1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Bitcode/BitcodeReader.h"
10#include "MetadataLoader.h"
11#include "ValueList.h"
12#include "llvm/ADT/APFloat.h"
13#include "llvm/ADT/APInt.h"
14#include "llvm/ADT/ArrayRef.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Bitcode/BitcodeCommon.h"
22#include "llvm/Bitcode/LLVMBitCodes.h"
23#include "llvm/Bitstream/BitstreamReader.h"
24#include "llvm/Config/llvm-config.h"
25#include "llvm/IR/Argument.h"
26#include "llvm/IR/AttributeMask.h"
27#include "llvm/IR/Attributes.h"
28#include "llvm/IR/AutoUpgrade.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/Comdat.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/ConstantRangeList.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/DebugInfo.h"
37#include "llvm/IR/DebugInfoMetadata.h"
38#include "llvm/IR/DebugLoc.h"
39#include "llvm/IR/DerivedTypes.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/GVMaterializer.h"
42#include "llvm/IR/GetElementPtrTypeIterator.h"
43#include "llvm/IR/GlobalAlias.h"
44#include "llvm/IR/GlobalIFunc.h"
45#include "llvm/IR/GlobalObject.h"
46#include "llvm/IR/GlobalValue.h"
47#include "llvm/IR/GlobalVariable.h"
48#include "llvm/IR/InlineAsm.h"
49#include "llvm/IR/InstIterator.h"
50#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
52#include "llvm/IR/Instructions.h"
53#include "llvm/IR/Intrinsics.h"
54#include "llvm/IR/IntrinsicsAArch64.h"
55#include "llvm/IR/IntrinsicsARM.h"
56#include "llvm/IR/LLVMContext.h"
57#include "llvm/IR/Metadata.h"
58#include "llvm/IR/Module.h"
59#include "llvm/IR/ModuleSummaryIndex.h"
60#include "llvm/IR/Operator.h"
61#include "llvm/IR/ProfDataUtils.h"
62#include "llvm/IR/Type.h"
63#include "llvm/IR/Value.h"
64#include "llvm/IR/Verifier.h"
65#include "llvm/Support/AtomicOrdering.h"
66#include "llvm/Support/Casting.h"
67#include "llvm/Support/CommandLine.h"
68#include "llvm/Support/Compiler.h"
69#include "llvm/Support/Debug.h"
70#include "llvm/Support/Error.h"
71#include "llvm/Support/ErrorHandling.h"
72#include "llvm/Support/ErrorOr.h"
73#include "llvm/Support/MathExtras.h"
74#include "llvm/Support/MemoryBuffer.h"
75#include "llvm/Support/ModRef.h"
76#include "llvm/Support/raw_ostream.h"
77#include "llvm/TargetParser/Triple.h"
78#include <algorithm>
79#include <cassert>
80#include <cstddef>
81#include <cstdint>
82#include <deque>
83#include <map>
84#include <memory>
85#include <optional>
86#include <string>
87#include <system_error>
88#include <tuple>
89#include <utility>
90#include <vector>
91
92using namespace llvm;
93
94static cl::opt<bool> PrintSummaryGUIDs(
95 "print-summary-global-ids", cl::init(Val: false), cl::Hidden,
96 cl::desc(
97 "Print the global id for each value when reading the module summary"));
98
99static cl::opt<bool> ExpandConstantExprs(
100 "expand-constant-exprs", cl::Hidden,
101 cl::desc(
102 "Expand constant expressions to instructions for testing purposes"));
103
104namespace {
105
106enum {
107 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
108};
109
110} // end anonymous namespace
111
112static Error error(const Twine &Message) {
113 return make_error<StringError>(
114 Args: Message, Args: make_error_code(E: BitcodeError::CorruptedBitcode));
115}
116
117static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
118 if (!Stream.canSkipToPos(pos: 4))
119 return createStringError(EC: std::errc::illegal_byte_sequence,
120 Fmt: "file too small to contain bitcode header");
121 for (unsigned C : {'B', 'C'})
122 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(NumBits: 8)) {
123 if (Res.get() != C)
124 return createStringError(EC: std::errc::illegal_byte_sequence,
125 Fmt: "file doesn't start with bitcode header");
126 } else
127 return Res.takeError();
128 for (unsigned C : {0x0, 0xC, 0xE, 0xD})
129 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(NumBits: 4)) {
130 if (Res.get() != C)
131 return createStringError(EC: std::errc::illegal_byte_sequence,
132 Fmt: "file doesn't start with bitcode header");
133 } else
134 return Res.takeError();
135 return Error::success();
136}
137
138static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
139 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
140 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
141
142 if (Buffer.getBufferSize() & 3)
143 return error(Message: "Invalid bitcode signature");
144
145 // If we have a wrapper header, parse it and ignore the non-bc file contents.
146 // The magic number is 0x0B17C0DE stored in little endian.
147 if (isBitcodeWrapper(BufPtr, BufEnd))
148 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, VerifyBufferSize: true))
149 return error(Message: "Invalid bitcode wrapper header");
150
151 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
152 if (Error Err = hasInvalidBitcodeHeader(Stream))
153 return std::move(Err);
154
155 return std::move(Stream);
156}
157
158/// Convert a string from a record into an std::string, return true on failure.
159template <typename StrTy>
160static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
161 StrTy &Result) {
162 if (Idx > Record.size())
163 return true;
164
165 Result.append(Record.begin() + Idx, Record.end());
166 return false;
167}
168
169// Strip all the TBAA attachment for the module.
170static void stripTBAA(Module *M) {
171 for (auto &F : *M) {
172 if (F.isMaterializable())
173 continue;
174 for (auto &I : instructions(F))
175 I.setMetadata(KindID: LLVMContext::MD_tbaa, Node: nullptr);
176 }
177}
178
179/// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
180/// "epoch" encoded in the bitcode, and return the producer name if any.
181static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
182 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::IDENTIFICATION_BLOCK_ID))
183 return std::move(Err);
184
185 // Read all the records.
186 SmallVector<uint64_t, 64> Record;
187
188 std::string ProducerIdentification;
189
190 while (true) {
191 BitstreamEntry Entry;
192 if (Error E = Stream.advance().moveInto(Value&: Entry))
193 return std::move(E);
194
195 switch (Entry.Kind) {
196 default:
197 case BitstreamEntry::Error:
198 return error(Message: "Malformed block");
199 case BitstreamEntry::EndBlock:
200 return ProducerIdentification;
201 case BitstreamEntry::Record:
202 // The interesting case.
203 break;
204 }
205
206 // Read a record.
207 Record.clear();
208 Expected<unsigned> MaybeBitCode = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
209 if (!MaybeBitCode)
210 return MaybeBitCode.takeError();
211 switch (MaybeBitCode.get()) {
212 default: // Default behavior: reject
213 return error(Message: "Invalid value");
214 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
215 convertToString(Record, Idx: 0, Result&: ProducerIdentification);
216 break;
217 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
218 unsigned epoch = (unsigned)Record[0];
219 if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
220 return error(
221 Message: Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
222 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
223 }
224 }
225 }
226 }
227}
228
229static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
230 // We expect a number of well-defined blocks, though we don't necessarily
231 // need to understand them all.
232 while (true) {
233 if (Stream.AtEndOfStream())
234 return "";
235
236 BitstreamEntry Entry;
237 if (Error E = Stream.advance().moveInto(Value&: Entry))
238 return std::move(E);
239
240 switch (Entry.Kind) {
241 case BitstreamEntry::EndBlock:
242 case BitstreamEntry::Error:
243 return error(Message: "Malformed block");
244
245 case BitstreamEntry::SubBlock:
246 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
247 return readIdentificationBlock(Stream);
248
249 // Ignore other sub-blocks.
250 if (Error Err = Stream.SkipBlock())
251 return std::move(Err);
252 continue;
253 case BitstreamEntry::Record:
254 if (Error E = Stream.skipRecord(AbbrevID: Entry.ID).takeError())
255 return std::move(E);
256 continue;
257 }
258 }
259}
260
261static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
262 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::MODULE_BLOCK_ID))
263 return std::move(Err);
264
265 SmallVector<uint64_t, 64> Record;
266 // Read all the records for this module.
267
268 while (true) {
269 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
270 if (!MaybeEntry)
271 return MaybeEntry.takeError();
272 BitstreamEntry Entry = MaybeEntry.get();
273
274 switch (Entry.Kind) {
275 case BitstreamEntry::SubBlock: // Handled for us already.
276 case BitstreamEntry::Error:
277 return error(Message: "Malformed block");
278 case BitstreamEntry::EndBlock:
279 return false;
280 case BitstreamEntry::Record:
281 // The interesting case.
282 break;
283 }
284
285 // Read a record.
286 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
287 if (!MaybeRecord)
288 return MaybeRecord.takeError();
289 switch (MaybeRecord.get()) {
290 default:
291 break; // Default behavior, ignore unknown content.
292 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
293 std::string S;
294 if (convertToString(Record, Idx: 0, Result&: S))
295 return error(Message: "Invalid section name record");
296 // Check for the i386 and other (x86_64, ARM) conventions
297 if (S.find(s: "__DATA,__objc_catlist") != std::string::npos ||
298 S.find(s: "__OBJC,__category") != std::string::npos ||
299 S.find(s: "__TEXT,__swift") != std::string::npos)
300 return true;
301 break;
302 }
303 }
304 Record.clear();
305 }
306 llvm_unreachable("Exit infinite loop");
307}
308
309static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
310 // We expect a number of well-defined blocks, though we don't necessarily
311 // need to understand them all.
312 while (true) {
313 BitstreamEntry Entry;
314 if (Error E = Stream.advance().moveInto(Value&: Entry))
315 return std::move(E);
316
317 switch (Entry.Kind) {
318 case BitstreamEntry::Error:
319 return error(Message: "Malformed block");
320 case BitstreamEntry::EndBlock:
321 return false;
322
323 case BitstreamEntry::SubBlock:
324 if (Entry.ID == bitc::MODULE_BLOCK_ID)
325 return hasObjCCategoryInModule(Stream);
326
327 // Ignore other sub-blocks.
328 if (Error Err = Stream.SkipBlock())
329 return std::move(Err);
330 continue;
331
332 case BitstreamEntry::Record:
333 if (Error E = Stream.skipRecord(AbbrevID: Entry.ID).takeError())
334 return std::move(E);
335 continue;
336 }
337 }
338}
339
340static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
341 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::MODULE_BLOCK_ID))
342 return std::move(Err);
343
344 SmallVector<uint64_t, 64> Record;
345
346 std::string Triple;
347
348 // Read all the records for this module.
349 while (true) {
350 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
351 if (!MaybeEntry)
352 return MaybeEntry.takeError();
353 BitstreamEntry Entry = MaybeEntry.get();
354
355 switch (Entry.Kind) {
356 case BitstreamEntry::SubBlock: // Handled for us already.
357 case BitstreamEntry::Error:
358 return error(Message: "Malformed block");
359 case BitstreamEntry::EndBlock:
360 return Triple;
361 case BitstreamEntry::Record:
362 // The interesting case.
363 break;
364 }
365
366 // Read a record.
367 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
368 if (!MaybeRecord)
369 return MaybeRecord.takeError();
370 switch (MaybeRecord.get()) {
371 default: break; // Default behavior, ignore unknown content.
372 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
373 std::string S;
374 if (convertToString(Record, Idx: 0, Result&: S))
375 return error(Message: "Invalid triple record");
376 Triple = S;
377 break;
378 }
379 }
380 Record.clear();
381 }
382 llvm_unreachable("Exit infinite loop");
383}
384
385static Expected<std::string> readTriple(BitstreamCursor &Stream) {
386 // We expect a number of well-defined blocks, though we don't necessarily
387 // need to understand them all.
388 while (true) {
389 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
390 if (!MaybeEntry)
391 return MaybeEntry.takeError();
392 BitstreamEntry Entry = MaybeEntry.get();
393
394 switch (Entry.Kind) {
395 case BitstreamEntry::Error:
396 return error(Message: "Malformed block");
397 case BitstreamEntry::EndBlock:
398 return "";
399
400 case BitstreamEntry::SubBlock:
401 if (Entry.ID == bitc::MODULE_BLOCK_ID)
402 return readModuleTriple(Stream);
403
404 // Ignore other sub-blocks.
405 if (Error Err = Stream.SkipBlock())
406 return std::move(Err);
407 continue;
408
409 case BitstreamEntry::Record:
410 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(AbbrevID: Entry.ID))
411 continue;
412 else
413 return Skipped.takeError();
414 }
415 }
416}
417
418namespace {
419
420class BitcodeReaderBase {
421protected:
422 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
423 : Stream(std::move(Stream)), Strtab(Strtab) {
424 this->Stream.setBlockInfo(&BlockInfo);
425 }
426
427 BitstreamBlockInfo BlockInfo;
428 BitstreamCursor Stream;
429 StringRef Strtab;
430
431 /// In version 2 of the bitcode we store names of global values and comdats in
432 /// a string table rather than in the VST.
433 bool UseStrtab = false;
434
435 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
436
437 /// If this module uses a string table, pop the reference to the string table
438 /// and return the referenced string and the rest of the record. Otherwise
439 /// just return the record itself.
440 std::pair<StringRef, ArrayRef<uint64_t>>
441 readNameFromStrtab(ArrayRef<uint64_t> Record);
442
443 Error readBlockInfo();
444
445 // Contains an arbitrary and optional string identifying the bitcode producer
446 std::string ProducerIdentification;
447
448 Error error(const Twine &Message);
449};
450
451} // end anonymous namespace
452
453Error BitcodeReaderBase::error(const Twine &Message) {
454 std::string FullMsg = Message.str();
455 if (!ProducerIdentification.empty())
456 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
457 LLVM_VERSION_STRING "')";
458 return ::error(Message: FullMsg);
459}
460
461Expected<unsigned>
462BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
463 if (Record.empty())
464 return error(Message: "Invalid version record");
465 unsigned ModuleVersion = Record[0];
466 if (ModuleVersion > 2)
467 return error(Message: "Invalid value");
468 UseStrtab = ModuleVersion >= 2;
469 return ModuleVersion;
470}
471
472std::pair<StringRef, ArrayRef<uint64_t>>
473BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
474 if (!UseStrtab)
475 return {"", Record};
476 // Invalid reference. Let the caller complain about the record being empty.
477 if (Record[0] + Record[1] > Strtab.size())
478 return {"", {}};
479 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(N: 2)};
480}
481
482namespace {
483
484/// This represents a constant expression or constant aggregate using a custom
485/// structure internal to the bitcode reader. Later, this structure will be
486/// expanded by materializeValue() either into a constant expression/aggregate,
487/// or into an instruction sequence at the point of use. This allows us to
488/// upgrade bitcode using constant expressions even if this kind of constant
489/// expression is no longer supported.
490class BitcodeConstant final : public Value,
491 TrailingObjects<BitcodeConstant, unsigned> {
492 friend TrailingObjects;
493
494 // Value subclass ID: Pick largest possible value to avoid any clashes.
495 static constexpr uint8_t SubclassID = 255;
496
497public:
498 // Opcodes used for non-expressions. This includes constant aggregates
499 // (struct, array, vector) that might need expansion, as well as non-leaf
500 // constants that don't need expansion (no_cfi, dso_local, blockaddress),
501 // but still go through BitcodeConstant to avoid different uselist orders
502 // between the two cases.
503 static constexpr uint8_t ConstantStructOpcode = 255;
504 static constexpr uint8_t ConstantArrayOpcode = 254;
505 static constexpr uint8_t ConstantVectorOpcode = 253;
506 static constexpr uint8_t NoCFIOpcode = 252;
507 static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
508 static constexpr uint8_t BlockAddressOpcode = 250;
509 static constexpr uint8_t ConstantPtrAuthOpcode = 249;
510 static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode;
511
512 // Separate struct to make passing different number of parameters to
513 // BitcodeConstant::create() more convenient.
514 struct ExtraInfo {
515 uint8_t Opcode;
516 uint8_t Flags;
517 unsigned BlockAddressBB = 0;
518 Type *SrcElemTy = nullptr;
519 std::optional<ConstantRange> InRange;
520
521 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr,
522 std::optional<ConstantRange> InRange = std::nullopt)
523 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy),
524 InRange(std::move(InRange)) {}
525
526 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB)
527 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {}
528 };
529
530 uint8_t Opcode;
531 uint8_t Flags;
532 unsigned NumOperands;
533 unsigned BlockAddressBB;
534 Type *SrcElemTy; // GEP source element type.
535 std::optional<ConstantRange> InRange; // GEP inrange attribute.
536
537private:
538 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
539 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
540 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB),
541 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) {
542 llvm::uninitialized_copy(Src&: OpIDs, Dst: getTrailingObjects());
543 }
544
545 BitcodeConstant &operator=(const BitcodeConstant &) = delete;
546
547public:
548 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
549 const ExtraInfo &Info,
550 ArrayRef<unsigned> OpIDs) {
551 void *Mem = A.Allocate(Size: totalSizeToAlloc<unsigned>(Counts: OpIDs.size()),
552 Alignment: alignof(BitcodeConstant));
553 return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
554 }
555
556 static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
557
558 ArrayRef<unsigned> getOperandIDs() const {
559 return ArrayRef(getTrailingObjects(), NumOperands);
560 }
561
562 std::optional<ConstantRange> getInRange() const {
563 assert(Opcode == Instruction::GetElementPtr);
564 return InRange;
565 }
566
567 const char *getOpcodeName() const {
568 return Instruction::getOpcodeName(Opcode);
569 }
570};
571
572class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
573 LLVMContext &Context;
574 Module *TheModule = nullptr;
575 // Next offset to start scanning for lazy parsing of function bodies.
576 uint64_t NextUnreadBit = 0;
577 // Last function offset found in the VST.
578 uint64_t LastFunctionBlockBit = 0;
579 bool SeenValueSymbolTable = false;
580 uint64_t VSTOffset = 0;
581
582 std::vector<std::string> SectionTable;
583 std::vector<std::string> GCTable;
584
585 std::vector<Type *> TypeList;
586 /// Track type IDs of contained types. Order is the same as the contained
587 /// types of a Type*. This is used during upgrades of typed pointer IR in
588 /// opaque pointer mode.
589 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
590 /// In some cases, we need to create a type ID for a type that was not
591 /// explicitly encoded in the bitcode, or we don't know about at the current
592 /// point. For example, a global may explicitly encode the value type ID, but
593 /// not have a type ID for the pointer to value type, for which we create a
594 /// virtual type ID instead. This map stores the new type ID that was created
595 /// for the given pair of Type and contained type ID.
596 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
597 DenseMap<Function *, unsigned> FunctionTypeIDs;
598 /// Allocator for BitcodeConstants. This should come before ValueList,
599 /// because the ValueList might hold ValueHandles to these constants, so
600 /// ValueList must be destroyed before Alloc.
601 BumpPtrAllocator Alloc;
602 BitcodeReaderValueList ValueList;
603 std::optional<MetadataLoader> MDLoader;
604 std::vector<Comdat *> ComdatList;
605 DenseSet<GlobalObject *> ImplicitComdatObjects;
606 SmallVector<Instruction *, 64> InstructionList;
607
608 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
609 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
610
611 struct FunctionOperandInfo {
612 Function *F;
613 unsigned PersonalityFn;
614 unsigned Prefix;
615 unsigned Prologue;
616 };
617 std::vector<FunctionOperandInfo> FunctionOperands;
618
619 /// The set of attributes by index. Index zero in the file is for null, and
620 /// is thus not represented here. As such all indices are off by one.
621 std::vector<AttributeList> MAttributes;
622
623 /// The set of attribute groups.
624 std::map<unsigned, AttributeList> MAttributeGroups;
625
626 /// While parsing a function body, this is a list of the basic blocks for the
627 /// function.
628 std::vector<BasicBlock*> FunctionBBs;
629
630 // When reading the module header, this list is populated with functions that
631 // have bodies later in the file.
632 std::vector<Function*> FunctionsWithBodies;
633
634 // When intrinsic functions are encountered which require upgrading they are
635 // stored here with their replacement function.
636 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
637 UpdatedIntrinsicMap UpgradedIntrinsics;
638
639 // Several operations happen after the module header has been read, but
640 // before function bodies are processed. This keeps track of whether
641 // we've done this yet.
642 bool SeenFirstFunctionBody = false;
643
644 /// When function bodies are initially scanned, this map contains info about
645 /// where to find deferred function body in the stream.
646 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
647
648 /// When Metadata block is initially scanned when parsing the module, we may
649 /// choose to defer parsing of the metadata. This vector contains info about
650 /// which Metadata blocks are deferred.
