| 1 | //===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass builds a ModuleSummaryIndex object for the module, to be written |
| 10 | // to bitcode or LLVM assembly. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "llvm/Analysis/ModuleSummaryAnalysis.h" |
| 15 | #include "llvm/ADT/ArrayRef.h" |
| 16 | #include "llvm/ADT/DenseSet.h" |
| 17 | #include "llvm/ADT/MapVector.h" |
| 18 | #include "llvm/ADT/STLExtras.h" |
| 19 | #include "llvm/ADT/SetVector.h" |
| 20 | #include "llvm/ADT/SmallPtrSet.h" |
| 21 | #include "llvm/ADT/SmallVector.h" |
| 22 | #include "llvm/ADT/StringRef.h" |
| 23 | #include "llvm/Analysis/BlockFrequencyInfo.h" |
| 24 | #include "llvm/Analysis/BranchProbabilityInfo.h" |
| 25 | #include "llvm/Analysis/ConstantFolding.h" |
| 26 | #include "llvm/Analysis/IndirectCallPromotionAnalysis.h" |
| 27 | #include "llvm/Analysis/LoopInfo.h" |
| 28 | #include "llvm/Analysis/MemoryProfileInfo.h" |
| 29 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
| 30 | #include "llvm/Analysis/StackSafetyAnalysis.h" |
| 31 | #include "llvm/Analysis/TypeMetadataUtils.h" |
| 32 | #include "llvm/IR/Attributes.h" |
| 33 | #include "llvm/IR/BasicBlock.h" |
| 34 | #include "llvm/IR/Constant.h" |
| 35 | #include "llvm/IR/Constants.h" |
| 36 | #include "llvm/IR/Dominators.h" |
| 37 | #include "llvm/IR/Function.h" |
| 38 | #include "llvm/IR/GlobalAlias.h" |
| 39 | #include "llvm/IR/GlobalValue.h" |
| 40 | #include "llvm/IR/GlobalVariable.h" |
| 41 | #include "llvm/IR/Instructions.h" |
| 42 | #include "llvm/IR/IntrinsicInst.h" |
| 43 | #include "llvm/IR/Metadata.h" |
| 44 | #include "llvm/IR/Module.h" |
| 45 | #include "llvm/IR/ModuleSummaryIndex.h" |
| 46 | #include "llvm/IR/Use.h" |
| 47 | #include "llvm/IR/User.h" |
| 48 | #include "llvm/InitializePasses.h" |
| 49 | #include "llvm/Object/ModuleSymbolTable.h" |
| 50 | #include "llvm/Object/SymbolicFile.h" |
| 51 | #include "llvm/Pass.h" |
| 52 | #include "llvm/Support/Casting.h" |
| 53 | #include "llvm/Support/CommandLine.h" |
| 54 | #include "llvm/Support/Compiler.h" |
| 55 | #include "llvm/Support/FileSystem.h" |
| 56 | #include <cassert> |
| 57 | #include <cstdint> |
| 58 | #include <vector> |
| 59 | |
| 60 | using namespace llvm; |
| 61 | using namespace llvm::memprof; |
| 62 | |
| 63 | #define DEBUG_TYPE "module-summary-analysis" |
| 64 | |
| 65 | // Option to force edges cold which will block importing when the |
| 66 | // -import-cold-multiplier is set to 0. Useful for debugging. |
| 67 | namespace llvm { |
| 68 | FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold = |
| 69 | FunctionSummary::FSHT_None; |
| 70 | } // namespace llvm |
| 71 | |
| 72 | static cl::opt<FunctionSummary::ForceSummaryHotnessType, true> FSEC( |
| 73 | "force-summary-edges-cold" , cl::Hidden, cl::location(L&: ForceSummaryEdgesCold), |
| 74 | cl::desc("Force all edges in the function summary to cold" ), |
| 75 | cl::values(clEnumValN(FunctionSummary::FSHT_None, "none" , "None." ), |
| 76 | clEnumValN(FunctionSummary::FSHT_AllNonCritical, |
| 77 | "all-non-critical" , "All non-critical edges." ), |
| 78 | clEnumValN(FunctionSummary::FSHT_All, "all" , "All edges." ))); |
| 79 | |
| 80 | static cl::opt<std::string> ModuleSummaryDotFile( |
| 81 | "module-summary-dot-file" , cl::Hidden, cl::value_desc("filename" ), |
| 82 | cl::desc("File to emit dot graph of new summary into" )); |
| 83 | |
| 84 | static cl::opt<bool> EnableMemProfIndirectCallSupport( |
| 85 | "enable-memprof-indirect-call-support" , cl::init(Val: true), cl::Hidden, |
| 86 | cl::desc( |
| 87 | "Enable MemProf support for summarizing and cloning indirect calls" )); |
| 88 | |
| 89 | LLVM_ABI extern cl::opt<bool> ScalePartialSampleProfileWorkingSetSize; |
| 90 | |
| 91 | extern cl::opt<unsigned> MaxNumVTableAnnotations; |
| 92 | |
| 93 | extern cl::opt<bool> MemProfReportHintedSizes; |
| 94 | |
| 95 | // Walk through the operands of a given User via worklist iteration and populate |
| 96 | // the set of GlobalValue references encountered. Invoked either on an |
| 97 | // Instruction or a GlobalVariable (which walks its initializer). |
| 98 | // Return true if any of the operands contains blockaddress. This is important |
| 99 | // to know when computing summary for global var, because if global variable |
| 100 | // references basic block address we can't import it separately from function |
| 101 | // containing that basic block. For simplicity we currently don't import such |
| 102 | // global vars at all. When importing function we aren't interested if any |
| 103 | // instruction in it takes an address of any basic block, because instruction |
| 104 | // can only take an address of basic block located in the same function. |
| 105 | // Set `RefLocalLinkageIFunc` to true if the analyzed value references a |
| 106 | // local-linkage ifunc. |
| 107 | static bool |
| 108 | findRefEdges(ModuleSummaryIndex &Index, const User *CurUser, |
| 109 | SetVector<ValueInfo, SmallVector<ValueInfo, 0>> &RefEdges, |
| 110 | SmallPtrSet<const User *, 8> &Visited, |
| 111 | bool &RefLocalLinkageIFunc) { |
| 112 | bool HasBlockAddress = false; |
| 113 | SmallVector<const User *, 32> Worklist; |
| 114 | if (Visited.insert(Ptr: CurUser).second) |
| 115 | Worklist.push_back(Elt: CurUser); |
| 116 | |
| 117 | while (!Worklist.empty()) { |
| 118 | const User *U = Worklist.pop_back_val(); |
| 119 | const auto *CB = dyn_cast<CallBase>(Val: U); |
| 120 | |
| 121 | for (const auto &OI : U->operands()) { |
| 122 | const User *Operand = dyn_cast<User>(Val: OI); |
| 123 | if (!Operand) |
| 124 | continue; |
| 125 | if (isa<BlockAddress>(Val: Operand)) { |
| 126 | HasBlockAddress = true; |
| 127 | continue; |
| 128 | } |
| 129 | if (auto *GV = dyn_cast<GlobalValue>(Val: Operand)) { |
| 130 | // We have a reference to a global value. This should be added to |
| 131 | // the reference set unless it is a callee. Callees are handled |
| 132 | // specially by WriteFunction and are added to a separate list. |
| 133 | if (!(CB && CB->isCallee(U: &OI))) { |
| 134 | // If an ifunc has local linkage, do not add it into ref edges, and |
| 135 | // sets `RefLocalLinkageIFunc` to true. The referencer is not eligible |
| 136 | // for import. An ifunc doesn't have summary and ThinLTO cannot |
| 137 | // promote it; importing the referencer may cause linkage errors. |
| 138 | if (auto *GI = dyn_cast_if_present<GlobalIFunc>(Val: GV); |
| 139 | GI && GI->hasLocalLinkage()) { |
| 140 | RefLocalLinkageIFunc = true; |
| 141 | continue; |
| 142 | } |
| 143 | RefEdges.insert(X: Index.getOrInsertValueInfo(GV)); |
| 144 | } |
| 145 | continue; |
| 146 | } |
| 147 | if (Visited.insert(Ptr: Operand).second) |
| 148 | Worklist.push_back(Elt: Operand); |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | const Instruction *I = dyn_cast<Instruction>(Val: CurUser); |
| 153 | if (I) { |
| 154 | uint64_t TotalCount = 0; |
| 155 | // MaxNumVTableAnnotations is the maximum number of vtables annotated on |
| 156 | // the instruction. |
| 157 | auto ValueDataArray = getValueProfDataFromInst( |
| 158 | Inst: *I, ValueKind: IPVK_VTableTarget, MaxNumValueData: MaxNumVTableAnnotations, TotalC&: TotalCount); |
| 159 | |
| 160 | for (const auto &V : ValueDataArray) |
| 161 | RefEdges.insert(X: Index.getOrInsertValueInfo(/* VTableGUID = */ |
| 162 | GUID: V.Value)); |
| 163 | } |
| 164 | return HasBlockAddress; |
| 165 | } |
| 166 | |
| 167 | static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount, |
| 168 | ProfileSummaryInfo *PSI) { |
| 169 | if (!PSI) |
| 170 | return CalleeInfo::HotnessType::Unknown; |
