// Returns true if the select instruction has users in the compare-and-add |
| 836 | /// reduction pattern below. The select instruction argument is the last one |
| 837 | /// in the sequence. |
| 838 | /// |
| 839 | /// %sum.1 = phi ... |
| 840 | /// ... |
| 841 | /// %cmp = fcmp pred %0, %CFP |
| 842 | /// %add = fadd %0, %sum.1 |
| 843 | /// %sum.2 = select %cmp, %add, %sum.1 |
| 844 | RecurrenceDescriptor::InstDesc |
| 845 | RecurrenceDescriptor::isConditionalRdxPattern(Instruction *I) { |
| 846 | SelectInst *SI = dyn_cast<SelectInst>(Val: I); |
| 847 | if (!SI) |
| 848 | return InstDesc(false, I); |
| 849 | |
| 850 | CmpInst *CI = dyn_cast<CmpInst>(Val: SI->getCondition()); |
| 851 | // Only handle single use cases for now. |
| 852 | if (!CI || !CI->hasOneUse()) |
| 853 | return InstDesc(false, I); |
| 854 | |
| 855 | Value *TrueVal = SI->getTrueValue(); |
| 856 | Value *FalseVal = SI->getFalseValue(); |
| 857 | // Handle only when either of operands of select instruction is a PHI |
| 858 | // node for now. |
| 859 | if ((isa<PHINode>(Val: TrueVal) && isa<PHINode>(Val: FalseVal)) || |
| 860 | (!isa<PHINode>(Val: TrueVal) && !isa<PHINode>(Val: FalseVal))) |
| 861 | return InstDesc(false, I); |
| 862 | |
| 863 | Instruction *I1 = isa<PHINode>(Val: TrueVal) ? dyn_cast<Instruction>(Val: FalseVal) |
| 864 | : dyn_cast<Instruction>(Val: TrueVal); |
| 865 | if (!I1 || !I1->isBinaryOp()) |
| 866 | return InstDesc(false, I); |
| 867 | |
| 868 | Value *Op1, *Op2; |
| 869 | if (!(((m_FAdd(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1) || |
| 870 | m_FSub(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1)) && |
| 871 | I1->isFast()) || |
| 872 | (m_FMul(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1) && (I1->isFast())) || |
| 873 | ((m_Add(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1) || |
| 874 | m_Sub(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1))) || |
| 875 | (m_Mul(L: m_Value(V&: Op1), R: m_Value(V&: Op2)).match(V: I1)))) |
| 876 | return InstDesc(false, I); |
| 877 | |
| 878 | Instruction *IPhi = isa<PHINode>(Val: Op1) ? dyn_cast<Instruction>(Val: Op1) |
| 879 | : dyn_cast<Instruction>(Val: Op2); |
| 880 | if (!IPhi || IPhi != FalseVal) |
| 881 | return InstDesc(false, I); |
| 882 | |
| 883 | return InstDesc(true, SI); |
| 884 | } |
| 885 | |
| 886 | RecurrenceDescriptor::InstDesc RecurrenceDescriptor::isRecurrenceInstr( |
| 887 | Loop *L, PHINode *OrigPhi, Instruction *I, RecurKind Kind, InstDesc &Prev, |
| 888 | FastMathFlags FuncFMF, ScalarEvolution *SE) { |
| 889 | assert(Prev.getRecKind() == RecurKind::None || Prev.getRecKind() == Kind); |
| 890 | switch (I->getOpcode()) { |
| 891 | default: |
| 892 | return InstDesc(false, I); |
| 893 | case Instruction::PHI: |
| 894 | return InstDesc(I, Prev.getRecKind(), Prev.getExactFPMathInst()); |
| 895 | case Instruction::Sub: |
| 896 | case Instruction::Add: |
| 897 | return InstDesc(Kind == RecurKind::Add, I); |
| 898 | case Instruction::Mul: |
| 899 | return InstDesc(Kind == RecurKind::Mul, I); |
| 900 | case Instruction::And: |
| 901 | return InstDesc(Kind == RecurKind::And, I); |
| 902 | case Instruction::Or: |
| 903 | return InstDesc(Kind == RecurKind::Or, I); |
| 904 | case Instruction::Xor: |
| 905 | return InstDesc(Kind == RecurKind::Xor, I); |
| 906 | case Instruction::FDiv: |
| 907 | case Instruction::FMul: |
| 908 | return InstDesc(Kind == RecurKind::FMul, I, |
| 909 | I->hasAllowReassoc() ? nullptr : I); |
| 910 | case Instruction::FSub: |
| 911 | case Instruction::FAdd: |
| 912 | return InstDesc(Kind == RecurKind::FAdd, I, |
| 913 | I->hasAllowReassoc() ? nullptr : I); |
| 914 | case Instruction::Select: |
| 915 | if (Kind == RecurKind::FAdd || Kind == RecurKind::FMul || |
| 916 | Kind == RecurKind::Add || Kind == RecurKind::Mul) |
| 917 | return isConditionalRdxPattern(I); |
| 918 | if (isFindIVRecurrenceKind(Kind) && SE) |
| 919 | return isFindIVPattern(Kind, TheLoop: L, OrigPhi, I, SE&: *SE); |
| 920 | [[fallthrough]]; |
| 921 | case Instruction::FCmp: |
| 922 | case Instruction::ICmp: |
| 923 | case Instruction::Call: |
| 924 | if (isAnyOfRecurrenceKind(Kind)) |
| 925 | return isAnyOfPattern(Loop: L, OrigPhi, I, Prev); |
| 926 | auto HasRequiredFMF = [&]() { |
| 927 | if (FuncFMF.noNaNs() && FuncFMF.noSignedZeros()) |
| 928 | return true; |
| 929 | if (isa<FPMathOperator>(Val: I) && I->hasNoNaNs() && I->hasNoSignedZeros()) |
| 930 | return true; |
