| 1 | //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements routines for folding instructions into simpler forms |
| 10 | // that do not require creating new instructions. This does constant folding |
| 11 | // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either |
| 12 | // returning a constant ("and i32 %x, 0" -> "0") or an already existing value |
| 13 | // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been |
| 14 | // simplified: This is usually true and assuming it simplifies the logic (if |
| 15 | // they have not been simplified then results are correct but maybe suboptimal). |
| 16 | // |
| 17 | //===----------------------------------------------------------------------===// |
| 18 | |
| 19 | #include "llvm/Analysis/InstructionSimplify.h" |
| 20 | |
| 21 | #include "llvm/ADT/STLExtras.h" |
| 22 | #include "llvm/ADT/SetVector.h" |
| 23 | #include "llvm/ADT/Statistic.h" |
| 24 | #include "llvm/Analysis/AliasAnalysis.h" |
| 25 | #include "llvm/Analysis/AssumptionCache.h" |
| 26 | #include "llvm/Analysis/CaptureTracking.h" |
| 27 | #include "llvm/Analysis/CmpInstAnalysis.h" |
| 28 | #include "llvm/Analysis/ConstantFolding.h" |
| 29 | #include "llvm/Analysis/FloatingPointPredicateUtils.h" |
| 30 | #include "llvm/Analysis/InstSimplifyFolder.h" |
| 31 | #include "llvm/Analysis/Loads.h" |
| 32 | #include "llvm/Analysis/LoopAnalysisManager.h" |
| 33 | #include "llvm/Analysis/MemoryBuiltins.h" |
| 34 | #include "llvm/Analysis/OverflowInstAnalysis.h" |
| 35 | #include "llvm/Analysis/TargetLibraryInfo.h" |
| 36 | #include "llvm/Analysis/ValueTracking.h" |
| 37 | #include "llvm/Analysis/VectorUtils.h" |
| 38 | #include "llvm/IR/ConstantRange.h" |
| 39 | #include "llvm/IR/DataLayout.h" |
| 40 | #include "llvm/IR/Dominators.h" |
| 41 | #include "llvm/IR/InstrTypes.h" |
| 42 | #include "llvm/IR/Instructions.h" |
| 43 | #include "llvm/IR/Operator.h" |
| 44 | #include "llvm/IR/PatternMatch.h" |
| 45 | #include "llvm/IR/Statepoint.h" |
| 46 | #include "llvm/Support/KnownBits.h" |
| 47 | #include "llvm/Support/KnownFPClass.h" |
| 48 | #include <algorithm> |
| 49 | #include <optional> |
| 50 | using namespace llvm; |
| 51 | using namespace llvm::PatternMatch; |
| 52 | |
| 53 | #define DEBUG_TYPE "instsimplify" |
| 54 | |
| 55 | enum { RecursionLimit = 3 }; |
| 56 | |
| 57 | STATISTIC(NumExpand, "Number of expansions" ); |
| 58 | STATISTIC(NumReassoc, "Number of reassociations" ); |
| 59 | |
| 60 | static Value *simplifyAndInst(Value *, Value *, const SimplifyQuery &, |
| 61 | unsigned); |
| 62 | static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); |
| 63 | static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, |
| 64 | const SimplifyQuery &, unsigned); |
| 65 | static Value *simplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, |
| 66 | unsigned); |
| 67 | static Value *simplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, |
| 68 | const SimplifyQuery &, unsigned); |
| 69 | static Value *simplifyCmpInst(CmpPredicate, Value *, Value *, |
| 70 | const SimplifyQuery &, unsigned); |
| 71 | static Value *simplifyICmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, |
| 72 | const SimplifyQuery &Q, unsigned MaxRecurse); |
| 73 | static Value *simplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); |
| 74 | static Value *simplifyXorInst(Value *, Value *, const SimplifyQuery &, |
| 75 | unsigned); |
| 76 | static Value *simplifyCastInst(unsigned, Value *, Type *, const SimplifyQuery &, |
| 77 | unsigned); |
| 78 | static Value *simplifyGEPInst(Type *, Value *, ArrayRef<Value *>, |
| 79 | GEPNoWrapFlags, const SimplifyQuery &, unsigned); |
| 80 | static Value *simplifySelectInst(Value *, Value *, Value *, |
| 81 | const SimplifyQuery &, unsigned); |
| 82 | static Value *simplifyInstructionWithOperands(Instruction *I, |
| 83 | ArrayRef<Value *> NewOps, |
| 84 | const SimplifyQuery &SQ, |
| 85 | unsigned MaxRecurse); |
| 86 | |
| 87 | /// For a boolean type or a vector of boolean type, return false or a vector |
| 88 | /// with every element false. |
| 89 | static Constant *getFalse(Type *Ty) { return ConstantInt::getFalse(Ty); } |
| 90 | |
| 91 | /// For a boolean type or a vector of boolean type, return true or a vector |
| 92 | /// with every element true. |
| 93 | static Constant *getTrue(Type *Ty) { return ConstantInt::getTrue(Ty); } |
| 94 | |
| 95 | /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? |
| 96 | static bool isSameCompare(Value *V, CmpPredicate Pred, Value *LHS, Value *RHS) { |
| 97 | CmpInst *Cmp = dyn_cast<CmpInst>(Val: V); |
| 98 | if (!Cmp) |
| 99 | return false; |
| 100 | CmpInst::Predicate CPred = Cmp->getPredicate(); |
| 101 | Value *CLHS = Cmp->getOperand(i_nocapture: 0), *CRHS = Cmp->getOperand(i_nocapture: 1); |
| 102 | if (CPred == Pred && CLHS == LHS && CRHS == RHS) |
| 103 | return true; |
| 104 | return CPred == CmpInst::getSwappedPredicate(pred: Pred) && CLHS == RHS && |
| 105 | CRHS == LHS; |
| 106 | } |
| 107 | |
| 108 | /// Simplify comparison with true or false branch of select: |
| 109 | /// %sel = select i1 %cond, i32 %tv, i32 %fv |
| 110 | /// %cmp = icmp sle i32 %sel, %rhs |
| 111 | /// Compose new comparison by substituting %sel with either %tv or %fv |
| 112 | /// and see if it simplifies. |
| 113 | static Value *simplifyCmpSelCase(CmpPredicate Pred, Value *LHS, Value *RHS, |
| 114 | Value *Cond, const SimplifyQuery &Q, |
| 115 | unsigned MaxRecurse, Constant *TrueOrFalse) { |
| 116 | Value *SimplifiedCmp = simplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); |
| 117 | if (SimplifiedCmp == Cond) { |
| 118 | // %cmp simplified to the select condition (%cond). |
| 119 | return TrueOrFalse; |
| 120 | } else if (!SimplifiedCmp && isSameCompare(V: Cond, Pred, LHS, RHS)) { |
| 121 | // It didn't simplify. However, if composed comparison is equivalent |
| 122 | // to the select condition (%cond) then we can replace it. |
| 123 | return TrueOrFalse; |
| 124 | } |
| 125 | return SimplifiedCmp; |
| 126 | } |
| 127 | |
| 128 | /// Simplify comparison with true branch of select |
| 129 | static Value *simplifyCmpSelTrueCase(CmpPredicate Pred, Value *LHS, Value *RHS, |
| 130 | Value *Cond, const SimplifyQuery &Q, |
| 131 | unsigned MaxRecurse) { |
| 132 | return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, |
| 133 | TrueOrFalse: getTrue(Ty: Cond->getType())); |
| 134 | } |
| 135 | |
| 136 | /// Simplify comparison with false branch of select |
| 137 | static Value *simplifyCmpSelFalseCase(CmpPredicate Pred, Value *LHS, Value *RHS, |
| 138 | Value *Cond, const SimplifyQuery &Q, |
| 139 | unsigned MaxRecurse) { |
| 140 | return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, |
| 141 | TrueOrFalse: getFalse(Ty: Cond->getType())); |
| 142 | } |
| 143 | |
| 144 | /// We know comparison with both branches of select can be simplified, but they |
| 145 | /// are not equal. This routine handles some logical simplifications. |
| 146 | static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, |
| 147 | Value *Cond, |
| 148 | const SimplifyQuery &Q, |
| 149 | unsigned MaxRecurse) { |
| 150 | // If the false value simplified to false, then the result of the compare |
| 151 | // is equal to "Cond && TCmp". This also catches the case when the false |
| 152 | // value simplified to false and the true value to true, returning "Cond". |
| 153 | // Folding select to and/or isn't poison-safe in general; impliesPoison |
| 154 | // checks whether folding it does not convert a well-defined value into |
| 155 | // poison. |
| 156 | if (match(V: FCmp, P: m_Zero()) && impliesPoison(ValAssumedPoison: TCmp, V: Cond)) |
| 157 | if (Value *V = simplifyAndInst(Cond, TCmp, Q, MaxRecurse)) |
| 158 | return V; |
| 159 | // If the true value simplified to true, then the result of the compare |
| 160 | // is equal to "Cond || FCmp". |
| 161 | if (match(V: TCmp, P: m_One()) && impliesPoison(ValAssumedPoison: FCmp, V: Cond)) |
| 162 | if (Value *V = simplifyOrInst(Cond, FCmp, Q, MaxRecurse)) |
| 163 | return V; |
| 164 | // Finally, if the false value simplified to true and the true value to |
| 165 | // false, then the result of the compare is equal to "!Cond". |
| 166 | if (match(V: FCmp, P: m_One()) && match(V: TCmp, P: m_Zero())) |
| 167 | if (Value *V = simplifyXorInst( |
| 168 | Cond, Constant::getAllOnesValue(Ty: Cond->getType()), Q, MaxRecurse)) |
| 169 | return V; |
| 170 | return nullptr; |
| 171 | } |
| 172 | |
| 173 | /// Does the given value dominate the specified phi node? |
| 174 | static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { |
| 175 | Instruction *I = dyn_cast<Instruction>(Val: V); |
| 176 | if (!I) |
| 177 | // Arguments and constants dominate all instructions. |
| 178 | return true; |
| 179 | |
| 180 | // If we have a DominatorTree then do a precise test. |
| 181 | if (DT) |
| 182 | return DT->dominates(Def: I, User: P); |
| 183 | |
| 184 | // Otherwise, if the instruction is in the entry block and is not an invoke, |
| 185 | // then it obviously dominates all phi nodes. |
| 186 | if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(Val: I) && |
| 187 | !isa<CallBrInst>(Val: I)) |
| 188 | return true; |
| 189 | |
| 190 | return false; |
| 191 | } |
| 192 | |
| 193 | /// Try to simplify a binary operator of form "V op OtherOp" where V is |
| 194 | /// "(B0 opex B1)" by distributing 'op' across 'opex' as |
| 195 | /// "(B0 op OtherOp) opex (B1 op OtherOp)". |
| 196 | static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, |
| 197 | Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, |
| 198 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 199 | auto *B = dyn_cast<BinaryOperator>(Val: V); |
| 200 | if (!B || B->getOpcode() != OpcodeToExpand) |
| 201 | return nullptr; |
| 202 | Value *B0 = B->getOperand(i_nocapture: 0), *B1 = B->getOperand(i_nocapture: 1); |
| 203 | Value *L = |
| 204 | simplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), MaxRecurse); |
| 205 | if (!L) |
| 206 | return nullptr; |
| 207 | Value *R = |
| 208 | simplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), MaxRecurse); |
| 209 | if (!R) |
| 210 | return nullptr; |
| 211 | |
| 212 | // Does the expanded pair of binops simplify to the existing binop? |
| 213 | if ((L == B0 && R == B1) || |
| 214 | (Instruction::isCommutative(Opcode: OpcodeToExpand) && L == B1 && R == B0)) { |
| 215 | ++NumExpand; |
| 216 | return B; |
| 217 | } |
| 218 | |
| 219 | // Otherwise, return "L op' R" if it simplifies. |
| 220 | Value *S = simplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); |
| 221 | if (!S) |
| 222 | return nullptr; |
| 223 | |
| 224 | ++NumExpand; |
| 225 | return S; |
| 226 | } |
| 227 | |
| 228 | /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by |
| 229 | /// distributing op over op'. |
| 230 | static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L, |
| 231 | Value *R, |
| 232 | Instruction::BinaryOps OpcodeToExpand, |
| 233 | const SimplifyQuery &Q, |
| 234 | unsigned MaxRecurse) { |
| 235 | // Recursion is always used, so bail out at once if we already hit the limit. |
| 236 | if (!MaxRecurse--) |
| 237 | return nullptr; |
| 238 | |
| 239 | if (Value *V = expandBinOp(Opcode, V: L, OtherOp: R, OpcodeToExpand, Q, MaxRecurse)) |
| 240 | return V; |
| 241 | if (Value *V = expandBinOp(Opcode, V: R, OtherOp: L, OpcodeToExpand, Q, MaxRecurse)) |
| 242 | return V; |
| 243 | return nullptr; |
| 244 | } |
| 245 | |
| 246 | /// Generic simplifications for associative binary operations. |
| 247 | /// Returns the simpler value, or null if none was found. |
| 248 | static Value *simplifyAssociativeBinOp(Instruction::BinaryOps Opcode, |
| 249 | Value *LHS, Value *RHS, |
| 250 | const SimplifyQuery &Q, |
| 251 | unsigned MaxRecurse) { |
| 252 | assert(Instruction::isAssociative(Opcode) && "Not an associative operation!" ); |
| 253 | |
| 254 | // Recursion is always used, so bail out at once if we already hit the limit. |
| 255 | if (!MaxRecurse--) |
| 256 | return nullptr; |
| 257 | |
| 258 | BinaryOperator *Op0 = dyn_cast<BinaryOperator>(Val: LHS); |
| 259 | BinaryOperator *Op1 = dyn_cast<BinaryOperator>(Val: RHS); |
| 260 | |
| 261 | // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. |
| 262 | if (Op0 && Op0->getOpcode() == Opcode) { |
| 263 | Value *A = Op0->getOperand(i_nocapture: 0); |
| 264 | Value *B = Op0->getOperand(i_nocapture: 1); |
| 265 | Value *C = RHS; |
| 266 | |
| 267 | // Does "B op C" simplify? |
| 268 | if (Value *V = simplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { |
| 269 | // It does! Return "A op V" if it simplifies or is already available. |
| 270 | // If V equals B then "A op V" is just the LHS. |
| 271 | if (V == B) |
| 272 | return LHS; |
| 273 | // Otherwise return "A op V" if it simplifies. |
| 274 | if (Value *W = simplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { |
| 275 | ++NumReassoc; |
| 276 | return W; |
| 277 | } |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. |
| 282 | if (Op1 && Op1->getOpcode() == Opcode) { |
| 283 | Value *A = LHS; |
| 284 | Value *B = Op1->getOperand(i_nocapture: 0); |
| 285 | Value *C = Op1->getOperand(i_nocapture: 1); |
| 286 | |
| 287 | // Does "A op B" simplify? |
| 288 | if (Value *V = simplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { |
| 289 | // It does! Return "V op C" if it simplifies or is already available. |
| 290 | // If V equals B then "V op C" is just the RHS. |
| 291 | if (V == B) |
| 292 | return RHS; |
| 293 | // Otherwise return "V op C" if it simplifies. |
| 294 | if (Value *W = simplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { |
| 295 | ++NumReassoc; |
| 296 | return W; |
| 297 | } |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | // The remaining transforms require commutativity as well as associativity. |
| 302 | if (!Instruction::isCommutative(Opcode)) |
| 303 | return nullptr; |
| 304 | |
| 305 | // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. |
| 306 | if (Op0 && Op0->getOpcode() == Opcode) { |
| 307 | Value *A = Op0->getOperand(i_nocapture: 0); |
| 308 | Value *B = Op0->getOperand(i_nocapture: 1); |
| 309 | Value *C = RHS; |
| 310 | |
| 311 | // Does "C op A" simplify? |
| 312 | if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { |
| 313 | // It does! Return "V op B" if it simplifies or is already available. |
| 314 | // If V equals A then "V op B" is just the LHS. |
| 315 | if (V == A) |
| 316 | return LHS; |
| 317 | // Otherwise return "V op B" if it simplifies. |
| 318 | if (Value *W = simplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { |
| 319 | ++NumReassoc; |
| 320 | return W; |
| 321 | } |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. |
| 326 | if (Op1 && Op1->getOpcode() == Opcode) { |
| 327 | Value *A = LHS; |
| 328 | Value *B = Op1->getOperand(i_nocapture: 0); |
| 329 | Value *C = Op1->getOperand(i_nocapture: 1); |
| 330 | |
| 331 | // Does "C op A" simplify? |
| 332 | if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { |
| 333 | // It does! Return "B op V" if it simplifies or is already available. |
| 334 | // If V equals C then "B op V" is just the RHS. |
| 335 | if (V == C) |
| 336 | return RHS; |
| 337 | // Otherwise return "B op V" if it simplifies. |
| 338 | if (Value *W = simplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { |
| 339 | ++NumReassoc; |
| 340 | return W; |
| 341 | } |
| 342 | } |
| 343 | } |
| 344 | |
| 345 | return nullptr; |
| 346 | } |
| 347 | |
| 348 | /// In the case of a binary operation with a select instruction as an operand, |
| 349 | /// try to simplify the binop by seeing whether evaluating it on both branches |
| 350 | /// of the select results in the same value. Returns the common value if so, |
| 351 | /// otherwise returns null. |
| 352 | static Value *threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, |
| 353 | Value *RHS, const SimplifyQuery &Q, |
| 354 | unsigned MaxRecurse) { |
| 355 | // Recursion is always used, so bail out at once if we already hit the limit. |
| 356 | if (!MaxRecurse--) |
| 357 | return nullptr; |
| 358 | |
| 359 | SelectInst *SI; |
| 360 | if (isa<SelectInst>(Val: LHS)) { |
| 361 | SI = cast<SelectInst>(Val: LHS); |
| 362 | } else { |
| 363 | assert(isa<SelectInst>(RHS) && "No select instruction operand!" ); |
| 364 | SI = cast<SelectInst>(Val: RHS); |
| 365 | } |
| 366 | |
| 367 | // Evaluate the BinOp on the true and false branches of the select. |
| 368 | Value *TV; |
| 369 | Value *FV; |
| 370 | if (SI == LHS) { |
| 371 | TV = simplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); |
| 372 | FV = simplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); |
| 373 | } else { |
| 374 | TV = simplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); |
| 375 | FV = simplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); |
| 376 | } |
| 377 | |
| 378 | // If they simplified to the same value, then return the common value. |
| 379 | // If they both failed to simplify then return null. |
| 380 | if (TV == FV) |
| 381 | return TV; |
| 382 | |
| 383 | // If one branch simplified to undef, return the other one. |
| 384 | if (TV && Q.isUndefValue(V: TV)) |
| 385 | return FV; |
| 386 | if (FV && Q.isUndefValue(V: FV)) |
| 387 | return TV; |
| 388 | |
| 389 | // If applying the operation did not change the true and false select values, |
| 390 | // then the result of the binop is the select itself. |
| 391 | if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) |
| 392 | return SI; |
| 393 | |
| 394 | // If one branch simplified and the other did not, and the simplified |
| 395 | // value is equal to the unsimplified one, return the simplified value. |
| 396 | // For example, select (cond, X, X & Z) & Z -> X & Z. |
| 397 | if ((FV && !TV) || (TV && !FV)) { |
| 398 | // Check that the simplified value has the form "X op Y" where "op" is the |
| 399 | // same as the original operation. |
| 400 | Instruction *Simplified = dyn_cast<Instruction>(Val: FV ? FV : TV); |
| 401 | if (Simplified && Simplified->getOpcode() == unsigned(Opcode) && |
| 402 | !Simplified->hasPoisonGeneratingFlags()) { |
| 403 | // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". |
| 404 | // We already know that "op" is the same as for the simplified value. See |
| 405 | // if the operands match too. If so, return the simplified value. |
| 406 | Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); |
| 407 | Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; |
| 408 | Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; |
| 409 | if (Simplified->getOperand(i: 0) == UnsimplifiedLHS && |
| 410 | Simplified->getOperand(i: 1) == UnsimplifiedRHS) |
| 411 | return Simplified; |
| 412 | if (Simplified->isCommutative() && |
| 413 | Simplified->getOperand(i: 1) == UnsimplifiedLHS && |
| 414 | Simplified->getOperand(i: 0) == UnsimplifiedRHS) |
| 415 | return Simplified; |
| 416 | } |
| 417 | } |
| 418 | |
| 419 | return nullptr; |
| 420 | } |
| 421 | |
| 422 | /// In the case of a comparison with a select instruction, try to simplify the |
| 423 | /// comparison by seeing whether both branches of the select result in the same |
| 424 | /// value. Returns the common value if so, otherwise returns null. |
| 425 | /// For example, if we have: |
| 426 | /// %tmp = select i1 %cmp, i32 1, i32 2 |
| 427 | /// %cmp1 = icmp sle i32 %tmp, 3 |
| 428 | /// We can simplify %cmp1 to true, because both branches of select are |
| 429 | /// less than 3. We compose new comparison by substituting %tmp with both |
| 430 | /// branches of select and see if it can be simplified. |
| 431 | static Value *threadCmpOverSelect(CmpPredicate Pred, Value *LHS, Value *RHS, |
| 432 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 433 | // Recursion is always used, so bail out at once if we already hit the limit. |
| 434 | if (!MaxRecurse--) |
| 435 | return nullptr; |
| 436 | |
| 437 | // Make sure the select is on the LHS. |
| 438 | if (!isa<SelectInst>(Val: LHS)) { |
| 439 | std::swap(a&: LHS, b&: RHS); |
| 440 | Pred = CmpInst::getSwappedPredicate(pred: Pred); |
| 441 | } |
| 442 | assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!" ); |
| 443 | SelectInst *SI = cast<SelectInst>(Val: LHS); |
| 444 | Value *Cond = SI->getCondition(); |
| 445 | Value *TV = SI->getTrueValue(); |
| 446 | Value *FV = SI->getFalseValue(); |
| 447 | |
| 448 | // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. |
| 449 | // Does "cmp TV, RHS" simplify? |
| 450 | Value *TCmp = simplifyCmpSelTrueCase(Pred, LHS: TV, RHS, Cond, Q, MaxRecurse); |
| 451 | if (!TCmp) |
| 452 | return nullptr; |
| 453 | |
| 454 | // Does "cmp FV, RHS" simplify? |
| 455 | Value *FCmp = simplifyCmpSelFalseCase(Pred, LHS: FV, RHS, Cond, Q, MaxRecurse); |
| 456 | if (!FCmp) |
| 457 | return nullptr; |
| 458 | |
| 459 | // If both sides simplified to the same value, then use it as the result of |
| 460 | // the original comparison. |
| 461 | if (TCmp == FCmp) |
| 462 | return TCmp; |
| 463 | |
| 464 | // The remaining cases only make sense if the select condition has the same |
| 465 | // type as the result of the comparison, so bail out if this is not so. |
| 466 | if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) |
| 467 | return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); |
| 468 | |
| 469 | return nullptr; |
| 470 | } |
| 471 | |
| 472 | /// In the case of a binary operation with an operand that is a PHI instruction, |
| 473 | /// try to simplify the binop by seeing whether evaluating it on the incoming |
| 474 | /// phi values yields the same result for every value. If so returns the common |
| 475 | /// value, otherwise returns null. |
| 476 | static Value *threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, |
| 477 | Value *RHS, const SimplifyQuery &Q, |
| 478 | unsigned MaxRecurse) { |
| 479 | // Recursion is always used, so bail out at once if we already hit the limit. |
| 480 | if (!MaxRecurse--) |
| 481 | return nullptr; |
| 482 | |
| 483 | PHINode *PI; |
| 484 | if (isa<PHINode>(Val: LHS)) { |
| 485 | PI = cast<PHINode>(Val: LHS); |
| 486 | // Bail out if RHS and the phi may be mutually interdependent due to a loop. |
| 487 | if (!valueDominatesPHI(V: RHS, P: PI, DT: Q.DT)) |
| 488 | return nullptr; |
| 489 | } else { |
| 490 | assert(isa<PHINode>(RHS) && "No PHI instruction operand!" ); |
| 491 | PI = cast<PHINode>(Val: RHS); |
| 492 | // Bail out if LHS and the phi may be mutually interdependent due to a loop. |
| 493 | if (!valueDominatesPHI(V: LHS, P: PI, DT: Q.DT)) |
| 494 | return nullptr; |
| 495 | } |
| 496 | |
| 497 | // Evaluate the BinOp on the incoming phi values. |
| 498 | Value *CommonValue = nullptr; |
| 499 | for (Use &Incoming : PI->incoming_values()) { |
| 500 | // If the incoming value is the phi node itself, it can safely be skipped. |
| 501 | if (Incoming == PI) |
| 502 | continue; |
| 503 | Instruction *InTI = PI->getIncomingBlock(U: Incoming)->getTerminator(); |
| 504 | Value *V = PI == LHS |
| 505 | ? simplifyBinOp(Opcode, Incoming, RHS, |
| 506 | Q.getWithInstruction(I: InTI), MaxRecurse) |
| 507 | : simplifyBinOp(Opcode, LHS, Incoming, |
| 508 | Q.getWithInstruction(I: InTI), MaxRecurse); |
| 509 | // If the operation failed to simplify, or simplified to a different value |
| 510 | // to previously, then give up. |
| 511 | if (!V || (CommonValue && V != CommonValue)) |
| 512 | return nullptr; |
| 513 | CommonValue = V; |
| 514 | } |
| 515 | |
| 516 | return CommonValue; |
| 517 | } |
| 518 | |
| 519 | /// In the case of a comparison with a PHI instruction, try to simplify the |
| 520 | /// comparison by seeing whether comparing with all of the incoming phi values |
| 521 | /// yields the same result every time. If so returns the common result, |
| 522 | /// otherwise returns null. |
| 523 | static Value *threadCmpOverPHI(CmpPredicate Pred, Value *LHS, Value *RHS, |
| 524 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 525 | // Recursion is always used, so bail out at once if we already hit the limit. |
| 526 | if (!MaxRecurse--) |
| 527 | return nullptr; |
| 528 | |
| 529 | // Make sure the phi is on the LHS. |
| 530 | if (!isa<PHINode>(Val: LHS)) { |
| 531 | std::swap(a&: LHS, b&: RHS); |
| 532 | Pred = CmpInst::getSwappedPredicate(pred: Pred); |
| 533 | } |
| 534 | assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!" ); |
| 535 | PHINode *PI = cast<PHINode>(Val: LHS); |
| 536 | |
| 537 | // Bail out if RHS and the phi may be mutually interdependent due to a loop. |
| 538 | if (!valueDominatesPHI(V: RHS, P: PI, DT: Q.DT)) |
| 539 | return nullptr; |
| 540 | |
| 541 | // Evaluate the BinOp on the incoming phi values. |
| 542 | Value *CommonValue = nullptr; |
| 543 | for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { |
| 544 | Value *Incoming = PI->getIncomingValue(i: u); |
| 545 | Instruction *InTI = PI->getIncomingBlock(i: u)->getTerminator(); |
| 546 | // If the incoming value is the phi node itself, it can safely be skipped. |
| 547 | if (Incoming == PI) |
| 548 | continue; |
| 549 | // Change the context instruction to the "edge" that flows into the phi. |
| 550 | // This is important because that is where incoming is actually "evaluated" |
| 551 | // even though it is used later somewhere else. |
| 552 | Value *V = simplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(I: InTI), |
| 553 | MaxRecurse); |
| 554 | // If the operation failed to simplify, or simplified to a different value |
| 555 | // to previously, then give up. |
| 556 | if (!V || (CommonValue && V != CommonValue)) |
| 557 | return nullptr; |
| 558 | CommonValue = V; |
| 559 | } |
| 560 | |
| 561 | return CommonValue; |
| 562 | } |
| 563 | |
| 564 | static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, |
| 565 | Value *&Op0, Value *&Op1, |
| 566 | const SimplifyQuery &Q) { |
| 567 | if (auto *CLHS = dyn_cast<Constant>(Val: Op0)) { |
| 568 | if (auto *CRHS = dyn_cast<Constant>(Val: Op1)) { |
| 569 | switch (Opcode) { |
| 570 | default: |
| 571 | break; |
| 572 | case Instruction::FAdd: |
| 573 | case Instruction::FSub: |
| 574 | case Instruction::FMul: |
| 575 | case Instruction::FDiv: |
| 576 | case Instruction::FRem: |
| 577 | if (Q.CxtI != nullptr) |
| 578 | return ConstantFoldFPInstOperands(Opcode, LHS: CLHS, RHS: CRHS, DL: Q.DL, I: Q.CxtI); |
| 579 | } |
| 580 | return ConstantFoldBinaryOpOperands(Opcode, LHS: CLHS, RHS: CRHS, DL: Q.DL); |
| 581 | } |
| 582 | |
| 583 | // Canonicalize the constant to the RHS if this is a commutative operation. |
| 584 | if (Instruction::isCommutative(Opcode)) |
| 585 | std::swap(a&: Op0, b&: Op1); |
| 586 | } |
| 587 | return nullptr; |
| 588 | } |
| 589 | |
| 590 | /// Given operands for an Add, see if we can fold the result. |
| 591 | /// If not, this returns null. |
| 592 | static Value *simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, |
| 593 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 594 | if (Constant *C = foldOrCommuteConstant(Opcode: Instruction::Add, Op0, Op1, Q)) |
| 595 | return C; |
| 596 | |
| 597 | // X + poison -> poison |
| 598 | if (isa<PoisonValue>(Val: Op1)) |
| 599 | return Op1; |
| 600 | |
| 601 | // X + undef -> undef |
| 602 | if (Q.isUndefValue(V: Op1)) |
| 603 | return Op1; |
| 604 | |
| 605 | // X + 0 -> X |
| 606 | if (match(V: Op1, P: m_Zero())) |
| 607 | return Op0; |
| 608 | |
| 609 | // If two operands are negative, return 0. |
| 610 | if (isKnownNegation(X: Op0, Y: Op1)) |
| 611 | return Constant::getNullValue(Ty: Op0->getType()); |
| 612 | |
| 613 | // X + (Y - X) -> Y |
| 614 | // (Y - X) + X -> Y |
| 615 | // Eg: X + -X -> 0 |
| 616 | Value *Y = nullptr; |
| 617 | if (match(V: Op1, P: m_Sub(L: m_Value(V&: Y), R: m_Specific(V: Op0))) || |
| 618 | match(V: Op0, P: m_Sub(L: m_Value(V&: Y), R: m_Specific(V: Op1)))) |
| 619 | return Y; |
| 620 | |
| 621 | // X + ~X -> -1 since ~X = -X-1 |
| 622 | Type *Ty = Op0->getType(); |
| 623 | if (match(V: Op0, P: m_Not(V: m_Specific(V: Op1))) || match(V: Op1, P: m_Not(V: m_Specific(V: Op0)))) |
| 624 | return Constant::getAllOnesValue(Ty); |
| 625 | |
| 626 | // add nsw/nuw (xor Y, signmask), signmask --> Y |
| 627 | // The no-wrapping add guarantees that the top bit will be set by the add. |
| 628 | // Therefore, the xor must be clearing the already set sign bit of Y. |
| 629 | if ((IsNSW || IsNUW) && match(V: Op1, P: m_SignMask()) && |
| 630 | match(V: Op0, P: m_Xor(L: m_Value(V&: Y), R: m_SignMask()))) |
| 631 | return Y; |
| 632 | |
| 633 | // add nuw %x, -1 -> -1, because %x can only be 0. |
| 634 | if (IsNUW && match(V: Op1, P: m_AllOnes())) |
| 635 | return Op1; // Which is -1. |
| 636 | |
| 637 | /// i1 add -> xor. |
| 638 | if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(BitWidth: 1)) |
| 639 | if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) |
| 640 | return V; |
| 641 | |
| 642 | // Try some generic simplifications for associative operations. |
| 643 | if (Value *V = |
| 644 | simplifyAssociativeBinOp(Opcode: Instruction::Add, LHS: Op0, RHS: Op1, Q, MaxRecurse)) |
| 645 | return V; |
| 646 | |
| 647 | // Threading Add over selects and phi nodes is pointless, so don't bother. |
| 648 | // Threading over the select in "A + select(cond, B, C)" means evaluating |
| 649 | // "A+B" and "A+C" and seeing if they are equal; but they are equal if and |
| 650 | // only if B and C are equal. If B and C are equal then (since we assume |
| 651 | // that operands have already been simplified) "select(cond, B, C)" should |
| 652 | // have been simplified to the common value of B and C already. Analysing |
| 653 | // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly |
| 654 | // for threading over phi nodes. |
| 655 | |
| 656 | return nullptr; |
| 657 | } |
| 658 | |
| 659 | Value *llvm::simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, |
| 660 | const SimplifyQuery &Query) { |
| 661 | return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Q: Query, MaxRecurse: RecursionLimit); |
| 662 | } |
| 663 | |
| 664 | /// Compute the base pointer and cumulative constant offsets for V. |
| 665 | /// |
| 666 | /// This strips all constant offsets off of V, leaving it the base pointer, and |
| 667 | /// accumulates the total constant offset applied in the returned constant. |
| 668 | /// It returns zero if there are no constant offsets applied. |
| 669 | /// |
| 670 | /// This is very similar to stripAndAccumulateConstantOffsets(), except it |
| 671 | /// normalizes the offset bitwidth to the stripped pointer type, not the |
| 672 | /// original pointer type. |
| 673 | static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, |
| 674 | bool AllowNonInbounds = false) { |
| 675 | assert(V->getType()->isPtrOrPtrVectorTy()); |
| 676 | |
| 677 | APInt Offset = APInt::getZero(numBits: DL.getIndexTypeSizeInBits(Ty: V->getType())); |
| 678 | V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); |
| 679 | // As that strip may trace through `addrspacecast`, need to sext or trunc |
| 680 | // the offset calculated. |
| 681 | return Offset.sextOrTrunc(width: DL.getIndexTypeSizeInBits(Ty: V->getType())); |
| 682 | } |
| 683 | |
| 684 | /// Compute the constant difference between two pointer values. |
| 685 | /// If the difference is not a constant, returns zero. |
| 686 | static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, |
| 687 | Value *RHS) { |
| 688 | APInt LHSOffset = stripAndComputeConstantOffsets(DL, V&: LHS); |
| 689 | APInt RHSOffset = stripAndComputeConstantOffsets(DL, V&: RHS); |
| 690 | |
| 691 | // If LHS and RHS are not related via constant offsets to the same base |
| 692 | // value, there is nothing we can do here. |
| 693 | if (LHS != RHS) |
| 694 | return nullptr; |
| 695 | |
| 696 | // Otherwise, the difference of LHS - RHS can be computed as: |
| 697 | // LHS - RHS |
| 698 | // = (LHSOffset + Base) - (RHSOffset + Base) |
| 699 | // = LHSOffset - RHSOffset |
| 700 | Constant *Res = ConstantInt::get(Context&: LHS->getContext(), V: LHSOffset - RHSOffset); |
| 701 | if (auto *VecTy = dyn_cast<VectorType>(Val: LHS->getType())) |
| 702 | Res = ConstantVector::getSplat(EC: VecTy->getElementCount(), Elt: Res); |
| 703 | return Res; |
| 704 | } |
| 705 | |
| 706 | /// Test if there is a dominating equivalence condition for the |
| 707 | /// two operands. If there is, try to reduce the binary operation |
| 708 | /// between the two operands. |
| 709 | /// Example: Op0 - Op1 --> 0 when Op0 == Op1 |
| 710 | static Value *simplifyByDomEq(unsigned Opcode, Value *Op0, Value *Op1, |
| 711 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 712 | // Recursive run it can not get any benefit |
| 713 | if (MaxRecurse != RecursionLimit) |
| 714 | return nullptr; |
| 715 | |
| 716 | std::optional<bool> Imp = |
| 717 | isImpliedByDomCondition(Pred: CmpInst::ICMP_EQ, LHS: Op0, RHS: Op1, ContextI: Q.CxtI, DL: Q.DL); |
| 718 | if (Imp && *Imp) { |
| 719 | Type *Ty = Op0->getType(); |
| 720 | switch (Opcode) { |
| 721 | case Instruction::Sub: |
| 722 | case Instruction::Xor: |
| 723 | case Instruction::URem: |
| 724 | case Instruction::SRem: |
| 725 | return Constant::getNullValue(Ty); |
| 726 | |
| 727 | case Instruction::SDiv: |
| 728 | case Instruction::UDiv: |
| 729 | return ConstantInt::get(Ty, V: 1); |
| 730 | |
| 731 | case Instruction::And: |
| 732 | case Instruction::Or: |
| 733 | // Could be either one - choose Op1 since that's more likely a constant. |
| 734 | return Op1; |
| 735 | default: |
| 736 | break; |
| 737 | } |
| 738 | } |
| 739 | return nullptr; |
| 740 | } |
| 741 | |
| 742 | /// Given operands for a Sub, see if we can fold the result. |
| 743 | /// If not, this returns null. |
| 744 | static Value *simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, |
| 745 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 746 | if (Constant *C = foldOrCommuteConstant(Opcode: Instruction::Sub, Op0, Op1, Q)) |
| 747 | return C; |
| 748 | |
| 749 | // X - poison -> poison |
| 750 | // poison - X -> poison |
| 751 | if (isa<PoisonValue>(Val: Op0) || isa<PoisonValue>(Val: Op1)) |
| 752 | return PoisonValue::get(T: Op0->getType()); |
| 753 | |
| 754 | // X - undef -> undef |
| 755 | // undef - X -> undef |
| 756 | if (Q.isUndefValue(V: Op0) || Q.isUndefValue(V: Op1)) |
| 757 | return UndefValue::get(T: Op0->getType()); |
| 758 | |
| 759 | // X - 0 -> X |
| 760 | if (match(V: Op1, P: m_Zero())) |
| 761 | return Op0; |
| 762 | |
| 763 | // X - X -> 0 |
| 764 | if (Op0 == Op1) |
| 765 | return Constant::getNullValue(Ty: Op0->getType()); |
| 766 | |
| 767 | // Is this a negation? |
| 768 | if (match(V: Op0, P: m_Zero())) { |
| 769 | // 0 - X -> 0 if the sub is NUW. |
| 770 | if (IsNUW) |
| 771 | return Constant::getNullValue(Ty: Op0->getType()); |
| 772 | |
| 773 | KnownBits Known = computeKnownBits(V: Op1, Q); |
| 774 | if (Known.Zero.isMaxSignedValue()) { |
| 775 | // Op1 is either 0 or the minimum signed value. If the sub is NSW, then |
| 776 | // Op1 must be 0 because negating the minimum signed value is undefined. |
| 777 | if (IsNSW) |
| 778 | return Constant::getNullValue(Ty: Op0->getType()); |
| 779 | |
| 780 | // 0 - X -> X if X is 0 or the minimum signed value. |
| 781 | return Op1; |
| 782 | } |
| 783 | } |
| 784 | |
| 785 | // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. |
| 786 | // For example, (X + Y) - Y -> X; (Y + X) - Y -> X |
| 787 | Value *X = nullptr, *Y = nullptr, *Z = Op1; |
| 788 | if (MaxRecurse && match(V: Op0, P: m_Add(L: m_Value(V&: X), R: m_Value(V&: Y)))) { // (X + Y) - Z |
| 789 | // See if "V === Y - Z" simplifies. |
| 790 | if (Value *V = simplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse - 1)) |
| 791 | // It does! Now see if "X + V" simplifies. |
| 792 | if (Value *W = simplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse - 1)) { |
| 793 | // It does, we successfully reassociated! |
| 794 | ++NumReassoc; |
| 795 | return W; |
| 796 | } |
| 797 | // See if "V === X - Z" simplifies. |
| 798 | if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) |
| 799 | // It does! Now see if "Y + V" simplifies. |
| 800 | if (Value *W = simplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse - 1)) { |
| 801 | // It does, we successfully reassociated! |
| 802 | ++NumReassoc; |
| 803 | return W; |
| 804 | } |
| 805 | } |
| 806 | |
| 807 | // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. |
| 808 | // For example, X - (X + 1) -> -1 |
| 809 | X = Op0; |
| 810 | if (MaxRecurse && match(V: Op1, P: m_Add(L: m_Value(V&: Y), R: m_Value(V&: Z)))) { // X - (Y + Z) |
| 811 | // See if "V === X - Y" simplifies. |
| 812 | if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) |
| 813 | // It does! Now see if "V - Z" simplifies. |
| 814 | if (Value *W = simplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse - 1)) { |
| 815 | // It does, we successfully reassociated! |
| 816 | ++NumReassoc; |
| 817 | return W; |
| 818 | } |
| 819 | // See if "V === X - Z" simplifies. |
| 820 | if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) |
| 821 | // It does! Now see if "V - Y" simplifies. |
| 822 | if (Value *W = simplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse - 1)) { |
| 823 | // It does, we successfully reassociated! |
| 824 | ++NumReassoc; |
| 825 | return W; |
| 826 | } |
| 827 | } |
| 828 | |
| 829 | // Z - (X - Y) -> (Z - X) + Y if everything simplifies. |
| 830 | // For example, X - (X - Y) -> Y. |
| 831 | Z = Op0; |
| 832 | if (MaxRecurse && match(V: Op1, P: m_Sub(L: m_Value(V&: X), R: m_Value(V&: Y)))) // Z - (X - Y) |
| 833 | // See if "V === Z - X" simplifies. |
| 834 | if (Value *V = simplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse - 1)) |
| 835 | // It does! Now see if "V + Y" simplifies. |
| 836 | if (Value *W = simplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse - 1)) { |
| 837 | // It does, we successfully reassociated! |
| 838 | ++NumReassoc; |
| 839 | return W; |
| 840 | } |
| 841 | |
| 842 | // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. |
| 843 | if (MaxRecurse && match(V: Op0, P: m_Trunc(Op: m_Value(V&: X))) && |
| 844 | match(V: Op1, P: m_Trunc(Op: m_Value(V&: Y)))) |
| 845 | if (X->getType() == Y->getType()) |
| 846 | // See if "V === X - Y" simplifies. |
| 847 | if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) |
| 848 | // It does! Now see if "trunc V" simplifies. |
| 849 | if (Value *W = simplifyCastInst(Instruction::Trunc, V, Op0->getType(), |
| 850 | Q, MaxRecurse - 1)) |
| 851 | // It does, return the simplified "trunc V". |
| 852 | return W; |
| 853 | |
| 854 | // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). |
| 855 | if (match(V: Op0, P: m_PtrToInt(Op: m_Value(V&: X))) && match(V: Op1, P: m_PtrToInt(Op: m_Value(V&: Y)))) |
| 856 | if (Constant *Result = computePointerDifference(DL: Q.DL, LHS: X, RHS: Y)) |
| 857 | return ConstantFoldIntegerCast(C: Result, DestTy: Op0->getType(), /*IsSigned*/ true, |
| 858 | DL: Q.DL); |
| 859 | |
| 860 | // i1 sub -> xor. |
| 861 | if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(BitWidth: 1)) |
| 862 | if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) |
| 863 | return V; |
| 864 | |
| 865 | // Threading Sub over selects and phi nodes is pointless, so don't bother. |
| 866 | // Threading over the select in "A - select(cond, B, C)" means evaluating |
| 867 | // "A-B" and "A-C" and seeing if they are equal; but they are equal if and |
| 868 | // only if B and C are equal. If B and C are equal then (since we assume |
| 869 | // that operands have already been simplified) "select(cond, B, C)" should |
| 870 | // have been simplified to the common value of B and C already. Analysing |
| 871 | // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly |
| 872 | // for threading over phi nodes. |
| 873 | |
| 874 | if (Value *V = simplifyByDomEq(Opcode: Instruction::Sub, Op0, Op1, Q, MaxRecurse)) |
| 875 | return V; |
| 876 | |
| 877 | // (sub nuw C_Mask, (xor X, C_Mask)) -> X |
| 878 | if (IsNUW) { |
| 879 | Value *X; |
| 880 | if (match(V: Op1, P: m_Xor(L: m_Value(V&: X), R: m_Specific(V: Op0))) && |
| 881 | match(V: Op0, P: m_LowBitMask())) |
| 882 | return X; |
| 883 | } |
| 884 | |
| 885 | return nullptr; |
| 886 | } |
| 887 | |
| 888 | Value *llvm::simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, |
| 889 | const SimplifyQuery &Q) { |
| 890 | return ::simplifySubInst(Op0, Op1, IsNSW, IsNUW, Q, MaxRecurse: RecursionLimit); |
| 891 | } |
| 892 | |
| 893 | /// Given operands for a Mul, see if we can fold the result. |
| 894 | /// If not, this returns null. |
| 895 | static Value *simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, |
| 896 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 897 | if (Constant *C = foldOrCommuteConstant(Opcode: Instruction::Mul, Op0, Op1, Q)) |
| 898 | return C; |
| 899 | |
| 900 | // X * poison -> poison |
| 901 | if (isa<PoisonValue>(Val: Op1)) |
| 902 | return Op1; |
| 903 | |
| 904 | // X * undef -> 0 |
| 905 | // X * 0 -> 0 |
| 906 | if (Q.isUndefValue(V: Op1) || match(V: Op1, P: m_Zero())) |
| 907 | return Constant::getNullValue(Ty: Op0->getType()); |
| 908 | |
| 909 | // X * 1 -> X |
| 910 | if (match(V: Op1, P: m_One())) |
| 911 | return Op0; |
| 912 | |
| 913 | // (X / Y) * Y -> X if the division is exact. |
| 914 | Value *X = nullptr; |
| 915 | if (Q.IIQ.UseInstrInfo && |
| 916 | (match(V: Op0, |
| 917 | P: m_Exact(SubPattern: m_IDiv(L: m_Value(V&: X), R: m_Specific(V: Op1)))) || // (X / Y) * Y |
| 918 | match(V: Op1, P: m_Exact(SubPattern: m_IDiv(L: m_Value(V&: X), R: m_Specific(V: Op0)))))) // Y * (X / Y) |
| 919 | return X; |
| 920 | |
| 921 | if (Op0->getType()->isIntOrIntVectorTy(BitWidth: 1)) { |
| 922 | // mul i1 nsw is a special-case because -1 * -1 is poison (+1 is not |
| 923 | // representable). All other cases reduce to 0, so just return 0. |
| 924 | if (IsNSW) |
| 925 | return ConstantInt::getNullValue(Ty: Op0->getType()); |
| 926 | |
| 927 | // Treat "mul i1" as "and i1". |
| 928 | if (MaxRecurse) |
| 929 | if (Value *V = simplifyAndInst(Op0, Op1, Q, MaxRecurse - 1)) |
| 930 | return V; |
| 931 | } |
| 932 | |
| 933 | // Try some generic simplifications for associative operations. |
| 934 | if (Value *V = |