| 171 | if (PSI->isHotCount(C: ProfileCount)) |
| 172 | return CalleeInfo::HotnessType::Hot; |
| 173 | if (PSI->isColdCount(C: ProfileCount)) |
| 174 | return CalleeInfo::HotnessType::Cold; |
| 175 | return CalleeInfo::HotnessType::None; |
| 176 | } |
| 177 | |
| 178 | static bool isNonRenamableLocal(const GlobalValue &GV) { |
| 179 | return GV.hasSection() && GV.hasLocalLinkage(); |
| 180 | } |
| 181 | |
| 182 | /// Determine whether this call has all constant integer arguments (excluding |
| 183 | /// "this") and summarize it to VCalls or ConstVCalls as appropriate. |
| 184 | static void addVCallToSet( |
| 185 | DevirtCallSite Call, GlobalValue::GUID Guid, |
| 186 | SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> |
| 187 | &VCalls, |
| 188 | SetVector<FunctionSummary::ConstVCall, |
| 189 | std::vector<FunctionSummary::ConstVCall>> &ConstVCalls) { |
| 190 | std::vector<uint64_t> Args; |
| 191 | // Start from the second argument to skip the "this" pointer. |
| 192 | for (auto &Arg : drop_begin(RangeOrContainer: Call.CB.args())) { |
| 193 | auto *CI = dyn_cast<ConstantInt>(Val&: Arg); |
| 194 | if (!CI || CI->getBitWidth() > 64) { |
| 195 | VCalls.insert(X: {.GUID: Guid, .Offset: Call.Offset}); |
| 196 | return; |
| 197 | } |
| 198 | Args.push_back(x: CI->getZExtValue()); |
| 199 | } |
| 200 | ConstVCalls.insert(X: {.VFunc: {.GUID: Guid, .Offset: Call.Offset}, .Args: std::move(Args)}); |
| 201 | } |
| 202 | |
| 203 | /// If this intrinsic call requires that we add information to the function |
| 204 | /// summary, do so via the non-constant reference arguments. |
| 205 | static void addIntrinsicToSummary( |
| 206 | const CallInst *CI, |
| 207 | SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> &TypeTests, |
| 208 | SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> |
| 209 | &TypeTestAssumeVCalls, |
| 210 | SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> |
| 211 | &TypeCheckedLoadVCalls, |
| 212 | SetVector<FunctionSummary::ConstVCall, |
| 213 | std::vector<FunctionSummary::ConstVCall>> |
| 214 | &TypeTestAssumeConstVCalls, |
| 215 | SetVector<FunctionSummary::ConstVCall, |
| 216 | std::vector<FunctionSummary::ConstVCall>> |
| 217 | &TypeCheckedLoadConstVCalls, |
| 218 | DominatorTree &DT) { |
| 219 | switch (CI->getCalledFunction()->getIntrinsicID()) { |
| 220 | case Intrinsic::type_test: |
| 221 | case Intrinsic::public_type_test: { |
| 222 | auto *TypeMDVal = cast<MetadataAsValue>(Val: CI->getArgOperand(i: 1)); |
| 223 | auto *TypeId = dyn_cast<MDString>(Val: TypeMDVal->getMetadata()); |
| 224 | if (!TypeId) |
| 225 | break; |
| 226 | GlobalValue::GUID Guid = |
| 227 | GlobalValue::getGUIDAssumingExternalLinkage(GlobalName: TypeId->getString()); |
| 228 | |
| 229 | // Produce a summary from type.test intrinsics. We only summarize type.test |
| 230 | // intrinsics that are used other than by an llvm.assume intrinsic. |
| 231 | // Intrinsics that are assumed are relevant only to the devirtualization |
| 232 | // pass, not the type test lowering pass. |
| 233 | bool HasNonAssumeUses = llvm::any_of(Range: CI->uses(), P: [](const Use &CIU) { |
| 234 | return !isa<AssumeInst>(Val: CIU.getUser()); |
| 235 | }); |
| 236 | if (HasNonAssumeUses) |
| 237 | TypeTests.insert(X: Guid); |
| 238 | |
| 239 | SmallVector<DevirtCallSite, 4> DevirtCalls; |
| 240 | SmallVector<CallInst *, 4> Assumes; |
| 241 | findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT); |
| 242 | for (auto &Call : DevirtCalls) |
| 243 | addVCallToSet(Call, Guid, VCalls&: TypeTestAssumeVCalls, |
| 244 | ConstVCalls&: TypeTestAssumeConstVCalls); |
| 245 | |
| 246 | break; |
| 247 | } |
| 248 | |
| 249 | case Intrinsic::type_checked_load_relative: |
| 250 | case Intrinsic::type_checked_load: { |
| 251 | auto *TypeMDVal = cast<MetadataAsValue>(Val: CI->getArgOperand(i: 2)); |
| 252 | auto *TypeId = dyn_cast<MDString>(Val: TypeMDVal->getMetadata()); |
| 253 | if (!TypeId) |
| 254 | break; |
| 255 | GlobalValue::GUID Guid = |
| 256 | GlobalValue::getGUIDAssumingExternalLinkage(GlobalName: TypeId->getString()); |
| 257 | |
| 258 | SmallVector<DevirtCallSite, 4> DevirtCalls; |
| 259 | SmallVector<Instruction *, 4> LoadedPtrs; |
| 260 | SmallVector<Instruction *, 4> Preds; |
| 261 | bool HasNonCallUses = false; |
| 262 | findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds, |
| 263 | HasNonCallUses, CI, DT); |
| 264 | // Any non-call uses of the result of llvm.type.checked.load will |
| 265 | // prevent us from optimizing away the llvm.type.test. |
| 266 | if (HasNonCallUses) |
| 267 | TypeTests.insert(X: Guid); |
| 268 | for (auto &Call : DevirtCalls) |
| 269 | addVCallToSet(Call, Guid, VCalls&: TypeCheckedLoadVCalls, |
| 270 | ConstVCalls&: TypeCheckedLoadConstVCalls); |
| 271 | |
| 272 | break; |
| 273 | } |
| 274 | default: |
| 275 | break; |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | static bool isNonVolatileLoad(const Instruction *I) { |
| 280 | if (const auto *LI = dyn_cast<LoadInst>(Val: I)) |
| 281 | return !LI->isVolatile(); |
| 282 | |
| 283 | return false; |
| 284 | } |
| 285 | |
| 286 | static bool isNonVolatileStore(const Instruction *I) { |
| 287 | if (const auto *SI = dyn_cast<StoreInst>(Val: I)) |
| 288 | return !SI->isVolatile(); |
| 289 | |
| 290 | return false; |
| 291 | } |
| 292 | |
| 293 | // Returns true if the function definition must be unreachable. |
| 294 | // |
| 295 | // Note if this helper function returns true, `F` is guaranteed |
| 296 | // to be unreachable; if it returns false, `F` might still |
| 297 | // be unreachable but not covered by this helper function. |
| 298 | static bool mustBeUnreachableFunction(const Function &F) { |
| 299 | // A function must be unreachable if its entry block ends with an |
| 300 | // 'unreachable'. |
| 301 | assert(!F.isDeclaration()); |
| 302 | return isa<UnreachableInst>(Val: F.getEntryBlock().getTerminator()); |
| 303 | } |
| 304 | |
| 305 | static void computeFunctionSummary( |
| 306 | ModuleSummaryIndex &Index, const Module &M, const Function &F, |
| 307 | BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, DominatorTree &DT, |
| 308 | bool HasLocalsInUsedOrAsm, DenseSet<GlobalValue::GUID> &CantBePromoted, |
| 309 | bool IsThinLTO, |
| 310 | std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { |
| 311 | // Summary not currently supported for anonymous functions, they should |
| 312 | // have been named. |
| 313 | assert(F.hasName()); |
| 314 | |
| 315 | unsigned NumInsts = 0; |
| 316 | // Map from callee ValueId to profile count. Used to accumulate profile |
| 317 | // counts for all static calls to a given callee. |
| 318 | MapVector<ValueInfo, CalleeInfo, DenseMap<ValueInfo, unsigned>, |
| 319 | SmallVector<FunctionSummary::EdgeTy, 0>> |
| 320 | CallGraphEdges; |
| 321 | SetVector<ValueInfo, SmallVector<ValueInfo, 0>> RefEdges, LoadRefEdges, |
| 322 | StoreRefEdges; |
| 323 | SetVector<GlobalValue::GUID, std::vector<GlobalValue::GUID>> TypeTests; |
| 324 | SetVector<FunctionSummary::VFuncId, std::vector<FunctionSummary::VFuncId>> |
| 325 | TypeTestAssumeVCalls, TypeCheckedLoadVCalls; |
| 326 | SetVector<FunctionSummary::ConstVCall, |
| 327 | std::vector<FunctionSummary::ConstVCall>> |
| 328 | TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls; |
| 329 | ICallPromotionAnalysis ICallAnalysis; |
| 330 | SmallPtrSet<const User *, 8> Visited; |
| 331 | |
| 332 | // Add personality function, prefix data and prologue data to function's ref |
| 333 | // list. |
| 334 | bool HasLocalIFuncCallOrRef = false; |
| 335 | findRefEdges(Index, CurUser: &F, RefEdges, Visited, RefLocalLinkageIFunc&: HasLocalIFuncCallOrRef); |