| 931 | // minimum/minnum and maximum/maxnum intrinsics do not require nsz and nnan |
| 932 | // flags since NaN and signed zeroes are propagated in the intrinsic |
| 933 | // implementation. |
| 934 | return match(V: I, P: m_Intrinsic<Intrinsic::minimum>(Op0: m_Value(), Op1: m_Value())) || |
| 935 | match(V: I, P: m_Intrinsic<Intrinsic::maximum>(Op0: m_Value(), Op1: m_Value())) || |
| 936 | match(V: I, |
| 937 | P: m_Intrinsic<Intrinsic::minimumnum>(Op0: m_Value(), Op1: m_Value())) || |
| 938 | match(V: I, P: m_Intrinsic<Intrinsic::maximumnum>(Op0: m_Value(), Op1: m_Value())); |
| 939 | }; |
| 940 | if (isIntMinMaxRecurrenceKind(Kind) || |
| 941 | (HasRequiredFMF() && isFPMinMaxRecurrenceKind(Kind))) |
| 942 | return isMinMaxPattern(I, Kind, Prev); |
| 943 | else if (isFMulAddIntrinsic(I)) |
| 944 | return InstDesc(Kind == RecurKind::FMulAdd, I, |
| 945 | I->hasAllowReassoc() ? nullptr : I); |
| 946 | return InstDesc(false, I); |
| 947 | } |
| 948 | } |
| 949 | |
| 950 | bool RecurrenceDescriptor::hasMultipleUsesOf( |
| 951 | Instruction *I, SmallPtrSetImpl<Instruction *> &Insts, |
| 952 | unsigned MaxNumUses) { |
| 953 | unsigned NumUses = 0; |
| 954 | for (const Use &U : I->operands()) { |
| 955 | if (Insts.count(Ptr: dyn_cast<Instruction>(Val: U))) |
| 956 | ++NumUses; |
| 957 | if (NumUses > MaxNumUses) |
| 958 | return true; |
| 959 | } |
| 960 | |
| 961 | return false; |
| 962 | } |
| 963 | |
| 964 | bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, |
| 965 | RecurrenceDescriptor &RedDes, |
| 966 | DemandedBits *DB, AssumptionCache *AC, |
| 967 | DominatorTree *DT, |
| 968 | ScalarEvolution *SE) { |
| 969 | BasicBlock * = TheLoop->getHeader(); |
| 970 | Function &F = *Header->getParent(); |
| 971 | FastMathFlags FMF; |
| 972 | FMF.setNoNaNs( |
| 973 | F.getFnAttribute(Kind: "no-nans-fp-math" ).getValueAsBool()); |
| 974 | FMF.setNoSignedZeros( |
| 975 | F.getFnAttribute(Kind: "no-signed-zeros-fp-math" ).getValueAsBool()); |
| 976 | |
| 977 | if (AddReductionVar(Phi, Kind: RecurKind::Add, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
| 978 | SE)) { |
| 979 | LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n" ); |
| 980 | return true; |
| 981 | } |
| 982 | if (AddReductionVar(Phi, Kind: RecurKind::Mul, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
| 983 | SE)) { |
| 984 | LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n" ); |
| 985 | return true; |
| 986 | } |
| 987 | if (AddReductionVar(Phi, Kind: RecurKind::Or, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
| 988 | SE)) { |
| 989 | LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n" ); |
| 990 | return true; |
| 991 | } |
| 992 | if (AddReductionVar(Phi, Kind: RecurKind::And, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
| 993 | SE)) { |
| 994 | LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n" ); |
| 995 | return true; |
| 996 | } |
| 997 | if (AddReductionVar(Phi, Kind: RecurKind::Xor, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
| 998 | SE)) { |
| 999 | LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n" ); |
| 1000 | return true; |
| 1001 | } |
| 1002 | if (AddReductionVar(Phi, Kind: RecurKind::SMax, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
| 1003 | SE)) { |
| 1004 | LLVM_DEBUG(dbgs() << "Found a SMAX reduction PHI." << *Phi << "\n" ); |
| 1005 | return true; |
| 1006 | } |
| 1007 | if (AddReductionVar(Phi, Kind: RecurKind::SMin, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
| 1008 | SE)) { |
| 1009 | LLVM_DEBUG(dbgs() << "Found a SMIN reduction PHI." << *Phi << "\n" ); |
| 1010 | return true; |
| 1011 | } |
| 1012 | if (AddReductionVar(Phi, Kind: RecurKind::UMax, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
| 1013 | SE)) { |
| 1014 | LLVM_DEBUG(dbgs() << "Found a UMAX reduction PHI." << *Phi << "\n" ); |
| 1015 | return true; |
| 1016 | } |
| 1017 | if (AddReductionVar(Phi, Kind: RecurKind::UMin, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
| 1018 | SE)) { |
| 1019 | LLVM_DEBUG(dbgs() << "Found a UMIN reduction PHI." << *Phi << "\n" ); |
| 1020 | return true; |
| 1021 | } |
| 1022 | if (AddReductionVar(Phi, Kind: RecurKind::AnyOf, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
| 1023 | SE)) { |
| 1024 | LLVM_DEBUG(dbgs() << "Found a conditional select reduction PHI." << *Phi |
| 1025 | << "\n" ); |
| 1026 | return true; |
| 1027 | } |