| 935 | simplifyAssociativeBinOp(Opcode: Instruction::Mul, LHS: Op0, RHS: Op1, Q, MaxRecurse)) |
| 936 | return V; |
| 937 | |
| 938 | // Mul distributes over Add. Try some generic simplifications based on this. |
| 939 | if (Value *V = expandCommutativeBinOp(Opcode: Instruction::Mul, L: Op0, R: Op1, |
| 940 | OpcodeToExpand: Instruction::Add, Q, MaxRecurse)) |
| 941 | return V; |
| 942 | |
| 943 | // If the operation is with the result of a select instruction, check whether |
| 944 | // operating on either branch of the select always yields the same value. |
| 945 | if (isa<SelectInst>(Val: Op0) || isa<SelectInst>(Val: Op1)) |
| 946 | if (Value *V = |
| 947 | threadBinOpOverSelect(Opcode: Instruction::Mul, LHS: Op0, RHS: Op1, Q, MaxRecurse)) |
| 948 | return V; |
| 949 | |
| 950 | // If the operation is with the result of a phi instruction, check whether |
| 951 | // operating on all incoming values of the phi always yields the same value. |
| 952 | if (isa<PHINode>(Val: Op0) || isa<PHINode>(Val: Op1)) |
| 953 | if (Value *V = |
| 954 | threadBinOpOverPHI(Opcode: Instruction::Mul, LHS: Op0, RHS: Op1, Q, MaxRecurse)) |
| 955 | return V; |
| 956 | |
| 957 | return nullptr; |
| 958 | } |
| 959 | |
| 960 | Value *llvm::simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, |
| 961 | const SimplifyQuery &Q) { |
| 962 | return ::simplifyMulInst(Op0, Op1, IsNSW, IsNUW, Q, MaxRecurse: RecursionLimit); |
| 963 | } |
| 964 | |
| 965 | /// Given a predicate and two operands, return true if the comparison is true. |
| 966 | /// This is a helper for div/rem simplification where we return some other value |
| 967 | /// when we can prove a relationship between the operands. |
| 968 | static bool isICmpTrue(CmpPredicate Pred, Value *LHS, Value *RHS, |
| 969 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 970 | Value *V = simplifyICmpInst(Predicate: Pred, LHS, RHS, Q, MaxRecurse); |
| 971 | Constant *C = dyn_cast_or_null<Constant>(Val: V); |
| 972 | return (C && C->isAllOnesValue()); |
| 973 | } |
| 974 | |
| 975 | /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer |
| 976 | /// to simplify X % Y to X. |
| 977 | static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, |
| 978 | unsigned MaxRecurse, bool IsSigned) { |
| 979 | // Recursion is always used, so bail out at once if we already hit the limit. |
| 980 | if (!MaxRecurse--) |
| 981 | return false; |
| 982 | |
| 983 | if (IsSigned) { |
| 984 | // (X srem Y) sdiv Y --> 0 |
| 985 | if (match(V: X, P: m_SRem(L: m_Value(), R: m_Specific(V: Y)))) |
| 986 | return true; |
| 987 | |
| 988 | // |X| / |Y| --> 0 |
| 989 | // |
| 990 | // We require that 1 operand is a simple constant. That could be extended to |
| 991 | // 2 variables if we computed the sign bit for each. |
| 992 | // |
| 993 | // Make sure that a constant is not the minimum signed value because taking |
| 994 | // the abs() of that is undefined. |
| 995 | Type *Ty = X->getType(); |
| 996 | const APInt *C; |
| 997 | if (match(V: X, P: m_APInt(Res&: C)) && !C->isMinSignedValue()) { |
| 998 | // Is the variable divisor magnitude always greater than the constant |
| 999 | // dividend magnitude? |
| 1000 | // |Y| > |C| --> Y < -abs(C) or Y > abs(C) |
| 1001 | Constant *PosDividendC = ConstantInt::get(Ty, V: C->abs()); |
| 1002 | Constant *NegDividendC = ConstantInt::get(Ty, V: -C->abs()); |
| 1003 | if (isICmpTrue(Pred: CmpInst::ICMP_SLT, LHS: Y, RHS: NegDividendC, Q, MaxRecurse) || |
| 1004 | isICmpTrue(Pred: CmpInst::ICMP_SGT, LHS: Y, RHS: PosDividendC, Q, MaxRecurse)) |
| 1005 | return true; |
| 1006 | } |
| 1007 | if (match(V: Y, P: m_APInt(Res&: C))) { |
| 1008 | // Special-case: we can't take the abs() of a minimum signed value. If |
| 1009 | // that's the divisor, then all we have to do is prove that the dividend |
| 1010 | // is also not the minimum signed value. |
| 1011 | if (C->isMinSignedValue()) |
| 1012 | return isICmpTrue(Pred: CmpInst::ICMP_NE, LHS: X, RHS: Y, Q, MaxRecurse); |
| 1013 | |
| 1014 | // Is the variable dividend magnitude always less than the constant |
| 1015 | // divisor magnitude? |
| 1016 | // |X| < |C| --> X > -abs(C) and X < abs(C) |
| 1017 | Constant *PosDivisorC = ConstantInt::get(Ty, V: C->abs()); |
| 1018 | Constant *NegDivisorC = ConstantInt::get(Ty, V: -C->abs()); |
| 1019 | if (isICmpTrue(Pred: CmpInst::ICMP_SGT, LHS: X, RHS: NegDivisorC, Q, MaxRecurse) && |
| 1020 | isICmpTrue(Pred: CmpInst::ICMP_SLT, LHS: X, RHS: PosDivisorC, Q, MaxRecurse)) |
| 1021 | return true; |
| 1022 | } |
| 1023 | return false; |
| 1024 | } |
| 1025 | |
| 1026 | // IsSigned == false. |
| 1027 | |
| 1028 | // Is the unsigned dividend known to be less than a constant divisor? |
| 1029 | // TODO: Convert this (and above) to range analysis |
| 1030 | // ("computeConstantRangeIncludingKnownBits")? |
| 1031 | const APInt *C; |
| 1032 | if (match(V: Y, P: m_APInt(Res&: C)) && computeKnownBits(V: X, Q).getMaxValue().ult(RHS: *C)) |
| 1033 | return true; |
| 1034 | |
| 1035 | // Try again for any divisor: |
| 1036 | // Is the dividend unsigned less than the divisor? |
| 1037 | return isICmpTrue(Pred: ICmpInst::ICMP_ULT, LHS: X, RHS: Y, Q, MaxRecurse); |
| 1038 | } |
| 1039 | |
| 1040 | /// Check for common or similar folds of integer division or integer remainder. |
| 1041 | /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). |
| 1042 | static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, |
| 1043 | Value *Op1, const SimplifyQuery &Q, |
| 1044 | unsigned MaxRecurse) { |
| 1045 | bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); |
| 1046 | bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); |
| 1047 | |
| 1048 | Type *Ty = Op0->getType(); |
| 1049 | |
| 1050 | // X / undef -> poison |
| 1051 | // X % undef -> poison |
| 1052 | if (Q.isUndefValue(V: Op1) || isa<PoisonValue>(Val: Op1)) |
| 1053 | return PoisonValue::get(T: Ty); |
| 1054 | |
| 1055 | // X / 0 -> poison |
| 1056 | // X % 0 -> poison |
| 1057 | // We don't need to preserve faults! |
| 1058 | if (match(V: Op1, P: m_Zero())) |
| 1059 | return PoisonValue::get(T: Ty); |
| 1060 | |
| 1061 | // poison / X -> poison |
| 1062 | // poison % X -> poison |
| 1063 | if (isa<PoisonValue>(Val: Op0)) |
| 1064 | return Op0; |
| 1065 | |
| 1066 | // undef / X -> 0 |
| 1067 | // undef % X -> 0 |
| 1068 | if (Q.isUndefValue(V: Op0)) |
| 1069 | return Constant::getNullValue(Ty); |
| 1070 | |
| 1071 | // 0 / X -> 0 |
| 1072 | // 0 % X -> 0 |
| 1073 | if (match(V: Op0, P: m_Zero())) |
| 1074 | return Constant::getNullValue(Ty: Op0->getType()); |
| 1075 | |
| 1076 | // X / X -> 1 |
| 1077 | // X % X -> 0 |
| 1078 | if (Op0 == Op1) |
| 1079 | return IsDiv ? ConstantInt::get(Ty, V: 1) : Constant::getNullValue(Ty); |
| 1080 | |
| 1081 | KnownBits Known = computeKnownBits(V: Op1, Q); |
| 1082 | // X / 0 -> poison |
| 1083 | // X % 0 -> poison |
| 1084 | // If the divisor is known to be zero, just return poison. This can happen in |
| 1085 | // some cases where its provable indirectly the denominator is zero but it's |
| 1086 | // not trivially simplifiable (i.e known zero through a phi node). |
| 1087 | if (Known.isZero()) |
| 1088 | return PoisonValue::get(T: Ty); |
| 1089 | |
| 1090 | // X / 1 -> X |
| 1091 | // X % 1 -> 0 |
| 1092 | // If the divisor can only be zero or one, we can't have division-by-zero |
| 1093 | // or remainder-by-zero, so assume the divisor is 1. |
| 1094 | // e.g. 1, zext (i8 X), sdiv X (Y and 1) |
| 1095 | if (Known.countMinLeadingZeros() == Known.getBitWidth() - 1) |
| 1096 | return IsDiv ? Op0 : Constant::getNullValue(Ty); |
| 1097 | |
| 1098 | // If X * Y does not overflow, then: |
| 1099 | // X * Y / Y -> X |
| 1100 | // X * Y % Y -> 0 |
| 1101 | Value *X; |
| 1102 | if (match(V: Op0, P: m_c_Mul(L: m_Value(V&: X), R: m_Specific(V: Op1)))) { |
| 1103 | auto *Mul = cast<OverflowingBinaryOperator>(Val: Op0); |
| 1104 | // The multiplication can't overflow if it is defined not to, or if |
| 1105 | // X == A / Y for some A. |
| 1106 | if ((IsSigned && Q.IIQ.hasNoSignedWrap(Op: Mul)) || |
| 1107 | (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Op: Mul)) || |
| 1108 | (IsSigned && match(V: X, P: m_SDiv(L: m_Value(), R: m_Specific(V: Op1)))) || |
| 1109 | (!IsSigned && match(V: X, P: m_UDiv(L: m_Value(), R: m_Specific(V: Op1))))) { |
| 1110 | return IsDiv ? X : Constant::getNullValue(Ty: Op0->getType()); |
| 1111 | } |
| 1112 | } |
| 1113 | |
| 1114 | if (isDivZero(X: Op0, Y: Op1, Q, MaxRecurse, IsSigned)) |
| 1115 | return IsDiv ? Constant::getNullValue(Ty: Op0->getType()) : Op0; |
| 1116 | |
| 1117 | if (Value *V = simplifyByDomEq(Opcode, Op0, Op1, Q, MaxRecurse)) |
| 1118 | return V; |
| 1119 | |
| 1120 | // If the operation is with the result of a select instruction, check whether |
| 1121 | // operating on either branch of the select always yields the same value. |
| 1122 | if (isa<SelectInst>(Val: Op0) || isa<SelectInst>(Val: Op1)) |
| 1123 | if (Value *V = threadBinOpOverSelect(Opcode, LHS: Op0, RHS: Op1, Q, MaxRecurse)) |
| 1124 | return V; |
| 1125 | |
| 1126 | // If the operation is with the result of a phi instruction, check whether |
| 1127 | // operating on all incoming values of the phi always yields the same value. |
| 1128 | if (isa<PHINode>(Val: Op0) || isa<PHINode>(Val: Op1)) |
| 1129 | if (Value *V = threadBinOpOverPHI(Opcode, LHS: Op0, RHS: Op1, Q, MaxRecurse)) |
| 1130 | return V; |
| 1131 | |
| 1132 | return nullptr; |
| 1133 | } |
| 1134 | |
| 1135 | /// These are simplifications common to SDiv and UDiv. |
| 1136 | static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, |
| 1137 | bool IsExact, const SimplifyQuery &Q, |
| 1138 | unsigned MaxRecurse) { |
| 1139 | if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) |
| 1140 | return C; |
| 1141 | |
| 1142 | if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse)) |
| 1143 | return V; |
| 1144 | |
| 1145 | const APInt *DivC; |
| 1146 | if (IsExact && match(V: Op1, P: m_APInt(Res&: DivC))) { |
| 1147 | // If this is an exact divide by a constant, then the dividend (Op0) must |
| 1148 | // have at least as many trailing zeros as the divisor to divide evenly. If |
| 1149 | // it has less trailing zeros, then the result must be poison. |
| 1150 | if (DivC->countr_zero()) { |
| 1151 | KnownBits KnownOp0 = computeKnownBits(V: Op0, Q); |
| 1152 | if (KnownOp0.countMaxTrailingZeros() < DivC->countr_zero()) |
| 1153 | return PoisonValue::get(T: Op0->getType()); |
| 1154 | } |
| 1155 | |
| 1156 | // udiv exact (mul nsw X, C), C --> X |
| 1157 | // sdiv exact (mul nuw X, C), C --> X |
| 1158 | // where C is not a power of 2. |
| 1159 | Value *X; |
| 1160 | if (!DivC->isPowerOf2() && |
| 1161 | (Opcode == Instruction::UDiv |
| 1162 | ? match(V: Op0, P: m_NSWMul(L: m_Value(V&: X), R: m_Specific(V: Op1))) |
| 1163 | : match(V: Op0, P: m_NUWMul(L: m_Value(V&: X), R: m_Specific(V: Op1))))) |
| 1164 | return X; |
| 1165 | } |
| 1166 | |
| 1167 | return nullptr; |
| 1168 | } |
| 1169 | |
| 1170 | /// These are simplifications common to SRem and URem. |
| 1171 | static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, |
| 1172 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 1173 | if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) |
| 1174 | return C; |
| 1175 | |
| 1176 | if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse)) |
| 1177 | return V; |
| 1178 | |
| 1179 | // (X << Y) % X -> 0 |
| 1180 | if (Q.IIQ.UseInstrInfo) { |
| 1181 | if ((Opcode == Instruction::SRem && |
| 1182 | match(V: Op0, P: m_NSWShl(L: m_Specific(V: Op1), R: m_Value()))) || |
| 1183 | (Opcode == Instruction::URem && |
| 1184 | match(V: Op0, P: m_NUWShl(L: m_Specific(V: Op1), R: m_Value())))) |
| 1185 | return Constant::getNullValue(Ty: Op0->getType()); |
| 1186 | |
| 1187 | const APInt *C0; |
| 1188 | if (match(V: Op1, P: m_APInt(Res&: C0))) { |
| 1189 | // (srem (mul nsw X, C1), C0) -> 0 if C1 s% C0 == 0 |
| 1190 | // (urem (mul nuw X, C1), C0) -> 0 if C1 u% C0 == 0 |
| 1191 | if (Opcode == Instruction::SRem |
| 1192 | ? match(V: Op0, |
| 1193 | P: m_NSWMul(L: m_Value(), R: m_CheckedInt(CheckFn: [C0](const APInt &C) { |
| 1194 | return C.srem(RHS: *C0).isZero(); |
| 1195 | }))) |
| 1196 | : match(V: Op0, |
| 1197 | P: m_NUWMul(L: m_Value(), R: m_CheckedInt(CheckFn: [C0](const APInt &C) { |
| 1198 | return C.urem(RHS: *C0).isZero(); |
| 1199 | })))) |
| 1200 | return Constant::getNullValue(Ty: Op0->getType()); |
| 1201 | } |
| 1202 | } |
| 1203 | return nullptr; |
| 1204 | } |
| 1205 | |
| 1206 | /// Given operands for an SDiv, see if we can fold the result. |
| 1207 | /// If not, this returns null. |
| 1208 | static Value *simplifySDivInst(Value *Op0, Value *Op1, bool IsExact, |
| 1209 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 1210 | // If two operands are negated and no signed overflow, return -1. |
| 1211 | if (isKnownNegation(X: Op0, Y: Op1, /*NeedNSW=*/true)) |
| 1212 | return Constant::getAllOnesValue(Ty: Op0->getType()); |
| 1213 | |
| 1214 | return simplifyDiv(Opcode: Instruction::SDiv, Op0, Op1, IsExact, Q, MaxRecurse); |
| 1215 | } |
| 1216 | |
| 1217 | Value *llvm::simplifySDivInst(Value *Op0, Value *Op1, bool IsExact, |
| 1218 | const SimplifyQuery &Q) { |
| 1219 | return ::simplifySDivInst(Op0, Op1, IsExact, Q, MaxRecurse: RecursionLimit); |
| 1220 | } |
| 1221 | |
| 1222 | /// Given operands for a UDiv, see if we can fold the result. |
| 1223 | /// If not, this returns null. |
| 1224 | static Value *simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact, |
| 1225 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 1226 | return simplifyDiv(Opcode: Instruction::UDiv, Op0, Op1, IsExact, Q, MaxRecurse); |
| 1227 | } |
| 1228 | |
| 1229 | Value *llvm::simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact, |
| 1230 | const SimplifyQuery &Q) { |
| 1231 | return ::simplifyUDivInst(Op0, Op1, IsExact, Q, MaxRecurse: RecursionLimit); |
| 1232 | } |
| 1233 | |
| 1234 | /// Given operands for an SRem, see if we can fold the result. |
| 1235 | /// If not, this returns null. |
| 1236 | static Value *simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, |
| 1237 | unsigned MaxRecurse) { |
| 1238 | // If the divisor is 0, the result is undefined, so assume the divisor is -1. |
| 1239 | // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 |
| 1240 | Value *X; |
| 1241 | if (match(V: Op1, P: m_SExt(Op: m_Value(V&: X))) && X->getType()->isIntOrIntVectorTy(BitWidth: 1)) |
| 1242 | return ConstantInt::getNullValue(Ty: Op0->getType()); |
| 1243 | |
| 1244 | // If the two operands are negated, return 0. |
| 1245 | if (isKnownNegation(X: Op0, Y: Op1)) |
| 1246 | return ConstantInt::getNullValue(Ty: Op0->getType()); |
| 1247 | |
| 1248 | return simplifyRem(Opcode: Instruction::SRem, Op0, Op1, Q, MaxRecurse); |
| 1249 | } |
| 1250 | |
| 1251 | Value *llvm::simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { |
| 1252 | return ::simplifySRemInst(Op0, Op1, Q, MaxRecurse: RecursionLimit); |
| 1253 | } |
| 1254 | |
| 1255 | /// Given operands for a URem, see if we can fold the result. |
| 1256 | /// If not, this returns null. |
| 1257 | static Value *simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, |
| 1258 | unsigned MaxRecurse) { |
| 1259 | return simplifyRem(Opcode: Instruction::URem, Op0, Op1, Q, MaxRecurse); |
| 1260 | } |
| 1261 | |
| 1262 | Value *llvm::simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { |
| 1263 | return ::simplifyURemInst(Op0, Op1, Q, MaxRecurse: RecursionLimit); |
| 1264 | } |
| 1265 | |
| 1266 | /// Returns true if a shift by \c Amount always yields poison. |
| 1267 | static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { |
| 1268 | Constant *C = dyn_cast<Constant>(Val: Amount); |
| 1269 | if (!C) |
| 1270 | return false; |
| 1271 | |
| 1272 | // X shift by undef -> poison because it may shift by the bitwidth. |
| 1273 | if (Q.isUndefValue(V: C)) |
| 1274 | return true; |
| 1275 | |
| 1276 | // Shifting by the bitwidth or more is poison. This covers scalars and |
| 1277 | // fixed/scalable vectors with splat constants. |
| 1278 | const APInt *AmountC; |
| 1279 | if (match(V: C, P: m_APInt(Res&: AmountC)) && AmountC->uge(RHS: AmountC->getBitWidth())) |
| 1280 | return true; |
| 1281 | |
| 1282 | // Try harder for fixed-length vectors: |
| 1283 | // If all lanes of a vector shift are poison, the whole shift is poison. |
| 1284 | if (isa<ConstantVector>(Val: C) || isa<ConstantDataVector>(Val: C)) { |
| 1285 | for (unsigned I = 0, |
| 1286 | E = cast<FixedVectorType>(Val: C->getType())->getNumElements(); |
| 1287 | I != E; ++I) |
| 1288 | if (!isPoisonShift(Amount: C->getAggregateElement(Elt: I), Q)) |
| 1289 | return false; |
| 1290 | return true; |
| 1291 | } |
| 1292 | |
| 1293 | return false; |
| 1294 | } |
| 1295 | |
| 1296 | /// Given operands for an Shl, LShr or AShr, see if we can fold the result. |
| 1297 | /// If not, this returns null. |
| 1298 | static Value *simplifyShift(Instruction::BinaryOps Opcode, Value *Op0, |
| 1299 | Value *Op1, bool IsNSW, const SimplifyQuery &Q, |
| 1300 | unsigned MaxRecurse) { |
| 1301 | if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) |
| 1302 | return C; |
| 1303 | |
| 1304 | // poison shift by X -> poison |
| 1305 | if (isa<PoisonValue>(Val: Op0)) |
| 1306 | return Op0; |
| 1307 | |
| 1308 | // 0 shift by X -> 0 |
| 1309 | if (match(V: Op0, P: m_Zero())) |
| 1310 | return Constant::getNullValue(Ty: Op0->getType()); |
| 1311 | |
| 1312 | // X shift by 0 -> X |
| 1313 | // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones |
| 1314 | // would be poison. |
| 1315 | Value *X; |
| 1316 | if (match(V: Op1, P: m_Zero()) || |
| 1317 | (match(V: Op1, P: m_SExt(Op: m_Value(V&: X))) && X->getType()->isIntOrIntVectorTy(BitWidth: 1))) |
| 1318 | return Op0; |
| 1319 | |
| 1320 | // Fold undefined shifts. |
| 1321 | if (isPoisonShift(Amount: Op1, Q)) |
| 1322 | return PoisonValue::get(T: Op0->getType()); |
| 1323 | |
| 1324 | // If the operation is with the result of a select instruction, check whether |
| 1325 | // operating on either branch of the select always yields the same value. |
| 1326 | if (isa<SelectInst>(Val: Op0) || isa<SelectInst>(Val: Op1)) |
| 1327 | if (Value *V = threadBinOpOverSelect(Opcode, LHS: Op0, RHS: Op1, Q, MaxRecurse)) |
| 1328 | return V; |
| 1329 | |
| 1330 | // If the operation is with the result of a phi instruction, check whether |
| 1331 | // operating on all incoming values of the phi always yields the same value. |
| 1332 | if (isa<PHINode>(Val: Op0) || isa<PHINode>(Val: Op1)) |
| 1333 | if (Value *V = threadBinOpOverPHI(Opcode, LHS: Op0, RHS: Op1, Q, MaxRecurse)) |
| 1334 | return V; |
| 1335 | |
| 1336 | // If any bits in the shift amount make that value greater than or equal to |
| 1337 | // the number of bits in the type, the shift is undefined. |
| 1338 | KnownBits KnownAmt = computeKnownBits(V: Op1, Q); |
| 1339 | if (KnownAmt.getMinValue().uge(RHS: KnownAmt.getBitWidth())) |
| 1340 | return PoisonValue::get(T: Op0->getType()); |
| 1341 | |
| 1342 | // If all valid bits in the shift amount are known zero, the first operand is |
| 1343 | // unchanged. |
| 1344 | unsigned NumValidShiftBits = Log2_32_Ceil(Value: KnownAmt.getBitWidth()); |
| 1345 | if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) |
| 1346 | return Op0; |
| 1347 | |
| 1348 | // Check for nsw shl leading to a poison value. |
| 1349 | if (IsNSW) { |
| 1350 | assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction" ); |
| 1351 | KnownBits KnownVal = computeKnownBits(V: Op0, Q); |
| 1352 | KnownBits KnownShl = KnownBits::shl(LHS: KnownVal, RHS: KnownAmt); |
| 1353 | |
| 1354 | if (KnownVal.Zero.isSignBitSet()) |
| 1355 | KnownShl.Zero.setSignBit(); |
| 1356 | if (KnownVal.One.isSignBitSet()) |
| 1357 | KnownShl.One.setSignBit(); |
| 1358 | |
| 1359 | if (KnownShl.hasConflict()) |
| 1360 | return PoisonValue::get(T: Op0->getType()); |
| 1361 | } |
| 1362 | |
| 1363 | return nullptr; |
| 1364 | } |
| 1365 | |
| 1366 | /// Given operands for an LShr or AShr, see if we can fold the result. If not, |
| 1367 | /// this returns null. |
| 1368 | static Value *simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, |
| 1369 | Value *Op1, bool IsExact, |
| 1370 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 1371 | if (Value *V = |
| 1372 | simplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) |
| 1373 | return V; |
| 1374 | |
| 1375 | // X >> X -> 0 |
| 1376 | if (Op0 == Op1) |
| 1377 | return Constant::getNullValue(Ty: Op0->getType()); |
| 1378 | |
| 1379 | // undef >> X -> 0 |
| 1380 | // undef >> X -> undef (if it's exact) |
| 1381 | if (Q.isUndefValue(V: Op0)) |
| 1382 | return IsExact ? Op0 : Constant::getNullValue(Ty: Op0->getType()); |
| 1383 | |
| 1384 | // The low bit cannot be shifted out of an exact shift if it is set. |
| 1385 | // TODO: Generalize by counting trailing zeros (see fold for exact division). |
| 1386 | if (IsExact) { |
| 1387 | KnownBits Op0Known = computeKnownBits(V: Op0, Q); |
| 1388 | if (Op0Known.One[0]) |
| 1389 | return Op0; |
| 1390 | } |
| 1391 | |
| 1392 | return nullptr; |
| 1393 | } |
| 1394 | |
| 1395 | /// Given operands for an Shl, see if we can fold the result. |
| 1396 | /// If not, this returns null. |
| 1397 | static Value *simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, |
| 1398 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 1399 | if (Value *V = |
| 1400 | simplifyShift(Opcode: Instruction::Shl, Op0, Op1, IsNSW, Q, MaxRecurse)) |
| 1401 | return V; |
| 1402 | |
| 1403 | Type *Ty = Op0->getType(); |
| 1404 | // undef << X -> 0 |
| 1405 | // undef << X -> undef if (if it's NSW/NUW) |
| 1406 | if (Q.isUndefValue(V: Op0)) |
| 1407 | return IsNSW || IsNUW ? Op0 : Constant::getNullValue(Ty); |
| 1408 | |
| 1409 | // (X >> A) << A -> X |
| 1410 | Value *X; |
| 1411 | if (Q.IIQ.UseInstrInfo && |
| 1412 | match(V: Op0, P: m_Exact(SubPattern: m_Shr(L: m_Value(V&: X), R: m_Specific(V: Op1))))) |
| 1413 | return X; |
| 1414 | |
| 1415 | // shl nuw i8 C, %x -> C iff C has sign bit set. |
| 1416 | if (IsNUW && match(V: Op0, P: m_Negative())) |
| 1417 | return Op0; |
| 1418 | // NOTE: could use computeKnownBits() / LazyValueInfo, |
| 1419 | // but the cost-benefit analysis suggests it isn't worth it. |
| 1420 | |
| 1421 | // "nuw" guarantees that only zeros are shifted out, and "nsw" guarantees |
| 1422 | // that the sign-bit does not change, so the only input that does not |
| 1423 | // produce poison is 0, and "0 << (bitwidth-1) --> 0". |
| 1424 | if (IsNSW && IsNUW && |
| 1425 | match(V: Op1, P: m_SpecificInt(V: Ty->getScalarSizeInBits() - 1))) |
| 1426 | return Constant::getNullValue(Ty); |
| 1427 | |
| 1428 | return nullptr; |
| 1429 | } |
| 1430 | |
| 1431 | Value *llvm::simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, |
| 1432 | const SimplifyQuery &Q) { |
| 1433 | return ::simplifyShlInst(Op0, Op1, IsNSW, IsNUW, Q, MaxRecurse: RecursionLimit); |
| 1434 | } |
| 1435 | |
| 1436 | /// Given operands for an LShr, see if we can fold the result. |
| 1437 | /// If not, this returns null. |
| 1438 | static Value *simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, |
| 1439 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 1440 | if (Value *V = simplifyRightShift(Opcode: Instruction::LShr, Op0, Op1, IsExact, Q, |
| 1441 | MaxRecurse)) |
| 1442 | return V; |
| 1443 | |
| 1444 | // (X << A) >> A -> X |
| 1445 | Value *X; |
| 1446 | if (Q.IIQ.UseInstrInfo && match(V: Op0, P: m_NUWShl(L: m_Value(V&: X), R: m_Specific(V: Op1)))) |
| 1447 | return X; |
| 1448 | |
| 1449 | // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. |
| 1450 | // We can return X as we do in the above case since OR alters no bits in X. |
| 1451 | // SimplifyDemandedBits in InstCombine can do more general optimization for |
| 1452 | // bit manipulation. This pattern aims to provide opportunities for other |
| 1453 | // optimizers by supporting a simple but common case in InstSimplify. |
| 1454 | Value *Y; |
| 1455 | const APInt *ShRAmt, *ShLAmt; |
| 1456 | if (Q.IIQ.UseInstrInfo && match(V: Op1, P: m_APInt(Res&: ShRAmt)) && |
| 1457 | match(V: Op0, P: m_c_Or(L: m_NUWShl(L: m_Value(V&: X), R: m_APInt(Res&: ShLAmt)), R: m_Value(V&: Y))) && |
| 1458 | *ShRAmt == *ShLAmt) { |
| 1459 | const KnownBits YKnown = computeKnownBits(V: Y, Q); |
| 1460 | const unsigned EffWidthY = YKnown.countMaxActiveBits(); |
| 1461 | if (ShRAmt->uge(RHS: EffWidthY)) |
| 1462 | return X; |
| 1463 | } |
| 1464 | |
| 1465 | return nullptr; |
| 1466 | } |
| 1467 | |
| 1468 | Value *llvm::simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, |
| 1469 | const SimplifyQuery &Q) { |
| 1470 | return ::simplifyLShrInst(Op0, Op1, IsExact, Q, MaxRecurse: RecursionLimit); |
| 1471 | } |
| 1472 | |
| 1473 | /// Given operands for an AShr, see if we can fold the result. |
| 1474 | /// If not, this returns null. |
| 1475 | static Value *simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, |
| 1476 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 1477 | if (Value *V = simplifyRightShift(Opcode: Instruction::AShr, Op0, Op1, IsExact, Q, |
| 1478 | MaxRecurse)) |
| 1479 | return V; |
| 1480 | |
| 1481 | // -1 >>a X --> -1 |
| 1482 | // (-1 << X) a>> X --> -1 |
| 1483 | // We could return the original -1 constant to preserve poison elements. |
| 1484 | if (match(V: Op0, P: m_AllOnes()) || |
| 1485 | match(V: Op0, P: m_Shl(L: m_AllOnes(), R: m_Specific(V: Op1)))) |
| 1486 | return Constant::getAllOnesValue(Ty: Op0->getType()); |
| 1487 | |
| 1488 | // (X << A) >> A -> X |
| 1489 | Value *X; |
| 1490 | if (Q.IIQ.UseInstrInfo && match(V: Op0, P: m_NSWShl(L: m_Value(V&: X), R: m_Specific(V: Op1)))) |
| 1491 | return X; |
| 1492 | |
| 1493 | // Arithmetic shifting an all-sign-bit value is a no-op. |
| 1494 | unsigned NumSignBits = ComputeNumSignBits(Op: Op0, DL: Q.DL, AC: Q.AC, CxtI: Q.CxtI, DT: Q.DT); |
| 1495 | if (NumSignBits == Op0->getType()->getScalarSizeInBits()) |
| 1496 | return Op0; |
| 1497 | |
| 1498 | return nullptr; |
| 1499 | } |
| 1500 | |
| 1501 | Value *llvm::simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, |
| 1502 | const SimplifyQuery &Q) { |
| 1503 | return ::simplifyAShrInst(Op0, Op1, IsExact, Q, MaxRecurse: RecursionLimit); |
| 1504 | } |
| 1505 | |
| 1506 | /// Commuted variants are assumed to be handled by calling this function again |
| 1507 | /// with the parameters swapped. |
| 1508 | static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, |
| 1509 | ICmpInst *UnsignedICmp, bool IsAnd, |
| 1510 | const SimplifyQuery &Q) { |
| 1511 | Value *X, *Y; |
| 1512 | |
| 1513 | CmpPredicate EqPred; |
| 1514 | if (!match(V: ZeroICmp, P: m_ICmp(Pred&: EqPred, L: m_Value(V&: Y), R: m_Zero())) || |
| 1515 | !ICmpInst::isEquality(P: EqPred)) |
| 1516 | return nullptr; |
| 1517 | |
| 1518 | CmpPredicate UnsignedPred; |
| 1519 | |
| 1520 | Value *A, *B; |
| 1521 | // Y = (A - B); |
| 1522 | if (match(V: Y, P: m_Sub(L: m_Value(V&: A), R: m_Value(V&: B)))) { |
| 1523 | if (match(V: UnsignedICmp, |
| 1524 | P: m_c_ICmp(Pred&: UnsignedPred, L: m_Specific(V: A), R: m_Specific(V: B))) && |
| 1525 | ICmpInst::isUnsigned(predicate: UnsignedPred)) { |
| 1526 | // A >=/<= B || (A - B) != 0 <--> true |
| 1527 | if ((UnsignedPred == ICmpInst::ICMP_UGE || |
| 1528 | UnsignedPred == ICmpInst::ICMP_ULE) && |
| 1529 | EqPred == ICmpInst::ICMP_NE && !IsAnd) |
| 1530 | return ConstantInt::getTrue(Ty: UnsignedICmp->getType()); |
| 1531 | // A </> B && (A - B) == 0 <--> false |
| 1532 | if ((UnsignedPred == ICmpInst::ICMP_ULT || |
| 1533 | UnsignedPred == ICmpInst::ICMP_UGT) && |
| 1534 | EqPred == ICmpInst::ICMP_EQ && IsAnd) |
| 1535 | return ConstantInt::getFalse(Ty: UnsignedICmp->getType()); |
| 1536 | |
| 1537 | // A </> B && (A - B) != 0 <--> A </> B |
| 1538 | // A </> B || (A - B) != 0 <--> (A - B) != 0 |
| 1539 | if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || |
| 1540 | UnsignedPred == ICmpInst::ICMP_UGT)) |
| 1541 | return IsAnd ? UnsignedICmp : ZeroICmp; |
| 1542 | |
| 1543 | // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 |
| 1544 | // A <=/>= B || (A - B) == 0 <--> A <=/>= B |
| 1545 | if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || |
| 1546 | UnsignedPred == ICmpInst::ICMP_UGE)) |
| 1547 | return IsAnd ? ZeroICmp : UnsignedICmp; |
| 1548 | } |
| 1549 | |
| 1550 | // Given Y = (A - B) |
| 1551 | // Y >= A && Y != 0 --> Y >= A iff B != 0 |
| 1552 | // Y < A || Y == 0 --> Y < A iff B != 0 |
| 1553 | if (match(V: UnsignedICmp, |
| 1554 | P: m_c_ICmp(Pred&: UnsignedPred, L: m_Specific(V: Y), R: m_Specific(V: A)))) { |
| 1555 | if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && |
| 1556 | EqPred == ICmpInst::ICMP_NE && isKnownNonZero(V: B, Q)) |
| 1557 | return UnsignedICmp; |
| 1558 | if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && |
| 1559 | EqPred == ICmpInst::ICMP_EQ && isKnownNonZero(V: B, Q)) |
| 1560 | return UnsignedICmp; |
| 1561 | } |
| 1562 | } |
| 1563 | |
| 1564 | if (match(V: UnsignedICmp, P: m_ICmp(Pred&: UnsignedPred, L: m_Value(V&: X), R: m_Specific(V: Y))) && |
| 1565 | ICmpInst::isUnsigned(predicate: UnsignedPred)) |
| 1566 | ; |
| 1567 | else if (match(V: UnsignedICmp, |
| 1568 | P: m_ICmp(Pred&: UnsignedPred, L: m_Specific(V: Y), R: m_Value(V&: X))) && |
| 1569 | ICmpInst::isUnsigned(predicate: UnsignedPred)) |
| 1570 | UnsignedPred = ICmpInst::getSwappedPredicate(pred: UnsignedPred); |
| 1571 | else |
| 1572 | return nullptr; |
| 1573 | |
| 1574 | // X > Y && Y == 0 --> Y == 0 iff X != 0 |
| 1575 | // X > Y || Y == 0 --> X > Y iff X != 0 |
| 1576 | if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && |
| 1577 | isKnownNonZero(V: X, Q)) |
| 1578 | return IsAnd ? ZeroICmp : UnsignedICmp; |
| 1579 | |
| 1580 | // X <= Y && Y != 0 --> X <= Y iff X != 0 |
| 1581 | // X <= Y || Y != 0 --> Y != 0 iff X != 0 |
| 1582 | if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && |
| 1583 | isKnownNonZero(V: X, Q)) |
| 1584 | return IsAnd ? UnsignedICmp : ZeroICmp; |
| 1585 | |
| 1586 | // The transforms below here are expected to be handled more generally with |
| 1587 | // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's |
| 1588 | // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, |
| 1589 | // these are candidates for removal. |
| 1590 | |
| 1591 | // X < Y && Y != 0 --> X < Y |
| 1592 | // X < Y || Y != 0 --> Y != 0 |
| 1593 | if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) |
| 1594 | return IsAnd ? UnsignedICmp : ZeroICmp; |
| 1595 | |
| 1596 | // X >= Y && Y == 0 --> Y == 0 |
| 1597 | // X >= Y || Y == 0 --> X >= Y |
| 1598 | if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) |
| 1599 | return IsAnd ? ZeroICmp : UnsignedICmp; |
| 1600 | |
| 1601 | // X < Y && Y == 0 --> false |
| 1602 | if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && |
| 1603 | IsAnd) |
| 1604 | return getFalse(Ty: UnsignedICmp->getType()); |
| 1605 | |
| 1606 | // X >= Y || Y != 0 --> true |
| 1607 | if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && |
| 1608 | !IsAnd) |
| 1609 | return getTrue(Ty: UnsignedICmp->getType()); |
| 1610 | |
| 1611 | return nullptr; |
| 1612 | } |
| 1613 | |
| 1614 | /// Test if a pair of compares with a shared operand and 2 constants has an |
| 1615 | /// empty set intersection, full set union, or if one compare is a superset of |
| 1616 | /// the other. |
| 1617 | static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, |
| 1618 | bool IsAnd) { |
| 1619 | // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). |
| 1620 | if (Cmp0->getOperand(i_nocapture: 0) != Cmp1->getOperand(i_nocapture: 0)) |
| 1621 | return nullptr; |
| 1622 | |
| 1623 | const APInt *C0, *C1; |
| 1624 | if (!match(V: Cmp0->getOperand(i_nocapture: 1), P: m_APInt(Res&: C0)) || |
| 1625 | !match(V: Cmp1->getOperand(i_nocapture: 1), P: m_APInt(Res&: C1))) |
| 1626 | return nullptr; |
| 1627 | |
| 1628 | auto Range0 = ConstantRange::makeExactICmpRegion(Pred: Cmp0->getPredicate(), Other: *C0); |
| 1629 | auto Range1 = ConstantRange::makeExactICmpRegion(Pred: Cmp1->getPredicate(), Other: *C1); |
| 1630 | |
| 1631 | // For and-of-compares, check if the intersection is empty: |
| 1632 | // (icmp X, C0) && (icmp X, C1) --> empty set --> false |
| 1633 | if (IsAnd && Range0.intersectWith(CR: Range1).isEmptySet()) |
| 1634 | return getFalse(Ty: Cmp0->getType()); |
| 1635 | |
| 1636 | // For or-of-compares, check if the union is full: |
| 1637 | // (icmp X, C0) || (icmp X, C1) --> full set --> true |
| 1638 | if (!IsAnd && Range0.unionWith(CR: Range1).isFullSet()) |
| 1639 | return getTrue(Ty: Cmp0->getType()); |
| 1640 | |
| 1641 | // Is one range a superset of the other? |
| 1642 | // If this is and-of-compares, take the smaller set: |
| 1643 | // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 |
| 1644 | // If this is or-of-compares, take the larger set: |
| 1645 | // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 |
| 1646 | if (Range0.contains(CR: Range1)) |
| 1647 | return IsAnd ? Cmp1 : Cmp0; |
| 1648 | if (Range1.contains(CR: Range0)) |
| 1649 | return IsAnd ? Cmp0 : Cmp1; |
| 1650 | |
| 1651 | return nullptr; |
| 1652 | } |
| 1653 | |
| 1654 | static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, |
| 1655 | const InstrInfoQuery &IIQ) { |
| 1656 | // (icmp (add V, C0), C1) & (icmp V, C0) |
| 1657 | CmpPredicate Pred0, Pred1; |
| 1658 | const APInt *C0, *C1; |
| 1659 | Value *V; |
| 1660 | if (!match(V: Op0, P: m_ICmp(Pred&: Pred0, L: m_Add(L: m_Value(V), R: m_APInt(Res&: C0)), R: m_APInt(Res&: C1)))) |
| 1661 | return nullptr; |
| 1662 | |
| 1663 | if (!match(V: Op1, P: m_ICmp(Pred&: Pred1, L: m_Specific(V), R: m_Value()))) |
| 1664 | return nullptr; |
| 1665 | |
| 1666 | auto *AddInst = cast<OverflowingBinaryOperator>(Val: Op0->getOperand(i_nocapture: 0)); |
| 1667 | if (AddInst->getOperand(i_nocapture: 1) != Op1->getOperand(i_nocapture: 1)) |
| 1668 | return nullptr; |
| 1669 | |
| 1670 | Type *ITy = Op0->getType(); |
| 1671 | bool IsNSW = IIQ.hasNoSignedWrap(Op: AddInst); |
| 1672 | bool IsNUW = IIQ.hasNoUnsignedWrap(Op: AddInst); |
| 1673 | |
| 1674 | const APInt Delta = *C1 - *C0; |
| 1675 | if (C0->isStrictlyPositive()) { |
| 1676 | if (Delta == 2) { |
| 1677 | if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) |
| 1678 | return getFalse(Ty: ITy); |
| 1679 | if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && IsNSW) |
| 1680 | return getFalse(Ty: ITy); |
| 1681 | } |
| 1682 | if (Delta == 1) { |
| 1683 | if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) |
| 1684 | return getFalse(Ty: ITy); |
| 1685 | if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && IsNSW) |
| 1686 | return getFalse(Ty: ITy); |
| 1687 | } |
| 1688 | } |
| 1689 | if (C0->getBoolValue() && IsNUW) { |
| 1690 | if (Delta == 2) |
| 1691 | if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) |
| 1692 | return getFalse(Ty: ITy); |
| 1693 | if (Delta == 1) |
| 1694 | if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) |
| 1695 | return getFalse(Ty: ITy); |
| 1696 | } |
| 1697 | |
| 1698 | return nullptr; |
| 1699 | } |
| 1700 | |
| 1701 | /// Try to simplify and/or of icmp with ctpop intrinsic. |
| 1702 | static Value *simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1, |
| 1703 | bool IsAnd) { |
| 1704 | CmpPredicate Pred0, Pred1; |
| 1705 | Value *X; |
| 1706 | const APInt *C; |
| 1707 | if (!match(V: Cmp0, P: m_ICmp(Pred&: Pred0, L: m_Intrinsic<Intrinsic::ctpop>(Op0: m_Value(V&: X)), |
| 1708 | R: m_APInt(Res&: C))) || |
| 1709 | !match(V: Cmp1, P: m_ICmp(Pred&: Pred1, L: m_Specific(V: X), R: m_ZeroInt())) || C->isZero()) |
| 1710 | return nullptr; |
| 1711 | |
| 1712 | // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0 |
| 1713 | if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE) |
| 1714 | return Cmp1; |
| 1715 | // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0 |
| 1716 | if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ) |
| 1717 | return Cmp1; |
| 1718 | |
| 1719 | return nullptr; |
| 1720 | } |
| 1721 | |
| 1722 | static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, |
| 1723 | const SimplifyQuery &Q) { |
| 1724 | if (Value *X = simplifyUnsignedRangeCheck(ZeroICmp: Op0, UnsignedICmp: Op1, /*IsAnd=*/true, Q)) |
| 1725 | return X; |
| 1726 | if (Value *X = simplifyUnsignedRangeCheck(ZeroICmp: Op1, UnsignedICmp: Op0, /*IsAnd=*/true, Q)) |
| 1727 | return X; |
| 1728 | |
| 1729 | if (Value *X = simplifyAndOrOfICmpsWithConstants(Cmp0: Op0, Cmp1: Op1, IsAnd: true)) |
| 1730 | return X; |
| 1731 | |
| 1732 | if (Value *X = simplifyAndOrOfICmpsWithCtpop(Cmp0: Op0, Cmp1: Op1, IsAnd: true)) |
| 1733 | return X; |
| 1734 | if (Value *X = simplifyAndOrOfICmpsWithCtpop(Cmp0: Op1, Cmp1: Op0, IsAnd: true)) |
| 1735 | return X; |
| 1736 | |
| 1737 | if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, IIQ: Q.IIQ)) |
| 1738 | return X; |
| 1739 | if (Value *X = simplifyAndOfICmpsWithAdd(Op0: Op1, Op1: Op0, IIQ: Q.IIQ)) |
| 1740 | return X; |
| 1741 | |
| 1742 | return nullptr; |
| 1743 | } |
| 1744 | |
| 1745 | static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, |
| 1746 | const InstrInfoQuery &IIQ) { |
| 1747 | // (icmp (add V, C0), C1) | (icmp V, C0) |
| 1748 | CmpPredicate Pred0, Pred1; |
| 1749 | const APInt *C0, *C1; |
| 1750 | Value *V; |
| 1751 | if (!match(V: Op0, P: m_ICmp(Pred&: Pred0, L: m_Add(L: m_Value(V), R: m_APInt(Res&: C0)), R: m_APInt(Res&: C1)))) |
| 1752 | return nullptr; |
| 1753 | |
| 1754 | if (!match(V: Op1, P: m_ICmp(Pred&: Pred1, L: m_Specific(V), R: m_Value()))) |
| 1755 | return nullptr; |
| 1756 | |
| 1757 | auto *AddInst = cast<BinaryOperator>(Val: Op0->getOperand(i_nocapture: 0)); |
| 1758 | if (AddInst->getOperand(i_nocapture: 1) != Op1->getOperand(i_nocapture: 1)) |
| 1759 | return nullptr; |
| 1760 | |
| 1761 | Type *ITy = Op0->getType(); |
| 1762 | bool IsNSW = IIQ.hasNoSignedWrap(Op: AddInst); |
| 1763 | bool IsNUW = IIQ.hasNoUnsignedWrap(Op: AddInst); |
| 1764 | |
| 1765 | const APInt Delta = *C1 - *C0; |
| 1766 | if (C0->isStrictlyPositive()) { |
| 1767 | if (Delta == 2) { |
| 1768 | if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) |
| 1769 | return getTrue(Ty: ITy); |
| 1770 | if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && IsNSW) |
| 1771 | return getTrue(Ty: ITy); |
| 1772 | } |
| 1773 | if (Delta == 1) { |
| 1774 | if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) |
| 1775 | return getTrue(Ty: ITy); |
| 1776 | if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && IsNSW) |
| 1777 | return getTrue(Ty: ITy); |
| 1778 | } |
| 1779 | } |
| 1780 | if (C0->getBoolValue() && IsNUW) { |
| 1781 | if (Delta == 2) |
| 1782 | if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) |
| 1783 | return getTrue(Ty: ITy); |
| 1784 | if (Delta == 1) |
| 1785 | if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) |
| 1786 | return getTrue(Ty: ITy); |
| 1787 | } |
| 1788 | |
| 1789 | return nullptr; |
| 1790 | } |
| 1791 | |
| 1792 | static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, |
| 1793 | const SimplifyQuery &Q) { |
| 1794 | if (Value *X = simplifyUnsignedRangeCheck(ZeroICmp: Op0, UnsignedICmp: Op1, /*IsAnd=*/false, Q)) |
| 1795 | return X; |
| 1796 | if (Value *X = simplifyUnsignedRangeCheck(ZeroICmp: Op1, UnsignedICmp: Op0, /*IsAnd=*/false, Q)) |
| 1797 | return X; |
| 1798 | |
| 1799 | if (Value *X = simplifyAndOrOfICmpsWithConstants(Cmp0: Op0, Cmp1: Op1, IsAnd: false)) |
| 1800 | return X; |
| 1801 | |
| 1802 | if (Value *X = simplifyAndOrOfICmpsWithCtpop(Cmp0: Op0, Cmp1: Op1, IsAnd: false)) |
| 1803 | return X; |
| 1804 | if (Value *X = simplifyAndOrOfICmpsWithCtpop(Cmp0: Op1, Cmp1: Op0, IsAnd: false)) |
| 1805 | return X; |
| 1806 | |
| 1807 | if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, IIQ: Q.IIQ)) |
| 1808 | return X; |
| 1809 | if (Value *X = simplifyOrOfICmpsWithAdd(Op0: Op1, Op1: Op0, IIQ: Q.IIQ)) |
| 1810 | return X; |
| 1811 | |
| 1812 | return nullptr; |
| 1813 | } |
| 1814 | |
| 1815 | static Value *simplifyAndOrOfFCmps(const SimplifyQuery &Q, FCmpInst *LHS, |
| 1816 | FCmpInst *RHS, bool IsAnd) { |
| 1817 | Value *LHS0 = LHS->getOperand(i_nocapture: 0), *LHS1 = LHS->getOperand(i_nocapture: 1); |
| 1818 | Value *RHS0 = RHS->getOperand(i_nocapture: 0), *RHS1 = RHS->getOperand(i_nocapture: 1); |
| 1819 | if (LHS0->getType() != RHS0->getType()) |
| 1820 | return nullptr; |
| 1821 | |
| 1822 | FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); |
| 1823 | auto AbsOrSelfLHS0 = m_CombineOr(L: m_Specific(V: LHS0), R: m_FAbs(Op0: m_Specific(V: LHS0))); |
| 1824 | if ((PredL == FCmpInst::FCMP_ORD || PredL == FCmpInst::FCMP_UNO) && |
| 1825 | ((FCmpInst::isOrdered(predicate: PredR) && IsAnd) || |
| 1826 | (FCmpInst::isUnordered(predicate: PredR) && !IsAnd))) { |
| 1827 | // (fcmp ord X, 0) & (fcmp o** X/abs(X), Y) --> fcmp o** X/abs(X), Y |
| 1828 | // (fcmp uno X, 0) & (fcmp o** X/abs(X), Y) --> false |
| 1829 | // (fcmp uno X, 0) | (fcmp u** X/abs(X), Y) --> fcmp u** X/abs(X), Y |
| 1830 | // (fcmp ord X, 0) | (fcmp u** X/abs(X), Y) --> true |
| 1831 | if ((match(V: RHS0, P: AbsOrSelfLHS0) || match(V: RHS1, P: AbsOrSelfLHS0)) && |
| 1832 | match(V: LHS1, P: m_PosZeroFP())) |
| 1833 | return FCmpInst::isOrdered(predicate: PredL) == FCmpInst::isOrdered(predicate: PredR) |
| 1834 | ? static_cast<Value *>(RHS) |
| 1835 | : ConstantInt::getBool(Ty: LHS->getType(), V: !IsAnd); |
| 1836 | } |
| 1837 | |
| 1838 | auto AbsOrSelfRHS0 = m_CombineOr(L: m_Specific(V: RHS0), R: m_FAbs(Op0: m_Specific(V: RHS0))); |
| 1839 | if ((PredR == FCmpInst::FCMP_ORD || PredR == FCmpInst::FCMP_UNO) && |
| 1840 | ((FCmpInst::isOrdered(predicate: PredL) && IsAnd) || |
| 1841 | (FCmpInst::isUnordered(predicate: PredL) && !IsAnd))) { |
| 1842 | // (fcmp o** X/abs(X), Y) & (fcmp ord X, 0) --> fcmp o** X/abs(X), Y |
| 1843 | // (fcmp o** X/abs(X), Y) & (fcmp uno X, 0) --> false |
| 1844 | // (fcmp u** X/abs(X), Y) | (fcmp uno X, 0) --> fcmp u** X/abs(X), Y |
| 1845 | // (fcmp u** X/abs(X), Y) | (fcmp ord X, 0) --> true |
| 1846 | if ((match(V: LHS0, P: AbsOrSelfRHS0) || match(V: LHS1, P: AbsOrSelfRHS0)) && |
