| 1 | //===- InlineOrder.cpp - Inlining order abstraction -*- C++ ---*-----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "llvm/Analysis/InlineOrder.h" |
| 10 | #include "llvm/Analysis/AssumptionCache.h" |
| 11 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
| 12 | #include "llvm/Analysis/GlobalsModRef.h" |
| 13 | #include "llvm/Analysis/InlineAdvisor.h" |
| 14 | #include "llvm/Analysis/InlineCost.h" |
| 15 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 16 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
| 17 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 18 | #include "llvm/Analysis/TargetTransformInfo.h" |
| 19 | #include "llvm/Support/CommandLine.h" |
| 20 | |
| 21 | using namespace llvm; |
| 22 | |
| 23 | #define DEBUG_TYPE "inline-order" |
| 24 | |
| 25 | enum class InlinePriorityMode : int { Size, Cost, CostBenefit, ML }; |
| 26 | |
| 27 | static cl::opt<InlinePriorityMode> UseInlinePriority( |
| 28 | "inline-priority-mode" , cl::init(Val: InlinePriorityMode::Size), cl::Hidden, |
| 29 | cl::desc("Choose the priority mode to use in module inline" ), |
| 30 | cl::values(clEnumValN(InlinePriorityMode::Size, "size" , |
| 31 | "Use callee size priority." ), |
| 32 | clEnumValN(InlinePriorityMode::Cost, "cost" , |
| 33 | "Use inline cost priority." ), |
| 34 | clEnumValN(InlinePriorityMode::CostBenefit, "cost-benefit" , |
| 35 | "Use cost-benefit ratio." ), |
| 36 | clEnumValN(InlinePriorityMode::ML, "ml" , "Use ML." ))); |
| 37 | |
| 38 | static cl::opt<int> ModuleInlinerTopPriorityThreshold( |
| 39 | "module-inliner-top-priority-threshold" , cl::Hidden, cl::init(Val: 0), |
| 40 | cl::desc("The cost threshold for call sites that get inlined without the " |
| 41 | "cost-benefit analysis" )); |
| 42 | |
| 43 | namespace { |
| 44 | |
| 45 | llvm::InlineCost getInlineCostWrapper(CallBase &CB, |
| 46 | FunctionAnalysisManager &FAM, |
| 47 | const InlineParams &Params) { |
| 48 | Function &Caller = *CB.getCaller(); |
| 49 | ProfileSummaryInfo *PSI = |
| 50 | FAM.getResult<ModuleAnalysisManagerFunctionProxy>(IR&: Caller) |
| 51 | .getCachedResult<ProfileSummaryAnalysis>( |
| 52 | IR&: *CB.getParent()->getParent()->getParent()); |
| 53 | |
| 54 | auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(IR&: Caller); |
| 55 | auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { |
| 56 | return FAM.getResult<AssumptionAnalysis>(IR&: F); |
| 57 | }; |
| 58 | auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & { |
| 59 | return FAM.getResult<BlockFrequencyAnalysis>(IR&: F); |
| 60 | }; |
| 61 | auto GetTLI = [&](Function &F) -> const TargetLibraryInfo & { |
| 62 | return FAM.getResult<TargetLibraryAnalysis>(IR&: F); |
| 63 | }; |
| 64 | |
| 65 | Function &Callee = *CB.getCalledFunction(); |
| 66 | auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(IR&: Callee); |
| 67 | bool = |
| 68 | Callee.getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled( |
| 69 | DEBUG_TYPE); |
| 70 | return getInlineCost(Call&: CB, Params, CalleeTTI, GetAssumptionCache, GetTLI, |
| 71 | GetBFI, PSI, ORE: RemarksEnabled ? &ORE : nullptr); |
| 72 | } |
| 73 | |
| 74 | class SizePriority { |
| 75 | public: |
| 76 | SizePriority() = default; |
| 77 | SizePriority(const CallBase *CB, FunctionAnalysisManager &, |
| 78 | const InlineParams &) { |
| 79 | Function *Callee = CB->getCalledFunction(); |