| 336 | std::vector<const Instruction *> NonVolatileLoads; |
| 337 | std::vector<const Instruction *> NonVolatileStores; |
| 338 | |
| 339 | std::vector<CallsiteInfo> Callsites; |
| 340 | std::vector<AllocInfo> Allocs; |
| 341 | |
| 342 | #ifndef NDEBUG |
| 343 | DenseSet<const CallBase *> CallsThatMayHaveMemprofSummary; |
| 344 | #endif |
| 345 | |
| 346 | bool HasInlineAsmMaybeReferencingInternal = false; |
| 347 | bool HasIndirBranchToBlockAddress = false; |
| 348 | bool HasUnknownCall = false; |
| 349 | bool MayThrow = false; |
| 350 | for (const BasicBlock &BB : F) { |
| 351 | // We don't allow inlining of function with indirect branch to blockaddress. |
| 352 | // If the blockaddress escapes the function, e.g., via a global variable, |
| 353 | // inlining may lead to an invalid cross-function reference. So we shouldn't |
| 354 | // import such function either. |
| 355 | if (BB.hasAddressTaken()) { |
| 356 | for (User *U : BlockAddress::get(BB: const_cast<BasicBlock *>(&BB))->users()) |
| 357 | if (!isa<CallBrInst>(Val: *U)) { |
| 358 | HasIndirBranchToBlockAddress = true; |
| 359 | break; |
| 360 | } |
| 361 | } |
| 362 | |
| 363 | for (const Instruction &I : BB) { |
| 364 | if (I.isDebugOrPseudoInst()) |
| 365 | continue; |
| 366 | ++NumInsts; |
| 367 | |
| 368 | // Regular LTO module doesn't participate in ThinLTO import, |
| 369 | // so no reference from it can be read/writeonly, since this |
| 370 | // would require importing variable as local copy |
| 371 | if (IsThinLTO) { |
| 372 | if (isNonVolatileLoad(I: &I)) { |
| 373 | // Postpone processing of non-volatile load instructions |
| 374 | // See comments below |
| 375 | Visited.insert(Ptr: &I); |
| 376 | NonVolatileLoads.push_back(x: &I); |
| 377 | continue; |
| 378 | } else if (isNonVolatileStore(I: &I)) { |
| 379 | Visited.insert(Ptr: &I); |
| 380 | NonVolatileStores.push_back(x: &I); |
| 381 | // All references from second operand of store (destination address) |
| 382 | // can be considered write-only if they're not referenced by any |
| 383 | // non-store instruction. References from first operand of store |
| 384 | // (stored value) can't be treated either as read- or as write-only |
| 385 | // so we add them to RefEdges as we do with all other instructions |
| 386 | // except non-volatile load. |
| 387 | Value *Stored = I.getOperand(i: 0); |
| 388 | if (auto *GV = dyn_cast<GlobalValue>(Val: Stored)) |
| 389 | // findRefEdges will try to examine GV operands, so instead |
| 390 | // of calling it we should add GV to RefEdges directly. |
| 391 | RefEdges.insert(X: Index.getOrInsertValueInfo(GV)); |
| 392 | else if (auto *U = dyn_cast<User>(Val: Stored)) |
| 393 | findRefEdges(Index, CurUser: U, RefEdges, Visited, RefLocalLinkageIFunc&: HasLocalIFuncCallOrRef); |
| 394 | continue; |
| 395 | } |
| 396 | } |
| 397 | findRefEdges(Index, CurUser: &I, RefEdges, Visited, RefLocalLinkageIFunc&: HasLocalIFuncCallOrRef); |
| 398 | const auto *CB = dyn_cast<CallBase>(Val: &I); |
| 399 | if (!CB) { |
| 400 | if (I.mayThrow()) |
| 401 | MayThrow = true; |
| 402 | continue; |
| 403 | } |
| 404 | |
| 405 | const auto *CI = dyn_cast<CallInst>(Val: &I); |
| 406 | // Since we don't know exactly which local values are referenced in inline |
| 407 | // assembly, conservatively mark the function as possibly referencing |
| 408 | // a local value from inline assembly to ensure we don't export a |
| 409 | // reference (which would require renaming and promotion of the |
| 410 | // referenced value). |
| 411 | if (HasLocalsInUsedOrAsm && CI && CI->isInlineAsm()) |
| 412 | HasInlineAsmMaybeReferencingInternal = true; |
| 413 | |
| 414 | // Compute this once per indirect call. |
| 415 | uint32_t NumCandidates = 0; |
| 416 | uint64_t TotalCount = 0; |
| 417 | MutableArrayRef<InstrProfValueData> CandidateProfileData; |
| 418 | |
| 419 | auto *CalledValue = CB->getCalledOperand(); |
| 420 | auto *CalledFunction = CB->getCalledFunction(); |
| 421 | if (CalledValue && !CalledFunction) { |
| 422 | CalledValue = CalledValue->stripPointerCasts(); |
| 423 | // Stripping pointer casts can reveal a called function. |
| 424 | CalledFunction = dyn_cast<Function>(Val: CalledValue); |
| 425 | } |
| 426 | // Check if this is an alias to a function. If so, get the |
| 427 | // called aliasee for the checks below. |
| 428 | if (auto *GA = dyn_cast<GlobalAlias>(Val: CalledValue)) { |
| 429 | assert(!CalledFunction && "Expected null called function in callsite for alias" ); |
| 430 | CalledFunction = dyn_cast<Function>(Val: GA->getAliaseeObject()); |
| 431 | } |
| 432 | // Check if this is a direct call to a known function or a known |
| 433 | // intrinsic, or an indirect call with profile data. |
| 434 | if (CalledFunction) { |
| 435 | if (CI && CalledFunction->isIntrinsic()) { |
| 436 | addIntrinsicToSummary( |
| 437 | CI, TypeTests, TypeTestAssumeVCalls, TypeCheckedLoadVCalls, |
| 438 | TypeTestAssumeConstVCalls, TypeCheckedLoadConstVCalls, DT); |
| 439 | continue; |
| 440 | } |
| 441 | // We should have named any anonymous globals |
| 442 | assert(CalledFunction->hasName()); |
| 443 | auto ScaledCount = PSI->getProfileCount(CallInst: *CB, BFI); |
| 444 | auto Hotness = ScaledCount ? getHotness(ProfileCount: *ScaledCount, PSI) |
| 445 | : CalleeInfo::HotnessType::Unknown; |
| 446 | if (ForceSummaryEdgesCold != FunctionSummary::FSHT_None) |
| 447 | Hotness = CalleeInfo::HotnessType::Cold; |
| 448 | |
| 449 | // Use the original CalledValue, in case it was an alias. We want |
| 450 | // to record the call edge to the alias in that case. Eventually |
| 451 | // an alias summary will be created to associate the alias and |
| 452 | // aliasee. |
| 453 | auto &ValueInfo = CallGraphEdges[Index.getOrInsertValueInfo( |
| 454 | GV: cast<GlobalValue>(Val: CalledValue))]; |
| 455 | ValueInfo.updateHotness(OtherHotness: Hotness); |
| 456 | if (CB->isTailCall()) |
| 457 | ValueInfo.setHasTailCall(true); |
| 458 | // Add the relative block frequency to CalleeInfo if there is no profile |
| 459 | // information. |
| 460 | if (BFI != nullptr && Hotness == CalleeInfo::HotnessType::Unknown) { |
| 461 | uint64_t BBFreq = BFI->getBlockFreq(BB: &BB).getFrequency(); |
| 462 | uint64_t EntryFreq = BFI->getEntryFreq().getFrequency(); |
| 463 | ValueInfo.updateRelBlockFreq(BlockFreq: BBFreq, EntryFreq); |
| 464 | } |
| 465 | } else { |
| 466 | HasUnknownCall = true; |
| 467 | // If F is imported, a local linkage ifunc (e.g. target_clones on a |
| 468 | // static function) called by F will be cloned. Since summaries don't |
| 469 | // track ifunc, we do not know implementation functions referenced by |
| 470 | // the ifunc resolver need to be promoted in the exporter, and we will |
| 471 | // get linker errors due to cloned declarations for implementation |
| 472 | // functions. As a simple fix, just mark F as not eligible for import. |
| 473 | // Non-local ifunc is not cloned and does not have the issue. |
| 474 | if (auto *GI = dyn_cast_if_present<GlobalIFunc>(Val: CalledValue)) |
| 475 | if (GI->hasLocalLinkage()) |
| 476 | HasLocalIFuncCallOrRef = true; |
| 477 | // Skip inline assembly calls. |
| 478 | if (CI && CI->isInlineAsm()) |
| 479 | continue; |
| 480 | // Skip direct calls. |
| 481 | if (!CalledValue || isa<Constant>(Val: CalledValue)) |
| 482 | continue; |
| 483 | |
| 484 | // Check if the instruction has a callees metadata. If so, add callees |
| 485 | // to CallGraphEdges to reflect the references from the metadata, and |
| 486 | // to enable importing for subsequent indirect call promotion and |
| 487 | // inlining. |
