| 1 | //===- ScalarEvolutionDivision.h - See below --------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file defines the class that knows how to divide SCEV's. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/Analysis/ScalarEvolutionDivision.h" |
| 14 | #include "llvm/ADT/APInt.h" |
| 15 | #include "llvm/ADT/DenseMap.h" |
| 16 | #include "llvm/ADT/SmallVector.h" |
| 17 | #include "llvm/Analysis/ScalarEvolution.h" |
| 18 | #include "llvm/Support/Casting.h" |
| 19 | #include <cassert> |
| 20 | #include <cstdint> |
| 21 | |
| 22 | namespace llvm { |
| 23 | class Type; |
| 24 | } // namespace llvm |
| 25 | |
| 26 | using namespace llvm; |
| 27 | |
| 28 | namespace { |
| 29 | |
| 30 | static inline int sizeOfSCEV(const SCEV *S) { |
| 31 | struct FindSCEVSize { |
| 32 | int Size = 0; |
| 33 | |
| 34 | FindSCEVSize() = default; |
| 35 | |
| 36 | bool follow(const SCEV *S) { |
| 37 | ++Size; |
| 38 | // Keep looking at all operands of S. |
| 39 | return true; |
| 40 | } |
| 41 | |
| 42 | bool isDone() const { return false; } |
| 43 | }; |
| 44 | |
| 45 | FindSCEVSize F; |
| 46 | SCEVTraversal<FindSCEVSize> ST(F); |
| 47 | ST.visitAll(Root: S); |
| 48 | return F.Size; |
| 49 | } |
| 50 | |
| 51 | } // namespace |
| 52 | |
| 53 | // Computes the Quotient and Remainder of the division of Numerator by |
| 54 | // Denominator. |
| 55 | void SCEVDivision::divide(ScalarEvolution &SE, const SCEV *Numerator, |
| 56 | const SCEV *Denominator, const SCEV **Quotient, |
| 57 | const SCEV **Remainder) { |
| 58 | assert(Numerator && Denominator && "Uninitialized SCEV" ); |
| 59 | |
| 60 | SCEVDivision D(SE, Numerator, Denominator); |
| 61 | |
| 62 | // Check for the trivial case here to avoid having to check for it in the |
| 63 | // rest of the code. |
| 64 | if (Numerator == Denominator) { |
| 65 | *Quotient = D.One; |
| 66 | *Remainder = D.Zero; |
| 67 | return; |
| 68 | } |
| 69 | |
| 70 | if (Numerator->isZero()) { |
| 71 | *Quotient = D.Zero; |
| 72 | *Remainder = D.Zero; |
| 73 | return; |
| 74 | } |
| 75 | |
| 76 | // A simple case when N/1. The quotient is N. |
| 77 | if (Denominator->isOne()) { |
| 78 | *Quotient = Numerator; |
| 79 | *Remainder = D.Zero; |
| 80 | return; |
| 81 | } |
| 82 | |
| 83 | // Split the Denominator when it is a product. |
| 84 | if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Val: Denominator)) { |
| 85 | const SCEV *Q, *R; |
| 86 | *Quotient = Numerator; |
| 87 | for (const SCEV *Op : T->operands()) { |
| 88 | divide(SE, Numerator: *Quotient, Denominator: Op, Quotient: &Q, Remainder: &R); |
| 89 | *Quotient = Q; |
| 90 | |
| 91 | // Bail out when the Numerator is not divisible by one of the terms of |
| 92 | // the Denominator. |
| 93 | if (!R->isZero()) { |
| 94 | *Quotient = D.Zero; |
| 95 | *Remainder = Numerator; |
| 96 | return; |
| 97 | } |
| 98 | } |
| 99 | *Remainder = D.Zero; |
| 100 | return; |
| 101 | } |
| 102 | |
| 103 | D.visit(S: Numerator); |
| 104 | *Quotient = D.Quotient; |
| 105 | *Remainder = D.Remainder; |
| 106 | } |
| 107 | |
| 108 | void SCEVDivision::visitConstant(const SCEVConstant *Numerator) { |