651 std::vector<uint64_t> DeferredMetadataInfo;
652
653 /// These are basic blocks forward-referenced by block addresses. They are
654 /// inserted lazily into functions when they're loaded. The basic block ID is
655 /// its index into the vector.
656 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
657 std::deque<Function *> BasicBlockFwdRefQueue;
658
659 /// These are Functions that contain BlockAddresses which refer a different
660 /// Function. When parsing the different Function, queue Functions that refer
661 /// to the different Function. Those Functions must be materialized in order
662 /// to resolve their BlockAddress constants before the different Function
663 /// gets moved into another Module.
664 std::vector<Function *> BackwardRefFunctions;
665
666 /// Indicates that we are using a new encoding for instruction operands where
667 /// most operands in the current FUNCTION_BLOCK are encoded relative to the
668 /// instruction number, for a more compact encoding. Some instruction
669 /// operands are not relative to the instruction ID: basic block numbers, and
670 /// types. Once the old style function blocks have been phased out, we would
671 /// not need this flag.
672 bool UseRelativeIDs = false;
673
674 /// True if all functions will be materialized, negating the need to process
675 /// (e.g.) blockaddress forward references.
676 bool WillMaterializeAllForwardRefs = false;
677
678 /// Tracks whether we have seen debug intrinsics or records in this bitcode;
679 /// seeing both in a single module is currently a fatal error.
680 bool SeenDebugIntrinsic = false;
681 bool SeenDebugRecord = false;
682
683 bool StripDebugInfo = false;
684 TBAAVerifier TBAAVerifyHelper;
685
686 std::vector<std::string> BundleTags;
687 SmallVector<SyncScope::ID, 8> SSIDs;
688
689 std::optional<ValueTypeCallbackTy> ValueTypeCallback;
690
691public:
692 BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
693 StringRef ProducerIdentification, LLVMContext &Context);
694
695 Error materializeForwardReferencedFunctions();
696
697 Error materialize(GlobalValue *GV) override;
698 Error materializeModule() override;
699 std::vector<StructType *> getIdentifiedStructTypes() const override;
700
701 /// Main interface to parsing a bitcode buffer.
702 /// \returns true if an error occurred.
703 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
704 bool IsImporting, ParserCallbacks Callbacks = {});
705
706 static uint64_t decodeSignRotatedValue(uint64_t V);
707
708 /// Materialize any deferred Metadata block.
709 Error materializeMetadata() override;
710
711 void setStripDebugInfo() override;
712
713private:
714 std::vector<StructType *> IdentifiedStructTypes;
715 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
716 StructType *createIdentifiedStructType(LLVMContext &Context);
717
718 static constexpr unsigned InvalidTypeID = ~0u;
719
720 Type *getTypeByID(unsigned ID);
721 Type *getPtrElementTypeByID(unsigned ID);
722 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
723 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
724
725 void callValueTypeCallback(Value *F, unsigned TypeID);
726 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
727 Expected<Constant *> getValueForInitializer(unsigned ID);
728
729 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
730 BasicBlock *ConstExprInsertBB) {
731 if (Ty && Ty->isMetadataTy())
732 return MetadataAsValue::get(Context&: Ty->getContext(), MD: getFnMetadataByID(ID));
733 return ValueList.getValueFwdRef(Idx: ID, Ty, TyID, ConstExprInsertBB);
734 }
735
736 Metadata *getFnMetadataByID(unsigned ID) {
737 return MDLoader->getMetadataFwdRefOrLoad(Idx: ID);
738 }
739
740 BasicBlock *getBasicBlock(unsigned ID) const {
741 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
742 return FunctionBBs[ID];
743 }
744
745 AttributeList getAttributes(unsigned i) const {
746 if (i-1 < MAttributes.size())
747 return MAttributes[i-1];
748 return AttributeList();
749 }
750
751 /// Read a value/type pair out of the specified record from slot 'Slot'.
752 /// Increment Slot past the number of slots used in the record. Return true on
753 /// failure.
754 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
755 unsigned InstNum, Value *&ResVal, unsigned &TypeID,
756 BasicBlock *ConstExprInsertBB) {
757 if (Slot == Record.size()) return true;
758 unsigned ValNo = (unsigned)Record[Slot++];
759 // Adjust the ValNo, if it was encoded relative to the InstNum.
760 if (UseRelativeIDs)
761 ValNo = InstNum - ValNo;
762 if (ValNo < InstNum) {
763 // If this is not a forward reference, just return the value we already
764 // have.
765 TypeID = ValueList.getTypeID(ValNo);
766 ResVal = getFnValueByID(ID: ValNo, Ty: nullptr, TyID: TypeID, ConstExprInsertBB);
767 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
768 "Incorrect type ID stored for value");
769 return ResVal == nullptr;
770 }
771 if (Slot == Record.size())
772 return true;
773
774 TypeID = (unsigned)Record[Slot++];
775 ResVal = getFnValueByID(ID: ValNo, Ty: getTypeByID(ID: TypeID), TyID: TypeID,
776 ConstExprInsertBB);
777 return ResVal == nullptr;
778 }
779
780 bool getValueOrMetadata(const SmallVectorImpl<uint64_t> &Record,
781 unsigned &Slot, unsigned InstNum, Value *&ResVal,
782 BasicBlock *ConstExprInsertBB) {
783 if (Slot == Record.size())
784 return true;
785 unsigned ValID = Record[Slot++];
786 if (ValID != static_cast<unsigned>(bitc::OB_METADATA)) {
787 unsigned TypeId;
788 return getValueTypePair(Record, Slot&: --Slot, InstNum, ResVal, TypeID&: TypeId,
789 ConstExprInsertBB);
790 }
791 if (Slot == Record.size())
792 return true;
793 unsigned ValNo = InstNum - (unsigned)Record[Slot++];
794 ResVal = MetadataAsValue::get(Context, MD: getFnMetadataByID(ID: ValNo));
795 return false;
796 }
797
798 /// Read a value out of the specified record from slot 'Slot'. Increment Slot
799 /// past the number of slots used by the value in the record. Return true if
800 /// there is an error.
801 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
802 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
803 BasicBlock *ConstExprInsertBB) {
804 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
805 return true;
806 // All values currently take a single record slot.
807 ++Slot;
808 return false;
809 }
810
811 /// Like popValue, but does not increment the Slot number.
812 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
813 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
814 BasicBlock *ConstExprInsertBB) {
815 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
816 return ResVal == nullptr;
817 }
818
819 /// Version of getValue that returns ResVal directly, or 0 if there is an
820 /// error.
821 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
822 unsigned InstNum, Type *Ty, unsigned TyID,
823 BasicBlock *ConstExprInsertBB) {
824 if (Slot == Record.size()) return nullptr;
825 unsigned ValNo = (unsigned)Record[Slot];
826 // Adjust the ValNo, if it was encoded relative to the InstNum.
827 if (UseRelativeIDs)
828 ValNo = InstNum - ValNo;
829 return getFnValueByID(ID: ValNo, Ty, TyID, ConstExprInsertBB);
830 }
831
832 /// Like getValue, but decodes signed VBRs.
833 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
834 unsigned InstNum, Type *Ty, unsigned TyID,
835 BasicBlock *ConstExprInsertBB) {
836 if (Slot == Record.size()) return nullptr;
837 unsigned ValNo = (unsigned)decodeSignRotatedValue(V: Record[Slot]);
838 // Adjust the ValNo, if it was encoded relative to the InstNum.
839 if (UseRelativeIDs)
840 ValNo = InstNum - ValNo;
841 return getFnValueByID(ID: ValNo, Ty, TyID, ConstExprInsertBB);
842 }
843
844 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
845 unsigned &OpNum,
846 unsigned BitWidth) {
847 if (Record.size() - OpNum < 2)
848 return error(Message: "Too few records for range");
849 if (BitWidth > 64) {
850 unsigned LowerActiveWords = Record[OpNum];
851 unsigned UpperActiveWords = Record[OpNum++] >> 32;
852 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
853 return error(Message: "Too few records for range");
854 APInt Lower =
855 readWideAPInt(Vals: ArrayRef(&Record[OpNum], LowerActiveWords), TypeBits: BitWidth);
856 OpNum += LowerActiveWords;
857 APInt Upper =
858 readWideAPInt(Vals: ArrayRef(&Record[OpNum], UpperActiveWords), TypeBits: BitWidth);
859 OpNum += UpperActiveWords;
860 return ConstantRange(Lower, Upper);
861 } else {
862 int64_t Start = BitcodeReader::decodeSignRotatedValue(V: Record[OpNum++]);
863 int64_t End = BitcodeReader::decodeSignRotatedValue(V: Record[OpNum++]);
864 return ConstantRange(APInt(BitWidth, Start, true),
865 APInt(BitWidth, End, true));
866 }
867 }
868
869 Expected<ConstantRange>
870 readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) {
871 if (Record.size() - OpNum < 1)
872 return error(Message: "Too few records for range");
873 unsigned BitWidth = Record[OpNum++];
874 return readConstantRange(Record, OpNum, BitWidth);
875 }
876
877 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
878 /// corresponding argument's pointee type. Also upgrades intrinsics that now
879 /// require an elementtype attribute.
880 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
881
882 /// Converts alignment exponent (i.e. power of two (or zero)) to the
883 /// corresponding alignment to use. If alignment is too large, returns
884 /// a corresponding error code.
885 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
886 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
887 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
888 ParserCallbacks Callbacks = {});
889
890 Error parseComdatRecord(ArrayRef<uint64_t> Record);
891 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
892 Error parseFunctionRecord(ArrayRef<uint64_t> Record);
893 Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
894 ArrayRef<uint64_t> Record);
895
896 Error parseAttributeBlock();
897 Error parseAttributeGroupBlock();
898 Error parseTypeTable();
899 Error parseTypeTableBody();
900 Error parseOperandBundleTags();
901 Error parseSyncScopeNames();
902
903 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
904 unsigned NameIndex, Triple &TT);
905 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
906 ArrayRef<uint64_t> Record);
907 Error parseValueSymbolTable(uint64_t Offset = 0);
908 Error parseGlobalValueSymbolTable();
909 Error parseConstants();
910 Error rememberAndSkipFunctionBodies();
911 Error rememberAndSkipFunctionBody();
912 /// Save the positions of the Metadata blocks and skip parsing the blocks.
913 Error rememberAndSkipMetadata();
914 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
915 Error parseFunctionBody(Function *F);
916 Error globalCleanup();
917 Error resolveGlobalAndIndirectSymbolInits();
918 Error parseUseLists();
919 Error findFunctionInStream(
920 Function *F,
921 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
922
923 SyncScope::ID getDecodedSyncScopeID(unsigned Val);
924};
925
926/// Class to manage reading and parsing function summary index bitcode
927/// files/sections.
928class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
929 /// The module index built during parsing.
930 ModuleSummaryIndex &TheIndex;
931
932 /// Indicates whether we have encountered a global value summary section
933 /// yet during parsing.
934 bool SeenGlobalValSummary = false;
935
936 /// Indicates whether we have already parsed the VST, used for error checking.
937 bool SeenValueSymbolTable = false;
938
939 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
940 /// Used to enable on-demand parsing of the VST.
941 uint64_t VSTOffset = 0;
942
943 // Map to save ValueId to ValueInfo association that was recorded in the
944 // ValueSymbolTable. It is used after the VST is parsed to convert
945 // call graph edges read from the function summary from referencing
946 // callees by their ValueId to using the ValueInfo instead, which is how
947 // they are recorded in the summary index being built.
948 // We save a GUID which refers to the same global as the ValueInfo, but
949 // ignoring the linkage, i.e. for values other than local linkage they are
950 // identical (this is the second member). ValueInfo has the real GUID.
951 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
952 ValueIdToValueInfoMap;
953
954 /// Map populated during module path string table parsing, from the
955 /// module ID to a string reference owned by the index's module
956 /// path string table, used to correlate with combined index
957 /// summary records.
958 DenseMap<uint64_t, StringRef> ModuleIdMap;
959
960 /// Original source file name recorded in a bitcode record.
961 std::string SourceFileName;
962
963 /// The string identifier given to this module by the client, normally the
964 /// path to the bitcode file.
965 StringRef ModulePath;
966
967 /// Callback to ask whether a symbol is the prevailing copy when invoked
968 /// during combined index building.
969 std::function<bool(GlobalValue::GUID)> IsPrevailing;
970
971 /// Saves the stack ids from the STACK_IDS record to consult when adding stack
972 /// ids from the lists in the callsite and alloc entries to the index.
973 std::vector<uint64_t> StackIds;
974
975 /// Linearized radix tree of allocation contexts. See the description above
976 /// the CallStackRadixTreeBuilder class in ProfileData/MemProf.h for format.
977 std::vector<uint64_t> RadixArray;
978
979public:
980 ModuleSummaryIndexBitcodeReader(
981 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
982 StringRef ModulePath,
983 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
984
985 Error parseModule();
986
987private:
988 void setValueGUID(uint64_t ValueID, StringRef ValueName,
989 GlobalValue::LinkageTypes Linkage,
990 StringRef SourceFileName);
991 Error parseValueSymbolTable(
992 uint64_t Offset,
993 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
994 SmallVector<ValueInfo, 0> makeRefList(ArrayRef<uint64_t> Record);
995 SmallVector<FunctionSummary::EdgeTy, 0>
996 makeCallList(ArrayRef<uint64_t> Record, bool IsOldProfileFormat,
997 bool HasProfile, bool HasRelBF);
998 Error parseEntireSummary(unsigned ID);
999 Error parseModuleStringTable();
1000 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
1001 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
1002 TypeIdCompatibleVtableInfo &TypeId);
1003 std::vector<FunctionSummary::ParamAccess>
1004 parseParamAccesses(ArrayRef<uint64_t> Record);
1005 SmallVector<unsigned> parseAllocInfoContext(ArrayRef<uint64_t> Record,
1006 unsigned &I);
1007
1008 template <bool AllowNullValueInfo = false>
1009 std::pair<ValueInfo, GlobalValue::GUID>
1010 getValueInfoFromValueId(unsigned ValueId);
1011
1012 void addThisModule();
1013 ModuleSummaryIndex::ModuleInfo *getThisModule();
1014};
1015
1016} // end anonymous namespace
1017
1018std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
1019 Error Err) {
1020 if (Err) {
1021 std::error_code EC;
1022 handleAllErrors(E: std::move(Err), Handlers: [&](ErrorInfoBase &EIB) {
1023 EC = EIB.convertToErrorCode();
1024 Ctx.emitError(ErrorStr: EIB.message());
1025 });
1026 return EC;
1027 }
1028 return std::error_code();
1029}
1030
1031BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
1032 StringRef ProducerIdentification,
1033 LLVMContext &Context)
1034 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
1035 ValueList(this->Stream.SizeInBytes(),
1036 [this](unsigned ValID, BasicBlock *InsertBB) {
1037 return materializeValue(ValID, InsertBB);
1038 }) {
1039 this->ProducerIdentification = std::string(ProducerIdentification);
1040}
1041
1042Error BitcodeReader::materializeForwardReferencedFunctions() {
1043 if (WillMaterializeAllForwardRefs)
1044 return Error::success();
1045
1046 // Prevent recursion.
1047 WillMaterializeAllForwardRefs = true;
1048
1049 while (!BasicBlockFwdRefQueue.empty()) {
1050 Function *F = BasicBlockFwdRefQueue.front();
1051 BasicBlockFwdRefQueue.pop_front();
1052 assert(F && "Expected valid function");
1053 if (!BasicBlockFwdRefs.count(Val: F))
1054 // Already materialized.
1055 continue;
1056
1057 // Check for a function that isn't materializable to prevent an infinite
1058 // loop. When parsing a blockaddress stored in a global variable, there
1059 // isn't a trivial way to check if a function will have a body without a
1060 // linear search through FunctionsWithBodies, so just check it here.
1061 if (!F->isMaterializable())
1062 return error(Message: "Never resolved function from blockaddress");
1063
1064 // Try to materialize F.
1065 if (Error Err = materialize(GV: F))
1066 return Err;
1067 }
1068 assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1069
1070 for (Function *F : BackwardRefFunctions)
1071 if (Error Err = materialize(GV: F))
1072 return Err;
1073 BackwardRefFunctions.clear();
1074
1075 // Reset state.
1076 WillMaterializeAllForwardRefs = false;
1077 return Error::success();
1078}
1079
1080//===----------------------------------------------------------------------===//
1081// Helper functions to implement forward reference resolution, etc.
1082//===----------------------------------------------------------------------===//
1083
1084static bool hasImplicitComdat(size_t Val) {
1085 switch (Val) {
1086 default:
1087 return false;
1088 case 1: // Old WeakAnyLinkage
1089 case 4: // Old LinkOnceAnyLinkage
1090 case 10: // Old WeakODRLinkage
1091 case 11: // Old LinkOnceODRLinkage
1092 return true;
1093 }
1094}
1095
1096static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1097 switch (Val) {
1098 default: // Map unknown/new linkages to external
1099 case 0:
1100 return GlobalValue::ExternalLinkage;
1101 case 2:
1102 return GlobalValue::AppendingLinkage;
1103 case 3:
1104 return GlobalValue::InternalLinkage;
1105 case 5:
1106 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1107 case 6:
1108 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1109 case 7:
1110 return GlobalValue::ExternalWeakLinkage;
1111 case 8:
1112 return GlobalValue::CommonLinkage;
1113 case 9:
1114 return GlobalValue::PrivateLinkage;
1115 case 12:
1116 return GlobalValue::AvailableExternallyLinkage;
1117 case 13:
1118 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1119 case 14:
1120 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1121 case 15:
1122 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1123 case 1: // Old value with implicit comdat.
1124 case 16:
1125 return GlobalValue::WeakAnyLinkage;
1126 case 10: // Old value with implicit comdat.
1127 case 17:
1128 return GlobalValue::WeakODRLinkage;
1129 case 4: // Old value with implicit comdat.
1130 case 18:
1131 return GlobalValue::LinkOnceAnyLinkage;
1132 case 11: // Old value with implicit comdat.
1133 case 19:
1134 return GlobalValue::LinkOnceODRLinkage;
1135 }
1136}
1137
1138static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1139 FunctionSummary::FFlags Flags;
1140 Flags.ReadNone = RawFlags & 0x1;
1141 Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1142 Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1143 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1144 Flags.NoInline = (RawFlags >> 4) & 0x1;
1145 Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1146 Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1147 Flags.MayThrow = (RawFlags >> 7) & 0x1;
1148 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1149 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1150 return Flags;
1151}
1152
1153// Decode the flags for GlobalValue in the summary. The bits for each attribute:
1154//
1155// linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1156// visibility: [8, 10).
1157static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1158 uint64_t Version) {
1159 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1160 // like getDecodedLinkage() above. Any future change to the linkage enum and
1161 // to getDecodedLinkage() will need to be taken into account here as above.
1162 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1163 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1164 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit
1165 RawFlags = RawFlags >> 4;
1166 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1167 // The Live flag wasn't introduced until version 3. For dead stripping
1168 // to work correctly on earlier versions, we must conservatively treat all
1169 // values as live.
1170 bool Live = (RawFlags & 0x2) || Version < 3;
1171 bool Local = (RawFlags & 0x4);
1172 bool AutoHide = (RawFlags & 0x8);
1173
1174 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1175 Live, Local, AutoHide, IK);
1176}
1177
1178// Decode the flags for GlobalVariable in the summary
1179static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1180 return GlobalVarSummary::GVarFlags(
1181 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1182 (RawFlags & 0x4) ? true : false,
1183 (GlobalObject::VCallVisibility)(RawFlags >> 3));
1184}
1185
1186static std::pair<CalleeInfo::HotnessType, bool>
1187getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1188 CalleeInfo::HotnessType Hotness =
1189 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1190 bool HasTailCall = (RawFlags & 0x8); // 1 bit
1191 return {Hotness, HasTailCall};
1192}
1193
1194static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1195 bool &HasTailCall) {
1196 static constexpr uint64_t RelBlockFreqMask =
1197 (1 << CalleeInfo::RelBlockFreqBits) - 1;
1198 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1199 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1200}
1201
1202static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1203 switch (Val) {
1204 default: // Map unknown visibilities to default.
1205 case 0: return GlobalValue::DefaultVisibility;
1206 case 1: return GlobalValue::HiddenVisibility;
1207 case 2: return GlobalValue::ProtectedVisibility;
1208 }
1209}
1210
1211static GlobalValue::DLLStorageClassTypes
1212getDecodedDLLStorageClass(unsigned Val) {
1213 switch (Val) {
1214 default: // Map unknown values to default.
1215 case 0: return GlobalValue::DefaultStorageClass;
1216 case 1: return GlobalValue::DLLImportStorageClass;
1217 case 2: return GlobalValue::DLLExportStorageClass;
1218 }
1219}
1220
1221static bool getDecodedDSOLocal(unsigned Val) {
1222 switch(Val) {
1223 default: // Map unknown values to preemptable.