| 488 | if (auto *MD = I.getMetadata(KindID: LLVMContext::MD_callees)) { |
| 489 | for (const auto &Op : MD->operands()) { |
| 490 | Function *Callee = mdconst::extract_or_null<Function>(MD: Op); |
| 491 | if (Callee) |
| 492 | CallGraphEdges[Index.getOrInsertValueInfo(GV: Callee)]; |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | CandidateProfileData = |
| 497 | ICallAnalysis.getPromotionCandidatesForInstruction(I: &I, TotalCount, |
| 498 | NumCandidates); |
| 499 | for (const auto &Candidate : CandidateProfileData) |
| 500 | CallGraphEdges[Index.getOrInsertValueInfo(GUID: Candidate.Value)] |
| 501 | .updateHotness(OtherHotness: getHotness(ProfileCount: Candidate.Count, PSI)); |
| 502 | } |
| 503 | |
| 504 | // Summarize memprof related metadata. This is only needed for ThinLTO. |
| 505 | if (!IsThinLTO) |
| 506 | continue; |
| 507 | |
| 508 | // Skip indirect calls if we haven't enabled memprof ICP. |
| 509 | if (!CalledFunction && !EnableMemProfIndirectCallSupport) |
| 510 | continue; |
| 511 | |
| 512 | // Ensure we keep this analysis in sync with the handling in the ThinLTO |
| 513 | // backend (see MemProfContextDisambiguation::applyImport). Save this call |
| 514 | // so that we can skip it in checking the reverse case later. |
| 515 | assert(mayHaveMemprofSummary(CB)); |
| 516 | #ifndef NDEBUG |
| 517 | CallsThatMayHaveMemprofSummary.insert(CB); |
| 518 | #endif |
| 519 | |
| 520 | // Compute the list of stack ids first (so we can trim them from the stack |
| 521 | // ids on any MIBs). |
| 522 | CallStack<MDNode, MDNode::op_iterator> InstCallsite( |
| 523 | I.getMetadata(KindID: LLVMContext::MD_callsite)); |
| 524 | auto *MemProfMD = I.getMetadata(KindID: LLVMContext::MD_memprof); |
| 525 | if (MemProfMD) { |
| 526 | std::vector<MIBInfo> MIBs; |
| 527 | std::vector<std::vector<ContextTotalSize>> ContextSizeInfos; |
| 528 | bool HasNonZeroContextSizeInfos = false; |
| 529 | for (auto &MDOp : MemProfMD->operands()) { |
| 530 | auto *MIBMD = cast<const MDNode>(Val: MDOp); |
| 531 | MDNode *StackNode = getMIBStackNode(MIB: MIBMD); |
| 532 | assert(StackNode); |
| 533 | SmallVector<unsigned> StackIdIndices; |
| 534 | CallStack<MDNode, MDNode::op_iterator> StackContext(StackNode); |
| 535 | // Collapse out any on the allocation call (inlining). |
| 536 | for (auto ContextIter = |
| 537 | StackContext.beginAfterSharedPrefix(Other: InstCallsite); |
| 538 | ContextIter != StackContext.end(); ++ContextIter) { |
| 539 | unsigned StackIdIdx = Index.addOrGetStackIdIndex(StackId: *ContextIter); |
| 540 | // If this is a direct recursion, simply skip the duplicate |
| 541 | // entries. If this is mutual recursion, handling is left to |
| 542 | // the LTO link analysis client. |
| 543 | if (StackIdIndices.empty() || StackIdIndices.back() != StackIdIdx) |
| 544 | StackIdIndices.push_back(Elt: StackIdIdx); |
| 545 | } |
| 546 | // If we have context size information, collect it for inclusion in |
| 547 | // the summary. |
| 548 | assert(MIBMD->getNumOperands() > 2 || |
| 549 | !metadataIncludesAllContextSizeInfo()); |
| 550 | if (MIBMD->getNumOperands() > 2) { |
| 551 | std::vector<ContextTotalSize> ContextSizes; |
| 552 | for (unsigned I = 2; I < MIBMD->getNumOperands(); I++) { |
| 553 | MDNode *ContextSizePair = dyn_cast<MDNode>(Val: MIBMD->getOperand(I)); |
| 554 | assert(ContextSizePair->getNumOperands() == 2); |
| 555 | uint64_t FullStackId = mdconst::dyn_extract<ConstantInt>( |
| 556 | MD: ContextSizePair->getOperand(I: 0)) |
| 557 | ->getZExtValue(); |
| 558 | uint64_t TS = mdconst::dyn_extract<ConstantInt>( |
| 559 | MD: ContextSizePair->getOperand(I: 1)) |
| 560 | ->getZExtValue(); |
| 561 | ContextSizes.push_back(x: {.FullStackId: FullStackId, .TotalSize: TS}); |
| 562 | } |
| 563 | // Flag that we need to keep the ContextSizeInfos array for this |
| 564 | // alloc as it now contains non-zero context info sizes. |
| 565 | HasNonZeroContextSizeInfos = true; |
| 566 | ContextSizeInfos.push_back(x: std::move(ContextSizes)); |
| 567 | } else { |
| 568 | // The ContextSizeInfos must be in the same relative position as the |
| 569 | // associated MIB. In some cases we only include a ContextSizeInfo |
| 570 | // for a subset of MIBs in an allocation. To handle that, eagerly |
| 571 | // fill any MIB entries that don't have context size info metadata |
| 572 | // with a pair of 0s. Later on we will only use this array if it |
| 573 | // ends up containing any non-zero entries (see where we set |
| 574 | // HasNonZeroContextSizeInfos above). |
| 575 | ContextSizeInfos.push_back(x: {{.FullStackId: 0, .TotalSize: 0}}); |
| 576 | } |
| 577 | MIBs.push_back( |
| 578 | x: MIBInfo(getMIBAllocType(MIB: MIBMD), std::move(StackIdIndices))); |
| 579 | } |
| 580 | Allocs.push_back(x: AllocInfo(std::move(MIBs))); |
| 581 | assert(HasNonZeroContextSizeInfos || |
| 582 | !metadataIncludesAllContextSizeInfo()); |
| 583 | // We eagerly build the ContextSizeInfos array, but it will be filled |
| 584 | // with sub arrays of pairs of 0s if no MIBs on this alloc actually |
| 585 | // contained context size info metadata. Only save it if any MIBs had |
| 586 | // any such metadata. |
| 587 | if (HasNonZeroContextSizeInfos) { |
| 588 | assert(Allocs.back().MIBs.size() == ContextSizeInfos.size()); |
| 589 | Allocs.back().ContextSizeInfos = std::move(ContextSizeInfos); |
| 590 | } |
| 591 | } else if (!InstCallsite.empty()) { |
| 592 | SmallVector<unsigned> StackIdIndices; |
| 593 | for (auto StackId : InstCallsite) |
| 594 | StackIdIndices.push_back(Elt: Index.addOrGetStackIdIndex(StackId)); |
| 595 | if (CalledFunction) { |
| 596 | // Use the original CalledValue, in case it was an alias. We want |
| 597 | // to record the call edge to the alias in that case. Eventually |
| 598 | // an alias summary will be created to associate the alias and |
| 599 | // aliasee. |
| 600 | auto CalleeValueInfo = |
| 601 | Index.getOrInsertValueInfo(GV: cast<GlobalValue>(Val: CalledValue)); |
| 602 | Callsites.push_back(x: {CalleeValueInfo, StackIdIndices}); |
| 603 | } else { |
| 604 | assert(EnableMemProfIndirectCallSupport); |
| 605 | // For indirect callsites, create multiple Callsites, one per target. |
| 606 | // This enables having a different set of clone versions per target, |
| 607 | // and we will apply the cloning decisions while speculatively |
| 608 | // devirtualizing in the ThinLTO backends. |
| 609 | for (const auto &Candidate : CandidateProfileData) { |
| 610 | auto CalleeValueInfo = Index.getOrInsertValueInfo(GUID: Candidate.Value); |
| 611 | Callsites.push_back(x: {CalleeValueInfo, StackIdIndices}); |
| 612 | } |
| 613 | } |
| 614 | } |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | if (PSI->hasPartialSampleProfile() && ScalePartialSampleProfileWorkingSetSize) |
| 619 | Index.addBlockCount(C: F.size()); |
| 620 | |
| 621 | SmallVector<ValueInfo, 0> Refs; |
| 622 | if (IsThinLTO) { |
| 623 | auto AddRefEdges = |
| 624 | [&](const std::vector<const Instruction *> &Instrs, |
| 625 | SetVector<ValueInfo, SmallVector<ValueInfo, 0>> &Edges, |
| 626 | SmallPtrSet<const User *, 8> &Cache) { |
| 627 | for (const auto *I : Instrs) { |
| 628 | Cache.erase(Ptr: I); |
| 629 | findRefEdges(Index, CurUser: I, RefEdges&: Edges, Visited&: Cache, RefLocalLinkageIFunc&: HasLocalIFuncCallOrRef); |
| 630 | } |
| 631 | }; |
| 632 | |
| 633 | // By now we processed all instructions in a function, except |
| 634 | // non-volatile loads and non-volatile value stores. Let's find |
| 635 | // ref edges for both of instruction sets |
| 636 | AddRefEdges(NonVolatileLoads, LoadRefEdges, Visited); |