| 1028 | if (AddReductionVar(Phi, Kind: RecurKind::FindLastIVSMax, TheLoop, FuncFMF: FMF, RedDes, DB, |
| 1029 | AC, DT, SE)) { |
| 1030 | LLVM_DEBUG(dbgs() << "Found a FindLastIV reduction PHI." << *Phi << "\n" ); |
| 1031 | return true; |
| 1032 | } |
| 1033 | if (AddReductionVar(Phi, Kind: RecurKind::FindFirstIVSMin, TheLoop, FuncFMF: FMF, RedDes, DB, |
| 1034 | AC, DT, SE)) { |
| 1035 | LLVM_DEBUG(dbgs() << "Found a FindFirstIV reduction PHI." << *Phi << "\n" ); |
| 1036 | return true; |
| 1037 | } |
| 1038 | if (AddReductionVar(Phi, Kind: RecurKind::FMul, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
| 1039 | SE)) { |
| 1040 | LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n" ); |
| 1041 | return true; |
| 1042 | } |
| 1043 | if (AddReductionVar(Phi, Kind: RecurKind::FAdd, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
| 1044 | SE)) { |
| 1045 | LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n" ); |
| 1046 | return true; |
| 1047 | } |
| 1048 | if (AddReductionVar(Phi, Kind: RecurKind::FMax, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
| 1049 | SE)) { |
| 1050 | LLVM_DEBUG(dbgs() << "Found a float MAX reduction PHI." << *Phi << "\n" ); |
| 1051 | return true; |
| 1052 | } |
| 1053 | if (AddReductionVar(Phi, Kind: RecurKind::FMin, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
| 1054 | SE)) { |
| 1055 | LLVM_DEBUG(dbgs() << "Found a float MIN reduction PHI." << *Phi << "\n" ); |
| 1056 | return true; |
| 1057 | } |
| 1058 | if (AddReductionVar(Phi, Kind: RecurKind::FMulAdd, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
| 1059 | SE)) { |
| 1060 | LLVM_DEBUG(dbgs() << "Found an FMulAdd reduction PHI." << *Phi << "\n" ); |
| 1061 | return true; |
| 1062 | } |
| 1063 | if (AddReductionVar(Phi, Kind: RecurKind::FMaximum, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
| 1064 | SE)) { |
| 1065 | LLVM_DEBUG(dbgs() << "Found a float MAXIMUM reduction PHI." << *Phi << "\n" ); |
| 1066 | return true; |
| 1067 | } |
| 1068 | if (AddReductionVar(Phi, Kind: RecurKind::FMinimum, TheLoop, FuncFMF: FMF, RedDes, DB, AC, DT, |
| 1069 | SE)) { |
| 1070 | LLVM_DEBUG(dbgs() << "Found a float MINIMUM reduction PHI." << *Phi << "\n" ); |
| 1071 | return true; |
| 1072 | } |
| 1073 | if (AddReductionVar(Phi, Kind: RecurKind::FMaximumNum, TheLoop, FuncFMF: FMF, RedDes, DB, AC, |
| 1074 | DT, SE)) { |
| 1075 | LLVM_DEBUG(dbgs() << "Found a float MAXIMUMNUM reduction PHI." << *Phi |
| 1076 | << "\n" ); |
| 1077 | return true; |
| 1078 | } |
| 1079 | if (AddReductionVar(Phi, Kind: RecurKind::FMinimumNum, TheLoop, FuncFMF: FMF, RedDes, DB, AC, |
| 1080 | DT, SE)) { |
| 1081 | LLVM_DEBUG(dbgs() << "Found a float MINIMUMNUM reduction PHI." << *Phi |
| 1082 | << "\n" ); |
| 1083 | return true; |
| 1084 | } |
| 1085 | |
| 1086 | // Not a reduction of known type. |
| 1087 | return false; |
| 1088 | } |
| 1089 | |
| 1090 | bool RecurrenceDescriptor::isFixedOrderRecurrence(PHINode *Phi, Loop *TheLoop, |
| 1091 | DominatorTree *DT) { |
| 1092 | |
| 1093 | // Ensure the phi node is in the loop header and has two incoming values. |
| 1094 | if (Phi->getParent() != TheLoop->getHeader() || |
| 1095 | Phi->getNumIncomingValues() != 2) |
| 1096 | return false; |
| 1097 | |
| 1098 | // Ensure the loop has a preheader and a single latch block. The loop |
| 1099 | // vectorizer will need the latch to set up the next iteration of the loop. |
| 1100 | auto * = TheLoop->getLoopPreheader(); |
| 1101 | auto *Latch = TheLoop->getLoopLatch(); |
| 1102 | if (!Preheader || !Latch) |
| 1103 | return false; |
| 1104 | |
| 1105 | // Ensure the phi node's incoming blocks are the loop preheader and latch. |
| 1106 | if (Phi->getBasicBlockIndex(BB: Preheader) < 0 || |
| 1107 | Phi->getBasicBlockIndex(BB: Latch) < 0) |
| 1108 | return false; |
| 1109 | |
| 1110 | // Get the previous value. The previous value comes from the latch edge while |
| 1111 | // the initial value comes from the preheader edge. |
| 1112 | auto *Previous = dyn_cast<Instruction>(Val: Phi->getIncomingValueForBlock(BB: Latch)); |
| 1113 | |
| 1114 | // If Previous is a phi in the header, go through incoming values from the |
| 1115 | // latch until we find a non-phi value. Use this as the new Previous, all uses |
| 1116 | // in the header will be dominated by the original phi, but need to be moved |
| 1117 | // after the non-phi previous value. |
| 1118 | SmallPtrSet<PHINode *, 4> SeenPhis; |