| 80 | Size = Callee->getInstructionCount(); |
| 81 | } |
| 82 | |
| 83 | static bool isMoreDesirable(const SizePriority &P1, const SizePriority &P2) { |
| 84 | return P1.Size < P2.Size; |
| 85 | } |
| 86 | |
| 87 | private: |
| 88 | unsigned Size = UINT_MAX; |
| 89 | }; |
| 90 | |
| 91 | class CostPriority { |
| 92 | public: |
| 93 | CostPriority() = default; |
| 94 | CostPriority(const CallBase *CB, FunctionAnalysisManager &FAM, |
| 95 | const InlineParams &Params) { |
| 96 | auto IC = getInlineCostWrapper(CB&: const_cast<CallBase &>(*CB), FAM, Params); |
| 97 | if (IC.isVariable()) |
| 98 | Cost = IC.getCost(); |
| 99 | else |
| 100 | Cost = IC.isNever() ? INT_MAX : INT_MIN; |
| 101 | } |
| 102 | |
| 103 | static bool isMoreDesirable(const CostPriority &P1, const CostPriority &P2) { |
| 104 | return P1.Cost < P2.Cost; |
| 105 | } |
| 106 | |
| 107 | private: |
| 108 | int Cost = INT_MAX; |
| 109 | }; |
| 110 | |
| 111 | class CostBenefitPriority { |
| 112 | public: |
| 113 | CostBenefitPriority() = default; |
| 114 | CostBenefitPriority(const CallBase *CB, FunctionAnalysisManager &FAM, |
| 115 | const InlineParams &Params) { |
| 116 | auto IC = getInlineCostWrapper(CB&: const_cast<CallBase &>(*CB), FAM, Params); |
| 117 | if (IC.isVariable()) |
| 118 | Cost = IC.getCost(); |
| 119 | else |
| 120 | Cost = IC.isNever() ? INT_MAX : INT_MIN; |
| 121 | StaticBonusApplied = IC.getStaticBonusApplied(); |
| 122 | CostBenefit = IC.getCostBenefit(); |
| 123 | } |
| 124 | |
| 125 | static bool isMoreDesirable(const CostBenefitPriority &P1, |
| 126 | const CostBenefitPriority &P2) { |
| 127 | // We prioritize call sites in the dictionary order of the following |
| 128 | // priorities: |
| 129 | // |
| 130 | // 1. Those call sites that are expected to reduce the caller size when |
| 131 | // inlined. Within them, we prioritize those call sites with bigger |
| 132 | // reduction. |
| 133 | // |
| 134 | // 2. Those call sites that have gone through the cost-benefit analysis. |
| 135 | // Currently, they are limited to hot call sites. Within them, we |
| 136 | // prioritize those call sites with higher benefit-to-cost ratios. |
| 137 | // |
| 138 | // 3. Remaining call sites are prioritized according to their costs. |
| 139 | |
| 140 | // We add back StaticBonusApplied to determine whether we expect the caller |
| 141 | // to shrink (even if we don't delete the callee). |
| 142 | bool P1ReducesCallerSize = |
| 143 | P1.Cost + P1.StaticBonusApplied < ModuleInlinerTopPriorityThreshold; |
| 144 | bool P2ReducesCallerSize = |
| 145 | P2.Cost + P2.StaticBonusApplied < ModuleInlinerTopPriorityThreshold; |
| 146 | if (P1ReducesCallerSize || P2ReducesCallerSize) { |
| 147 | // If one reduces the caller size while the other doesn't, then return |
| 148 | // true iff P1 reduces the caller size. |
| 149 | if (P1ReducesCallerSize != P2ReducesCallerSize) |
| 150 | return P1ReducesCallerSize; |
| 151 | |
| 152 | // If they both reduce the caller size, pick the one with the smaller |
| 153 | // cost. |
| 154 | return P1.Cost < P2.Cost; |
| 155 | } |
| 156 | |
| 157 | bool P1HasCB = P1.CostBenefit.has_value(); |
| 158 | bool P2HasCB = P2.CostBenefit.has_value(); |
| 159 | if (P1HasCB || P2HasCB) { |
| 160 | // If one has undergone the cost-benefit analysis while the other hasn't, |
| 161 | // then return true iff P1 has. |
| 162 | if (P1HasCB != P2HasCB) |