| 637 | // We can add some values to the Visited set when processing load |
| 638 | // instructions which are also used by stores in NonVolatileStores. |
| 639 | // For example this can happen if we have following code: |
| 640 | // |
| 641 | // store %Derived* @foo, %Derived** bitcast (%Base** @bar to %Derived**) |
| 642 | // %42 = load %Derived*, %Derived** bitcast (%Base** @bar to %Derived**) |
| 643 | // |
| 644 | // After processing loads we'll add bitcast to the Visited set, and if |
| 645 | // we use the same set while processing stores, we'll never see store |
| 646 | // to @bar and @bar will be mistakenly treated as readonly. |
| 647 | SmallPtrSet<const llvm::User *, 8> StoreCache; |
| 648 | AddRefEdges(NonVolatileStores, StoreRefEdges, StoreCache); |
| 649 | |
| 650 | // If both load and store instruction reference the same variable |
| 651 | // we won't be able to optimize it. Add all such reference edges |
| 652 | // to RefEdges set. |
| 653 | for (const auto &VI : StoreRefEdges) |
| 654 | if (LoadRefEdges.remove(X: VI)) |
| 655 | RefEdges.insert(X: VI); |
| 656 | |
| 657 | unsigned RefCnt = RefEdges.size(); |
| 658 | // All new reference edges inserted in two loops below are either |
| 659 | // read or write only. They will be grouped in the end of RefEdges |
| 660 | // vector, so we can use a single integer value to identify them. |
| 661 | RefEdges.insert_range(R&: LoadRefEdges); |
| 662 | |
| 663 | unsigned FirstWORef = RefEdges.size(); |
| 664 | RefEdges.insert_range(R&: StoreRefEdges); |
| 665 | |
| 666 | Refs = RefEdges.takeVector(); |
| 667 | for (; RefCnt < FirstWORef; ++RefCnt) |
| 668 | Refs[RefCnt].setReadOnly(); |
| 669 | |
| 670 | for (; RefCnt < Refs.size(); ++RefCnt) |
| 671 | Refs[RefCnt].setWriteOnly(); |
| 672 | } else { |
| 673 | Refs = RefEdges.takeVector(); |
| 674 | } |
| 675 | // Explicit add hot edges to enforce importing for designated GUIDs for |
| 676 | // sample PGO, to enable the same inlines as the profiled optimized binary. |
| 677 | for (auto &I : F.getImportGUIDs()) |
| 678 | CallGraphEdges[Index.getOrInsertValueInfo(GUID: I)].updateHotness( |
| 679 | OtherHotness: ForceSummaryEdgesCold == FunctionSummary::FSHT_All |
| 680 | ? CalleeInfo::HotnessType::Cold |
| 681 | : CalleeInfo::HotnessType::Critical); |
| 682 | |
| 683 | #ifndef NDEBUG |
| 684 | // Make sure that all calls we decided could not have memprof summaries get a |
| 685 | // false value for mayHaveMemprofSummary, to ensure that this handling remains |
| 686 | // in sync with the ThinLTO backend handling. |
| 687 | if (IsThinLTO) { |
| 688 | for (const BasicBlock &BB : F) { |
| 689 | for (const Instruction &I : BB) { |
| 690 | const auto *CB = dyn_cast<CallBase>(&I); |
| 691 | if (!CB) |
| 692 | continue; |
| 693 | // We already checked these above. |
| 694 | if (CallsThatMayHaveMemprofSummary.count(CB)) |
| 695 | continue; |
| 696 | assert(!mayHaveMemprofSummary(CB)); |
| 697 | } |
| 698 | } |
| 699 | } |
| 700 | #endif |
| 701 | |
| 702 | bool NonRenamableLocal = isNonRenamableLocal(GV: F); |
| 703 | bool NotEligibleForImport = |
| 704 | NonRenamableLocal || HasInlineAsmMaybeReferencingInternal || |
| 705 | HasIndirBranchToBlockAddress || HasLocalIFuncCallOrRef; |
| 706 | GlobalValueSummary::GVFlags Flags( |
| 707 | F.getLinkage(), F.getVisibility(), NotEligibleForImport, |
| 708 | /* Live = */ false, F.isDSOLocal(), F.canBeOmittedFromSymbolTable(), |
| 709 | GlobalValueSummary::ImportKind::Definition); |
| 710 | FunctionSummary::FFlags FunFlags{ |
| 711 | .ReadNone: F.doesNotAccessMemory(), .ReadOnly: F.onlyReadsMemory() && !F.doesNotAccessMemory(), |
| 712 | .NoRecurse: F.hasFnAttribute(Kind: Attribute::NoRecurse), .ReturnDoesNotAlias: F.returnDoesNotAlias(), |
| 713 | // FIXME: refactor this to use the same code that inliner is using. |
| 714 | // Don't try to import functions with noinline attribute. |
| 715 | .NoInline: F.getAttributes().hasFnAttr(Kind: Attribute::NoInline), |
| 716 | .AlwaysInline: F.hasFnAttribute(Kind: Attribute::AlwaysInline), |
| 717 | .NoUnwind: F.hasFnAttribute(Kind: Attribute::NoUnwind), .MayThrow: MayThrow, .HasUnknownCall: HasUnknownCall, |
| 718 | .MustBeUnreachable: mustBeUnreachableFunction(F)}; |
| 719 | std::vector<FunctionSummary::ParamAccess> ParamAccesses; |
| 720 | if (auto *SSI = GetSSICallback(F)) |
| 721 | ParamAccesses = SSI->getParamAccesses(Index); |
| 722 | auto FuncSummary = std::make_unique<FunctionSummary>( |
| 723 | args&: Flags, args&: NumInsts, args&: FunFlags, args: std::move(Refs), args: CallGraphEdges.takeVector(), |
| 724 | args: TypeTests.takeVector(), args: TypeTestAssumeVCalls.takeVector(), |
| 725 | args: TypeCheckedLoadVCalls.takeVector(), |
| 726 | args: TypeTestAssumeConstVCalls.takeVector(), |
| 727 | args: TypeCheckedLoadConstVCalls.takeVector(), args: std::move(ParamAccesses), |
| 728 | args: std::move(Callsites), args: std::move(Allocs)); |
| 729 | if (NonRenamableLocal) |
| 730 | CantBePromoted.insert(V: F.getGUID()); |
| 731 | Index.addGlobalValueSummary(GV: F, Summary: std::move(FuncSummary)); |
| 732 | } |
| 733 | |
| 734 | /// Find function pointers referenced within the given vtable initializer |
| 735 | /// (or subset of an initializer) \p I. The starting offset of \p I within |
| 736 | /// the vtable initializer is \p StartingOffset. Any discovered function |
| 737 | /// pointers are added to \p VTableFuncs along with their cumulative offset |
| 738 | /// within the initializer. |
| 739 | static void findFuncPointers(const Constant *I, uint64_t StartingOffset, |
| 740 | const Module &M, ModuleSummaryIndex &Index, |
| 741 | VTableFuncList &VTableFuncs, |
| 742 | const GlobalVariable &OrigGV) { |
| 743 | // First check if this is a function pointer. |
| 744 | if (I->getType()->isPointerTy()) { |
| 745 | auto C = I->stripPointerCasts(); |
| 746 | auto A = dyn_cast<GlobalAlias>(Val: C); |
| 747 | if (isa<Function>(Val: C) || (A && isa<Function>(Val: A->getAliasee()))) { |
| 748 | auto GV = dyn_cast<GlobalValue>(Val: C); |
| 749 | assert(GV); |
| 750 | // We can disregard __cxa_pure_virtual as a possible call target, as |
| 751 | // calls to pure virtuals are UB. |
| 752 | if (GV && GV->getName() != "__cxa_pure_virtual" ) |
| 753 | VTableFuncs.push_back(x: {Index.getOrInsertValueInfo(GV), StartingOffset}); |
| 754 | return; |
| 755 | } |
| 756 | } |
| 757 | |
| 758 | // Walk through the elements in the constant struct or array and recursively |
| 759 | // look for virtual function pointers. |
| 760 | const DataLayout &DL = M.getDataLayout(); |
| 761 | if (auto *C = dyn_cast<ConstantStruct>(Val: I)) { |
| 762 | StructType *STy = dyn_cast<StructType>(Val: C->getType()); |
| 763 | assert(STy); |
| 764 | const StructLayout *SL = DL.getStructLayout(Ty: C->getType()); |
| 765 | |
| 766 | for (auto EI : llvm::enumerate(First: STy->elements())) { |
| 767 | auto Offset = SL->getElementOffset(Idx: EI.index()); |
| 768 | unsigned Op = SL->getElementContainingOffset(FixedOffset: Offset); |
| 769 | findFuncPointers(I: cast<Constant>(Val: I->getOperand(i: Op)), |
| 770 | StartingOffset: StartingOffset + Offset, M, Index, VTableFuncs, OrigGV); |
| 771 | } |
| 772 | } else if (auto *C = dyn_cast<ConstantArray>(Val: I)) { |
| 773 | ArrayType *ATy = C->getType(); |
| 774 | Type *EltTy = ATy->getElementType(); |
| 775 | uint64_t EltSize = DL.getTypeAllocSize(Ty: EltTy); |
| 776 | for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) { |
| 777 | findFuncPointers(I: cast<Constant>(Val: I->getOperand(i)), |
| 778 | StartingOffset: StartingOffset + i * EltSize, M, Index, VTableFuncs, |
| 779 | OrigGV); |
| 780 | } |