| 1119 | while (auto *PrevPhi = dyn_cast_or_null<PHINode>(Val: Previous)) { |
| 1120 | if (PrevPhi->getParent() != Phi->getParent()) |
| 1121 | return false; |
| 1122 | if (!SeenPhis.insert(Ptr: PrevPhi).second) |
| 1123 | return false; |
| 1124 | Previous = dyn_cast<Instruction>(Val: PrevPhi->getIncomingValueForBlock(BB: Latch)); |
| 1125 | } |
| 1126 | |
| 1127 | if (!Previous || !TheLoop->contains(Inst: Previous) || isa<PHINode>(Val: Previous)) |
| 1128 | return false; |
| 1129 | |
| 1130 | // Ensure every user of the phi node (recursively) is dominated by the |
| 1131 | // previous value. The dominance requirement ensures the loop vectorizer will |
| 1132 | // not need to vectorize the initial value prior to the first iteration of the |
| 1133 | // loop. |
| 1134 | // TODO: Consider extending this sinking to handle memory instructions. |
| 1135 | |
| 1136 | SmallPtrSet<Value *, 8> Seen; |
| 1137 | BasicBlock *PhiBB = Phi->getParent(); |
| 1138 | SmallVector<Instruction *, 8> WorkList; |
| 1139 | auto TryToPushSinkCandidate = [&](Instruction *SinkCandidate) { |
| 1140 | // Cyclic dependence. |
| 1141 | if (Previous == SinkCandidate) |
| 1142 | return false; |
| 1143 | |
| 1144 | if (!Seen.insert(Ptr: SinkCandidate).second) |
| 1145 | return true; |
| 1146 | if (DT->dominates(Def: Previous, |
| 1147 | User: SinkCandidate)) // We already are good w/o sinking. |
| 1148 | return true; |
| 1149 | |
| 1150 | if (SinkCandidate->getParent() != PhiBB || |
| 1151 | SinkCandidate->mayHaveSideEffects() || |
| 1152 | SinkCandidate->mayReadFromMemory() || SinkCandidate->isTerminator()) |
| 1153 | return false; |
| 1154 | |
| 1155 | // If we reach a PHI node that is not dominated by Previous, we reached a |
| 1156 | // header PHI. No need for sinking. |
| 1157 | if (isa<PHINode>(Val: SinkCandidate)) |
| 1158 | return true; |
| 1159 | |
| 1160 | // Sink User tentatively and check its users |
| 1161 | WorkList.push_back(Elt: SinkCandidate); |
| 1162 | return true; |
| 1163 | }; |
| 1164 | |
| 1165 | WorkList.push_back(Elt: Phi); |
| 1166 | // Try to recursively sink instructions and their users after Previous. |
| 1167 | while (!WorkList.empty()) { |
| 1168 | Instruction *Current = WorkList.pop_back_val(); |
| 1169 | for (User *User : Current->users()) { |
| 1170 | if (!TryToPushSinkCandidate(cast<Instruction>(Val: User))) |
| 1171 | return false; |
| 1172 | } |
| 1173 | } |
| 1174 | |
| 1175 | return true; |
| 1176 | } |
| 1177 | |
| 1178 | unsigned RecurrenceDescriptor::getOpcode(RecurKind Kind) { |
| 1179 | switch (Kind) { |
| 1180 | case RecurKind::Add: |
| 1181 | return Instruction::Add; |
| 1182 | case RecurKind::Mul: |
| 1183 | return Instruction::Mul; |
| 1184 | case RecurKind::AnyOf: |
| 1185 | case RecurKind::FindFirstIVSMin: |
| 1186 | case RecurKind::FindLastIVSMax: |
| 1187 | case RecurKind::FindLastIVUMax: |
| 1188 | case RecurKind::Or: |
| 1189 | return Instruction::Or; |
| 1190 | case RecurKind::And: |
| 1191 | return Instruction::And; |
| 1192 | case RecurKind::Xor: |
| 1193 | return Instruction::Xor; |
| 1194 | case RecurKind::FMul: |
| 1195 | return Instruction::FMul; |
| 1196 | case RecurKind::FMulAdd: |
| 1197 | case RecurKind::FAdd: |
| 1198 | return Instruction::FAdd; |
| 1199 | case RecurKind::SMax: |
| 1200 | case RecurKind::SMin: |
| 1201 | case RecurKind::UMax: |
| 1202 | case RecurKind::UMin: |
| 1203 | return Instruction::ICmp; |
| 1204 | case RecurKind::FMax: |
| 1205 | case RecurKind::FMin: |
| 1206 | case RecurKind::FMaximum: |
| 1207 | case RecurKind::FMinimum: |
| 1208 | case RecurKind::FMaximumNum: |
| 1209 | case RecurKind::FMinimumNum: |
| 1210 | return Instruction::FCmp; |
| 1211 | default: |
| 1212 | llvm_unreachable("Unknown recurrence operation" ); |
| 1213 | } |
| 1214 | } |
| 1215 | |
| 1216 | SmallVector<Instruction *, 4> |
| 1217 | RecurrenceDescriptor::getReductionOpChain(PHINode *Phi, Loop *L) const { |
| 1218 | SmallVector<Instruction *, 4> ReductionOperations; |
| 1219 | const bool IsMinMax = isMinMaxRecurrenceKind(Kind); |
| 1220 | |
| 1221 | // Search down from the Phi to the LoopExitInstr, looking for instructions |
| 1222 | // with a single user of the correct type for the reduction. |
| 1223 | |
| 1224 | // Note that we check that the type of the operand is correct for each item in |
| 1225 | // the chain, including the last (the loop exit value). This can come up from |
| 1226 | // sub, which would otherwise be treated as an add reduction. MinMax also need |