| 1847 | match(V: RHS1, P: m_PosZeroFP())) |
| 1848 | return FCmpInst::isOrdered(predicate: PredL) == FCmpInst::isOrdered(predicate: PredR) |
| 1849 | ? static_cast<Value *>(LHS) |
| 1850 | : ConstantInt::getBool(Ty: LHS->getType(), V: !IsAnd); |
| 1851 | } |
| 1852 | |
| 1853 | return nullptr; |
| 1854 | } |
| 1855 | |
| 1856 | static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0, |
| 1857 | Value *Op1, bool IsAnd) { |
| 1858 | // Look through casts of the 'and' operands to find compares. |
| 1859 | auto *Cast0 = dyn_cast<CastInst>(Val: Op0); |
| 1860 | auto *Cast1 = dyn_cast<CastInst>(Val: Op1); |
| 1861 | if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && |
| 1862 | Cast0->getSrcTy() == Cast1->getSrcTy()) { |
| 1863 | Op0 = Cast0->getOperand(i_nocapture: 0); |
| 1864 | Op1 = Cast1->getOperand(i_nocapture: 0); |
| 1865 | } |
| 1866 | |
| 1867 | Value *V = nullptr; |
| 1868 | auto *ICmp0 = dyn_cast<ICmpInst>(Val: Op0); |
| 1869 | auto *ICmp1 = dyn_cast<ICmpInst>(Val: Op1); |
| 1870 | if (ICmp0 && ICmp1) |
| 1871 | V = IsAnd ? simplifyAndOfICmps(Op0: ICmp0, Op1: ICmp1, Q) |
| 1872 | : simplifyOrOfICmps(Op0: ICmp0, Op1: ICmp1, Q); |
| 1873 | |
| 1874 | auto *FCmp0 = dyn_cast<FCmpInst>(Val: Op0); |
| 1875 | auto *FCmp1 = dyn_cast<FCmpInst>(Val: Op1); |
| 1876 | if (FCmp0 && FCmp1) |
| 1877 | V = simplifyAndOrOfFCmps(Q, LHS: FCmp0, RHS: FCmp1, IsAnd); |
| 1878 | |
| 1879 | if (!V) |
| 1880 | return nullptr; |
| 1881 | if (!Cast0) |
| 1882 | return V; |
| 1883 | |
| 1884 | // If we looked through casts, we can only handle a constant simplification |
| 1885 | // because we are not allowed to create a cast instruction here. |
| 1886 | if (auto *C = dyn_cast<Constant>(Val: V)) |
| 1887 | return ConstantFoldCastOperand(Opcode: Cast0->getOpcode(), C, DestTy: Cast0->getType(), |
| 1888 | DL: Q.DL); |
| 1889 | |
| 1890 | return nullptr; |
| 1891 | } |
| 1892 | |
| 1893 | static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, |
| 1894 | const SimplifyQuery &Q, |
| 1895 | bool AllowRefinement, |
| 1896 | SmallVectorImpl<Instruction *> *DropFlags, |
| 1897 | unsigned MaxRecurse); |
| 1898 | |
| 1899 | static Value *simplifyAndOrWithICmpEq(unsigned Opcode, Value *Op0, Value *Op1, |
| 1900 | const SimplifyQuery &Q, |
| 1901 | unsigned MaxRecurse) { |
| 1902 | assert((Opcode == Instruction::And || Opcode == Instruction::Or) && |
| 1903 | "Must be and/or" ); |
| 1904 | CmpPredicate Pred; |
| 1905 | Value *A, *B; |
| 1906 | if (!match(V: Op0, P: m_ICmp(Pred, L: m_Value(V&: A), R: m_Value(V&: B))) || |
| 1907 | !ICmpInst::isEquality(P: Pred)) |
| 1908 | return nullptr; |
| 1909 | |
| 1910 | auto Simplify = [&](Value *Res) -> Value * { |
| 1911 | Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, Ty: Res->getType()); |
| 1912 | |
| 1913 | // and (icmp eq a, b), x implies (a==b) inside x. |
| 1914 | // or (icmp ne a, b), x implies (a==b) inside x. |
| 1915 | // If x simplifies to true/false, we can simplify the and/or. |
| 1916 | if (Pred == |
| 1917 | (Opcode == Instruction::And ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { |
| 1918 | if (Res == Absorber) |
| 1919 | return Absorber; |
| 1920 | if (Res == ConstantExpr::getBinOpIdentity(Opcode, Ty: Res->getType())) |
| 1921 | return Op0; |
| 1922 | return nullptr; |
| 1923 | } |
| 1924 | |
| 1925 | // If we have and (icmp ne a, b), x and for a==b we can simplify x to false, |
| 1926 | // then we can drop the icmp, as x will already be false in the case where |
| 1927 | // the icmp is false. Similar for or and true. |
| 1928 | if (Res == Absorber) |
| 1929 | return Op1; |
| 1930 | return nullptr; |
| 1931 | }; |
| 1932 | |
| 1933 | // In the final case (Res == Absorber with inverted predicate), it is safe to |
| 1934 | // refine poison during simplification, but not undef. For simplicity always |
| 1935 | // disable undef-based folds here. |
| 1936 | if (Value *Res = simplifyWithOpReplaced(V: Op1, Op: A, RepOp: B, Q: Q.getWithoutUndef(), |
| 1937 | /* AllowRefinement */ true, |
| 1938 | /* DropFlags */ nullptr, MaxRecurse)) |
| 1939 | return Simplify(Res); |
| 1940 | if (Value *Res = simplifyWithOpReplaced(V: Op1, Op: B, RepOp: A, Q: Q.getWithoutUndef(), |
| 1941 | /* AllowRefinement */ true, |
| 1942 | /* DropFlags */ nullptr, MaxRecurse)) |
| 1943 | return Simplify(Res); |
| 1944 | |
| 1945 | return nullptr; |
| 1946 | } |
| 1947 | |
| 1948 | /// Given a bitwise logic op, check if the operands are add/sub with a common |
| 1949 | /// source value and inverted constant (identity: C - X -> ~(X + ~C)). |
| 1950 | static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, |
| 1951 | Instruction::BinaryOps Opcode) { |
| 1952 | assert(Op0->getType() == Op1->getType() && "Mismatched binop types" ); |
| 1953 | assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op" ); |
| 1954 | Value *X; |
| 1955 | Constant *C1, *C2; |
| 1956 | if ((match(V: Op0, P: m_Add(L: m_Value(V&: X), R: m_Constant(C&: C1))) && |
| 1957 | match(V: Op1, P: m_Sub(L: m_Constant(C&: C2), R: m_Specific(V: X)))) || |
| 1958 | (match(V: Op1, P: m_Add(L: m_Value(V&: X), R: m_Constant(C&: C1))) && |
| 1959 | match(V: Op0, P: m_Sub(L: m_Constant(C&: C2), R: m_Specific(V: X))))) { |
| 1960 | if (ConstantExpr::getNot(C: C1) == C2) { |
| 1961 | // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 |
| 1962 | // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 |
| 1963 | // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 |
| 1964 | Type *Ty = Op0->getType(); |
| 1965 | return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) |
| 1966 | : ConstantInt::getAllOnesValue(Ty); |
| 1967 | } |
| 1968 | } |
| 1969 | return nullptr; |
| 1970 | } |
| 1971 | |
| 1972 | // Commutative patterns for and that will be tried with both operand orders. |
| 1973 | static Value *simplifyAndCommutative(Value *Op0, Value *Op1, |
| 1974 | const SimplifyQuery &Q, |
| 1975 | unsigned MaxRecurse) { |
| 1976 | // ~A & A = 0 |
| 1977 | if (match(V: Op0, P: m_Not(V: m_Specific(V: Op1)))) |
| 1978 | return Constant::getNullValue(Ty: Op0->getType()); |
| 1979 | |
| 1980 | // (A | ?) & A = A |
| 1981 | if (match(V: Op0, P: m_c_Or(L: m_Specific(V: Op1), R: m_Value()))) |
| 1982 | return Op1; |
| 1983 | |
| 1984 | // (X | ~Y) & (X | Y) --> X |
| 1985 | Value *X, *Y; |
| 1986 | if (match(V: Op0, P: m_c_Or(L: m_Value(V&: X), R: m_Not(V: m_Value(V&: Y)))) && |
| 1987 | match(V: Op1, P: m_c_Or(L: m_Specific(V: X), R: m_Specific(V: Y)))) |
| 1988 | return X; |
| 1989 | |
| 1990 | // If we have a multiplication overflow check that is being 'and'ed with a |
| 1991 | // check that one of the multipliers is not zero, we can omit the 'and', and |
| 1992 | // only keep the overflow check. |
| 1993 | if (isCheckForZeroAndMulWithOverflow(Op0, Op1, IsAnd: true)) |
| 1994 | return Op1; |
| 1995 | |
| 1996 | // -A & A = A if A is a power of two or zero. |
| 1997 | if (match(V: Op0, P: m_Neg(V: m_Specific(V: Op1))) && |
| 1998 | isKnownToBeAPowerOfTwo(V: Op1, DL: Q.DL, /*OrZero*/ true, AC: Q.AC, CxtI: Q.CxtI, DT: Q.DT)) |
| 1999 | return Op1; |
| 2000 | |
| 2001 | // This is a similar pattern used for checking if a value is a power-of-2: |
| 2002 | // (A - 1) & A --> 0 (if A is a power-of-2 or 0) |
| 2003 | if (match(V: Op0, P: m_Add(L: m_Specific(V: Op1), R: m_AllOnes())) && |
| 2004 | isKnownToBeAPowerOfTwo(V: Op1, DL: Q.DL, /*OrZero*/ true, AC: Q.AC, CxtI: Q.CxtI, DT: Q.DT)) |
| 2005 | return Constant::getNullValue(Ty: Op1->getType()); |
| 2006 | |
| 2007 | // (x << N) & ((x << M) - 1) --> 0, where x is known to be a power of 2 and |
| 2008 | // M <= N. |
| 2009 | const APInt *Shift1, *Shift2; |
| 2010 | if (match(V: Op0, P: m_Shl(L: m_Value(V&: X), R: m_APInt(Res&: Shift1))) && |
| 2011 | match(V: Op1, P: m_Add(L: m_Shl(L: m_Specific(V: X), R: m_APInt(Res&: Shift2)), R: m_AllOnes())) && |
| 2012 | isKnownToBeAPowerOfTwo(V: X, DL: Q.DL, /*OrZero*/ true, AC: Q.AC, CxtI: Q.CxtI) && |
| 2013 | Shift1->uge(RHS: *Shift2)) |
| 2014 | return Constant::getNullValue(Ty: Op0->getType()); |
| 2015 | |
| 2016 | if (Value *V = |
| 2017 | simplifyAndOrWithICmpEq(Opcode: Instruction::And, Op0, Op1, Q, MaxRecurse)) |
| 2018 | return V; |
| 2019 | |
| 2020 | return nullptr; |
| 2021 | } |
| 2022 | |
| 2023 | /// Given operands for an And, see if we can fold the result. |
| 2024 | /// If not, this returns null. |
| 2025 | static Value *simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, |
| 2026 | unsigned MaxRecurse) { |
| 2027 | if (Constant *C = foldOrCommuteConstant(Opcode: Instruction::And, Op0, Op1, Q)) |
| 2028 | return C; |
| 2029 | |
| 2030 | // X & poison -> poison |
| 2031 | if (isa<PoisonValue>(Val: Op1)) |
| 2032 | return Op1; |
| 2033 | |
| 2034 | // X & undef -> 0 |
| 2035 | if (Q.isUndefValue(V: Op1)) |
| 2036 | return Constant::getNullValue(Ty: Op0->getType()); |
| 2037 | |
| 2038 | // X & X = X |
| 2039 | if (Op0 == Op1) |
| 2040 | return Op0; |
| 2041 | |
| 2042 | // X & 0 = 0 |
| 2043 | if (match(V: Op1, P: m_Zero())) |
| 2044 | return Constant::getNullValue(Ty: Op0->getType()); |
| 2045 | |
| 2046 | // X & -1 = X |
| 2047 | if (match(V: Op1, P: m_AllOnes())) |
| 2048 | return Op0; |
| 2049 | |
| 2050 | if (Value *Res = simplifyAndCommutative(Op0, Op1, Q, MaxRecurse)) |
| 2051 | return Res; |
| 2052 | if (Value *Res = simplifyAndCommutative(Op0: Op1, Op1: Op0, Q, MaxRecurse)) |
| 2053 | return Res; |
| 2054 | |
| 2055 | if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Opcode: Instruction::And)) |
| 2056 | return V; |
| 2057 | |
| 2058 | // A mask that only clears known zeros of a shifted value is a no-op. |
| 2059 | const APInt *Mask; |
| 2060 | const APInt *ShAmt; |
| 2061 | Value *X, *Y; |
| 2062 | if (match(V: Op1, P: m_APInt(Res&: Mask))) { |
| 2063 | // If all bits in the inverted and shifted mask are clear: |
| 2064 | // and (shl X, ShAmt), Mask --> shl X, ShAmt |
| 2065 | if (match(V: Op0, P: m_Shl(L: m_Value(V&: X), R: m_APInt(Res&: ShAmt))) && |
| 2066 | (~(*Mask)).lshr(ShiftAmt: *ShAmt).isZero()) |
| 2067 | return Op0; |
| 2068 | |
| 2069 | // If all bits in the inverted and shifted mask are clear: |
| 2070 | // and (lshr X, ShAmt), Mask --> lshr X, ShAmt |
| 2071 | if (match(V: Op0, P: m_LShr(L: m_Value(V&: X), R: m_APInt(Res&: ShAmt))) && |
| 2072 | (~(*Mask)).shl(ShiftAmt: *ShAmt).isZero()) |
| 2073 | return Op0; |
| 2074 | } |
| 2075 | |
| 2076 | // and 2^x-1, 2^C --> 0 where x <= C. |
| 2077 | const APInt *PowerC; |
| 2078 | Value *Shift; |
| 2079 | if (match(V: Op1, P: m_Power2(V&: PowerC)) && |
| 2080 | match(V: Op0, P: m_Add(L: m_Value(V&: Shift), R: m_AllOnes())) && |
| 2081 | isKnownToBeAPowerOfTwo(V: Shift, DL: Q.DL, /*OrZero*/ false, AC: Q.AC, CxtI: Q.CxtI, |
| 2082 | DT: Q.DT)) { |
| 2083 | KnownBits Known = computeKnownBits(V: Shift, Q); |
| 2084 | // Use getActiveBits() to make use of the additional power of two knowledge |
| 2085 | if (PowerC->getActiveBits() >= Known.getMaxValue().getActiveBits()) |
| 2086 | return ConstantInt::getNullValue(Ty: Op1->getType()); |
| 2087 | } |
| 2088 | |
| 2089 | if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, IsAnd: true)) |
| 2090 | return V; |
| 2091 | |
| 2092 | // Try some generic simplifications for associative operations. |
| 2093 | if (Value *V = |
| 2094 | simplifyAssociativeBinOp(Opcode: Instruction::And, LHS: Op0, RHS: Op1, Q, MaxRecurse)) |
| 2095 | return V; |
| 2096 | |
| 2097 | // And distributes over Or. Try some generic simplifications based on this. |
| 2098 | if (Value *V = expandCommutativeBinOp(Opcode: Instruction::And, L: Op0, R: Op1, |
| 2099 | OpcodeToExpand: Instruction::Or, Q, MaxRecurse)) |
| 2100 | return V; |
| 2101 | |
| 2102 | // And distributes over Xor. Try some generic simplifications based on this. |
| 2103 | if (Value *V = expandCommutativeBinOp(Opcode: Instruction::And, L: Op0, R: Op1, |
| 2104 | OpcodeToExpand: Instruction::Xor, Q, MaxRecurse)) |
| 2105 | return V; |
| 2106 | |
| 2107 | if (isa<SelectInst>(Val: Op0) || isa<SelectInst>(Val: Op1)) { |
| 2108 | if (Op0->getType()->isIntOrIntVectorTy(BitWidth: 1)) { |
| 2109 | // A & (A && B) -> A && B |
| 2110 | if (match(V: Op1, P: m_Select(C: m_Specific(V: Op0), L: m_Value(), R: m_Zero()))) |
| 2111 | return Op1; |
| 2112 | else if (match(V: Op0, P: m_Select(C: m_Specific(V: Op1), L: m_Value(), R: m_Zero()))) |
| 2113 | return Op0; |
| 2114 | } |
| 2115 | // If the operation is with the result of a select instruction, check |
| 2116 | // whether operating on either branch of the select always yields the same |
| 2117 | // value. |
| 2118 | if (Value *V = |
| 2119 | threadBinOpOverSelect(Opcode: Instruction::And, LHS: Op0, RHS: Op1, Q, MaxRecurse)) |
| 2120 | return V; |
| 2121 | } |
| 2122 | |
| 2123 | // If the operation is with the result of a phi instruction, check whether |
| 2124 | // operating on all incoming values of the phi always yields the same value. |
| 2125 | if (isa<PHINode>(Val: Op0) || isa<PHINode>(Val: Op1)) |
| 2126 | if (Value *V = |
| 2127 | threadBinOpOverPHI(Opcode: Instruction::And, LHS: Op0, RHS: Op1, Q, MaxRecurse)) |
| 2128 | return V; |
| 2129 | |
| 2130 | // Assuming the effective width of Y is not larger than A, i.e. all bits |
| 2131 | // from X and Y are disjoint in (X << A) | Y, |
| 2132 | // if the mask of this AND op covers all bits of X or Y, while it covers |
| 2133 | // no bits from the other, we can bypass this AND op. E.g., |
| 2134 | // ((X << A) | Y) & Mask -> Y, |
| 2135 | // if Mask = ((1 << effective_width_of(Y)) - 1) |
| 2136 | // ((X << A) | Y) & Mask -> X << A, |
| 2137 | // if Mask = ((1 << effective_width_of(X)) - 1) << A |
| 2138 | // SimplifyDemandedBits in InstCombine can optimize the general case. |
| 2139 | // This pattern aims to help other passes for a common case. |
| 2140 | Value *XShifted; |
| 2141 | if (Q.IIQ.UseInstrInfo && match(V: Op1, P: m_APInt(Res&: Mask)) && |
| 2142 | match(V: Op0, P: m_c_Or(L: m_CombineAnd(L: m_NUWShl(L: m_Value(V&: X), R: m_APInt(Res&: ShAmt)), |
| 2143 | R: m_Value(V&: XShifted)), |
| 2144 | R: m_Value(V&: Y)))) { |
| 2145 | const unsigned Width = Op0->getType()->getScalarSizeInBits(); |
| 2146 | const unsigned ShftCnt = ShAmt->getLimitedValue(Limit: Width); |
| 2147 | const KnownBits YKnown = computeKnownBits(V: Y, Q); |
| 2148 | const unsigned EffWidthY = YKnown.countMaxActiveBits(); |
| 2149 | if (EffWidthY <= ShftCnt) { |
| 2150 | const KnownBits XKnown = computeKnownBits(V: X, Q); |
| 2151 | const unsigned EffWidthX = XKnown.countMaxActiveBits(); |
| 2152 | const APInt EffBitsY = APInt::getLowBitsSet(numBits: Width, loBitsSet: EffWidthY); |
| 2153 | const APInt EffBitsX = APInt::getLowBitsSet(numBits: Width, loBitsSet: EffWidthX) << ShftCnt; |
| 2154 | // If the mask is extracting all bits from X or Y as is, we can skip |
| 2155 | // this AND op. |
| 2156 | if (EffBitsY.isSubsetOf(RHS: *Mask) && !EffBitsX.intersects(RHS: *Mask)) |
| 2157 | return Y; |
| 2158 | if (EffBitsX.isSubsetOf(RHS: *Mask) && !EffBitsY.intersects(RHS: *Mask)) |
| 2159 | return XShifted; |
| 2160 | } |
| 2161 | } |
| 2162 | |
| 2163 | // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0 |
| 2164 | // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0 |
| 2165 | BinaryOperator *Or; |
| 2166 | if (match(V: Op0, P: m_c_Xor(L: m_Value(V&: X), |
| 2167 | R: m_CombineAnd(L: m_BinOp(I&: Or), |
| 2168 | R: m_c_Or(L: m_Deferred(V: X), R: m_Value(V&: Y))))) && |
| 2169 | match(V: Op1, P: m_c_Xor(L: m_Specific(V: Or), R: m_Specific(V: Y)))) |
| 2170 | return Constant::getNullValue(Ty: Op0->getType()); |
| 2171 | |
| 2172 | const APInt *C1; |
| 2173 | Value *A; |
| 2174 | // (A ^ C) & (A ^ ~C) -> 0 |
| 2175 | if (match(V: Op0, P: m_Xor(L: m_Value(V&: A), R: m_APInt(Res&: C1))) && |
| 2176 | match(V: Op1, P: m_Xor(L: m_Specific(V: A), R: m_SpecificInt(V: ~*C1)))) |
| 2177 | return Constant::getNullValue(Ty: Op0->getType()); |
| 2178 | |
| 2179 | if (Op0->getType()->isIntOrIntVectorTy(BitWidth: 1)) { |
| 2180 | if (std::optional<bool> Implied = isImpliedCondition(LHS: Op0, RHS: Op1, DL: Q.DL)) { |
| 2181 | // If Op0 is true implies Op1 is true, then Op0 is a subset of Op1. |
| 2182 | if (*Implied == true) |
| 2183 | return Op0; |
| 2184 | // If Op0 is true implies Op1 is false, then they are not true together. |
| 2185 | if (*Implied == false) |
| 2186 | return ConstantInt::getFalse(Ty: Op0->getType()); |
| 2187 | } |
| 2188 | if (std::optional<bool> Implied = isImpliedCondition(LHS: Op1, RHS: Op0, DL: Q.DL)) { |
| 2189 | // If Op1 is true implies Op0 is true, then Op1 is a subset of Op0. |
| 2190 | if (*Implied) |
| 2191 | return Op1; |
| 2192 | // If Op1 is true implies Op0 is false, then they are not true together. |
| 2193 | if (!*Implied) |
| 2194 | return ConstantInt::getFalse(Ty: Op1->getType()); |
| 2195 | } |
| 2196 | } |
| 2197 | |
| 2198 | if (Value *V = simplifyByDomEq(Opcode: Instruction::And, Op0, Op1, Q, MaxRecurse)) |
| 2199 | return V; |
| 2200 | |
| 2201 | return nullptr; |
| 2202 | } |
| 2203 | |
| 2204 | Value *llvm::simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { |
| 2205 | return ::simplifyAndInst(Op0, Op1, Q, MaxRecurse: RecursionLimit); |
| 2206 | } |
| 2207 | |
| 2208 | // TODO: Many of these folds could use LogicalAnd/LogicalOr. |
| 2209 | static Value *simplifyOrLogic(Value *X, Value *Y) { |
| 2210 | assert(X->getType() == Y->getType() && "Expected same type for 'or' ops" ); |
| 2211 | Type *Ty = X->getType(); |
| 2212 | |
| 2213 | // X | ~X --> -1 |
| 2214 | if (match(V: Y, P: m_Not(V: m_Specific(V: X)))) |
| 2215 | return ConstantInt::getAllOnesValue(Ty); |
| 2216 | |
| 2217 | // X | ~(X & ?) = -1 |
| 2218 | if (match(V: Y, P: m_Not(V: m_c_And(L: m_Specific(V: X), R: m_Value())))) |
| 2219 | return ConstantInt::getAllOnesValue(Ty); |
| 2220 | |
| 2221 | // X | (X & ?) --> X |
| 2222 | if (match(V: Y, P: m_c_And(L: m_Specific(V: X), R: m_Value()))) |
| 2223 | return X; |
| 2224 | |
| 2225 | Value *A, *B; |
| 2226 | |
| 2227 | // (A ^ B) | (A | B) --> A | B |
| 2228 | // (A ^ B) | (B | A) --> B | A |
| 2229 | if (match(V: X, P: m_Xor(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 2230 | match(V: Y, P: m_c_Or(L: m_Specific(V: A), R: m_Specific(V: B)))) |
| 2231 | return Y; |
| 2232 | |
| 2233 | // ~(A ^ B) | (A | B) --> -1 |
| 2234 | // ~(A ^ B) | (B | A) --> -1 |
| 2235 | if (match(V: X, P: m_Not(V: m_Xor(L: m_Value(V&: A), R: m_Value(V&: B)))) && |
| 2236 | match(V: Y, P: m_c_Or(L: m_Specific(V: A), R: m_Specific(V: B)))) |
| 2237 | return ConstantInt::getAllOnesValue(Ty); |
| 2238 | |
| 2239 | // (A & ~B) | (A ^ B) --> A ^ B |
| 2240 | // (~B & A) | (A ^ B) --> A ^ B |
| 2241 | // (A & ~B) | (B ^ A) --> B ^ A |
| 2242 | // (~B & A) | (B ^ A) --> B ^ A |
| 2243 | if (match(V: X, P: m_c_And(L: m_Value(V&: A), R: m_Not(V: m_Value(V&: B)))) && |
| 2244 | match(V: Y, P: m_c_Xor(L: m_Specific(V: A), R: m_Specific(V: B)))) |
| 2245 | return Y; |
| 2246 | |
| 2247 | // (~A ^ B) | (A & B) --> ~A ^ B |
| 2248 | // (B ^ ~A) | (A & B) --> B ^ ~A |
| 2249 | // (~A ^ B) | (B & A) --> ~A ^ B |
| 2250 | // (B ^ ~A) | (B & A) --> B ^ ~A |
| 2251 | if (match(V: X, P: m_c_Xor(L: m_Not(V: m_Value(V&: A)), R: m_Value(V&: B))) && |
| 2252 | match(V: Y, P: m_c_And(L: m_Specific(V: A), R: m_Specific(V: B)))) |
| 2253 | return X; |
| 2254 | |
| 2255 | // (~A | B) | (A ^ B) --> -1 |
| 2256 | // (~A | B) | (B ^ A) --> -1 |
| 2257 | // (B | ~A) | (A ^ B) --> -1 |
| 2258 | // (B | ~A) | (B ^ A) --> -1 |
| 2259 | if (match(V: X, P: m_c_Or(L: m_Not(V: m_Value(V&: A)), R: m_Value(V&: B))) && |
| 2260 | match(V: Y, P: m_c_Xor(L: m_Specific(V: A), R: m_Specific(V: B)))) |
| 2261 | return ConstantInt::getAllOnesValue(Ty); |
| 2262 | |
| 2263 | // (~A & B) | ~(A | B) --> ~A |
| 2264 | // (~A & B) | ~(B | A) --> ~A |
| 2265 | // (B & ~A) | ~(A | B) --> ~A |
| 2266 | // (B & ~A) | ~(B | A) --> ~A |
| 2267 | Value *NotA; |
| 2268 | if (match(V: X, P: m_c_And(L: m_CombineAnd(L: m_Value(V&: NotA), R: m_Not(V: m_Value(V&: A))), |
| 2269 | R: m_Value(V&: B))) && |
| 2270 | match(V: Y, P: m_Not(V: m_c_Or(L: m_Specific(V: A), R: m_Specific(V: B))))) |
| 2271 | return NotA; |
| 2272 | // The same is true of Logical And |
| 2273 | // TODO: This could share the logic of the version above if there was a |
| 2274 | // version of LogicalAnd that allowed more than just i1 types. |
| 2275 | if (match(V: X, P: m_c_LogicalAnd(L: m_CombineAnd(L: m_Value(V&: NotA), R: m_Not(V: m_Value(V&: A))), |
| 2276 | R: m_Value(V&: B))) && |
| 2277 | match(V: Y, P: m_Not(V: m_c_LogicalOr(L: m_Specific(V: A), R: m_Specific(V: B))))) |
| 2278 | return NotA; |
| 2279 | |
| 2280 | // ~(A ^ B) | (A & B) --> ~(A ^ B) |
| 2281 | // ~(A ^ B) | (B & A) --> ~(A ^ B) |
| 2282 | Value *NotAB; |
| 2283 | if (match(V: X, P: m_CombineAnd(L: m_Not(V: m_Xor(L: m_Value(V&: A), R: m_Value(V&: B))), |
| 2284 | R: m_Value(V&: NotAB))) && |
| 2285 | match(V: Y, P: m_c_And(L: m_Specific(V: A), R: m_Specific(V: B)))) |
| 2286 | return NotAB; |
| 2287 | |
| 2288 | // ~(A & B) | (A ^ B) --> ~(A & B) |
| 2289 | // ~(A & B) | (B ^ A) --> ~(A & B) |
| 2290 | if (match(V: X, P: m_CombineAnd(L: m_Not(V: m_And(L: m_Value(V&: A), R: m_Value(V&: B))), |
| 2291 | R: m_Value(V&: NotAB))) && |
| 2292 | match(V: Y, P: m_c_Xor(L: m_Specific(V: A), R: m_Specific(V: B)))) |
| 2293 | return NotAB; |
| 2294 | |
| 2295 | return nullptr; |
| 2296 | } |
| 2297 | |
| 2298 | /// Given operands for an Or, see if we can fold the result. |
| 2299 | /// If not, this returns null. |
| 2300 | static Value *simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, |
| 2301 | unsigned MaxRecurse) { |
| 2302 | if (Constant *C = foldOrCommuteConstant(Opcode: Instruction::Or, Op0, Op1, Q)) |
| 2303 | return C; |
| 2304 | |
| 2305 | // X | poison -> poison |
| 2306 | if (isa<PoisonValue>(Val: Op1)) |
| 2307 | return Op1; |
| 2308 | |
| 2309 | // X | undef -> -1 |
| 2310 | // X | -1 = -1 |
| 2311 | // Do not return Op1 because it may contain undef elements if it's a vector. |
| 2312 | if (Q.isUndefValue(V: Op1) || match(V: Op1, P: m_AllOnes())) |
| 2313 | return Constant::getAllOnesValue(Ty: Op0->getType()); |
| 2314 | |
| 2315 | // X | X = X |
| 2316 | // X | 0 = X |
| 2317 | if (Op0 == Op1 || match(V: Op1, P: m_Zero())) |
| 2318 | return Op0; |
| 2319 | |
| 2320 | if (Value *R = simplifyOrLogic(X: Op0, Y: Op1)) |
| 2321 | return R; |
| 2322 | if (Value *R = simplifyOrLogic(X: Op1, Y: Op0)) |
| 2323 | return R; |
| 2324 | |
| 2325 | if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Opcode: Instruction::Or)) |
| 2326 | return V; |
| 2327 | |
| 2328 | // Rotated -1 is still -1: |
| 2329 | // (-1 << X) | (-1 >> (C - X)) --> -1 |
| 2330 | // (-1 >> X) | (-1 << (C - X)) --> -1 |
| 2331 | // ...with C <= bitwidth (and commuted variants). |
| 2332 | Value *X, *Y; |
| 2333 | if ((match(V: Op0, P: m_Shl(L: m_AllOnes(), R: m_Value(V&: X))) && |
| 2334 | match(V: Op1, P: m_LShr(L: m_AllOnes(), R: m_Value(V&: Y)))) || |
| 2335 | (match(V: Op1, P: m_Shl(L: m_AllOnes(), R: m_Value(V&: X))) && |
| 2336 | match(V: Op0, P: m_LShr(L: m_AllOnes(), R: m_Value(V&: Y))))) { |
| 2337 | const APInt *C; |
| 2338 | if ((match(V: X, P: m_Sub(L: m_APInt(Res&: C), R: m_Specific(V: Y))) || |
| 2339 | match(V: Y, P: m_Sub(L: m_APInt(Res&: C), R: m_Specific(V: X)))) && |
| 2340 | C->ule(RHS: X->getType()->getScalarSizeInBits())) { |
| 2341 | return ConstantInt::getAllOnesValue(Ty: X->getType()); |
| 2342 | } |
| 2343 | } |
| 2344 | |
| 2345 | // A funnel shift (rotate) can be decomposed into simpler shifts. See if we |
| 2346 | // are mixing in another shift that is redundant with the funnel shift. |
| 2347 | |
| 2348 | // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y |
| 2349 | // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y |
| 2350 | if (match(V: Op0, |
| 2351 | P: m_Intrinsic<Intrinsic::fshl>(Op0: m_Value(V&: X), Op1: m_Value(), Op2: m_Value(V&: Y))) && |
| 2352 | match(V: Op1, P: m_Shl(L: m_Specific(V: X), R: m_Specific(V: Y)))) |
| 2353 | return Op0; |
| 2354 | if (match(V: Op1, |
| 2355 | P: m_Intrinsic<Intrinsic::fshl>(Op0: m_Value(V&: X), Op1: m_Value(), Op2: m_Value(V&: Y))) && |
| 2356 | match(V: Op0, P: m_Shl(L: m_Specific(V: X), R: m_Specific(V: Y)))) |
| 2357 | return Op1; |
| 2358 | |
| 2359 | // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y |
| 2360 | // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y |
| 2361 | if (match(V: Op0, |
| 2362 | P: m_Intrinsic<Intrinsic::fshr>(Op0: m_Value(), Op1: m_Value(V&: X), Op2: m_Value(V&: Y))) && |
| 2363 | match(V: Op1, P: m_LShr(L: m_Specific(V: X), R: m_Specific(V: Y)))) |
| 2364 | return Op0; |
| 2365 | if (match(V: Op1, |
| 2366 | P: m_Intrinsic<Intrinsic::fshr>(Op0: m_Value(), Op1: m_Value(V&: X), Op2: m_Value(V&: Y))) && |
| 2367 | match(V: Op0, P: m_LShr(L: m_Specific(V: X), R: m_Specific(V: Y)))) |
| 2368 | return Op1; |
| 2369 | |
| 2370 | if (Value *V = |
| 2371 | simplifyAndOrWithICmpEq(Opcode: Instruction::Or, Op0, Op1, Q, MaxRecurse)) |
| 2372 | return V; |
| 2373 | if (Value *V = |
| 2374 | simplifyAndOrWithICmpEq(Opcode: Instruction::Or, Op0: Op1, Op1: Op0, Q, MaxRecurse)) |
| 2375 | return V; |
| 2376 | |
| 2377 | if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, IsAnd: false)) |
| 2378 | return V; |
| 2379 | |
| 2380 | // If we have a multiplication overflow check that is being 'and'ed with a |
| 2381 | // check that one of the multipliers is not zero, we can omit the 'and', and |
| 2382 | // only keep the overflow check. |
| 2383 | if (isCheckForZeroAndMulWithOverflow(Op0, Op1, IsAnd: false)) |
| 2384 | return Op1; |
| 2385 | if (isCheckForZeroAndMulWithOverflow(Op0: Op1, Op1: Op0, IsAnd: false)) |
| 2386 | return Op0; |
| 2387 | |
| 2388 | // Try some generic simplifications for associative operations. |
| 2389 | if (Value *V = |
| 2390 | simplifyAssociativeBinOp(Opcode: Instruction::Or, LHS: Op0, RHS: Op1, Q, MaxRecurse)) |
| 2391 | return V; |
| 2392 | |
| 2393 | // Or distributes over And. Try some generic simplifications based on this. |
| 2394 | if (Value *V = expandCommutativeBinOp(Opcode: Instruction::Or, L: Op0, R: Op1, |
| 2395 | OpcodeToExpand: Instruction::And, Q, MaxRecurse)) |
| 2396 | return V; |
| 2397 | |
| 2398 | if (isa<SelectInst>(Val: Op0) || isa<SelectInst>(Val: Op1)) { |
| 2399 | if (Op0->getType()->isIntOrIntVectorTy(BitWidth: 1)) { |
| 2400 | // A | (A || B) -> A || B |
| 2401 | if (match(V: Op1, P: m_Select(C: m_Specific(V: Op0), L: m_One(), R: m_Value()))) |
| 2402 | return Op1; |
| 2403 | else if (match(V: Op0, P: m_Select(C: m_Specific(V: Op1), L: m_One(), R: m_Value()))) |
| 2404 | return Op0; |
| 2405 | } |
| 2406 | // If the operation is with the result of a select instruction, check |
| 2407 | // whether operating on either branch of the select always yields the same |
| 2408 | // value. |
| 2409 | if (Value *V = |
| 2410 | threadBinOpOverSelect(Opcode: Instruction::Or, LHS: Op0, RHS: Op1, Q, MaxRecurse)) |
| 2411 | return V; |
| 2412 | } |
| 2413 | |
| 2414 | // (A & C1)|(B & C2) |
| 2415 | Value *A, *B; |
| 2416 | const APInt *C1, *C2; |
| 2417 | if (match(V: Op0, P: m_And(L: m_Value(V&: A), R: m_APInt(Res&: C1))) && |
| 2418 | match(V: Op1, P: m_And(L: m_Value(V&: B), R: m_APInt(Res&: C2)))) { |
| 2419 | if (*C1 == ~*C2) { |
| 2420 | // (A & C1)|(B & C2) |
| 2421 | // If we have: ((V + N) & C1) | (V & C2) |
| 2422 | // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 |
| 2423 | // replace with V+N. |
| 2424 | Value *N; |
| 2425 | if (C2->isMask() && // C2 == 0+1+ |
| 2426 | match(V: A, P: m_c_Add(L: m_Specific(V: B), R: m_Value(V&: N)))) { |
| 2427 | // Add commutes, try both ways. |
| 2428 | if (MaskedValueIsZero(V: N, Mask: *C2, SQ: Q)) |
| 2429 | return A; |
| 2430 | } |
| 2431 | // Or commutes, try both ways. |
| 2432 | if (C1->isMask() && match(V: B, P: m_c_Add(L: m_Specific(V: A), R: m_Value(V&: N)))) { |
| 2433 | // Add commutes, try both ways. |
| 2434 | if (MaskedValueIsZero(V: N, Mask: *C1, SQ: Q)) |
| 2435 | return B; |
| 2436 | } |
| 2437 | } |
| 2438 | } |
| 2439 | |
| 2440 | // If the operation is with the result of a phi instruction, check whether |
| 2441 | // operating on all incoming values of the phi always yields the same value. |
| 2442 | if (isa<PHINode>(Val: Op0) || isa<PHINode>(Val: Op1)) |
| 2443 | if (Value *V = threadBinOpOverPHI(Opcode: Instruction::Or, LHS: Op0, RHS: Op1, Q, MaxRecurse)) |
| 2444 | return V; |
| 2445 | |
| 2446 | // (A ^ C) | (A ^ ~C) -> -1, i.e. all bits set to one. |
| 2447 | if (match(V: Op0, P: m_Xor(L: m_Value(V&: A), R: m_APInt(Res&: C1))) && |
| 2448 | match(V: Op1, P: m_Xor(L: m_Specific(V: A), R: m_SpecificInt(V: ~*C1)))) |
| 2449 | return Constant::getAllOnesValue(Ty: Op0->getType()); |
| 2450 | |
| 2451 | if (Op0->getType()->isIntOrIntVectorTy(BitWidth: 1)) { |
| 2452 | if (std::optional<bool> Implied = |
| 2453 | isImpliedCondition(LHS: Op0, RHS: Op1, DL: Q.DL, LHSIsTrue: false)) { |
| 2454 | // If Op0 is false implies Op1 is false, then Op1 is a subset of Op0. |
| 2455 | if (*Implied == false) |
| 2456 | return Op0; |
| 2457 | // If Op0 is false implies Op1 is true, then at least one is always true. |
| 2458 | if (*Implied == true) |
| 2459 | return ConstantInt::getTrue(Ty: Op0->getType()); |
| 2460 | } |
| 2461 | if (std::optional<bool> Implied = |
| 2462 | isImpliedCondition(LHS: Op1, RHS: Op0, DL: Q.DL, LHSIsTrue: false)) { |
| 2463 | // If Op1 is false implies Op0 is false, then Op0 is a subset of Op1. |
| 2464 | if (*Implied == false) |
| 2465 | return Op1; |
| 2466 | // If Op1 is false implies Op0 is true, then at least one is always true. |
| 2467 | if (*Implied == true) |
| 2468 | return ConstantInt::getTrue(Ty: Op1->getType()); |
| 2469 | } |
| 2470 | } |
| 2471 | |
| 2472 | if (Value *V = simplifyByDomEq(Opcode: Instruction::Or, Op0, Op1, Q, MaxRecurse)) |
| 2473 | return V; |
| 2474 | |
| 2475 | return nullptr; |
| 2476 | } |
| 2477 | |
| 2478 | Value *llvm::simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { |
| 2479 | return ::simplifyOrInst(Op0, Op1, Q, MaxRecurse: RecursionLimit); |
| 2480 | } |
| 2481 | |
| 2482 | /// Given operands for a Xor, see if we can fold the result. |
| 2483 | /// If not, this returns null. |
| 2484 | static Value *simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, |
| 2485 | unsigned MaxRecurse) { |
| 2486 | if (Constant *C = foldOrCommuteConstant(Opcode: Instruction::Xor, Op0, Op1, Q)) |
| 2487 | return C; |
| 2488 | |
| 2489 | // X ^ poison -> poison |
| 2490 | if (isa<PoisonValue>(Val: Op1)) |
| 2491 | return Op1; |
| 2492 | |
| 2493 | // A ^ undef -> undef |
| 2494 | if (Q.isUndefValue(V: Op1)) |
| 2495 | return Op1; |
| 2496 | |
| 2497 | // A ^ 0 = A |
| 2498 | if (match(V: Op1, P: m_Zero())) |
| 2499 | return Op0; |
| 2500 | |
| 2501 | // A ^ A = 0 |
| 2502 | if (Op0 == Op1) |
| 2503 | return Constant::getNullValue(Ty: Op0->getType()); |
| 2504 | |
| 2505 | // A ^ ~A = ~A ^ A = -1 |
| 2506 | if (match(V: Op0, P: m_Not(V: m_Specific(V: Op1))) || match(V: Op1, P: m_Not(V: m_Specific(V: Op0)))) |
| 2507 | return Constant::getAllOnesValue(Ty: Op0->getType()); |
| 2508 | |
| 2509 | auto foldAndOrNot = [](Value *X, Value *Y) -> Value * { |
| 2510 | Value *A, *B; |
| 2511 | // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants. |
| 2512 | if (match(V: X, P: m_c_And(L: m_Not(V: m_Value(V&: A)), R: m_Value(V&: B))) && |
| 2513 | match(V: Y, P: m_c_Or(L: m_Specific(V: A), R: m_Specific(V: B)))) |
| 2514 | return A; |
| 2515 | |
| 2516 | // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants. |
| 2517 | // The 'not' op must contain a complete -1 operand (no undef elements for |
| 2518 | // vector) for the transform to be safe. |
| 2519 | Value *NotA; |
| 2520 | if (match(V: X, P: m_c_Or(L: m_CombineAnd(L: m_Not(V: m_Value(V&: A)), R: m_Value(V&: NotA)), |
| 2521 | R: m_Value(V&: B))) && |
| 2522 | match(V: Y, P: m_c_And(L: m_Specific(V: A), R: m_Specific(V: B)))) |
| 2523 | return NotA; |
| 2524 | |
| 2525 | return nullptr; |
| 2526 | }; |
| 2527 | if (Value *R = foldAndOrNot(Op0, Op1)) |
| 2528 | return R; |
| 2529 | if (Value *R = foldAndOrNot(Op1, Op0)) |
| 2530 | return R; |
| 2531 | |
| 2532 | if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Opcode: Instruction::Xor)) |
| 2533 | return V; |
| 2534 | |
| 2535 | // Try some generic simplifications for associative operations. |
| 2536 | if (Value *V = |
| 2537 | simplifyAssociativeBinOp(Opcode: Instruction::Xor, LHS: Op0, RHS: Op1, Q, MaxRecurse)) |
| 2538 | return V; |
| 2539 | |
| 2540 | // Threading Xor over selects and phi nodes is pointless, so don't bother. |
| 2541 | // Threading over the select in "A ^ select(cond, B, C)" means evaluating |
| 2542 | // "A^B" and "A^C" and seeing if they are equal; but they are equal if and |
| 2543 | // only if B and C are equal. If B and C are equal then (since we assume |
| 2544 | // that operands have already been simplified) "select(cond, B, C)" should |
| 2545 | // have been simplified to the common value of B and C already. Analysing |
| 2546 | // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly |
| 2547 | // for threading over phi nodes. |
| 2548 | |
| 2549 | if (Value *V = simplifyByDomEq(Opcode: Instruction::Xor, Op0, Op1, Q, MaxRecurse)) |
| 2550 | return V; |
| 2551 | |
| 2552 | // (xor (sub nuw C_Mask, X), C_Mask) -> X |
| 2553 | { |
| 2554 | Value *X; |
| 2555 | if (match(V: Op0, P: m_NUWSub(L: m_Specific(V: Op1), R: m_Value(V&: X))) && |
| 2556 | match(V: Op1, P: m_LowBitMask())) |
| 2557 | return X; |
| 2558 | } |
| 2559 | |
| 2560 | return nullptr; |
| 2561 | } |
| 2562 | |
| 2563 | Value *llvm::simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { |
| 2564 | return ::simplifyXorInst(Op0, Op1, Q, MaxRecurse: RecursionLimit); |
| 2565 | } |
| 2566 | |
| 2567 | static Type *getCompareTy(Value *Op) { |
| 2568 | return CmpInst::makeCmpResultType(opnd_type: Op->getType()); |
| 2569 | } |
| 2570 | |
| 2571 | /// Rummage around inside V looking for something equivalent to the comparison |
| 2572 | /// "LHS Pred RHS". Return such a value if found, otherwise return null. |
| 2573 | /// Helper function for analyzing max/min idioms. |
| 2574 | static Value *(Value *V, CmpPredicate Pred, |
| 2575 | Value *LHS, Value *RHS) { |
| 2576 | SelectInst *SI = dyn_cast<SelectInst>(Val: V); |
| 2577 | if (!SI) |
| 2578 | return nullptr; |
| 2579 | CmpInst *Cmp = dyn_cast<CmpInst>(Val: SI->getCondition()); |
| 2580 | if (!Cmp) |
| 2581 | return nullptr; |
| 2582 | Value *CmpLHS = Cmp->getOperand(i_nocapture: 0), *CmpRHS = Cmp->getOperand(i_nocapture: 1); |
| 2583 | if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) |
| 2584 | return Cmp; |
| 2585 | if (Pred == CmpInst::getSwappedPredicate(pred: Cmp->getPredicate()) && |
| 2586 | LHS == CmpRHS && RHS == CmpLHS) |
| 2587 | return Cmp; |
| 2588 | return nullptr; |
| 2589 | } |
| 2590 | |
| 2591 | /// Return true if the underlying object (storage) must be disjoint from |
| 2592 | /// storage returned by any noalias return call. |
| 2593 | static bool isAllocDisjoint(const Value *V) { |
| 2594 | // For allocas, we consider only static ones (dynamic |
| 2595 | // allocas might be transformed into calls to malloc not simultaneously |
| 2596 | // live with the compared-to allocation). For globals, we exclude symbols |
| 2597 | // that might be resolve lazily to symbols in another dynamically-loaded |
| 2598 | // library (and, thus, could be malloc'ed by the implementation). |
| 2599 | if (const AllocaInst *AI = dyn_cast<AllocaInst>(Val: V)) |
| 2600 | return AI->isStaticAlloca(); |
| 2601 | if (const GlobalValue *GV = dyn_cast<GlobalValue>(Val: V)) |
| 2602 | return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || |
| 2603 | GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && |
| 2604 | !GV->isThreadLocal(); |
| 2605 | if (const Argument *A = dyn_cast<Argument>(Val: V)) |
| 2606 | return A->hasByValAttr(); |
| 2607 | return false; |
| 2608 | } |
| 2609 | |
| 2610 | /// Return true if V1 and V2 are each the base of some distict storage region |
| 2611 | /// [V, object_size(V)] which do not overlap. Note that zero sized regions |
| 2612 | /// *are* possible, and that zero sized regions do not overlap with any other. |
| 2613 | static bool haveNonOverlappingStorage(const Value *V1, const Value *V2) { |
| 2614 | // Global variables always exist, so they always exist during the lifetime |
| 2615 | // of each other and all allocas. Global variables themselves usually have |
| 2616 | // non-overlapping storage, but since their addresses are constants, the |
| 2617 | // case involving two globals does not reach here and is instead handled in |
| 2618 | // constant folding. |
| 2619 | // |
| 2620 | // Two different allocas usually have different addresses... |
| 2621 | // |
| 2622 | // However, if there's an @llvm.stackrestore dynamically in between two |
| 2623 | // allocas, they may have the same address. It's tempting to reduce the |
| 2624 | // scope of the problem by only looking at *static* allocas here. That would |
| 2625 | // cover the majority of allocas while significantly reducing the likelihood |
| 2626 | // of having an @llvm.stackrestore pop up in the middle. However, it's not |
| 2627 | // actually impossible for an @llvm.stackrestore to pop up in the middle of |
| 2628 | // an entry block. Also, if we have a block that's not attached to a |
| 2629 | // function, we can't tell if it's "static" under the current definition. |
| 2630 | // Theoretically, this problem could be fixed by creating a new kind of |
| 2631 | // instruction kind specifically for static allocas. Such a new instruction |
| 2632 | // could be required to be at the top of the entry block, thus preventing it |
| 2633 | // from being subject to a @llvm.stackrestore. Instcombine could even |
| 2634 | // convert regular allocas into these special allocas. It'd be nifty. |
| 2635 | // However, until then, this problem remains open. |
| 2636 | // |
| 2637 | // So, we'll assume that two non-empty allocas have different addresses |
| 2638 | // for now. |
| 2639 | auto isByValArg = [](const Value *V) { |
| 2640 | const Argument *A = dyn_cast<Argument>(Val: V); |
| 2641 | return A && A->hasByValAttr(); |
| 2642 | }; |
| 2643 | |
| 2644 | // Byval args are backed by store which does not overlap with each other, |
| 2645 | // allocas, or globals. |
| 2646 | if (isByValArg(V1)) |
| 2647 | return isa<AllocaInst>(Val: V2) || isa<GlobalVariable>(Val: V2) || isByValArg(V2); |
| 2648 | if (isByValArg(V2)) |
| 2649 | return isa<AllocaInst>(Val: V1) || isa<GlobalVariable>(Val: V1) || isByValArg(V1); |
| 2650 | |
| 2651 | return isa<AllocaInst>(Val: V1) && |
| 2652 | (isa<AllocaInst>(Val: V2) || isa<GlobalVariable>(Val: V2)); |
| 2653 | } |
| 2654 | |
| 2655 | // A significant optimization not implemented here is assuming that alloca |
| 2656 | // addresses are not equal to incoming argument values. They don't *alias*, |
| 2657 | // as we say, but that doesn't mean they aren't equal, so we take a |
| 2658 | // conservative approach. |
| 2659 | // |
| 2660 | // This is inspired in part by C++11 5.10p1: |
| 2661 | // "Two pointers of the same type compare equal if and only if they are both |
| 2662 | // null, both point to the same function, or both represent the same |
| 2663 | // address." |
| 2664 | // |
| 2665 | // This is pretty permissive. |
| 2666 | // |
| 2667 | // It's also partly due to C11 6.5.9p6: |
| 2668 | // "Two pointers compare equal if and only if both are null pointers, both are |
| 2669 | // pointers to the same object (including a pointer to an object and a |
| 2670 | // subobject at its beginning) or function, both are pointers to one past the |
| 2671 | // last element of the same array object, or one is a pointer to one past the |
| 2672 | // end of one array object and the other is a pointer to the start of a |
| 2673 | // different array object that happens to immediately follow the first array |
| 2674 | // object in the address space.) |
| 2675 | // |
| 2676 | // C11's version is more restrictive, however there's no reason why an argument |
| 2677 | // couldn't be a one-past-the-end value for a stack object in the caller and be |
| 2678 | // equal to the beginning of a stack object in the callee. |
| 2679 | // |
| 2680 | // If the C and C++ standards are ever made sufficiently restrictive in this |
| 2681 | // area, it may be possible to update LLVM's semantics accordingly and reinstate |
| 2682 | // this optimization. |
| 2683 | static Constant *computePointerICmp(CmpPredicate Pred, Value *LHS, Value *RHS, |
| 2684 | const SimplifyQuery &Q) { |
| 2685 | assert(LHS->getType() == RHS->getType() && "Must have same types" ); |
| 2686 | const DataLayout &DL = Q.DL; |
| 2687 | const TargetLibraryInfo *TLI = Q.TLI; |
| 2688 | |
| 2689 | // We fold equality and unsigned predicates on pointer comparisons, but forbid |
| 2690 | // signed predicates since a GEP with inbounds could cross the sign boundary. |
| 2691 | if (CmpInst::isSigned(predicate: Pred)) |
| 2692 | return nullptr; |
| 2693 | |
| 2694 | // We have to switch to a signed predicate to handle negative indices from |
| 2695 | // the base pointer. |
| 2696 | Pred = ICmpInst::getSignedPredicate(Pred); |
| 2697 | |
| 2698 | // Strip off any constant offsets so that we can reason about them. |
| 2699 | // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets |
| 2700 | // here and compare base addresses like AliasAnalysis does, however there are |
| 2701 | // numerous hazards. AliasAnalysis and its utilities rely on special rules |
| 2702 | // governing loads and stores which don't apply to icmps. Also, AliasAnalysis |
| 2703 | // doesn't need to guarantee pointer inequality when it says NoAlias. |
| 2704 | |
| 2705 | // Even if an non-inbounds GEP occurs along the path we can still optimize |
| 2706 | // equality comparisons concerning the result. |
| 2707 | bool AllowNonInbounds = ICmpInst::isEquality(P: Pred); |
| 2708 | unsigned IndexSize = DL.getIndexTypeSizeInBits(Ty: LHS->getType()); |
| 2709 | APInt LHSOffset(IndexSize, 0), RHSOffset(IndexSize, 0); |
| 2710 | LHS = LHS->stripAndAccumulateConstantOffsets(DL, Offset&: LHSOffset, AllowNonInbounds); |