| 781 | } else if (const auto *CE = dyn_cast<ConstantExpr>(Val: I)) { |
| 782 | // For relative vtables, the next sub-component should be a trunc. |
| 783 | if (CE->getOpcode() != Instruction::Trunc || |
| 784 | !(CE = dyn_cast<ConstantExpr>(Val: CE->getOperand(i_nocapture: 0)))) |
| 785 | return; |
| 786 | |
| 787 | // If this constant can be reduced to the offset between a function and a |
| 788 | // global, then we know this is a valid virtual function if the RHS is the |
| 789 | // original vtable we're scanning through. |
| 790 | if (CE->getOpcode() == Instruction::Sub) { |
| 791 | GlobalValue *LHS, *RHS; |
| 792 | APSInt LHSOffset, RHSOffset; |
| 793 | if (IsConstantOffsetFromGlobal(C: CE->getOperand(i_nocapture: 0), GV&: LHS, Offset&: LHSOffset, DL) && |
| 794 | IsConstantOffsetFromGlobal(C: CE->getOperand(i_nocapture: 1), GV&: RHS, Offset&: RHSOffset, DL) && |
| 795 | RHS == &OrigGV && |
| 796 | |
| 797 | // For relative vtables, this component should point to the callable |
| 798 | // function without any offsets. |
| 799 | LHSOffset == 0 && |
| 800 | |
| 801 | // Also, the RHS should always point to somewhere within the vtable. |
| 802 | RHSOffset <= |
| 803 | static_cast<uint64_t>(DL.getTypeAllocSize(Ty: OrigGV.getInitializer()->getType()))) { |
| 804 | findFuncPointers(I: LHS, StartingOffset, M, Index, VTableFuncs, OrigGV); |
| 805 | } |
| 806 | } |
| 807 | } |
| 808 | } |
| 809 | |
| 810 | // Identify the function pointers referenced by vtable definition \p V. |
| 811 | static void computeVTableFuncs(ModuleSummaryIndex &Index, |
| 812 | const GlobalVariable &V, const Module &M, |
| 813 | VTableFuncList &VTableFuncs) { |
| 814 | if (!V.isConstant()) |
| 815 | return; |
| 816 | |
| 817 | findFuncPointers(I: V.getInitializer(), /*StartingOffset=*/0, M, Index, |
| 818 | VTableFuncs, OrigGV: V); |
| 819 | |
| 820 | #ifndef NDEBUG |
| 821 | // Validate that the VTableFuncs list is ordered by offset. |
| 822 | uint64_t PrevOffset = 0; |
| 823 | for (auto &P : VTableFuncs) { |
| 824 | // The findVFuncPointers traversal should have encountered the |
| 825 | // functions in offset order. We need to use ">=" since PrevOffset |
| 826 | // starts at 0. |
| 827 | assert(P.VTableOffset >= PrevOffset); |
| 828 | PrevOffset = P.VTableOffset; |
| 829 | } |
| 830 | #endif |
| 831 | } |
| 832 | |
| 833 | /// Record vtable definition \p V for each type metadata it references. |
| 834 | static void |
| 835 | recordTypeIdCompatibleVtableReferences(ModuleSummaryIndex &Index, |
| 836 | const GlobalVariable &V, |
| 837 | SmallVectorImpl<MDNode *> &Types) { |
| 838 | for (MDNode *Type : Types) { |
| 839 | auto TypeID = Type->getOperand(I: 1).get(); |
| 840 | |
| 841 | uint64_t Offset = |
| 842 | cast<ConstantInt>( |
| 843 | Val: cast<ConstantAsMetadata>(Val: Type->getOperand(I: 0))->getValue()) |
| 844 | ->getZExtValue(); |
| 845 | |
| 846 | if (auto *TypeId = dyn_cast<MDString>(Val: TypeID)) |
| 847 | Index.getOrInsertTypeIdCompatibleVtableSummary(TypeId: TypeId->getString()) |
| 848 | .push_back(x: {Offset, Index.getOrInsertValueInfo(GV: &V)}); |
| 849 | } |
| 850 | } |
| 851 | |
| 852 | static void computeVariableSummary(ModuleSummaryIndex &Index, |
| 853 | const GlobalVariable &V, |
| 854 | DenseSet<GlobalValue::GUID> &CantBePromoted, |
| 855 | const Module &M, |
| 856 | SmallVectorImpl<MDNode *> &Types) { |
| 857 | SetVector<ValueInfo, SmallVector<ValueInfo, 0>> RefEdges; |
| 858 | SmallPtrSet<const User *, 8> Visited; |
| 859 | bool RefLocalIFunc = false; |
| 860 | bool HasBlockAddress = |
| 861 | findRefEdges(Index, CurUser: &V, RefEdges, Visited, RefLocalLinkageIFunc&: RefLocalIFunc); |
| 862 | const bool NotEligibleForImport = (HasBlockAddress || RefLocalIFunc); |
| 863 | bool NonRenamableLocal = isNonRenamableLocal(GV: V); |
| 864 | GlobalValueSummary::GVFlags Flags( |
| 865 | V.getLinkage(), V.getVisibility(), NonRenamableLocal, |
| 866 | /* Live = */ false, V.isDSOLocal(), V.canBeOmittedFromSymbolTable(), |
| 867 | GlobalValueSummary::Definition); |
| 868 | |
| 869 | VTableFuncList VTableFuncs; |
| 870 | // If splitting is not enabled, then we compute the summary information |
| 871 | // necessary for index-based whole program devirtualization. |
| 872 | if (!Index.enableSplitLTOUnit()) { |
| 873 | Types.clear(); |
| 874 | V.getMetadata(KindID: LLVMContext::MD_type, MDs&: Types); |
| 875 | if (!Types.empty()) { |
| 876 | // Identify the function pointers referenced by this vtable definition. |
| 877 | computeVTableFuncs(Index, V, M, VTableFuncs); |
| 878 | |
| 879 | // Record this vtable definition for each type metadata it references. |
| 880 | recordTypeIdCompatibleVtableReferences(Index, V, Types); |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | // Don't mark variables we won't be able to internalize as read/write-only. |
| 885 | bool CanBeInternalized = |
| 886 | !V.hasComdat() && !V.hasAppendingLinkage() && !V.isInterposable() && |
| 887 | !V.hasAvailableExternallyLinkage() && !V.hasDLLExportStorageClass(); |
| 888 | bool Constant = V.isConstant(); |
| 889 | GlobalVarSummary::GVarFlags VarFlags(CanBeInternalized, |
| 890 | Constant ? false : CanBeInternalized, |
| 891 | Constant, V.getVCallVisibility()); |
| 892 | auto GVarSummary = std::make_unique<GlobalVarSummary>(args&: Flags, args&: VarFlags, |
| 893 | args: RefEdges.takeVector()); |
| 894 | if (NonRenamableLocal) |
| 895 | CantBePromoted.insert(V: V.getGUID()); |
| 896 | if (NotEligibleForImport) |
| 897 | GVarSummary->setNotEligibleToImport(); |
| 898 | if (!VTableFuncs.empty()) |
| 899 | GVarSummary->setVTableFuncs(VTableFuncs); |
| 900 | Index.addGlobalValueSummary(GV: V, Summary: std::move(GVarSummary)); |
| 901 | } |
| 902 | |
| 903 | static void computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A, |
| 904 | DenseSet<GlobalValue::GUID> &CantBePromoted) { |
| 905 | // Skip summary for indirect function aliases as summary for aliasee will not |
| 906 | // be emitted. |
| 907 | const GlobalObject *Aliasee = A.getAliaseeObject(); |
| 908 | if (isa<GlobalIFunc>(Val: Aliasee)) |
| 909 | return; |
| 910 | bool NonRenamableLocal = isNonRenamableLocal(GV: A); |
| 911 | GlobalValueSummary::GVFlags Flags( |
| 912 | A.getLinkage(), A.getVisibility(), NonRenamableLocal, |
| 913 | /* Live = */ false, A.isDSOLocal(), A.canBeOmittedFromSymbolTable(), |
| 914 | GlobalValueSummary::Definition); |
| 915 | auto AS = std::make_unique<AliasSummary>(args&: Flags); |
| 916 | auto AliaseeVI = Index.getValueInfo(GUID: Aliasee->getGUID()); |
| 917 | assert(AliaseeVI && "Alias expects aliasee summary to be available" ); |
| 918 | assert(AliaseeVI.getSummaryList().size() == 1 && |
| 919 | "Expected a single entry per aliasee in per-module index" ); |
| 920 | AS->setAliasee(AliaseeVI, Aliasee: AliaseeVI.getSummaryList()[0].get()); |
| 921 | if (NonRenamableLocal) |
| 922 | CantBePromoted.insert(V: A.getGUID()); |
| 923 | Index.addGlobalValueSummary(GV: A, Summary: std::move(AS)); |
| 924 | } |
| 925 | |
| 926 | // Set LiveRoot flag on entries matching the given value name. |
| 927 | static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) { |
| 928 | if (ValueInfo VI = |
| 929 | Index.getValueInfo(GUID: GlobalValue::getGUIDAssumingExternalLinkage(GlobalName: Name))) |
| 930 | for (const auto &Summary : VI.getSummaryList()) |
| 931 | Summary->setLive(true); |
| 932 | } |
| 933 | |
| 934 | ModuleSummaryIndex llvm::buildModuleSummaryIndex( |
| 935 | const Module &M, |
| 936 | std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback, |
| 937 | ProfileSummaryInfo *PSI, |
| 938 | std::function<const StackSafetyInfo *(const Function &F)> GetSSICallback) { |