1224 case 0: return false;
1225 case 1: return true;
1226 }
1227}
1228
1229static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1230 switch (Val) {
1231 case 1:
1232 return CodeModel::Tiny;
1233 case 2:
1234 return CodeModel::Small;
1235 case 3:
1236 return CodeModel::Kernel;
1237 case 4:
1238 return CodeModel::Medium;
1239 case 5:
1240 return CodeModel::Large;
1241 }
1242
1243 return {};
1244}
1245
1246static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1247 switch (Val) {
1248 case 0: return GlobalVariable::NotThreadLocal;
1249 default: // Map unknown non-zero value to general dynamic.
1250 case 1: return GlobalVariable::GeneralDynamicTLSModel;
1251 case 2: return GlobalVariable::LocalDynamicTLSModel;
1252 case 3: return GlobalVariable::InitialExecTLSModel;
1253 case 4: return GlobalVariable::LocalExecTLSModel;
1254 }
1255}
1256
1257static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1258 switch (Val) {
1259 default: // Map unknown to UnnamedAddr::None.
1260 case 0: return GlobalVariable::UnnamedAddr::None;
1261 case 1: return GlobalVariable::UnnamedAddr::Global;
1262 case 2: return GlobalVariable::UnnamedAddr::Local;
1263 }
1264}
1265
1266static int getDecodedCastOpcode(unsigned Val) {
1267 switch (Val) {
1268 default: return -1;
1269 case bitc::CAST_TRUNC : return Instruction::Trunc;
1270 case bitc::CAST_ZEXT : return Instruction::ZExt;
1271 case bitc::CAST_SEXT : return Instruction::SExt;
1272 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
1273 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
1274 case bitc::CAST_UITOFP : return Instruction::UIToFP;
1275 case bitc::CAST_SITOFP : return Instruction::SIToFP;
1276 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1277 case bitc::CAST_FPEXT : return Instruction::FPExt;
1278 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1279 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1280 case bitc::CAST_BITCAST : return Instruction::BitCast;
1281 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1282 }
1283}
1284
1285static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1286 bool IsFP = Ty->isFPOrFPVectorTy();
1287 // UnOps are only valid for int/fp or vector of int/fp types
1288 if (!IsFP && !Ty->isIntOrIntVectorTy())
1289 return -1;
1290
1291 switch (Val) {
1292 default:
1293 return -1;
1294 case bitc::UNOP_FNEG:
1295 return IsFP ? Instruction::FNeg : -1;
1296 }
1297}
1298
1299static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1300 bool IsFP = Ty->isFPOrFPVectorTy();
1301 // BinOps are only valid for int/fp or vector of int/fp types
1302 if (!IsFP && !Ty->isIntOrIntVectorTy())
1303 return -1;
1304
1305 switch (Val) {
1306 default:
1307 return -1;
1308 case bitc::BINOP_ADD:
1309 return IsFP ? Instruction::FAdd : Instruction::Add;
1310 case bitc::BINOP_SUB:
1311 return IsFP ? Instruction::FSub : Instruction::Sub;
1312 case bitc::BINOP_MUL:
1313 return IsFP ? Instruction::FMul : Instruction::Mul;
1314 case bitc::BINOP_UDIV:
1315 return IsFP ? -1 : Instruction::UDiv;
1316 case bitc::BINOP_SDIV:
1317 return IsFP ? Instruction::FDiv : Instruction::SDiv;
1318 case bitc::BINOP_UREM:
1319 return IsFP ? -1 : Instruction::URem;
1320 case bitc::BINOP_SREM:
1321 return IsFP ? Instruction::FRem : Instruction::SRem;
1322 case bitc::BINOP_SHL:
1323 return IsFP ? -1 : Instruction::Shl;
1324 case bitc::BINOP_LSHR:
1325 return IsFP ? -1 : Instruction::LShr;
1326 case bitc::BINOP_ASHR:
1327 return IsFP ? -1 : Instruction::AShr;
1328 case bitc::BINOP_AND:
1329 return IsFP ? -1 : Instruction::And;
1330 case bitc::BINOP_OR:
1331 return IsFP ? -1 : Instruction::Or;
1332 case bitc::BINOP_XOR:
1333 return IsFP ? -1 : Instruction::Xor;
1334 }
1335}
1336
1337static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1338 switch (Val) {
1339 default: return AtomicRMWInst::BAD_BINOP;
1340 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1341 case bitc::RMW_ADD: return AtomicRMWInst::Add;
1342 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1343 case bitc::RMW_AND: return AtomicRMWInst::And;
1344 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1345 case bitc::RMW_OR: return AtomicRMWInst::Or;
1346 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1347 case bitc::RMW_MAX: return AtomicRMWInst::Max;
1348 case bitc::RMW_MIN: return AtomicRMWInst::Min;
1349 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1350 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1351 case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1352 case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1353 case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1354 case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1355 case bitc::RMW_FMAXIMUM:
1356 return AtomicRMWInst::FMaximum;
1357 case bitc::RMW_FMINIMUM:
1358 return AtomicRMWInst::FMinimum;
1359 case bitc::RMW_UINC_WRAP:
1360 return AtomicRMWInst::UIncWrap;
1361 case bitc::RMW_UDEC_WRAP:
1362 return AtomicRMWInst::UDecWrap;
1363 case bitc::RMW_USUB_COND:
1364 return AtomicRMWInst::USubCond;
1365 case bitc::RMW_USUB_SAT:
1366 return AtomicRMWInst::USubSat;
1367 }
1368}
1369
1370static AtomicOrdering getDecodedOrdering(unsigned Val) {
1371 switch (Val) {
1372 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1373 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1374 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1375 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1376 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1377 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1378 default: // Map unknown orderings to sequentially-consistent.
1379 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1380 }
1381}
1382
1383static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1384 switch (Val) {
1385 default: // Map unknown selection kinds to any.
1386 case bitc::COMDAT_SELECTION_KIND_ANY:
1387 return Comdat::Any;
1388 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1389 return Comdat::ExactMatch;
1390 case bitc::COMDAT_SELECTION_KIND_LARGEST:
1391 return Comdat::Largest;
1392 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1393 return Comdat::NoDeduplicate;
1394 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1395 return Comdat::SameSize;
1396 }
1397}
1398
1399static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1400 FastMathFlags FMF;
1401 if (0 != (Val & bitc::UnsafeAlgebra))
1402 FMF.setFast();
1403 if (0 != (Val & bitc::AllowReassoc))
1404 FMF.setAllowReassoc();
1405 if (0 != (Val & bitc::NoNaNs))
1406 FMF.setNoNaNs();
1407 if (0 != (Val & bitc::NoInfs))
1408 FMF.setNoInfs();
1409 if (0 != (Val & bitc::NoSignedZeros))
1410 FMF.setNoSignedZeros();
1411 if (0 != (Val & bitc::AllowReciprocal))
1412 FMF.setAllowReciprocal();
1413 if (0 != (Val & bitc::AllowContract))
1414 FMF.setAllowContract(true);
1415 if (0 != (Val & bitc::ApproxFunc))
1416 FMF.setApproxFunc();
1417 return FMF;
1418}
1419
1420static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1421 // A GlobalValue with local linkage cannot have a DLL storage class.
1422 if (GV->hasLocalLinkage())
1423 return;
1424 switch (Val) {
1425 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1426 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1427 }
1428}
1429
1430Type *BitcodeReader::getTypeByID(unsigned ID) {
1431 // The type table size is always specified correctly.
1432 if (ID >= TypeList.size())
1433 return nullptr;
1434
1435 if (Type *Ty = TypeList[ID])
1436 return Ty;
1437
1438 // If we have a forward reference, the only possible case is when it is to a
1439 // named struct. Just create a placeholder for now.
1440 return TypeList[ID] = createIdentifiedStructType(Context);
1441}
1442
1443unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1444 auto It = ContainedTypeIDs.find(Val: ID);
1445 if (It == ContainedTypeIDs.end())
1446 return InvalidTypeID;
1447
1448 if (Idx >= It->second.size())
1449 return InvalidTypeID;
1450
1451 return It->second[Idx];
1452}
1453
1454Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1455 if (ID >= TypeList.size())
1456 return nullptr;
1457
1458 Type *Ty = TypeList[ID];
1459 if (!Ty->isPointerTy())
1460 return nullptr;
1461
1462 return getTypeByID(ID: getContainedTypeID(ID, Idx: 0));
1463}
1464
1465unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1466 ArrayRef<unsigned> ChildTypeIDs) {
1467 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1468 auto CacheKey = std::make_pair(x&: Ty, y&: ChildTypeID);
1469 auto It = VirtualTypeIDs.find(Val: CacheKey);
1470 if (It != VirtualTypeIDs.end()) {
1471 // The cmpxchg return value is the only place we need more than one
1472 // contained type ID, however the second one will always be the same (i1),
1473 // so we don't need to include it in the cache key. This asserts that the
1474 // contained types are indeed as expected and there are no collisions.
1475 assert((ChildTypeIDs.empty() ||
1476 ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1477 "Incorrect cached contained type IDs");
1478 return It->second;
1479 }
1480
1481 unsigned TypeID = TypeList.size();
1482 TypeList.push_back(x: Ty);
1483 if (!ChildTypeIDs.empty())
1484 append_range(C&: ContainedTypeIDs[TypeID], R&: ChildTypeIDs);
1485 VirtualTypeIDs.insert(KV: {CacheKey, TypeID});
1486 return TypeID;
1487}
1488
1489static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) {
1490 GEPNoWrapFlags NW;
1491 if (Flags & (1 << bitc::GEP_INBOUNDS))
1492 NW |= GEPNoWrapFlags::inBounds();
1493 if (Flags & (1 << bitc::GEP_NUSW))
1494 NW |= GEPNoWrapFlags::noUnsignedSignedWrap();
1495 if (Flags & (1 << bitc::GEP_NUW))
1496 NW |= GEPNoWrapFlags::noUnsignedWrap();
1497 return NW;
1498}
1499
1500static bool isConstExprSupported(const BitcodeConstant *BC) {
1501 uint8_t Opcode = BC->Opcode;
1502
1503 // These are not real constant expressions, always consider them supported.
1504 if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1505 return true;
1506
1507 // If -expand-constant-exprs is set, we want to consider all expressions
1508 // as unsupported.
1509 if (ExpandConstantExprs)
1510 return false;
1511
1512 if (Instruction::isBinaryOp(Opcode))
1513 return ConstantExpr::isSupportedBinOp(Opcode);
1514
1515 if (Instruction::isCast(Opcode))
1516 return ConstantExpr::isSupportedCastOp(Opcode);
1517
1518 if (Opcode == Instruction::GetElementPtr)
1519 return ConstantExpr::isSupportedGetElementPtr(SrcElemTy: BC->SrcElemTy);
1520
1521 switch (Opcode) {
1522 case Instruction::FNeg:
1523 case Instruction::Select:
1524 case Instruction::ICmp:
1525 case Instruction::FCmp:
1526 return false;
1527 default:
1528 return true;
1529 }
1530}
1531
1532Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1533 BasicBlock *InsertBB) {
1534 // Quickly handle the case where there is no BitcodeConstant to resolve.
1535 if (StartValID < ValueList.size() && ValueList[StartValID] &&
1536 !isa<BitcodeConstant>(Val: ValueList[StartValID]))
1537 return ValueList[StartValID];
1538
1539 SmallDenseMap<unsigned, Value *> MaterializedValues;
1540 SmallVector<unsigned> Worklist;
1541 Worklist.push_back(Elt: StartValID);
1542 while (!Worklist.empty()) {
1543 unsigned ValID = Worklist.back();
1544 if (MaterializedValues.count(Val: ValID)) {
1545 // Duplicate expression that was already handled.
1546 Worklist.pop_back();
1547 continue;
1548 }
1549
1550 if (ValID >= ValueList.size() || !ValueList[ValID])
1551 return error(Message: "Invalid value ID");
1552
1553 Value *V = ValueList[ValID];
1554 auto *BC = dyn_cast<BitcodeConstant>(Val: V);
1555 if (!BC) {
1556 MaterializedValues.insert(KV: {ValID, V});
1557 Worklist.pop_back();
1558 continue;
1559 }
1560
1561 // Iterate in reverse, so values will get popped from the worklist in
1562 // expected order.
1563 SmallVector<Value *> Ops;
1564 for (unsigned OpID : reverse(C: BC->getOperandIDs())) {
1565 auto It = MaterializedValues.find(Val: OpID);
1566 if (It != MaterializedValues.end())
1567 Ops.push_back(Elt: It->second);
1568 else
1569 Worklist.push_back(Elt: OpID);
1570 }
1571
1572 // Some expressions have not been resolved yet, handle them first and then
1573 // revisit this one.
1574 if (Ops.size() != BC->getOperandIDs().size())
1575 continue;
1576 std::reverse(first: Ops.begin(), last: Ops.end());
1577
1578 SmallVector<Constant *> ConstOps;
1579 for (Value *Op : Ops)
1580 if (auto *C = dyn_cast<Constant>(Val: Op))
1581 ConstOps.push_back(Elt: C);
1582
1583 // Materialize as constant expression if possible.
1584 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1585 Constant *C;
1586 if (Instruction::isCast(Opcode: BC->Opcode)) {
1587 C = UpgradeBitCastExpr(Opc: BC->Opcode, C: ConstOps[0], DestTy: BC->getType());
1588 if (!C)
1589 C = ConstantExpr::getCast(ops: BC->Opcode, C: ConstOps[0], Ty: BC->getType());
1590 } else if (Instruction::isBinaryOp(Opcode: BC->Opcode)) {
1591 C = ConstantExpr::get(Opcode: BC->Opcode, C1: ConstOps[0], C2: ConstOps[1], Flags: BC->Flags);
1592 } else {
1593 switch (BC->Opcode) {
1594 case BitcodeConstant::ConstantPtrAuthOpcode: {
1595 auto *Key = dyn_cast<ConstantInt>(Val: ConstOps[1]);
1596 if (!Key)
1597 return error(Message: "ptrauth key operand must be ConstantInt");
1598
1599 auto *Disc = dyn_cast<ConstantInt>(Val: ConstOps[2]);
1600 if (!Disc)
1601 return error(Message: "ptrauth disc operand must be ConstantInt");
1602
1603 C = ConstantPtrAuth::get(Ptr: ConstOps[0], Key, Disc, AddrDisc: ConstOps[3]);
1604 break;
1605 }
1606 case BitcodeConstant::NoCFIOpcode: {
1607 auto *GV = dyn_cast<GlobalValue>(Val: ConstOps[0]);
1608 if (!GV)
1609 return error(Message: "no_cfi operand must be GlobalValue");
1610 C = NoCFIValue::get(GV);
1611 break;
1612 }
1613 case BitcodeConstant::DSOLocalEquivalentOpcode: {
1614 auto *GV = dyn_cast<GlobalValue>(Val: ConstOps[0]);
1615 if (!GV)
1616 return error(Message: "dso_local operand must be GlobalValue");
1617 C = DSOLocalEquivalent::get(GV);
1618 break;
1619 }
1620 case BitcodeConstant::BlockAddressOpcode: {
1621 Function *Fn = dyn_cast<Function>(Val: ConstOps[0]);
1622 if (!Fn)
1623 return error(Message: "blockaddress operand must be a function");
1624
1625 // If the function is already parsed we can insert the block address
1626 // right away.
1627 BasicBlock *BB;
1628 unsigned BBID = BC->BlockAddressBB;
1629 if (!BBID)
1630 // Invalid reference to entry block.
1631 return error(Message: "Invalid ID");
1632 if (!Fn->empty()) {
1633 Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1634 for (size_t I = 0, E = BBID; I != E; ++I) {
1635 if (BBI == BBE)
1636 return error(Message: "Invalid ID");
1637 ++BBI;
1638 }
1639 BB = &*BBI;
1640 } else {
1641 // Otherwise insert a placeholder and remember it so it can be
1642 // inserted when the function is parsed.
1643 auto &FwdBBs = BasicBlockFwdRefs[Fn];
1644 if (FwdBBs.empty())
1645 BasicBlockFwdRefQueue.push_back(x: Fn);
1646 if (FwdBBs.size() < BBID + 1)
1647 FwdBBs.resize(new_size: BBID + 1);
1648 if (!FwdBBs[BBID])
1649 FwdBBs[BBID] = BasicBlock::Create(Context);
1650 BB = FwdBBs[BBID];
1651 }
1652 C = BlockAddress::get(Ty: Fn->getType(), BB);
1653 break;
1654 }
1655 case BitcodeConstant::ConstantStructOpcode: {
1656 auto *ST = cast<StructType>(Val: BC->getType());
1657 if (ST->getNumElements() != ConstOps.size())
1658 return error(Message: "Invalid number of elements in struct initializer");
1659
1660 for (const auto [Ty, Op] : zip(t: ST->elements(), u&: ConstOps))
1661 if (Op->getType() != Ty)
1662 return error(Message: "Incorrect type in struct initializer");
1663
1664 C = ConstantStruct::get(T: ST, V: ConstOps);
1665 break;
1666 }
1667 case BitcodeConstant::ConstantArrayOpcode: {
1668 auto *AT = cast<ArrayType>(Val: BC->getType());
1669 if (AT->getNumElements() != ConstOps.size())
1670 return error(Message: "Invalid number of elements in array initializer");
1671
1672 for (Constant *Op : ConstOps)
1673 if (Op->getType() != AT->getElementType())
1674 return error(Message: "Incorrect type in array initializer");
1675
1676 C = ConstantArray::get(T: AT, V: ConstOps);
1677 break;
1678 }
1679 case BitcodeConstant::ConstantVectorOpcode: {
1680 auto *VT = cast<FixedVectorType>(Val: BC->getType());
1681 if (VT->getNumElements() != ConstOps.size())
1682 return error(Message: "Invalid number of elements in vector initializer");
1683
1684 for (Constant *Op : ConstOps)
1685 if (Op->getType() != VT->getElementType())
1686 return error(Message: "Incorrect type in vector initializer");
1687
1688 C = ConstantVector::get(V: ConstOps);
1689 break;
1690 }
1691 case Instruction::GetElementPtr:
1692 C = ConstantExpr::getGetElementPtr(
1693 Ty: BC->SrcElemTy, C: ConstOps[0], IdxList: ArrayRef(ConstOps).drop_front(),
1694 NW: toGEPNoWrapFlags(Flags: BC->Flags), InRange: BC->getInRange());
1695 break;
1696 case Instruction::ExtractElement:
1697 C = ConstantExpr::getExtractElement(Vec: ConstOps[0], Idx: ConstOps[1]);
1698 break;
1699 case Instruction::InsertElement:
1700 C = ConstantExpr::getInsertElement(Vec: ConstOps[0], Elt: ConstOps[1],
1701 Idx: ConstOps[2]);
1702 break;
1703 case Instruction::ShuffleVector: {
1704 SmallVector<int, 16> Mask;
1705 ShuffleVectorInst::getShuffleMask(Mask: ConstOps[2], Result&: Mask);
1706 C = ConstantExpr::getShuffleVector(V1: ConstOps[0], V2: ConstOps[1], Mask);
1707 break;
1708 }
1709 default:
1710 llvm_unreachable("Unhandled bitcode constant");
1711 }
1712 }
1713
1714 // Cache resolved constant.
1715 ValueList.replaceValueWithoutRAUW(ValNo: ValID, NewV: C);
1716 MaterializedValues.insert(KV: {ValID, C});
1717 Worklist.pop_back();
1718 continue;
1719 }
1720
1721 if (!InsertBB)
1722 return error(Message: Twine("Value referenced by initializer is an unsupported "
1723 "constant expression of type ") +
1724 BC->getOpcodeName());
1725
1726 // Materialize as instructions if necessary.