| 2711 | RHS = RHS->stripAndAccumulateConstantOffsets(DL, Offset&: RHSOffset, AllowNonInbounds); |
| 2712 | |
| 2713 | // If LHS and RHS are related via constant offsets to the same base |
| 2714 | // value, we can replace it with an icmp which just compares the offsets. |
| 2715 | if (LHS == RHS) |
| 2716 | return ConstantInt::get(Ty: getCompareTy(Op: LHS), |
| 2717 | V: ICmpInst::compare(LHS: LHSOffset, RHS: RHSOffset, Pred)); |
| 2718 | |
| 2719 | // Various optimizations for (in)equality comparisons. |
| 2720 | if (ICmpInst::isEquality(P: Pred)) { |
| 2721 | // Different non-empty allocations that exist at the same time have |
| 2722 | // different addresses (if the program can tell). If the offsets are |
| 2723 | // within the bounds of their allocations (and not one-past-the-end! |
| 2724 | // so we can't use inbounds!), and their allocations aren't the same, |
| 2725 | // the pointers are not equal. |
| 2726 | if (haveNonOverlappingStorage(V1: LHS, V2: RHS)) { |
| 2727 | uint64_t LHSSize, RHSSize; |
| 2728 | ObjectSizeOpts Opts; |
| 2729 | Opts.EvalMode = ObjectSizeOpts::Mode::Min; |
| 2730 | auto *F = [](Value *V) -> Function * { |
| 2731 | if (auto *I = dyn_cast<Instruction>(Val: V)) |
| 2732 | return I->getFunction(); |
| 2733 | if (auto *A = dyn_cast<Argument>(Val: V)) |
| 2734 | return A->getParent(); |
| 2735 | return nullptr; |
| 2736 | }(LHS); |
| 2737 | Opts.NullIsUnknownSize = F ? NullPointerIsDefined(F) : true; |
| 2738 | if (getObjectSize(Ptr: LHS, Size&: LHSSize, DL, TLI, Opts) && LHSSize != 0 && |
| 2739 | getObjectSize(Ptr: RHS, Size&: RHSSize, DL, TLI, Opts) && RHSSize != 0) { |
| 2740 | APInt Dist = LHSOffset - RHSOffset; |
| 2741 | if (Dist.isNonNegative() ? Dist.ult(RHS: LHSSize) : (-Dist).ult(RHS: RHSSize)) |
| 2742 | return ConstantInt::get(Ty: getCompareTy(Op: LHS), |
| 2743 | V: !CmpInst::isTrueWhenEqual(predicate: Pred)); |
| 2744 | } |
| 2745 | } |
| 2746 | |
| 2747 | // If one side of the equality comparison must come from a noalias call |
| 2748 | // (meaning a system memory allocation function), and the other side must |
| 2749 | // come from a pointer that cannot overlap with dynamically-allocated |
| 2750 | // memory within the lifetime of the current function (allocas, byval |
| 2751 | // arguments, globals), then determine the comparison result here. |
| 2752 | SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; |
| 2753 | getUnderlyingObjects(V: LHS, Objects&: LHSUObjs); |
| 2754 | getUnderlyingObjects(V: RHS, Objects&: RHSUObjs); |
| 2755 | |
| 2756 | // Is the set of underlying objects all noalias calls? |
| 2757 | auto IsNAC = [](ArrayRef<const Value *> Objects) { |
| 2758 | return all_of(Range&: Objects, P: isNoAliasCall); |
| 2759 | }; |
| 2760 | |
| 2761 | // Is the set of underlying objects all things which must be disjoint from |
| 2762 | // noalias calls. We assume that indexing from such disjoint storage |
| 2763 | // into the heap is undefined, and thus offsets can be safely ignored. |
| 2764 | auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { |
| 2765 | return all_of(Range&: Objects, P: ::isAllocDisjoint); |
| 2766 | }; |
| 2767 | |
| 2768 | if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || |
| 2769 | (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) |
| 2770 | return ConstantInt::get(Ty: getCompareTy(Op: LHS), |
| 2771 | V: !CmpInst::isTrueWhenEqual(predicate: Pred)); |
| 2772 | |
| 2773 | // Fold comparisons for non-escaping pointer even if the allocation call |
| 2774 | // cannot be elided. We cannot fold malloc comparison to null. Also, the |
| 2775 | // dynamic allocation call could be either of the operands. Note that |
| 2776 | // the other operand can not be based on the alloc - if it were, then |
| 2777 | // the cmp itself would be a capture. |
| 2778 | Value *MI = nullptr; |
| 2779 | if (isAllocLikeFn(V: LHS, TLI) && llvm::isKnownNonZero(V: RHS, Q)) |
| 2780 | MI = LHS; |
| 2781 | else if (isAllocLikeFn(V: RHS, TLI) && llvm::isKnownNonZero(V: LHS, Q)) |
| 2782 | MI = RHS; |
| 2783 | if (MI) { |
| 2784 | // FIXME: This is incorrect, see PR54002. While we can assume that the |
| 2785 | // allocation is at an address that makes the comparison false, this |
| 2786 | // requires that *all* comparisons to that address be false, which |
| 2787 | // InstSimplify cannot guarantee. |
| 2788 | struct CustomCaptureTracker : public CaptureTracker { |
| 2789 | bool Captured = false; |
| 2790 | void tooManyUses() override { Captured = true; } |
| 2791 | Action captured(const Use *U, UseCaptureInfo CI) override { |
| 2792 | // TODO(captures): Use UseCaptureInfo. |
| 2793 | if (auto *ICmp = dyn_cast<ICmpInst>(Val: U->getUser())) { |
| 2794 | // Comparison against value stored in global variable. Given the |
| 2795 | // pointer does not escape, its value cannot be guessed and stored |
| 2796 | // separately in a global variable. |
| 2797 | unsigned OtherIdx = 1 - U->getOperandNo(); |
| 2798 | auto *LI = dyn_cast<LoadInst>(Val: ICmp->getOperand(i_nocapture: OtherIdx)); |
| 2799 | if (LI && isa<GlobalVariable>(Val: LI->getPointerOperand())) |
| 2800 | return Continue; |
| 2801 | } |
| 2802 | |
| 2803 | Captured = true; |
| 2804 | return Stop; |
| 2805 | } |
| 2806 | }; |
| 2807 | CustomCaptureTracker Tracker; |
| 2808 | PointerMayBeCaptured(V: MI, Tracker: &Tracker); |
| 2809 | if (!Tracker.Captured) |
| 2810 | return ConstantInt::get(Ty: getCompareTy(Op: LHS), |
| 2811 | V: CmpInst::isFalseWhenEqual(predicate: Pred)); |
| 2812 | } |
| 2813 | } |
| 2814 | |
| 2815 | // Otherwise, fail. |
| 2816 | return nullptr; |
| 2817 | } |
| 2818 | |
| 2819 | /// Fold an icmp when its operands have i1 scalar type. |
| 2820 | static Value *simplifyICmpOfBools(CmpPredicate Pred, Value *LHS, Value *RHS, |
| 2821 | const SimplifyQuery &Q) { |
| 2822 | Type *ITy = getCompareTy(Op: LHS); // The return type. |
| 2823 | Type *OpTy = LHS->getType(); // The operand type. |
| 2824 | if (!OpTy->isIntOrIntVectorTy(BitWidth: 1)) |
| 2825 | return nullptr; |
| 2826 | |
| 2827 | // A boolean compared to true/false can be reduced in 14 out of the 20 |
| 2828 | // (10 predicates * 2 constants) possible combinations. The other |
| 2829 | // 6 cases require a 'not' of the LHS. |
| 2830 | |
| 2831 | auto = [](Value *V) -> Value * { |
| 2832 | Value *X; |
| 2833 | if (match(V, P: m_Not(V: m_Value(V&: X)))) |
| 2834 | return X; |
| 2835 | return nullptr; |
| 2836 | }; |
| 2837 | |
| 2838 | if (match(V: RHS, P: m_Zero())) { |
| 2839 | switch (Pred) { |
| 2840 | case CmpInst::ICMP_NE: // X != 0 -> X |
| 2841 | case CmpInst::ICMP_UGT: // X >u 0 -> X |
| 2842 | case CmpInst::ICMP_SLT: // X <s 0 -> X |
| 2843 | return LHS; |
| 2844 | |
| 2845 | case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X |
| 2846 | case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X |
| 2847 | case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X |
| 2848 | if (Value *X = ExtractNotLHS(LHS)) |
| 2849 | return X; |
| 2850 | break; |
| 2851 | |
| 2852 | case CmpInst::ICMP_ULT: // X <u 0 -> false |
| 2853 | case CmpInst::ICMP_SGT: // X >s 0 -> false |
| 2854 | return getFalse(Ty: ITy); |
| 2855 | |
| 2856 | case CmpInst::ICMP_UGE: // X >=u 0 -> true |
| 2857 | case CmpInst::ICMP_SLE: // X <=s 0 -> true |
| 2858 | return getTrue(Ty: ITy); |
| 2859 | |
| 2860 | default: |
| 2861 | break; |
| 2862 | } |
| 2863 | } else if (match(V: RHS, P: m_One())) { |
| 2864 | switch (Pred) { |
| 2865 | case CmpInst::ICMP_EQ: // X == 1 -> X |
| 2866 | case CmpInst::ICMP_UGE: // X >=u 1 -> X |
| 2867 | case CmpInst::ICMP_SLE: // X <=s -1 -> X |
| 2868 | return LHS; |
| 2869 | |
| 2870 | case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X |
| 2871 | case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X |
| 2872 | case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X |
| 2873 | if (Value *X = ExtractNotLHS(LHS)) |
| 2874 | return X; |
| 2875 | break; |
| 2876 | |
| 2877 | case CmpInst::ICMP_UGT: // X >u 1 -> false |
| 2878 | case CmpInst::ICMP_SLT: // X <s -1 -> false |
| 2879 | return getFalse(Ty: ITy); |
| 2880 | |
| 2881 | case CmpInst::ICMP_ULE: // X <=u 1 -> true |
| 2882 | case CmpInst::ICMP_SGE: // X >=s -1 -> true |
| 2883 | return getTrue(Ty: ITy); |
| 2884 | |
| 2885 | default: |
| 2886 | break; |
| 2887 | } |
| 2888 | } |
| 2889 | |
| 2890 | switch (Pred) { |
| 2891 | default: |
| 2892 | break; |
| 2893 | case ICmpInst::ICMP_UGE: |
| 2894 | if (isImpliedCondition(LHS: RHS, RHS: LHS, DL: Q.DL).value_or(u: false)) |
| 2895 | return getTrue(Ty: ITy); |
| 2896 | break; |
| 2897 | case ICmpInst::ICMP_SGE: |
| 2898 | /// For signed comparison, the values for an i1 are 0 and -1 |
| 2899 | /// respectively. This maps into a truth table of: |
| 2900 | /// LHS | RHS | LHS >=s RHS | LHS implies RHS |
| 2901 | /// 0 | 0 | 1 (0 >= 0) | 1 |
| 2902 | /// 0 | 1 | 1 (0 >= -1) | 1 |
| 2903 | /// 1 | 0 | 0 (-1 >= 0) | 0 |
| 2904 | /// 1 | 1 | 1 (-1 >= -1) | 1 |
| 2905 | if (isImpliedCondition(LHS, RHS, DL: Q.DL).value_or(u: false)) |
| 2906 | return getTrue(Ty: ITy); |
| 2907 | break; |
| 2908 | case ICmpInst::ICMP_ULE: |
| 2909 | if (isImpliedCondition(LHS, RHS, DL: Q.DL).value_or(u: false)) |
| 2910 | return getTrue(Ty: ITy); |
| 2911 | break; |
| 2912 | case ICmpInst::ICMP_SLE: |
| 2913 | /// SLE follows the same logic as SGE with the LHS and RHS swapped. |
| 2914 | if (isImpliedCondition(LHS: RHS, RHS: LHS, DL: Q.DL).value_or(u: false)) |
| 2915 | return getTrue(Ty: ITy); |
| 2916 | break; |
| 2917 | } |
| 2918 | |
| 2919 | return nullptr; |
| 2920 | } |
| 2921 | |
| 2922 | /// Try hard to fold icmp with zero RHS because this is a common case. |
| 2923 | static Value *simplifyICmpWithZero(CmpPredicate Pred, Value *LHS, Value *RHS, |
| 2924 | const SimplifyQuery &Q) { |
| 2925 | if (!match(V: RHS, P: m_Zero())) |
| 2926 | return nullptr; |
| 2927 | |
| 2928 | Type *ITy = getCompareTy(Op: LHS); // The return type. |
| 2929 | switch (Pred) { |
| 2930 | default: |
| 2931 | llvm_unreachable("Unknown ICmp predicate!" ); |
| 2932 | case ICmpInst::ICMP_ULT: |
| 2933 | return getFalse(Ty: ITy); |
| 2934 | case ICmpInst::ICMP_UGE: |
| 2935 | return getTrue(Ty: ITy); |
| 2936 | case ICmpInst::ICMP_EQ: |
| 2937 | case ICmpInst::ICMP_ULE: |
| 2938 | if (isKnownNonZero(V: LHS, Q)) |
| 2939 | return getFalse(Ty: ITy); |
| 2940 | break; |
| 2941 | case ICmpInst::ICMP_NE: |
| 2942 | case ICmpInst::ICMP_UGT: |
| 2943 | if (isKnownNonZero(V: LHS, Q)) |
| 2944 | return getTrue(Ty: ITy); |
| 2945 | break; |
| 2946 | case ICmpInst::ICMP_SLT: { |
| 2947 | KnownBits LHSKnown = computeKnownBits(V: LHS, Q); |
| 2948 | if (LHSKnown.isNegative()) |
| 2949 | return getTrue(Ty: ITy); |
| 2950 | if (LHSKnown.isNonNegative()) |
| 2951 | return getFalse(Ty: ITy); |
| 2952 | break; |
| 2953 | } |
| 2954 | case ICmpInst::ICMP_SLE: { |
| 2955 | KnownBits LHSKnown = computeKnownBits(V: LHS, Q); |
| 2956 | if (LHSKnown.isNegative()) |
| 2957 | return getTrue(Ty: ITy); |
| 2958 | if (LHSKnown.isNonNegative() && isKnownNonZero(V: LHS, Q)) |
| 2959 | return getFalse(Ty: ITy); |
| 2960 | break; |
| 2961 | } |
| 2962 | case ICmpInst::ICMP_SGE: { |
| 2963 | KnownBits LHSKnown = computeKnownBits(V: LHS, Q); |
| 2964 | if (LHSKnown.isNegative()) |
| 2965 | return getFalse(Ty: ITy); |
| 2966 | if (LHSKnown.isNonNegative()) |
| 2967 | return getTrue(Ty: ITy); |
| 2968 | break; |
| 2969 | } |
| 2970 | case ICmpInst::ICMP_SGT: { |
| 2971 | KnownBits LHSKnown = computeKnownBits(V: LHS, Q); |
| 2972 | if (LHSKnown.isNegative()) |
| 2973 | return getFalse(Ty: ITy); |
| 2974 | if (LHSKnown.isNonNegative() && isKnownNonZero(V: LHS, Q)) |
| 2975 | return getTrue(Ty: ITy); |
| 2976 | break; |
| 2977 | } |
| 2978 | } |
| 2979 | |
| 2980 | return nullptr; |
| 2981 | } |
| 2982 | |
| 2983 | static Value *simplifyICmpWithConstant(CmpPredicate Pred, Value *LHS, |
| 2984 | Value *RHS, const SimplifyQuery &Q) { |
| 2985 | Type *ITy = getCompareTy(Op: RHS); // The return type. |
| 2986 | |
| 2987 | Value *X; |
| 2988 | const APInt *C; |
| 2989 | if (!match(V: RHS, P: m_APIntAllowPoison(Res&: C))) |
| 2990 | return nullptr; |
| 2991 | |
| 2992 | // Sign-bit checks can be optimized to true/false after unsigned |
| 2993 | // floating-point casts: |
| 2994 | // icmp slt (bitcast (uitofp X)), 0 --> false |
| 2995 | // icmp sgt (bitcast (uitofp X)), -1 --> true |
| 2996 | if (match(V: LHS, P: m_ElementWiseBitCast(Op: m_UIToFP(Op: m_Value(V&: X))))) { |
| 2997 | bool TrueIfSigned; |
| 2998 | if (isSignBitCheck(Pred, RHS: *C, TrueIfSigned)) |
| 2999 | return ConstantInt::getBool(Ty: ITy, V: !TrueIfSigned); |
| 3000 | } |
| 3001 | |
| 3002 | // Rule out tautological comparisons (eg., ult 0 or uge 0). |
| 3003 | ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, Other: *C); |
| 3004 | if (RHS_CR.isEmptySet()) |
| 3005 | return ConstantInt::getFalse(Ty: ITy); |
| 3006 | if (RHS_CR.isFullSet()) |
| 3007 | return ConstantInt::getTrue(Ty: ITy); |
| 3008 | |
| 3009 | ConstantRange LHS_CR = |
| 3010 | computeConstantRange(V: LHS, ForSigned: CmpInst::isSigned(predicate: Pred), UseInstrInfo: Q.IIQ.UseInstrInfo); |
| 3011 | if (!LHS_CR.isFullSet()) { |
| 3012 | if (RHS_CR.contains(CR: LHS_CR)) |
| 3013 | return ConstantInt::getTrue(Ty: ITy); |
| 3014 | if (RHS_CR.inverse().contains(CR: LHS_CR)) |
| 3015 | return ConstantInt::getFalse(Ty: ITy); |
| 3016 | } |
| 3017 | |
| 3018 | // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) |
| 3019 | // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) |
| 3020 | const APInt *MulC; |
| 3021 | if (Q.IIQ.UseInstrInfo && ICmpInst::isEquality(P: Pred) && |
| 3022 | ((match(V: LHS, P: m_NUWMul(L: m_Value(), R: m_APIntAllowPoison(Res&: MulC))) && |
| 3023 | *MulC != 0 && C->urem(RHS: *MulC) != 0) || |
| 3024 | (match(V: LHS, P: m_NSWMul(L: m_Value(), R: m_APIntAllowPoison(Res&: MulC))) && |
| 3025 | *MulC != 0 && C->srem(RHS: *MulC) != 0))) |
| 3026 | return ConstantInt::get(Ty: ITy, V: Pred == ICmpInst::ICMP_NE); |
| 3027 | |
| 3028 | if (Pred == ICmpInst::ICMP_UGE && C->isOne() && isKnownNonZero(V: LHS, Q)) |
| 3029 | return ConstantInt::getTrue(Ty: ITy); |
| 3030 | |
| 3031 | return nullptr; |
| 3032 | } |
| 3033 | |
| 3034 | enum class MonotonicType { GreaterEq, LowerEq }; |
| 3035 | |
| 3036 | /// Get values V_i such that V uge V_i (GreaterEq) or V ule V_i (LowerEq). |
| 3037 | static void getUnsignedMonotonicValues(SmallPtrSetImpl<Value *> &Res, Value *V, |
| 3038 | MonotonicType Type, |
| 3039 | const SimplifyQuery &Q, |
| 3040 | unsigned Depth = 0) { |
| 3041 | if (!Res.insert(Ptr: V).second) |
| 3042 | return; |
| 3043 | |
| 3044 | // Can be increased if useful. |
| 3045 | if (++Depth > 1) |
| 3046 | return; |
| 3047 | |
| 3048 | auto *I = dyn_cast<Instruction>(Val: V); |
| 3049 | if (!I) |
| 3050 | return; |
| 3051 | |
| 3052 | Value *X, *Y; |
| 3053 | if (Type == MonotonicType::GreaterEq) { |
| 3054 | if (match(V: I, P: m_Or(L: m_Value(V&: X), R: m_Value(V&: Y))) || |
| 3055 | match(V: I, P: m_Intrinsic<Intrinsic::uadd_sat>(Op0: m_Value(V&: X), Op1: m_Value(V&: Y)))) { |
| 3056 | getUnsignedMonotonicValues(Res, V: X, Type, Q, Depth); |
| 3057 | getUnsignedMonotonicValues(Res, V: Y, Type, Q, Depth); |
| 3058 | } |
| 3059 | // X * Y >= X --> true |
| 3060 | if (match(V: I, P: m_NUWMul(L: m_Value(V&: X), R: m_Value(V&: Y)))) { |
| 3061 | if (isKnownNonZero(V: X, Q)) |
| 3062 | getUnsignedMonotonicValues(Res, V: Y, Type, Q, Depth); |
| 3063 | if (isKnownNonZero(V: Y, Q)) |
| 3064 | getUnsignedMonotonicValues(Res, V: X, Type, Q, Depth); |
| 3065 | } |
| 3066 | } else { |
| 3067 | assert(Type == MonotonicType::LowerEq); |
| 3068 | switch (I->getOpcode()) { |
| 3069 | case Instruction::And: |
| 3070 | getUnsignedMonotonicValues(Res, V: I->getOperand(i: 0), Type, Q, Depth); |
| 3071 | getUnsignedMonotonicValues(Res, V: I->getOperand(i: 1), Type, Q, Depth); |
| 3072 | break; |
| 3073 | case Instruction::URem: |
| 3074 | case Instruction::UDiv: |
| 3075 | case Instruction::LShr: |
| 3076 | getUnsignedMonotonicValues(Res, V: I->getOperand(i: 0), Type, Q, Depth); |
| 3077 | break; |
| 3078 | case Instruction::Call: |
| 3079 | if (match(V: I, P: m_Intrinsic<Intrinsic::usub_sat>(Op0: m_Value(V&: X)))) |
| 3080 | getUnsignedMonotonicValues(Res, V: X, Type, Q, Depth); |
| 3081 | break; |
| 3082 | default: |
| 3083 | break; |
| 3084 | } |
| 3085 | } |
| 3086 | } |
| 3087 | |
| 3088 | static Value *simplifyICmpUsingMonotonicValues(CmpPredicate Pred, Value *LHS, |
| 3089 | Value *RHS, |
| 3090 | const SimplifyQuery &Q) { |
| 3091 | if (Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_ULT) |
| 3092 | return nullptr; |
| 3093 | |
| 3094 | // We have LHS uge GreaterValues and LowerValues uge RHS. If any of the |
| 3095 | // GreaterValues and LowerValues are the same, it follows that LHS uge RHS. |
| 3096 | SmallPtrSet<Value *, 4> GreaterValues; |
| 3097 | SmallPtrSet<Value *, 4> LowerValues; |
| 3098 | getUnsignedMonotonicValues(Res&: GreaterValues, V: LHS, Type: MonotonicType::GreaterEq, Q); |
| 3099 | getUnsignedMonotonicValues(Res&: LowerValues, V: RHS, Type: MonotonicType::LowerEq, Q); |
| 3100 | for (Value *GV : GreaterValues) |
| 3101 | if (LowerValues.contains(Ptr: GV)) |
| 3102 | return ConstantInt::getBool(Ty: getCompareTy(Op: LHS), |
| 3103 | V: Pred == ICmpInst::ICMP_UGE); |
| 3104 | return nullptr; |
| 3105 | } |
| 3106 | |
| 3107 | static Value *simplifyICmpWithBinOpOnLHS(CmpPredicate Pred, BinaryOperator *LBO, |
| 3108 | Value *RHS, const SimplifyQuery &Q, |
| 3109 | unsigned MaxRecurse) { |
| 3110 | Type *ITy = getCompareTy(Op: RHS); // The return type. |
| 3111 | |
| 3112 | Value *Y = nullptr; |
| 3113 | // icmp pred (or X, Y), X |
| 3114 | if (match(V: LBO, P: m_c_Or(L: m_Value(V&: Y), R: m_Specific(V: RHS)))) { |
| 3115 | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { |
| 3116 | KnownBits RHSKnown = computeKnownBits(V: RHS, Q); |
| 3117 | KnownBits YKnown = computeKnownBits(V: Y, Q); |
| 3118 | if (RHSKnown.isNonNegative() && YKnown.isNegative()) |
| 3119 | return Pred == ICmpInst::ICMP_SLT ? getTrue(Ty: ITy) : getFalse(Ty: ITy); |
| 3120 | if (RHSKnown.isNegative() || YKnown.isNonNegative()) |
| 3121 | return Pred == ICmpInst::ICMP_SLT ? getFalse(Ty: ITy) : getTrue(Ty: ITy); |
| 3122 | } |
| 3123 | } |
| 3124 | |
| 3125 | // icmp pred (urem X, Y), Y |
| 3126 | if (match(V: LBO, P: m_URem(L: m_Value(), R: m_Specific(V: RHS)))) { |
| 3127 | switch (Pred) { |
| 3128 | default: |
| 3129 | break; |
| 3130 | case ICmpInst::ICMP_SGT: |
| 3131 | case ICmpInst::ICMP_SGE: { |
| 3132 | KnownBits Known = computeKnownBits(V: RHS, Q); |
| 3133 | if (!Known.isNonNegative()) |
| 3134 | break; |
| 3135 | [[fallthrough]]; |
| 3136 | } |
| 3137 | case ICmpInst::ICMP_EQ: |
| 3138 | case ICmpInst::ICMP_UGT: |
| 3139 | case ICmpInst::ICMP_UGE: |
| 3140 | return getFalse(Ty: ITy); |
| 3141 | case ICmpInst::ICMP_SLT: |
| 3142 | case ICmpInst::ICMP_SLE: { |
| 3143 | KnownBits Known = computeKnownBits(V: RHS, Q); |
| 3144 | if (!Known.isNonNegative()) |
| 3145 | break; |
| 3146 | [[fallthrough]]; |
| 3147 | } |
| 3148 | case ICmpInst::ICMP_NE: |
| 3149 | case ICmpInst::ICMP_ULT: |
| 3150 | case ICmpInst::ICMP_ULE: |
| 3151 | return getTrue(Ty: ITy); |
| 3152 | } |
| 3153 | } |
| 3154 | |
| 3155 | // If x is nonzero: |
| 3156 | // x >>u C <u x --> true for C != 0. |
| 3157 | // x >>u C != x --> true for C != 0. |
| 3158 | // x >>u C >=u x --> false for C != 0. |
| 3159 | // x >>u C == x --> false for C != 0. |
| 3160 | // x udiv C <u x --> true for C != 1. |
| 3161 | // x udiv C != x --> true for C != 1. |
| 3162 | // x udiv C >=u x --> false for C != 1. |
| 3163 | // x udiv C == x --> false for C != 1. |
| 3164 | // TODO: allow non-constant shift amount/divisor |
| 3165 | const APInt *C; |
| 3166 | if ((match(V: LBO, P: m_LShr(L: m_Specific(V: RHS), R: m_APInt(Res&: C))) && *C != 0) || |
| 3167 | (match(V: LBO, P: m_UDiv(L: m_Specific(V: RHS), R: m_APInt(Res&: C))) && *C != 1)) { |
| 3168 | if (isKnownNonZero(V: RHS, Q)) { |
| 3169 | switch (Pred) { |
| 3170 | default: |
| 3171 | break; |
| 3172 | case ICmpInst::ICMP_EQ: |
| 3173 | case ICmpInst::ICMP_UGE: |
| 3174 | case ICmpInst::ICMP_UGT: |
| 3175 | return getFalse(Ty: ITy); |
| 3176 | case ICmpInst::ICMP_NE: |
| 3177 | case ICmpInst::ICMP_ULT: |
| 3178 | case ICmpInst::ICMP_ULE: |
| 3179 | return getTrue(Ty: ITy); |
| 3180 | } |
| 3181 | } |
| 3182 | } |
| 3183 | |
| 3184 | // (x*C1)/C2 <= x for C1 <= C2. |
| 3185 | // This holds even if the multiplication overflows: Assume that x != 0 and |
| 3186 | // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and |
| 3187 | // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. |
| 3188 | // |
| 3189 | // Additionally, either the multiplication and division might be represented |
| 3190 | // as shifts: |
| 3191 | // (x*C1)>>C2 <= x for C1 < 2**C2. |
| 3192 | // (x<<C1)/C2 <= x for 2**C1 < C2. |
| 3193 | const APInt *C1, *C2; |
| 3194 | if ((match(V: LBO, P: m_UDiv(L: m_Mul(L: m_Specific(V: RHS), R: m_APInt(Res&: C1)), R: m_APInt(Res&: C2))) && |
| 3195 | C1->ule(RHS: *C2)) || |
| 3196 | (match(V: LBO, P: m_LShr(L: m_Mul(L: m_Specific(V: RHS), R: m_APInt(Res&: C1)), R: m_APInt(Res&: C2))) && |
| 3197 | C1->ule(RHS: APInt(C2->getBitWidth(), 1) << *C2)) || |
| 3198 | (match(V: LBO, P: m_UDiv(L: m_Shl(L: m_Specific(V: RHS), R: m_APInt(Res&: C1)), R: m_APInt(Res&: C2))) && |
| 3199 | (APInt(C1->getBitWidth(), 1) << *C1).ule(RHS: *C2))) { |
| 3200 | if (Pred == ICmpInst::ICMP_UGT) |
| 3201 | return getFalse(Ty: ITy); |
| 3202 | if (Pred == ICmpInst::ICMP_ULE) |
| 3203 | return getTrue(Ty: ITy); |
| 3204 | } |
| 3205 | |
| 3206 | // (sub C, X) == X, C is odd --> false |
| 3207 | // (sub C, X) != X, C is odd --> true |
| 3208 | if (match(V: LBO, P: m_Sub(L: m_APIntAllowPoison(Res&: C), R: m_Specific(V: RHS))) && |
| 3209 | (*C & 1) == 1 && ICmpInst::isEquality(P: Pred)) |
| 3210 | return (Pred == ICmpInst::ICMP_EQ) ? getFalse(Ty: ITy) : getTrue(Ty: ITy); |
| 3211 | |
| 3212 | return nullptr; |
| 3213 | } |
| 3214 | |
| 3215 | // If only one of the icmp's operands has NSW flags, try to prove that: |
| 3216 | // |
| 3217 | // icmp slt (x + C1), (x +nsw C2) |
| 3218 | // |
| 3219 | // is equivalent to: |
| 3220 | // |
| 3221 | // icmp slt C1, C2 |
| 3222 | // |
| 3223 | // which is true if x + C2 has the NSW flags set and: |
| 3224 | // *) C1 < C2 && C1 >= 0, or |
| 3225 | // *) C2 < C1 && C1 <= 0. |
| 3226 | // |
| 3227 | static bool trySimplifyICmpWithAdds(CmpPredicate Pred, Value *LHS, Value *RHS, |
| 3228 | const InstrInfoQuery &IIQ) { |
| 3229 | // TODO: only support icmp slt for now. |
| 3230 | if (Pred != CmpInst::ICMP_SLT || !IIQ.UseInstrInfo) |
| 3231 | return false; |
| 3232 | |
| 3233 | // Canonicalize nsw add as RHS. |
| 3234 | if (!match(V: RHS, P: m_NSWAdd(L: m_Value(), R: m_Value()))) |
| 3235 | std::swap(a&: LHS, b&: RHS); |
| 3236 | if (!match(V: RHS, P: m_NSWAdd(L: m_Value(), R: m_Value()))) |
| 3237 | return false; |
| 3238 | |
| 3239 | Value *X; |
| 3240 | const APInt *C1, *C2; |
| 3241 | if (!match(V: LHS, P: m_Add(L: m_Value(V&: X), R: m_APInt(Res&: C1))) || |
| 3242 | !match(V: RHS, P: m_Add(L: m_Specific(V: X), R: m_APInt(Res&: C2)))) |
| 3243 | return false; |
| 3244 | |
| 3245 | return (C1->slt(RHS: *C2) && C1->isNonNegative()) || |
| 3246 | (C2->slt(RHS: *C1) && C1->isNonPositive()); |
| 3247 | } |
| 3248 | |
| 3249 | /// TODO: A large part of this logic is duplicated in InstCombine's |
| 3250 | /// foldICmpBinOp(). We should be able to share that and avoid the code |
| 3251 | /// duplication. |
| 3252 | static Value *simplifyICmpWithBinOp(CmpPredicate Pred, Value *LHS, Value *RHS, |
| 3253 | const SimplifyQuery &Q, |
| 3254 | unsigned MaxRecurse) { |
| 3255 | BinaryOperator *LBO = dyn_cast<BinaryOperator>(Val: LHS); |
| 3256 | BinaryOperator *RBO = dyn_cast<BinaryOperator>(Val: RHS); |
| 3257 | if (MaxRecurse && (LBO || RBO)) { |
| 3258 | // Analyze the case when either LHS or RHS is an add instruction. |
| 3259 | Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; |
| 3260 | // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). |
| 3261 | bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; |
| 3262 | if (LBO && LBO->getOpcode() == Instruction::Add) { |
| 3263 | A = LBO->getOperand(i_nocapture: 0); |
| 3264 | B = LBO->getOperand(i_nocapture: 1); |
| 3265 | NoLHSWrapProblem = |
| 3266 | ICmpInst::isEquality(P: Pred) || |
| 3267 | (CmpInst::isUnsigned(predicate: Pred) && |
| 3268 | Q.IIQ.hasNoUnsignedWrap(Op: cast<OverflowingBinaryOperator>(Val: LBO))) || |
| 3269 | (CmpInst::isSigned(predicate: Pred) && |
| 3270 | Q.IIQ.hasNoSignedWrap(Op: cast<OverflowingBinaryOperator>(Val: LBO))); |
| 3271 | } |
| 3272 | if (RBO && RBO->getOpcode() == Instruction::Add) { |
| 3273 | C = RBO->getOperand(i_nocapture: 0); |
| 3274 | D = RBO->getOperand(i_nocapture: 1); |
| 3275 | NoRHSWrapProblem = |
| 3276 | ICmpInst::isEquality(P: Pred) || |
| 3277 | (CmpInst::isUnsigned(predicate: Pred) && |
| 3278 | Q.IIQ.hasNoUnsignedWrap(Op: cast<OverflowingBinaryOperator>(Val: RBO))) || |
| 3279 | (CmpInst::isSigned(predicate: Pred) && |
| 3280 | Q.IIQ.hasNoSignedWrap(Op: cast<OverflowingBinaryOperator>(Val: RBO))); |
| 3281 | } |
| 3282 | |
| 3283 | // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. |
| 3284 | if ((A == RHS || B == RHS) && NoLHSWrapProblem) |
| 3285 | if (Value *V = simplifyICmpInst(Predicate: Pred, LHS: A == RHS ? B : A, |
| 3286 | RHS: Constant::getNullValue(Ty: RHS->getType()), Q, |
| 3287 | MaxRecurse: MaxRecurse - 1)) |
| 3288 | return V; |
| 3289 | |
| 3290 | // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. |
| 3291 | if ((C == LHS || D == LHS) && NoRHSWrapProblem) |
| 3292 | if (Value *V = |
| 3293 | simplifyICmpInst(Predicate: Pred, LHS: Constant::getNullValue(Ty: LHS->getType()), |
| 3294 | RHS: C == LHS ? D : C, Q, MaxRecurse: MaxRecurse - 1)) |
| 3295 | return V; |
| 3296 | |
| 3297 | // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. |
| 3298 | bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || |
| 3299 | trySimplifyICmpWithAdds(Pred, LHS, RHS, IIQ: Q.IIQ); |
| 3300 | if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { |
| 3301 | // Determine Y and Z in the form icmp (X+Y), (X+Z). |
| 3302 | Value *Y, *Z; |
| 3303 | if (A == C) { |
| 3304 | // C + B == C + D -> B == D |
| 3305 | Y = B; |
| 3306 | Z = D; |
| 3307 | } else if (A == D) { |
| 3308 | // D + B == C + D -> B == C |
| 3309 | Y = B; |
| 3310 | Z = C; |
| 3311 | } else if (B == C) { |
| 3312 | // A + C == C + D -> A == D |
| 3313 | Y = A; |
| 3314 | Z = D; |
| 3315 | } else { |
| 3316 | assert(B == D); |
| 3317 | // A + D == C + D -> A == C |
| 3318 | Y = A; |
| 3319 | Z = C; |
| 3320 | } |
| 3321 | if (Value *V = simplifyICmpInst(Predicate: Pred, LHS: Y, RHS: Z, Q, MaxRecurse: MaxRecurse - 1)) |
| 3322 | return V; |
| 3323 | } |
| 3324 | } |
| 3325 | |
| 3326 | if (LBO) |
| 3327 | if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) |
| 3328 | return V; |
| 3329 | |
| 3330 | if (RBO) |
| 3331 | if (Value *V = simplifyICmpWithBinOpOnLHS( |
| 3332 | Pred: ICmpInst::getSwappedPredicate(pred: Pred), LBO: RBO, RHS: LHS, Q, MaxRecurse)) |
| 3333 | return V; |
| 3334 | |
| 3335 | // 0 - (zext X) pred C |
| 3336 | if (!CmpInst::isUnsigned(predicate: Pred) && match(V: LHS, P: m_Neg(V: m_ZExt(Op: m_Value())))) { |
| 3337 | const APInt *C; |
| 3338 | if (match(V: RHS, P: m_APInt(Res&: C))) { |
| 3339 | if (C->isStrictlyPositive()) { |
| 3340 | if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) |
| 3341 | return ConstantInt::getTrue(Ty: getCompareTy(Op: RHS)); |
| 3342 | if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) |
| 3343 | return ConstantInt::getFalse(Ty: getCompareTy(Op: RHS)); |
| 3344 | } |
| 3345 | if (C->isNonNegative()) { |
| 3346 | if (Pred == ICmpInst::ICMP_SLE) |
| 3347 | return ConstantInt::getTrue(Ty: getCompareTy(Op: RHS)); |
| 3348 | if (Pred == ICmpInst::ICMP_SGT) |
| 3349 | return ConstantInt::getFalse(Ty: getCompareTy(Op: RHS)); |
| 3350 | } |
| 3351 | } |
| 3352 | } |
| 3353 | |
| 3354 | // If C2 is a power-of-2 and C is not: |
| 3355 | // (C2 << X) == C --> false |
| 3356 | // (C2 << X) != C --> true |
| 3357 | const APInt *C; |
| 3358 | if (match(V: LHS, P: m_Shl(L: m_Power2(), R: m_Value())) && |
| 3359 | match(V: RHS, P: m_APIntAllowPoison(Res&: C)) && !C->isPowerOf2()) { |
| 3360 | // C2 << X can equal zero in some circumstances. |
| 3361 | // This simplification might be unsafe if C is zero. |
| 3362 | // |
| 3363 | // We know it is safe if: |
| 3364 | // - The shift is nsw. We can't shift out the one bit. |
| 3365 | // - The shift is nuw. We can't shift out the one bit. |
| 3366 | // - C2 is one. |
| 3367 | // - C isn't zero. |
| 3368 | if (Q.IIQ.hasNoSignedWrap(Op: cast<OverflowingBinaryOperator>(Val: LBO)) || |
| 3369 | Q.IIQ.hasNoUnsignedWrap(Op: cast<OverflowingBinaryOperator>(Val: LBO)) || |
| 3370 | match(V: LHS, P: m_Shl(L: m_One(), R: m_Value())) || !C->isZero()) { |
| 3371 | if (Pred == ICmpInst::ICMP_EQ) |
| 3372 | return ConstantInt::getFalse(Ty: getCompareTy(Op: RHS)); |
| 3373 | if (Pred == ICmpInst::ICMP_NE) |
| 3374 | return ConstantInt::getTrue(Ty: getCompareTy(Op: RHS)); |
| 3375 | } |
| 3376 | } |
| 3377 | |
| 3378 | // If C is a power-of-2: |
| 3379 | // (C << X) >u 0x8000 --> false |
| 3380 | // (C << X) <=u 0x8000 --> true |
| 3381 | if (match(V: LHS, P: m_Shl(L: m_Power2(), R: m_Value())) && match(V: RHS, P: m_SignMask())) { |
| 3382 | if (Pred == ICmpInst::ICMP_UGT) |
| 3383 | return ConstantInt::getFalse(Ty: getCompareTy(Op: RHS)); |
| 3384 | if (Pred == ICmpInst::ICMP_ULE) |
| 3385 | return ConstantInt::getTrue(Ty: getCompareTy(Op: RHS)); |
| 3386 | } |
| 3387 | |
| 3388 | if (!MaxRecurse || !LBO || !RBO || LBO->getOpcode() != RBO->getOpcode()) |
| 3389 | return nullptr; |
| 3390 | |
| 3391 | if (LBO->getOperand(i_nocapture: 0) == RBO->getOperand(i_nocapture: 0)) { |
| 3392 | switch (LBO->getOpcode()) { |
| 3393 | default: |
| 3394 | break; |
| 3395 | case Instruction::Shl: { |
| 3396 | bool NUW = Q.IIQ.hasNoUnsignedWrap(Op: LBO) && Q.IIQ.hasNoUnsignedWrap(Op: RBO); |
| 3397 | bool NSW = Q.IIQ.hasNoSignedWrap(Op: LBO) && Q.IIQ.hasNoSignedWrap(Op: RBO); |
| 3398 | if (!NUW || (ICmpInst::isSigned(predicate: Pred) && !NSW) || |
| 3399 | !isKnownNonZero(V: LBO->getOperand(i_nocapture: 0), Q)) |
| 3400 | break; |
| 3401 | if (Value *V = simplifyICmpInst(Predicate: Pred, LHS: LBO->getOperand(i_nocapture: 1), |
| 3402 | RHS: RBO->getOperand(i_nocapture: 1), Q, MaxRecurse: MaxRecurse - 1)) |
| 3403 | return V; |
| 3404 | break; |
| 3405 | } |
| 3406 | // If C1 & C2 == C1, A = X and/or C1, B = X and/or C2: |
| 3407 | // icmp ule A, B -> true |
| 3408 | // icmp ugt A, B -> false |
| 3409 | // icmp sle A, B -> true (C1 and C2 are the same sign) |
| 3410 | // icmp sgt A, B -> false (C1 and C2 are the same sign) |
| 3411 | case Instruction::And: |
| 3412 | case Instruction::Or: { |
| 3413 | const APInt *C1, *C2; |
| 3414 | if (ICmpInst::isRelational(P: Pred) && |
| 3415 | match(V: LBO->getOperand(i_nocapture: 1), P: m_APInt(Res&: C1)) && |
| 3416 | match(V: RBO->getOperand(i_nocapture: 1), P: m_APInt(Res&: C2))) { |
| 3417 | if (!C1->isSubsetOf(RHS: *C2)) { |
| 3418 | std::swap(a&: C1, b&: C2); |
| 3419 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
| 3420 | } |
| 3421 | if (C1->isSubsetOf(RHS: *C2)) { |
| 3422 | if (Pred == ICmpInst::ICMP_ULE) |
| 3423 | return ConstantInt::getTrue(Ty: getCompareTy(Op: LHS)); |
| 3424 | if (Pred == ICmpInst::ICMP_UGT) |
| 3425 | return ConstantInt::getFalse(Ty: getCompareTy(Op: LHS)); |
| 3426 | if (C1->isNonNegative() == C2->isNonNegative()) { |
| 3427 | if (Pred == ICmpInst::ICMP_SLE) |
| 3428 | return ConstantInt::getTrue(Ty: getCompareTy(Op: LHS)); |
| 3429 | if (Pred == ICmpInst::ICMP_SGT) |
| 3430 | return ConstantInt::getFalse(Ty: getCompareTy(Op: LHS)); |
| 3431 | } |
| 3432 | } |
| 3433 | } |
| 3434 | break; |
| 3435 | } |
| 3436 | } |
| 3437 | } |
| 3438 | |
| 3439 | if (LBO->getOperand(i_nocapture: 1) == RBO->getOperand(i_nocapture: 1)) { |
| 3440 | switch (LBO->getOpcode()) { |
| 3441 | default: |
| 3442 | break; |
| 3443 | case Instruction::UDiv: |
| 3444 | case Instruction::LShr: |
| 3445 | if (ICmpInst::isSigned(predicate: Pred) || !Q.IIQ.isExact(Op: LBO) || |
| 3446 | !Q.IIQ.isExact(Op: RBO)) |
| 3447 | break; |
| 3448 | if (Value *V = simplifyICmpInst(Predicate: Pred, LHS: LBO->getOperand(i_nocapture: 0), |
| 3449 | RHS: RBO->getOperand(i_nocapture: 0), Q, MaxRecurse: MaxRecurse - 1)) |
| 3450 | return V; |
| 3451 | break; |
| 3452 | case Instruction::SDiv: |
| 3453 | if (!ICmpInst::isEquality(P: Pred) || !Q.IIQ.isExact(Op: LBO) || |
| 3454 | !Q.IIQ.isExact(Op: RBO)) |
| 3455 | break; |
| 3456 | if (Value *V = simplifyICmpInst(Predicate: Pred, LHS: LBO->getOperand(i_nocapture: 0), |
| 3457 | RHS: RBO->getOperand(i_nocapture: 0), Q, MaxRecurse: MaxRecurse - 1)) |
| 3458 | return V; |
| 3459 | break; |
| 3460 | case Instruction::AShr: |
| 3461 | if (!Q.IIQ.isExact(Op: LBO) || !Q.IIQ.isExact(Op: RBO)) |
| 3462 | break; |
| 3463 | if (Value *V = simplifyICmpInst(Predicate: Pred, LHS: LBO->getOperand(i_nocapture: 0), |
| 3464 | RHS: RBO->getOperand(i_nocapture: 0), Q, MaxRecurse: MaxRecurse - 1)) |
| 3465 | return V; |
| 3466 | break; |
| 3467 | case Instruction::Shl: { |
| 3468 | bool NUW = Q.IIQ.hasNoUnsignedWrap(Op: LBO) && Q.IIQ.hasNoUnsignedWrap(Op: RBO); |
| 3469 | bool NSW = Q.IIQ.hasNoSignedWrap(Op: LBO) && Q.IIQ.hasNoSignedWrap(Op: RBO); |
| 3470 | if (!NUW && !NSW) |
| 3471 | break; |
| 3472 | if (!NSW && ICmpInst::isSigned(predicate: Pred)) |
| 3473 | break; |
| 3474 | if (Value *V = simplifyICmpInst(Predicate: Pred, LHS: LBO->getOperand(i_nocapture: 0), |
| 3475 | RHS: RBO->getOperand(i_nocapture: 0), Q, MaxRecurse: MaxRecurse - 1)) |
| 3476 | return V; |
| 3477 | break; |
| 3478 | } |
| 3479 | } |
| 3480 | } |
| 3481 | return nullptr; |
| 3482 | } |
| 3483 | |
| 3484 | /// simplify integer comparisons where at least one operand of the compare |
| 3485 | /// matches an integer min/max idiom. |
| 3486 | static Value *simplifyICmpWithMinMax(CmpPredicate Pred, Value *LHS, Value *RHS, |
| 3487 | const SimplifyQuery &Q, |
| 3488 | unsigned MaxRecurse) { |
| 3489 | Type *ITy = getCompareTy(Op: LHS); // The return type. |
| 3490 | Value *A, *B; |
| 3491 | CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; |
| 3492 | CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". |
| 3493 | |
| 3494 | // Signed variants on "max(a,b)>=a -> true". |
| 3495 | if (match(V: LHS, P: m_SMax(L: m_Value(V&: A), R: m_Value(V&: B))) && (A == RHS || B == RHS)) { |
| 3496 | if (A != RHS) |
| 3497 | std::swap(a&: A, b&: B); // smax(A, B) pred A. |
| 3498 | EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". |
| 3499 | // We analyze this as smax(A, B) pred A. |
| 3500 | P = Pred; |
| 3501 | } else if (match(V: RHS, P: m_SMax(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 3502 | (A == LHS || B == LHS)) { |
| 3503 | if (A != LHS) |
| 3504 | std::swap(a&: A, b&: B); // A pred smax(A, B). |
| 3505 | EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". |
| 3506 | // We analyze this as smax(A, B) swapped-pred A. |
| 3507 | P = CmpInst::getSwappedPredicate(pred: Pred); |
| 3508 | } else if (match(V: LHS, P: m_SMin(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 3509 | (A == RHS || B == RHS)) { |
| 3510 | if (A != RHS) |
| 3511 | std::swap(a&: A, b&: B); // smin(A, B) pred A. |
| 3512 | EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". |
| 3513 | // We analyze this as smax(-A, -B) swapped-pred -A. |
| 3514 | // Note that we do not need to actually form -A or -B thanks to EqP. |
| 3515 | P = CmpInst::getSwappedPredicate(pred: Pred); |
| 3516 | } else if (match(V: RHS, P: m_SMin(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 3517 | (A == LHS || B == LHS)) { |
| 3518 | if (A != LHS) |
| 3519 | std::swap(a&: A, b&: B); // A pred smin(A, B). |
| 3520 | EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". |
| 3521 | // We analyze this as smax(-A, -B) pred -A. |
| 3522 | // Note that we do not need to actually form -A or -B thanks to EqP. |
| 3523 | P = Pred; |
| 3524 | } |
| 3525 | if (P != CmpInst::BAD_ICMP_PREDICATE) { |
| 3526 | // Cases correspond to "max(A, B) p A". |
| 3527 | switch (P) { |
| 3528 | default: |
| 3529 | break; |
| 3530 | case CmpInst::ICMP_EQ: |
| 3531 | case CmpInst::ICMP_SLE: |
| 3532 | // Equivalent to "A EqP B". This may be the same as the condition tested |
| 3533 | // in the max/min; if so, we can just return that. |
| 3534 | if (Value *V = extractEquivalentCondition(V: LHS, Pred: EqP, LHS: A, RHS: B)) |
| 3535 | return V; |
| 3536 | if (Value *V = extractEquivalentCondition(V: RHS, Pred: EqP, LHS: A, RHS: B)) |
| 3537 | return V; |
| 3538 | // Otherwise, see if "A EqP B" simplifies. |
| 3539 | if (MaxRecurse) |
| 3540 | if (Value *V = simplifyICmpInst(Predicate: EqP, LHS: A, RHS: B, Q, MaxRecurse: MaxRecurse - 1)) |
| 3541 | return V; |
| 3542 | break; |
| 3543 | case CmpInst::ICMP_NE: |
| 3544 | case CmpInst::ICMP_SGT: { |
| 3545 | CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(pred: EqP); |
| 3546 | // Equivalent to "A InvEqP B". This may be the same as the condition |
| 3547 | // tested in the max/min; if so, we can just return that. |
| 3548 | if (Value *V = extractEquivalentCondition(V: LHS, Pred: InvEqP, LHS: A, RHS: B)) |
| 3549 | return V; |
| 3550 | if (Value *V = extractEquivalentCondition(V: RHS, Pred: InvEqP, LHS: A, RHS: B)) |
| 3551 | return V; |
| 3552 | // Otherwise, see if "A InvEqP B" simplifies. |
| 3553 | if (MaxRecurse) |
| 3554 | if (Value *V = simplifyICmpInst(Predicate: InvEqP, LHS: A, RHS: B, Q, MaxRecurse: MaxRecurse - 1)) |
| 3555 | return V; |
| 3556 | break; |
| 3557 | } |
| 3558 | case CmpInst::ICMP_SGE: |
| 3559 | // Always true. |
| 3560 | return getTrue(Ty: ITy); |
| 3561 | case CmpInst::ICMP_SLT: |
| 3562 | // Always false. |
| 3563 | return getFalse(Ty: ITy); |
| 3564 | } |
| 3565 | } |
| 3566 | |
| 3567 | // Unsigned variants on "max(a,b)>=a -> true". |
| 3568 | P = CmpInst::BAD_ICMP_PREDICATE; |
| 3569 | if (match(V: LHS, P: m_UMax(L: m_Value(V&: A), R: m_Value(V&: B))) && (A == RHS || B == RHS)) { |
| 3570 | if (A != RHS) |
| 3571 | std::swap(a&: A, b&: B); // umax(A, B) pred A. |
| 3572 | EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". |
| 3573 | // We analyze this as umax(A, B) pred A. |
| 3574 | P = Pred; |
| 3575 | } else if (match(V: RHS, P: m_UMax(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 3576 | (A == LHS || B == LHS)) { |
| 3577 | if (A != LHS) |
| 3578 | std::swap(a&: A, b&: B); // A pred umax(A, B). |
| 3579 | EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". |
| 3580 | // We analyze this as umax(A, B) swapped-pred A. |
| 3581 | P = CmpInst::getSwappedPredicate(pred: Pred); |
| 3582 | } else if (match(V: LHS, P: m_UMin(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 3583 | (A == RHS || B == RHS)) { |
| 3584 | if (A != RHS) |
| 3585 | std::swap(a&: A, b&: B); // umin(A, B) pred A. |
| 3586 | EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". |
| 3587 | // We analyze this as umax(-A, -B) swapped-pred -A. |
| 3588 | // Note that we do not need to actually form -A or -B thanks to EqP. |
| 3589 | P = CmpInst::getSwappedPredicate(pred: Pred); |
| 3590 | } else if (match(V: RHS, P: m_UMin(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 3591 | (A == LHS || B == LHS)) { |
| 3592 | if (A != LHS) |
| 3593 | std::swap(a&: A, b&: B); // A pred umin(A, B). |
| 3594 | EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". |
| 3595 | // We analyze this as umax(-A, -B) pred -A. |
| 3596 | // Note that we do not need to actually form -A or -B thanks to EqP. |
| 3597 | P = Pred; |
| 3598 | } |
| 3599 | if (P != CmpInst::BAD_ICMP_PREDICATE) { |
| 3600 | // Cases correspond to "max(A, B) p A". |
| 3601 | switch (P) { |
| 3602 | default: |
| 3603 | break; |
| 3604 | case CmpInst::ICMP_EQ: |
| 3605 | case CmpInst::ICMP_ULE: |
| 3606 | // Equivalent to "A EqP B". This may be the same as the condition tested |
| 3607 | // in the max/min; if so, we can just return that. |
| 3608 | if (Value *V = extractEquivalentCondition(V: LHS, Pred: EqP, LHS: A, RHS: B)) |
| 3609 | return V; |
| 3610 | if (Value *V = extractEquivalentCondition(V: RHS, Pred: EqP, LHS: A, RHS: B)) |
| 3611 | return V; |
| 3612 | // Otherwise, see if "A EqP B" simplifies. |
| 3613 | if (MaxRecurse) |
| 3614 | if (Value *V = simplifyICmpInst(Predicate: EqP, LHS: A, RHS: B, Q, MaxRecurse: MaxRecurse - 1)) |
| 3615 | return V; |
| 3616 | break; |
| 3617 | case CmpInst::ICMP_NE: |
| 3618 | case CmpInst::ICMP_UGT: { |
| 3619 | CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(pred: EqP); |
| 3620 | // Equivalent to "A InvEqP B". This may be the same as the condition |
| 3621 | // tested in the max/min; if so, we can just return that. |
| 3622 | if (Value *V = extractEquivalentCondition(V: LHS, Pred: InvEqP, LHS: A, RHS: B)) |
| 3623 | return V; |
| 3624 | if (Value *V = extractEquivalentCondition(V: RHS, Pred: InvEqP, LHS: A, RHS: B)) |
| 3625 | return V; |
| 3626 | // Otherwise, see if "A InvEqP B" simplifies. |
| 3627 | if (MaxRecurse) |
| 3628 | if (Value *V = simplifyICmpInst(Predicate: InvEqP, LHS: A, RHS: B, Q, MaxRecurse: MaxRecurse - 1)) |
| 3629 | return V; |
| 3630 | break; |
| 3631 | } |
| 3632 | case CmpInst::ICMP_UGE: |
| 3633 | return getTrue(Ty: ITy); |
| 3634 | case CmpInst::ICMP_ULT: |
| 3635 | return getFalse(Ty: ITy); |
| 3636 | } |
| 3637 | } |
| 3638 | |
| 3639 | // Comparing 1 each of min/max with a common operand? |
| 3640 | // Canonicalize min operand to RHS. |
| 3641 | if (match(V: LHS, P: m_UMin(L: m_Value(), R: m_Value())) || |
| 3642 | match(V: LHS, P: m_SMin(L: m_Value(), R: m_Value()))) { |
| 3643 | std::swap(a&: LHS, b&: RHS); |
| 3644 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
| 3645 | } |
| 3646 | |
| 3647 | Value *C, *D; |
| 3648 | if (match(V: LHS, P: m_SMax(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 3649 | match(V: RHS, P: m_SMin(L: m_Value(V&: C), R: m_Value(V&: D))) && |
| 3650 | (A == C || A == D || B == C || B == D)) { |