| 1227 | // to check for a pair of icmp/select, for which we use getNextInstruction and |
| 1228 | // isCorrectOpcode functions to step the right number of instruction, and |
| 1229 | // check the icmp/select pair. |
| 1230 | // FIXME: We also do not attempt to look through Select's yet, which might |
| 1231 | // be part of the reduction chain, or attempt to looks through And's to find a |
| 1232 | // smaller bitwidth. Subs are also currently not allowed (which are usually |
| 1233 | // treated as part of a add reduction) as they are expected to generally be |
| 1234 | // more expensive than out-of-loop reductions, and need to be costed more |
| 1235 | // carefully. |
| 1236 | unsigned ExpectedUses = 1; |
| 1237 | if (IsMinMax) |
| 1238 | ExpectedUses = 2; |
| 1239 | |
| 1240 | auto getNextInstruction = [&](Instruction *Cur) -> Instruction * { |
| 1241 | for (auto *User : Cur->users()) { |
| 1242 | Instruction *UI = cast<Instruction>(Val: User); |
| 1243 | if (isa<PHINode>(Val: UI)) |
| 1244 | continue; |
| 1245 | if (IsMinMax) { |
| 1246 | // We are expecting a icmp/select pair, which we go to the next select |
| 1247 | // instruction if we can. We already know that Cur has 2 uses. |
| 1248 | if (isa<SelectInst>(Val: UI)) |
| 1249 | return UI; |
| 1250 | continue; |
| 1251 | } |
| 1252 | return UI; |
| 1253 | } |
| 1254 | return nullptr; |
| 1255 | }; |
| 1256 | auto isCorrectOpcode = [&](Instruction *Cur) { |
| 1257 | if (IsMinMax) { |
| 1258 | Value *LHS, *RHS; |
| 1259 | return SelectPatternResult::isMinOrMax( |
| 1260 | SPF: matchSelectPattern(V: Cur, LHS, RHS).Flavor); |
| 1261 | } |
| 1262 | // Recognize a call to the llvm.fmuladd intrinsic. |
| 1263 | if (isFMulAddIntrinsic(I: Cur)) |
| 1264 | return true; |
| 1265 | |
| 1266 | return Cur->getOpcode() == getOpcode(); |
| 1267 | }; |
| 1268 | |
| 1269 | // Attempt to look through Phis which are part of the reduction chain |
| 1270 | unsigned = 0; |
| 1271 | Instruction *RdxInstr = LoopExitInstr; |
| 1272 | if (auto ExitPhi = dyn_cast<PHINode>(Val: LoopExitInstr)) { |
| 1273 | if (ExitPhi->getNumIncomingValues() != 2) |
| 1274 | return {}; |
| 1275 | |
| 1276 | Instruction *Inc0 = dyn_cast<Instruction>(Val: ExitPhi->getIncomingValue(i: 0)); |
| 1277 | Instruction *Inc1 = dyn_cast<Instruction>(Val: ExitPhi->getIncomingValue(i: 1)); |
| 1278 | |
| 1279 | Instruction *Chain = nullptr; |
| 1280 | if (Inc0 == Phi) |
| 1281 | Chain = Inc1; |
| 1282 | else if (Inc1 == Phi) |
| 1283 | Chain = Inc0; |
| 1284 | else |
| 1285 | return {}; |
| 1286 | |
| 1287 | RdxInstr = Chain; |
| 1288 | ExtraPhiUses = 1; |
| 1289 | } |
| 1290 | |
| 1291 | // The loop exit instruction we check first (as a quick test) but add last. We |
| 1292 | // check the opcode is correct (and dont allow them to be Subs) and that they |
| 1293 | // have expected to have the expected number of uses. They will have one use |
| 1294 | // from the phi and one from a LCSSA value, no matter the type. |
| 1295 | if (!isCorrectOpcode(RdxInstr) || !LoopExitInstr->hasNUses(N: 2)) |
| 1296 | return {}; |
| 1297 | |
| 1298 | // Check that the Phi has one (or two for min/max) uses, plus an extra use |
| 1299 | // for conditional reductions. |
| 1300 | if (!Phi->hasNUses(N: ExpectedUses + ExtraPhiUses)) |
| 1301 | return {}; |
| 1302 | |
| 1303 | Instruction *Cur = getNextInstruction(Phi); |
| 1304 | |
| 1305 | // Each other instruction in the chain should have the expected number of uses |
| 1306 | // and be the correct opcode. |
| 1307 | while (Cur != RdxInstr) { |
| 1308 | if (!Cur || !isCorrectOpcode(Cur) || !Cur->hasNUses(N: ExpectedUses)) |
| 1309 | return {}; |
| 1310 | |
| 1311 | ReductionOperations.push_back(Elt: Cur); |
| 1312 | Cur = getNextInstruction(Cur); |
| 1313 | } |
| 1314 | |
| 1315 | ReductionOperations.push_back(Elt: Cur); |
| 1316 | return ReductionOperations; |
| 1317 | } |
| 1318 | |
| 1319 | InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, |
| 1320 | const SCEV *Step, BinaryOperator *BOp, |
| 1321 | SmallVectorImpl<Instruction *> *Casts) |
| 1322 | : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) { |
| 1323 | assert(IK != IK_NoInduction && "Not an induction" ); |
| 1324 | |
| 1325 | // Start value type should match the induction kind and the value |
| 1326 | // itself should not be null. |
| 1327 | assert(StartValue && "StartValue is null" ); |
| 1328 | assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && |
| 1329 | "StartValue is not a pointer for pointer induction" ); |
| 1330 | assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && |
| 1331 | "StartValue is not an integer for integer induction" ); |
| 1332 | |
| 1333 | // Check the Step Value. It should be non-zero integer value. |
| 1334 | assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && |
| 1335 | "Step value is zero" ); |
| 1336 | |
| 1337 | assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) && |
| 1338 | "StepValue is not an integer" ); |
| 1339 | |
| 1340 | assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) && |
| 1341 | "StepValue is not FP for FpInduction" ); |
| 1342 | assert((IK != IK_FpInduction || |
| 1343 | (InductionBinOp && |
| 1344 | (InductionBinOp->getOpcode() == Instruction::FAdd || |
| 1345 | InductionBinOp->getOpcode() == Instruction::FSub))) && |
| 1346 | "Binary opcode should be specified for FP induction" ); |
| 1347 | |
| 1348 | if (Casts) |
| 1349 | llvm::append_range(C&: RedundantCasts, R&: *Casts); |
| 1350 | } |
| 1351 | |
| 1352 | ConstantInt *InductionDescriptor::getConstIntStepValue() const { |
| 1353 | if (isa<SCEVConstant>(Val: Step)) |
| 1354 | return dyn_cast<ConstantInt>(Val: cast<SCEVConstant>(Val: Step)->getValue()); |
| 1355 | return nullptr; |
| 1356 | } |
| 1357 | |
| 1358 | bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop, |
| 1359 | ScalarEvolution *SE, |
| 1360 | InductionDescriptor &D) { |
| 1361 | |
| 1362 | // Here we only handle FP induction variables. |
| 1363 | assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type" ); |
| 1364 | |
| 1365 | if (TheLoop->getHeader() != Phi->getParent()) |
| 1366 | return false; |
| 1367 | |
| 1368 | // The loop may have multiple entrances or multiple exits; we can analyze |
| 1369 | // this phi if it has a unique entry value and a unique backedge value. |
| 1370 | if (Phi->getNumIncomingValues() != 2) |
| 1371 | return false; |
| 1372 | Value *BEValue = nullptr, *StartValue = nullptr; |
| 1373 | if (TheLoop->contains(BB: Phi->getIncomingBlock(i: 0))) { |
| 1374 | BEValue = Phi->getIncomingValue(i: 0); |
| 1375 | StartValue = Phi->getIncomingValue(i: 1); |
| 1376 | } else { |
| 1377 | assert(TheLoop->contains(Phi->getIncomingBlock(1)) && |
| 1378 | "Unexpected Phi node in the loop" ); |
| 1379 | BEValue = Phi->getIncomingValue(i: 1); |
| 1380 | StartValue = Phi->getIncomingValue(i: 0); |
| 1381 | } |
| 1382 | |
| 1383 | BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val: BEValue); |
| 1384 | if (!BOp) |
| 1385 | return false; |
| 1386 | |
| 1387 | Value *Addend = nullptr; |
| 1388 | if (BOp->getOpcode() == Instruction::FAdd) { |
| 1389 | if (BOp->getOperand(i_nocapture: 0) == Phi) |
| 1390 | Addend = BOp->getOperand(i_nocapture: 1); |
| 1391 | else if (BOp->getOperand(i_nocapture: 1) == Phi) |
| 1392 | Addend = BOp->getOperand(i_nocapture: 0); |
| 1393 | } else if (BOp->getOpcode() == Instruction::FSub) |
| 1394 | if (BOp->getOperand(i_nocapture: 0) == Phi) |
| 1395 | Addend = BOp->getOperand(i_nocapture: 1); |
| 1396 | |
| 1397 | if (!Addend) |
| 1398 | return false; |
| 1399 | |
| 1400 | // The addend should be loop invariant |
| 1401 | if (auto *I = dyn_cast<Instruction>(Val: Addend)) |
| 1402 | if (TheLoop->contains(Inst: I)) |
| 1403 | return false; |
| 1404 | |
| 1405 | // FP Step has unknown SCEV |
| 1406 | const SCEV *Step = SE->getUnknown(V: Addend); |
| 1407 | D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp); |
| 1408 | return true; |
| 1409 | } |
| 1410 | |
| 1411 | /// This function is called when we suspect that the update-chain of a phi node |
| 1412 | /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts, |
| 1413 | /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime |
| 1414 | /// predicate P under which the SCEV expression for the phi can be the |
| 1415 | /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the |
| 1416 | /// cast instructions that are involved in the update-chain of this induction. |
| 1417 | /// A caller that adds the required runtime predicate can be free to drop these |
| 1418 | /// cast instructions, and compute the phi using \p AR (instead of some scev |
| 1419 | /// expression with casts). |
| 1420 | /// |
| 1421 | /// For example, without a predicate the scev expression can take the following |
| 1422 | /// form: |
| 1423 | /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy) |
| 1424 | /// |