1727 Instruction *I;
1728 if (Instruction::isCast(Opcode: BC->Opcode)) {
1729 I = CastInst::Create((Instruction::CastOps)BC->Opcode, S: Ops[0],
1730 Ty: BC->getType(), Name: "constexpr", InsertBefore: InsertBB);
1731 } else if (Instruction::isUnaryOp(Opcode: BC->Opcode)) {
1732 I = UnaryOperator::Create(Op: (Instruction::UnaryOps)BC->Opcode, S: Ops[0],
1733 Name: "constexpr", InsertBefore: InsertBB);
1734 } else if (Instruction::isBinaryOp(Opcode: BC->Opcode)) {
1735 I = BinaryOperator::Create(Op: (Instruction::BinaryOps)BC->Opcode, S1: Ops[0],
1736 S2: Ops[1], Name: "constexpr", InsertBefore: InsertBB);
1737 if (isa<OverflowingBinaryOperator>(Val: I)) {
1738 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1739 I->setHasNoSignedWrap();
1740 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1741 I->setHasNoUnsignedWrap();
1742 }
1743 if (isa<PossiblyExactOperator>(Val: I) &&
1744 (BC->Flags & PossiblyExactOperator::IsExact))
1745 I->setIsExact();
1746 } else {
1747 switch (BC->Opcode) {
1748 case BitcodeConstant::ConstantVectorOpcode: {
1749 Type *IdxTy = Type::getInt32Ty(C&: BC->getContext());
1750 Value *V = PoisonValue::get(T: BC->getType());
1751 for (auto Pair : enumerate(First&: Ops)) {
1752 Value *Idx = ConstantInt::get(Ty: IdxTy, V: Pair.index());
1753 V = InsertElementInst::Create(Vec: V, NewElt: Pair.value(), Idx, NameStr: "constexpr.ins",
1754 InsertBefore: InsertBB);
1755 }
1756 I = cast<Instruction>(Val: V);
1757 break;
1758 }
1759 case BitcodeConstant::ConstantStructOpcode:
1760 case BitcodeConstant::ConstantArrayOpcode: {
1761 Value *V = PoisonValue::get(T: BC->getType());
1762 for (auto Pair : enumerate(First&: Ops))
1763 V = InsertValueInst::Create(Agg: V, Val: Pair.value(), Idxs: Pair.index(),
1764 NameStr: "constexpr.ins", InsertBefore: InsertBB);
1765 I = cast<Instruction>(Val: V);
1766 break;
1767 }
1768 case Instruction::ICmp:
1769 case Instruction::FCmp:
1770 I = CmpInst::Create(Op: (Instruction::OtherOps)BC->Opcode,
1771 Pred: (CmpInst::Predicate)BC->Flags, S1: Ops[0], S2: Ops[1],
1772 Name: "constexpr", InsertBefore: InsertBB);
1773 break;
1774 case Instruction::GetElementPtr:
1775 I = GetElementPtrInst::Create(PointeeType: BC->SrcElemTy, Ptr: Ops[0],
1776 IdxList: ArrayRef(Ops).drop_front(), NameStr: "constexpr",
1777 InsertBefore: InsertBB);
1778 cast<GetElementPtrInst>(Val: I)->setNoWrapFlags(toGEPNoWrapFlags(Flags: BC->Flags));
1779 break;
1780 case Instruction::Select:
1781 I = SelectInst::Create(C: Ops[0], S1: Ops[1], S2: Ops[2], NameStr: "constexpr", InsertBefore: InsertBB);
1782 break;
1783 case Instruction::ExtractElement:
1784 I = ExtractElementInst::Create(Vec: Ops[0], Idx: Ops[1], NameStr: "constexpr", InsertBefore: InsertBB);
1785 break;
1786 case Instruction::InsertElement:
1787 I = InsertElementInst::Create(Vec: Ops[0], NewElt: Ops[1], Idx: Ops[2], NameStr: "constexpr",
1788 InsertBefore: InsertBB);
1789 break;
1790 case Instruction::ShuffleVector:
1791 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1792 InsertBB);
1793 break;
1794 default:
1795 llvm_unreachable("Unhandled bitcode constant");
1796 }
1797 }
1798
1799 MaterializedValues.insert(KV: {ValID, I});
1800 Worklist.pop_back();
1801 }
1802
1803 return MaterializedValues[StartValID];
1804}
1805
1806Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1807 Expected<Value *> MaybeV = materializeValue(StartValID: ID, /* InsertBB */ nullptr);
1808 if (!MaybeV)
1809 return MaybeV.takeError();
1810
1811 // Result must be Constant if InsertBB is nullptr.
1812 return cast<Constant>(Val: MaybeV.get());
1813}
1814
1815StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1816 StringRef Name) {
1817 auto *Ret = StructType::create(Context, Name);
1818 IdentifiedStructTypes.push_back(x: Ret);
1819 return Ret;
1820}
1821
1822StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1823 auto *Ret = StructType::create(Context);
1824 IdentifiedStructTypes.push_back(x: Ret);
1825 return Ret;
1826}
1827
1828//===----------------------------------------------------------------------===//
1829// Functions for parsing blocks from the bitcode file
1830//===----------------------------------------------------------------------===//
1831
1832static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1833 switch (Val) {
1834 case Attribute::EndAttrKinds:
1835 case Attribute::EmptyKey:
1836 case Attribute::TombstoneKey:
1837 llvm_unreachable("Synthetic enumerators which should never get here");
1838
1839 case Attribute::None: return 0;
1840 case Attribute::ZExt: return 1 << 0;
1841 case Attribute::SExt: return 1 << 1;
1842 case Attribute::NoReturn: return 1 << 2;
1843 case Attribute::InReg: return 1 << 3;
1844 case Attribute::StructRet: return 1 << 4;
1845 case Attribute::NoUnwind: return 1 << 5;
1846 case Attribute::NoAlias: return 1 << 6;
1847 case Attribute::ByVal: return 1 << 7;
1848 case Attribute::Nest: return 1 << 8;
1849 case Attribute::ReadNone: return 1 << 9;
1850 case Attribute::ReadOnly: return 1 << 10;
1851 case Attribute::NoInline: return 1 << 11;
1852 case Attribute::AlwaysInline: return 1 << 12;
1853 case Attribute::OptimizeForSize: return 1 << 13;
1854 case Attribute::StackProtect: return 1 << 14;
1855 case Attribute::StackProtectReq: return 1 << 15;
1856 case Attribute::Alignment: return 31 << 16;
1857 // 1ULL << 21 is NoCapture, which is upgraded separately.
1858 case Attribute::NoRedZone: return 1 << 22;
1859 case Attribute::NoImplicitFloat: return 1 << 23;
1860 case Attribute::Naked: return 1 << 24;
1861 case Attribute::InlineHint: return 1 << 25;
1862 case Attribute::StackAlignment: return 7 << 26;
1863 case Attribute::ReturnsTwice: return 1 << 29;
1864 case Attribute::UWTable: return 1 << 30;
1865 case Attribute::NonLazyBind: return 1U << 31;
1866 case Attribute::SanitizeAddress: return 1ULL << 32;
1867 case Attribute::MinSize: return 1ULL << 33;
1868 case Attribute::NoDuplicate: return 1ULL << 34;
1869 case Attribute::StackProtectStrong: return 1ULL << 35;
1870 case Attribute::SanitizeThread: return 1ULL << 36;
1871 case Attribute::SanitizeMemory: return 1ULL << 37;
1872 case Attribute::NoBuiltin: return 1ULL << 38;
1873 case Attribute::Returned: return 1ULL << 39;
1874 case Attribute::Cold: return 1ULL << 40;
1875 case Attribute::Builtin: return 1ULL << 41;
1876 case Attribute::OptimizeNone: return 1ULL << 42;
1877 case Attribute::InAlloca: return 1ULL << 43;
1878 case Attribute::NonNull: return 1ULL << 44;
1879 case Attribute::JumpTable: return 1ULL << 45;
1880 case Attribute::Convergent: return 1ULL << 46;
1881 case Attribute::SafeStack: return 1ULL << 47;
1882 case Attribute::NoRecurse: return 1ULL << 48;
1883 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1884 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1885 case Attribute::SwiftSelf: return 1ULL << 51;
1886 case Attribute::SwiftError: return 1ULL << 52;
1887 case Attribute::WriteOnly: return 1ULL << 53;
1888 case Attribute::Speculatable: return 1ULL << 54;
1889 case Attribute::StrictFP: return 1ULL << 55;
1890 case Attribute::SanitizeHWAddress: return 1ULL << 56;
1891 case Attribute::NoCfCheck: return 1ULL << 57;
1892 case Attribute::OptForFuzzing: return 1ULL << 58;
1893 case Attribute::ShadowCallStack: return 1ULL << 59;
1894 case Attribute::SpeculativeLoadHardening:
1895 return 1ULL << 60;
1896 case Attribute::ImmArg:
1897 return 1ULL << 61;
1898 case Attribute::WillReturn:
1899 return 1ULL << 62;
1900 case Attribute::NoFree:
1901 return 1ULL << 63;
1902 default:
1903 // Other attributes are not supported in the raw format,
1904 // as we ran out of space.
1905 return 0;
1906 }
1907 llvm_unreachable("Unsupported attribute type");
1908}
1909
1910static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1911 if (!Val) return;
1912
1913 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1914 I = Attribute::AttrKind(I + 1)) {
1915 if (uint64_t A = (Val & getRawAttributeMask(Val: I))) {
1916 if (I == Attribute::Alignment)
1917 B.addAlignmentAttr(Align: 1ULL << ((A >> 16) - 1));
1918 else if (I == Attribute::StackAlignment)
1919 B.addStackAlignmentAttr(Align: 1ULL << ((A >> 26)-1));
1920 else if (Attribute::isTypeAttrKind(Kind: I))
1921 B.addTypeAttr(Kind: I, Ty: nullptr); // Type will be auto-upgraded.
1922 else
1923 B.addAttribute(Val: I);
1924 }
1925 }
1926}
1927
1928/// This fills an AttrBuilder object with the LLVM attributes that have
1929/// been decoded from the given integer.
1930static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1931 uint64_t EncodedAttrs,
1932 uint64_t AttrIdx) {
1933 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1934 // the bits above 31 down by 11 bits.
1935 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1936 assert((!Alignment || isPowerOf2_32(Alignment)) &&
1937 "Alignment must be a power of two.");
1938
1939 if (Alignment)
1940 B.addAlignmentAttr(Align: Alignment);
1941
1942 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1943 (EncodedAttrs & 0xffff);
1944
1945 if (AttrIdx == AttributeList::FunctionIndex) {
1946 // Upgrade old memory attributes.
1947 MemoryEffects ME = MemoryEffects::unknown();
1948 if (Attrs & (1ULL << 9)) {
1949 // ReadNone
1950 Attrs &= ~(1ULL << 9);
1951 ME &= MemoryEffects::none();
1952 }
1953 if (Attrs & (1ULL << 10)) {
1954 // ReadOnly
1955 Attrs &= ~(1ULL << 10);
1956 ME &= MemoryEffects::readOnly();
1957 }
1958 if (Attrs & (1ULL << 49)) {
1959 // InaccessibleMemOnly
1960 Attrs &= ~(1ULL << 49);
1961 ME &= MemoryEffects::inaccessibleMemOnly();
1962 }
1963 if (Attrs & (1ULL << 50)) {
1964 // InaccessibleMemOrArgMemOnly
1965 Attrs &= ~(1ULL << 50);
1966 ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1967 }
1968 if (Attrs & (1ULL << 53)) {
1969 // WriteOnly
1970 Attrs &= ~(1ULL << 53);
1971 ME &= MemoryEffects::writeOnly();
1972 }
1973 if (ME != MemoryEffects::unknown())
1974 B.addMemoryAttr(ME);
1975 }
1976
1977 // Upgrade nocapture to captures(none).
1978 if (Attrs & (1ULL << 21)) {
1979 Attrs &= ~(1ULL << 21);
1980 B.addCapturesAttr(CI: CaptureInfo::none());
1981 }
1982
1983 addRawAttributeValue(B, Val: Attrs);
1984}
1985
1986Error BitcodeReader::parseAttributeBlock() {
1987 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::PARAMATTR_BLOCK_ID))
1988 return Err;
1989
1990 if (!MAttributes.empty())
1991 return error(Message: "Invalid multiple blocks");
1992
1993 SmallVector<uint64_t, 64> Record;
1994
1995 SmallVector<AttributeList, 8> Attrs;
1996
1997 // Read all the records.
1998 while (true) {
1999 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2000 if (!MaybeEntry)
2001 return MaybeEntry.takeError();
2002 BitstreamEntry Entry = MaybeEntry.get();
2003
2004 switch (Entry.Kind) {
2005 case BitstreamEntry::SubBlock: // Handled for us already.
2006 case BitstreamEntry::Error:
2007 return error(Message: "Malformed block");
2008 case BitstreamEntry::EndBlock:
2009 return Error::success();
2010 case BitstreamEntry::Record:
2011 // The interesting case.
2012 break;
2013 }
2014
2015 // Read a record.
2016 Record.clear();
2017 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
2018 if (!MaybeRecord)
2019 return MaybeRecord.takeError();
2020 switch (MaybeRecord.get()) {
2021 default: // Default behavior: ignore.
2022 break;
2023 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
2024 // Deprecated, but still needed to read old bitcode files.
2025 if (Record.size() & 1)
2026 return error(Message: "Invalid parameter attribute record");
2027
2028 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
2029 AttrBuilder B(Context);
2030 decodeLLVMAttributesForBitcode(B, EncodedAttrs: Record[i+1], AttrIdx: Record[i]);
2031 Attrs.push_back(Elt: AttributeList::get(C&: Context, Index: Record[i], B));
2032 }
2033
2034 MAttributes.push_back(x: AttributeList::get(C&: Context, Attrs));
2035 Attrs.clear();
2036 break;
2037 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
2038 for (uint64_t Val : Record)
2039 Attrs.push_back(Elt: MAttributeGroups[Val]);
2040
2041 MAttributes.push_back(x: AttributeList::get(C&: Context, Attrs));
2042 Attrs.clear();
2043 break;
2044 }
2045 }
2046}
2047
2048// Returns Attribute::None on unrecognized codes.
2049static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
2050 switch (Code) {
2051 default:
2052 return Attribute::None;
2053 case bitc::ATTR_KIND_ALIGNMENT:
2054 return Attribute::Alignment;
2055 case bitc::ATTR_KIND_ALWAYS_INLINE:
2056 return Attribute::AlwaysInline;
2057 case bitc::ATTR_KIND_BUILTIN:
2058 return Attribute::Builtin;
2059 case bitc::ATTR_KIND_BY_VAL:
2060 return Attribute::ByVal;
2061 case bitc::ATTR_KIND_IN_ALLOCA:
2062 return Attribute::InAlloca;
2063 case bitc::ATTR_KIND_COLD:
2064 return Attribute::Cold;
2065 case bitc::ATTR_KIND_CONVERGENT:
2066 return Attribute::Convergent;
2067 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
2068 return Attribute::DisableSanitizerInstrumentation;
2069 case bitc::ATTR_KIND_ELEMENTTYPE:
2070 return Attribute::ElementType;
2071 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
2072 return Attribute::FnRetThunkExtern;
2073 case bitc::ATTR_KIND_INLINE_HINT:
2074 return Attribute::InlineHint;
2075 case bitc::ATTR_KIND_IN_REG:
2076 return Attribute::InReg;
2077 case bitc::ATTR_KIND_JUMP_TABLE:
2078 return Attribute::JumpTable;
2079 case bitc::ATTR_KIND_MEMORY:
2080 return Attribute::Memory;
2081 case bitc::ATTR_KIND_NOFPCLASS:
2082 return Attribute::NoFPClass;
2083 case bitc::ATTR_KIND_MIN_SIZE:
2084 return Attribute::MinSize;
2085 case bitc::ATTR_KIND_NAKED:
2086 return Attribute::Naked;
2087 case bitc::ATTR_KIND_NEST:
2088 return Attribute::Nest;
2089 case bitc::ATTR_KIND_NO_ALIAS:
2090 return Attribute::NoAlias;
2091 case bitc::ATTR_KIND_NO_BUILTIN:
2092 return Attribute::NoBuiltin;
2093 case bitc::ATTR_KIND_NO_CALLBACK:
2094 return Attribute::NoCallback;
2095 case bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE:
2096 return Attribute::NoDivergenceSource;
2097 case bitc::ATTR_KIND_NO_DUPLICATE:
2098 return Attribute::NoDuplicate;
2099 case bitc::ATTR_KIND_NOFREE:
2100 return Attribute::NoFree;
2101 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
2102 return Attribute::NoImplicitFloat;
2103 case bitc::ATTR_KIND_NO_INLINE:
2104 return Attribute::NoInline;
2105 case bitc::ATTR_KIND_NO_RECURSE:
2106 return Attribute::NoRecurse;
2107 case bitc::ATTR_KIND_NO_MERGE:
2108 return Attribute::NoMerge;
2109 case bitc::ATTR_KIND_NON_LAZY_BIND:
2110 return Attribute::NonLazyBind;
2111 case bitc::ATTR_KIND_NON_NULL:
2112 return Attribute::NonNull;
2113 case bitc::ATTR_KIND_DEREFERENCEABLE:
2114 return Attribute::Dereferenceable;
2115 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
2116 return Attribute::DereferenceableOrNull;
2117 case bitc::ATTR_KIND_ALLOC_ALIGN:
2118 return Attribute::AllocAlign;
2119 case bitc::ATTR_KIND_ALLOC_KIND:
2120 return Attribute::AllocKind;
2121 case bitc::ATTR_KIND_ALLOC_SIZE:
2122 return Attribute::AllocSize;
2123 case bitc::ATTR_KIND_ALLOCATED_POINTER:
2124 return Attribute::AllocatedPointer;
2125 case bitc::ATTR_KIND_NO_RED_ZONE:
2126 return Attribute::NoRedZone;
2127 case bitc::ATTR_KIND_NO_RETURN:
2128 return Attribute::NoReturn;
2129 case bitc::ATTR_KIND_NOSYNC:
2130 return Attribute::NoSync;
2131 case bitc::ATTR_KIND_NOCF_CHECK:
2132 return Attribute::NoCfCheck;
2133 case bitc::ATTR_KIND_NO_PROFILE:
2134 return Attribute::NoProfile;
2135 case bitc::ATTR_KIND_SKIP_PROFILE:
2136 return Attribute::SkipProfile;
2137 case bitc::ATTR_KIND_NO_UNWIND:
2138 return Attribute::NoUnwind;
2139 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2140 return Attribute::NoSanitizeBounds;
2141 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2142 return Attribute::NoSanitizeCoverage;
2143 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2144 return Attribute::NullPointerIsValid;
2145 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2146 return Attribute::OptimizeForDebugging;
2147 case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2148 return Attribute::OptForFuzzing;
2149 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2150 return Attribute::OptimizeForSize;
2151 case bitc::ATTR_KIND_OPTIMIZE_NONE:
2152 return Attribute::OptimizeNone;
2153 case bitc::ATTR_KIND_READ_NONE:
2154 return Attribute::ReadNone;
2155 case bitc::ATTR_KIND_READ_ONLY:
2156 return Attribute::ReadOnly;
2157 case bitc::ATTR_KIND_RETURNED:
2158 return Attribute::Returned;
2159 case bitc::ATTR_KIND_RETURNS_TWICE:
2160 return Attribute::ReturnsTwice;
2161 case bitc::ATTR_KIND_S_EXT:
2162 return Attribute::SExt;
2163 case bitc::ATTR_KIND_SPECULATABLE:
2164 return Attribute::Speculatable;
2165 case bitc::ATTR_KIND_STACK_ALIGNMENT:
2166 return Attribute::StackAlignment;
2167 case bitc::ATTR_KIND_STACK_PROTECT:
2168 return Attribute::StackProtect;
2169 case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2170 return Attribute::StackProtectReq;
2171 case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2172 return Attribute::StackProtectStrong;
2173 case bitc::ATTR_KIND_SAFESTACK:
2174 return Attribute::SafeStack;
2175 case bitc::ATTR_KIND_SHADOWCALLSTACK:
2176 return Attribute::ShadowCallStack;
2177 case bitc::ATTR_KIND_STRICT_FP:
2178 return Attribute::StrictFP;
2179 case bitc::ATTR_KIND_STRUCT_RET:
2180 return Attribute::StructRet;
2181 case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2182 return Attribute::SanitizeAddress;
2183 case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2184 return Attribute::SanitizeHWAddress;
2185 case bitc::ATTR_KIND_SANITIZE_THREAD:
2186 return Attribute::SanitizeThread;
2187 case bitc::ATTR_KIND_SANITIZE_TYPE:
2188 return Attribute::SanitizeType;
2189 case bitc::ATTR_KIND_SANITIZE_MEMORY:
2190 return Attribute::SanitizeMemory;
2191 case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY:
2192 return Attribute::SanitizeNumericalStability;
2193 case bitc::ATTR_KIND_SANITIZE_REALTIME:
2194 return Attribute::SanitizeRealtime;
2195 case bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING:
2196 return Attribute::SanitizeRealtimeBlocking;
2197 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2198 return Attribute::SpeculativeLoadHardening;
2199 case bitc::ATTR_KIND_SWIFT_ERROR:
2200 return Attribute::SwiftError;
2201 case bitc::ATTR_KIND_SWIFT_SELF:
2202 return Attribute::SwiftSelf;
2203 case bitc::ATTR_KIND_SWIFT_ASYNC:
2204 return Attribute::SwiftAsync;
2205 case bitc::ATTR_KIND_UW_TABLE:
2206 return Attribute::UWTable;
2207 case bitc::ATTR_KIND_VSCALE_RANGE:
2208 return Attribute::VScaleRange;
2209 case bitc::ATTR_KIND_WILLRETURN:
2210 return Attribute::WillReturn;
2211 case bitc::ATTR_KIND_WRITEONLY:
2212 return Attribute::WriteOnly;
2213 case bitc::ATTR_KIND_Z_EXT:
2214 return Attribute::ZExt;
2215 case bitc::ATTR_KIND_IMMARG:
2216 return Attribute::ImmArg;
2217 case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2218 return Attribute::SanitizeMemTag;
2219 case bitc::ATTR_KIND_PREALLOCATED:
2220 return Attribute::Preallocated;
2221 case bitc::ATTR_KIND_NOUNDEF:
2222 return Attribute::NoUndef;
2223 case bitc::ATTR_KIND_BYREF:
2224 return Attribute::ByRef;
2225 case bitc::ATTR_KIND_MUSTPROGRESS:
2226 return Attribute::MustProgress;
2227 case bitc::ATTR_KIND_HOT:
2228 return Attribute::Hot;
2229 case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2230 return Attribute::PresplitCoroutine;
2231 case bitc::ATTR_KIND_WRITABLE:
2232 return Attribute::Writable;
2233 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2234 return Attribute::CoroDestroyOnlyWhenComplete;
2235 case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2236 return Attribute::DeadOnUnwind;
2237 case bitc::ATTR_KIND_RANGE:
2238 return Attribute::Range;
2239 case bitc::ATTR_KIND_INITIALIZES:
2240 return Attribute::Initializes;
2241 case bitc::ATTR_KIND_CORO_ELIDE_SAFE:
2242 return Attribute::CoroElideSafe;
2243 case bitc::ATTR_KIND_NO_EXT:
2244 return Attribute::NoExt;
2245 case bitc::ATTR_KIND_CAPTURES:
2246 return Attribute::Captures;
2247 case bitc::ATTR_KIND_DEAD_ON_RETURN:
2248 return Attribute::DeadOnReturn;
2249 }
2250}
2251
2252Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2253 MaybeAlign &Alignment) {
2254 // Note: Alignment in bitcode files is incremented by 1, so that zero
2255 // can be used for default alignment.