| 3651 | // smax(A, B) >=s smin(A, D) --> true |
| 3652 | if (Pred == CmpInst::ICMP_SGE) |
| 3653 | return getTrue(Ty: ITy); |
| 3654 | // smax(A, B) <s smin(A, D) --> false |
| 3655 | if (Pred == CmpInst::ICMP_SLT) |
| 3656 | return getFalse(Ty: ITy); |
| 3657 | } else if (match(V: LHS, P: m_UMax(L: m_Value(V&: A), R: m_Value(V&: B))) && |
| 3658 | match(V: RHS, P: m_UMin(L: m_Value(V&: C), R: m_Value(V&: D))) && |
| 3659 | (A == C || A == D || B == C || B == D)) { |
| 3660 | // umax(A, B) >=u umin(A, D) --> true |
| 3661 | if (Pred == CmpInst::ICMP_UGE) |
| 3662 | return getTrue(Ty: ITy); |
| 3663 | // umax(A, B) <u umin(A, D) --> false |
| 3664 | if (Pred == CmpInst::ICMP_ULT) |
| 3665 | return getFalse(Ty: ITy); |
| 3666 | } |
| 3667 | |
| 3668 | return nullptr; |
| 3669 | } |
| 3670 | |
| 3671 | static Value *simplifyICmpWithDominatingAssume(CmpPredicate Predicate, |
| 3672 | Value *LHS, Value *RHS, |
| 3673 | const SimplifyQuery &Q) { |
| 3674 | // Gracefully handle instructions that have not been inserted yet. |
| 3675 | if (!Q.AC || !Q.CxtI) |
| 3676 | return nullptr; |
| 3677 | |
| 3678 | for (Value *AssumeBaseOp : {LHS, RHS}) { |
| 3679 | for (auto &AssumeVH : Q.AC->assumptionsFor(V: AssumeBaseOp)) { |
| 3680 | if (!AssumeVH) |
| 3681 | continue; |
| 3682 | |
| 3683 | CallInst *Assume = cast<CallInst>(Val&: AssumeVH); |
| 3684 | if (std::optional<bool> Imp = isImpliedCondition( |
| 3685 | LHS: Assume->getArgOperand(i: 0), RHSPred: Predicate, RHSOp0: LHS, RHSOp1: RHS, DL: Q.DL)) |
| 3686 | if (isValidAssumeForContext(I: Assume, CxtI: Q.CxtI, DT: Q.DT)) |
| 3687 | return ConstantInt::get(Ty: getCompareTy(Op: LHS), V: *Imp); |
| 3688 | } |
| 3689 | } |
| 3690 | |
| 3691 | return nullptr; |
| 3692 | } |
| 3693 | |
| 3694 | static Value *simplifyICmpWithIntrinsicOnLHS(CmpPredicate Pred, Value *LHS, |
| 3695 | Value *RHS) { |
| 3696 | auto *II = dyn_cast<IntrinsicInst>(Val: LHS); |
| 3697 | if (!II) |
| 3698 | return nullptr; |
| 3699 | |
| 3700 | switch (II->getIntrinsicID()) { |
| 3701 | case Intrinsic::uadd_sat: |
| 3702 | // uadd.sat(X, Y) uge X + Y |
| 3703 | if (match(V: RHS, P: m_c_Add(L: m_Specific(V: II->getArgOperand(i: 0)), |
| 3704 | R: m_Specific(V: II->getArgOperand(i: 1))))) { |
| 3705 | if (Pred == ICmpInst::ICMP_UGE) |
| 3706 | return ConstantInt::getTrue(Ty: getCompareTy(Op: II)); |
| 3707 | if (Pred == ICmpInst::ICMP_ULT) |
| 3708 | return ConstantInt::getFalse(Ty: getCompareTy(Op: II)); |
| 3709 | } |
| 3710 | return nullptr; |
| 3711 | case Intrinsic::usub_sat: |
| 3712 | // usub.sat(X, Y) ule X - Y |
| 3713 | if (match(V: RHS, P: m_Sub(L: m_Specific(V: II->getArgOperand(i: 0)), |
| 3714 | R: m_Specific(V: II->getArgOperand(i: 1))))) { |
| 3715 | if (Pred == ICmpInst::ICMP_ULE) |
| 3716 | return ConstantInt::getTrue(Ty: getCompareTy(Op: II)); |
| 3717 | if (Pred == ICmpInst::ICMP_UGT) |
| 3718 | return ConstantInt::getFalse(Ty: getCompareTy(Op: II)); |
| 3719 | } |
| 3720 | return nullptr; |
| 3721 | default: |
| 3722 | return nullptr; |
| 3723 | } |
| 3724 | } |
| 3725 | |
| 3726 | /// Helper method to get range from metadata or attribute. |
| 3727 | static std::optional<ConstantRange> getRange(Value *V, |
| 3728 | const InstrInfoQuery &IIQ) { |
| 3729 | if (Instruction *I = dyn_cast<Instruction>(Val: V)) |
| 3730 | if (MDNode *MD = IIQ.getMetadata(I, KindID: LLVMContext::MD_range)) |
| 3731 | return getConstantRangeFromMetadata(RangeMD: *MD); |
| 3732 | |
| 3733 | if (const Argument *A = dyn_cast<Argument>(Val: V)) |
| 3734 | return A->getRange(); |
| 3735 | else if (const CallBase *CB = dyn_cast<CallBase>(Val: V)) |
| 3736 | return CB->getRange(); |
| 3737 | |
| 3738 | return std::nullopt; |
| 3739 | } |
| 3740 | |
| 3741 | /// Given operands for an ICmpInst, see if we can fold the result. |
| 3742 | /// If not, this returns null. |
| 3743 | static Value *simplifyICmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, |
| 3744 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 3745 | assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!" ); |
| 3746 | |
| 3747 | if (Constant *CLHS = dyn_cast<Constant>(Val: LHS)) { |
| 3748 | if (Constant *CRHS = dyn_cast<Constant>(Val: RHS)) |
| 3749 | return ConstantFoldCompareInstOperands(Predicate: Pred, LHS: CLHS, RHS: CRHS, DL: Q.DL, TLI: Q.TLI); |
| 3750 | |
| 3751 | // If we have a constant, make sure it is on the RHS. |
| 3752 | std::swap(a&: LHS, b&: RHS); |
| 3753 | Pred = CmpInst::getSwappedPredicate(pred: Pred); |
| 3754 | } |
| 3755 | assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X" ); |
| 3756 | |
| 3757 | Type *ITy = getCompareTy(Op: LHS); // The return type. |
| 3758 | |
| 3759 | // icmp poison, X -> poison |
| 3760 | if (isa<PoisonValue>(Val: RHS)) |
| 3761 | return PoisonValue::get(T: ITy); |
| 3762 | |
| 3763 | // For EQ and NE, we can always pick a value for the undef to make the |
| 3764 | // predicate pass or fail, so we can return undef. |
| 3765 | // Matches behavior in llvm::ConstantFoldCompareInstruction. |
| 3766 | if (Q.isUndefValue(V: RHS) && ICmpInst::isEquality(P: Pred)) |
| 3767 | return UndefValue::get(T: ITy); |
| 3768 | |
| 3769 | // icmp X, X -> true/false |
| 3770 | // icmp X, undef -> true/false because undef could be X. |
| 3771 | if (LHS == RHS || Q.isUndefValue(V: RHS)) |
| 3772 | return ConstantInt::get(Ty: ITy, V: CmpInst::isTrueWhenEqual(predicate: Pred)); |
| 3773 | |
| 3774 | if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) |
| 3775 | return V; |
| 3776 | |
| 3777 | // TODO: Sink/common this with other potentially expensive calls that use |
| 3778 | // ValueTracking? See comment below for isKnownNonEqual(). |
| 3779 | if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) |
| 3780 | return V; |
| 3781 | |
| 3782 | if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q)) |
| 3783 | return V; |
| 3784 | |
| 3785 | // If both operands have range metadata, use the metadata |
| 3786 | // to simplify the comparison. |
| 3787 | if (std::optional<ConstantRange> RhsCr = getRange(V: RHS, IIQ: Q.IIQ)) |
| 3788 | if (std::optional<ConstantRange> LhsCr = getRange(V: LHS, IIQ: Q.IIQ)) { |
| 3789 | if (LhsCr->icmp(Pred, Other: *RhsCr)) |
| 3790 | return ConstantInt::getTrue(Ty: ITy); |
| 3791 | |
| 3792 | if (LhsCr->icmp(Pred: CmpInst::getInversePredicate(pred: Pred), Other: *RhsCr)) |
| 3793 | return ConstantInt::getFalse(Ty: ITy); |
| 3794 | } |
| 3795 | |
| 3796 | // Compare of cast, for example (zext X) != 0 -> X != 0 |
| 3797 | if (isa<CastInst>(Val: LHS) && (isa<Constant>(Val: RHS) || isa<CastInst>(Val: RHS))) { |
| 3798 | Instruction *LI = cast<CastInst>(Val: LHS); |
| 3799 | Value *SrcOp = LI->getOperand(i: 0); |
| 3800 | Type *SrcTy = SrcOp->getType(); |
| 3801 | Type *DstTy = LI->getType(); |
| 3802 | |
| 3803 | // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input |
| 3804 | // if the integer type is the same size as the pointer type. |
| 3805 | if (MaxRecurse && isa<PtrToIntInst>(Val: LI) && |
| 3806 | Q.DL.getTypeSizeInBits(Ty: SrcTy) == DstTy->getPrimitiveSizeInBits()) { |
| 3807 | if (Constant *RHSC = dyn_cast<Constant>(Val: RHS)) { |
| 3808 | // Transfer the cast to the constant. |
| 3809 | if (Value *V = simplifyICmpInst(Pred, LHS: SrcOp, |
| 3810 | RHS: ConstantExpr::getIntToPtr(C: RHSC, Ty: SrcTy), |
| 3811 | Q, MaxRecurse: MaxRecurse - 1)) |
| 3812 | return V; |
| 3813 | } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(Val: RHS)) { |
| 3814 | if (RI->getOperand(i_nocapture: 0)->getType() == SrcTy) |
| 3815 | // Compare without the cast. |
| 3816 | if (Value *V = simplifyICmpInst(Pred, LHS: SrcOp, RHS: RI->getOperand(i_nocapture: 0), Q, |
| 3817 | MaxRecurse: MaxRecurse - 1)) |
| 3818 | return V; |
| 3819 | } |
| 3820 | } |
| 3821 | |
| 3822 | if (isa<ZExtInst>(Val: LHS)) { |
| 3823 | // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the |
| 3824 | // same type. |
| 3825 | if (ZExtInst *RI = dyn_cast<ZExtInst>(Val: RHS)) { |
| 3826 | if (MaxRecurse && SrcTy == RI->getOperand(i_nocapture: 0)->getType()) |
| 3827 | // Compare X and Y. Note that signed predicates become unsigned. |
| 3828 | if (Value *V = |
| 3829 | simplifyICmpInst(Pred: ICmpInst::getUnsignedPredicate(Pred), LHS: SrcOp, |
| 3830 | RHS: RI->getOperand(i_nocapture: 0), Q, MaxRecurse: MaxRecurse - 1)) |
| 3831 | return V; |
| 3832 | } |
| 3833 | // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. |
| 3834 | else if (SExtInst *RI = dyn_cast<SExtInst>(Val: RHS)) { |
| 3835 | if (SrcOp == RI->getOperand(i_nocapture: 0)) { |
| 3836 | if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) |
| 3837 | return ConstantInt::getTrue(Ty: ITy); |
| 3838 | if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) |
| 3839 | return ConstantInt::getFalse(Ty: ITy); |
| 3840 | } |
| 3841 | } |
| 3842 | // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended |
| 3843 | // too. If not, then try to deduce the result of the comparison. |
| 3844 | else if (match(V: RHS, P: m_ImmConstant())) { |
| 3845 | Constant *C = dyn_cast<Constant>(Val: RHS); |
| 3846 | assert(C != nullptr); |
| 3847 | |
| 3848 | // Compute the constant that would happen if we truncated to SrcTy then |
| 3849 | // reextended to DstTy. |
| 3850 | Constant *Trunc = |
| 3851 | ConstantFoldCastOperand(Opcode: Instruction::Trunc, C, DestTy: SrcTy, DL: Q.DL); |
| 3852 | assert(Trunc && "Constant-fold of ImmConstant should not fail" ); |
| 3853 | Constant *RExt = |
| 3854 | ConstantFoldCastOperand(Opcode: CastInst::ZExt, C: Trunc, DestTy: DstTy, DL: Q.DL); |
| 3855 | assert(RExt && "Constant-fold of ImmConstant should not fail" ); |
| 3856 | Constant *AnyEq = |
| 3857 | ConstantFoldCompareInstOperands(Predicate: ICmpInst::ICMP_EQ, LHS: RExt, RHS: C, DL: Q.DL); |
| 3858 | assert(AnyEq && "Constant-fold of ImmConstant should not fail" ); |
| 3859 | |
| 3860 | // If the re-extended constant didn't change any of the elements then |
| 3861 | // this is effectively also a case of comparing two zero-extended |
| 3862 | // values. |
| 3863 | if (AnyEq->isAllOnesValue() && MaxRecurse) |
| 3864 | if (Value *V = simplifyICmpInst(Pred: ICmpInst::getUnsignedPredicate(Pred), |
| 3865 | LHS: SrcOp, RHS: Trunc, Q, MaxRecurse: MaxRecurse - 1)) |
| 3866 | return V; |
| 3867 | |
| 3868 | // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit |
| 3869 | // there. Use this to work out the result of the comparison. |
| 3870 | if (AnyEq->isNullValue()) { |
| 3871 | switch (Pred) { |
| 3872 | default: |
| 3873 | llvm_unreachable("Unknown ICmp predicate!" ); |
| 3874 | // LHS <u RHS. |
| 3875 | case ICmpInst::ICMP_EQ: |
| 3876 | case ICmpInst::ICMP_UGT: |
| 3877 | case ICmpInst::ICMP_UGE: |
| 3878 | return Constant::getNullValue(Ty: ITy); |
| 3879 | |
| 3880 | case ICmpInst::ICMP_NE: |
| 3881 | case ICmpInst::ICMP_ULT: |
| 3882 | case ICmpInst::ICMP_ULE: |
| 3883 | return Constant::getAllOnesValue(Ty: ITy); |
| 3884 | |
| 3885 | // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS |
| 3886 | // is non-negative then LHS <s RHS. |
| 3887 | case ICmpInst::ICMP_SGT: |
| 3888 | case ICmpInst::ICMP_SGE: |
| 3889 | return ConstantFoldCompareInstOperands( |
| 3890 | Predicate: ICmpInst::ICMP_SLT, LHS: C, RHS: Constant::getNullValue(Ty: C->getType()), |
| 3891 | DL: Q.DL); |
| 3892 | case ICmpInst::ICMP_SLT: |
| 3893 | case ICmpInst::ICMP_SLE: |
| 3894 | return ConstantFoldCompareInstOperands( |
| 3895 | Predicate: ICmpInst::ICMP_SGE, LHS: C, RHS: Constant::getNullValue(Ty: C->getType()), |
| 3896 | DL: Q.DL); |
| 3897 | } |
| 3898 | } |
| 3899 | } |
| 3900 | } |
| 3901 | |
| 3902 | if (isa<SExtInst>(Val: LHS)) { |
| 3903 | // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the |
| 3904 | // same type. |
| 3905 | if (SExtInst *RI = dyn_cast<SExtInst>(Val: RHS)) { |
| 3906 | if (MaxRecurse && SrcTy == RI->getOperand(i_nocapture: 0)->getType()) |
| 3907 | // Compare X and Y. Note that the predicate does not change. |
| 3908 | if (Value *V = simplifyICmpInst(Pred, LHS: SrcOp, RHS: RI->getOperand(i_nocapture: 0), Q, |
| 3909 | MaxRecurse: MaxRecurse - 1)) |
| 3910 | return V; |
| 3911 | } |
| 3912 | // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. |
| 3913 | else if (ZExtInst *RI = dyn_cast<ZExtInst>(Val: RHS)) { |
| 3914 | if (SrcOp == RI->getOperand(i_nocapture: 0)) { |
| 3915 | if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) |
| 3916 | return ConstantInt::getTrue(Ty: ITy); |
| 3917 | if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) |
| 3918 | return ConstantInt::getFalse(Ty: ITy); |
| 3919 | } |
| 3920 | } |
| 3921 | // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended |
| 3922 | // too. If not, then try to deduce the result of the comparison. |
| 3923 | else if (match(V: RHS, P: m_ImmConstant())) { |
| 3924 | Constant *C = cast<Constant>(Val: RHS); |
| 3925 | |
| 3926 | // Compute the constant that would happen if we truncated to SrcTy then |
| 3927 | // reextended to DstTy. |
| 3928 | Constant *Trunc = |
| 3929 | ConstantFoldCastOperand(Opcode: Instruction::Trunc, C, DestTy: SrcTy, DL: Q.DL); |
| 3930 | assert(Trunc && "Constant-fold of ImmConstant should not fail" ); |
| 3931 | Constant *RExt = |
| 3932 | ConstantFoldCastOperand(Opcode: CastInst::SExt, C: Trunc, DestTy: DstTy, DL: Q.DL); |
| 3933 | assert(RExt && "Constant-fold of ImmConstant should not fail" ); |
| 3934 | Constant *AnyEq = |
| 3935 | ConstantFoldCompareInstOperands(Predicate: ICmpInst::ICMP_EQ, LHS: RExt, RHS: C, DL: Q.DL); |
| 3936 | assert(AnyEq && "Constant-fold of ImmConstant should not fail" ); |
| 3937 | |
| 3938 | // If the re-extended constant didn't change then this is effectively |
| 3939 | // also a case of comparing two sign-extended values. |
| 3940 | if (AnyEq->isAllOnesValue() && MaxRecurse) |
| 3941 | if (Value *V = |
| 3942 | simplifyICmpInst(Pred, LHS: SrcOp, RHS: Trunc, Q, MaxRecurse: MaxRecurse - 1)) |
| 3943 | return V; |
| 3944 | |
| 3945 | // Otherwise the upper bits of LHS are all equal, while RHS has varying |
| 3946 | // bits there. Use this to work out the result of the comparison. |
| 3947 | if (AnyEq->isNullValue()) { |
| 3948 | switch (Pred) { |
| 3949 | default: |
| 3950 | llvm_unreachable("Unknown ICmp predicate!" ); |
| 3951 | case ICmpInst::ICMP_EQ: |
| 3952 | return Constant::getNullValue(Ty: ITy); |
| 3953 | case ICmpInst::ICMP_NE: |
| 3954 | return Constant::getAllOnesValue(Ty: ITy); |
| 3955 | |
| 3956 | // If RHS is non-negative then LHS <s RHS. If RHS is negative then |
| 3957 | // LHS >s RHS. |
| 3958 | case ICmpInst::ICMP_SGT: |
| 3959 | case ICmpInst::ICMP_SGE: |
| 3960 | return ConstantFoldCompareInstOperands( |
| 3961 | Predicate: ICmpInst::ICMP_SLT, LHS: C, RHS: Constant::getNullValue(Ty: C->getType()), |
| 3962 | DL: Q.DL); |
| 3963 | case ICmpInst::ICMP_SLT: |
| 3964 | case ICmpInst::ICMP_SLE: |
| 3965 | return ConstantFoldCompareInstOperands( |
| 3966 | Predicate: ICmpInst::ICMP_SGE, LHS: C, RHS: Constant::getNullValue(Ty: C->getType()), |
| 3967 | DL: Q.DL); |
| 3968 | |
| 3969 | // If LHS is non-negative then LHS <u RHS. If LHS is negative then |
| 3970 | // LHS >u RHS. |
| 3971 | case ICmpInst::ICMP_UGT: |
| 3972 | case ICmpInst::ICMP_UGE: |
| 3973 | // Comparison is true iff the LHS <s 0. |
| 3974 | if (MaxRecurse) |
| 3975 | if (Value *V = simplifyICmpInst(Pred: ICmpInst::ICMP_SLT, LHS: SrcOp, |
| 3976 | RHS: Constant::getNullValue(Ty: SrcTy), Q, |
| 3977 | MaxRecurse: MaxRecurse - 1)) |
| 3978 | return V; |
| 3979 | break; |
| 3980 | case ICmpInst::ICMP_ULT: |
| 3981 | case ICmpInst::ICMP_ULE: |
| 3982 | // Comparison is true iff the LHS >=s 0. |
| 3983 | if (MaxRecurse) |
| 3984 | if (Value *V = simplifyICmpInst(Pred: ICmpInst::ICMP_SGE, LHS: SrcOp, |
| 3985 | RHS: Constant::getNullValue(Ty: SrcTy), Q, |
| 3986 | MaxRecurse: MaxRecurse - 1)) |
| 3987 | return V; |
| 3988 | break; |
| 3989 | } |
| 3990 | } |
| 3991 | } |
| 3992 | } |
| 3993 | } |
| 3994 | |
| 3995 | // icmp eq|ne X, Y -> false|true if X != Y |
| 3996 | // This is potentially expensive, and we have already computedKnownBits for |
| 3997 | // compares with 0 above here, so only try this for a non-zero compare. |
| 3998 | if (ICmpInst::isEquality(P: Pred) && !match(V: RHS, P: m_Zero()) && |
| 3999 | isKnownNonEqual(V1: LHS, V2: RHS, SQ: Q)) { |
| 4000 | return Pred == ICmpInst::ICMP_NE ? getTrue(Ty: ITy) : getFalse(Ty: ITy); |
| 4001 | } |
| 4002 | |
| 4003 | if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) |
| 4004 | return V; |
| 4005 | |
| 4006 | if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) |
| 4007 | return V; |
| 4008 | |
| 4009 | if (Value *V = simplifyICmpWithIntrinsicOnLHS(Pred, LHS, RHS)) |
| 4010 | return V; |
| 4011 | if (Value *V = simplifyICmpWithIntrinsicOnLHS( |
| 4012 | Pred: ICmpInst::getSwappedPredicate(pred: Pred), LHS: RHS, RHS: LHS)) |
| 4013 | return V; |
| 4014 | |
| 4015 | if (Value *V = simplifyICmpUsingMonotonicValues(Pred, LHS, RHS, Q)) |
| 4016 | return V; |
| 4017 | if (Value *V = simplifyICmpUsingMonotonicValues( |
| 4018 | Pred: ICmpInst::getSwappedPredicate(pred: Pred), LHS: RHS, RHS: LHS, Q)) |
| 4019 | return V; |
| 4020 | |
| 4021 | if (Value *V = simplifyICmpWithDominatingAssume(Predicate: Pred, LHS, RHS, Q)) |
| 4022 | return V; |
| 4023 | |
| 4024 | if (std::optional<bool> Res = |
| 4025 | isImpliedByDomCondition(Pred, LHS, RHS, ContextI: Q.CxtI, DL: Q.DL)) |
| 4026 | return ConstantInt::getBool(Ty: ITy, V: *Res); |
| 4027 | |
| 4028 | // Simplify comparisons of related pointers using a powerful, recursive |
| 4029 | // GEP-walk when we have target data available.. |
| 4030 | if (LHS->getType()->isPointerTy()) |
| 4031 | if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) |
| 4032 | return C; |
| 4033 | if (auto *CLHS = dyn_cast<PtrToIntOperator>(Val: LHS)) |
| 4034 | if (auto *CRHS = dyn_cast<PtrToIntOperator>(Val: RHS)) |
| 4035 | if (CLHS->getPointerOperandType() == CRHS->getPointerOperandType() && |
| 4036 | Q.DL.getTypeSizeInBits(Ty: CLHS->getPointerOperandType()) == |
| 4037 | Q.DL.getTypeSizeInBits(Ty: CLHS->getType())) |
| 4038 | if (auto *C = computePointerICmp(Pred, LHS: CLHS->getPointerOperand(), |
| 4039 | RHS: CRHS->getPointerOperand(), Q)) |
| 4040 | return C; |
| 4041 | |
| 4042 | // If the comparison is with the result of a select instruction, check whether |
| 4043 | // comparing with either branch of the select always yields the same value. |
| 4044 | if (isa<SelectInst>(Val: LHS) || isa<SelectInst>(Val: RHS)) |
| 4045 | if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) |
| 4046 | return V; |
| 4047 | |
| 4048 | // If the comparison is with the result of a phi instruction, check whether |
| 4049 | // doing the compare with each incoming phi value yields a common result. |
| 4050 | if (isa<PHINode>(Val: LHS) || isa<PHINode>(Val: RHS)) |
| 4051 | if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) |
| 4052 | return V; |
| 4053 | |
| 4054 | return nullptr; |
| 4055 | } |
| 4056 | |
| 4057 | Value *llvm::simplifyICmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, |
| 4058 | const SimplifyQuery &Q) { |
| 4059 | return ::simplifyICmpInst(Pred: Predicate, LHS, RHS, Q, MaxRecurse: RecursionLimit); |
| 4060 | } |
| 4061 | |
| 4062 | /// Given operands for an FCmpInst, see if we can fold the result. |
| 4063 | /// If not, this returns null. |
| 4064 | static Value *simplifyFCmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, |
| 4065 | FastMathFlags FMF, const SimplifyQuery &Q, |
| 4066 | unsigned MaxRecurse) { |
| 4067 | assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!" ); |
| 4068 | |
| 4069 | if (Constant *CLHS = dyn_cast<Constant>(Val: LHS)) { |
| 4070 | if (Constant *CRHS = dyn_cast<Constant>(Val: RHS)) |
| 4071 | return ConstantFoldCompareInstOperands(Predicate: Pred, LHS: CLHS, RHS: CRHS, DL: Q.DL, TLI: Q.TLI, |
| 4072 | I: Q.CxtI); |
| 4073 | |
| 4074 | // If we have a constant, make sure it is on the RHS. |
| 4075 | std::swap(a&: LHS, b&: RHS); |
| 4076 | Pred = CmpInst::getSwappedPredicate(pred: Pred); |
| 4077 | } |
| 4078 | |
| 4079 | // Fold trivial predicates. |
| 4080 | Type *RetTy = getCompareTy(Op: LHS); |
| 4081 | if (Pred == FCmpInst::FCMP_FALSE) |
| 4082 | return getFalse(Ty: RetTy); |
| 4083 | if (Pred == FCmpInst::FCMP_TRUE) |
| 4084 | return getTrue(Ty: RetTy); |
| 4085 | |
| 4086 | // fcmp pred x, poison and fcmp pred poison, x |
| 4087 | // fold to poison |
| 4088 | if (isa<PoisonValue>(Val: LHS) || isa<PoisonValue>(Val: RHS)) |
| 4089 | return PoisonValue::get(T: RetTy); |
| 4090 | |
| 4091 | // fcmp pred x, undef and fcmp pred undef, x |
| 4092 | // fold to true if unordered, false if ordered |
| 4093 | if (Q.isUndefValue(V: LHS) || Q.isUndefValue(V: RHS)) { |
| 4094 | // Choosing NaN for the undef will always make unordered comparison succeed |
| 4095 | // and ordered comparison fail. |
| 4096 | return ConstantInt::get(Ty: RetTy, V: CmpInst::isUnordered(predicate: Pred)); |
| 4097 | } |
| 4098 | |
| 4099 | // fcmp x,x -> true/false. Not all compares are foldable. |
| 4100 | if (LHS == RHS) { |
| 4101 | if (CmpInst::isTrueWhenEqual(predicate: Pred)) |
| 4102 | return getTrue(Ty: RetTy); |
| 4103 | if (CmpInst::isFalseWhenEqual(predicate: Pred)) |
| 4104 | return getFalse(Ty: RetTy); |
| 4105 | } |
| 4106 | |
| 4107 | // Fold (un)ordered comparison if we can determine there are no NaNs. |
| 4108 | // |
| 4109 | // This catches the 2 variable input case, constants are handled below as a |
| 4110 | // class-like compare. |
| 4111 | if (Pred == FCmpInst::FCMP_ORD || Pred == FCmpInst::FCMP_UNO) { |
| 4112 | KnownFPClass RHSClass = computeKnownFPClass(V: RHS, InterestedClasses: fcAllFlags, SQ: Q); |
| 4113 | KnownFPClass LHSClass = computeKnownFPClass(V: LHS, InterestedClasses: fcAllFlags, SQ: Q); |
| 4114 | |
| 4115 | if (FMF.noNaNs() || |
| 4116 | (RHSClass.isKnownNeverNaN() && LHSClass.isKnownNeverNaN())) |
| 4117 | return ConstantInt::get(Ty: RetTy, V: Pred == FCmpInst::FCMP_ORD); |
| 4118 | |
| 4119 | if (RHSClass.isKnownAlwaysNaN() || LHSClass.isKnownAlwaysNaN()) |
| 4120 | return ConstantInt::get(Ty: RetTy, V: Pred == CmpInst::FCMP_UNO); |
| 4121 | } |
| 4122 | |
| 4123 | const APFloat *C = nullptr; |
| 4124 | match(V: RHS, P: m_APFloatAllowPoison(Res&: C)); |
| 4125 | std::optional<KnownFPClass> FullKnownClassLHS; |
| 4126 | |
| 4127 | // Lazily compute the possible classes for LHS. Avoid computing it twice if |
| 4128 | // RHS is a 0. |
| 4129 | auto computeLHSClass = [=, &FullKnownClassLHS](FPClassTest InterestedFlags = |
| 4130 | fcAllFlags) { |
| 4131 | if (FullKnownClassLHS) |
| 4132 | return *FullKnownClassLHS; |
| 4133 | return computeKnownFPClass(V: LHS, FMF, InterestedClasses: InterestedFlags, SQ: Q); |
| 4134 | }; |
| 4135 | |
| 4136 | if (C && Q.CxtI) { |
| 4137 | // Fold out compares that express a class test. |
| 4138 | // |
| 4139 | // FIXME: Should be able to perform folds without context |
| 4140 | // instruction. Always pass in the context function? |
| 4141 | |
| 4142 | const Function *ParentF = Q.CxtI->getFunction(); |
| 4143 | auto [ClassVal, ClassTest] = fcmpToClassTest(Pred, F: *ParentF, LHS, ConstRHS: C); |
| 4144 | if (ClassVal) { |
| 4145 | FullKnownClassLHS = computeLHSClass(); |
| 4146 | if ((FullKnownClassLHS->KnownFPClasses & ClassTest) == fcNone) |
| 4147 | return getFalse(Ty: RetTy); |
| 4148 | if ((FullKnownClassLHS->KnownFPClasses & ~ClassTest) == fcNone) |
| 4149 | return getTrue(Ty: RetTy); |
| 4150 | } |
| 4151 | } |
| 4152 | |
| 4153 | // Handle fcmp with constant RHS. |
| 4154 | if (C) { |
| 4155 | // TODO: If we always required a context function, we wouldn't need to |
| 4156 | // special case nans. |
| 4157 | if (C->isNaN()) |
| 4158 | return ConstantInt::get(Ty: RetTy, V: CmpInst::isUnordered(predicate: Pred)); |
| 4159 | |
| 4160 | // TODO: Need version fcmpToClassTest which returns implied class when the |
| 4161 | // compare isn't a complete class test. e.g. > 1.0 implies fcPositive, but |
| 4162 | // isn't implementable as a class call. |
| 4163 | if (C->isNegative() && !C->isNegZero()) { |
| 4164 | FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask; |
| 4165 | |
| 4166 | // TODO: We can catch more cases by using a range check rather than |
| 4167 | // relying on CannotBeOrderedLessThanZero. |
| 4168 | switch (Pred) { |
| 4169 | case FCmpInst::FCMP_UGE: |
| 4170 | case FCmpInst::FCMP_UGT: |
| 4171 | case FCmpInst::FCMP_UNE: { |
| 4172 | KnownFPClass KnownClass = computeLHSClass(Interested); |
| 4173 | |
| 4174 | // (X >= 0) implies (X > C) when (C < 0) |
| 4175 | if (KnownClass.cannotBeOrderedLessThanZero()) |
| 4176 | return getTrue(Ty: RetTy); |
| 4177 | break; |
| 4178 | } |
| 4179 | case FCmpInst::FCMP_OEQ: |
| 4180 | case FCmpInst::FCMP_OLE: |
| 4181 | case FCmpInst::FCMP_OLT: { |
| 4182 | KnownFPClass KnownClass = computeLHSClass(Interested); |
| 4183 | |
| 4184 | // (X >= 0) implies !(X < C) when (C < 0) |
| 4185 | if (KnownClass.cannotBeOrderedLessThanZero()) |
| 4186 | return getFalse(Ty: RetTy); |
| 4187 | break; |
| 4188 | } |
| 4189 | default: |
| 4190 | break; |
| 4191 | } |
| 4192 | } |
| 4193 | // Check comparison of [minnum/maxnum with constant] with other constant. |
| 4194 | const APFloat *C2; |
| 4195 | if ((match(V: LHS, P: m_Intrinsic<Intrinsic::minnum>(Op0: m_Value(), Op1: m_APFloat(Res&: C2))) && |
| 4196 | *C2 < *C) || |
| 4197 | (match(V: LHS, P: m_Intrinsic<Intrinsic::maxnum>(Op0: m_Value(), Op1: m_APFloat(Res&: C2))) && |
| 4198 | *C2 > *C)) { |
| 4199 | bool IsMaxNum = |
| 4200 | cast<IntrinsicInst>(Val: LHS)->getIntrinsicID() == Intrinsic::maxnum; |
| 4201 | // The ordered relationship and minnum/maxnum guarantee that we do not |
| 4202 | // have NaN constants, so ordered/unordered preds are handled the same. |
| 4203 | switch (Pred) { |
| 4204 | case FCmpInst::FCMP_OEQ: |
| 4205 | case FCmpInst::FCMP_UEQ: |
| 4206 | // minnum(X, LesserC) == C --> false |
| 4207 | // maxnum(X, GreaterC) == C --> false |
| 4208 | return getFalse(Ty: RetTy); |
| 4209 | case FCmpInst::FCMP_ONE: |
| 4210 | case FCmpInst::FCMP_UNE: |
| 4211 | // minnum(X, LesserC) != C --> true |
| 4212 | // maxnum(X, GreaterC) != C --> true |
| 4213 | return getTrue(Ty: RetTy); |
| 4214 | case FCmpInst::FCMP_OGE: |
| 4215 | case FCmpInst::FCMP_UGE: |
| 4216 | case FCmpInst::FCMP_OGT: |
| 4217 | case FCmpInst::FCMP_UGT: |
| 4218 | // minnum(X, LesserC) >= C --> false |
| 4219 | // minnum(X, LesserC) > C --> false |
| 4220 | // maxnum(X, GreaterC) >= C --> true |
| 4221 | // maxnum(X, GreaterC) > C --> true |
| 4222 | return ConstantInt::get(Ty: RetTy, V: IsMaxNum); |
| 4223 | case FCmpInst::FCMP_OLE: |
| 4224 | case FCmpInst::FCMP_ULE: |
| 4225 | case FCmpInst::FCMP_OLT: |
| 4226 | case FCmpInst::FCMP_ULT: |
| 4227 | // minnum(X, LesserC) <= C --> true |
| 4228 | // minnum(X, LesserC) < C --> true |
| 4229 | // maxnum(X, GreaterC) <= C --> false |
| 4230 | // maxnum(X, GreaterC) < C --> false |
| 4231 | return ConstantInt::get(Ty: RetTy, V: !IsMaxNum); |
| 4232 | default: |
| 4233 | // TRUE/FALSE/ORD/UNO should be handled before this. |
| 4234 | llvm_unreachable("Unexpected fcmp predicate" ); |
| 4235 | } |
| 4236 | } |
| 4237 | } |
| 4238 | |
| 4239 | // TODO: Could fold this with above if there were a matcher which returned all |
| 4240 | // classes in a non-splat vector. |
| 4241 | if (match(V: RHS, P: m_AnyZeroFP())) { |
| 4242 | switch (Pred) { |
| 4243 | case FCmpInst::FCMP_OGE: |
| 4244 | case FCmpInst::FCMP_ULT: { |
| 4245 | FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask; |
| 4246 | if (!FMF.noNaNs()) |
| 4247 | Interested |= fcNan; |
| 4248 | |
| 4249 | KnownFPClass Known = computeLHSClass(Interested); |
| 4250 | |
| 4251 | // Positive or zero X >= 0.0 --> true |
| 4252 | // Positive or zero X < 0.0 --> false |
| 4253 | if ((FMF.noNaNs() || Known.isKnownNeverNaN()) && |
| 4254 | Known.cannotBeOrderedLessThanZero()) |
| 4255 | return Pred == FCmpInst::FCMP_OGE ? getTrue(Ty: RetTy) : getFalse(Ty: RetTy); |
| 4256 | break; |
| 4257 | } |
| 4258 | case FCmpInst::FCMP_UGE: |
| 4259 | case FCmpInst::FCMP_OLT: { |
| 4260 | FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask; |
| 4261 | KnownFPClass Known = computeLHSClass(Interested); |
| 4262 | |
| 4263 | // Positive or zero or nan X >= 0.0 --> true |
| 4264 | // Positive or zero or nan X < 0.0 --> false |
| 4265 | if (Known.cannotBeOrderedLessThanZero()) |
| 4266 | return Pred == FCmpInst::FCMP_UGE ? getTrue(Ty: RetTy) : getFalse(Ty: RetTy); |
| 4267 | break; |
| 4268 | } |
| 4269 | default: |
| 4270 | break; |
| 4271 | } |
| 4272 | } |
| 4273 | |
| 4274 | // If the comparison is with the result of a select instruction, check whether |
| 4275 | // comparing with either branch of the select always yields the same value. |
| 4276 | if (isa<SelectInst>(Val: LHS) || isa<SelectInst>(Val: RHS)) |
| 4277 | if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) |
| 4278 | return V; |
| 4279 | |
| 4280 | // If the comparison is with the result of a phi instruction, check whether |
| 4281 | // doing the compare with each incoming phi value yields a common result. |
| 4282 | if (isa<PHINode>(Val: LHS) || isa<PHINode>(Val: RHS)) |
| 4283 | if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) |
| 4284 | return V; |
| 4285 | |
| 4286 | return nullptr; |
| 4287 | } |
| 4288 | |
| 4289 | Value *llvm::simplifyFCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, |
| 4290 | FastMathFlags FMF, const SimplifyQuery &Q) { |
| 4291 | return ::simplifyFCmpInst(Pred: Predicate, LHS, RHS, FMF, Q, MaxRecurse: RecursionLimit); |
| 4292 | } |
| 4293 | |
| 4294 | static Value *simplifyWithOpsReplaced(Value *V, |
| 4295 | ArrayRef<std::pair<Value *, Value *>> Ops, |
| 4296 | const SimplifyQuery &Q, |
| 4297 | bool AllowRefinement, |
| 4298 | SmallVectorImpl<Instruction *> *DropFlags, |
| 4299 | unsigned MaxRecurse) { |
| 4300 | assert((AllowRefinement || !Q.CanUseUndef) && |
| 4301 | "If AllowRefinement=false then CanUseUndef=false" ); |
| 4302 | for (const auto &OpAndRepOp : Ops) { |
| 4303 | // We cannot replace a constant, and shouldn't even try. |
| 4304 | if (isa<Constant>(Val: OpAndRepOp.first)) |
| 4305 | return nullptr; |
| 4306 | |
| 4307 | // Trivial replacement. |
| 4308 | if (V == OpAndRepOp.first) |
| 4309 | return OpAndRepOp.second; |
| 4310 | } |
| 4311 | |
| 4312 | if (!MaxRecurse--) |
| 4313 | return nullptr; |
| 4314 | |
| 4315 | auto *I = dyn_cast<Instruction>(Val: V); |
| 4316 | if (!I) |
| 4317 | return nullptr; |
| 4318 | |
| 4319 | // The arguments of a phi node might refer to a value from a previous |
| 4320 | // cycle iteration. |
| 4321 | if (isa<PHINode>(Val: I)) |
| 4322 | return nullptr; |
| 4323 | |
| 4324 | // Don't fold away llvm.is.constant checks based on assumptions. |
| 4325 | if (match(V: I, P: m_Intrinsic<Intrinsic::is_constant>())) |
| 4326 | return nullptr; |
| 4327 | |
| 4328 | // Don't simplify freeze. |
| 4329 | if (isa<FreezeInst>(Val: I)) |
| 4330 | return nullptr; |
| 4331 | |
| 4332 | for (const auto &OpAndRepOp : Ops) { |
| 4333 | // For vector types, the simplification must hold per-lane, so forbid |
| 4334 | // potentially cross-lane operations like shufflevector. |
| 4335 | if (OpAndRepOp.first->getType()->isVectorTy() && |
| 4336 | !isNotCrossLaneOperation(I)) |
| 4337 | return nullptr; |
| 4338 | } |
| 4339 | |
| 4340 | // Replace Op with RepOp in instruction operands. |
| 4341 | SmallVector<Value *, 8> NewOps; |
| 4342 | bool AnyReplaced = false; |
| 4343 | for (Value *InstOp : I->operands()) { |
| 4344 | if (Value *NewInstOp = simplifyWithOpsReplaced( |
| 4345 | V: InstOp, Ops, Q, AllowRefinement, DropFlags, MaxRecurse)) { |
| 4346 | NewOps.push_back(Elt: NewInstOp); |
| 4347 | AnyReplaced = InstOp != NewInstOp; |
| 4348 | } else { |
| 4349 | NewOps.push_back(Elt: InstOp); |
| 4350 | } |
| 4351 | |
| 4352 | // Bail out if any operand is undef and SimplifyQuery disables undef |
| 4353 | // simplification. Constant folding currently doesn't respect this option. |
| 4354 | if (isa<UndefValue>(Val: NewOps.back()) && !Q.CanUseUndef) |
| 4355 | return nullptr; |
| 4356 | } |
| 4357 | |
| 4358 | if (!AnyReplaced) |
| 4359 | return nullptr; |
| 4360 | |
| 4361 | if (!AllowRefinement) { |
| 4362 | // General InstSimplify functions may refine the result, e.g. by returning |
| 4363 | // a constant for a potentially poison value. To avoid this, implement only |
| 4364 | // a few non-refining but profitable transforms here. |
| 4365 | |
| 4366 | if (auto *BO = dyn_cast<BinaryOperator>(Val: I)) { |
| 4367 | unsigned Opcode = BO->getOpcode(); |
| 4368 | // id op x -> x, x op id -> x |
| 4369 | // Exclude floats, because x op id may produce a different NaN value. |
| 4370 | if (!BO->getType()->isFPOrFPVectorTy()) { |
| 4371 | if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, Ty: I->getType())) |
| 4372 | return NewOps[1]; |
| 4373 | if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, Ty: I->getType(), |
| 4374 | /* RHS */ AllowRHSConstant: true)) |
| 4375 | return NewOps[0]; |
| 4376 | } |
| 4377 | |
| 4378 | // x & x -> x, x | x -> x |
| 4379 | if ((Opcode == Instruction::And || Opcode == Instruction::Or) && |
| 4380 | NewOps[0] == NewOps[1]) { |
| 4381 | // or disjoint x, x results in poison. |
| 4382 | if (auto *PDI = dyn_cast<PossiblyDisjointInst>(Val: BO)) { |
| 4383 | if (PDI->isDisjoint()) { |
| 4384 | if (!DropFlags) |
| 4385 | return nullptr; |
| 4386 | DropFlags->push_back(Elt: BO); |
| 4387 | } |
| 4388 | } |
| 4389 | return NewOps[0]; |
| 4390 | } |
| 4391 | |
| 4392 | // x - x -> 0, x ^ x -> 0. This is non-refining, because x is non-poison |
| 4393 | // by assumption and this case never wraps, so nowrap flags can be |
| 4394 | // ignored. |
| 4395 | if ((Opcode == Instruction::Sub || Opcode == Instruction::Xor) && |
| 4396 | NewOps[0] == NewOps[1] && |
| 4397 | any_of(Range&: Ops, P: [=](const auto &Rep) { return NewOps[0] == Rep.second; })) |
| 4398 | return Constant::getNullValue(Ty: I->getType()); |
| 4399 | |
| 4400 | // If we are substituting an absorber constant into a binop and extra |
| 4401 | // poison can't leak if we remove the select -- because both operands of |
| 4402 | // the binop are based on the same value -- then it may be safe to replace |
| 4403 | // the value with the absorber constant. Examples: |
| 4404 | // (Op == 0) ? 0 : (Op & -Op) --> Op & -Op |
| 4405 | // (Op == 0) ? 0 : (Op * (binop Op, C)) --> Op * (binop Op, C) |
| 4406 | // (Op == -1) ? -1 : (Op | (binop C, Op) --> Op | (binop C, Op) |
| 4407 | Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, Ty: I->getType()); |
| 4408 | if ((NewOps[0] == Absorber || NewOps[1] == Absorber) && |
| 4409 | any_of(Range&: Ops, |
| 4410 | P: [=](const auto &Rep) { return impliesPoison(BO, Rep.first); })) |
| 4411 | return Absorber; |
| 4412 | } |
| 4413 | |
| 4414 | if (isa<GetElementPtrInst>(Val: I)) { |
| 4415 | // getelementptr x, 0 -> x. |
| 4416 | // This never returns poison, even if inbounds is set. |
| 4417 | if (NewOps.size() == 2 && match(V: NewOps[1], P: m_Zero())) |
| 4418 | return NewOps[0]; |
| 4419 | } |
| 4420 | } else { |
| 4421 | // The simplification queries below may return the original value. Consider: |
| 4422 | // %div = udiv i32 %arg, %arg2 |
| 4423 | // %mul = mul nsw i32 %div, %arg2 |
| 4424 | // %cmp = icmp eq i32 %mul, %arg |
| 4425 | // %sel = select i1 %cmp, i32 %div, i32 undef |
| 4426 | // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which |
| 4427 | // simplifies back to %arg. This can only happen because %mul does not |
| 4428 | // dominate %div. To ensure a consistent return value contract, we make sure |
| 4429 | // that this case returns nullptr as well. |
| 4430 | auto PreventSelfSimplify = [V](Value *Simplified) { |
| 4431 | return Simplified != V ? Simplified : nullptr; |
| 4432 | }; |
| 4433 | |
| 4434 | return PreventSelfSimplify( |
| 4435 | ::simplifyInstructionWithOperands(I, NewOps, SQ: Q, MaxRecurse)); |
| 4436 | } |
| 4437 | |
| 4438 | // If all operands are constant after substituting Op for RepOp then we can |
| 4439 | // constant fold the instruction. |
| 4440 | SmallVector<Constant *, 8> ConstOps; |
| 4441 | for (Value *NewOp : NewOps) { |
| 4442 | if (Constant *ConstOp = dyn_cast<Constant>(Val: NewOp)) |
| 4443 | ConstOps.push_back(Elt: ConstOp); |
| 4444 | else |
| 4445 | return nullptr; |
| 4446 | } |
| 4447 | |
| 4448 | // Consider: |
| 4449 | // %cmp = icmp eq i32 %x, 2147483647 |
| 4450 | // %add = add nsw i32 %x, 1 |
| 4451 | // %sel = select i1 %cmp, i32 -2147483648, i32 %add |
| 4452 | // |
| 4453 | // We can't replace %sel with %add unless we strip away the flags (which |
| 4454 | // will be done in InstCombine). |
| 4455 | // TODO: This may be unsound, because it only catches some forms of |
| 4456 | // refinement. |
| 4457 | if (!AllowRefinement) { |
| 4458 | if (canCreatePoison(Op: cast<Operator>(Val: I), ConsiderFlagsAndMetadata: !DropFlags)) { |
| 4459 | // abs cannot create poison if the value is known to never be int_min. |
| 4460 | if (auto *II = dyn_cast<IntrinsicInst>(Val: I); |
| 4461 | II && II->getIntrinsicID() == Intrinsic::abs) { |
| 4462 | if (!ConstOps[0]->isNotMinSignedValue()) |
| 4463 | return nullptr; |
| 4464 | } else |
| 4465 | return nullptr; |
| 4466 | } |
| 4467 | Constant *Res = ConstantFoldInstOperands(I, Ops: ConstOps, DL: Q.DL, TLI: Q.TLI, |
| 4468 | /*AllowNonDeterministic=*/false); |
| 4469 | if (DropFlags && Res && I->hasPoisonGeneratingAnnotations()) |
| 4470 | DropFlags->push_back(Elt: I); |
| 4471 | return Res; |
| 4472 | } |
| 4473 | |
| 4474 | return ConstantFoldInstOperands(I, Ops: ConstOps, DL: Q.DL, TLI: Q.TLI, |
| 4475 | /*AllowNonDeterministic=*/false); |
| 4476 | } |
| 4477 | |
| 4478 | static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, |
| 4479 | const SimplifyQuery &Q, |
| 4480 | bool AllowRefinement, |
| 4481 | SmallVectorImpl<Instruction *> *DropFlags, |
| 4482 | unsigned MaxRecurse) { |
| 4483 | return simplifyWithOpsReplaced(V, Ops: {{Op, RepOp}}, Q, AllowRefinement, |
| 4484 | DropFlags, MaxRecurse); |
| 4485 | } |
| 4486 | |
| 4487 | Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, |
| 4488 | const SimplifyQuery &Q, |
| 4489 | bool AllowRefinement, |
| 4490 | SmallVectorImpl<Instruction *> *DropFlags) { |
| 4491 | // If refinement is disabled, also disable undef simplifications (which are |
| 4492 | // always refinements) in SimplifyQuery. |
| 4493 | if (!AllowRefinement) |
| 4494 | return ::simplifyWithOpReplaced(V, Op, RepOp, Q: Q.getWithoutUndef(), |
| 4495 | AllowRefinement, DropFlags, MaxRecurse: RecursionLimit); |
| 4496 | return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, DropFlags, |
| 4497 | MaxRecurse: RecursionLimit); |
| 4498 | } |
| 4499 | |
| 4500 | /// Try to simplify a select instruction when its condition operand is an |
| 4501 | /// integer comparison where one operand of the compare is a constant. |
| 4502 | static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, |
| 4503 | const APInt *Y, bool TrueWhenUnset) { |
| 4504 | const APInt *C; |
| 4505 | |
| 4506 | // (X & Y) == 0 ? X & ~Y : X --> X |
| 4507 | // (X & Y) != 0 ? X & ~Y : X --> X & ~Y |
| 4508 | if (FalseVal == X && match(V: TrueVal, P: m_And(L: m_Specific(V: X), R: m_APInt(Res&: C))) && |
| 4509 | *Y == ~*C) |
| 4510 | return TrueWhenUnset ? FalseVal : TrueVal; |
| 4511 | |
| 4512 | // (X & Y) == 0 ? X : X & ~Y --> X & ~Y |
| 4513 | // (X & Y) != 0 ? X : X & ~Y --> X |
| 4514 | if (TrueVal == X && match(V: FalseVal, P: m_And(L: m_Specific(V: X), R: m_APInt(Res&: C))) && |
| 4515 | *Y == ~*C) |
| 4516 | return TrueWhenUnset ? FalseVal : TrueVal; |
| 4517 | |
| 4518 | if (Y->isPowerOf2()) { |
| 4519 | // (X & Y) == 0 ? X | Y : X --> X | Y |
| 4520 | // (X & Y) != 0 ? X | Y : X --> X |
| 4521 | if (FalseVal == X && match(V: TrueVal, P: m_Or(L: m_Specific(V: X), R: m_APInt(Res&: C))) && |
| 4522 | *Y == *C) { |
| 4523 | // We can't return the or if it has the disjoint flag. |
| 4524 | if (TrueWhenUnset && cast<PossiblyDisjointInst>(Val: TrueVal)->isDisjoint()) |
| 4525 | return nullptr; |
| 4526 | return TrueWhenUnset ? TrueVal : FalseVal; |
| 4527 | } |
| 4528 | |
| 4529 | // (X & Y) == 0 ? X : X | Y --> X |
| 4530 | // (X & Y) != 0 ? X : X | Y --> X | Y |
| 4531 | if (TrueVal == X && match(V: FalseVal, P: m_Or(L: m_Specific(V: X), R: m_APInt(Res&: C))) && |
| 4532 | *Y == *C) { |
| 4533 | // We can't return the or if it has the disjoint flag. |
| 4534 | if (!TrueWhenUnset && cast<PossiblyDisjointInst>(Val: FalseVal)->isDisjoint()) |
| 4535 | return nullptr; |
| 4536 | return TrueWhenUnset ? TrueVal : FalseVal; |
| 4537 | } |
| 4538 | } |
| 4539 | |
| 4540 | return nullptr; |
| 4541 | } |
| 4542 | |
| 4543 | static Value *simplifyCmpSelOfMaxMin(Value *CmpLHS, Value *CmpRHS, |
| 4544 | CmpPredicate Pred, Value *TVal, |
| 4545 | Value *FVal) { |
| 4546 | // Canonicalize common cmp+sel operand as CmpLHS. |
| 4547 | if (CmpRHS == TVal || CmpRHS == FVal) { |
| 4548 | std::swap(a&: CmpLHS, b&: CmpRHS); |
| 4549 | Pred = ICmpInst::getSwappedPredicate(pred: Pred); |
| 4550 | } |
| 4551 | |
| 4552 | // Canonicalize common cmp+sel operand as TVal. |
| 4553 | if (CmpLHS == FVal) { |
| 4554 | std::swap(a&: TVal, b&: FVal); |
| 4555 | Pred = ICmpInst::getInversePredicate(pred: Pred); |
| 4556 | } |
| 4557 | |
| 4558 | // A vector select may be shuffling together elements that are equivalent |
| 4559 | // based on the max/min/select relationship. |
| 4560 | Value *X = CmpLHS, *Y = CmpRHS; |
| 4561 | bool PeekedThroughSelectShuffle = false; |
| 4562 | auto *Shuf = dyn_cast<ShuffleVectorInst>(Val: FVal); |
| 4563 | if (Shuf && Shuf->isSelect()) { |
| 4564 | if (Shuf->getOperand(i_nocapture: 0) == Y) |
| 4565 | FVal = Shuf->getOperand(i_nocapture: 1); |
| 4566 | else if (Shuf->getOperand(i_nocapture: 1) == Y) |
| 4567 | FVal = Shuf->getOperand(i_nocapture: 0); |
| 4568 | else |
| 4569 | return nullptr; |
| 4570 | PeekedThroughSelectShuffle = true; |
| 4571 | } |
| 4572 | |
| 4573 | // (X pred Y) ? X : max/min(X, Y) |
| 4574 | auto *MMI = dyn_cast<MinMaxIntrinsic>(Val: FVal); |
| 4575 | if (!MMI || TVal != X || |
| 4576 | !match(V: FVal, P: m_c_MaxOrMin(L: m_Specific(V: X), R: m_Specific(V: Y)))) |
| 4577 | return nullptr; |