| 1425 | /// It corresponds to the following IR sequence: |
| 1426 | /// %for.body: |
| 1427 | /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ] |
| 1428 | /// %casted_phi = "ExtTrunc i64 %x" |
| 1429 | /// %add = add i64 %casted_phi, %step |
| 1430 | /// |
| 1431 | /// where %x is given in \p PN, |
| 1432 | /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate, |
| 1433 | /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of |
| 1434 | /// several forms, for example, such as: |
| 1435 | /// ExtTrunc1: %casted_phi = and %x, 2^n-1 |
| 1436 | /// or: |
| 1437 | /// ExtTrunc2: %t = shl %x, m |
| 1438 | /// %casted_phi = ashr %t, m |
| 1439 | /// |
| 1440 | /// If we are able to find such sequence, we return the instructions |
| 1441 | /// we found, namely %casted_phi and the instructions on its use-def chain up |
| 1442 | /// to the phi (not including the phi). |
| 1443 | static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE, |
| 1444 | const SCEVUnknown *PhiScev, |
| 1445 | const SCEVAddRecExpr *AR, |
| 1446 | SmallVectorImpl<Instruction *> &CastInsts) { |
| 1447 | |
| 1448 | assert(CastInsts.empty() && "CastInsts is expected to be empty." ); |
| 1449 | auto *PN = cast<PHINode>(Val: PhiScev->getValue()); |
| 1450 | assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression" ); |
| 1451 | const Loop *L = AR->getLoop(); |
| 1452 | |
| 1453 | // Find any cast instructions that participate in the def-use chain of |
| 1454 | // PhiScev in the loop. |
| 1455 | // FORNOW/TODO: We currently expect the def-use chain to include only |
| 1456 | // two-operand instructions, where one of the operands is an invariant. |
| 1457 | // createAddRecFromPHIWithCasts() currently does not support anything more |
| 1458 | // involved than that, so we keep the search simple. This can be |
| 1459 | // extended/generalized as needed. |
| 1460 | |
| 1461 | auto getDef = [&](const Value *Val) -> Value * { |
| 1462 | const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val); |
| 1463 | if (!BinOp) |
| 1464 | return nullptr; |
| 1465 | Value *Op0 = BinOp->getOperand(i_nocapture: 0); |
| 1466 | Value *Op1 = BinOp->getOperand(i_nocapture: 1); |
| 1467 | Value *Def = nullptr; |
| 1468 | if (L->isLoopInvariant(V: Op0)) |
| 1469 | Def = Op1; |
| 1470 | else if (L->isLoopInvariant(V: Op1)) |
| 1471 | Def = Op0; |
| 1472 | return Def; |
| 1473 | }; |
| 1474 | |
| 1475 | // Look for the instruction that defines the induction via the |
| 1476 | // loop backedge. |
| 1477 | BasicBlock *Latch = L->getLoopLatch(); |
| 1478 | if (!Latch) |
| 1479 | return false; |
| 1480 | Value *Val = PN->getIncomingValueForBlock(BB: Latch); |
| 1481 | if (!Val) |
| 1482 | return false; |
| 1483 | |
| 1484 | // Follow the def-use chain until the induction phi is reached. |
| 1485 | // If on the way we encounter a Value that has the same SCEV Expr as the |
| 1486 | // phi node, we can consider the instructions we visit from that point |
| 1487 | // as part of the cast-sequence that can be ignored. |
| 1488 | bool InCastSequence = false; |
| 1489 | auto *Inst = dyn_cast<Instruction>(Val); |
| 1490 | while (Val != PN) { |
| 1491 | // If we encountered a phi node other than PN, or if we left the loop, |
| 1492 | // we bail out. |
| 1493 | if (!Inst || !L->contains(Inst)) { |
| 1494 | return false; |
| 1495 | } |
| 1496 | auto *AddRec = dyn_cast<SCEVAddRecExpr>(Val: PSE.getSCEV(V: Val)); |
| 1497 | if (AddRec && PSE.areAddRecsEqualWithPreds(AR1: AddRec, AR2: AR)) |
| 1498 | InCastSequence = true; |
| 1499 | if (InCastSequence) { |
| 1500 | // Only the last instruction in the cast sequence is expected to have |
| 1501 | // uses outside the induction def-use chain. |
| 1502 | if (!CastInsts.empty()) |
| 1503 | if (!Inst->hasOneUse()) |
| 1504 | return false; |
| 1505 | CastInsts.push_back(Elt: Inst); |
| 1506 | } |
| 1507 | Val = getDef(Val); |
| 1508 | if (!Val) |
| 1509 | return false; |
| 1510 | Inst = dyn_cast<Instruction>(Val); |
| 1511 | } |
| 1512 | |
| 1513 | return InCastSequence; |
| 1514 | } |
| 1515 | |
| 1516 | bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop, |
| 1517 | PredicatedScalarEvolution &PSE, |
| 1518 | InductionDescriptor &D, bool Assume) { |
| 1519 | Type *PhiTy = Phi->getType(); |
| 1520 | |
| 1521 | // Handle integer and pointer inductions variables. |
| 1522 | // Now we handle also FP induction but not trying to make a |
| 1523 | // recurrent expression from the PHI node in-place. |