2256 if (Exponent > Value::MaxAlignmentExponent + 1)
2257 return error(Message: "Invalid alignment value");
2258 Alignment = decodeMaybeAlign(Value: Exponent);
2259 return Error::success();
2260}
2261
2262Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2263 *Kind = getAttrFromCode(Code);
2264 if (*Kind == Attribute::None)
2265 return error(Message: "Unknown attribute kind (" + Twine(Code) + ")");
2266 return Error::success();
2267}
2268
2269static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2270 switch (EncodedKind) {
2271 case bitc::ATTR_KIND_READ_NONE:
2272 ME &= MemoryEffects::none();
2273 return true;
2274 case bitc::ATTR_KIND_READ_ONLY:
2275 ME &= MemoryEffects::readOnly();
2276 return true;
2277 case bitc::ATTR_KIND_WRITEONLY:
2278 ME &= MemoryEffects::writeOnly();
2279 return true;
2280 case bitc::ATTR_KIND_ARGMEMONLY:
2281 ME &= MemoryEffects::argMemOnly();
2282 return true;
2283 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2284 ME &= MemoryEffects::inaccessibleMemOnly();
2285 return true;
2286 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2287 ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2288 return true;
2289 default:
2290 return false;
2291 }
2292}
2293
2294Error BitcodeReader::parseAttributeGroupBlock() {
2295 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::PARAMATTR_GROUP_BLOCK_ID))
2296 return Err;
2297
2298 if (!MAttributeGroups.empty())
2299 return error(Message: "Invalid multiple blocks");
2300
2301 SmallVector<uint64_t, 64> Record;
2302
2303 // Read all the records.
2304 while (true) {
2305 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2306 if (!MaybeEntry)
2307 return MaybeEntry.takeError();
2308 BitstreamEntry Entry = MaybeEntry.get();
2309
2310 switch (Entry.Kind) {
2311 case BitstreamEntry::SubBlock: // Handled for us already.
2312 case BitstreamEntry::Error:
2313 return error(Message: "Malformed block");
2314 case BitstreamEntry::EndBlock:
2315 return Error::success();
2316 case BitstreamEntry::Record:
2317 // The interesting case.
2318 break;
2319 }
2320
2321 // Read a record.
2322 Record.clear();
2323 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
2324 if (!MaybeRecord)
2325 return MaybeRecord.takeError();
2326 switch (MaybeRecord.get()) {
2327 default: // Default behavior: ignore.
2328 break;
2329 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2330 if (Record.size() < 3)
2331 return error(Message: "Invalid grp record");
2332
2333 uint64_t GrpID = Record[0];
2334 uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2335
2336 AttrBuilder B(Context);
2337 MemoryEffects ME = MemoryEffects::unknown();
2338 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2339 if (Record[i] == 0) { // Enum attribute
2340 Attribute::AttrKind Kind;
2341 uint64_t EncodedKind = Record[++i];
2342 if (Idx == AttributeList::FunctionIndex &&
2343 upgradeOldMemoryAttribute(ME, EncodedKind))
2344 continue;
2345
2346 if (EncodedKind == bitc::ATTR_KIND_NO_CAPTURE) {
2347 B.addCapturesAttr(CI: CaptureInfo::none());
2348 continue;
2349 }
2350
2351 if (Error Err = parseAttrKind(Code: EncodedKind, Kind: &Kind))
2352 return Err;
2353
2354 // Upgrade old-style byval attribute to one with a type, even if it's
2355 // nullptr. We will have to insert the real type when we associate
2356 // this AttributeList with a function.
2357 if (Kind == Attribute::ByVal)
2358 B.addByValAttr(Ty: nullptr);
2359 else if (Kind == Attribute::StructRet)
2360 B.addStructRetAttr(Ty: nullptr);
2361 else if (Kind == Attribute::InAlloca)
2362 B.addInAllocaAttr(Ty: nullptr);
2363 else if (Kind == Attribute::UWTable)
2364 B.addUWTableAttr(Kind: UWTableKind::Default);
2365 else if (Attribute::isEnumAttrKind(Kind))
2366 B.addAttribute(Val: Kind);
2367 else
2368 return error(Message: "Not an enum attribute");
2369 } else if (Record[i] == 1) { // Integer attribute
2370 Attribute::AttrKind Kind;
2371 if (Error Err = parseAttrKind(Code: Record[++i], Kind: &Kind))
2372 return Err;
2373 if (!Attribute::isIntAttrKind(Kind))
2374 return error(Message: "Not an int attribute");
2375 if (Kind == Attribute::Alignment)
2376 B.addAlignmentAttr(Align: Record[++i]);
2377 else if (Kind == Attribute::StackAlignment)
2378 B.addStackAlignmentAttr(Align: Record[++i]);
2379 else if (Kind == Attribute::Dereferenceable)
2380 B.addDereferenceableAttr(Bytes: Record[++i]);
2381 else if (Kind == Attribute::DereferenceableOrNull)
2382 B.addDereferenceableOrNullAttr(Bytes: Record[++i]);
2383 else if (Kind == Attribute::AllocSize)
2384 B.addAllocSizeAttrFromRawRepr(RawAllocSizeRepr: Record[++i]);
2385 else if (Kind == Attribute::VScaleRange)
2386 B.addVScaleRangeAttrFromRawRepr(RawVScaleRangeRepr: Record[++i]);
2387 else if (Kind == Attribute::UWTable)
2388 B.addUWTableAttr(Kind: UWTableKind(Record[++i]));
2389 else if (Kind == Attribute::AllocKind)
2390 B.addAllocKindAttr(Kind: static_cast<AllocFnKind>(Record[++i]));
2391 else if (Kind == Attribute::Memory) {
2392 uint64_t EncodedME = Record[++i];
2393 const uint8_t Version = (EncodedME >> 56);
2394 if (Version == 0) {
2395 // Errno memory location was previously encompassed into default
2396 // memory. Ensure this is taken into account while reconstructing
2397 // the memory attribute prior to its introduction.
2398 ModRefInfo ArgMem = ModRefInfo((EncodedME >> 0) & 3);
2399 ModRefInfo InaccessibleMem = ModRefInfo((EncodedME >> 2) & 3);
2400 ModRefInfo OtherMem = ModRefInfo((EncodedME >> 4) & 3);
2401 auto ME = MemoryEffects::inaccessibleMemOnly(MR: InaccessibleMem) |
2402 MemoryEffects::argMemOnly(MR: ArgMem) |
2403 MemoryEffects::errnoMemOnly(MR: OtherMem) |
2404 MemoryEffects::otherMemOnly(MR: OtherMem);
2405 B.addMemoryAttr(ME);
2406 } else {
2407 // Construct the memory attribute directly from the encoded base
2408 // on newer versions.
2409 B.addMemoryAttr(ME: MemoryEffects::createFromIntValue(
2410 Data: EncodedME & 0x00FFFFFFFFFFFFFFULL));
2411 }
2412 } else if (Kind == Attribute::Captures)
2413 B.addCapturesAttr(CI: CaptureInfo::createFromIntValue(Data: Record[++i]));
2414 else if (Kind == Attribute::NoFPClass)
2415 B.addNoFPClassAttr(
2416 NoFPClassMask: static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2417 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2418 bool HasValue = (Record[i++] == 4);
2419 SmallString<64> KindStr;
2420 SmallString<64> ValStr;
2421
2422 while (Record[i] != 0 && i != e)
2423 KindStr += Record[i++];
2424 assert(Record[i] == 0 && "Kind string not null terminated");
2425
2426 if (HasValue) {
2427 // Has a value associated with it.
2428 ++i; // Skip the '0' that terminates the "kind" string.
2429 while (Record[i] != 0 && i != e)
2430 ValStr += Record[i++];
2431 assert(Record[i] == 0 && "Value string not null terminated");
2432 }
2433
2434 B.addAttribute(A: KindStr.str(), V: ValStr.str());
2435 } else if (Record[i] == 5 || Record[i] == 6) {
2436 bool HasType = Record[i] == 6;
2437 Attribute::AttrKind Kind;
2438 if (Error Err = parseAttrKind(Code: Record[++i], Kind: &Kind))
2439 return Err;
2440 if (!Attribute::isTypeAttrKind(Kind))
2441 return error(Message: "Not a type attribute");
2442
2443 B.addTypeAttr(Kind, Ty: HasType ? getTypeByID(ID: Record[++i]) : nullptr);
2444 } else if (Record[i] == 7) {
2445 Attribute::AttrKind Kind;
2446
2447 i++;
2448 if (Error Err = parseAttrKind(Code: Record[i++], Kind: &Kind))
2449 return Err;
2450 if (!Attribute::isConstantRangeAttrKind(Kind))
2451 return error(Message: "Not a ConstantRange attribute");
2452
2453 Expected<ConstantRange> MaybeCR =
2454 readBitWidthAndConstantRange(Record, OpNum&: i);
2455 if (!MaybeCR)
2456 return MaybeCR.takeError();
2457 i--;
2458
2459 B.addConstantRangeAttr(Kind, CR: MaybeCR.get());
2460 } else if (Record[i] == 8) {
2461 Attribute::AttrKind Kind;
2462
2463 i++;
2464 if (Error Err = parseAttrKind(Code: Record[i++], Kind: &Kind))
2465 return Err;
2466 if (!Attribute::isConstantRangeListAttrKind(Kind))
2467 return error(Message: "Not a constant range list attribute");
2468
2469 SmallVector<ConstantRange, 2> Val;
2470 if (i + 2 > e)
2471 return error(Message: "Too few records for constant range list");
2472 unsigned RangeSize = Record[i++];
2473 unsigned BitWidth = Record[i++];
2474 for (unsigned Idx = 0; Idx < RangeSize; ++Idx) {
2475 Expected<ConstantRange> MaybeCR =
2476 readConstantRange(Record, OpNum&: i, BitWidth);
2477 if (!MaybeCR)
2478 return MaybeCR.takeError();
2479 Val.push_back(Elt: MaybeCR.get());
2480 }
2481 i--;
2482
2483 if (!ConstantRangeList::isOrderedRanges(RangesRef: Val))
2484 return error(Message: "Invalid (unordered or overlapping) range list");
2485 B.addConstantRangeListAttr(Kind, Val);
2486 } else {
2487 return error(Message: "Invalid attribute group entry");
2488 }
2489 }
2490
2491 if (ME != MemoryEffects::unknown())
2492 B.addMemoryAttr(ME);
2493
2494 UpgradeAttributes(B);
2495 MAttributeGroups[GrpID] = AttributeList::get(C&: Context, Index: Idx, B);
2496 break;
2497 }
2498 }
2499 }
2500}
2501
2502Error BitcodeReader::parseTypeTable() {
2503 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::TYPE_BLOCK_ID_NEW))
2504 return Err;
2505
2506 return parseTypeTableBody();
2507}
2508
2509Error BitcodeReader::parseTypeTableBody() {
2510 if (!TypeList.empty())
2511 return error(Message: "Invalid multiple blocks");
2512
2513 SmallVector<uint64_t, 64> Record;
2514 unsigned NumRecords = 0;
2515
2516 SmallString<64> TypeName;
2517
2518 // Read all the records for this type table.
2519 while (true) {
2520 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2521 if (!MaybeEntry)
2522 return MaybeEntry.takeError();
2523 BitstreamEntry Entry = MaybeEntry.get();
2524
2525 switch (Entry.Kind) {
2526 case BitstreamEntry::SubBlock: // Handled for us already.
2527 case BitstreamEntry::Error:
2528 return error(Message: "Malformed block");
2529 case BitstreamEntry::EndBlock:
2530 if (NumRecords != TypeList.size())
2531 return error(Message: "Malformed block");
2532 return Error::success();
2533 case BitstreamEntry::Record:
2534 // The interesting case.
2535 break;
2536 }
2537
2538 // Read a record.
2539 Record.clear();
2540 Type *ResultTy = nullptr;
2541 SmallVector<unsigned> ContainedIDs;
2542 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
2543 if (!MaybeRecord)
2544 return MaybeRecord.takeError();
2545 switch (MaybeRecord.get()) {
2546 default:
2547 return error(Message: "Invalid value");
2548 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2549 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2550 // type list. This allows us to reserve space.
2551 if (Record.empty())
2552 return error(Message: "Invalid numentry record");
2553 TypeList.resize(new_size: Record[0]);
2554 continue;
2555 case bitc::TYPE_CODE_VOID: // VOID
2556 ResultTy = Type::getVoidTy(C&: Context);
2557 break;
2558 case bitc::TYPE_CODE_HALF: // HALF
2559 ResultTy = Type::getHalfTy(C&: Context);
2560 break;
2561 case bitc::TYPE_CODE_BFLOAT: // BFLOAT
2562 ResultTy = Type::getBFloatTy(C&: Context);
2563 break;
2564 case bitc::TYPE_CODE_FLOAT: // FLOAT
2565 ResultTy = Type::getFloatTy(C&: Context);
2566 break;
2567 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
2568 ResultTy = Type::getDoubleTy(C&: Context);
2569 break;
2570 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
2571 ResultTy = Type::getX86_FP80Ty(C&: Context);
2572 break;
2573 case bitc::TYPE_CODE_FP128: // FP128
2574 ResultTy = Type::getFP128Ty(C&: Context);
2575 break;
2576 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2577 ResultTy = Type::getPPC_FP128Ty(C&: Context);
2578 break;
2579 case bitc::TYPE_CODE_LABEL: // LABEL
2580 ResultTy = Type::getLabelTy(C&: Context);
2581 break;
2582 case bitc::TYPE_CODE_METADATA: // METADATA
2583 ResultTy = Type::getMetadataTy(C&: Context);
2584 break;
2585 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
2586 // Deprecated: decodes as <1 x i64>
2587 ResultTy =
2588 llvm::FixedVectorType::get(ElementType: llvm::IntegerType::get(C&: Context, NumBits: 64), NumElts: 1);
2589 break;
2590 case bitc::TYPE_CODE_X86_AMX: // X86_AMX
2591 ResultTy = Type::getX86_AMXTy(C&: Context);
2592 break;
2593 case bitc::TYPE_CODE_TOKEN: // TOKEN
2594 ResultTy = Type::getTokenTy(C&: Context);
2595 break;
2596 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2597 if (Record.empty())
2598 return error(Message: "Invalid integer record");
2599
2600 uint64_t NumBits = Record[0];
2601 if (NumBits < IntegerType::MIN_INT_BITS ||
2602 NumBits > IntegerType::MAX_INT_BITS)
2603 return error(Message: "Bitwidth for integer type out of range");
2604 ResultTy = IntegerType::get(C&: Context, NumBits);
2605 break;
2606 }
2607 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2608 // [pointee type, address space]
2609 if (Record.empty())
2610 return error(Message: "Invalid pointer record");
2611 unsigned AddressSpace = 0;
2612 if (Record.size() == 2)
2613 AddressSpace = Record[1];
2614 ResultTy = getTypeByID(ID: Record[0]);
2615 if (!ResultTy ||
2616 !PointerType::isValidElementType(ElemTy: ResultTy))
2617 return error(Message: "Invalid type");
2618 ContainedIDs.push_back(Elt: Record[0]);
2619 ResultTy = PointerType::get(C&: ResultTy->getContext(), AddressSpace);
2620 break;
2621 }
2622 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2623 if (Record.size() != 1)
2624 return error(Message: "Invalid opaque pointer record");
2625 unsigned AddressSpace = Record[0];
2626 ResultTy = PointerType::get(C&: Context, AddressSpace);
2627 break;
2628 }
2629 case bitc::TYPE_CODE_FUNCTION_OLD: {
2630 // Deprecated, but still needed to read old bitcode files.
2631 // FUNCTION: [vararg, attrid, retty, paramty x N]
2632 if (Record.size() < 3)
2633 return error(Message: "Invalid function record");
2634 SmallVector<Type*, 8> ArgTys;
2635 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2636 if (Type *T = getTypeByID(ID: Record[i]))
2637 ArgTys.push_back(Elt: T);
2638 else
2639 break;
2640 }
2641
2642 ResultTy = getTypeByID(ID: Record[2]);
2643 if (!ResultTy || ArgTys.size() < Record.size()-3)
2644 return error(Message: "Invalid type");
2645
2646 ContainedIDs.append(in_start: Record.begin() + 2, in_end: Record.end());
2647 ResultTy = FunctionType::get(Result: ResultTy, Params: ArgTys, isVarArg: Record[0]);
2648 break;
2649 }
2650 case bitc::TYPE_CODE_FUNCTION: {
2651 // FUNCTION: [vararg, retty, paramty x N]
2652 if (Record.size() < 2)
2653 return error(Message: "Invalid function record");
2654 SmallVector<Type*, 8> ArgTys;
2655 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2656 if (Type *T = getTypeByID(ID: Record[i])) {
2657 if (!FunctionType::isValidArgumentType(ArgTy: T))
2658 return error(Message: "Invalid function argument type");
2659 ArgTys.push_back(Elt: T);
2660 }
2661 else
2662 break;
2663 }
2664
2665 ResultTy = getTypeByID(ID: Record[1]);
2666 if (!ResultTy || ArgTys.size() < Record.size()-2)
2667 return error(Message: "Invalid type");
2668
2669 ContainedIDs.append(in_start: Record.begin() + 1, in_end: Record.end());
2670 ResultTy = FunctionType::get(Result: ResultTy, Params: ArgTys, isVarArg: Record[0]);
2671 break;
2672 }
2673 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
2674 if (Record.empty())
2675 return error(Message: "Invalid anon struct record");
2676 SmallVector<Type*, 8> EltTys;
2677 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2678 if (Type *T = getTypeByID(ID: Record[i]))
2679 EltTys.push_back(Elt: T);
2680 else
2681 break;
2682 }
2683 if (EltTys.size() != Record.size()-1)
2684 return error(Message: "Invalid type");
2685 ContainedIDs.append(in_start: Record.begin() + 1, in_end: Record.end());
2686 ResultTy = StructType::get(Context, Elements: EltTys, isPacked: Record[0]);
2687 break;
2688 }
2689 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
2690 if (convertToString(Record, Idx: 0, Result&: TypeName))
2691 return error(Message: "Invalid struct name record");
2692 continue;
2693
2694 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2695 if (Record.empty())
2696 return error(Message: "Invalid named struct record");
2697
2698 if (NumRecords >= TypeList.size())
2699 return error(Message: "Invalid TYPE table");
2700
2701 // Check to see if this was forward referenced, if so fill in the temp.