| 4578 | |
| 4579 | // (X > Y) ? X : max(X, Y) --> max(X, Y) |
| 4580 | // (X >= Y) ? X : max(X, Y) --> max(X, Y) |
| 4581 | // (X < Y) ? X : min(X, Y) --> min(X, Y) |
| 4582 | // (X <= Y) ? X : min(X, Y) --> min(X, Y) |
| 4583 | // |
| 4584 | // The equivalence allows a vector select (shuffle) of max/min and Y. Ex: |
| 4585 | // (X > Y) ? X : (Z ? max(X, Y) : Y) |
| 4586 | // If Z is true, this reduces as above, and if Z is false: |
| 4587 | // (X > Y) ? X : Y --> max(X, Y) |
| 4588 | ICmpInst::Predicate MMPred = MMI->getPredicate(); |
| 4589 | if (MMPred == CmpInst::getStrictPredicate(pred: Pred)) |
| 4590 | return MMI; |
| 4591 | |
| 4592 | // Other transforms are not valid with a shuffle. |
| 4593 | if (PeekedThroughSelectShuffle) |
| 4594 | return nullptr; |
| 4595 | |
| 4596 | // (X == Y) ? X : max/min(X, Y) --> max/min(X, Y) |
| 4597 | if (Pred == CmpInst::ICMP_EQ) |
| 4598 | return MMI; |
| 4599 | |
| 4600 | // (X != Y) ? X : max/min(X, Y) --> X |
| 4601 | if (Pred == CmpInst::ICMP_NE) |
| 4602 | return X; |
| 4603 | |
| 4604 | // (X < Y) ? X : max(X, Y) --> X |
| 4605 | // (X <= Y) ? X : max(X, Y) --> X |
| 4606 | // (X > Y) ? X : min(X, Y) --> X |
| 4607 | // (X >= Y) ? X : min(X, Y) --> X |
| 4608 | ICmpInst::Predicate InvPred = CmpInst::getInversePredicate(pred: Pred); |
| 4609 | if (MMPred == CmpInst::getStrictPredicate(pred: InvPred)) |
| 4610 | return X; |
| 4611 | |
| 4612 | return nullptr; |
| 4613 | } |
| 4614 | |
| 4615 | /// An alternative way to test if a bit is set or not. |
| 4616 | /// uses e.g. sgt/slt or trunc instead of eq/ne. |
| 4617 | static Value *simplifySelectWithBitTest(Value *CondVal, Value *TrueVal, |
| 4618 | Value *FalseVal) { |
| 4619 | if (auto Res = decomposeBitTest(Cond: CondVal)) |
| 4620 | return simplifySelectBitTest(TrueVal, FalseVal, X: Res->X, Y: &Res->Mask, |
| 4621 | TrueWhenUnset: Res->Pred == ICmpInst::ICMP_EQ); |
| 4622 | |
| 4623 | return nullptr; |
| 4624 | } |
| 4625 | |
| 4626 | /// Try to simplify a select instruction when its condition operand is an |
| 4627 | /// integer equality or floating-point equivalence comparison. |
| 4628 | static Value *simplifySelectWithEquivalence( |
| 4629 | ArrayRef<std::pair<Value *, Value *>> Replacements, Value *TrueVal, |
| 4630 | Value *FalseVal, const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 4631 | Value *SimplifiedFalseVal = |
| 4632 | simplifyWithOpsReplaced(V: FalseVal, Ops: Replacements, Q: Q.getWithoutUndef(), |
| 4633 | /* AllowRefinement */ false, |
| 4634 | /* DropFlags */ nullptr, MaxRecurse); |
| 4635 | if (!SimplifiedFalseVal) |
| 4636 | SimplifiedFalseVal = FalseVal; |
| 4637 | |
| 4638 | Value *SimplifiedTrueVal = |
| 4639 | simplifyWithOpsReplaced(V: TrueVal, Ops: Replacements, Q, |
| 4640 | /* AllowRefinement */ true, |
| 4641 | /* DropFlags */ nullptr, MaxRecurse); |
| 4642 | if (!SimplifiedTrueVal) |
| 4643 | SimplifiedTrueVal = TrueVal; |
| 4644 | |
| 4645 | if (SimplifiedFalseVal == SimplifiedTrueVal) |
| 4646 | return FalseVal; |
| 4647 | |
| 4648 | return nullptr; |
| 4649 | } |
| 4650 | |
| 4651 | /// Try to simplify a select instruction when its condition operand is an |
| 4652 | /// integer comparison. |
| 4653 | static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, |
| 4654 | Value *FalseVal, |
| 4655 | const SimplifyQuery &Q, |
| 4656 | unsigned MaxRecurse) { |
| 4657 | CmpPredicate Pred; |
| 4658 | Value *CmpLHS, *CmpRHS; |
| 4659 | if (!match(V: CondVal, P: m_ICmp(Pred, L: m_Value(V&: CmpLHS), R: m_Value(V&: CmpRHS)))) |
| 4660 | return nullptr; |
| 4661 | |
| 4662 | if (Value *V = simplifyCmpSelOfMaxMin(CmpLHS, CmpRHS, Pred, TVal: TrueVal, FVal: FalseVal)) |
| 4663 | return V; |
| 4664 | |
| 4665 | // Canonicalize ne to eq predicate. |
| 4666 | if (Pred == ICmpInst::ICMP_NE) { |
| 4667 | Pred = ICmpInst::ICMP_EQ; |
| 4668 | std::swap(a&: TrueVal, b&: FalseVal); |
| 4669 | } |
| 4670 | |
| 4671 | // Check for integer min/max with a limit constant: |
| 4672 | // X > MIN_INT ? X : MIN_INT --> X |
| 4673 | // X < MAX_INT ? X : MAX_INT --> X |
| 4674 | if (TrueVal->getType()->isIntOrIntVectorTy()) { |
| 4675 | Value *X, *Y; |
| 4676 | SelectPatternFlavor SPF = |
| 4677 | matchDecomposedSelectPattern(CmpI: cast<ICmpInst>(Val: CondVal), TrueVal, FalseVal, |
| 4678 | LHS&: X, RHS&: Y) |
| 4679 | .Flavor; |
| 4680 | if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { |
| 4681 | APInt LimitC = getMinMaxLimit(SPF: getInverseMinMaxFlavor(SPF), |
| 4682 | BitWidth: X->getType()->getScalarSizeInBits()); |
| 4683 | if (match(V: Y, P: m_SpecificInt(V: LimitC))) |
| 4684 | return X; |
| 4685 | } |
| 4686 | } |
| 4687 | |
| 4688 | if (Pred == ICmpInst::ICMP_EQ && match(V: CmpRHS, P: m_Zero())) { |
| 4689 | Value *X; |
| 4690 | const APInt *Y; |
| 4691 | if (match(V: CmpLHS, P: m_And(L: m_Value(V&: X), R: m_APInt(Res&: Y)))) |
| 4692 | if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, |
| 4693 | /*TrueWhenUnset=*/true)) |
| 4694 | return V; |
| 4695 | |
| 4696 | // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. |
| 4697 | Value *ShAmt; |
| 4698 | auto isFsh = m_CombineOr(L: m_FShl(Op0: m_Value(V&: X), Op1: m_Value(), Op2: m_Value(V&: ShAmt)), |
| 4699 | R: m_FShr(Op0: m_Value(), Op1: m_Value(V&: X), Op2: m_Value(V&: ShAmt))); |
| 4700 | // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X |
| 4701 | // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X |
| 4702 | if (match(V: TrueVal, P: isFsh) && FalseVal == X && CmpLHS == ShAmt) |
| 4703 | return X; |
| 4704 | |
| 4705 | // Test for a zero-shift-guard-op around rotates. These are used to |
| 4706 | // avoid UB from oversized shifts in raw IR rotate patterns, but the |
| 4707 | // intrinsics do not have that problem. |
| 4708 | // We do not allow this transform for the general funnel shift case because |
| 4709 | // that would not preserve the poison safety of the original code. |
| 4710 | auto isRotate = |
| 4711 | m_CombineOr(L: m_FShl(Op0: m_Value(V&: X), Op1: m_Deferred(V: X), Op2: m_Value(V&: ShAmt)), |
| 4712 | R: m_FShr(Op0: m_Value(V&: X), Op1: m_Deferred(V: X), Op2: m_Value(V&: ShAmt))); |
| 4713 | // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) |
| 4714 | // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) |
| 4715 | if (match(V: FalseVal, P: isRotate) && TrueVal == X && CmpLHS == ShAmt && |
| 4716 | Pred == ICmpInst::ICMP_EQ) |
| 4717 | return FalseVal; |
| 4718 | |
| 4719 | // X == 0 ? abs(X) : -abs(X) --> -abs(X) |
| 4720 | // X == 0 ? -abs(X) : abs(X) --> abs(X) |
| 4721 | if (match(V: TrueVal, P: m_Intrinsic<Intrinsic::abs>(Op0: m_Specific(V: CmpLHS))) && |
| 4722 | match(V: FalseVal, P: m_Neg(V: m_Intrinsic<Intrinsic::abs>(Op0: m_Specific(V: CmpLHS))))) |
| 4723 | return FalseVal; |
| 4724 | if (match(V: TrueVal, |
| 4725 | P: m_Neg(V: m_Intrinsic<Intrinsic::abs>(Op0: m_Specific(V: CmpLHS)))) && |
| 4726 | match(V: FalseVal, P: m_Intrinsic<Intrinsic::abs>(Op0: m_Specific(V: CmpLHS)))) |
| 4727 | return FalseVal; |
| 4728 | } |
| 4729 | |
| 4730 | // If we have a scalar equality comparison, then we know the value in one of |
| 4731 | // the arms of the select. See if substituting this value into the arm and |
| 4732 | // simplifying the result yields the same value as the other arm. |
| 4733 | if (Pred == ICmpInst::ICMP_EQ) { |
| 4734 | if (CmpLHS->getType()->isIntOrIntVectorTy() || |
| 4735 | canReplacePointersIfEqual(From: CmpLHS, To: CmpRHS, DL: Q.DL)) |
| 4736 | if (Value *V = simplifySelectWithEquivalence(Replacements: {{CmpLHS, CmpRHS}}, TrueVal, |
| 4737 | FalseVal, Q, MaxRecurse)) |
| 4738 | return V; |
| 4739 | if (CmpLHS->getType()->isIntOrIntVectorTy() || |
| 4740 | canReplacePointersIfEqual(From: CmpRHS, To: CmpLHS, DL: Q.DL)) |
| 4741 | if (Value *V = simplifySelectWithEquivalence(Replacements: {{CmpRHS, CmpLHS}}, TrueVal, |
| 4742 | FalseVal, Q, MaxRecurse)) |
| 4743 | return V; |
| 4744 | |
| 4745 | Value *X; |
| 4746 | Value *Y; |
| 4747 | // select((X | Y) == 0 ? X : 0) --> 0 (commuted 2 ways) |
| 4748 | if (match(V: CmpLHS, P: m_Or(L: m_Value(V&: X), R: m_Value(V&: Y))) && |
| 4749 | match(V: CmpRHS, P: m_Zero())) { |
| 4750 | // (X | Y) == 0 implies X == 0 and Y == 0. |
| 4751 | if (Value *V = simplifySelectWithEquivalence( |
| 4752 | Replacements: {{X, CmpRHS}, {Y, CmpRHS}}, TrueVal, FalseVal, Q, MaxRecurse)) |
| 4753 | return V; |
| 4754 | } |
| 4755 | |
| 4756 | // select((X & Y) == -1 ? X : -1) --> -1 (commuted 2 ways) |
| 4757 | if (match(V: CmpLHS, P: m_And(L: m_Value(V&: X), R: m_Value(V&: Y))) && |
| 4758 | match(V: CmpRHS, P: m_AllOnes())) { |
| 4759 | // (X & Y) == -1 implies X == -1 and Y == -1. |
| 4760 | if (Value *V = simplifySelectWithEquivalence( |
| 4761 | Replacements: {{X, CmpRHS}, {Y, CmpRHS}}, TrueVal, FalseVal, Q, MaxRecurse)) |
| 4762 | return V; |
| 4763 | } |
| 4764 | } |
| 4765 | |
| 4766 | return nullptr; |
| 4767 | } |
| 4768 | |
| 4769 | /// Try to simplify a select instruction when its condition operand is a |
| 4770 | /// floating-point comparison. |
| 4771 | static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, |
| 4772 | const SimplifyQuery &Q, |
| 4773 | unsigned MaxRecurse) { |
| 4774 | CmpPredicate Pred; |
| 4775 | Value *CmpLHS, *CmpRHS; |
| 4776 | if (!match(V: Cond, P: m_FCmp(Pred, L: m_Value(V&: CmpLHS), R: m_Value(V&: CmpRHS)))) |
| 4777 | return nullptr; |
| 4778 | FCmpInst *I = cast<FCmpInst>(Val: Cond); |
| 4779 | |
| 4780 | bool IsEquiv = I->isEquivalence(); |
| 4781 | if (I->isEquivalence(/*Invert=*/true)) { |
| 4782 | std::swap(a&: T, b&: F); |
| 4783 | Pred = FCmpInst::getInversePredicate(pred: Pred); |
| 4784 | IsEquiv = true; |
| 4785 | } |
| 4786 | |
| 4787 | // This transforms is safe if at least one operand is known to not be zero. |
| 4788 | // Otherwise, the select can change the sign of a zero operand. |
| 4789 | if (IsEquiv) { |
| 4790 | if (Value *V = simplifySelectWithEquivalence(Replacements: {{CmpLHS, CmpRHS}}, TrueVal: T, FalseVal: F, Q, |
| 4791 | MaxRecurse)) |
| 4792 | return V; |
| 4793 | if (Value *V = simplifySelectWithEquivalence(Replacements: {{CmpRHS, CmpLHS}}, TrueVal: T, FalseVal: F, Q, |
| 4794 | MaxRecurse)) |
| 4795 | return V; |
| 4796 | } |
| 4797 | |
| 4798 | // Canonicalize CmpLHS to be T, and CmpRHS to be F, if they're swapped. |
| 4799 | if (CmpLHS == F && CmpRHS == T) |
| 4800 | std::swap(a&: CmpLHS, b&: CmpRHS); |
| 4801 | |
| 4802 | if (CmpLHS != T || CmpRHS != F) |
| 4803 | return nullptr; |
| 4804 | |
| 4805 | // This transform is also safe if we do not have (do not care about) -0.0. |
| 4806 | if (Q.CxtI && isa<FPMathOperator>(Val: Q.CxtI) && Q.CxtI->hasNoSignedZeros()) { |
| 4807 | // (T == F) ? T : F --> F |
| 4808 | if (Pred == FCmpInst::FCMP_OEQ) |
| 4809 | return F; |
| 4810 | |
| 4811 | // (T != F) ? T : F --> T |
| 4812 | if (Pred == FCmpInst::FCMP_UNE) |
| 4813 | return T; |
| 4814 | } |
| 4815 | |
| 4816 | return nullptr; |
| 4817 | } |
| 4818 | |
| 4819 | /// Given operands for a SelectInst, see if we can fold the result. |
| 4820 | /// If not, this returns null. |
| 4821 | static Value *simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, |
| 4822 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 4823 | if (auto *CondC = dyn_cast<Constant>(Val: Cond)) { |
| 4824 | if (auto *TrueC = dyn_cast<Constant>(Val: TrueVal)) |
| 4825 | if (auto *FalseC = dyn_cast<Constant>(Val: FalseVal)) |
| 4826 | if (Constant *C = ConstantFoldSelectInstruction(Cond: CondC, V1: TrueC, V2: FalseC)) |
| 4827 | return C; |
| 4828 | |
| 4829 | // select poison, X, Y -> poison |
| 4830 | if (isa<PoisonValue>(Val: CondC)) |
| 4831 | return PoisonValue::get(T: TrueVal->getType()); |
| 4832 | |
| 4833 | // select undef, X, Y -> X or Y |
| 4834 | if (Q.isUndefValue(V: CondC)) |
| 4835 | return isa<Constant>(Val: FalseVal) ? FalseVal : TrueVal; |
| 4836 | |
| 4837 | // select true, X, Y --> X |
| 4838 | // select false, X, Y --> Y |
| 4839 | // For vectors, allow undef/poison elements in the condition to match the |
| 4840 | // defined elements, so we can eliminate the select. |
| 4841 | if (match(V: CondC, P: m_One())) |
| 4842 | return TrueVal; |
| 4843 | if (match(V: CondC, P: m_Zero())) |
| 4844 | return FalseVal; |
| 4845 | } |
| 4846 | |
| 4847 | assert(Cond->getType()->isIntOrIntVectorTy(1) && |
| 4848 | "Select must have bool or bool vector condition" ); |
| 4849 | assert(TrueVal->getType() == FalseVal->getType() && |
| 4850 | "Select must have same types for true/false ops" ); |
| 4851 | |
| 4852 | if (Cond->getType() == TrueVal->getType()) { |
| 4853 | // select i1 Cond, i1 true, i1 false --> i1 Cond |
| 4854 | if (match(V: TrueVal, P: m_One()) && match(V: FalseVal, P: m_ZeroInt())) |
| 4855 | return Cond; |
| 4856 | |
| 4857 | // (X && Y) ? X : Y --> Y (commuted 2 ways) |
| 4858 | if (match(V: Cond, P: m_c_LogicalAnd(L: m_Specific(V: TrueVal), R: m_Specific(V: FalseVal)))) |
| 4859 | return FalseVal; |
| 4860 | |
| 4861 | // (X || Y) ? X : Y --> X (commuted 2 ways) |
| 4862 | if (match(V: Cond, P: m_c_LogicalOr(L: m_Specific(V: TrueVal), R: m_Specific(V: FalseVal)))) |
| 4863 | return TrueVal; |
| 4864 | |
| 4865 | // (X || Y) ? false : X --> false (commuted 2 ways) |
| 4866 | if (match(V: Cond, P: m_c_LogicalOr(L: m_Specific(V: FalseVal), R: m_Value())) && |
| 4867 | match(V: TrueVal, P: m_ZeroInt())) |
| 4868 | return ConstantInt::getFalse(Ty: Cond->getType()); |
| 4869 | |
| 4870 | // Match patterns that end in logical-and. |
| 4871 | if (match(V: FalseVal, P: m_ZeroInt())) { |
| 4872 | // !(X || Y) && X --> false (commuted 2 ways) |
| 4873 | if (match(V: Cond, P: m_Not(V: m_c_LogicalOr(L: m_Specific(V: TrueVal), R: m_Value())))) |
| 4874 | return ConstantInt::getFalse(Ty: Cond->getType()); |
| 4875 | // X && !(X || Y) --> false (commuted 2 ways) |
| 4876 | if (match(V: TrueVal, P: m_Not(V: m_c_LogicalOr(L: m_Specific(V: Cond), R: m_Value())))) |
| 4877 | return ConstantInt::getFalse(Ty: Cond->getType()); |
| 4878 | |
| 4879 | // (X || Y) && Y --> Y (commuted 2 ways) |
| 4880 | if (match(V: Cond, P: m_c_LogicalOr(L: m_Specific(V: TrueVal), R: m_Value()))) |
| 4881 | return TrueVal; |
| 4882 | // Y && (X || Y) --> Y (commuted 2 ways) |
| 4883 | if (match(V: TrueVal, P: m_c_LogicalOr(L: m_Specific(V: Cond), R: m_Value()))) |
| 4884 | return Cond; |
| 4885 | |
| 4886 | // (X || Y) && (X || !Y) --> X (commuted 8 ways) |
| 4887 | Value *X, *Y; |
| 4888 | if (match(V: Cond, P: m_c_LogicalOr(L: m_Value(V&: X), R: m_Not(V: m_Value(V&: Y)))) && |
| 4889 | match(V: TrueVal, P: m_c_LogicalOr(L: m_Specific(V: X), R: m_Specific(V: Y)))) |
| 4890 | return X; |
| 4891 | if (match(V: TrueVal, P: m_c_LogicalOr(L: m_Value(V&: X), R: m_Not(V: m_Value(V&: Y)))) && |
| 4892 | match(V: Cond, P: m_c_LogicalOr(L: m_Specific(V: X), R: m_Specific(V: Y)))) |
| 4893 | return X; |
| 4894 | } |
| 4895 | |
| 4896 | // Match patterns that end in logical-or. |
| 4897 | if (match(V: TrueVal, P: m_One())) { |
| 4898 | // !(X && Y) || X --> true (commuted 2 ways) |
| 4899 | if (match(V: Cond, P: m_Not(V: m_c_LogicalAnd(L: m_Specific(V: FalseVal), R: m_Value())))) |
| 4900 | return ConstantInt::getTrue(Ty: Cond->getType()); |
| 4901 | // X || !(X && Y) --> true (commuted 2 ways) |
| 4902 | if (match(V: FalseVal, P: m_Not(V: m_c_LogicalAnd(L: m_Specific(V: Cond), R: m_Value())))) |
| 4903 | return ConstantInt::getTrue(Ty: Cond->getType()); |
| 4904 | |
| 4905 | // (X && Y) || Y --> Y (commuted 2 ways) |
| 4906 | if (match(V: Cond, P: m_c_LogicalAnd(L: m_Specific(V: FalseVal), R: m_Value()))) |
| 4907 | return FalseVal; |
| 4908 | // Y || (X && Y) --> Y (commuted 2 ways) |
| 4909 | if (match(V: FalseVal, P: m_c_LogicalAnd(L: m_Specific(V: Cond), R: m_Value()))) |
| 4910 | return Cond; |
| 4911 | } |
| 4912 | } |
| 4913 | |
| 4914 | // select ?, X, X -> X |
| 4915 | if (TrueVal == FalseVal) |
| 4916 | return TrueVal; |
| 4917 | |
| 4918 | if (Cond == TrueVal) { |
| 4919 | // select i1 X, i1 X, i1 false --> X (logical-and) |
| 4920 | if (match(V: FalseVal, P: m_ZeroInt())) |
| 4921 | return Cond; |
| 4922 | // select i1 X, i1 X, i1 true --> true |
| 4923 | if (match(V: FalseVal, P: m_One())) |
| 4924 | return ConstantInt::getTrue(Ty: Cond->getType()); |
| 4925 | } |
| 4926 | if (Cond == FalseVal) { |
| 4927 | // select i1 X, i1 true, i1 X --> X (logical-or) |
| 4928 | if (match(V: TrueVal, P: m_One())) |
| 4929 | return Cond; |
| 4930 | // select i1 X, i1 false, i1 X --> false |
| 4931 | if (match(V: TrueVal, P: m_ZeroInt())) |
| 4932 | return ConstantInt::getFalse(Ty: Cond->getType()); |
| 4933 | } |
| 4934 | |
| 4935 | // If the true or false value is poison, we can fold to the other value. |
| 4936 | // If the true or false value is undef, we can fold to the other value as |
| 4937 | // long as the other value isn't poison. |
| 4938 | // select ?, poison, X -> X |
| 4939 | // select ?, undef, X -> X |
| 4940 | if (isa<PoisonValue>(Val: TrueVal) || |
| 4941 | (Q.isUndefValue(V: TrueVal) && impliesPoison(ValAssumedPoison: FalseVal, V: Cond))) |
| 4942 | return FalseVal; |
| 4943 | // select ?, X, poison -> X |
| 4944 | // select ?, X, undef -> X |
| 4945 | if (isa<PoisonValue>(Val: FalseVal) || |
| 4946 | (Q.isUndefValue(V: FalseVal) && impliesPoison(ValAssumedPoison: TrueVal, V: Cond))) |
| 4947 | return TrueVal; |
| 4948 | |
| 4949 | // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' |
| 4950 | Constant *TrueC, *FalseC; |
| 4951 | if (isa<FixedVectorType>(Val: TrueVal->getType()) && |
| 4952 | match(V: TrueVal, P: m_Constant(C&: TrueC)) && |
| 4953 | match(V: FalseVal, P: m_Constant(C&: FalseC))) { |
| 4954 | unsigned NumElts = |
| 4955 | cast<FixedVectorType>(Val: TrueC->getType())->getNumElements(); |
| 4956 | SmallVector<Constant *, 16> NewC; |
| 4957 | for (unsigned i = 0; i != NumElts; ++i) { |
| 4958 | // Bail out on incomplete vector constants. |
| 4959 | Constant *TEltC = TrueC->getAggregateElement(Elt: i); |
| 4960 | Constant *FEltC = FalseC->getAggregateElement(Elt: i); |
| 4961 | if (!TEltC || !FEltC) |
| 4962 | break; |
| 4963 | |
| 4964 | // If the elements match (undef or not), that value is the result. If only |
| 4965 | // one element is undef, choose the defined element as the safe result. |
| 4966 | if (TEltC == FEltC) |
| 4967 | NewC.push_back(Elt: TEltC); |
| 4968 | else if (isa<PoisonValue>(Val: TEltC) || |
| 4969 | (Q.isUndefValue(V: TEltC) && isGuaranteedNotToBePoison(V: FEltC))) |
| 4970 | NewC.push_back(Elt: FEltC); |
| 4971 | else if (isa<PoisonValue>(Val: FEltC) || |
| 4972 | (Q.isUndefValue(V: FEltC) && isGuaranteedNotToBePoison(V: TEltC))) |
| 4973 | NewC.push_back(Elt: TEltC); |
| 4974 | else |
| 4975 | break; |
| 4976 | } |
| 4977 | if (NewC.size() == NumElts) |
| 4978 | return ConstantVector::get(V: NewC); |
| 4979 | } |
| 4980 | |
| 4981 | if (Value *V = |
| 4982 | simplifySelectWithICmpCond(CondVal: Cond, TrueVal, FalseVal, Q, MaxRecurse)) |
| 4983 | return V; |
| 4984 | |
| 4985 | if (Value *V = simplifySelectWithBitTest(CondVal: Cond, TrueVal, FalseVal)) |
| 4986 | return V; |
| 4987 | |
| 4988 | if (Value *V = simplifySelectWithFCmp(Cond, T: TrueVal, F: FalseVal, Q, MaxRecurse)) |
| 4989 | return V; |
| 4990 | |
| 4991 | std::optional<bool> Imp = isImpliedByDomCondition(Cond, ContextI: Q.CxtI, DL: Q.DL); |
| 4992 | if (Imp) |
| 4993 | return *Imp ? TrueVal : FalseVal; |
| 4994 | |
| 4995 | return nullptr; |
| 4996 | } |
| 4997 | |
| 4998 | Value *llvm::simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, |
| 4999 | const SimplifyQuery &Q) { |
| 5000 | return ::simplifySelectInst(Cond, TrueVal, FalseVal, Q, MaxRecurse: RecursionLimit); |
| 5001 | } |
| 5002 | |
| 5003 | /// Given operands for an GetElementPtrInst, see if we can fold the result. |
| 5004 | /// If not, this returns null. |
| 5005 | static Value *simplifyGEPInst(Type *SrcTy, Value *Ptr, |
| 5006 | ArrayRef<Value *> Indices, GEPNoWrapFlags NW, |
| 5007 | const SimplifyQuery &Q, unsigned) { |
| 5008 | // The type of the GEP pointer operand. |
| 5009 | unsigned AS = |
| 5010 | cast<PointerType>(Val: Ptr->getType()->getScalarType())->getAddressSpace(); |
| 5011 | |
| 5012 | // getelementptr P -> P. |
| 5013 | if (Indices.empty()) |
| 5014 | return Ptr; |
| 5015 | |
| 5016 | // Compute the (pointer) type returned by the GEP instruction. |
| 5017 | Type *LastType = GetElementPtrInst::getIndexedType(Ty: SrcTy, IdxList: Indices); |
| 5018 | Type *GEPTy = Ptr->getType(); |
| 5019 | if (!GEPTy->isVectorTy()) { |
| 5020 | for (Value *Op : Indices) { |
| 5021 | // If one of the operands is a vector, the result type is a vector of |
| 5022 | // pointers. All vector operands must have the same number of elements. |
| 5023 | if (VectorType *VT = dyn_cast<VectorType>(Val: Op->getType())) { |
| 5024 | GEPTy = VectorType::get(ElementType: GEPTy, EC: VT->getElementCount()); |
| 5025 | break; |
| 5026 | } |
| 5027 | } |
| 5028 | } |
| 5029 | |
| 5030 | // All-zero GEP is a no-op, unless it performs a vector splat. |
| 5031 | if (Ptr->getType() == GEPTy && |
| 5032 | all_of(Range&: Indices, P: [](const auto *V) { return match(V, m_Zero()); })) |
| 5033 | return Ptr; |
| 5034 | |
| 5035 | // getelementptr poison, idx -> poison |
| 5036 | // getelementptr baseptr, poison -> poison |
| 5037 | if (isa<PoisonValue>(Val: Ptr) || |
| 5038 | any_of(Range&: Indices, P: [](const auto *V) { return isa<PoisonValue>(V); })) |
| 5039 | return PoisonValue::get(T: GEPTy); |
| 5040 | |
| 5041 | // getelementptr undef, idx -> undef |
| 5042 | if (Q.isUndefValue(V: Ptr)) |
| 5043 | return UndefValue::get(T: GEPTy); |
| 5044 | |
| 5045 | bool IsScalableVec = |
| 5046 | SrcTy->isScalableTy() || any_of(Range&: Indices, P: [](const Value *V) { |
| 5047 | return isa<ScalableVectorType>(Val: V->getType()); |
| 5048 | }); |
| 5049 | |
| 5050 | if (Indices.size() == 1) { |
| 5051 | Type *Ty = SrcTy; |
| 5052 | if (!IsScalableVec && Ty->isSized()) { |
| 5053 | Value *P; |
| 5054 | uint64_t C; |
| 5055 | uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); |
| 5056 | // getelementptr P, N -> P if P points to a type of zero size. |
| 5057 | if (TyAllocSize == 0 && Ptr->getType() == GEPTy) |
| 5058 | return Ptr; |
| 5059 | |
| 5060 | // The following transforms are only safe if the ptrtoint cast |
| 5061 | // doesn't truncate the pointers. |
| 5062 | if (Indices[0]->getType()->getScalarSizeInBits() == |
| 5063 | Q.DL.getPointerSizeInBits(AS)) { |
| 5064 | auto CanSimplify = [GEPTy, &P, Ptr]() -> bool { |
| 5065 | return P->getType() == GEPTy && |
| 5066 | getUnderlyingObject(V: P) == getUnderlyingObject(V: Ptr); |
| 5067 | }; |
| 5068 | // getelementptr V, (sub P, V) -> P if P points to a type of size 1. |
| 5069 | if (TyAllocSize == 1 && |
| 5070 | match(V: Indices[0], |
| 5071 | P: m_Sub(L: m_PtrToInt(Op: m_Value(V&: P)), R: m_PtrToInt(Op: m_Specific(V: Ptr)))) && |
| 5072 | CanSimplify()) |
| 5073 | return P; |
| 5074 | |
| 5075 | // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of |
| 5076 | // size 1 << C. |
| 5077 | if (match(V: Indices[0], P: m_AShr(L: m_Sub(L: m_PtrToInt(Op: m_Value(V&: P)), |
| 5078 | R: m_PtrToInt(Op: m_Specific(V: Ptr))), |
| 5079 | R: m_ConstantInt(V&: C))) && |
| 5080 | TyAllocSize == 1ULL << C && CanSimplify()) |
| 5081 | return P; |
| 5082 | |
| 5083 | // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of |
| 5084 | // size C. |
| 5085 | if (match(V: Indices[0], P: m_SDiv(L: m_Sub(L: m_PtrToInt(Op: m_Value(V&: P)), |
| 5086 | R: m_PtrToInt(Op: m_Specific(V: Ptr))), |
| 5087 | R: m_SpecificInt(V: TyAllocSize))) && |
| 5088 | CanSimplify()) |
| 5089 | return P; |
| 5090 | } |
| 5091 | } |
| 5092 | } |
| 5093 | |
| 5094 | if (!IsScalableVec && Q.DL.getTypeAllocSize(Ty: LastType) == 1 && |
| 5095 | all_of(Range: Indices.drop_back(N: 1), |
| 5096 | P: [](Value *Idx) { return match(V: Idx, P: m_Zero()); })) { |
| 5097 | unsigned IdxWidth = |
| 5098 | Q.DL.getIndexSizeInBits(AS: Ptr->getType()->getPointerAddressSpace()); |
| 5099 | if (Q.DL.getTypeSizeInBits(Ty: Indices.back()->getType()) == IdxWidth) { |
| 5100 | APInt BasePtrOffset(IdxWidth, 0); |
| 5101 | Value *StrippedBasePtr = |
| 5102 | Ptr->stripAndAccumulateInBoundsConstantOffsets(DL: Q.DL, Offset&: BasePtrOffset); |
| 5103 | |
| 5104 | // Avoid creating inttoptr of zero here: While LLVMs treatment of |
| 5105 | // inttoptr is generally conservative, this particular case is folded to |
| 5106 | // a null pointer, which will have incorrect provenance. |
| 5107 | |
| 5108 | // gep (gep V, C), (sub 0, V) -> C |
| 5109 | if (match(V: Indices.back(), |
| 5110 | P: m_Neg(V: m_PtrToInt(Op: m_Specific(V: StrippedBasePtr)))) && |
| 5111 | !BasePtrOffset.isZero()) { |
| 5112 | auto *CI = ConstantInt::get(Context&: GEPTy->getContext(), V: BasePtrOffset); |
| 5113 | return ConstantExpr::getIntToPtr(C: CI, Ty: GEPTy); |
| 5114 | } |
| 5115 | // gep (gep V, C), (xor V, -1) -> C-1 |
| 5116 | if (match(V: Indices.back(), |
| 5117 | P: m_Xor(L: m_PtrToInt(Op: m_Specific(V: StrippedBasePtr)), R: m_AllOnes())) && |
| 5118 | !BasePtrOffset.isOne()) { |
| 5119 | auto *CI = ConstantInt::get(Context&: GEPTy->getContext(), V: BasePtrOffset - 1); |
| 5120 | return ConstantExpr::getIntToPtr(C: CI, Ty: GEPTy); |
| 5121 | } |
| 5122 | } |
| 5123 | } |
| 5124 | |
| 5125 | // Check to see if this is constant foldable. |
| 5126 | if (!isa<Constant>(Val: Ptr) || |
| 5127 | !all_of(Range&: Indices, P: [](Value *V) { return isa<Constant>(Val: V); })) |
| 5128 | return nullptr; |
| 5129 | |
| 5130 | if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy: SrcTy)) |
| 5131 | return ConstantFoldGetElementPtr(Ty: SrcTy, C: cast<Constant>(Val: Ptr), InRange: std::nullopt, |
| 5132 | Idxs: Indices); |
| 5133 | |
| 5134 | auto *CE = |
| 5135 | ConstantExpr::getGetElementPtr(Ty: SrcTy, C: cast<Constant>(Val: Ptr), IdxList: Indices, NW); |
| 5136 | return ConstantFoldConstant(C: CE, DL: Q.DL); |
| 5137 | } |
| 5138 | |
| 5139 | Value *llvm::simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices, |
| 5140 | GEPNoWrapFlags NW, const SimplifyQuery &Q) { |
| 5141 | return ::simplifyGEPInst(SrcTy, Ptr, Indices, NW, Q, RecursionLimit); |
| 5142 | } |
| 5143 | |
| 5144 | /// Given operands for an InsertValueInst, see if we can fold the result. |
| 5145 | /// If not, this returns null. |
| 5146 | static Value *simplifyInsertValueInst(Value *Agg, Value *Val, |
| 5147 | ArrayRef<unsigned> Idxs, |
| 5148 | const SimplifyQuery &Q, unsigned) { |
| 5149 | if (Constant *CAgg = dyn_cast<Constant>(Val: Agg)) |
| 5150 | if (Constant *CVal = dyn_cast<Constant>(Val)) |
| 5151 | return ConstantFoldInsertValueInstruction(Agg: CAgg, Val: CVal, Idxs); |
| 5152 | |
| 5153 | // insertvalue x, poison, n -> x |
| 5154 | // insertvalue x, undef, n -> x if x cannot be poison |
| 5155 | if (isa<PoisonValue>(Val) || |
| 5156 | (Q.isUndefValue(V: Val) && isGuaranteedNotToBePoison(V: Agg))) |
| 5157 | return Agg; |
| 5158 | |
| 5159 | // insertvalue x, (extractvalue y, n), n |
| 5160 | if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) |
| 5161 | if (EV->getAggregateOperand()->getType() == Agg->getType() && |
| 5162 | EV->getIndices() == Idxs) { |
| 5163 | // insertvalue poison, (extractvalue y, n), n -> y |
| 5164 | // insertvalue undef, (extractvalue y, n), n -> y if y cannot be poison |
| 5165 | if (isa<PoisonValue>(Val: Agg) || |
| 5166 | (Q.isUndefValue(V: Agg) && |
| 5167 | isGuaranteedNotToBePoison(V: EV->getAggregateOperand()))) |
| 5168 | return EV->getAggregateOperand(); |
| 5169 | |
| 5170 | // insertvalue y, (extractvalue y, n), n -> y |
| 5171 | if (Agg == EV->getAggregateOperand()) |
| 5172 | return Agg; |
| 5173 | } |
| 5174 | |
| 5175 | return nullptr; |
| 5176 | } |
| 5177 | |
| 5178 | Value *llvm::simplifyInsertValueInst(Value *Agg, Value *Val, |
| 5179 | ArrayRef<unsigned> Idxs, |
| 5180 | const SimplifyQuery &Q) { |
| 5181 | return ::simplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); |
| 5182 | } |
| 5183 | |
| 5184 | Value *llvm::simplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, |
| 5185 | const SimplifyQuery &Q) { |
| 5186 | // Try to constant fold. |
| 5187 | auto *VecC = dyn_cast<Constant>(Val: Vec); |
| 5188 | auto *ValC = dyn_cast<Constant>(Val); |
| 5189 | auto *IdxC = dyn_cast<Constant>(Val: Idx); |
| 5190 | if (VecC && ValC && IdxC) |
| 5191 | return ConstantExpr::getInsertElement(Vec: VecC, Elt: ValC, Idx: IdxC); |
| 5192 | |
| 5193 | // For fixed-length vector, fold into poison if index is out of bounds. |
| 5194 | if (auto *CI = dyn_cast<ConstantInt>(Val: Idx)) { |
| 5195 | if (isa<FixedVectorType>(Val: Vec->getType()) && |
| 5196 | CI->uge(Num: cast<FixedVectorType>(Val: Vec->getType())->getNumElements())) |
| 5197 | return PoisonValue::get(T: Vec->getType()); |
| 5198 | } |
| 5199 | |
| 5200 | // If index is undef, it might be out of bounds (see above case) |
| 5201 | if (Q.isUndefValue(V: Idx)) |
| 5202 | return PoisonValue::get(T: Vec->getType()); |
| 5203 | |
| 5204 | // If the scalar is poison, or it is undef and there is no risk of |
| 5205 | // propagating poison from the vector value, simplify to the vector value. |
| 5206 | if (isa<PoisonValue>(Val) || |
| 5207 | (Q.isUndefValue(V: Val) && isGuaranteedNotToBePoison(V: Vec))) |
| 5208 | return Vec; |
| 5209 | |
| 5210 | // Inserting the splatted value into a constant splat does nothing. |
| 5211 | if (VecC && ValC && VecC->getSplatValue() == ValC) |
| 5212 | return Vec; |
| 5213 | |
| 5214 | // If we are extracting a value from a vector, then inserting it into the same |
| 5215 | // place, that's the input vector: |
| 5216 | // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec |
| 5217 | if (match(V: Val, P: m_ExtractElt(Val: m_Specific(V: Vec), Idx: m_Specific(V: Idx)))) |
| 5218 | return Vec; |
| 5219 | |
| 5220 | return nullptr; |
| 5221 | } |
| 5222 | |
| 5223 | /// Given operands for an ExtractValueInst, see if we can fold the result. |
| 5224 | /// If not, this returns null. |
| 5225 | static Value *(Value *Agg, ArrayRef<unsigned> Idxs, |
| 5226 | const SimplifyQuery &, unsigned) { |
| 5227 | if (auto *CAgg = dyn_cast<Constant>(Val: Agg)) |
| 5228 | return ConstantFoldExtractValueInstruction(Agg: CAgg, Idxs); |
| 5229 | |
| 5230 | // extractvalue x, (insertvalue y, elt, n), n -> elt |
| 5231 | unsigned NumIdxs = Idxs.size(); |
| 5232 | for (auto *IVI = dyn_cast<InsertValueInst>(Val: Agg); IVI != nullptr; |
| 5233 | IVI = dyn_cast<InsertValueInst>(Val: IVI->getAggregateOperand())) { |
| 5234 | ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); |
| 5235 | unsigned NumInsertValueIdxs = InsertValueIdxs.size(); |
| 5236 | unsigned NumCommonIdxs = std::min(a: NumInsertValueIdxs, b: NumIdxs); |
| 5237 | if (InsertValueIdxs.slice(N: 0, M: NumCommonIdxs) == |
| 5238 | Idxs.slice(N: 0, M: NumCommonIdxs)) { |
| 5239 | if (NumIdxs == NumInsertValueIdxs) |
| 5240 | return IVI->getInsertedValueOperand(); |
| 5241 | break; |
| 5242 | } |
| 5243 | } |
| 5244 | |
| 5245 | return nullptr; |
| 5246 | } |
| 5247 | |
| 5248 | Value *llvm::(Value *Agg, ArrayRef<unsigned> Idxs, |
| 5249 | const SimplifyQuery &Q) { |
| 5250 | return ::simplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); |
| 5251 | } |
| 5252 | |
| 5253 | /// Given operands for an ExtractElementInst, see if we can fold the result. |
| 5254 | /// If not, this returns null. |
| 5255 | static Value *(Value *Vec, Value *Idx, |
| 5256 | const SimplifyQuery &Q, unsigned) { |
| 5257 | auto *VecVTy = cast<VectorType>(Val: Vec->getType()); |
| 5258 | if (auto *CVec = dyn_cast<Constant>(Val: Vec)) { |
| 5259 | if (auto *CIdx = dyn_cast<Constant>(Val: Idx)) |
| 5260 | return ConstantExpr::getExtractElement(Vec: CVec, Idx: CIdx); |
| 5261 | |
| 5262 | if (Q.isUndefValue(V: Vec)) |
| 5263 | return UndefValue::get(T: VecVTy->getElementType()); |
| 5264 | } |
| 5265 | |
| 5266 | // An undef extract index can be arbitrarily chosen to be an out-of-range |
| 5267 | // index value, which would result in the instruction being poison. |
| 5268 | if (Q.isUndefValue(V: Idx)) |
| 5269 | return PoisonValue::get(T: VecVTy->getElementType()); |
| 5270 | |
| 5271 | // If extracting a specified index from the vector, see if we can recursively |
| 5272 | // find a previously computed scalar that was inserted into the vector. |
| 5273 | if (auto *IdxC = dyn_cast<ConstantInt>(Val: Idx)) { |
| 5274 | // For fixed-length vector, fold into undef if index is out of bounds. |
| 5275 | unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); |
| 5276 | if (isa<FixedVectorType>(Val: VecVTy) && IdxC->getValue().uge(RHS: MinNumElts)) |
| 5277 | return PoisonValue::get(T: VecVTy->getElementType()); |
| 5278 | // Handle case where an element is extracted from a splat. |
| 5279 | if (IdxC->getValue().ult(RHS: MinNumElts)) |
| 5280 | if (auto *Splat = getSplatValue(V: Vec)) |
| 5281 | return Splat; |
| 5282 | if (Value *Elt = findScalarElement(V: Vec, EltNo: IdxC->getZExtValue())) |
| 5283 | return Elt; |
| 5284 | } else { |
| 5285 | // extractelt x, (insertelt y, elt, n), n -> elt |
| 5286 | // If the possibly-variable indices are trivially known to be equal |
| 5287 | // (because they are the same operand) then use the value that was |
| 5288 | // inserted directly. |
| 5289 | auto *IE = dyn_cast<InsertElementInst>(Val: Vec); |
| 5290 | if (IE && IE->getOperand(i_nocapture: 2) == Idx) |
| 5291 | return IE->getOperand(i_nocapture: 1); |
| 5292 | |
| 5293 | // The index is not relevant if our vector is a splat. |
| 5294 | if (Value *Splat = getSplatValue(V: Vec)) |
| 5295 | return Splat; |
| 5296 | } |
| 5297 | return nullptr; |
| 5298 | } |
| 5299 | |
| 5300 | Value *llvm::(Value *Vec, Value *Idx, |
| 5301 | const SimplifyQuery &Q) { |
| 5302 | return ::simplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); |
| 5303 | } |
| 5304 | |
| 5305 | /// See if we can fold the given phi. If not, returns null. |
| 5306 | static Value *simplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, |
| 5307 | const SimplifyQuery &Q) { |
| 5308 | // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE |
| 5309 | // here, because the PHI we may succeed simplifying to was not |
| 5310 | // def-reachable from the original PHI! |
| 5311 | |
| 5312 | // If all of the PHI's incoming values are the same then replace the PHI node |
| 5313 | // with the common value. |
| 5314 | Value *CommonValue = nullptr; |
| 5315 | bool HasPoisonInput = false; |
| 5316 | bool HasUndefInput = false; |
| 5317 | for (Value *Incoming : IncomingValues) { |
| 5318 | // If the incoming value is the phi node itself, it can safely be skipped. |
| 5319 | if (Incoming == PN) |
| 5320 | continue; |
| 5321 | if (isa<PoisonValue>(Val: Incoming)) { |
| 5322 | HasPoisonInput = true; |
| 5323 | continue; |
| 5324 | } |
| 5325 | if (Q.isUndefValue(V: Incoming)) { |
| 5326 | // Remember that we saw an undef value, but otherwise ignore them. |
| 5327 | HasUndefInput = true; |
| 5328 | continue; |
| 5329 | } |
| 5330 | if (CommonValue && Incoming != CommonValue) |
| 5331 | return nullptr; // Not the same, bail out. |
| 5332 | CommonValue = Incoming; |
| 5333 | } |
| 5334 | |
| 5335 | // If CommonValue is null then all of the incoming values were either undef, |
| 5336 | // poison or equal to the phi node itself. |
| 5337 | if (!CommonValue) |
| 5338 | return HasUndefInput ? UndefValue::get(T: PN->getType()) |
| 5339 | : PoisonValue::get(T: PN->getType()); |
| 5340 | |
| 5341 | if (HasPoisonInput || HasUndefInput) { |
| 5342 | // If we have a PHI node like phi(X, undef, X), where X is defined by some |
| 5343 | // instruction, we cannot return X as the result of the PHI node unless it |
| 5344 | // dominates the PHI block. |
| 5345 | if (!valueDominatesPHI(V: CommonValue, P: PN, DT: Q.DT)) |
| 5346 | return nullptr; |
| 5347 | |
| 5348 | // Make sure we do not replace an undef value with poison. |
| 5349 | if (HasUndefInput && |
| 5350 | !isGuaranteedNotToBePoison(V: CommonValue, AC: Q.AC, CtxI: Q.CxtI, DT: Q.DT)) |
| 5351 | return nullptr; |
| 5352 | return CommonValue; |
| 5353 | } |
| 5354 | |
| 5355 | return CommonValue; |
| 5356 | } |
| 5357 | |
| 5358 | static Value *simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, |
| 5359 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 5360 | if (auto *C = dyn_cast<Constant>(Val: Op)) |
| 5361 | return ConstantFoldCastOperand(Opcode: CastOpc, C, DestTy: Ty, DL: Q.DL); |
| 5362 | |
| 5363 | if (auto *CI = dyn_cast<CastInst>(Val: Op)) { |
| 5364 | auto *Src = CI->getOperand(i_nocapture: 0); |
| 5365 | Type *SrcTy = Src->getType(); |
| 5366 | Type *MidTy = CI->getType(); |
| 5367 | Type *DstTy = Ty; |
| 5368 | if (Src->getType() == Ty) { |
| 5369 | auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); |
| 5370 | auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); |
| 5371 | Type *SrcIntPtrTy = |
| 5372 | SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; |
| 5373 | Type *MidIntPtrTy = |
| 5374 | MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; |
| 5375 | Type *DstIntPtrTy = |
| 5376 | DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; |
| 5377 | if (CastInst::isEliminableCastPair(firstOpcode: FirstOp, secondOpcode: SecondOp, SrcTy, MidTy, DstTy, |
| 5378 | SrcIntPtrTy, MidIntPtrTy, |
| 5379 | DstIntPtrTy) == Instruction::BitCast) |
| 5380 | return Src; |
| 5381 | } |
| 5382 | } |
| 5383 | |
| 5384 | // bitcast x -> x |
| 5385 | if (CastOpc == Instruction::BitCast) |
| 5386 | if (Op->getType() == Ty) |
| 5387 | return Op; |
| 5388 | |
| 5389 | // ptrtoint (ptradd (Ptr, X - ptrtoint(Ptr))) -> X |
| 5390 | Value *Ptr, *X; |
| 5391 | if (CastOpc == Instruction::PtrToInt && |
| 5392 | match(V: Op, P: m_PtrAdd(PointerOp: m_Value(V&: Ptr), |
| 5393 | OffsetOp: m_Sub(L: m_Value(V&: X), R: m_PtrToInt(Op: m_Deferred(V: Ptr))))) && |
| 5394 | X->getType() == Ty && Ty == Q.DL.getIndexType(PtrTy: Ptr->getType())) |
| 5395 | return X; |
| 5396 | |
| 5397 | return nullptr; |
| 5398 | } |
| 5399 | |
| 5400 | Value *llvm::simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, |
| 5401 | const SimplifyQuery &Q) { |
| 5402 | return ::simplifyCastInst(CastOpc, Op, Ty, Q, MaxRecurse: RecursionLimit); |
| 5403 | } |
| 5404 | |
| 5405 | /// For the given destination element of a shuffle, peek through shuffles to |
| 5406 | /// match a root vector source operand that contains that element in the same |
| 5407 | /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). |
| 5408 | static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, |
| 5409 | int MaskVal, Value *RootVec, |
| 5410 | unsigned MaxRecurse) { |
| 5411 | if (!MaxRecurse--) |
| 5412 | return nullptr; |
| 5413 | |
| 5414 | // Bail out if any mask value is undefined. That kind of shuffle may be |
| 5415 | // simplified further based on demanded bits or other folds. |
| 5416 | if (MaskVal == -1) |
| 5417 | return nullptr; |
| 5418 | |
| 5419 | // The mask value chooses which source operand we need to look at next. |
| 5420 | int InVecNumElts = cast<FixedVectorType>(Val: Op0->getType())->getNumElements(); |
| 5421 | int RootElt = MaskVal; |
| 5422 | Value *SourceOp = Op0; |
| 5423 | if (MaskVal >= InVecNumElts) { |
| 5424 | RootElt = MaskVal - InVecNumElts; |
| 5425 | SourceOp = Op1; |
| 5426 | } |
| 5427 | |
| 5428 | // If the source operand is a shuffle itself, look through it to find the |
| 5429 | // matching root vector. |
| 5430 | if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(Val: SourceOp)) { |
| 5431 | return foldIdentityShuffles( |
| 5432 | DestElt, Op0: SourceShuf->getOperand(i_nocapture: 0), Op1: SourceShuf->getOperand(i_nocapture: 1), |
| 5433 | MaskVal: SourceShuf->getMaskValue(Elt: RootElt), RootVec, MaxRecurse); |
| 5434 | } |
| 5435 | |
| 5436 | // The source operand is not a shuffle. Initialize the root vector value for |
| 5437 | // this shuffle if that has not been done yet. |
| 5438 | if (!RootVec) |
| 5439 | RootVec = SourceOp; |
| 5440 | |
| 5441 | // Give up as soon as a source operand does not match the existing root value. |
| 5442 | if (RootVec != SourceOp) |
| 5443 | return nullptr; |
| 5444 | |
| 5445 | // The element must be coming from the same lane in the source vector |
| 5446 | // (although it may have crossed lanes in intermediate shuffles). |
| 5447 | if (RootElt != DestElt) |
| 5448 | return nullptr; |
| 5449 | |
| 5450 | return RootVec; |
| 5451 | } |
| 5452 | |
| 5453 | static Value *simplifyShuffleVectorInst(Value *Op0, Value *Op1, |
| 5454 | ArrayRef<int> Mask, Type *RetTy, |
| 5455 | const SimplifyQuery &Q, |
| 5456 | unsigned MaxRecurse) { |
| 5457 | if (all_of(Range&: Mask, P: [](int Elem) { return Elem == PoisonMaskElem; })) |
| 5458 | return PoisonValue::get(T: RetTy); |
| 5459 | |
| 5460 | auto *InVecTy = cast<VectorType>(Val: Op0->getType()); |
| 5461 | unsigned MaskNumElts = Mask.size(); |
| 5462 | ElementCount InVecEltCount = InVecTy->getElementCount(); |
| 5463 | |
| 5464 | bool Scalable = InVecEltCount.isScalable(); |
| 5465 | |
| 5466 | SmallVector<int, 32> Indices; |
| 5467 | Indices.assign(in_start: Mask.begin(), in_end: Mask.end()); |
| 5468 | |
| 5469 | // Canonicalization: If mask does not select elements from an input vector, |
| 5470 | // replace that input vector with poison. |
| 5471 | if (!Scalable) { |
| 5472 | bool MaskSelects0 = false, MaskSelects1 = false; |
| 5473 | unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); |
| 5474 | for (unsigned i = 0; i != MaskNumElts; ++i) { |
| 5475 | if (Indices[i] == -1) |
| 5476 | continue; |
| 5477 | if ((unsigned)Indices[i] < InVecNumElts) |
| 5478 | MaskSelects0 = true; |
| 5479 | else |
| 5480 | MaskSelects1 = true; |
| 5481 | } |
| 5482 | if (!MaskSelects0) |
| 5483 | Op0 = PoisonValue::get(T: InVecTy); |
| 5484 | if (!MaskSelects1) |
| 5485 | Op1 = PoisonValue::get(T: InVecTy); |
| 5486 | } |
| 5487 | |
| 5488 | auto *Op0Const = dyn_cast<Constant>(Val: Op0); |
| 5489 | auto *Op1Const = dyn_cast<Constant>(Val: Op1); |
| 5490 | |
| 5491 | // If all operands are constant, constant fold the shuffle. This |
| 5492 | // transformation depends on the value of the mask which is not known at |
| 5493 | // compile time for scalable vectors |
| 5494 | if (Op0Const && Op1Const) |
| 5495 | return ConstantExpr::getShuffleVector(V1: Op0Const, V2: Op1Const, Mask); |