| 109 | if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Val: Denominator)) { |
| 110 | APInt NumeratorVal = Numerator->getAPInt(); |
| 111 | APInt DenominatorVal = D->getAPInt(); |
| 112 | uint32_t NumeratorBW = NumeratorVal.getBitWidth(); |
| 113 | uint32_t DenominatorBW = DenominatorVal.getBitWidth(); |
| 114 | |
| 115 | if (NumeratorBW > DenominatorBW) |
| 116 | DenominatorVal = DenominatorVal.sext(width: NumeratorBW); |
| 117 | else if (NumeratorBW < DenominatorBW) |
| 118 | NumeratorVal = NumeratorVal.sext(width: DenominatorBW); |
| 119 | |
| 120 | APInt QuotientVal(NumeratorVal.getBitWidth(), 0); |
| 121 | APInt RemainderVal(NumeratorVal.getBitWidth(), 0); |
| 122 | APInt::sdivrem(LHS: NumeratorVal, RHS: DenominatorVal, Quotient&: QuotientVal, Remainder&: RemainderVal); |
| 123 | Quotient = SE.getConstant(Val: QuotientVal); |
| 124 | Remainder = SE.getConstant(Val: RemainderVal); |
| 125 | return; |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | void SCEVDivision::visitVScale(const SCEVVScale *Numerator) { |
| 130 | return cannotDivide(Numerator); |
| 131 | } |
| 132 | |
| 133 | void SCEVDivision::visitAddRecExpr(const SCEVAddRecExpr *Numerator) { |
| 134 | const SCEV *StartQ, *StartR, *StepQ, *StepR; |
| 135 | if (!Numerator->isAffine()) |
| 136 | return cannotDivide(Numerator); |
| 137 | divide(SE, Numerator: Numerator->getStart(), Denominator, Quotient: &StartQ, Remainder: &StartR); |
| 138 | divide(SE, Numerator: Numerator->getStepRecurrence(SE), Denominator, Quotient: &StepQ, Remainder: &StepR); |
| 139 | // Bail out if the types do not match. |
| 140 | Type *Ty = Denominator->getType(); |
| 141 | if (Ty != StartQ->getType() || Ty != StartR->getType() || |
| 142 | Ty != StepQ->getType() || Ty != StepR->getType()) |
| 143 | return cannotDivide(Numerator); |
| 144 | Quotient = SE.getAddRecExpr(Start: StartQ, Step: StepQ, L: Numerator->getLoop(), |
| 145 | Flags: Numerator->getNoWrapFlags()); |
| 146 | Remainder = SE.getAddRecExpr(Start: StartR, Step: StepR, L: Numerator->getLoop(), |
| 147 | Flags: Numerator->getNoWrapFlags()); |
| 148 | } |
| 149 | |
| 150 | void SCEVDivision::visitAddExpr(const SCEVAddExpr *Numerator) { |
| 151 | SmallVector<const SCEV *, 2> Qs, Rs; |
| 152 | Type *Ty = Denominator->getType(); |
| 153 | |
| 154 | for (const SCEV *Op : Numerator->operands()) { |
| 155 | const SCEV *Q, *R; |
| 156 | divide(SE, Numerator: Op, Denominator, Quotient: &Q, Remainder: &R); |
| 157 | |
| 158 | // Bail out if types do not match. |
| 159 | if (Ty != Q->getType() || Ty != R->getType()) |
| 160 | return cannotDivide(Numerator); |
| 161 | |
| 162 | Qs.push_back(Elt: Q); |
| 163 | Rs.push_back(Elt: R); |
| 164 | } |
| 165 | |
| 166 | if (Qs.size() == 1) { |
| 167 | Quotient = Qs[0]; |
| 168 | Remainder = Rs[0]; |
| 169 | return; |
| 170 | } |
| 171 | |
| 172 | Quotient = SE.getAddExpr(Ops&: Qs); |
| 173 | Remainder = SE.getAddExpr(Ops&: Rs); |
| 174 | } |
| 175 | |
| 176 | void SCEVDivision::visitMulExpr(const SCEVMulExpr *Numerator) { |
| 177 | SmallVector<const SCEV *, 2> Qs; |
| 178 | Type *Ty = Denominator->getType(); |
| 179 | |
| 180 | bool FoundDenominatorTerm = false; |