2702 StructType *Res = cast_or_null<StructType>(Val: TypeList[NumRecords]);
2703 if (Res) {
2704 Res->setName(TypeName);
2705 TypeList[NumRecords] = nullptr;
2706 } else // Otherwise, create a new struct.
2707 Res = createIdentifiedStructType(Context, Name: TypeName);
2708 TypeName.clear();
2709
2710 SmallVector<Type*, 8> EltTys;
2711 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2712 if (Type *T = getTypeByID(ID: Record[i]))
2713 EltTys.push_back(Elt: T);
2714 else
2715 break;
2716 }
2717 if (EltTys.size() != Record.size()-1)
2718 return error(Message: "Invalid named struct record");
2719 if (auto E = Res->setBodyOrError(Elements: EltTys, isPacked: Record[0]))
2720 return E;
2721 ContainedIDs.append(in_start: Record.begin() + 1, in_end: Record.end());
2722 ResultTy = Res;
2723 break;
2724 }
2725 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
2726 if (Record.size() != 1)
2727 return error(Message: "Invalid opaque type record");
2728
2729 if (NumRecords >= TypeList.size())
2730 return error(Message: "Invalid TYPE table");
2731
2732 // Check to see if this was forward referenced, if so fill in the temp.
2733 StructType *Res = cast_or_null<StructType>(Val: TypeList[NumRecords]);
2734 if (Res) {
2735 Res->setName(TypeName);
2736 TypeList[NumRecords] = nullptr;
2737 } else // Otherwise, create a new struct with no body.
2738 Res = createIdentifiedStructType(Context, Name: TypeName);
2739 TypeName.clear();
2740 ResultTy = Res;
2741 break;
2742 }
2743 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2744 if (Record.size() < 1)
2745 return error(Message: "Invalid target extension type record");
2746
2747 if (NumRecords >= TypeList.size())
2748 return error(Message: "Invalid TYPE table");
2749
2750 if (Record[0] >= Record.size())
2751 return error(Message: "Too many type parameters");
2752
2753 unsigned NumTys = Record[0];
2754 SmallVector<Type *, 4> TypeParams;
2755 SmallVector<unsigned, 8> IntParams;
2756 for (unsigned i = 0; i < NumTys; i++) {
2757 if (Type *T = getTypeByID(ID: Record[i + 1]))
2758 TypeParams.push_back(Elt: T);
2759 else
2760 return error(Message: "Invalid type");
2761 }
2762
2763 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2764 if (Record[i] > UINT_MAX)
2765 return error(Message: "Integer parameter too large");
2766 IntParams.push_back(Elt: Record[i]);
2767 }
2768 auto TTy =
2769 TargetExtType::getOrError(Context, Name: TypeName, Types: TypeParams, Ints: IntParams);
2770 if (auto E = TTy.takeError())
2771 return E;
2772 ResultTy = *TTy;
2773 TypeName.clear();
2774 break;
2775 }
2776 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
2777 if (Record.size() < 2)
2778 return error(Message: "Invalid array type record");
2779 ResultTy = getTypeByID(ID: Record[1]);
2780 if (!ResultTy || !ArrayType::isValidElementType(ElemTy: ResultTy))
2781 return error(Message: "Invalid type");
2782 ContainedIDs.push_back(Elt: Record[1]);
2783 ResultTy = ArrayType::get(ElementType: ResultTy, NumElements: Record[0]);
2784 break;
2785 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or
2786 // [numelts, eltty, scalable]
2787 if (Record.size() < 2)
2788 return error(Message: "Invalid vector type record");
2789 if (Record[0] == 0)
2790 return error(Message: "Invalid vector length");
2791 ResultTy = getTypeByID(ID: Record[1]);
2792 if (!ResultTy || !VectorType::isValidElementType(ElemTy: ResultTy))
2793 return error(Message: "Invalid type");
2794 bool Scalable = Record.size() > 2 ? Record[2] : false;
2795 ContainedIDs.push_back(Elt: Record[1]);
2796 ResultTy = VectorType::get(ElementType: ResultTy, NumElements: Record[0], Scalable);
2797 break;
2798 }
2799
2800 if (NumRecords >= TypeList.size())
2801 return error(Message: "Invalid TYPE table");
2802 if (TypeList[NumRecords])
2803 return error(
2804 Message: "Invalid TYPE table: Only named structs can be forward referenced");
2805 assert(ResultTy && "Didn't read a type?");
2806 TypeList[NumRecords] = ResultTy;
2807 if (!ContainedIDs.empty())
2808 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2809 ++NumRecords;
2810 }
2811}
2812
2813Error BitcodeReader::parseOperandBundleTags() {
2814 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2815 return Err;
2816
2817 if (!BundleTags.empty())
2818 return error(Message: "Invalid multiple blocks");
2819
2820 SmallVector<uint64_t, 64> Record;
2821
2822 while (true) {
2823 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2824 if (!MaybeEntry)
2825 return MaybeEntry.takeError();
2826 BitstreamEntry Entry = MaybeEntry.get();
2827
2828 switch (Entry.Kind) {
2829 case BitstreamEntry::SubBlock: // Handled for us already.
2830 case BitstreamEntry::Error:
2831 return error(Message: "Malformed block");
2832 case BitstreamEntry::EndBlock:
2833 return Error::success();
2834 case BitstreamEntry::Record:
2835 // The interesting case.
2836 break;
2837 }
2838
2839 // Tags are implicitly mapped to integers by their order.
2840
2841 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
2842 if (!MaybeRecord)
2843 return MaybeRecord.takeError();
2844 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2845 return error(Message: "Invalid operand bundle record");
2846
2847 // OPERAND_BUNDLE_TAG: [strchr x N]
2848 BundleTags.emplace_back();
2849 if (convertToString(Record, Idx: 0, Result&: BundleTags.back()))
2850 return error(Message: "Invalid operand bundle record");
2851 Record.clear();
2852 }
2853}
2854
2855Error BitcodeReader::parseSyncScopeNames() {
2856 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2857 return Err;
2858
2859 if (!SSIDs.empty())
2860 return error(Message: "Invalid multiple synchronization scope names blocks");
2861
2862 SmallVector<uint64_t, 64> Record;
2863 while (true) {
2864 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2865 if (!MaybeEntry)
2866 return MaybeEntry.takeError();
2867 BitstreamEntry Entry = MaybeEntry.get();
2868
2869 switch (Entry.Kind) {
2870 case BitstreamEntry::SubBlock: // Handled for us already.
2871 case BitstreamEntry::Error:
2872 return error(Message: "Malformed block");
2873 case BitstreamEntry::EndBlock:
2874 if (SSIDs.empty())
2875 return error(Message: "Invalid empty synchronization scope names block");
2876 return Error::success();
2877 case BitstreamEntry::Record:
2878 // The interesting case.
2879 break;
2880 }
2881
2882 // Synchronization scope names are implicitly mapped to synchronization
2883 // scope IDs by their order.
2884
2885 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
2886 if (!MaybeRecord)
2887 return MaybeRecord.takeError();
2888 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2889 return error(Message: "Invalid sync scope record");
2890
2891 SmallString<16> SSN;
2892 if (convertToString(Record, Idx: 0, Result&: SSN))
2893 return error(Message: "Invalid sync scope record");
2894
2895 SSIDs.push_back(Elt: Context.getOrInsertSyncScopeID(SSN));
2896 Record.clear();
2897 }
2898}
2899
2900/// Associate a value with its name from the given index in the provided record.
2901Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2902 unsigned NameIndex, Triple &TT) {
2903 SmallString<128> ValueName;
2904 if (convertToString(Record, Idx: NameIndex, Result&: ValueName))
2905 return error(Message: "Invalid record");
2906 unsigned ValueID = Record[0];
2907 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2908 return error(Message: "Invalid record");
2909 Value *V = ValueList[ValueID];
2910
2911 StringRef NameStr(ValueName.data(), ValueName.size());
2912 if (NameStr.contains(C: 0))
2913 return error(Message: "Invalid value name");
2914 V->setName(NameStr);
2915 auto *GO = dyn_cast<GlobalObject>(Val: V);
2916 if (GO && ImplicitComdatObjects.contains(V: GO) && TT.supportsCOMDAT())
2917 GO->setComdat(TheModule->getOrInsertComdat(Name: V->getName()));
2918 return V;
2919}
2920
2921/// Helper to note and return the current location, and jump to the given
2922/// offset.
2923static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2924 BitstreamCursor &Stream) {
2925 // Save the current parsing location so we can jump back at the end
2926 // of the VST read.
2927 uint64_t CurrentBit = Stream.GetCurrentBitNo();
2928 if (Error JumpFailed = Stream.JumpToBit(BitNo: Offset * 32))
2929 return std::move(JumpFailed);
2930 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2931 if (!MaybeEntry)
2932 return MaybeEntry.takeError();
2933 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2934 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2935 return error(Message: "Expected value symbol table subblock");
2936 return CurrentBit;
2937}
2938
2939void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2940 Function *F,
2941 ArrayRef<uint64_t> Record) {
2942 // Note that we subtract 1 here because the offset is relative to one word
2943 // before the start of the identification or module block, which was
2944 // historically always the start of the regular bitcode header.
2945 uint64_t FuncWordOffset = Record[1] - 1;
2946 uint64_t FuncBitOffset = FuncWordOffset * 32;
2947 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2948 // Set the LastFunctionBlockBit to point to the last function block.
2949 // Later when parsing is resumed after function materialization,
2950 // we can simply skip that last function block.
2951 if (FuncBitOffset > LastFunctionBlockBit)
2952 LastFunctionBlockBit = FuncBitOffset;
2953}
2954
2955/// Read a new-style GlobalValue symbol table.
2956Error BitcodeReader::parseGlobalValueSymbolTable() {
2957 unsigned FuncBitcodeOffsetDelta =
2958 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2959
2960 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID))
2961 return Err;
2962
2963 SmallVector<uint64_t, 64> Record;
2964 while (true) {
2965 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2966 if (!MaybeEntry)
2967 return MaybeEntry.takeError();
2968 BitstreamEntry Entry = MaybeEntry.get();
2969
2970 switch (Entry.Kind) {
2971 case BitstreamEntry::SubBlock:
2972 case BitstreamEntry::Error:
2973 return error(Message: "Malformed block");
2974 case BitstreamEntry::EndBlock:
2975 return Error::success();
2976 case BitstreamEntry::Record:
2977 break;
2978 }
2979
2980 Record.clear();
2981 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
2982 if (!MaybeRecord)
2983 return MaybeRecord.takeError();
2984 switch (MaybeRecord.get()) {
2985 case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2986 unsigned ValueID = Record[0];
2987 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2988 return error(Message: "Invalid value reference in symbol table");
2989 setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2990 F: cast<Function>(Val: ValueList[ValueID]), Record);
2991 break;
2992 }
2993 }
2994 }
2995}
2996
2997/// Parse the value symbol table at either the current parsing location or
2998/// at the given bit offset if provided.
2999Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
3000 uint64_t CurrentBit;
3001 // Pass in the Offset to distinguish between calling for the module-level
3002 // VST (where we want to jump to the VST offset) and the function-level
3003 // VST (where we don't).
3004 if (Offset > 0) {
3005 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
3006 if (!MaybeCurrentBit)
3007 return MaybeCurrentBit.takeError();
3008 CurrentBit = MaybeCurrentBit.get();
3009 // If this module uses a string table, read this as a module-level VST.
3010 if (UseStrtab) {
3011 if (Error Err = parseGlobalValueSymbolTable())
3012 return Err;
3013 if (Error JumpFailed = Stream.JumpToBit(BitNo: CurrentBit))
3014 return JumpFailed;
3015 return Error::success();
3016 }
3017 // Otherwise, the VST will be in a similar format to a function-level VST,
3018 // and will contain symbol names.
3019 }
3020
3021 // Compute the delta between the bitcode indices in the VST (the word offset
3022 // to the word-aligned ENTER_SUBBLOCK for the function block, and that
3023 // expected by the lazy reader. The reader's EnterSubBlock expects to have
3024 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
3025 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
3026 // just before entering the VST subblock because: 1) the EnterSubBlock
3027 // changes the AbbrevID width; 2) the VST block is nested within the same
3028 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
3029 // AbbrevID width before calling EnterSubBlock; and 3) when we want to
3030 // jump to the FUNCTION_BLOCK using this offset later, we don't want
3031 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
3032 unsigned FuncBitcodeOffsetDelta =
3033 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
3034
3035 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID))
3036 return Err;
3037
3038 SmallVector<uint64_t, 64> Record;
3039
3040 Triple TT(TheModule->getTargetTriple());
3041
3042 // Read all the records for this value table.
3043 SmallString<128> ValueName;
3044
3045 while (true) {
3046 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3047 if (!MaybeEntry)
3048 return MaybeEntry.takeError();
3049 BitstreamEntry Entry = MaybeEntry.get();
3050
3051 switch (Entry.Kind) {
3052 case BitstreamEntry::SubBlock: // Handled for us already.
3053 case BitstreamEntry::Error:
3054 return error(Message: "Malformed block");
3055 case BitstreamEntry::EndBlock:
3056 if (Offset > 0)
3057 if (Error JumpFailed = Stream.JumpToBit(BitNo: CurrentBit))
3058 return JumpFailed;
3059 return Error::success();
3060 case BitstreamEntry::Record:
3061 // The interesting case.
3062 break;
3063 }
3064
3065 // Read a record.
3066 Record.clear();
3067 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
3068 if (!MaybeRecord)
3069 return MaybeRecord.takeError();
3070 switch (MaybeRecord.get()) {
3071 default: // Default behavior: unknown type.
3072 break;
3073 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
3074 Expected<Value *> ValOrErr = recordValue(Record, NameIndex: 1, TT);
3075 if (Error Err = ValOrErr.takeError())
3076 return Err;
3077 ValOrErr.get();
3078 break;
3079 }
3080 case bitc::VST_CODE_FNENTRY: {
3081 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
3082 Expected<Value *> ValOrErr = recordValue(Record, NameIndex: 2, TT);
3083 if (Error Err = ValOrErr.takeError())
3084 return Err;
3085 Value *V = ValOrErr.get();
3086
3087 // Ignore function offsets emitted for aliases of functions in older
3088 // versions of LLVM.
3089 if (auto *F = dyn_cast<Function>(Val: V))
3090 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
3091 break;
3092 }
3093 case bitc::VST_CODE_BBENTRY: {
3094 if (convertToString(Record, Idx: 1, Result&: ValueName))
3095 return error(Message: "Invalid bbentry record");
3096 BasicBlock *BB = getBasicBlock(ID: Record[0]);
3097 if (!BB)
3098 return error(Message: "Invalid bbentry record");
3099
3100 BB->setName(ValueName.str());
3101 ValueName.clear();
3102 break;
3103 }
3104 }
3105 }
3106}
3107
3108/// Decode a signed value stored with the sign bit in the LSB for dense VBR
3109/// encoding.
3110uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
3111 if ((V & 1) == 0)
3112 return V >> 1;
3113 if (V != 1)
3114 return -(V >> 1);
3115 // There is no such thing as -0 with integers. "-0" really means MININT.
3116 return 1ULL << 63;
3117}
3118
3119/// Resolve all of the initializers for global values and aliases that we can.
3120Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
3121 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
3122 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
3123 std::vector<FunctionOperandInfo> FunctionOperandWorklist;
3124
3125 GlobalInitWorklist.swap(x&: GlobalInits);
3126 IndirectSymbolInitWorklist.swap(x&: IndirectSymbolInits);
3127 FunctionOperandWorklist.swap(x&: FunctionOperands);
3128
3129 while (!GlobalInitWorklist.empty()) {
3130 unsigned ValID = GlobalInitWorklist.back().second;
3131 if (ValID >= ValueList.size()) {
3132 // Not ready to resolve this yet, it requires something later in the file.
3133 GlobalInits.push_back(x: GlobalInitWorklist.back());
3134 } else {
3135 Expected<Constant *> MaybeC = getValueForInitializer(ID: ValID);
3136 if (!MaybeC)
3137 return MaybeC.takeError();
3138 GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
3139 }
3140 GlobalInitWorklist.pop_back();
3141 }
3142
3143 while (!IndirectSymbolInitWorklist.empty()) {
3144 unsigned ValID = IndirectSymbolInitWorklist.back().second;
3145 if (ValID >= ValueList.size()) {
3146 IndirectSymbolInits.push_back(x: IndirectSymbolInitWorklist.back());
3147 } else {
3148 Expected<Constant *> MaybeC = getValueForInitializer(ID: ValID);
3149 if (!MaybeC)
3150 return MaybeC.takeError();
3151 Constant *C = MaybeC.get();
3152 GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
3153 if (auto *GA = dyn_cast<GlobalAlias>(Val: GV)) {
3154 if (C->getType() != GV->getType())
3155 return error(Message: "Alias and aliasee types don't match");
3156 GA->setAliasee(C);
3157 } else if (auto *GI = dyn_cast<GlobalIFunc>(Val: GV)) {
3158 GI->setResolver(C);
3159 } else {
3160 return error(Message: "Expected an alias or an ifunc");
3161 }
3162 }
3163 IndirectSymbolInitWorklist.pop_back();
3164 }
3165
3166 while (!FunctionOperandWorklist.empty()) {
3167 FunctionOperandInfo &Info = FunctionOperandWorklist.back();
3168 if (Info.PersonalityFn) {
3169 unsigned ValID = Info.PersonalityFn - 1;
3170 if (ValID < ValueList.size()) {
3171 Expected<Constant *> MaybeC = getValueForInitializer(ID: ValID);
3172 if (!MaybeC)
3173 return MaybeC.takeError();
3174 Info.F->setPersonalityFn(MaybeC.get());
3175 Info.PersonalityFn = 0;
3176 }
3177 }
3178 if (Info.Prefix) {
3179 unsigned ValID = Info.Prefix - 1;
3180 if (ValID < ValueList.size()) {
3181 Expected<Constant *> MaybeC = getValueForInitializer(ID: ValID);
3182 if (!MaybeC)
3183 return MaybeC.takeError();
3184 Info.F->setPrefixData(MaybeC.get());
3185 Info.Prefix = 0;
3186 }
3187 }
3188 if (Info.Prologue) {
3189 unsigned ValID = Info.Prologue - 1;
3190 if (ValID < ValueList.size()) {
3191 Expected<Constant *> MaybeC = getValueForInitializer(ID: ValID);
3192 if (!MaybeC)
3193 return MaybeC.takeError();
3194 Info.F->setPrologueData(MaybeC.get());
3195 Info.Prologue = 0;
3196 }
3197 }
3198 if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
3199 FunctionOperands.push_back(x: Info);
3200 FunctionOperandWorklist.pop_back();
3201 }
3202
3203 return Error::success();
3204}
3205
3206APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3207 SmallVector<uint64_t, 8> Words(Vals.size());
3208 transform(Range&: Vals, d_first: Words.begin(),
3209 F: BitcodeReader::decodeSignRotatedValue);
3210
3211 return APInt(TypeBits, Words);
3212}
3213
3214Error BitcodeReader::parseConstants() {
3215 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::CONSTANTS_BLOCK_ID))
3216 return Err;
3217
3218 SmallVector<uint64_t, 64> Record;
3219
3220 // Read all the records for this value table.
3221 Type *CurTy = Type::getInt32Ty(C&: Context);
3222 unsigned Int32TyID = getVirtualTypeID(Ty: CurTy);
3223 unsigned CurTyID = Int32TyID;
3224 Type *CurElemTy = nullptr;
3225 unsigned NextCstNo = ValueList.size();
3226
3227 while (true) {
3228 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3229 if (!MaybeEntry)
3230 return MaybeEntry.takeError();
3231 BitstreamEntry Entry = MaybeEntry.get();
3232
3233 switch (Entry.Kind) {
3234 case BitstreamEntry::SubBlock: // Handled for us already.
3235 case BitstreamEntry::Error:
3236 return error(Message: "Malformed block");
3237 case BitstreamEntry::EndBlock:
3238 if (NextCstNo != ValueList.size())
3239 return error(Message: "Invalid constant reference");
3240 return Error::success();
3241 case BitstreamEntry::Record:
3242 // The interesting case.
3243 break;
3244 }
3245
3246 // Read a record.
3247 Record.clear();
3248 Type *VoidType = Type::getVoidTy(C&: Context);
3249 Value *V = nullptr;
3250 Expected<unsigned> MaybeBitCode = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
3251 if (!MaybeBitCode)
3252 return MaybeBitCode.takeError();
3253 switch (unsigned BitCode = MaybeBitCode.get()) {
3254 default: // Default behavior: unknown constant
3255 case bitc::CST_CODE_UNDEF: // UNDEF
3256 V = UndefValue::get(T: CurTy);
3257 break;
3258 case bitc::CST_CODE_POISON: // POISON
3259 V = PoisonValue::get(T: CurTy);
3260 break;
3261 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
3262 if (Record.empty())
3263 return error(Message: "Invalid settype record");
3264 if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3265 return error(Message: "Invalid settype record");
3266 if (TypeList[Record[0]] == VoidType)
3267 return error(Message: "Invalid constant type");
3268 CurTyID = Record[0];
3269 CurTy = TypeList[CurTyID];
3270 CurElemTy = getPtrElementTypeByID(ID: CurTyID);
3271 continue; // Skip the ValueList manipulation.