| 163 | return P1HasCB; |
| 164 | |
| 165 | // If they have undergone the cost-benefit analysis, then pick the one |
| 166 | // with a higher benefit-to-cost ratio. |
| 167 | APInt LHS = P1.CostBenefit->getBenefit() * P2.CostBenefit->getCost(); |
| 168 | APInt RHS = P2.CostBenefit->getBenefit() * P1.CostBenefit->getCost(); |
| 169 | return LHS.ugt(RHS); |
| 170 | } |
| 171 | |
| 172 | // Remaining call sites are ordered according to their costs. |
| 173 | return P1.Cost < P2.Cost; |
| 174 | } |
| 175 | |
| 176 | private: |
| 177 | int Cost = INT_MAX; |
| 178 | int StaticBonusApplied = 0; |
| 179 | std::optional<CostBenefitPair> CostBenefit; |
| 180 | }; |
| 181 | |
| 182 | class MLPriority { |
| 183 | public: |
| 184 | MLPriority() = default; |
| 185 | MLPriority(const CallBase *CB, FunctionAnalysisManager &FAM, |
| 186 | const InlineParams &Params) { |
| 187 | auto IC = getInlineCostWrapper(CB&: const_cast<CallBase &>(*CB), FAM, Params); |
| 188 | if (IC.isVariable()) |
| 189 | Cost = IC.getCost(); |
| 190 | else |
| 191 | Cost = IC.isNever() ? INT_MAX : INT_MIN; |
| 192 | } |
| 193 | |
| 194 | static bool isMoreDesirable(const MLPriority &P1, const MLPriority &P2) { |
| 195 | return P1.Cost < P2.Cost; |
| 196 | } |
| 197 | |
| 198 | private: |
| 199 | int Cost = INT_MAX; |
| 200 | }; |
| 201 | |
| 202 | template <typename PriorityT> |
| 203 | class PriorityInlineOrder : public InlineOrder<std::pair<CallBase *, int>> { |
| 204 | using T = std::pair<CallBase *, int>; |
| 205 | |
| 206 | bool hasLowerPriority(const CallBase *L, const CallBase *R) const { |
| 207 | const auto I1 = Priorities.find(L); |
| 208 | const auto I2 = Priorities.find(R); |
| 209 | assert(I1 != Priorities.end() && I2 != Priorities.end()); |
| 210 | return PriorityT::isMoreDesirable(I2->second, I1->second); |
| 211 | } |
| 212 | |
| 213 | bool updateAndCheckDecreased(const CallBase *CB) { |
| 214 | auto It = Priorities.find(CB); |
| 215 | const auto OldPriority = It->second; |
| 216 | It->second = PriorityT(CB, FAM, Params); |
| 217 | const auto NewPriority = It->second; |
| 218 | return PriorityT::isMoreDesirable(OldPriority, NewPriority); |
| 219 | } |
| 220 | |
| 221 | // A call site could become less desirable for inlining because of the size |
| 222 | // growth from prior inlining into the callee. This method is used to lazily |
| 223 | // update the desirability of a call site if it's decreasing. It is only |
| 224 | // called on pop(), not every time the desirability changes. When the |
| 225 | // desirability of the front call site decreases, an updated one would be |
| 226 | // pushed right back into the heap. For simplicity, those cases where the |
| 227 | // desirability of a call site increases are ignored here. |
| 228 | void pop_heap_adjust() { |
| 229 | std::pop_heap(first: Heap.begin(), last: Heap.end(), comp: isLess); |
| 230 | while (updateAndCheckDecreased(CB: Heap.back())) { |
| 231 | std::push_heap(first: Heap.begin(), last: Heap.end(), comp: isLess); |
| 232 | std::pop_heap(first: Heap.begin(), last: Heap.end(), comp: isLess); |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | public: |
| 237 | PriorityInlineOrder(FunctionAnalysisManager &FAM, const InlineParams &Params) |
| 238 | : FAM(FAM), Params(Params) { |
| 239 | isLess = [&](const CallBase *L, const CallBase *R) { |
| 240 | return hasLowerPriority(L, R); |
| 241 | }; |
| 242 | } |