| 181 | for (const SCEV *Op : Numerator->operands()) { |
| 182 | // Bail out if types do not match. |
| 183 | if (Ty != Op->getType()) |
| 184 | return cannotDivide(Numerator); |
| 185 | |
| 186 | if (FoundDenominatorTerm) { |
| 187 | Qs.push_back(Elt: Op); |
| 188 | continue; |
| 189 | } |
| 190 | |
| 191 | // Check whether Denominator divides one of the product operands. |
| 192 | const SCEV *Q, *R; |
| 193 | divide(SE, Numerator: Op, Denominator, Quotient: &Q, Remainder: &R); |
| 194 | if (!R->isZero()) { |
| 195 | Qs.push_back(Elt: Op); |
| 196 | continue; |
| 197 | } |
| 198 | |
| 199 | // Bail out if types do not match. |
| 200 | if (Ty != Q->getType()) |
| 201 | return cannotDivide(Numerator); |
| 202 | |
| 203 | FoundDenominatorTerm = true; |
| 204 | Qs.push_back(Elt: Q); |
| 205 | } |
| 206 | |
| 207 | if (FoundDenominatorTerm) { |
| 208 | Remainder = Zero; |
| 209 | if (Qs.size() == 1) |
| 210 | Quotient = Qs[0]; |
| 211 | else |
| 212 | Quotient = SE.getMulExpr(Ops&: Qs); |
| 213 | return; |
| 214 | } |
| 215 | |
| 216 | if (!isa<SCEVUnknown>(Val: Denominator)) |
| 217 | return cannotDivide(Numerator); |
| 218 | |
| 219 | // The Remainder is obtained by replacing Denominator by 0 in Numerator. |
| 220 | ValueToSCEVMapTy RewriteMap; |
| 221 | RewriteMap[cast<SCEVUnknown>(Val: Denominator)->getValue()] = Zero; |
| 222 | Remainder = SCEVParameterRewriter::rewrite(Scev: Numerator, SE, Map&: RewriteMap); |
| 223 | |
| 224 | if (Remainder->isZero()) { |
| 225 | // The Quotient is obtained by replacing Denominator by 1 in Numerator. |
| 226 | RewriteMap[cast<SCEVUnknown>(Val: Denominator)->getValue()] = One; |
| 227 | Quotient = SCEVParameterRewriter::rewrite(Scev: Numerator, SE, Map&: RewriteMap); |
| 228 | return; |
| 229 | } |
| 230 | |
| 231 | // Quotient is (Numerator - Remainder) divided by Denominator. |
| 232 | const SCEV *Q, *R; |
| 233 | const SCEV *Diff = SE.getMinusSCEV(LHS: Numerator, RHS: Remainder); |
| 234 | // This SCEV does not seem to simplify: fail the division here. |
| 235 | if (sizeOfSCEV(S: Diff) > sizeOfSCEV(S: Numerator)) |
| 236 | return cannotDivide(Numerator); |
| 237 | divide(SE, Numerator: Diff, Denominator, Quotient: &Q, Remainder: &R); |
| 238 | if (R != Zero) |
| 239 | return cannotDivide(Numerator); |
| 240 | Quotient = Q; |
| 241 | } |
| 242 | |
| 243 | SCEVDivision::SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, |
| 244 | const SCEV *Denominator) |
| 245 | : SE(S), Denominator(Denominator) { |
| 246 | Zero = SE.getZero(Ty: Denominator->getType()); |
| 247 | One = SE.getOne(Ty: Denominator->getType()); |
| 248 | |
| 249 | // We generally do not know how to divide Expr by Denominator. We initialize |
| 250 | // the division to a "cannot divide" state to simplify the rest of the code. |
| 251 | cannotDivide(Numerator); |
| 252 | } |
| 253 | |
| 254 | // Convenience function for giving up on the division. We set the quotient to |
| 255 | // be equal to zero and the remainder to be equal to the numerator. |
| 256 | void SCEVDivision::cannotDivide(const SCEV *Numerator) { |
| 257 | Quotient = Zero; |
| 258 | Remainder = Numerator; |
| 259 | } |
| 260 | |