3272 case bitc::CST_CODE_NULL: // NULL
3273 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3274 return error(Message: "Invalid type for a constant null value");
3275 if (auto *TETy = dyn_cast<TargetExtType>(Val: CurTy))
3276 if (!TETy->hasProperty(Prop: TargetExtType::HasZeroInit))
3277 return error(Message: "Invalid type for a constant null value");
3278 V = Constant::getNullValue(Ty: CurTy);
3279 break;
3280 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
3281 if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3282 return error(Message: "Invalid integer const record");
3283 V = ConstantInt::get(Ty: CurTy, V: decodeSignRotatedValue(V: Record[0]));
3284 break;
3285 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3286 if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3287 return error(Message: "Invalid wide integer const record");
3288
3289 auto *ScalarTy = cast<IntegerType>(Val: CurTy->getScalarType());
3290 APInt VInt = readWideAPInt(Vals: Record, TypeBits: ScalarTy->getBitWidth());
3291 V = ConstantInt::get(Ty: CurTy, V: VInt);
3292 break;
3293 }
3294 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
3295 if (Record.empty())
3296 return error(Message: "Invalid float const record");
3297
3298 auto *ScalarTy = CurTy->getScalarType();
3299 if (ScalarTy->isHalfTy())
3300 V = ConstantFP::get(Ty: CurTy, V: APFloat(APFloat::IEEEhalf(),
3301 APInt(16, (uint16_t)Record[0])));
3302 else if (ScalarTy->isBFloatTy())
3303 V = ConstantFP::get(
3304 Ty: CurTy, V: APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3305 else if (ScalarTy->isFloatTy())
3306 V = ConstantFP::get(Ty: CurTy, V: APFloat(APFloat::IEEEsingle(),
3307 APInt(32, (uint32_t)Record[0])));
3308 else if (ScalarTy->isDoubleTy())
3309 V = ConstantFP::get(
3310 Ty: CurTy, V: APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3311 else if (ScalarTy->isX86_FP80Ty()) {
3312 // Bits are not stored the same way as a normal i80 APInt, compensate.
3313 uint64_t Rearrange[2];
3314 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3315 Rearrange[1] = Record[0] >> 48;
3316 V = ConstantFP::get(
3317 Ty: CurTy, V: APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3318 } else if (ScalarTy->isFP128Ty())
3319 V = ConstantFP::get(Ty: CurTy,
3320 V: APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3321 else if (ScalarTy->isPPC_FP128Ty())
3322 V = ConstantFP::get(
3323 Ty: CurTy, V: APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3324 else
3325 V = PoisonValue::get(T: CurTy);
3326 break;
3327 }
3328
3329 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3330 if (Record.empty())
3331 return error(Message: "Invalid aggregate record");
3332
3333 SmallVector<unsigned, 16> Elts;
3334 llvm::append_range(C&: Elts, R&: Record);
3335
3336 if (isa<StructType>(Val: CurTy)) {
3337 V = BitcodeConstant::create(
3338 A&: Alloc, Ty: CurTy, Info: BitcodeConstant::ConstantStructOpcode, OpIDs: Elts);
3339 } else if (isa<ArrayType>(Val: CurTy)) {
3340 V = BitcodeConstant::create(A&: Alloc, Ty: CurTy,
3341 Info: BitcodeConstant::ConstantArrayOpcode, OpIDs: Elts);
3342 } else if (isa<VectorType>(Val: CurTy)) {
3343 V = BitcodeConstant::create(
3344 A&: Alloc, Ty: CurTy, Info: BitcodeConstant::ConstantVectorOpcode, OpIDs: Elts);
3345 } else {
3346 V = PoisonValue::get(T: CurTy);
3347 }
3348 break;
3349 }
3350 case bitc::CST_CODE_STRING: // STRING: [values]
3351 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3352 if (Record.empty())
3353 return error(Message: "Invalid string record");
3354
3355 SmallString<16> Elts(Record.begin(), Record.end());
3356 V = ConstantDataArray::getString(Context, Initializer: Elts,
3357 AddNull: BitCode == bitc::CST_CODE_CSTRING);
3358 break;
3359 }
3360 case bitc::CST_CODE_DATA: {// DATA: [n x value]
3361 if (Record.empty())
3362 return error(Message: "Invalid data record");
3363
3364 Type *EltTy;
3365 if (auto *Array = dyn_cast<ArrayType>(Val: CurTy))
3366 EltTy = Array->getElementType();
3367 else
3368 EltTy = cast<VectorType>(Val: CurTy)->getElementType();
3369 if (EltTy->isIntegerTy(Bitwidth: 8)) {
3370 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3371 if (isa<VectorType>(Val: CurTy))
3372 V = ConstantDataVector::get(Context, Elts);
3373 else
3374 V = ConstantDataArray::get(Context, Elts);
3375 } else if (EltTy->isIntegerTy(Bitwidth: 16)) {
3376 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3377 if (isa<VectorType>(Val: CurTy))
3378 V = ConstantDataVector::get(Context, Elts);
3379 else
3380 V = ConstantDataArray::get(Context, Elts);
3381 } else if (EltTy->isIntegerTy(Bitwidth: 32)) {
3382 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3383 if (isa<VectorType>(Val: CurTy))
3384 V = ConstantDataVector::get(Context, Elts);
3385 else
3386 V = ConstantDataArray::get(Context, Elts);
3387 } else if (EltTy->isIntegerTy(Bitwidth: 64)) {
3388 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3389 if (isa<VectorType>(Val: CurTy))
3390 V = ConstantDataVector::get(Context, Elts);
3391 else
3392 V = ConstantDataArray::get(Context, Elts);
3393 } else if (EltTy->isHalfTy()) {
3394 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3395 if (isa<VectorType>(Val: CurTy))
3396 V = ConstantDataVector::getFP(ElementType: EltTy, Elts);
3397 else
3398 V = ConstantDataArray::getFP(ElementType: EltTy, Elts);
3399 } else if (EltTy->isBFloatTy()) {
3400 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3401 if (isa<VectorType>(Val: CurTy))
3402 V = ConstantDataVector::getFP(ElementType: EltTy, Elts);
3403 else
3404 V = ConstantDataArray::getFP(ElementType: EltTy, Elts);
3405 } else if (EltTy->isFloatTy()) {
3406 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3407 if (isa<VectorType>(Val: CurTy))
3408 V = ConstantDataVector::getFP(ElementType: EltTy, Elts);
3409 else
3410 V = ConstantDataArray::getFP(ElementType: EltTy, Elts);
3411 } else if (EltTy->isDoubleTy()) {
3412 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3413 if (isa<VectorType>(Val: CurTy))
3414 V = ConstantDataVector::getFP(ElementType: EltTy, Elts);
3415 else
3416 V = ConstantDataArray::getFP(ElementType: EltTy, Elts);
3417 } else {
3418 return error(Message: "Invalid type for value");
3419 }
3420 break;
3421 }
3422 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
3423 if (Record.size() < 2)
3424 return error(Message: "Invalid unary op constexpr record");
3425 int Opc = getDecodedUnaryOpcode(Val: Record[0], Ty: CurTy);
3426 if (Opc < 0) {
3427 V = PoisonValue::get(T: CurTy); // Unknown unop.
3428 } else {
3429 V = BitcodeConstant::create(A&: Alloc, Ty: CurTy, Info: Opc, OpIDs: (unsigned)Record[1]);
3430 }
3431 break;
3432 }
3433 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
3434 if (Record.size() < 3)
3435 return error(Message: "Invalid binary op constexpr record");
3436 int Opc = getDecodedBinaryOpcode(Val: Record[0], Ty: CurTy);
3437 if (Opc < 0) {
3438 V = PoisonValue::get(T: CurTy); // Unknown binop.
3439 } else {
3440 uint8_t Flags = 0;
3441 if (Record.size() >= 4) {
3442 if (Opc == Instruction::Add ||
3443 Opc == Instruction::Sub ||
3444 Opc == Instruction::Mul ||
3445 Opc == Instruction::Shl) {
3446 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3447 Flags |= OverflowingBinaryOperator::NoSignedWrap;
3448 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3449 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3450 } else if (Opc == Instruction::SDiv ||
3451 Opc == Instruction::UDiv ||
3452 Opc == Instruction::LShr ||
3453 Opc == Instruction::AShr) {
3454 if (Record[3] & (1 << bitc::PEO_EXACT))
3455 Flags |= PossiblyExactOperator::IsExact;
3456 }
3457 }
3458 V = BitcodeConstant::create(A&: Alloc, Ty: CurTy, Info: {(uint8_t)Opc, Flags},
3459 OpIDs: {(unsigned)Record[1], (unsigned)Record[2]});
3460 }
3461 break;
3462 }
3463 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
3464 if (Record.size() < 3)
3465 return error(Message: "Invalid cast constexpr record");
3466 int Opc = getDecodedCastOpcode(Val: Record[0]);
3467 if (Opc < 0) {
3468 V = PoisonValue::get(T: CurTy); // Unknown cast.
3469 } else {
3470 unsigned OpTyID = Record[1];
3471 Type *OpTy = getTypeByID(ID: OpTyID);
3472 if (!OpTy)
3473 return error(Message: "Invalid cast constexpr record");
3474 V = BitcodeConstant::create(A&: Alloc, Ty: CurTy, Info: Opc, OpIDs: (unsigned)Record[2]);
3475 }
3476 break;
3477 }
3478 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3479 case bitc::CST_CODE_CE_GEP_OLD: // [ty, n x operands]
3480 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x
3481 // operands]
3482 case bitc::CST_CODE_CE_GEP: // [ty, flags, n x operands]
3483 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x
3484 // operands]
3485 if (Record.size() < 2)
3486 return error(Message: "Constant GEP record must have at least two elements");
3487 unsigned OpNum = 0;
3488 Type *PointeeType = nullptr;
3489 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD ||
3490 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE ||
3491 BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2)
3492 PointeeType = getTypeByID(ID: Record[OpNum++]);
3493
3494 uint64_t Flags = 0;
3495 std::optional<ConstantRange> InRange;
3496 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) {
3497 uint64_t Op = Record[OpNum++];
3498 Flags = Op & 1; // inbounds
3499 unsigned InRangeIndex = Op >> 1;
3500 // "Upgrade" inrange by dropping it. The feature is too niche to
3501 // bother.
3502 (void)InRangeIndex;
3503 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) {
3504 Flags = Record[OpNum++];
3505 Expected<ConstantRange> MaybeInRange =
3506 readBitWidthAndConstantRange(Record, OpNum);
3507 if (!MaybeInRange)
3508 return MaybeInRange.takeError();
3509 InRange = MaybeInRange.get();
3510 } else if (BitCode == bitc::CST_CODE_CE_GEP) {
3511 Flags = Record[OpNum++];
3512 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3513 Flags = (1 << bitc::GEP_INBOUNDS);
3514
3515 SmallVector<unsigned, 16> Elts;
3516 unsigned BaseTypeID = Record[OpNum];
3517 while (OpNum != Record.size()) {
3518 unsigned ElTyID = Record[OpNum++];
3519 Type *ElTy = getTypeByID(ID: ElTyID);
3520 if (!ElTy)
3521 return error(Message: "Invalid getelementptr constexpr record");
3522 Elts.push_back(Elt: Record[OpNum++]);
3523 }
3524
3525 if (Elts.size() < 1)
3526 return error(Message: "Invalid gep with no operands");
3527
3528 Type *BaseType = getTypeByID(ID: BaseTypeID);
3529 if (isa<VectorType>(Val: BaseType)) {
3530 BaseTypeID = getContainedTypeID(ID: BaseTypeID, Idx: 0);
3531 BaseType = getTypeByID(ID: BaseTypeID);
3532 }
3533
3534 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(Val: BaseType);
3535 if (!OrigPtrTy)
3536 return error(Message: "GEP base operand must be pointer or vector of pointer");
3537
3538 if (!PointeeType) {
3539 PointeeType = getPtrElementTypeByID(ID: BaseTypeID);
3540 if (!PointeeType)
3541 return error(Message: "Missing element type for old-style constant GEP");
3542 }
3543
3544 V = BitcodeConstant::create(
3545 A&: Alloc, Ty: CurTy,
3546 Info: {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange},
3547 OpIDs: Elts);
3548 break;
3549 }
3550 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
3551 if (Record.size() < 3)
3552 return error(Message: "Invalid select constexpr record");
3553
3554 V = BitcodeConstant::create(
3555 A&: Alloc, Ty: CurTy, Info: Instruction::Select,
3556 OpIDs: {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3557 break;
3558 }
3559 case bitc::CST_CODE_CE_EXTRACTELT
3560 : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3561 if (Record.size() < 3)
3562 return error(Message: "Invalid extractelement constexpr record");
3563 unsigned OpTyID = Record[0];
3564 VectorType *OpTy =
3565 dyn_cast_or_null<VectorType>(Val: getTypeByID(ID: OpTyID));
3566 if (!OpTy)
3567 return error(Message: "Invalid extractelement constexpr record");
3568 unsigned IdxRecord;
3569 if (Record.size() == 4) {
3570 unsigned IdxTyID = Record[2];
3571 Type *IdxTy = getTypeByID(ID: IdxTyID);
3572 if (!IdxTy)
3573 return error(Message: "Invalid extractelement constexpr record");
3574 IdxRecord = Record[3];
3575 } else {
3576 // Deprecated, but still needed to read old bitcode files.
3577 IdxRecord = Record[2];
3578 }
3579 V = BitcodeConstant::create(A&: Alloc, Ty: CurTy, Info: Instruction::ExtractElement,
3580 OpIDs: {(unsigned)Record[1], IdxRecord});
3581 break;
3582 }
3583 case bitc::CST_CODE_CE_INSERTELT
3584 : { // CE_INSERTELT: [opval, opval, opty, opval]
3585 VectorType *OpTy = dyn_cast<VectorType>(Val: CurTy);
3586 if (Record.size() < 3 || !OpTy)
3587 return error(Message: "Invalid insertelement constexpr record");
3588 unsigned IdxRecord;
3589 if (Record.size() == 4) {
3590 unsigned IdxTyID = Record[2];
3591 Type *IdxTy = getTypeByID(ID: IdxTyID);
3592 if (!IdxTy)
3593 return error(Message: "Invalid insertelement constexpr record");
3594 IdxRecord = Record[3];
3595 } else {
3596 // Deprecated, but still needed to read old bitcode files.
3597 IdxRecord = Record[2];
3598 }
3599 V = BitcodeConstant::create(
3600 A&: Alloc, Ty: CurTy, Info: Instruction::InsertElement,
3601 OpIDs: {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3602 break;
3603 }
3604 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3605 VectorType *OpTy = dyn_cast<VectorType>(Val: CurTy);
3606 if (Record.size() < 3 || !OpTy)
3607 return error(Message: "Invalid shufflevector constexpr record");
3608 V = BitcodeConstant::create(
3609 A&: Alloc, Ty: CurTy, Info: Instruction::ShuffleVector,
3610 OpIDs: {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3611 break;
3612 }
3613 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3614 VectorType *RTy = dyn_cast<VectorType>(Val: CurTy);
3615 VectorType *OpTy =
3616 dyn_cast_or_null<VectorType>(Val: getTypeByID(ID: Record[0]));
3617 if (Record.size() < 4 || !RTy || !OpTy)
3618 return error(Message: "Invalid shufflevector constexpr record");
3619 V = BitcodeConstant::create(
3620 A&: Alloc, Ty: CurTy, Info: Instruction::ShuffleVector,
3621 OpIDs: {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3622 break;
3623 }
3624 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
3625 if (Record.size() < 4)
3626 return error(Message: "Invalid cmp constexpt record");
3627 unsigned OpTyID = Record[0];
3628 Type *OpTy = getTypeByID(ID: OpTyID);
3629 if (!OpTy)
3630 return error(Message: "Invalid cmp constexpr record");
3631 V = BitcodeConstant::create(
3632 A&: Alloc, Ty: CurTy,
3633 Info: {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3634 : Instruction::ICmp),
3635 (uint8_t)Record[3]},
3636 OpIDs: {(unsigned)Record[1], (unsigned)Record[2]});
3637 break;
3638 }
3639 // This maintains backward compatibility, pre-asm dialect keywords.
3640 // Deprecated, but still needed to read old bitcode files.
3641 case bitc::CST_CODE_INLINEASM_OLD: {
3642 if (Record.size() < 2)
3643 return error(Message: "Invalid inlineasm record");
3644 std::string AsmStr, ConstrStr;
3645 bool HasSideEffects = Record[0] & 1;
3646 bool IsAlignStack = Record[0] >> 1;
3647 unsigned AsmStrSize = Record[1];
3648 if (2+AsmStrSize >= Record.size())
3649 return error(Message: "Invalid inlineasm record");
3650 unsigned ConstStrSize = Record[2+AsmStrSize];
3651 if (3+AsmStrSize+ConstStrSize > Record.size())
3652 return error(Message: "Invalid inlineasm record");
3653
3654 for (unsigned i = 0; i != AsmStrSize; ++i)
3655 AsmStr += (char)Record[2+i];
3656 for (unsigned i = 0; i != ConstStrSize; ++i)
3657 ConstrStr += (char)Record[3+AsmStrSize+i];
3658 UpgradeInlineAsmString(AsmStr: &AsmStr);
3659 if (!CurElemTy)
3660 return error(Message: "Missing element type for old-style inlineasm");
3661 V = InlineAsm::get(Ty: cast<FunctionType>(Val: CurElemTy), AsmString: AsmStr, Constraints: ConstrStr,
3662 hasSideEffects: HasSideEffects, isAlignStack: IsAlignStack);
3663 break;
3664 }
3665 // This version adds support for the asm dialect keywords (e.g.,
3666 // inteldialect).
3667 case bitc::CST_CODE_INLINEASM_OLD2: {
3668 if (Record.size() < 2)
3669 return error(Message: "Invalid inlineasm record");
3670 std::string AsmStr, ConstrStr;
3671 bool HasSideEffects = Record[0] & 1;
3672 bool IsAlignStack = (Record[0] >> 1) & 1;
3673 unsigned AsmDialect = Record[0] >> 2;
3674 unsigned AsmStrSize = Record[1];
3675 if (2+AsmStrSize >= Record.size())
3676 return error(Message: "Invalid inlineasm record");
3677 unsigned ConstStrSize = Record[2+AsmStrSize];
3678 if (3+AsmStrSize+ConstStrSize > Record.size())
3679 return error(Message: "Invalid inlineasm record");
3680
3681 for (unsigned i = 0; i != AsmStrSize; ++i)
3682 AsmStr += (char)Record[2+i];
3683 for (unsigned i = 0; i != ConstStrSize; ++i)
3684 ConstrStr += (char)Record[3+AsmStrSize+i];
3685 UpgradeInlineAsmString(AsmStr: &AsmStr);
3686 if (!CurElemTy)
3687 return error(Message: "Missing element type for old-style inlineasm");
3688 V = InlineAsm::get(Ty: cast<FunctionType>(Val: CurElemTy), AsmString: AsmStr, Constraints: ConstrStr,
3689 hasSideEffects: HasSideEffects, isAlignStack: IsAlignStack,
3690 asmDialect: InlineAsm::AsmDialect(AsmDialect));
3691 break;
3692 }
3693 // This version adds support for the unwind keyword.
3694 case bitc::CST_CODE_INLINEASM_OLD3: {
3695 if (Record.size() < 2)
3696 return error(Message: "Invalid inlineasm record");
3697 unsigned OpNum = 0;
3698 std::string AsmStr, ConstrStr;
3699 bool HasSideEffects = Record[OpNum] & 1;
3700 bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3701 unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3702 bool CanThrow = (Record[OpNum] >> 3) & 1;
3703 ++OpNum;
3704 unsigned AsmStrSize = Record[OpNum];
3705 ++OpNum;
3706 if (OpNum + AsmStrSize >= Record.size())
3707 return error(Message: "Invalid inlineasm record");
3708 unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3709 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3710 return error(Message: "Invalid inlineasm record");
3711
3712 for (unsigned i = 0; i != AsmStrSize; ++i)
3713 AsmStr += (char)Record[OpNum + i];
3714 ++OpNum;
3715 for (unsigned i = 0; i != ConstStrSize; ++i)
3716 ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3717 UpgradeInlineAsmString(AsmStr: &AsmStr);
3718 if (!CurElemTy)
3719 return error(Message: "Missing element type for old-style inlineasm");
3720 V = InlineAsm::get(Ty: cast<FunctionType>(Val: CurElemTy), AsmString: AsmStr, Constraints: ConstrStr,
3721 hasSideEffects: HasSideEffects, isAlignStack: IsAlignStack,
3722 asmDialect: InlineAsm::AsmDialect(AsmDialect), canThrow: CanThrow);
3723 break;
3724 }
3725 // This version adds explicit function type.