| 939 | assert(PSI); |
| 940 | bool EnableSplitLTOUnit = false; |
| 941 | bool UnifiedLTO = false; |
| 942 | if (auto *MD = mdconst::extract_or_null<ConstantInt>( |
| 943 | MD: M.getModuleFlag(Key: "EnableSplitLTOUnit" ))) |
| 944 | EnableSplitLTOUnit = MD->getZExtValue(); |
| 945 | if (auto *MD = |
| 946 | mdconst::extract_or_null<ConstantInt>(MD: M.getModuleFlag(Key: "UnifiedLTO" ))) |
| 947 | UnifiedLTO = MD->getZExtValue(); |
| 948 | ModuleSummaryIndex Index(/*HaveGVs=*/true, EnableSplitLTOUnit, UnifiedLTO); |
| 949 | |
| 950 | // Identify the local values in the llvm.used and llvm.compiler.used sets, |
| 951 | // which should not be exported as they would then require renaming and |
| 952 | // promotion, but we may have opaque uses e.g. in inline asm. We collect them |
| 953 | // here because we use this information to mark functions containing inline |
| 954 | // assembly calls as not importable. |
| 955 | SmallPtrSet<GlobalValue *, 4> LocalsUsed; |
| 956 | SmallVector<GlobalValue *, 4> Used; |
| 957 | // First collect those in the llvm.used set. |
| 958 | collectUsedGlobalVariables(M, Vec&: Used, /*CompilerUsed=*/false); |
| 959 | // Next collect those in the llvm.compiler.used set. |
| 960 | collectUsedGlobalVariables(M, Vec&: Used, /*CompilerUsed=*/true); |
| 961 | DenseSet<GlobalValue::GUID> CantBePromoted; |
| 962 | for (auto *V : Used) { |
| 963 | if (V->hasLocalLinkage()) { |
| 964 | LocalsUsed.insert(Ptr: V); |
| 965 | CantBePromoted.insert(V: V->getGUID()); |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | bool HasLocalInlineAsmSymbol = false; |
| 970 | if (!M.getModuleInlineAsm().empty()) { |
| 971 | // Collect the local values defined by module level asm, and set up |
| 972 | // summaries for these symbols so that they can be marked as NoRename, |
| 973 | // to prevent export of any use of them in regular IR that would require |
| 974 | // renaming within the module level asm. Note we don't need to create a |
| 975 | // summary for weak or global defs, as they don't need to be flagged as |
| 976 | // NoRename, and defs in module level asm can't be imported anyway. |
| 977 | // Also, any values used but not defined within module level asm should |
| 978 | // be listed on the llvm.used or llvm.compiler.used global and marked as |
| 979 | // referenced from there. |
| 980 | ModuleSymbolTable::CollectAsmSymbols( |
| 981 | M, AsmSymbol: [&](StringRef Name, object::BasicSymbolRef::Flags Flags) { |
| 982 | // Symbols not marked as Weak or Global are local definitions. |
| 983 | if (Flags & (object::BasicSymbolRef::SF_Weak | |
| 984 | object::BasicSymbolRef::SF_Global)) |
| 985 | return; |
| 986 | HasLocalInlineAsmSymbol = true; |
| 987 | GlobalValue *GV = M.getNamedValue(Name); |
| 988 | if (!GV) |
| 989 | return; |
| 990 | assert(GV->isDeclaration() && "Def in module asm already has definition" ); |
| 991 | GlobalValueSummary::GVFlags GVFlags( |
| 992 | GlobalValue::InternalLinkage, GlobalValue::DefaultVisibility, |
| 993 | /* NotEligibleToImport = */ true, |
| 994 | /* Live = */ true, |
| 995 | /* Local */ GV->isDSOLocal(), GV->canBeOmittedFromSymbolTable(), |
| 996 | GlobalValueSummary::Definition); |
| 997 | CantBePromoted.insert(V: GV->getGUID()); |
| 998 | // Create the appropriate summary type. |
| 999 | if (Function *F = dyn_cast<Function>(Val: GV)) { |
| 1000 | std::unique_ptr<FunctionSummary> Summary = |
| 1001 | std::make_unique<FunctionSummary>( |
| 1002 | args&: GVFlags, /*InstCount=*/args: 0, |
| 1003 | args: FunctionSummary::FFlags{ |
| 1004 | .ReadNone: F->hasFnAttribute(Kind: Attribute::ReadNone), |
| 1005 | .ReadOnly: F->hasFnAttribute(Kind: Attribute::ReadOnly), |
| 1006 | .NoRecurse: F->hasFnAttribute(Kind: Attribute::NoRecurse), |
| 1007 | .ReturnDoesNotAlias: F->returnDoesNotAlias(), |
| 1008 | /* NoInline = */ false, |
| 1009 | .AlwaysInline: F->hasFnAttribute(Kind: Attribute::AlwaysInline), |
| 1010 | .NoUnwind: F->hasFnAttribute(Kind: Attribute::NoUnwind), |
| 1011 | /* MayThrow */ true, |
| 1012 | /* HasUnknownCall */ true, |
| 1013 | /* MustBeUnreachable */ false}, |
| 1014 | args: SmallVector<ValueInfo, 0>{}, |
| 1015 | args: SmallVector<FunctionSummary::EdgeTy, 0>{}, |
| 1016 | args: ArrayRef<GlobalValue::GUID>{}, |
| 1017 | args: ArrayRef<FunctionSummary::VFuncId>{}, |
| 1018 | args: ArrayRef<FunctionSummary::VFuncId>{}, |
| 1019 | args: ArrayRef<FunctionSummary::ConstVCall>{}, |
| 1020 | args: ArrayRef<FunctionSummary::ConstVCall>{}, |
| 1021 | args: ArrayRef<FunctionSummary::ParamAccess>{}, |
| 1022 | args: ArrayRef<CallsiteInfo>{}, args: ArrayRef<AllocInfo>{}); |
| 1023 | Index.addGlobalValueSummary(GV: *GV, Summary: std::move(Summary)); |
| 1024 | } else { |
| 1025 | std::unique_ptr<GlobalVarSummary> Summary = |
| 1026 | std::make_unique<GlobalVarSummary>( |
| 1027 | args&: GVFlags, |
| 1028 | args: GlobalVarSummary::GVarFlags( |
| 1029 | false, false, cast<GlobalVariable>(Val: GV)->isConstant(), |
| 1030 | GlobalObject::VCallVisibilityPublic), |
| 1031 | args: SmallVector<ValueInfo, 0>{}); |
| 1032 | Index.addGlobalValueSummary(GV: *GV, Summary: std::move(Summary)); |
| 1033 | } |
| 1034 | }); |
| 1035 | } |
| 1036 | |
| 1037 | bool IsThinLTO = true; |
| 1038 | if (auto *MD = |
| 1039 | mdconst::extract_or_null<ConstantInt>(MD: M.getModuleFlag(Key: "ThinLTO" ))) |
| 1040 | IsThinLTO = MD->getZExtValue(); |
| 1041 | |
| 1042 | // Compute summaries for all functions defined in module, and save in the |
| 1043 | // index. |
| 1044 | for (const auto &F : M) { |
| 1045 | if (F.isDeclaration()) |
| 1046 | continue; |
| 1047 | |
| 1048 | DominatorTree DT(const_cast<Function &>(F)); |
| 1049 | BlockFrequencyInfo *BFI = nullptr; |
| 1050 | std::unique_ptr<BlockFrequencyInfo> BFIPtr; |
| 1051 | if (GetBFICallback) |
| 1052 | BFI = GetBFICallback(F); |
| 1053 | else if (F.hasProfileData()) { |
| 1054 | LoopInfo LI{DT}; |
| 1055 | BranchProbabilityInfo BPI{F, LI}; |
| 1056 | BFIPtr = std::make_unique<BlockFrequencyInfo>(args: F, args&: BPI, args&: LI); |
| 1057 | BFI = BFIPtr.get(); |
| 1058 | } |
| 1059 | |
| 1060 | computeFunctionSummary(Index, M, F, BFI, PSI, DT, |
| 1061 | HasLocalsInUsedOrAsm: !LocalsUsed.empty() || HasLocalInlineAsmSymbol, |
| 1062 | CantBePromoted, IsThinLTO, GetSSICallback); |
| 1063 | } |
| 1064 | |
| 1065 | // Compute summaries for all variables defined in module, and save in the |
| 1066 | // index. |
| 1067 | SmallVector<MDNode *, 2> Types; |
| 1068 | for (const GlobalVariable &G : M.globals()) { |
| 1069 | if (G.isDeclaration()) |
| 1070 | continue; |
| 1071 | computeVariableSummary(Index, V: G, CantBePromoted, M, Types); |
| 1072 | } |
| 1073 | |
| 1074 | // Compute summaries for all aliases defined in module, and save in the |
| 1075 | // index. |
| 1076 | for (const GlobalAlias &A : M.aliases()) |
| 1077 | computeAliasSummary(Index, A, CantBePromoted); |
| 1078 | |
| 1079 | // Iterate through ifuncs, set their resolvers all alive. |
| 1080 | for (const GlobalIFunc &I : M.ifuncs()) { |
| 1081 | I.applyAlongResolverPath(Op: [&Index](const GlobalValue &GV) { |
| 1082 | Index.getGlobalValueSummary(GV)->setLive(true); |
| 1083 | }); |
| 1084 | } |
| 1085 | |
| 1086 | for (auto *V : LocalsUsed) { |
| 1087 | auto *Summary = Index.getGlobalValueSummary(GV: *V); |
| 1088 | assert(Summary && "Missing summary for global value" ); |
| 1089 | Summary->setNotEligibleToImport(); |
| 1090 | } |
| 1091 | |
| 1092 | // The linker doesn't know about these LLVM produced values, so we need |
| 1093 | // to flag them as live in the index to ensure index-based dead value |