| 5496 | |
| 5497 | // Canonicalization: if only one input vector is constant, it shall be the |
| 5498 | // second one. This transformation depends on the value of the mask which |
| 5499 | // is not known at compile time for scalable vectors |
| 5500 | if (!Scalable && Op0Const && !Op1Const) { |
| 5501 | std::swap(a&: Op0, b&: Op1); |
| 5502 | ShuffleVectorInst::commuteShuffleMask(Mask: Indices, |
| 5503 | InVecNumElts: InVecEltCount.getKnownMinValue()); |
| 5504 | } |
| 5505 | |
| 5506 | // A splat of an inserted scalar constant becomes a vector constant: |
| 5507 | // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> |
| 5508 | // NOTE: We may have commuted above, so analyze the updated Indices, not the |
| 5509 | // original mask constant. |
| 5510 | // NOTE: This transformation depends on the value of the mask which is not |
| 5511 | // known at compile time for scalable vectors |
| 5512 | Constant *C; |
| 5513 | ConstantInt *IndexC; |
| 5514 | if (!Scalable && match(V: Op0, P: m_InsertElt(Val: m_Value(), Elt: m_Constant(C), |
| 5515 | Idx: m_ConstantInt(CI&: IndexC)))) { |
| 5516 | // Match a splat shuffle mask of the insert index allowing undef elements. |
| 5517 | int InsertIndex = IndexC->getZExtValue(); |
| 5518 | if (all_of(Range&: Indices, P: [InsertIndex](int MaskElt) { |
| 5519 | return MaskElt == InsertIndex || MaskElt == -1; |
| 5520 | })) { |
| 5521 | assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat" ); |
| 5522 | |
| 5523 | // Shuffle mask poisons become poison constant result elements. |
| 5524 | SmallVector<Constant *, 16> VecC(MaskNumElts, C); |
| 5525 | for (unsigned i = 0; i != MaskNumElts; ++i) |
| 5526 | if (Indices[i] == -1) |
| 5527 | VecC[i] = PoisonValue::get(T: C->getType()); |
| 5528 | return ConstantVector::get(V: VecC); |
| 5529 | } |
| 5530 | } |
| 5531 | |
| 5532 | // A shuffle of a splat is always the splat itself. Legal if the shuffle's |
| 5533 | // value type is same as the input vectors' type. |
| 5534 | if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Val: Op0)) |
| 5535 | if (Q.isUndefValue(V: Op1) && RetTy == InVecTy && |
| 5536 | all_equal(Range: OpShuf->getShuffleMask())) |
| 5537 | return Op0; |
| 5538 | |
| 5539 | // All remaining transformation depend on the value of the mask, which is |
| 5540 | // not known at compile time for scalable vectors. |
| 5541 | if (Scalable) |
| 5542 | return nullptr; |
| 5543 | |
| 5544 | // Don't fold a shuffle with undef mask elements. This may get folded in a |
| 5545 | // better way using demanded bits or other analysis. |
| 5546 | // TODO: Should we allow this? |
| 5547 | if (is_contained(Range&: Indices, Element: -1)) |
| 5548 | return nullptr; |
| 5549 | |
| 5550 | // Check if every element of this shuffle can be mapped back to the |
| 5551 | // corresponding element of a single root vector. If so, we don't need this |
| 5552 | // shuffle. This handles simple identity shuffles as well as chains of |
| 5553 | // shuffles that may widen/narrow and/or move elements across lanes and back. |
| 5554 | Value *RootVec = nullptr; |
| 5555 | for (unsigned i = 0; i != MaskNumElts; ++i) { |
| 5556 | // Note that recursion is limited for each vector element, so if any element |
| 5557 | // exceeds the limit, this will fail to simplify. |
| 5558 | RootVec = |
| 5559 | foldIdentityShuffles(DestElt: i, Op0, Op1, MaskVal: Indices[i], RootVec, MaxRecurse); |
| 5560 | |
| 5561 | // We can't replace a widening/narrowing shuffle with one of its operands. |
| 5562 | if (!RootVec || RootVec->getType() != RetTy) |
| 5563 | return nullptr; |
| 5564 | } |
| 5565 | return RootVec; |
| 5566 | } |
| 5567 | |
| 5568 | /// Given operands for a ShuffleVectorInst, fold the result or return null. |
| 5569 | Value *llvm::simplifyShuffleVectorInst(Value *Op0, Value *Op1, |
| 5570 | ArrayRef<int> Mask, Type *RetTy, |
| 5571 | const SimplifyQuery &Q) { |
| 5572 | return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, MaxRecurse: RecursionLimit); |
| 5573 | } |
| 5574 | |
| 5575 | static Constant *foldConstant(Instruction::UnaryOps Opcode, Value *&Op, |
| 5576 | const SimplifyQuery &Q) { |
| 5577 | if (auto *C = dyn_cast<Constant>(Val: Op)) |
| 5578 | return ConstantFoldUnaryOpOperand(Opcode, Op: C, DL: Q.DL); |
| 5579 | return nullptr; |
| 5580 | } |
| 5581 | |
| 5582 | /// Given the operand for an FNeg, see if we can fold the result. If not, this |
| 5583 | /// returns null. |
| 5584 | static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, |
| 5585 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 5586 | if (Constant *C = foldConstant(Opcode: Instruction::FNeg, Op, Q)) |
| 5587 | return C; |
| 5588 | |
| 5589 | Value *X; |
| 5590 | // fneg (fneg X) ==> X |
| 5591 | if (match(V: Op, P: m_FNeg(X: m_Value(V&: X)))) |
| 5592 | return X; |
| 5593 | |
| 5594 | return nullptr; |
| 5595 | } |
| 5596 | |
| 5597 | Value *llvm::simplifyFNegInst(Value *Op, FastMathFlags FMF, |
| 5598 | const SimplifyQuery &Q) { |
| 5599 | return ::simplifyFNegInst(Op, FMF, Q, MaxRecurse: RecursionLimit); |
| 5600 | } |
| 5601 | |
| 5602 | /// Try to propagate existing NaN values when possible. If not, replace the |
| 5603 | /// constant or elements in the constant with a canonical NaN. |
| 5604 | static Constant *propagateNaN(Constant *In) { |
| 5605 | Type *Ty = In->getType(); |
| 5606 | if (auto *VecTy = dyn_cast<FixedVectorType>(Val: Ty)) { |
| 5607 | unsigned NumElts = VecTy->getNumElements(); |
| 5608 | SmallVector<Constant *, 32> NewC(NumElts); |
| 5609 | for (unsigned i = 0; i != NumElts; ++i) { |
| 5610 | Constant *EltC = In->getAggregateElement(Elt: i); |
| 5611 | // Poison elements propagate. NaN propagates except signaling is quieted. |
| 5612 | // Replace unknown or undef elements with canonical NaN. |
| 5613 | if (EltC && isa<PoisonValue>(Val: EltC)) |
| 5614 | NewC[i] = EltC; |
| 5615 | else if (EltC && EltC->isNaN()) |
| 5616 | NewC[i] = ConstantFP::get( |
| 5617 | Ty: EltC->getType(), V: cast<ConstantFP>(Val: EltC)->getValue().makeQuiet()); |
| 5618 | else |
| 5619 | NewC[i] = ConstantFP::getNaN(Ty: VecTy->getElementType()); |
| 5620 | } |
| 5621 | return ConstantVector::get(V: NewC); |
| 5622 | } |
| 5623 | |
| 5624 | // If it is not a fixed vector, but not a simple NaN either, return a |
| 5625 | // canonical NaN. |
| 5626 | if (!In->isNaN()) |
| 5627 | return ConstantFP::getNaN(Ty); |
| 5628 | |
| 5629 | // If we known this is a NaN, and it's scalable vector, we must have a splat |
| 5630 | // on our hands. Grab that before splatting a QNaN constant. |
| 5631 | if (isa<ScalableVectorType>(Val: Ty)) { |
| 5632 | auto *Splat = In->getSplatValue(); |
| 5633 | assert(Splat && Splat->isNaN() && |
| 5634 | "Found a scalable-vector NaN but not a splat" ); |
| 5635 | In = Splat; |
| 5636 | } |
| 5637 | |
| 5638 | // Propagate an existing QNaN constant. If it is an SNaN, make it quiet, but |
| 5639 | // preserve the sign/payload. |
| 5640 | return ConstantFP::get(Ty, V: cast<ConstantFP>(Val: In)->getValue().makeQuiet()); |
| 5641 | } |
| 5642 | |
| 5643 | /// Perform folds that are common to any floating-point operation. This implies |
| 5644 | /// transforms based on poison/undef/NaN because the operation itself makes no |
| 5645 | /// difference to the result. |
| 5646 | static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, |
| 5647 | const SimplifyQuery &Q, |
| 5648 | fp::ExceptionBehavior ExBehavior, |
| 5649 | RoundingMode Rounding) { |
| 5650 | // Poison is independent of anything else. It always propagates from an |
| 5651 | // operand to a math result. |
| 5652 | if (any_of(Range&: Ops, P: [](Value *V) { return match(V, P: m_Poison()); })) |
| 5653 | return PoisonValue::get(T: Ops[0]->getType()); |
| 5654 | |
| 5655 | for (Value *V : Ops) { |
| 5656 | bool IsNan = match(V, P: m_NaN()); |
| 5657 | bool IsInf = match(V, P: m_Inf()); |
| 5658 | bool IsUndef = Q.isUndefValue(V); |
| 5659 | |
| 5660 | // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand |
| 5661 | // (an undef operand can be chosen to be Nan/Inf), then the result of |
| 5662 | // this operation is poison. |
| 5663 | if (FMF.noNaNs() && (IsNan || IsUndef)) |
| 5664 | return PoisonValue::get(T: V->getType()); |
| 5665 | if (FMF.noInfs() && (IsInf || IsUndef)) |
| 5666 | return PoisonValue::get(T: V->getType()); |
| 5667 | |
| 5668 | if (isDefaultFPEnvironment(EB: ExBehavior, RM: Rounding)) { |
| 5669 | // Undef does not propagate because undef means that all bits can take on |
| 5670 | // any value. If this is undef * NaN for example, then the result values |
| 5671 | // (at least the exponent bits) are limited. Assume the undef is a |
| 5672 | // canonical NaN and propagate that. |
| 5673 | if (IsUndef) |
| 5674 | return ConstantFP::getNaN(Ty: V->getType()); |
| 5675 | if (IsNan) |
| 5676 | return propagateNaN(In: cast<Constant>(Val: V)); |
| 5677 | } else if (ExBehavior != fp::ebStrict) { |
| 5678 | if (IsNan) |
| 5679 | return propagateNaN(In: cast<Constant>(Val: V)); |
| 5680 | } |
| 5681 | } |
| 5682 | return nullptr; |
| 5683 | } |
| 5684 | |
| 5685 | /// Given operands for an FAdd, see if we can fold the result. If not, this |
| 5686 | /// returns null. |
| 5687 | static Value * |
| 5688 | simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| 5689 | const SimplifyQuery &Q, unsigned MaxRecurse, |
| 5690 | fp::ExceptionBehavior ExBehavior = fp::ebIgnore, |
| 5691 | RoundingMode Rounding = RoundingMode::NearestTiesToEven) { |
| 5692 | if (isDefaultFPEnvironment(EB: ExBehavior, RM: Rounding)) |
| 5693 | if (Constant *C = foldOrCommuteConstant(Opcode: Instruction::FAdd, Op0, Op1, Q)) |
| 5694 | return C; |
| 5695 | |
| 5696 | if (Constant *C = simplifyFPOp(Ops: {Op0, Op1}, FMF, Q, ExBehavior, Rounding)) |
| 5697 | return C; |
| 5698 | |
| 5699 | // fadd X, -0 ==> X |
| 5700 | // With strict/constrained FP, we have these possible edge cases that do |
| 5701 | // not simplify to Op0: |
| 5702 | // fadd SNaN, -0.0 --> QNaN |
| 5703 | // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) |
| 5704 | if (canIgnoreSNaN(EB: ExBehavior, FMF) && |
| 5705 | (!canRoundingModeBe(RM: Rounding, QRM: RoundingMode::TowardNegative) || |
| 5706 | FMF.noSignedZeros())) |
| 5707 | if (match(V: Op1, P: m_NegZeroFP())) |
| 5708 | return Op0; |
| 5709 | |
| 5710 | // fadd X, 0 ==> X, when we know X is not -0 |
| 5711 | if (canIgnoreSNaN(EB: ExBehavior, FMF)) |
| 5712 | if (match(V: Op1, P: m_PosZeroFP()) && |
| 5713 | (FMF.noSignedZeros() || cannotBeNegativeZero(V: Op0, SQ: Q))) |
| 5714 | return Op0; |
| 5715 | |
| 5716 | if (!isDefaultFPEnvironment(EB: ExBehavior, RM: Rounding)) |
| 5717 | return nullptr; |
| 5718 | |
| 5719 | if (FMF.noNaNs()) { |
| 5720 | // With nnan: X + {+/-}Inf --> {+/-}Inf |
| 5721 | if (match(V: Op1, P: m_Inf())) |
| 5722 | return Op1; |
| 5723 | |
| 5724 | // With nnan: -X + X --> 0.0 (and commuted variant) |
| 5725 | // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. |
| 5726 | // Negative zeros are allowed because we always end up with positive zero: |
| 5727 | // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 |
| 5728 | // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 |
| 5729 | // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 |
| 5730 | // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 |
| 5731 | if (match(V: Op0, P: m_FSub(L: m_AnyZeroFP(), R: m_Specific(V: Op1))) || |
| 5732 | match(V: Op1, P: m_FSub(L: m_AnyZeroFP(), R: m_Specific(V: Op0)))) |
| 5733 | return ConstantFP::getZero(Ty: Op0->getType()); |
| 5734 | |
| 5735 | if (match(V: Op0, P: m_FNeg(X: m_Specific(V: Op1))) || |
| 5736 | match(V: Op1, P: m_FNeg(X: m_Specific(V: Op0)))) |
| 5737 | return ConstantFP::getZero(Ty: Op0->getType()); |
| 5738 | } |
| 5739 | |
| 5740 | // (X - Y) + Y --> X |
| 5741 | // Y + (X - Y) --> X |
| 5742 | Value *X; |
| 5743 | if (FMF.noSignedZeros() && FMF.allowReassoc() && |
| 5744 | (match(V: Op0, P: m_FSub(L: m_Value(V&: X), R: m_Specific(V: Op1))) || |
| 5745 | match(V: Op1, P: m_FSub(L: m_Value(V&: X), R: m_Specific(V: Op0))))) |
| 5746 | return X; |
| 5747 | |
| 5748 | return nullptr; |
| 5749 | } |
| 5750 | |
| 5751 | /// Given operands for an FSub, see if we can fold the result. If not, this |
| 5752 | /// returns null. |
| 5753 | static Value * |
| 5754 | simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| 5755 | const SimplifyQuery &Q, unsigned MaxRecurse, |
| 5756 | fp::ExceptionBehavior ExBehavior = fp::ebIgnore, |
| 5757 | RoundingMode Rounding = RoundingMode::NearestTiesToEven) { |
| 5758 | if (isDefaultFPEnvironment(EB: ExBehavior, RM: Rounding)) |
| 5759 | if (Constant *C = foldOrCommuteConstant(Opcode: Instruction::FSub, Op0, Op1, Q)) |
| 5760 | return C; |
| 5761 | |
| 5762 | if (Constant *C = simplifyFPOp(Ops: {Op0, Op1}, FMF, Q, ExBehavior, Rounding)) |
| 5763 | return C; |
| 5764 | |
| 5765 | // fsub X, +0 ==> X |
| 5766 | if (canIgnoreSNaN(EB: ExBehavior, FMF) && |
| 5767 | (!canRoundingModeBe(RM: Rounding, QRM: RoundingMode::TowardNegative) || |
| 5768 | FMF.noSignedZeros())) |
| 5769 | if (match(V: Op1, P: m_PosZeroFP())) |
| 5770 | return Op0; |
| 5771 | |
| 5772 | // fsub X, -0 ==> X, when we know X is not -0 |
| 5773 | if (canIgnoreSNaN(EB: ExBehavior, FMF)) |
| 5774 | if (match(V: Op1, P: m_NegZeroFP()) && |
| 5775 | (FMF.noSignedZeros() || cannotBeNegativeZero(V: Op0, SQ: Q))) |
| 5776 | return Op0; |
| 5777 | |
| 5778 | // fsub -0.0, (fsub -0.0, X) ==> X |
| 5779 | // fsub -0.0, (fneg X) ==> X |
| 5780 | Value *X; |
| 5781 | if (canIgnoreSNaN(EB: ExBehavior, FMF)) |
| 5782 | if (match(V: Op0, P: m_NegZeroFP()) && match(V: Op1, P: m_FNeg(X: m_Value(V&: X)))) |
| 5783 | return X; |
| 5784 | |
| 5785 | // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. |
| 5786 | // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. |
| 5787 | if (canIgnoreSNaN(EB: ExBehavior, FMF)) |
| 5788 | if (FMF.noSignedZeros() && match(V: Op0, P: m_AnyZeroFP()) && |
| 5789 | (match(V: Op1, P: m_FSub(L: m_AnyZeroFP(), R: m_Value(V&: X))) || |
| 5790 | match(V: Op1, P: m_FNeg(X: m_Value(V&: X))))) |
| 5791 | return X; |
| 5792 | |
| 5793 | if (!isDefaultFPEnvironment(EB: ExBehavior, RM: Rounding)) |
| 5794 | return nullptr; |
| 5795 | |
| 5796 | if (FMF.noNaNs()) { |
| 5797 | // fsub nnan x, x ==> 0.0 |
| 5798 | if (Op0 == Op1) |
| 5799 | return Constant::getNullValue(Ty: Op0->getType()); |
| 5800 | |
| 5801 | // With nnan: {+/-}Inf - X --> {+/-}Inf |
| 5802 | if (match(V: Op0, P: m_Inf())) |
| 5803 | return Op0; |
| 5804 | |
| 5805 | // With nnan: X - {+/-}Inf --> {-/+}Inf |
| 5806 | if (match(V: Op1, P: m_Inf())) |
| 5807 | return foldConstant(Opcode: Instruction::FNeg, Op&: Op1, Q); |
| 5808 | } |
| 5809 | |
| 5810 | // Y - (Y - X) --> X |
| 5811 | // (X + Y) - Y --> X |
| 5812 | if (FMF.noSignedZeros() && FMF.allowReassoc() && |
| 5813 | (match(V: Op1, P: m_FSub(L: m_Specific(V: Op0), R: m_Value(V&: X))) || |
| 5814 | match(V: Op0, P: m_c_FAdd(L: m_Specific(V: Op1), R: m_Value(V&: X))))) |
| 5815 | return X; |
| 5816 | |
| 5817 | return nullptr; |
| 5818 | } |
| 5819 | |
| 5820 | static Value *simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, |
| 5821 | const SimplifyQuery &Q, unsigned MaxRecurse, |
| 5822 | fp::ExceptionBehavior ExBehavior, |
| 5823 | RoundingMode Rounding) { |
| 5824 | if (Constant *C = simplifyFPOp(Ops: {Op0, Op1}, FMF, Q, ExBehavior, Rounding)) |
| 5825 | return C; |
| 5826 | |
| 5827 | if (!isDefaultFPEnvironment(EB: ExBehavior, RM: Rounding)) |
| 5828 | return nullptr; |
| 5829 | |
| 5830 | // Canonicalize special constants as operand 1. |
| 5831 | if (match(V: Op0, P: m_FPOne()) || match(V: Op0, P: m_AnyZeroFP())) |
| 5832 | std::swap(a&: Op0, b&: Op1); |
| 5833 | |
| 5834 | // X * 1.0 --> X |
| 5835 | if (match(V: Op1, P: m_FPOne())) |
| 5836 | return Op0; |
| 5837 | |
| 5838 | if (match(V: Op1, P: m_AnyZeroFP())) { |
| 5839 | // X * 0.0 --> 0.0 (with nnan and nsz) |
| 5840 | if (FMF.noNaNs() && FMF.noSignedZeros()) |
| 5841 | return ConstantFP::getZero(Ty: Op0->getType()); |
| 5842 | |
| 5843 | KnownFPClass Known = computeKnownFPClass(V: Op0, FMF, InterestedClasses: fcInf | fcNan, SQ: Q); |
| 5844 | if (Known.isKnownNever(Mask: fcInf | fcNan)) { |
| 5845 | // if nsz is set, return 0.0 |
| 5846 | if (FMF.noSignedZeros()) |
| 5847 | return ConstantFP::getZero(Ty: Op0->getType()); |
| 5848 | // +normal number * (-)0.0 --> (-)0.0 |
| 5849 | if (Known.SignBit == false) |
| 5850 | return Op1; |
| 5851 | // -normal number * (-)0.0 --> -(-)0.0 |
| 5852 | if (Known.SignBit == true) |
| 5853 | return foldConstant(Opcode: Instruction::FNeg, Op&: Op1, Q); |
| 5854 | } |
| 5855 | } |
| 5856 | |
| 5857 | // sqrt(X) * sqrt(X) --> X, if we can: |
| 5858 | // 1. Remove the intermediate rounding (reassociate). |
| 5859 | // 2. Ignore non-zero negative numbers because sqrt would produce NAN. |
| 5860 | // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. |
| 5861 | Value *X; |
| 5862 | if (Op0 == Op1 && match(V: Op0, P: m_Sqrt(Op0: m_Value(V&: X))) && FMF.allowReassoc() && |
| 5863 | FMF.noNaNs() && FMF.noSignedZeros()) |
| 5864 | return X; |
| 5865 | |
| 5866 | return nullptr; |
| 5867 | } |
| 5868 | |
| 5869 | /// Given the operands for an FMul, see if we can fold the result |
| 5870 | static Value * |
| 5871 | simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| 5872 | const SimplifyQuery &Q, unsigned MaxRecurse, |
| 5873 | fp::ExceptionBehavior ExBehavior = fp::ebIgnore, |
| 5874 | RoundingMode Rounding = RoundingMode::NearestTiesToEven) { |
| 5875 | if (isDefaultFPEnvironment(EB: ExBehavior, RM: Rounding)) |
| 5876 | if (Constant *C = foldOrCommuteConstant(Opcode: Instruction::FMul, Op0, Op1, Q)) |
| 5877 | return C; |
| 5878 | |
| 5879 | // Now apply simplifications that do not require rounding. |
| 5880 | return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); |
| 5881 | } |
| 5882 | |
| 5883 | Value *llvm::simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| 5884 | const SimplifyQuery &Q, |
| 5885 | fp::ExceptionBehavior ExBehavior, |
| 5886 | RoundingMode Rounding) { |
| 5887 | return ::simplifyFAddInst(Op0, Op1, FMF, Q, MaxRecurse: RecursionLimit, ExBehavior, |
| 5888 | Rounding); |
| 5889 | } |
| 5890 | |
| 5891 | Value *llvm::simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| 5892 | const SimplifyQuery &Q, |
| 5893 | fp::ExceptionBehavior ExBehavior, |
| 5894 | RoundingMode Rounding) { |
| 5895 | return ::simplifyFSubInst(Op0, Op1, FMF, Q, MaxRecurse: RecursionLimit, ExBehavior, |
| 5896 | Rounding); |
| 5897 | } |
| 5898 | |
| 5899 | Value *llvm::simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| 5900 | const SimplifyQuery &Q, |
| 5901 | fp::ExceptionBehavior ExBehavior, |
| 5902 | RoundingMode Rounding) { |
| 5903 | return ::simplifyFMulInst(Op0, Op1, FMF, Q, MaxRecurse: RecursionLimit, ExBehavior, |
| 5904 | Rounding); |
| 5905 | } |
| 5906 | |
| 5907 | Value *llvm::simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, |
| 5908 | const SimplifyQuery &Q, |
| 5909 | fp::ExceptionBehavior ExBehavior, |
| 5910 | RoundingMode Rounding) { |
| 5911 | return ::simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse: RecursionLimit, ExBehavior, |
| 5912 | Rounding); |
| 5913 | } |
| 5914 | |
| 5915 | static Value * |
| 5916 | simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| 5917 | const SimplifyQuery &Q, unsigned, |
| 5918 | fp::ExceptionBehavior ExBehavior = fp::ebIgnore, |
| 5919 | RoundingMode Rounding = RoundingMode::NearestTiesToEven) { |
| 5920 | if (isDefaultFPEnvironment(EB: ExBehavior, RM: Rounding)) |
| 5921 | if (Constant *C = foldOrCommuteConstant(Opcode: Instruction::FDiv, Op0, Op1, Q)) |
| 5922 | return C; |
| 5923 | |
| 5924 | if (Constant *C = simplifyFPOp(Ops: {Op0, Op1}, FMF, Q, ExBehavior, Rounding)) |
| 5925 | return C; |
| 5926 | |
| 5927 | if (!isDefaultFPEnvironment(EB: ExBehavior, RM: Rounding)) |
| 5928 | return nullptr; |
| 5929 | |
| 5930 | // X / 1.0 -> X |
| 5931 | if (match(V: Op1, P: m_FPOne())) |
| 5932 | return Op0; |
| 5933 | |
| 5934 | // 0 / X -> 0 |
| 5935 | // Requires that NaNs are off (X could be zero) and signed zeroes are |
| 5936 | // ignored (X could be positive or negative, so the output sign is unknown). |
| 5937 | if (FMF.noNaNs() && FMF.noSignedZeros() && match(V: Op0, P: m_AnyZeroFP())) |
| 5938 | return ConstantFP::getZero(Ty: Op0->getType()); |
| 5939 | |
| 5940 | if (FMF.noNaNs()) { |
| 5941 | // X / X -> 1.0 is legal when NaNs are ignored. |
| 5942 | // We can ignore infinities because INF/INF is NaN. |
| 5943 | if (Op0 == Op1) |
| 5944 | return ConstantFP::get(Ty: Op0->getType(), V: 1.0); |
| 5945 | |
| 5946 | // (X * Y) / Y --> X if we can reassociate to the above form. |
| 5947 | Value *X; |
| 5948 | if (FMF.allowReassoc() && match(V: Op0, P: m_c_FMul(L: m_Value(V&: X), R: m_Specific(V: Op1)))) |
| 5949 | return X; |
| 5950 | |
| 5951 | // -X / X -> -1.0 and |
| 5952 | // X / -X -> -1.0 are legal when NaNs are ignored. |
| 5953 | // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. |
| 5954 | if (match(V: Op0, P: m_FNegNSZ(X: m_Specific(V: Op1))) || |
| 5955 | match(V: Op1, P: m_FNegNSZ(X: m_Specific(V: Op0)))) |
| 5956 | return ConstantFP::get(Ty: Op0->getType(), V: -1.0); |
| 5957 | |
| 5958 | // nnan ninf X / [-]0.0 -> poison |
| 5959 | if (FMF.noInfs() && match(V: Op1, P: m_AnyZeroFP())) |
| 5960 | return PoisonValue::get(T: Op1->getType()); |
| 5961 | } |
| 5962 | |
| 5963 | return nullptr; |
| 5964 | } |
| 5965 | |
| 5966 | Value *llvm::simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| 5967 | const SimplifyQuery &Q, |
| 5968 | fp::ExceptionBehavior ExBehavior, |
| 5969 | RoundingMode Rounding) { |
| 5970 | return ::simplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, |
| 5971 | Rounding); |
| 5972 | } |
| 5973 | |
| 5974 | static Value * |
| 5975 | simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| 5976 | const SimplifyQuery &Q, unsigned, |
| 5977 | fp::ExceptionBehavior ExBehavior = fp::ebIgnore, |
| 5978 | RoundingMode Rounding = RoundingMode::NearestTiesToEven) { |
| 5979 | if (isDefaultFPEnvironment(EB: ExBehavior, RM: Rounding)) |
| 5980 | if (Constant *C = foldOrCommuteConstant(Opcode: Instruction::FRem, Op0, Op1, Q)) |
| 5981 | return C; |
| 5982 | |
| 5983 | if (Constant *C = simplifyFPOp(Ops: {Op0, Op1}, FMF, Q, ExBehavior, Rounding)) |
| 5984 | return C; |
| 5985 | |
| 5986 | if (!isDefaultFPEnvironment(EB: ExBehavior, RM: Rounding)) |
| 5987 | return nullptr; |
| 5988 | |
| 5989 | // Unlike fdiv, the result of frem always matches the sign of the dividend. |
| 5990 | // The constant match may include undef elements in a vector, so return a full |
| 5991 | // zero constant as the result. |
| 5992 | if (FMF.noNaNs()) { |
| 5993 | // +0 % X -> 0 |
| 5994 | if (match(V: Op0, P: m_PosZeroFP())) |
| 5995 | return ConstantFP::getZero(Ty: Op0->getType()); |
| 5996 | // -0 % X -> -0 |
| 5997 | if (match(V: Op0, P: m_NegZeroFP())) |
| 5998 | return ConstantFP::getNegativeZero(Ty: Op0->getType()); |
| 5999 | } |
| 6000 | |
| 6001 | return nullptr; |
| 6002 | } |
| 6003 | |
| 6004 | Value *llvm::simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, |
| 6005 | const SimplifyQuery &Q, |
| 6006 | fp::ExceptionBehavior ExBehavior, |
| 6007 | RoundingMode Rounding) { |
| 6008 | return ::simplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, |
| 6009 | Rounding); |
| 6010 | } |
| 6011 | |
| 6012 | //=== Helper functions for higher up the class hierarchy. |
| 6013 | |
| 6014 | /// Given the operand for a UnaryOperator, see if we can fold the result. |
| 6015 | /// If not, this returns null. |
| 6016 | static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, |
| 6017 | unsigned MaxRecurse) { |
| 6018 | switch (Opcode) { |
| 6019 | case Instruction::FNeg: |
| 6020 | return simplifyFNegInst(Op, FMF: FastMathFlags(), Q, MaxRecurse); |
| 6021 | default: |
| 6022 | llvm_unreachable("Unexpected opcode" ); |
| 6023 | } |
| 6024 | } |
| 6025 | |
| 6026 | /// Given the operand for a UnaryOperator, see if we can fold the result. |
| 6027 | /// If not, this returns null. |
| 6028 | /// Try to use FastMathFlags when folding the result. |
| 6029 | static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, |
| 6030 | const FastMathFlags &FMF, const SimplifyQuery &Q, |
| 6031 | unsigned MaxRecurse) { |
| 6032 | switch (Opcode) { |
| 6033 | case Instruction::FNeg: |
| 6034 | return simplifyFNegInst(Op, FMF, Q, MaxRecurse); |
| 6035 | default: |
| 6036 | return simplifyUnOp(Opcode, Op, Q, MaxRecurse); |
| 6037 | } |
| 6038 | } |
| 6039 | |
| 6040 | Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { |
| 6041 | return ::simplifyUnOp(Opcode, Op, Q, MaxRecurse: RecursionLimit); |
| 6042 | } |
| 6043 | |
| 6044 | Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, |
| 6045 | const SimplifyQuery &Q) { |
| 6046 | return ::simplifyFPUnOp(Opcode, Op, FMF, Q, MaxRecurse: RecursionLimit); |
| 6047 | } |
| 6048 | |
| 6049 | /// Given operands for a BinaryOperator, see if we can fold the result. |
| 6050 | /// If not, this returns null. |
| 6051 | static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
| 6052 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 6053 | switch (Opcode) { |
| 6054 | case Instruction::Add: |
| 6055 | return simplifyAddInst(Op0: LHS, Op1: RHS, /* IsNSW */ false, /* IsNUW */ false, Q, |
| 6056 | MaxRecurse); |
| 6057 | case Instruction::Sub: |
| 6058 | return simplifySubInst(Op0: LHS, Op1: RHS, /* IsNSW */ false, /* IsNUW */ false, Q, |
| 6059 | MaxRecurse); |
| 6060 | case Instruction::Mul: |
| 6061 | return simplifyMulInst(Op0: LHS, Op1: RHS, /* IsNSW */ false, /* IsNUW */ false, Q, |
| 6062 | MaxRecurse); |
| 6063 | case Instruction::SDiv: |
| 6064 | return simplifySDivInst(Op0: LHS, Op1: RHS, /* IsExact */ false, Q, MaxRecurse); |
| 6065 | case Instruction::UDiv: |
| 6066 | return simplifyUDivInst(Op0: LHS, Op1: RHS, /* IsExact */ false, Q, MaxRecurse); |
| 6067 | case Instruction::SRem: |
| 6068 | return simplifySRemInst(Op0: LHS, Op1: RHS, Q, MaxRecurse); |
| 6069 | case Instruction::URem: |
| 6070 | return simplifyURemInst(Op0: LHS, Op1: RHS, Q, MaxRecurse); |
| 6071 | case Instruction::Shl: |
| 6072 | return simplifyShlInst(Op0: LHS, Op1: RHS, /* IsNSW */ false, /* IsNUW */ false, Q, |
| 6073 | MaxRecurse); |
| 6074 | case Instruction::LShr: |
| 6075 | return simplifyLShrInst(Op0: LHS, Op1: RHS, /* IsExact */ false, Q, MaxRecurse); |
| 6076 | case Instruction::AShr: |
| 6077 | return simplifyAShrInst(Op0: LHS, Op1: RHS, /* IsExact */ false, Q, MaxRecurse); |
| 6078 | case Instruction::And: |
| 6079 | return simplifyAndInst(Op0: LHS, Op1: RHS, Q, MaxRecurse); |
| 6080 | case Instruction::Or: |
| 6081 | return simplifyOrInst(Op0: LHS, Op1: RHS, Q, MaxRecurse); |
| 6082 | case Instruction::Xor: |
| 6083 | return simplifyXorInst(Op0: LHS, Op1: RHS, Q, MaxRecurse); |
| 6084 | case Instruction::FAdd: |
| 6085 | return simplifyFAddInst(Op0: LHS, Op1: RHS, FMF: FastMathFlags(), Q, MaxRecurse); |
| 6086 | case Instruction::FSub: |
| 6087 | return simplifyFSubInst(Op0: LHS, Op1: RHS, FMF: FastMathFlags(), Q, MaxRecurse); |
| 6088 | case Instruction::FMul: |
| 6089 | return simplifyFMulInst(Op0: LHS, Op1: RHS, FMF: FastMathFlags(), Q, MaxRecurse); |
| 6090 | case Instruction::FDiv: |
| 6091 | return simplifyFDivInst(Op0: LHS, Op1: RHS, FMF: FastMathFlags(), Q, MaxRecurse); |
| 6092 | case Instruction::FRem: |
| 6093 | return simplifyFRemInst(Op0: LHS, Op1: RHS, FMF: FastMathFlags(), Q, MaxRecurse); |
| 6094 | default: |
| 6095 | llvm_unreachable("Unexpected opcode" ); |
| 6096 | } |
| 6097 | } |
| 6098 | |
| 6099 | /// Given operands for a BinaryOperator, see if we can fold the result. |
| 6100 | /// If not, this returns null. |
| 6101 | /// Try to use FastMathFlags when folding the result. |
| 6102 | static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
| 6103 | const FastMathFlags &FMF, const SimplifyQuery &Q, |
| 6104 | unsigned MaxRecurse) { |
| 6105 | switch (Opcode) { |
| 6106 | case Instruction::FAdd: |
| 6107 | return simplifyFAddInst(Op0: LHS, Op1: RHS, FMF, Q, MaxRecurse); |
| 6108 | case Instruction::FSub: |
| 6109 | return simplifyFSubInst(Op0: LHS, Op1: RHS, FMF, Q, MaxRecurse); |
| 6110 | case Instruction::FMul: |
| 6111 | return simplifyFMulInst(Op0: LHS, Op1: RHS, FMF, Q, MaxRecurse); |
| 6112 | case Instruction::FDiv: |
| 6113 | return simplifyFDivInst(Op0: LHS, Op1: RHS, FMF, Q, MaxRecurse); |
| 6114 | default: |
| 6115 | return simplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); |
| 6116 | } |
| 6117 | } |
| 6118 | |
| 6119 | Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
| 6120 | const SimplifyQuery &Q) { |
| 6121 | return ::simplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse: RecursionLimit); |
| 6122 | } |
| 6123 | |
| 6124 | Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, |
| 6125 | FastMathFlags FMF, const SimplifyQuery &Q) { |
| 6126 | return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q, MaxRecurse: RecursionLimit); |
| 6127 | } |
| 6128 | |
| 6129 | /// Given operands for a CmpInst, see if we can fold the result. |
| 6130 | static Value *simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, |
| 6131 | const SimplifyQuery &Q, unsigned MaxRecurse) { |
| 6132 | if (CmpInst::isIntPredicate(P: Predicate)) |
| 6133 | return simplifyICmpInst(Pred: Predicate, LHS, RHS, Q, MaxRecurse); |
| 6134 | return simplifyFCmpInst(Pred: Predicate, LHS, RHS, FMF: FastMathFlags(), Q, MaxRecurse); |
| 6135 | } |
| 6136 | |
| 6137 | Value *llvm::simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, |
| 6138 | const SimplifyQuery &Q) { |
| 6139 | return ::simplifyCmpInst(Predicate, LHS, RHS, Q, MaxRecurse: RecursionLimit); |
| 6140 | } |
| 6141 | |
| 6142 | static bool isIdempotent(Intrinsic::ID ID) { |
| 6143 | switch (ID) { |
| 6144 | default: |
| 6145 | return false; |
| 6146 | |
| 6147 | // Unary idempotent: f(f(x)) = f(x) |
| 6148 | case Intrinsic::fabs: |
| 6149 | case Intrinsic::floor: |
| 6150 | case Intrinsic::ceil: |
| 6151 | case Intrinsic::trunc: |
| 6152 | case Intrinsic::rint: |
| 6153 | case Intrinsic::nearbyint: |
| 6154 | case Intrinsic::round: |
| 6155 | case Intrinsic::roundeven: |
| 6156 | case Intrinsic::canonicalize: |
| 6157 | case Intrinsic::arithmetic_fence: |
| 6158 | return true; |
| 6159 | } |
| 6160 | } |
| 6161 | |
| 6162 | /// Return true if the intrinsic rounds a floating-point value to an integral |
| 6163 | /// floating-point value (not an integer type). |
| 6164 | static bool removesFPFraction(Intrinsic::ID ID) { |
| 6165 | switch (ID) { |
| 6166 | default: |
| 6167 | return false; |
| 6168 | |
| 6169 | case Intrinsic::floor: |
| 6170 | case Intrinsic::ceil: |
| 6171 | case Intrinsic::trunc: |
| 6172 | case Intrinsic::rint: |
| 6173 | case Intrinsic::nearbyint: |
| 6174 | case Intrinsic::round: |
| 6175 | case Intrinsic::roundeven: |
| 6176 | return true; |
| 6177 | } |
| 6178 | } |
| 6179 | |
| 6180 | static Value *simplifyRelativeLoad(Constant *Ptr, Constant *Offset, |
| 6181 | const DataLayout &DL) { |
| 6182 | GlobalValue *PtrSym; |
| 6183 | APInt PtrOffset; |
| 6184 | if (!IsConstantOffsetFromGlobal(C: Ptr, GV&: PtrSym, Offset&: PtrOffset, DL)) |
| 6185 | return nullptr; |
| 6186 | |
| 6187 | Type *Int32Ty = Type::getInt32Ty(C&: Ptr->getContext()); |
| 6188 | |
| 6189 | auto *OffsetConstInt = dyn_cast<ConstantInt>(Val: Offset); |
| 6190 | if (!OffsetConstInt || OffsetConstInt->getBitWidth() > 64) |
| 6191 | return nullptr; |
| 6192 | |
| 6193 | APInt OffsetInt = OffsetConstInt->getValue().sextOrTrunc( |
| 6194 | width: DL.getIndexTypeSizeInBits(Ty: Ptr->getType())); |
| 6195 | if (OffsetInt.srem(RHS: 4) != 0) |
| 6196 | return nullptr; |
| 6197 | |
| 6198 | Constant *Loaded = |
| 6199 | ConstantFoldLoadFromConstPtr(C: Ptr, Ty: Int32Ty, Offset: std::move(OffsetInt), DL); |
| 6200 | if (!Loaded) |
| 6201 | return nullptr; |
| 6202 | |
| 6203 | auto *LoadedCE = dyn_cast<ConstantExpr>(Val: Loaded); |
| 6204 | if (!LoadedCE) |
| 6205 | return nullptr; |
| 6206 | |
| 6207 | if (LoadedCE->getOpcode() == Instruction::Trunc) { |
| 6208 | LoadedCE = dyn_cast<ConstantExpr>(Val: LoadedCE->getOperand(i_nocapture: 0)); |
| 6209 | if (!LoadedCE) |
| 6210 | return nullptr; |
| 6211 | } |
| 6212 | |
| 6213 | if (LoadedCE->getOpcode() != Instruction::Sub) |
| 6214 | return nullptr; |
| 6215 | |
| 6216 | auto *LoadedLHS = dyn_cast<ConstantExpr>(Val: LoadedCE->getOperand(i_nocapture: 0)); |
| 6217 | if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) |
| 6218 | return nullptr; |
| 6219 | auto *LoadedLHSPtr = LoadedLHS->getOperand(i_nocapture: 0); |
| 6220 | |
| 6221 | Constant *LoadedRHS = LoadedCE->getOperand(i_nocapture: 1); |
| 6222 | GlobalValue *LoadedRHSSym; |
| 6223 | APInt LoadedRHSOffset; |
| 6224 | if (!IsConstantOffsetFromGlobal(C: LoadedRHS, GV&: LoadedRHSSym, Offset&: LoadedRHSOffset, |
| 6225 | DL) || |
| 6226 | PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) |
| 6227 | return nullptr; |
| 6228 | |
| 6229 | return LoadedLHSPtr; |
| 6230 | } |
| 6231 | |
| 6232 | // TODO: Need to pass in FastMathFlags |
| 6233 | static Value *simplifyLdexp(Value *Op0, Value *Op1, const SimplifyQuery &Q, |
| 6234 | bool IsStrict) { |
| 6235 | // ldexp(poison, x) -> poison |
| 6236 | // ldexp(x, poison) -> poison |
| 6237 | if (isa<PoisonValue>(Val: Op0) || isa<PoisonValue>(Val: Op1)) |
| 6238 | return Op0; |
| 6239 | |
| 6240 | // ldexp(undef, x) -> nan |
| 6241 | if (Q.isUndefValue(V: Op0)) |
| 6242 | return ConstantFP::getNaN(Ty: Op0->getType()); |
| 6243 | |
| 6244 | if (!IsStrict) { |
| 6245 | // TODO: Could insert a canonicalize for strict |
| 6246 | |
| 6247 | // ldexp(x, undef) -> x |
| 6248 | if (Q.isUndefValue(V: Op1)) |
| 6249 | return Op0; |
| 6250 | } |
| 6251 | |
| 6252 | const APFloat *C = nullptr; |
| 6253 | match(V: Op0, P: PatternMatch::m_APFloat(Res&: C)); |
| 6254 | |
| 6255 | // These cases should be safe, even with strictfp. |
| 6256 | // ldexp(0.0, x) -> 0.0 |
| 6257 | // ldexp(-0.0, x) -> -0.0 |
| 6258 | // ldexp(inf, x) -> inf |
| 6259 | // ldexp(-inf, x) -> -inf |
| 6260 | if (C && (C->isZero() || C->isInfinity())) |
| 6261 | return Op0; |
| 6262 | |
| 6263 | // These are canonicalization dropping, could do it if we knew how we could |
| 6264 | // ignore denormal flushes and target handling of nan payload bits. |
| 6265 | if (IsStrict) |
| 6266 | return nullptr; |
| 6267 | |
| 6268 | // TODO: Could quiet this with strictfp if the exception mode isn't strict. |
| 6269 | if (C && C->isNaN()) |
| 6270 | return ConstantFP::get(Ty: Op0->getType(), V: C->makeQuiet()); |
| 6271 | |
| 6272 | // ldexp(x, 0) -> x |
| 6273 | |
| 6274 | // TODO: Could fold this if we know the exception mode isn't |
| 6275 | // strict, we know the denormal mode and other target modes. |
| 6276 | if (match(V: Op1, P: PatternMatch::m_ZeroInt())) |
| 6277 | return Op0; |
| 6278 | |
| 6279 | return nullptr; |
| 6280 | } |
| 6281 | |
| 6282 | static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, |
| 6283 | const SimplifyQuery &Q, |
| 6284 | const CallBase *Call) { |
| 6285 | // Idempotent functions return the same result when called repeatedly. |
| 6286 | Intrinsic::ID IID = F->getIntrinsicID(); |
| 6287 | if (isIdempotent(ID: IID)) |
| 6288 | if (auto *II = dyn_cast<IntrinsicInst>(Val: Op0)) |
| 6289 | if (II->getIntrinsicID() == IID) |
| 6290 | return II; |
| 6291 | |
| 6292 | if (removesFPFraction(ID: IID)) { |
| 6293 | // Converting from int or calling a rounding function always results in a |
| 6294 | // finite integral number or infinity. For those inputs, rounding functions |
| 6295 | // always return the same value, so the (2nd) rounding is eliminated. Ex: |
| 6296 | // floor (sitofp x) -> sitofp x |
| 6297 | // round (ceil x) -> ceil x |
| 6298 | auto *II = dyn_cast<IntrinsicInst>(Val: Op0); |
| 6299 | if ((II && removesFPFraction(ID: II->getIntrinsicID())) || |
| 6300 | match(V: Op0, P: m_SIToFP(Op: m_Value())) || match(V: Op0, P: m_UIToFP(Op: m_Value()))) |
| 6301 | return Op0; |
| 6302 | } |
| 6303 | |
| 6304 | Value *X; |
| 6305 | switch (IID) { |
| 6306 | case Intrinsic::fabs: |
| 6307 | if (computeKnownFPSignBit(V: Op0, SQ: Q) == false) |
| 6308 | return Op0; |
| 6309 | break; |
| 6310 | case Intrinsic::bswap: |
| 6311 | // bswap(bswap(x)) -> x |
| 6312 | if (match(V: Op0, P: m_BSwap(Op0: m_Value(V&: X)))) |
| 6313 | return X; |
| 6314 | break; |
| 6315 | case Intrinsic::bitreverse: |
| 6316 | // bitreverse(bitreverse(x)) -> x |
| 6317 | if (match(V: Op0, P: m_BitReverse(Op0: m_Value(V&: X)))) |
| 6318 | return X; |
| 6319 | break; |
| 6320 | case Intrinsic::ctpop: { |
| 6321 | // ctpop(X) -> 1 iff X is non-zero power of 2. |
| 6322 | if (isKnownToBeAPowerOfTwo(V: Op0, DL: Q.DL, /*OrZero*/ false, AC: Q.AC, CxtI: Q.CxtI, DT: Q.DT)) |
| 6323 | return ConstantInt::get(Ty: Op0->getType(), V: 1); |
| 6324 | // If everything but the lowest bit is zero, that bit is the pop-count. Ex: |
| 6325 | // ctpop(and X, 1) --> and X, 1 |
| 6326 | unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); |
| 6327 | if (MaskedValueIsZero(V: Op0, Mask: APInt::getHighBitsSet(numBits: BitWidth, hiBitsSet: BitWidth - 1), |
| 6328 | SQ: Q)) |
| 6329 | return Op0; |
| 6330 | break; |
| 6331 | } |
| 6332 | case Intrinsic::exp: |
| 6333 | // exp(log(x)) -> x |
| 6334 | if (Call->hasAllowReassoc() && |
| 6335 | match(V: Op0, P: m_Intrinsic<Intrinsic::log>(Op0: m_Value(V&: X)))) |
| 6336 | return X; |
| 6337 | break; |
| 6338 | case Intrinsic::exp2: |
| 6339 | // exp2(log2(x)) -> x |
| 6340 | if (Call->hasAllowReassoc() && |
| 6341 | match(V: Op0, P: m_Intrinsic<Intrinsic::log2>(Op0: m_Value(V&: X)))) |
| 6342 | return X; |
| 6343 | break; |
| 6344 | case Intrinsic::exp10: |
| 6345 | // exp10(log10(x)) -> x |
| 6346 | if (Call->hasAllowReassoc() && |
| 6347 | match(V: Op0, P: m_Intrinsic<Intrinsic::log10>(Op0: m_Value(V&: X)))) |
| 6348 | return X; |
| 6349 | break; |
| 6350 | case Intrinsic::log: |
| 6351 | // log(exp(x)) -> x |
| 6352 | if (Call->hasAllowReassoc() && |
| 6353 | match(V: Op0, P: m_Intrinsic<Intrinsic::exp>(Op0: m_Value(V&: X)))) |
| 6354 | return X; |
| 6355 | break; |
| 6356 | case Intrinsic::log2: |
| 6357 | // log2(exp2(x)) -> x |
| 6358 | if (Call->hasAllowReassoc() && |
| 6359 | (match(V: Op0, P: m_Intrinsic<Intrinsic::exp2>(Op0: m_Value(V&: X))) || |
| 6360 | match(V: Op0, |
| 6361 | P: m_Intrinsic<Intrinsic::pow>(Op0: m_SpecificFP(V: 2.0), Op1: m_Value(V&: X))))) |
| 6362 | return X; |
| 6363 | break; |
| 6364 | case Intrinsic::log10: |
| 6365 | // log10(pow(10.0, x)) -> x |
| 6366 | // log10(exp10(x)) -> x |
| 6367 | if (Call->hasAllowReassoc() && |
| 6368 | (match(V: Op0, P: m_Intrinsic<Intrinsic::exp10>(Op0: m_Value(V&: X))) || |
| 6369 | match(V: Op0, |
| 6370 | P: m_Intrinsic<Intrinsic::pow>(Op0: m_SpecificFP(V: 10.0), Op1: m_Value(V&: X))))) |
| 6371 | return X; |
| 6372 | break; |
| 6373 | case Intrinsic::vector_reverse: |
| 6374 | // vector.reverse(vector.reverse(x)) -> x |
| 6375 | if (match(V: Op0, P: m_VecReverse(Op0: m_Value(V&: X)))) |
| 6376 | return X; |
| 6377 | // vector.reverse(splat(X)) -> splat(X) |
| 6378 | if (isSplatValue(V: Op0)) |
| 6379 | return Op0; |
| 6380 | break; |
| 6381 | default: |
| 6382 | break; |
| 6383 | } |
| 6384 | |
| 6385 | return nullptr; |
| 6386 | } |
| 6387 | |
| 6388 | /// Given a min/max intrinsic, see if it can be removed based on having an |
| 6389 | /// operand that is another min/max intrinsic with shared operand(s). The caller |
| 6390 | /// is expected to swap the operand arguments to handle commutation. |
| 6391 | static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { |
| 6392 | Value *X, *Y; |
| 6393 | if (!match(V: Op0, P: m_MaxOrMin(L: m_Value(V&: X), R: m_Value(V&: Y)))) |
| 6394 | return nullptr; |
| 6395 | |
| 6396 | auto *MM0 = dyn_cast<IntrinsicInst>(Val: Op0); |
| 6397 | if (!MM0) |
| 6398 | return nullptr; |
| 6399 | Intrinsic::ID IID0 = MM0->getIntrinsicID(); |
| 6400 | |
| 6401 | if (Op1 == X || Op1 == Y || |
| 6402 | match(V: Op1, P: m_c_MaxOrMin(L: m_Specific(V: X), R: m_Specific(V: Y)))) { |
| 6403 | // max (max X, Y), X --> max X, Y |
| 6404 | if (IID0 == IID) |
| 6405 | return MM0; |
| 6406 | // max (min X, Y), X --> X |
| 6407 | if (IID0 == getInverseMinMaxIntrinsic(MinMaxID: IID)) |
| 6408 | return Op1; |
| 6409 | } |
| 6410 | return nullptr; |
| 6411 | } |
| 6412 | |
| 6413 | /// Given a min/max intrinsic, see if it can be removed based on having an |
| 6414 | /// operand that is another min/max intrinsic with shared operand(s). The caller |
| 6415 | /// is expected to swap the operand arguments to handle commutation. |
| 6416 | static Value *foldMinimumMaximumSharedOp(Intrinsic::ID IID, Value *Op0, |
| 6417 | Value *Op1) { |
| 6418 | assert((IID == Intrinsic::maxnum || IID == Intrinsic::minnum || |
| 6419 | IID == Intrinsic::maximum || IID == Intrinsic::minimum) && |
| 6420 | "Unsupported intrinsic" ); |
| 6421 | |
| 6422 | auto *M0 = dyn_cast<IntrinsicInst>(Val: Op0); |
| 6423 | // If Op0 is not the same intrinsic as IID, do not process. |
| 6424 | // This is a difference with integer min/max handling. We do not process the |
| 6425 | // case like max(min(X,Y),min(X,Y)) => min(X,Y). But it can be handled by GVN. |
| 6426 | if (!M0 || M0->getIntrinsicID() != IID) |
| 6427 | return nullptr; |
| 6428 | Value *X0 = M0->getOperand(i_nocapture: 0); |
| 6429 | Value *Y0 = M0->getOperand(i_nocapture: 1); |
| 6430 | // Simple case, m(m(X,Y), X) => m(X, Y) |
| 6431 | // m(m(X,Y), Y) => m(X, Y) |
| 6432 | // For minimum/maximum, X is NaN => m(NaN, Y) == NaN and m(NaN, NaN) == NaN. |
| 6433 | // For minimum/maximum, Y is NaN => m(X, NaN) == NaN and m(NaN, NaN) == NaN. |
| 6434 | // For minnum/maxnum, X is NaN => m(NaN, Y) == Y and m(Y, Y) == Y. |
| 6435 | // For minnum/maxnum, Y is NaN => m(X, NaN) == X and m(X, NaN) == X. |
| 6436 | if (X0 == Op1 || Y0 == Op1) |
| 6437 | return M0; |
| 6438 | |
| 6439 | auto *M1 = dyn_cast<IntrinsicInst>(Val: Op1); |
| 6440 | if (!M1) |
| 6441 | return nullptr; |
| 6442 | Value *X1 = M1->getOperand(i_nocapture: 0); |