| 243 | |
| 244 | size_t size() override { return Heap.size(); } |
| 245 | |
| 246 | void push(const T &Elt) override { |
| 247 | CallBase *CB = Elt.first; |
| 248 | const int InlineHistoryID = Elt.second; |
| 249 | |
| 250 | Heap.push_back(Elt: CB); |
| 251 | Priorities[CB] = PriorityT(CB, FAM, Params); |
| 252 | std::push_heap(first: Heap.begin(), last: Heap.end(), comp: isLess); |
| 253 | InlineHistoryMap[CB] = InlineHistoryID; |
| 254 | } |
| 255 | |
| 256 | T pop() override { |
| 257 | assert(size() > 0); |
| 258 | pop_heap_adjust(); |
| 259 | |
| 260 | CallBase *CB = Heap.pop_back_val(); |
| 261 | T Result = std::make_pair(x&: CB, y&: InlineHistoryMap[CB]); |
| 262 | InlineHistoryMap.erase(Val: CB); |
| 263 | return Result; |
| 264 | } |
| 265 | |
| 266 | void erase_if(function_ref<bool(T)> Pred) override { |
| 267 | auto PredWrapper = [=](CallBase *CB) -> bool { |
| 268 | return Pred(std::make_pair(x&: CB, y&: InlineHistoryMap[CB])); |
| 269 | }; |
| 270 | llvm::erase_if(Heap, PredWrapper); |
| 271 | std::make_heap(first: Heap.begin(), last: Heap.end(), comp: isLess); |
| 272 | } |
| 273 | |
| 274 | private: |
| 275 | SmallVector<CallBase *, 16> Heap; |
| 276 | std::function<bool(const CallBase *L, const CallBase *R)> isLess; |
| 277 | DenseMap<CallBase *, int> InlineHistoryMap; |
| 278 | DenseMap<const CallBase *, PriorityT> Priorities; |
| 279 | FunctionAnalysisManager &FAM; |
| 280 | const InlineParams &Params; |
| 281 | }; |
| 282 | |
| 283 | } // namespace |
| 284 | |
| 285 | AnalysisKey llvm::PluginInlineOrderAnalysis::Key; |
| 286 | |
| 287 | std::unique_ptr<InlineOrder<std::pair<CallBase *, int>>> |
| 288 | llvm::getDefaultInlineOrder(FunctionAnalysisManager &FAM, |
| 289 | const InlineParams &Params, |
| 290 | ModuleAnalysisManager &MAM, Module &M) { |
| 291 | switch (UseInlinePriority) { |
| 292 | case InlinePriorityMode::Size: |
| 293 | LLVM_DEBUG(dbgs() << " Current used priority: Size priority ---- \n" ); |
| 294 | return std::make_unique<PriorityInlineOrder<SizePriority>>(args&: FAM, args: Params); |
| 295 | |
| 296 | case InlinePriorityMode::Cost: |
| 297 | LLVM_DEBUG(dbgs() << " Current used priority: Cost priority ---- \n" ); |
| 298 | return std::make_unique<PriorityInlineOrder<CostPriority>>(args&: FAM, args: Params); |
| 299 | |
| 300 | case InlinePriorityMode::CostBenefit: |
| 301 | LLVM_DEBUG( |
| 302 | dbgs() << " Current used priority: cost-benefit priority ---- \n" ); |
| 303 | return std::make_unique<PriorityInlineOrder<CostBenefitPriority>>(args&: FAM, |
| 304 | args: Params); |
| 305 | case InlinePriorityMode::ML: |
| 306 | LLVM_DEBUG(dbgs() << " Current used priority: ML priority ---- \n" ); |
| 307 | return std::make_unique<PriorityInlineOrder<MLPriority>>(args&: FAM, args: Params); |
| 308 | } |
| 309 | return nullptr; |
| 310 | } |
| 311 | |
| 312 | std::unique_ptr<InlineOrder<std::pair<CallBase *, int>>> |
| 313 | llvm::getInlineOrder(FunctionAnalysisManager &FAM, const InlineParams &Params, |
| 314 | ModuleAnalysisManager &MAM, Module &M) { |
| 315 | if (MAM.isPassRegistered<PluginInlineOrderAnalysis>()) { |
| 316 | LLVM_DEBUG(dbgs() << " Current used priority: plugin ---- \n" ); |
| 317 | return MAM.getResult<PluginInlineOrderAnalysis>(IR&: M).Factory(FAM, Params, MAM, |
| 318 | M); |
| 319 | } |
| 320 | return getDefaultInlineOrder(FAM, Params, MAM, M); |
| 321 | } |
| 322 | |