| 1524 | |
| 1525 | if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() && !PhiTy->isFloatTy() && |
| 1526 | !PhiTy->isDoubleTy() && !PhiTy->isHalfTy()) |
| 1527 | return false; |
| 1528 | |
| 1529 | if (PhiTy->isFloatingPointTy()) |
| 1530 | return isFPInductionPHI(Phi, TheLoop, SE: PSE.getSE(), D); |
| 1531 | |
| 1532 | const SCEV *PhiScev = PSE.getSCEV(V: Phi); |
| 1533 | const auto *AR = dyn_cast<SCEVAddRecExpr>(Val: PhiScev); |
| 1534 | |
| 1535 | // We need this expression to be an AddRecExpr. |
| 1536 | if (Assume && !AR) |
| 1537 | AR = PSE.getAsAddRec(V: Phi); |
| 1538 | |
| 1539 | if (!AR) { |
| 1540 | LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n" ); |
| 1541 | return false; |
| 1542 | } |
| 1543 | |
| 1544 | // Record any Cast instructions that participate in the induction update |
| 1545 | const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(Val: PhiScev); |
| 1546 | // If we started from an UnknownSCEV, and managed to build an addRecurrence |
| 1547 | // only after enabling Assume with PSCEV, this means we may have encountered |
| 1548 | // cast instructions that required adding a runtime check in order to |
| 1549 | // guarantee the correctness of the AddRecurrence respresentation of the |
| 1550 | // induction. |
| 1551 | if (PhiScev != AR && SymbolicPhi) { |
| 1552 | SmallVector<Instruction *, 2> Casts; |
| 1553 | if (getCastsForInductionPHI(PSE, PhiScev: SymbolicPhi, AR, CastInsts&: Casts)) |
| 1554 | return isInductionPHI(Phi, L: TheLoop, SE: PSE.getSE(), D, Expr: AR, CastsToIgnore: &Casts); |
| 1555 | } |
| 1556 | |
| 1557 | return isInductionPHI(Phi, L: TheLoop, SE: PSE.getSE(), D, Expr: AR); |
| 1558 | } |
| 1559 | |
| 1560 | bool InductionDescriptor::isInductionPHI( |
| 1561 | PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE, |
| 1562 | InductionDescriptor &D, const SCEV *Expr, |
| 1563 | SmallVectorImpl<Instruction *> *CastsToIgnore) { |
| 1564 | Type *PhiTy = Phi->getType(); |
| 1565 | // isSCEVable returns true for integer and pointer types. |
| 1566 | if (!SE->isSCEVable(Ty: PhiTy)) |
| 1567 | return false; |
| 1568 | |
| 1569 | // Check that the PHI is consecutive. |
| 1570 | const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(V: Phi); |
| 1571 | const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Val: PhiScev); |
| 1572 | |
| 1573 | if (!AR) { |
| 1574 | LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n" ); |
| 1575 | return false; |
| 1576 | } |
| 1577 | |
| 1578 | if (AR->getLoop() != TheLoop) { |
| 1579 | // FIXME: We should treat this as a uniform. Unfortunately, we |
| 1580 | // don't currently know how to handled uniform PHIs. |
| 1581 | LLVM_DEBUG( |
| 1582 | dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n" ); |
| 1583 | return false; |
| 1584 | } |
| 1585 | |
| 1586 | // This function assumes that InductionPhi is called only on Phi nodes |
| 1587 | // present inside loop headers. Check for the same, and throw an assert if |
| 1588 | // the current Phi is not present inside the loop header. |
| 1589 | assert(Phi->getParent() == AR->getLoop()->getHeader() |
| 1590 | && "Invalid Phi node, not present in loop header" ); |
| 1591 | |
| 1592 | Value *StartValue = |
| 1593 | Phi->getIncomingValueForBlock(BB: AR->getLoop()->getLoopPreheader()); |
| 1594 | |
| 1595 | BasicBlock *Latch = AR->getLoop()->getLoopLatch(); |
| 1596 | if (!Latch) |
| 1597 | return false; |
| 1598 | |
| 1599 | const SCEV *Step = AR->getStepRecurrence(SE&: *SE); |
| 1600 | // Calculate the pointer stride and check if it is consecutive. |
| 1601 | // The stride may be a constant or a loop invariant integer value. |
| 1602 | const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Val: Step); |
| 1603 | if (!ConstStep && !SE->isLoopInvariant(S: Step, L: TheLoop)) |
| 1604 | return false; |
| 1605 | |
| 1606 | if (PhiTy->isIntegerTy()) { |
| 1607 | BinaryOperator *BOp = |
| 1608 | dyn_cast<BinaryOperator>(Val: Phi->getIncomingValueForBlock(BB: Latch)); |
| 1609 | D = InductionDescriptor(StartValue, IK_IntInduction, Step, BOp, |
| 1610 | CastsToIgnore); |
| 1611 | return true; |
| 1612 | } |
| 1613 | |
| 1614 | assert(PhiTy->isPointerTy() && "The PHI must be a pointer" ); |
| 1615 | |
| 1616 | // This allows induction variables w/non-constant steps. |
| 1617 | D = InductionDescriptor(StartValue, IK_PtrInduction, Step); |
| 1618 | return true; |
| 1619 | } |
| 1620 | |