| 6443 | Value *Y1 = M1->getOperand(i_nocapture: 1); |
| 6444 | Intrinsic::ID IID1 = M1->getIntrinsicID(); |
| 6445 | // we have a case m(m(X,Y),m'(X,Y)) taking into account m' is commutative. |
| 6446 | // if m' is m or inversion of m => m(m(X,Y),m'(X,Y)) == m(X,Y). |
| 6447 | // For minimum/maximum, X is NaN => m(NaN,Y) == m'(NaN, Y) == NaN. |
| 6448 | // For minimum/maximum, Y is NaN => m(X,NaN) == m'(X, NaN) == NaN. |
| 6449 | // For minnum/maxnum, X is NaN => m(NaN,Y) == m'(NaN, Y) == Y. |
| 6450 | // For minnum/maxnum, Y is NaN => m(X,NaN) == m'(X, NaN) == X. |
| 6451 | if ((X0 == X1 && Y0 == Y1) || (X0 == Y1 && Y0 == X1)) |
| 6452 | if (IID1 == IID || getInverseMinMaxIntrinsic(MinMaxID: IID1) == IID) |
| 6453 | return M0; |
| 6454 | |
| 6455 | return nullptr; |
| 6456 | } |
| 6457 | |
| 6458 | Value *llvm::simplifyBinaryIntrinsic(Intrinsic::ID IID, Type *ReturnType, |
| 6459 | Value *Op0, Value *Op1, |
| 6460 | const SimplifyQuery &Q, |
| 6461 | const CallBase *Call) { |
| 6462 | unsigned BitWidth = ReturnType->getScalarSizeInBits(); |
| 6463 | switch (IID) { |
| 6464 | case Intrinsic::abs: |
| 6465 | // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. |
| 6466 | // It is always ok to pick the earlier abs. We'll just lose nsw if its only |
| 6467 | // on the outer abs. |
| 6468 | if (match(V: Op0, P: m_Intrinsic<Intrinsic::abs>(Op0: m_Value(), Op1: m_Value()))) |
| 6469 | return Op0; |
| 6470 | break; |
| 6471 | |
| 6472 | case Intrinsic::cttz: { |
| 6473 | Value *X; |
| 6474 | if (match(V: Op0, P: m_Shl(L: m_One(), R: m_Value(V&: X)))) |
| 6475 | return X; |
| 6476 | break; |
| 6477 | } |
| 6478 | case Intrinsic::ctlz: { |
| 6479 | Value *X; |
| 6480 | if (match(V: Op0, P: m_LShr(L: m_Negative(), R: m_Value(V&: X)))) |
| 6481 | return X; |
| 6482 | if (match(V: Op0, P: m_AShr(L: m_Negative(), R: m_Value()))) |
| 6483 | return Constant::getNullValue(Ty: ReturnType); |
| 6484 | break; |
| 6485 | } |
| 6486 | case Intrinsic::ptrmask: { |
| 6487 | if (isa<PoisonValue>(Val: Op0) || isa<PoisonValue>(Val: Op1)) |
| 6488 | return PoisonValue::get(T: Op0->getType()); |
| 6489 | |
| 6490 | // NOTE: We can't apply this simplifications based on the value of Op1 |
| 6491 | // because we need to preserve provenance. |
| 6492 | if (Q.isUndefValue(V: Op0) || match(V: Op0, P: m_Zero())) |
| 6493 | return Constant::getNullValue(Ty: Op0->getType()); |
| 6494 | |
| 6495 | assert(Op1->getType()->getScalarSizeInBits() == |
| 6496 | Q.DL.getIndexTypeSizeInBits(Op0->getType()) && |
| 6497 | "Invalid mask width" ); |
| 6498 | // If index-width (mask size) is less than pointer-size then mask is |
| 6499 | // 1-extended. |
| 6500 | if (match(V: Op1, P: m_PtrToInt(Op: m_Specific(V: Op0)))) |
| 6501 | return Op0; |
| 6502 | |
| 6503 | // NOTE: We may have attributes associated with the return value of the |
| 6504 | // llvm.ptrmask intrinsic that will be lost when we just return the |
| 6505 | // operand. We should try to preserve them. |
| 6506 | if (match(V: Op1, P: m_AllOnes()) || Q.isUndefValue(V: Op1)) |
| 6507 | return Op0; |
| 6508 | |
| 6509 | Constant *C; |
| 6510 | if (match(V: Op1, P: m_ImmConstant(C))) { |
| 6511 | KnownBits PtrKnown = computeKnownBits(V: Op0, Q); |
| 6512 | // See if we only masking off bits we know are already zero due to |
| 6513 | // alignment. |
| 6514 | APInt IrrelevantPtrBits = |
| 6515 | PtrKnown.Zero.zextOrTrunc(width: C->getType()->getScalarSizeInBits()); |
| 6516 | C = ConstantFoldBinaryOpOperands( |
| 6517 | Opcode: Instruction::Or, LHS: C, RHS: ConstantInt::get(Ty: C->getType(), V: IrrelevantPtrBits), |
| 6518 | DL: Q.DL); |
| 6519 | if (C != nullptr && C->isAllOnesValue()) |
| 6520 | return Op0; |
| 6521 | } |
| 6522 | break; |
| 6523 | } |
| 6524 | case Intrinsic::smax: |
| 6525 | case Intrinsic::smin: |
| 6526 | case Intrinsic::umax: |
| 6527 | case Intrinsic::umin: { |
| 6528 | // If the arguments are the same, this is a no-op. |
| 6529 | if (Op0 == Op1) |
| 6530 | return Op0; |
| 6531 | |
| 6532 | // Canonicalize immediate constant operand as Op1. |
| 6533 | if (match(V: Op0, P: m_ImmConstant())) |
| 6534 | std::swap(a&: Op0, b&: Op1); |
| 6535 | |
| 6536 | // Propagate poison. |
| 6537 | if (isa<PoisonValue>(Val: Op1)) |
| 6538 | return Op1; |
| 6539 | |
| 6540 | // Assume undef is the limit value. |
| 6541 | if (Q.isUndefValue(V: Op1)) |
| 6542 | return ConstantInt::get( |
| 6543 | Ty: ReturnType, V: MinMaxIntrinsic::getSaturationPoint(ID: IID, numBits: BitWidth)); |
| 6544 | |
| 6545 | const APInt *C; |
| 6546 | if (match(V: Op1, P: m_APIntAllowPoison(Res&: C))) { |
| 6547 | // Clamp to limit value. For example: |
| 6548 | // umax(i8 %x, i8 255) --> 255 |
| 6549 | if (*C == MinMaxIntrinsic::getSaturationPoint(ID: IID, numBits: BitWidth)) |
| 6550 | return ConstantInt::get(Ty: ReturnType, V: *C); |
| 6551 | |
| 6552 | // If the constant op is the opposite of the limit value, the other must |
| 6553 | // be larger/smaller or equal. For example: |
| 6554 | // umin(i8 %x, i8 255) --> %x |
| 6555 | if (*C == MinMaxIntrinsic::getSaturationPoint( |
| 6556 | ID: getInverseMinMaxIntrinsic(MinMaxID: IID), numBits: BitWidth)) |
| 6557 | return Op0; |
| 6558 | |
| 6559 | // Remove nested call if constant operands allow it. Example: |
| 6560 | // max (max X, 7), 5 -> max X, 7 |
| 6561 | auto *MinMax0 = dyn_cast<IntrinsicInst>(Val: Op0); |
| 6562 | if (MinMax0 && MinMax0->getIntrinsicID() == IID) { |
| 6563 | // TODO: loosen undef/splat restrictions for vector constants. |
| 6564 | Value *M00 = MinMax0->getOperand(i_nocapture: 0), *M01 = MinMax0->getOperand(i_nocapture: 1); |
| 6565 | const APInt *InnerC; |
| 6566 | if ((match(V: M00, P: m_APInt(Res&: InnerC)) || match(V: M01, P: m_APInt(Res&: InnerC))) && |
| 6567 | ICmpInst::compare(LHS: *InnerC, RHS: *C, |
| 6568 | Pred: ICmpInst::getNonStrictPredicate( |
| 6569 | pred: MinMaxIntrinsic::getPredicate(ID: IID)))) |
| 6570 | return Op0; |
| 6571 | } |
| 6572 | } |
| 6573 | |
| 6574 | if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) |
| 6575 | return V; |
| 6576 | if (Value *V = foldMinMaxSharedOp(IID, Op0: Op1, Op1: Op0)) |
| 6577 | return V; |
| 6578 | |
| 6579 | ICmpInst::Predicate Pred = |
| 6580 | ICmpInst::getNonStrictPredicate(pred: MinMaxIntrinsic::getPredicate(ID: IID)); |
| 6581 | if (isICmpTrue(Pred, LHS: Op0, RHS: Op1, Q: Q.getWithoutUndef(), MaxRecurse: RecursionLimit)) |
| 6582 | return Op0; |
| 6583 | if (isICmpTrue(Pred, LHS: Op1, RHS: Op0, Q: Q.getWithoutUndef(), MaxRecurse: RecursionLimit)) |
| 6584 | return Op1; |
| 6585 | |
| 6586 | break; |
| 6587 | } |
| 6588 | case Intrinsic::scmp: |
| 6589 | case Intrinsic::ucmp: { |
| 6590 | // Fold to a constant if the relationship between operands can be |
| 6591 | // established with certainty |
| 6592 | if (isICmpTrue(Pred: CmpInst::ICMP_EQ, LHS: Op0, RHS: Op1, Q, MaxRecurse: RecursionLimit)) |
| 6593 | return Constant::getNullValue(Ty: ReturnType); |
| 6594 | |
| 6595 | ICmpInst::Predicate PredGT = |
| 6596 | IID == Intrinsic::scmp ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; |
| 6597 | if (isICmpTrue(Pred: PredGT, LHS: Op0, RHS: Op1, Q, MaxRecurse: RecursionLimit)) |
| 6598 | return ConstantInt::get(Ty: ReturnType, V: 1); |
| 6599 | |
| 6600 | ICmpInst::Predicate PredLT = |
| 6601 | IID == Intrinsic::scmp ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; |
| 6602 | if (isICmpTrue(Pred: PredLT, LHS: Op0, RHS: Op1, Q, MaxRecurse: RecursionLimit)) |
| 6603 | return ConstantInt::getSigned(Ty: ReturnType, V: -1); |
| 6604 | |
| 6605 | break; |
| 6606 | } |
| 6607 | case Intrinsic::usub_with_overflow: |
| 6608 | case Intrinsic::ssub_with_overflow: |
| 6609 | // X - X -> { 0, false } |
| 6610 | // X - undef -> { 0, false } |
| 6611 | // undef - X -> { 0, false } |
| 6612 | if (Op0 == Op1 || Q.isUndefValue(V: Op0) || Q.isUndefValue(V: Op1)) |
| 6613 | return Constant::getNullValue(Ty: ReturnType); |
| 6614 | break; |
| 6615 | case Intrinsic::uadd_with_overflow: |
| 6616 | case Intrinsic::sadd_with_overflow: |
| 6617 | // X + undef -> { -1, false } |
| 6618 | // undef + x -> { -1, false } |
| 6619 | if (Q.isUndefValue(V: Op0) || Q.isUndefValue(V: Op1)) { |
| 6620 | return ConstantStruct::get( |
| 6621 | T: cast<StructType>(Val: ReturnType), |
| 6622 | V: {Constant::getAllOnesValue(Ty: ReturnType->getStructElementType(N: 0)), |
| 6623 | Constant::getNullValue(Ty: ReturnType->getStructElementType(N: 1))}); |
| 6624 | } |
| 6625 | break; |
| 6626 | case Intrinsic::umul_with_overflow: |
| 6627 | case Intrinsic::smul_with_overflow: |
| 6628 | // 0 * X -> { 0, false } |
| 6629 | // X * 0 -> { 0, false } |
| 6630 | if (match(V: Op0, P: m_Zero()) || match(V: Op1, P: m_Zero())) |
| 6631 | return Constant::getNullValue(Ty: ReturnType); |
| 6632 | // undef * X -> { 0, false } |
| 6633 | // X * undef -> { 0, false } |
| 6634 | if (Q.isUndefValue(V: Op0) || Q.isUndefValue(V: Op1)) |
| 6635 | return Constant::getNullValue(Ty: ReturnType); |
| 6636 | break; |
| 6637 | case Intrinsic::uadd_sat: |
| 6638 | // sat(MAX + X) -> MAX |
| 6639 | // sat(X + MAX) -> MAX |
| 6640 | if (match(V: Op0, P: m_AllOnes()) || match(V: Op1, P: m_AllOnes())) |
| 6641 | return Constant::getAllOnesValue(Ty: ReturnType); |
| 6642 | [[fallthrough]]; |
| 6643 | case Intrinsic::sadd_sat: |
| 6644 | // sat(X + undef) -> -1 |
| 6645 | // sat(undef + X) -> -1 |
| 6646 | // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). |
| 6647 | // For signed: Assume undef is ~X, in which case X + ~X = -1. |
| 6648 | if (Q.isUndefValue(V: Op0) || Q.isUndefValue(V: Op1)) |
| 6649 | return Constant::getAllOnesValue(Ty: ReturnType); |
| 6650 | |
| 6651 | // X + 0 -> X |
| 6652 | if (match(V: Op1, P: m_Zero())) |
| 6653 | return Op0; |
| 6654 | // 0 + X -> X |
| 6655 | if (match(V: Op0, P: m_Zero())) |
| 6656 | return Op1; |
| 6657 | break; |
| 6658 | case Intrinsic::usub_sat: |
| 6659 | // sat(0 - X) -> 0, sat(X - MAX) -> 0 |
| 6660 | if (match(V: Op0, P: m_Zero()) || match(V: Op1, P: m_AllOnes())) |
| 6661 | return Constant::getNullValue(Ty: ReturnType); |
| 6662 | [[fallthrough]]; |
| 6663 | case Intrinsic::ssub_sat: |
| 6664 | // X - X -> 0, X - undef -> 0, undef - X -> 0 |
| 6665 | if (Op0 == Op1 || Q.isUndefValue(V: Op0) || Q.isUndefValue(V: Op1)) |
| 6666 | return Constant::getNullValue(Ty: ReturnType); |
| 6667 | // X - 0 -> X |
| 6668 | if (match(V: Op1, P: m_Zero())) |
| 6669 | return Op0; |
| 6670 | break; |
| 6671 | case Intrinsic::load_relative: |
| 6672 | if (auto *C0 = dyn_cast<Constant>(Val: Op0)) |
| 6673 | if (auto *C1 = dyn_cast<Constant>(Val: Op1)) |
| 6674 | return simplifyRelativeLoad(Ptr: C0, Offset: C1, DL: Q.DL); |
| 6675 | break; |
| 6676 | case Intrinsic::powi: |
| 6677 | if (auto *Power = dyn_cast<ConstantInt>(Val: Op1)) { |
| 6678 | // powi(x, 0) -> 1.0 |
| 6679 | if (Power->isZero()) |
| 6680 | return ConstantFP::get(Ty: Op0->getType(), V: 1.0); |
| 6681 | // powi(x, 1) -> x |
| 6682 | if (Power->isOne()) |
| 6683 | return Op0; |
| 6684 | } |
| 6685 | break; |
| 6686 | case Intrinsic::ldexp: |
| 6687 | return simplifyLdexp(Op0, Op1, Q, IsStrict: false); |
| 6688 | case Intrinsic::copysign: |
| 6689 | // copysign X, X --> X |
| 6690 | if (Op0 == Op1) |
| 6691 | return Op0; |
| 6692 | // copysign -X, X --> X |
| 6693 | // copysign X, -X --> -X |
| 6694 | if (match(V: Op0, P: m_FNeg(X: m_Specific(V: Op1))) || |
| 6695 | match(V: Op1, P: m_FNeg(X: m_Specific(V: Op0)))) |
| 6696 | return Op1; |
| 6697 | break; |
| 6698 | case Intrinsic::is_fpclass: { |
| 6699 | if (isa<PoisonValue>(Val: Op0)) |
| 6700 | return PoisonValue::get(T: ReturnType); |
| 6701 | |
| 6702 | uint64_t Mask = cast<ConstantInt>(Val: Op1)->getZExtValue(); |
| 6703 | // If all tests are made, it doesn't matter what the value is. |
| 6704 | if ((Mask & fcAllFlags) == fcAllFlags) |
| 6705 | return ConstantInt::get(Ty: ReturnType, V: true); |
| 6706 | if ((Mask & fcAllFlags) == 0) |
| 6707 | return ConstantInt::get(Ty: ReturnType, V: false); |
| 6708 | if (Q.isUndefValue(V: Op0)) |
| 6709 | return UndefValue::get(T: ReturnType); |
| 6710 | break; |
| 6711 | } |
| 6712 | case Intrinsic::maxnum: |
| 6713 | case Intrinsic::minnum: |
| 6714 | case Intrinsic::maximum: |
| 6715 | case Intrinsic::minimum: { |
| 6716 | // If the arguments are the same, this is a no-op. |
| 6717 | if (Op0 == Op1) |
| 6718 | return Op0; |
| 6719 | |
| 6720 | // Canonicalize constant operand as Op1. |
| 6721 | if (isa<Constant>(Val: Op0)) |
| 6722 | std::swap(a&: Op0, b&: Op1); |
| 6723 | |
| 6724 | // If an argument is undef, return the other argument. |
| 6725 | if (Q.isUndefValue(V: Op1)) |
| 6726 | return Op0; |
| 6727 | |
| 6728 | bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; |
| 6729 | bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; |
| 6730 | |
| 6731 | // minnum(X, nan) -> X |
| 6732 | // maxnum(X, nan) -> X |
| 6733 | // minimum(X, nan) -> nan |
| 6734 | // maximum(X, nan) -> nan |
| 6735 | if (match(V: Op1, P: m_NaN())) |
| 6736 | return PropagateNaN ? propagateNaN(In: cast<Constant>(Val: Op1)) : Op0; |
| 6737 | |
| 6738 | // In the following folds, inf can be replaced with the largest finite |
| 6739 | // float, if the ninf flag is set. |
| 6740 | const APFloat *C; |
| 6741 | if (match(V: Op1, P: m_APFloat(Res&: C)) && |
| 6742 | (C->isInfinity() || (Call && Call->hasNoInfs() && C->isLargest()))) { |
| 6743 | // minnum(X, -inf) -> -inf |
| 6744 | // maxnum(X, +inf) -> +inf |
| 6745 | // minimum(X, -inf) -> -inf if nnan |
| 6746 | // maximum(X, +inf) -> +inf if nnan |
| 6747 | if (C->isNegative() == IsMin && |
| 6748 | (!PropagateNaN || (Call && Call->hasNoNaNs()))) |
| 6749 | return ConstantFP::get(Ty: ReturnType, V: *C); |
| 6750 | |
| 6751 | // minnum(X, +inf) -> X if nnan |
| 6752 | // maxnum(X, -inf) -> X if nnan |
| 6753 | // minimum(X, +inf) -> X |
| 6754 | // maximum(X, -inf) -> X |
| 6755 | if (C->isNegative() != IsMin && |
| 6756 | (PropagateNaN || (Call && Call->hasNoNaNs()))) |
| 6757 | return Op0; |
| 6758 | } |
| 6759 | |
| 6760 | // Min/max of the same operation with common operand: |
| 6761 | // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) |
| 6762 | if (Value *V = foldMinimumMaximumSharedOp(IID, Op0, Op1)) |
| 6763 | return V; |
| 6764 | if (Value *V = foldMinimumMaximumSharedOp(IID, Op0: Op1, Op1: Op0)) |
| 6765 | return V; |
| 6766 | |
| 6767 | break; |
| 6768 | } |
| 6769 | case Intrinsic::vector_extract: { |
| 6770 | // (extract_vector (insert_vector _, X, 0), 0) -> X |
| 6771 | unsigned IdxN = cast<ConstantInt>(Val: Op1)->getZExtValue(); |
| 6772 | Value *X = nullptr; |
| 6773 | if (match(V: Op0, P: m_Intrinsic<Intrinsic::vector_insert>(Op0: m_Value(), Op1: m_Value(V&: X), |
| 6774 | Op2: m_Zero())) && |
| 6775 | IdxN == 0 && X->getType() == ReturnType) |
| 6776 | return X; |
| 6777 | |
| 6778 | break; |
| 6779 | } |
| 6780 | default: |
| 6781 | break; |
| 6782 | } |
| 6783 | |
| 6784 | return nullptr; |
| 6785 | } |
| 6786 | |
| 6787 | static Value *simplifyIntrinsic(CallBase *Call, Value *Callee, |
| 6788 | ArrayRef<Value *> Args, |
| 6789 | const SimplifyQuery &Q) { |
| 6790 | // Operand bundles should not be in Args. |
| 6791 | assert(Call->arg_size() == Args.size()); |
| 6792 | unsigned NumOperands = Args.size(); |
| 6793 | Function *F = cast<Function>(Val: Callee); |
| 6794 | Intrinsic::ID IID = F->getIntrinsicID(); |
| 6795 | |
| 6796 | // Most of the intrinsics with no operands have some kind of side effect. |
| 6797 | // Don't simplify. |
| 6798 | if (!NumOperands) { |
| 6799 | switch (IID) { |
| 6800 | case Intrinsic::vscale: { |
| 6801 | Type *RetTy = F->getReturnType(); |
| 6802 | ConstantRange CR = getVScaleRange(F: Call->getFunction(), BitWidth: 64); |
| 6803 | if (const APInt *C = CR.getSingleElement()) |
| 6804 | return ConstantInt::get(Ty: RetTy, V: C->getZExtValue()); |
| 6805 | return nullptr; |
| 6806 | } |
| 6807 | default: |
| 6808 | return nullptr; |
| 6809 | } |
| 6810 | } |
| 6811 | |
| 6812 | if (NumOperands == 1) |
| 6813 | return simplifyUnaryIntrinsic(F, Op0: Args[0], Q, Call); |
| 6814 | |
| 6815 | if (NumOperands == 2) |
| 6816 | return simplifyBinaryIntrinsic(IID, ReturnType: F->getReturnType(), Op0: Args[0], Op1: Args[1], Q, |
| 6817 | Call); |
| 6818 | |
| 6819 | // Handle intrinsics with 3 or more arguments. |
| 6820 | switch (IID) { |
| 6821 | case Intrinsic::masked_load: |
| 6822 | case Intrinsic::masked_gather: { |
| 6823 | Value *MaskArg = Args[2]; |
| 6824 | Value *PassthruArg = Args[3]; |
| 6825 | // If the mask is all zeros or undef, the "passthru" argument is the result. |
| 6826 | if (maskIsAllZeroOrUndef(Mask: MaskArg)) |
| 6827 | return PassthruArg; |
| 6828 | return nullptr; |
| 6829 | } |
| 6830 | case Intrinsic::fshl: |
| 6831 | case Intrinsic::fshr: { |
| 6832 | Value *Op0 = Args[0], *Op1 = Args[1], *ShAmtArg = Args[2]; |
| 6833 | |
| 6834 | // If both operands are undef, the result is undef. |
| 6835 | if (Q.isUndefValue(V: Op0) && Q.isUndefValue(V: Op1)) |
| 6836 | return UndefValue::get(T: F->getReturnType()); |
| 6837 | |
| 6838 | // If shift amount is undef, assume it is zero. |
| 6839 | if (Q.isUndefValue(V: ShAmtArg)) |
| 6840 | return Args[IID == Intrinsic::fshl ? 0 : 1]; |
| 6841 | |
| 6842 | const APInt *ShAmtC; |
| 6843 | if (match(V: ShAmtArg, P: m_APInt(Res&: ShAmtC))) { |
| 6844 | // If there's effectively no shift, return the 1st arg or 2nd arg. |
| 6845 | APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); |
| 6846 | if (ShAmtC->urem(RHS: BitWidth).isZero()) |
| 6847 | return Args[IID == Intrinsic::fshl ? 0 : 1]; |
| 6848 | } |
| 6849 | |
| 6850 | // Rotating zero by anything is zero. |
| 6851 | if (match(V: Op0, P: m_Zero()) && match(V: Op1, P: m_Zero())) |
| 6852 | return ConstantInt::getNullValue(Ty: F->getReturnType()); |
| 6853 | |
| 6854 | // Rotating -1 by anything is -1. |
| 6855 | if (match(V: Op0, P: m_AllOnes()) && match(V: Op1, P: m_AllOnes())) |
| 6856 | return ConstantInt::getAllOnesValue(Ty: F->getReturnType()); |
| 6857 | |
| 6858 | return nullptr; |
| 6859 | } |
| 6860 | case Intrinsic::experimental_constrained_fma: { |
| 6861 | auto *FPI = cast<ConstrainedFPIntrinsic>(Val: Call); |
| 6862 | if (Value *V = simplifyFPOp(Ops: Args, FMF: {}, Q, ExBehavior: *FPI->getExceptionBehavior(), |
| 6863 | Rounding: *FPI->getRoundingMode())) |
| 6864 | return V; |
| 6865 | return nullptr; |
| 6866 | } |
| 6867 | case Intrinsic::fma: |
| 6868 | case Intrinsic::fmuladd: { |
| 6869 | if (Value *V = simplifyFPOp(Ops: Args, FMF: {}, Q, ExBehavior: fp::ebIgnore, |
| 6870 | Rounding: RoundingMode::NearestTiesToEven)) |
| 6871 | return V; |
| 6872 | return nullptr; |
| 6873 | } |
| 6874 | case Intrinsic::smul_fix: |
| 6875 | case Intrinsic::smul_fix_sat: { |
| 6876 | Value *Op0 = Args[0]; |
| 6877 | Value *Op1 = Args[1]; |
| 6878 | Value *Op2 = Args[2]; |
| 6879 | Type *ReturnType = F->getReturnType(); |
| 6880 | |
| 6881 | // Canonicalize constant operand as Op1 (ConstantFolding handles the case |
| 6882 | // when both Op0 and Op1 are constant so we do not care about that special |
| 6883 | // case here). |
| 6884 | if (isa<Constant>(Val: Op0)) |
| 6885 | std::swap(a&: Op0, b&: Op1); |
| 6886 | |
| 6887 | // X * 0 -> 0 |
| 6888 | if (match(V: Op1, P: m_Zero())) |
| 6889 | return Constant::getNullValue(Ty: ReturnType); |
| 6890 | |
| 6891 | // X * undef -> 0 |
| 6892 | if (Q.isUndefValue(V: Op1)) |
| 6893 | return Constant::getNullValue(Ty: ReturnType); |
| 6894 | |
| 6895 | // X * (1 << Scale) -> X |
| 6896 | APInt ScaledOne = |
| 6897 | APInt::getOneBitSet(numBits: ReturnType->getScalarSizeInBits(), |
| 6898 | BitNo: cast<ConstantInt>(Val: Op2)->getZExtValue()); |
| 6899 | if (ScaledOne.isNonNegative() && match(V: Op1, P: m_SpecificInt(V: ScaledOne))) |
| 6900 | return Op0; |
| 6901 | |
| 6902 | return nullptr; |
| 6903 | } |
| 6904 | case Intrinsic::vector_insert: { |
| 6905 | Value *Vec = Args[0]; |
| 6906 | Value *SubVec = Args[1]; |
| 6907 | Value *Idx = Args[2]; |
| 6908 | Type *ReturnType = F->getReturnType(); |
| 6909 | |
| 6910 | // (insert_vector Y, (extract_vector X, 0), 0) -> X |
| 6911 | // where: Y is X, or Y is undef |
| 6912 | unsigned IdxN = cast<ConstantInt>(Val: Idx)->getZExtValue(); |
| 6913 | Value *X = nullptr; |
| 6914 | if (match(V: SubVec, |
| 6915 | P: m_Intrinsic<Intrinsic::vector_extract>(Op0: m_Value(V&: X), Op1: m_Zero())) && |
| 6916 | (Q.isUndefValue(V: Vec) || Vec == X) && IdxN == 0 && |
| 6917 | X->getType() == ReturnType) |
| 6918 | return X; |
| 6919 | |
| 6920 | return nullptr; |
| 6921 | } |
| 6922 | case Intrinsic::experimental_constrained_fadd: { |
| 6923 | auto *FPI = cast<ConstrainedFPIntrinsic>(Val: Call); |
| 6924 | return simplifyFAddInst(Op0: Args[0], Op1: Args[1], FMF: FPI->getFastMathFlags(), Q, |
| 6925 | ExBehavior: *FPI->getExceptionBehavior(), |
| 6926 | Rounding: *FPI->getRoundingMode()); |
| 6927 | } |
| 6928 | case Intrinsic::experimental_constrained_fsub: { |
| 6929 | auto *FPI = cast<ConstrainedFPIntrinsic>(Val: Call); |
| 6930 | return simplifyFSubInst(Op0: Args[0], Op1: Args[1], FMF: FPI->getFastMathFlags(), Q, |
| 6931 | ExBehavior: *FPI->getExceptionBehavior(), |
| 6932 | Rounding: *FPI->getRoundingMode()); |
| 6933 | } |
| 6934 | case Intrinsic::experimental_constrained_fmul: { |
| 6935 | auto *FPI = cast<ConstrainedFPIntrinsic>(Val: Call); |
| 6936 | return simplifyFMulInst(Op0: Args[0], Op1: Args[1], FMF: FPI->getFastMathFlags(), Q, |
| 6937 | ExBehavior: *FPI->getExceptionBehavior(), |
| 6938 | Rounding: *FPI->getRoundingMode()); |
| 6939 | } |
| 6940 | case Intrinsic::experimental_constrained_fdiv: { |
| 6941 | auto *FPI = cast<ConstrainedFPIntrinsic>(Val: Call); |
| 6942 | return simplifyFDivInst(Op0: Args[0], Op1: Args[1], FMF: FPI->getFastMathFlags(), Q, |
| 6943 | ExBehavior: *FPI->getExceptionBehavior(), |
| 6944 | Rounding: *FPI->getRoundingMode()); |
| 6945 | } |
| 6946 | case Intrinsic::experimental_constrained_frem: { |
| 6947 | auto *FPI = cast<ConstrainedFPIntrinsic>(Val: Call); |
| 6948 | return simplifyFRemInst(Op0: Args[0], Op1: Args[1], FMF: FPI->getFastMathFlags(), Q, |
| 6949 | ExBehavior: *FPI->getExceptionBehavior(), |
| 6950 | Rounding: *FPI->getRoundingMode()); |
| 6951 | } |
| 6952 | case Intrinsic::experimental_constrained_ldexp: |
| 6953 | return simplifyLdexp(Op0: Args[0], Op1: Args[1], Q, IsStrict: true); |
| 6954 | case Intrinsic::experimental_gc_relocate: { |
| 6955 | GCRelocateInst &GCR = *cast<GCRelocateInst>(Val: Call); |
| 6956 | Value *DerivedPtr = GCR.getDerivedPtr(); |
| 6957 | Value *BasePtr = GCR.getBasePtr(); |
| 6958 | |
| 6959 | // Undef is undef, even after relocation. |
| 6960 | if (isa<UndefValue>(Val: DerivedPtr) || isa<UndefValue>(Val: BasePtr)) { |
| 6961 | return UndefValue::get(T: GCR.getType()); |
| 6962 | } |
| 6963 | |
| 6964 | if (auto *PT = dyn_cast<PointerType>(Val: GCR.getType())) { |
| 6965 | // For now, the assumption is that the relocation of null will be null |
| 6966 | // for most any collector. If this ever changes, a corresponding hook |
| 6967 | // should be added to GCStrategy and this code should check it first. |
| 6968 | if (isa<ConstantPointerNull>(Val: DerivedPtr)) { |
| 6969 | // Use null-pointer of gc_relocate's type to replace it. |
| 6970 | return ConstantPointerNull::get(T: PT); |
| 6971 | } |
| 6972 | } |
| 6973 | return nullptr; |
| 6974 | } |
| 6975 | case Intrinsic::experimental_vp_reverse: { |
| 6976 | Value *Vec = Call->getArgOperand(i: 0); |
| 6977 | Value *Mask = Call->getArgOperand(i: 1); |
| 6978 | Value *EVL = Call->getArgOperand(i: 2); |
| 6979 | |
| 6980 | Value *X; |
| 6981 | // vp.reverse(vp.reverse(X)) == X (with all ones mask and matching EVL) |
| 6982 | if (match(V: Mask, P: m_AllOnes()) && |
| 6983 | match(V: Vec, P: m_Intrinsic<Intrinsic::experimental_vp_reverse>( |
| 6984 | Op0: m_Value(V&: X), Op1: m_AllOnes(), Op2: m_Specific(V: EVL)))) |
| 6985 | return X; |
| 6986 | |
| 6987 | // vp.reverse(splat(X)) -> splat(X) (regardless of mask and EVL) |
| 6988 | if (isSplatValue(V: Vec)) |
| 6989 | return Vec; |
| 6990 | return nullptr; |
| 6991 | } |
| 6992 | default: |
| 6993 | return nullptr; |
| 6994 | } |
| 6995 | } |
| 6996 | |
| 6997 | static Value *tryConstantFoldCall(CallBase *Call, Value *Callee, |
| 6998 | ArrayRef<Value *> Args, |
| 6999 | const SimplifyQuery &Q) { |
| 7000 | auto *F = dyn_cast<Function>(Val: Callee); |
| 7001 | if (!F || !canConstantFoldCallTo(Call, F)) |
| 7002 | return nullptr; |
| 7003 | |
| 7004 | SmallVector<Constant *, 4> ConstantArgs; |
| 7005 | ConstantArgs.reserve(N: Args.size()); |
| 7006 | for (Value *Arg : Args) { |
| 7007 | Constant *C = dyn_cast<Constant>(Val: Arg); |
| 7008 | if (!C) { |
| 7009 | if (isa<MetadataAsValue>(Val: Arg)) |
| 7010 | continue; |
| 7011 | return nullptr; |
| 7012 | } |
| 7013 | ConstantArgs.push_back(Elt: C); |
| 7014 | } |
| 7015 | |
| 7016 | return ConstantFoldCall(Call, F, Operands: ConstantArgs, TLI: Q.TLI); |
| 7017 | } |
| 7018 | |
| 7019 | Value *llvm::simplifyCall(CallBase *Call, Value *Callee, ArrayRef<Value *> Args, |
| 7020 | const SimplifyQuery &Q) { |
| 7021 | // Args should not contain operand bundle operands. |
| 7022 | assert(Call->arg_size() == Args.size()); |
| 7023 | |
| 7024 | // musttail calls can only be simplified if they are also DCEd. |
| 7025 | // As we can't guarantee this here, don't simplify them. |
| 7026 | if (Call->isMustTailCall()) |
| 7027 | return nullptr; |
| 7028 | |
| 7029 | // call undef -> poison |
| 7030 | // call null -> poison |
| 7031 | if (isa<UndefValue>(Val: Callee) || isa<ConstantPointerNull>(Val: Callee)) |
| 7032 | return PoisonValue::get(T: Call->getType()); |
| 7033 | |
| 7034 | if (Value *V = tryConstantFoldCall(Call, Callee, Args, Q)) |
| 7035 | return V; |
| 7036 | |
| 7037 | auto *F = dyn_cast<Function>(Val: Callee); |
| 7038 | if (F && F->isIntrinsic()) |
| 7039 | if (Value *Ret = simplifyIntrinsic(Call, Callee, Args, Q)) |
| 7040 | return Ret; |
| 7041 | |
| 7042 | return nullptr; |
| 7043 | } |
| 7044 | |
| 7045 | Value *llvm::simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q) { |
| 7046 | assert(isa<ConstrainedFPIntrinsic>(Call)); |
| 7047 | SmallVector<Value *, 4> Args(Call->args()); |
| 7048 | if (Value *V = tryConstantFoldCall(Call, Callee: Call->getCalledOperand(), Args, Q)) |
| 7049 | return V; |
| 7050 | if (Value *Ret = simplifyIntrinsic(Call, Callee: Call->getCalledOperand(), Args, Q)) |
| 7051 | return Ret; |
| 7052 | return nullptr; |
| 7053 | } |
| 7054 | |
| 7055 | /// Given operands for a Freeze, see if we can fold the result. |
| 7056 | static Value *simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { |
| 7057 | // Use a utility function defined in ValueTracking. |
| 7058 | if (llvm::isGuaranteedNotToBeUndefOrPoison(V: Op0, AC: Q.AC, CtxI: Q.CxtI, DT: Q.DT)) |
| 7059 | return Op0; |
| 7060 | // We have room for improvement. |
| 7061 | return nullptr; |
| 7062 | } |
| 7063 | |
| 7064 | Value *llvm::simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { |
| 7065 | return ::simplifyFreezeInst(Op0, Q); |
| 7066 | } |
| 7067 | |
| 7068 | Value *llvm::simplifyLoadInst(LoadInst *LI, Value *PtrOp, |
| 7069 | const SimplifyQuery &Q) { |
| 7070 | if (LI->isVolatile()) |
| 7071 | return nullptr; |
| 7072 | |
| 7073 | if (auto *PtrOpC = dyn_cast<Constant>(Val: PtrOp)) |
| 7074 | return ConstantFoldLoadFromConstPtr(C: PtrOpC, Ty: LI->getType(), DL: Q.DL); |
| 7075 | |
| 7076 | // We can only fold the load if it is from a constant global with definitive |
| 7077 | // initializer. Skip expensive logic if this is not the case. |
| 7078 | auto *GV = dyn_cast<GlobalVariable>(Val: getUnderlyingObject(V: PtrOp)); |
| 7079 | if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) |
| 7080 | return nullptr; |
| 7081 | |
| 7082 | // If GlobalVariable's initializer is uniform, then return the constant |
| 7083 | // regardless of its offset. |
| 7084 | if (Constant *C = ConstantFoldLoadFromUniformValue(C: GV->getInitializer(), |
| 7085 | Ty: LI->getType(), DL: Q.DL)) |
| 7086 | return C; |
| 7087 | |
| 7088 | // Try to convert operand into a constant by stripping offsets while looking |
| 7089 | // through invariant.group intrinsics. |
| 7090 | APInt Offset(Q.DL.getIndexTypeSizeInBits(Ty: PtrOp->getType()), 0); |
| 7091 | PtrOp = PtrOp->stripAndAccumulateConstantOffsets( |
| 7092 | DL: Q.DL, Offset, /* AllowNonInbounts */ AllowNonInbounds: true, |
| 7093 | /* AllowInvariantGroup */ true); |
| 7094 | if (PtrOp == GV) { |
| 7095 | // Index size may have changed due to address space casts. |
| 7096 | Offset = Offset.sextOrTrunc(width: Q.DL.getIndexTypeSizeInBits(Ty: PtrOp->getType())); |
| 7097 | return ConstantFoldLoadFromConstPtr(C: GV, Ty: LI->getType(), Offset: std::move(Offset), |
| 7098 | DL: Q.DL); |
| 7099 | } |
| 7100 | |
| 7101 | return nullptr; |
| 7102 | } |
| 7103 | |
| 7104 | /// See if we can compute a simplified version of this instruction. |
| 7105 | /// If not, this returns null. |
| 7106 | |
| 7107 | static Value *simplifyInstructionWithOperands(Instruction *I, |
| 7108 | ArrayRef<Value *> NewOps, |
| 7109 | const SimplifyQuery &SQ, |
| 7110 | unsigned MaxRecurse) { |
| 7111 | assert(I->getFunction() && "instruction should be inserted in a function" ); |
| 7112 | assert((!SQ.CxtI || SQ.CxtI->getFunction() == I->getFunction()) && |
| 7113 | "context instruction should be in the same function" ); |
| 7114 | |
| 7115 | const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); |
| 7116 | |
| 7117 | switch (I->getOpcode()) { |
| 7118 | default: |
| 7119 | if (llvm::all_of(Range&: NewOps, P: [](Value *V) { return isa<Constant>(Val: V); })) { |
| 7120 | SmallVector<Constant *, 8> NewConstOps(NewOps.size()); |
| 7121 | transform(Range&: NewOps, d_first: NewConstOps.begin(), |
| 7122 | F: [](Value *V) { return cast<Constant>(Val: V); }); |
| 7123 | return ConstantFoldInstOperands(I, Ops: NewConstOps, DL: Q.DL, TLI: Q.TLI); |
| 7124 | } |
| 7125 | return nullptr; |
| 7126 | case Instruction::FNeg: |
| 7127 | return simplifyFNegInst(Op: NewOps[0], FMF: I->getFastMathFlags(), Q, MaxRecurse); |
| 7128 | case Instruction::FAdd: |
| 7129 | return simplifyFAddInst(Op0: NewOps[0], Op1: NewOps[1], FMF: I->getFastMathFlags(), Q, |
| 7130 | MaxRecurse); |
| 7131 | case Instruction::Add: |
| 7132 | return simplifyAddInst( |
| 7133 | Op0: NewOps[0], Op1: NewOps[1], IsNSW: Q.IIQ.hasNoSignedWrap(Op: cast<BinaryOperator>(Val: I)), |
| 7134 | IsNUW: Q.IIQ.hasNoUnsignedWrap(Op: cast<BinaryOperator>(Val: I)), Q, MaxRecurse); |
| 7135 | case Instruction::FSub: |
| 7136 | return simplifyFSubInst(Op0: NewOps[0], Op1: NewOps[1], FMF: I->getFastMathFlags(), Q, |
| 7137 | MaxRecurse); |
| 7138 | case Instruction::Sub: |
| 7139 | return simplifySubInst( |
| 7140 | Op0: NewOps[0], Op1: NewOps[1], IsNSW: Q.IIQ.hasNoSignedWrap(Op: cast<BinaryOperator>(Val: I)), |
| 7141 | IsNUW: Q.IIQ.hasNoUnsignedWrap(Op: cast<BinaryOperator>(Val: I)), Q, MaxRecurse); |
| 7142 | case Instruction::FMul: |
| 7143 | return simplifyFMulInst(Op0: NewOps[0], Op1: NewOps[1], FMF: I->getFastMathFlags(), Q, |
| 7144 | MaxRecurse); |
| 7145 | case Instruction::Mul: |
| 7146 | return simplifyMulInst( |
| 7147 | Op0: NewOps[0], Op1: NewOps[1], IsNSW: Q.IIQ.hasNoSignedWrap(Op: cast<BinaryOperator>(Val: I)), |
| 7148 | IsNUW: Q.IIQ.hasNoUnsignedWrap(Op: cast<BinaryOperator>(Val: I)), Q, MaxRecurse); |
| 7149 | case Instruction::SDiv: |
| 7150 | return simplifySDivInst(Op0: NewOps[0], Op1: NewOps[1], |
| 7151 | IsExact: Q.IIQ.isExact(Op: cast<BinaryOperator>(Val: I)), Q, |
| 7152 | MaxRecurse); |
| 7153 | case Instruction::UDiv: |
| 7154 | return simplifyUDivInst(Op0: NewOps[0], Op1: NewOps[1], |
| 7155 | IsExact: Q.IIQ.isExact(Op: cast<BinaryOperator>(Val: I)), Q, |
| 7156 | MaxRecurse); |
| 7157 | case Instruction::FDiv: |
| 7158 | return simplifyFDivInst(Op0: NewOps[0], Op1: NewOps[1], FMF: I->getFastMathFlags(), Q, |
| 7159 | MaxRecurse); |
| 7160 | case Instruction::SRem: |
| 7161 | return simplifySRemInst(Op0: NewOps[0], Op1: NewOps[1], Q, MaxRecurse); |
| 7162 | case Instruction::URem: |
| 7163 | return simplifyURemInst(Op0: NewOps[0], Op1: NewOps[1], Q, MaxRecurse); |
| 7164 | case Instruction::FRem: |
| 7165 | return simplifyFRemInst(Op0: NewOps[0], Op1: NewOps[1], FMF: I->getFastMathFlags(), Q, |
| 7166 | MaxRecurse); |
| 7167 | case Instruction::Shl: |
| 7168 | return simplifyShlInst( |
| 7169 | Op0: NewOps[0], Op1: NewOps[1], IsNSW: Q.IIQ.hasNoSignedWrap(Op: cast<BinaryOperator>(Val: I)), |
| 7170 | IsNUW: Q.IIQ.hasNoUnsignedWrap(Op: cast<BinaryOperator>(Val: I)), Q, MaxRecurse); |
| 7171 | case Instruction::LShr: |
| 7172 | return simplifyLShrInst(Op0: NewOps[0], Op1: NewOps[1], |
| 7173 | IsExact: Q.IIQ.isExact(Op: cast<BinaryOperator>(Val: I)), Q, |
| 7174 | MaxRecurse); |
| 7175 | case Instruction::AShr: |
| 7176 | return simplifyAShrInst(Op0: NewOps[0], Op1: NewOps[1], |
| 7177 | IsExact: Q.IIQ.isExact(Op: cast<BinaryOperator>(Val: I)), Q, |
| 7178 | MaxRecurse); |
| 7179 | case Instruction::And: |
| 7180 | return simplifyAndInst(Op0: NewOps[0], Op1: NewOps[1], Q, MaxRecurse); |
| 7181 | case Instruction::Or: |
| 7182 | return simplifyOrInst(Op0: NewOps[0], Op1: NewOps[1], Q, MaxRecurse); |
| 7183 | case Instruction::Xor: |
| 7184 | return simplifyXorInst(Op0: NewOps[0], Op1: NewOps[1], Q, MaxRecurse); |
| 7185 | case Instruction::ICmp: |
| 7186 | return simplifyICmpInst(Pred: cast<ICmpInst>(Val: I)->getCmpPredicate(), LHS: NewOps[0], |
| 7187 | RHS: NewOps[1], Q, MaxRecurse); |
| 7188 | case Instruction::FCmp: |
| 7189 | return simplifyFCmpInst(Pred: cast<FCmpInst>(Val: I)->getPredicate(), LHS: NewOps[0], |
| 7190 | RHS: NewOps[1], FMF: I->getFastMathFlags(), Q, MaxRecurse); |
| 7191 | case Instruction::Select: |
| 7192 | return simplifySelectInst(Cond: NewOps[0], TrueVal: NewOps[1], FalseVal: NewOps[2], Q, MaxRecurse); |
| 7193 | case Instruction::GetElementPtr: { |
| 7194 | auto *GEPI = cast<GetElementPtrInst>(Val: I); |
| 7195 | return simplifyGEPInst(SrcTy: GEPI->getSourceElementType(), Ptr: NewOps[0], |
| 7196 | Indices: ArrayRef(NewOps).slice(N: 1), NW: GEPI->getNoWrapFlags(), Q, |
| 7197 | MaxRecurse); |
| 7198 | } |
| 7199 | case Instruction::InsertValue: { |
| 7200 | InsertValueInst *IV = cast<InsertValueInst>(Val: I); |
| 7201 | return simplifyInsertValueInst(Agg: NewOps[0], Val: NewOps[1], Idxs: IV->getIndices(), Q, |
| 7202 | MaxRecurse); |
| 7203 | } |
| 7204 | case Instruction::InsertElement: |
| 7205 | return simplifyInsertElementInst(Vec: NewOps[0], Val: NewOps[1], Idx: NewOps[2], Q); |
| 7206 | case Instruction::ExtractValue: { |
| 7207 | auto *EVI = cast<ExtractValueInst>(Val: I); |
| 7208 | return simplifyExtractValueInst(Agg: NewOps[0], Idxs: EVI->getIndices(), Q, |
| 7209 | MaxRecurse); |
| 7210 | } |
| 7211 | case Instruction::ExtractElement: |
| 7212 | return simplifyExtractElementInst(Vec: NewOps[0], Idx: NewOps[1], Q, MaxRecurse); |
| 7213 | case Instruction::ShuffleVector: { |
| 7214 | auto *SVI = cast<ShuffleVectorInst>(Val: I); |
| 7215 | return simplifyShuffleVectorInst(Op0: NewOps[0], Op1: NewOps[1], |
| 7216 | Mask: SVI->getShuffleMask(), RetTy: SVI->getType(), Q, |
| 7217 | MaxRecurse); |
| 7218 | } |
| 7219 | case Instruction::PHI: |
| 7220 | return simplifyPHINode(PN: cast<PHINode>(Val: I), IncomingValues: NewOps, Q); |
| 7221 | case Instruction::Call: |
| 7222 | return simplifyCall( |
| 7223 | Call: cast<CallInst>(Val: I), Callee: NewOps.back(), |
| 7224 | Args: NewOps.drop_back(N: 1 + cast<CallInst>(Val: I)->getNumTotalBundleOperands()), Q); |
| 7225 | case Instruction::Freeze: |
| 7226 | return llvm::simplifyFreezeInst(Op0: NewOps[0], Q); |
| 7227 | #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: |
| 7228 | #include "llvm/IR/Instruction.def" |
| 7229 | #undef HANDLE_CAST_INST |
| 7230 | return simplifyCastInst(CastOpc: I->getOpcode(), Op: NewOps[0], Ty: I->getType(), Q, |
| 7231 | MaxRecurse); |
| 7232 | case Instruction::Alloca: |
| 7233 | // No simplifications for Alloca and it can't be constant folded. |
| 7234 | return nullptr; |
| 7235 | case Instruction::Load: |
| 7236 | return simplifyLoadInst(LI: cast<LoadInst>(Val: I), PtrOp: NewOps[0], Q); |
| 7237 | } |
| 7238 | } |
| 7239 | |
| 7240 | Value *llvm::simplifyInstructionWithOperands(Instruction *I, |
| 7241 | ArrayRef<Value *> NewOps, |
| 7242 | const SimplifyQuery &SQ) { |
| 7243 | assert(NewOps.size() == I->getNumOperands() && |
| 7244 | "Number of operands should match the instruction!" ); |
| 7245 | return ::simplifyInstructionWithOperands(I, NewOps, SQ, MaxRecurse: RecursionLimit); |
| 7246 | } |
| 7247 | |
| 7248 | Value *llvm::simplifyInstruction(Instruction *I, const SimplifyQuery &SQ) { |
| 7249 | SmallVector<Value *, 8> Ops(I->operands()); |
| 7250 | Value *Result = ::simplifyInstructionWithOperands(I, NewOps: Ops, SQ, MaxRecurse: RecursionLimit); |
| 7251 | |
| 7252 | /// If called on unreachable code, the instruction may simplify to itself. |
| 7253 | /// Make life easier for users by detecting that case here, and returning a |
| 7254 | /// safe value instead. |
| 7255 | return Result == I ? PoisonValue::get(T: I->getType()) : Result; |
| 7256 | } |
| 7257 | |
| 7258 | /// Implementation of recursive simplification through an instruction's |
| 7259 | /// uses. |
| 7260 | /// |
| 7261 | /// This is the common implementation of the recursive simplification routines. |
| 7262 | /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to |
| 7263 | /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of |
| 7264 | /// instructions to process and attempt to simplify it using |
| 7265 | /// InstructionSimplify. Recursively visited users which could not be |
| 7266 | /// simplified themselves are to the optional UnsimplifiedUsers set for |
| 7267 | /// further processing by the caller. |
| 7268 | /// |
| 7269 | /// This routine returns 'true' only when *it* simplifies something. The passed |
| 7270 | /// in simplified value does not count toward this. |
| 7271 | static bool replaceAndRecursivelySimplifyImpl( |
| 7272 | Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, |
| 7273 | const DominatorTree *DT, AssumptionCache *AC, |
| 7274 | SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { |
| 7275 | bool Simplified = false; |
| 7276 | SmallSetVector<Instruction *, 8> Worklist; |
| 7277 | const DataLayout &DL = I->getDataLayout(); |
| 7278 | |
| 7279 | // If we have an explicit value to collapse to, do that round of the |
| 7280 | // simplification loop by hand initially. |
| 7281 | if (SimpleV) { |
| 7282 | for (User *U : I->users()) |
| 7283 | if (U != I) |
| 7284 | Worklist.insert(X: cast<Instruction>(Val: U)); |
| 7285 | |
| 7286 | // Replace the instruction with its simplified value. |
| 7287 | I->replaceAllUsesWith(V: SimpleV); |
| 7288 | |
| 7289 | if (!I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects()) |
| 7290 | I->eraseFromParent(); |
| 7291 | } else { |
| 7292 | Worklist.insert(X: I); |
| 7293 | } |
| 7294 | |
| 7295 | // Note that we must test the size on each iteration, the worklist can grow. |
| 7296 | for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { |
| 7297 | I = Worklist[Idx]; |
| 7298 | |
| 7299 | // See if this instruction simplifies. |
| 7300 | SimpleV = simplifyInstruction(I, SQ: {DL, TLI, DT, AC}); |
| 7301 | if (!SimpleV) { |
| 7302 | if (UnsimplifiedUsers) |
| 7303 | UnsimplifiedUsers->insert(X: I); |
| 7304 | continue; |
| 7305 | } |
| 7306 | |
| 7307 | Simplified = true; |
| 7308 | |
| 7309 | // Stash away all the uses of the old instruction so we can check them for |
| 7310 | // recursive simplifications after a RAUW. This is cheaper than checking all |
| 7311 | // uses of To on the recursive step in most cases. |
| 7312 | for (User *U : I->users()) |
| 7313 | Worklist.insert(X: cast<Instruction>(Val: U)); |
| 7314 | |
| 7315 | // Replace the instruction with its simplified value. |
| 7316 | I->replaceAllUsesWith(V: SimpleV); |
| 7317 | |
| 7318 | if (!I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects()) |
| 7319 | I->eraseFromParent(); |
| 7320 | } |
| 7321 | return Simplified; |
| 7322 | } |
| 7323 | |
| 7324 | bool llvm::replaceAndRecursivelySimplify( |
| 7325 | Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, |
| 7326 | const DominatorTree *DT, AssumptionCache *AC, |
| 7327 | SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { |
| 7328 | assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!" ); |
| 7329 | assert(SimpleV && "Must provide a simplified value." ); |
| 7330 | return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, |
| 7331 | UnsimplifiedUsers); |
| 7332 | } |
| 7333 | |
| 7334 | namespace llvm { |
| 7335 | const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { |
| 7336 | auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); |
| 7337 | auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; |
| 7338 | auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); |
| 7339 | auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; |
| 7340 | auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); |
| 7341 | auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; |
| 7342 | return {F.getDataLayout(), TLI, DT, AC}; |
| 7343 | } |
| 7344 | |
| 7345 | const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, |
| 7346 | const DataLayout &DL) { |
| 7347 | return {DL, &AR.TLI, &AR.DT, &AR.AC}; |
| 7348 | } |
| 7349 | |
| 7350 | template <class T, class... TArgs> |
| 7351 | const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, |
| 7352 | Function &F) { |
| 7353 | auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); |
| 7354 | auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); |
| 7355 | auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); |
| 7356 | return {F.getDataLayout(), TLI, DT, AC}; |
| 7357 | } |
| 7358 | template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, |
| 7359 | Function &); |
| 7360 | |
| 7361 | bool SimplifyQuery::isUndefValue(Value *V) const { |
| 7362 | if (!CanUseUndef) |
| 7363 | return false; |
| 7364 | |
| 7365 | return match(V, P: m_Undef()); |
| 7366 | } |
| 7367 | |
| 7368 | } // namespace llvm |
| 7369 | |
| 7370 | void InstSimplifyFolder::anchor() {} |
| 7371 | |