| 1094 | // analysis treats them as live roots of the analysis. |
| 1095 | setLiveRoot(Index, Name: "llvm.used" ); |
| 1096 | setLiveRoot(Index, Name: "llvm.compiler.used" ); |
| 1097 | setLiveRoot(Index, Name: "llvm.global_ctors" ); |
| 1098 | setLiveRoot(Index, Name: "llvm.global_dtors" ); |
| 1099 | setLiveRoot(Index, Name: "llvm.global.annotations" ); |
| 1100 | |
| 1101 | for (auto &GlobalList : Index) { |
| 1102 | // Ignore entries for references that are undefined in the current module. |
| 1103 | if (GlobalList.second.SummaryList.empty()) |
| 1104 | continue; |
| 1105 | |
| 1106 | assert(GlobalList.second.SummaryList.size() == 1 && |
| 1107 | "Expected module's index to have one summary per GUID" ); |
| 1108 | auto &Summary = GlobalList.second.SummaryList[0]; |
| 1109 | if (!IsThinLTO) { |
| 1110 | Summary->setNotEligibleToImport(); |
| 1111 | continue; |
| 1112 | } |
| 1113 | |
| 1114 | bool AllRefsCanBeExternallyReferenced = |
| 1115 | llvm::all_of(Range: Summary->refs(), P: [&](const ValueInfo &VI) { |
| 1116 | return !CantBePromoted.count(V: VI.getGUID()); |
| 1117 | }); |
| 1118 | if (!AllRefsCanBeExternallyReferenced) { |
| 1119 | Summary->setNotEligibleToImport(); |
| 1120 | continue; |
| 1121 | } |
| 1122 | |
| 1123 | if (auto *FuncSummary = dyn_cast<FunctionSummary>(Val: Summary.get())) { |
| 1124 | bool AllCallsCanBeExternallyReferenced = llvm::all_of( |
| 1125 | Range: FuncSummary->calls(), P: [&](const FunctionSummary::EdgeTy &Edge) { |
| 1126 | return !CantBePromoted.count(V: Edge.first.getGUID()); |
| 1127 | }); |
| 1128 | if (!AllCallsCanBeExternallyReferenced) |
| 1129 | Summary->setNotEligibleToImport(); |
| 1130 | } |
| 1131 | } |
| 1132 | |
| 1133 | if (!ModuleSummaryDotFile.empty()) { |
| 1134 | std::error_code EC; |
| 1135 | raw_fd_ostream OSDot(ModuleSummaryDotFile, EC, sys::fs::OpenFlags::OF_Text); |
| 1136 | if (EC) |
| 1137 | report_fatal_error(reason: Twine("Failed to open dot file " ) + |
| 1138 | ModuleSummaryDotFile + ": " + EC.message() + "\n" ); |
| 1139 | Index.exportToDot(OS&: OSDot, GUIDPreservedSymbols: {}); |
| 1140 | } |
| 1141 | |
| 1142 | return Index; |
| 1143 | } |
| 1144 | |
| 1145 | AnalysisKey ModuleSummaryIndexAnalysis::Key; |
| 1146 | |
| 1147 | ModuleSummaryIndex |
| 1148 | ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) { |
| 1149 | ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(IR&: M); |
| 1150 | auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(IR&: M).getManager(); |
| 1151 | bool NeedSSI = needsParamAccessSummary(M); |
| 1152 | return buildModuleSummaryIndex( |
| 1153 | M, |
| 1154 | GetBFICallback: [&FAM](const Function &F) { |
| 1155 | return &FAM.getResult<BlockFrequencyAnalysis>( |
| 1156 | IR&: *const_cast<Function *>(&F)); |
| 1157 | }, |
| 1158 | PSI: &PSI, |
| 1159 | GetSSICallback: [&FAM, NeedSSI](const Function &F) -> const StackSafetyInfo * { |
| 1160 | return NeedSSI ? &FAM.getResult<StackSafetyAnalysis>( |
| 1161 | IR&: const_cast<Function &>(F)) |
| 1162 | : nullptr; |
| 1163 | }); |
| 1164 | } |
| 1165 | |
| 1166 | char ModuleSummaryIndexWrapperPass::ID = 0; |
| 1167 | |
| 1168 | INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis" , |
| 1169 | "Module Summary Analysis" , false, true) |
| 1170 | INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) |
| 1171 | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) |
| 1172 | INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass) |
| 1173 | INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis" , |
| 1174 | "Module Summary Analysis" , false, true) |
| 1175 | |
| 1176 | ModulePass *llvm::createModuleSummaryIndexWrapperPass() { |
| 1177 | return new ModuleSummaryIndexWrapperPass(); |
| 1178 | } |
| 1179 | |
| 1180 | ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass() |
| 1181 | : ModulePass(ID) {} |
| 1182 | |
| 1183 | bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) { |
| 1184 | auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| 1185 | bool NeedSSI = needsParamAccessSummary(M); |
| 1186 | Index.emplace(args: buildModuleSummaryIndex( |
| 1187 | M, |
| 1188 | GetBFICallback: [this](const Function &F) { |
| 1189 | return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>( |
| 1190 | F&: *const_cast<Function *>(&F)) |
| 1191 | .getBFI()); |
| 1192 | }, |
| 1193 | PSI, |
| 1194 | GetSSICallback: [&](const Function &F) -> const StackSafetyInfo * { |
| 1195 | return NeedSSI ? &getAnalysis<StackSafetyInfoWrapperPass>( |
| 1196 | F&: const_cast<Function &>(F)) |
| 1197 | .getResult() |
| 1198 | : nullptr; |
| 1199 | })); |
| 1200 | return false; |
| 1201 | } |
| 1202 | |
| 1203 | bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) { |
| 1204 | Index.reset(); |
| 1205 | return false; |
| 1206 | } |
| 1207 | |
| 1208 | void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
| 1209 | AU.setPreservesAll(); |
| 1210 | AU.addRequired<BlockFrequencyInfoWrapperPass>(); |
| 1211 | AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| 1212 | AU.addRequired<StackSafetyInfoWrapperPass>(); |
| 1213 | } |
| 1214 | |
| 1215 | char ImmutableModuleSummaryIndexWrapperPass::ID = 0; |
| 1216 | |
| 1217 | ImmutableModuleSummaryIndexWrapperPass::ImmutableModuleSummaryIndexWrapperPass( |
| 1218 | const ModuleSummaryIndex *Index) |
| 1219 | : ImmutablePass(ID), Index(Index) {} |
| 1220 | |
| 1221 | void ImmutableModuleSummaryIndexWrapperPass::getAnalysisUsage( |
| 1222 | AnalysisUsage &AU) const { |
| 1223 | AU.setPreservesAll(); |
| 1224 | } |
| 1225 | |
| 1226 | ImmutablePass *llvm::createImmutableModuleSummaryIndexWrapperPass( |
| 1227 | const ModuleSummaryIndex *Index) { |
| 1228 | return new ImmutableModuleSummaryIndexWrapperPass(Index); |
| 1229 | } |
| 1230 | |
| 1231 | INITIALIZE_PASS(ImmutableModuleSummaryIndexWrapperPass, "module-summary-info" , |
| 1232 | "Module summary info" , false, true) |
| 1233 | |
| 1234 | bool llvm::mayHaveMemprofSummary(const CallBase *CB) { |
| 1235 | if (!CB) |
| 1236 | return false; |
| 1237 | if (CB->isDebugOrPseudoInst()) |
| 1238 | return false; |
| 1239 | auto *CI = dyn_cast<CallInst>(Val: CB); |
| 1240 | auto *CalledValue = CB->getCalledOperand(); |
| 1241 | auto *CalledFunction = CB->getCalledFunction(); |
| 1242 | if (CalledValue && !CalledFunction) { |
| 1243 | CalledValue = CalledValue->stripPointerCasts(); |
| 1244 | // Stripping pointer casts can reveal a called function. |
| 1245 | CalledFunction = dyn_cast<Function>(Val: CalledValue); |
| 1246 | } |
| 1247 | // Check if this is an alias to a function. If so, get the |
| 1248 | // called aliasee for the checks below. |
| 1249 | if (auto *GA = dyn_cast<GlobalAlias>(Val: CalledValue)) { |
| 1250 | assert(!CalledFunction && |
| 1251 | "Expected null called function in callsite for alias" ); |
| 1252 | CalledFunction = dyn_cast<Function>(Val: GA->getAliaseeObject()); |
| 1253 | } |
| 1254 | // Check if this is a direct call to a known function or a known |
| 1255 | // intrinsic, or an indirect call with profile data. |
| 1256 | if (CalledFunction) { |
| 1257 | if (CI && CalledFunction->isIntrinsic()) |
| 1258 | return false; |
| 1259 | } else { |
| 1260 | // Skip indirect calls if we haven't enabled memprof ICP. |
| 1261 | if (!EnableMemProfIndirectCallSupport) |
| 1262 | return false; |
| 1263 | // Skip inline assembly calls. |
| 1264 | if (CI && CI->isInlineAsm()) |
| 1265 | return false; |
| 1266 | // Skip direct calls via Constant. |
| 1267 | if (!CalledValue || isa<Constant>(Val: CalledValue)) |
| 1268 | return false; |
| 1269 | return true; |
| 1270 | } |
| 1271 | return true; |
| 1272 | } |
| 1273 | |