3726 case bitc::CST_CODE_INLINEASM: {
3727 if (Record.size() < 3)
3728 return error(Message: "Invalid inlineasm record");
3729 unsigned OpNum = 0;
3730 auto *FnTy = dyn_cast_or_null<FunctionType>(Val: getTypeByID(ID: Record[OpNum]));
3731 ++OpNum;
3732 if (!FnTy)
3733 return error(Message: "Invalid inlineasm record");
3734 std::string AsmStr, ConstrStr;
3735 bool HasSideEffects = Record[OpNum] & 1;
3736 bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3737 unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3738 bool CanThrow = (Record[OpNum] >> 3) & 1;
3739 ++OpNum;
3740 unsigned AsmStrSize = Record[OpNum];
3741 ++OpNum;
3742 if (OpNum + AsmStrSize >= Record.size())
3743 return error(Message: "Invalid inlineasm record");
3744 unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3745 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3746 return error(Message: "Invalid inlineasm record");
3747
3748 for (unsigned i = 0; i != AsmStrSize; ++i)
3749 AsmStr += (char)Record[OpNum + i];
3750 ++OpNum;
3751 for (unsigned i = 0; i != ConstStrSize; ++i)
3752 ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3753 UpgradeInlineAsmString(AsmStr: &AsmStr);
3754 V = InlineAsm::get(Ty: FnTy, AsmString: AsmStr, Constraints: ConstrStr, hasSideEffects: HasSideEffects, isAlignStack: IsAlignStack,
3755 asmDialect: InlineAsm::AsmDialect(AsmDialect), canThrow: CanThrow);
3756 break;
3757 }
3758 case bitc::CST_CODE_BLOCKADDRESS:{
3759 if (Record.size() < 3)
3760 return error(Message: "Invalid blockaddress record");
3761 unsigned FnTyID = Record[0];
3762 Type *FnTy = getTypeByID(ID: FnTyID);
3763 if (!FnTy)
3764 return error(Message: "Invalid blockaddress record");
3765 V = BitcodeConstant::create(
3766 A&: Alloc, Ty: CurTy,
3767 Info: {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3768 OpIDs: Record[1]);
3769 break;
3770 }
3771 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3772 if (Record.size() < 2)
3773 return error(Message: "Invalid dso_local record");
3774 unsigned GVTyID = Record[0];
3775 Type *GVTy = getTypeByID(ID: GVTyID);
3776 if (!GVTy)
3777 return error(Message: "Invalid dso_local record");
3778 V = BitcodeConstant::create(
3779 A&: Alloc, Ty: CurTy, Info: BitcodeConstant::DSOLocalEquivalentOpcode, OpIDs: Record[1]);
3780 break;
3781 }
3782 case bitc::CST_CODE_NO_CFI_VALUE: {
3783 if (Record.size() < 2)
3784 return error(Message: "Invalid no_cfi record");
3785 unsigned GVTyID = Record[0];
3786 Type *GVTy = getTypeByID(ID: GVTyID);
3787 if (!GVTy)
3788 return error(Message: "Invalid no_cfi record");
3789 V = BitcodeConstant::create(A&: Alloc, Ty: CurTy, Info: BitcodeConstant::NoCFIOpcode,
3790 OpIDs: Record[1]);
3791 break;
3792 }
3793 case bitc::CST_CODE_PTRAUTH: {
3794 if (Record.size() < 4)
3795 return error(Message: "Invalid ptrauth record");
3796 // Ptr, Key, Disc, AddrDisc
3797 V = BitcodeConstant::create(A&: Alloc, Ty: CurTy,
3798 Info: BitcodeConstant::ConstantPtrAuthOpcode,
3799 OpIDs: {(unsigned)Record[0], (unsigned)Record[1],
3800 (unsigned)Record[2], (unsigned)Record[3]});
3801 break;
3802 }
3803 }
3804
3805 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3806 if (Error Err = ValueList.assignValue(Idx: NextCstNo, V, TypeID: CurTyID))
3807 return Err;
3808 ++NextCstNo;
3809 }
3810}
3811
3812Error BitcodeReader::parseUseLists() {
3813 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::USELIST_BLOCK_ID))
3814 return Err;
3815
3816 // Read all the records.
3817 SmallVector<uint64_t, 64> Record;
3818
3819 while (true) {
3820 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3821 if (!MaybeEntry)
3822 return MaybeEntry.takeError();
3823 BitstreamEntry Entry = MaybeEntry.get();
3824
3825 switch (Entry.Kind) {
3826 case BitstreamEntry::SubBlock: // Handled for us already.
3827 case BitstreamEntry::Error:
3828 return error(Message: "Malformed block");
3829 case BitstreamEntry::EndBlock:
3830 return Error::success();
3831 case BitstreamEntry::Record:
3832 // The interesting case.
3833 break;
3834 }
3835
3836 // Read a use list record.
3837 Record.clear();
3838 bool IsBB = false;
3839 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
3840 if (!MaybeRecord)
3841 return MaybeRecord.takeError();
3842 switch (MaybeRecord.get()) {
3843 default: // Default behavior: unknown type.
3844 break;
3845 case bitc::USELIST_CODE_BB:
3846 IsBB = true;
3847 [[fallthrough]];
3848 case bitc::USELIST_CODE_DEFAULT: {
3849 unsigned RecordLength = Record.size();
3850 if (RecordLength < 3)
3851 // Records should have at least an ID and two indexes.
3852 return error(Message: "Invalid record");
3853 unsigned ID = Record.pop_back_val();
3854
3855 Value *V;
3856 if (IsBB) {
3857 assert(ID < FunctionBBs.size() && "Basic block not found");
3858 V = FunctionBBs[ID];
3859 } else
3860 V = ValueList[ID];
3861
3862 if (!V->hasUseList())
3863 break;
3864
3865 unsigned NumUses = 0;
3866 SmallDenseMap<const Use *, unsigned, 16> Order;
3867 for (const Use &U : V->materialized_uses()) {
3868 if (++NumUses > Record.size())
3869 break;
3870 Order[&U] = Record[NumUses - 1];
3871 }
3872 if (Order.size() != Record.size() || NumUses > Record.size())
3873 // Mismatches can happen if the functions are being materialized lazily
3874 // (out-of-order), or a value has been upgraded.
3875 break;
3876
3877 V->sortUseList(Cmp: [&](const Use &L, const Use &R) {
3878 return Order.lookup(Val: &L) < Order.lookup(Val: &R);
3879 });
3880 break;
3881 }
3882 }
3883 }
3884}
3885
3886/// When we see the block for metadata, remember where it is and then skip it.
3887/// This lets us lazily deserialize the metadata.
3888Error BitcodeReader::rememberAndSkipMetadata() {
3889 // Save the current stream state.
3890 uint64_t CurBit = Stream.GetCurrentBitNo();
3891 DeferredMetadataInfo.push_back(x: CurBit);
3892
3893 // Skip over the block for now.
3894 if (Error Err = Stream.SkipBlock())
3895 return Err;
3896 return Error::success();
3897}
3898
3899Error BitcodeReader::materializeMetadata() {
3900 for (uint64_t BitPos : DeferredMetadataInfo) {
3901 // Move the bit stream to the saved position.
3902 if (Error JumpFailed = Stream.JumpToBit(BitNo: BitPos))
3903 return JumpFailed;
3904 if (Error Err = MDLoader->parseModuleMetadata())
3905 return Err;
3906 }
3907
3908 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3909 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3910 // multiple times.
3911 if (!TheModule->getNamedMetadata(Name: "llvm.linker.options")) {
3912 if (Metadata *Val = TheModule->getModuleFlag(Key: "Linker Options")) {
3913 NamedMDNode *LinkerOpts =
3914 TheModule->getOrInsertNamedMetadata(Name: "llvm.linker.options");
3915 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3916 LinkerOpts->addOperand(M: cast<MDNode>(Val: MDOptions));
3917 }
3918 }
3919
3920 DeferredMetadataInfo.clear();
3921 return Error::success();
3922}
3923
3924void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3925
3926/// When we see the block for a function body, remember where it is and then
3927/// skip it. This lets us lazily deserialize the functions.
3928Error BitcodeReader::rememberAndSkipFunctionBody() {
3929 // Get the function we are talking about.
3930 if (FunctionsWithBodies.empty())
3931 return error(Message: "Insufficient function protos");
3932
3933 Function *Fn = FunctionsWithBodies.back();
3934 FunctionsWithBodies.pop_back();
3935
3936 // Save the current stream state.
3937 uint64_t CurBit = Stream.GetCurrentBitNo();
3938 assert(
3939 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3940 "Mismatch between VST and scanned function offsets");
3941 DeferredFunctionInfo[Fn] = CurBit;
3942
3943 // Skip over the function block for now.
3944 if (Error Err = Stream.SkipBlock())
3945 return Err;
3946 return Error::success();
3947}
3948
3949Error BitcodeReader::globalCleanup() {
3950 // Patch the initializers for globals and aliases up.
3951 if (Error Err = resolveGlobalAndIndirectSymbolInits())
3952 return Err;
3953 if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3954 return error(Message: "Malformed global initializer set");
3955
3956 // Look for intrinsic functions which need to be upgraded at some point
3957 // and functions that need to have their function attributes upgraded.
3958 for (Function &F : *TheModule) {
3959 MDLoader->upgradeDebugIntrinsics(F);
3960 Function *NewFn;
3961 if (UpgradeIntrinsicFunction(F: &F, NewFn))
3962 UpgradedIntrinsics[&F] = NewFn;
3963 // Look for functions that rely on old function attribute behavior.
3964 UpgradeFunctionAttributes(F);
3965 }
3966
3967 // Look for global variables which need to be renamed.
3968 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3969 for (GlobalVariable &GV : TheModule->globals())
3970 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(GV: &GV))
3971 UpgradedVariables.emplace_back(args: &GV, args&: Upgraded);
3972 for (auto &Pair : UpgradedVariables) {
3973 Pair.first->eraseFromParent();
3974 TheModule->insertGlobalVariable(GV: Pair.second);
3975 }
3976
3977 // Force deallocation of memory for these vectors to favor the client that
3978 // want lazy deserialization.
3979 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(x&: GlobalInits);
3980 std::vector<std::pair<GlobalValue *, unsigned>>().swap(x&: IndirectSymbolInits);
3981 return Error::success();
3982}
3983
3984/// Support for lazy parsing of function bodies. This is required if we
3985/// either have an old bitcode file without a VST forward declaration record,
3986/// or if we have an anonymous function being materialized, since anonymous
3987/// functions do not have a name and are therefore not in the VST.
3988Error BitcodeReader::rememberAndSkipFunctionBodies() {
3989 if (Error JumpFailed = Stream.JumpToBit(BitNo: NextUnreadBit))
3990 return JumpFailed;
3991
3992 if (Stream.AtEndOfStream())
3993 return error(Message: "Could not find function in stream");
3994
3995 if (!SeenFirstFunctionBody)
3996 return error(Message: "Trying to materialize functions before seeing function blocks");
3997
3998 // An old bitcode file with the symbol table at the end would have
3999 // finished the parse greedily.
4000 assert(SeenValueSymbolTable);
4001
4002 while (true) {
4003 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4004 if (!MaybeEntry)
4005 return MaybeEntry.takeError();
4006 llvm::BitstreamEntry Entry = MaybeEntry.get();
4007
4008 switch (Entry.Kind) {
4009 default:
4010 return error(Message: "Expect SubBlock");
4011 case BitstreamEntry::SubBlock:
4012 switch (Entry.ID) {
4013 default:
4014 return error(Message: "Expect function block");
4015 case bitc::FUNCTION_BLOCK_ID:
4016 if (Error Err = rememberAndSkipFunctionBody())
4017 return Err;
4018 NextUnreadBit = Stream.GetCurrentBitNo();
4019 return Error::success();
4020 }
4021 }
4022 }
4023}
4024
4025Error BitcodeReaderBase::readBlockInfo() {
4026 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
4027 Stream.ReadBlockInfoBlock();
4028 if (!MaybeNewBlockInfo)
4029 return MaybeNewBlockInfo.takeError();
4030 std::optional<BitstreamBlockInfo> NewBlockInfo =
4031 std::move(MaybeNewBlockInfo.get());
4032 if (!NewBlockInfo)
4033 return error(Message: "Malformed block");
4034 BlockInfo = std::move(*NewBlockInfo);
4035 return Error::success();
4036}
4037
4038Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
4039 // v1: [selection_kind, name]
4040 // v2: [strtab_offset, strtab_size, selection_kind]
4041 StringRef Name;
4042 std::tie(args&: Name, args&: Record) = readNameFromStrtab(Record);
4043
4044 if (Record.empty())
4045 return error(Message: "Invalid record");
4046 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Val: Record[0]);
4047 std::string OldFormatName;
4048 if (!UseStrtab) {
4049 if (Record.size() < 2)
4050 return error(Message: "Invalid record");
4051 unsigned ComdatNameSize = Record[1];
4052 if (ComdatNameSize > Record.size() - 2)
4053 return error(Message: "Comdat name size too large");
4054 OldFormatName.reserve(res_arg: ComdatNameSize);
4055 for (unsigned i = 0; i != ComdatNameSize; ++i)
4056 OldFormatName += (char)Record[2 + i];
4057 Name = OldFormatName;
4058 }
4059 Comdat *C = TheModule->getOrInsertComdat(Name);
4060 C->setSelectionKind(SK);
4061 ComdatList.push_back(x: C);
4062 return Error::success();
4063}
4064
4065static void inferDSOLocal(GlobalValue *GV) {
4066 // infer dso_local from linkage and visibility if it is not encoded.
4067 if (GV->hasLocalLinkage() ||
4068 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
4069 GV->setDSOLocal(true);
4070}
4071
4072GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
4073 GlobalValue::SanitizerMetadata Meta;
4074 if (V & (1 << 0))
4075 Meta.NoAddress = true;
4076 if (V & (1 << 1))
4077 Meta.NoHWAddress = true;
4078 if (V & (1 << 2))
4079 Meta.Memtag = true;
4080 if (V & (1 << 3))
4081 Meta.IsDynInit = true;
4082 return Meta;
4083}
4084
4085Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
4086 // v1: [pointer type, isconst, initid, linkage, alignment, section,
4087 // visibility, threadlocal, unnamed_addr, externally_initialized,
4088 // dllstorageclass, comdat, attributes, preemption specifier,
4089 // partition strtab offset, partition strtab size] (name in VST)
4090 // v2: [strtab_offset, strtab_size, v1]
4091 // v3: [v2, code_model]
4092 StringRef Name;
4093 std::tie(args&: Name, args&: Record) = readNameFromStrtab(Record);
4094
4095 if (Record.size() < 6)
4096 return error(Message: "Invalid record");
4097 unsigned TyID = Record[0];
4098 Type *Ty = getTypeByID(ID: TyID);
4099 if (!Ty)
4100 return error(Message: "Invalid record");
4101 bool isConstant = Record[1] & 1;
4102 bool explicitType = Record[1] & 2;
4103 unsigned AddressSpace;
4104 if (explicitType) {
4105 AddressSpace = Record[1] >> 2;
4106 } else {
4107 if (!Ty->isPointerTy())
4108 return error(Message: "Invalid type for value");
4109 AddressSpace = cast<PointerType>(Val: Ty)->getAddressSpace();
4110 TyID = getContainedTypeID(ID: TyID);
4111 Ty = getTypeByID(ID: TyID);
4112 if (!Ty)
4113 return error(Message: "Missing element type for old-style global");
4114 }
4115
4116 uint64_t RawLinkage = Record[3];
4117 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(Val: RawLinkage);
4118 MaybeAlign Alignment;
4119 if (Error Err = parseAlignmentValue(Exponent: Record[4], Alignment))
4120 return Err;
4121 std::string Section;
4122 if (Record[5]) {
4123 if (Record[5] - 1 >= SectionTable.size())
4124 return error(Message: "Invalid ID");
4125 Section = SectionTable[Record[5] - 1];
4126 }
4127 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
4128 // Local linkage must have default visibility.
4129 // auto-upgrade `hidden` and `protected` for old bitcode.
4130 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
4131 Visibility = getDecodedVisibility(Val: Record[6]);
4132
4133 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
4134 if (Record.size() > 7)
4135 TLM = getDecodedThreadLocalMode(Val: Record[7]);
4136
4137 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4138 if (Record.size() > 8)
4139 UnnamedAddr = getDecodedUnnamedAddrType(Val: Record[8]);
4140
4141 bool ExternallyInitialized = false;
4142 if (Record.size() > 9)
4143 ExternallyInitialized = Record[9];
4144
4145 GlobalVariable *NewGV =
4146 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
4147 nullptr, TLM, AddressSpace, ExternallyInitialized);
4148 if (Alignment)
4149 NewGV->setAlignment(*Alignment);
4150 if (!Section.empty())
4151 NewGV->setSection(Section);
4152 NewGV->setVisibility(Visibility);
4153 NewGV->setUnnamedAddr(UnnamedAddr);
4154
4155 if (Record.size() > 10) {
4156 // A GlobalValue with local linkage cannot have a DLL storage class.
4157 if (!NewGV->hasLocalLinkage()) {
4158 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Val: Record[10]));
4159 }
4160 } else {
4161 upgradeDLLImportExportLinkage(GV: NewGV, Val: RawLinkage);
4162 }
4163
4164 ValueList.push_back(V: NewGV, TypeID: getVirtualTypeID(Ty: NewGV->getType(), ChildTypeIDs: TyID));
4165
4166 // Remember which value to use for the global initializer.
4167 if (unsigned InitID = Record[2])
4168 GlobalInits.push_back(x: std::make_pair(x&: NewGV, y: InitID - 1));
4169
4170 if (Record.size() > 11) {
4171 if (unsigned ComdatID = Record[11]) {
4172 if (ComdatID > ComdatList.size())
4173 return error(Message: "Invalid global variable comdat ID");
4174 NewGV->setComdat(ComdatList[ComdatID - 1]);
4175 }
4176 } else if (hasImplicitComdat(Val: RawLinkage)) {
4177 ImplicitComdatObjects.insert(V: NewGV);
4178 }
4179
4180 if (Record.size() > 12) {
4181 auto AS = getAttributes(i: Record[12]).getFnAttrs();
4182 NewGV->setAttributes(AS);
4183 }
4184
4185 if (Record.size() > 13) {
4186 NewGV->setDSOLocal(getDecodedDSOLocal(Val: Record[13]));
4187 }
4188 inferDSOLocal(GV: NewGV);
4189
4190 // Check whether we have enough values to read a partition name.
4191 if (Record.size() > 15)
4192 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
4193
4194 if (Record.size() > 16 && Record[16]) {
4195 llvm::GlobalValue::SanitizerMetadata Meta =
4196 deserializeSanitizerMetadata(V: Record[16]);
4197 NewGV->setSanitizerMetadata(Meta);
4198 }
4199
4200 if (Record.size() > 17 && Record[17]) {
4201 if (auto CM = getDecodedCodeModel(Val: Record[17]))
4202 NewGV->setCodeModel(*CM);
4203 else
4204 return error(Message: "Invalid global variable code model");
4205 }
4206
4207 return Error::success();
4208}
4209
4210void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
4211 if (ValueTypeCallback) {
4212 (*ValueTypeCallback)(
4213 F, TypeID, [this](unsigned I) { return getTypeByID(ID: I); },
4214 [this](unsigned I, unsigned J) { return getContainedTypeID(ID: I, Idx: J); });
4215 }
4216}
4217
4218Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
4219 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
4220 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
4221 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
4222 // v2: [strtab_offset, strtab_size, v1]
4223 StringRef Name;
4224 std::tie(args&: Name, args&: Record) = readNameFromStrtab(Record);
4225
4226 if (Record.size() < 8)
4227 return error(Message: "Invalid record");
4228 unsigned FTyID = Record[0];
4229 Type *FTy = getTypeByID(ID: FTyID);
4230 if (!FTy)
4231 return error(Message: "Invalid record");
4232 if (isa<PointerType>(Val: FTy)) {
4233 FTyID = getContainedTypeID(ID: FTyID, Idx: 0);
4234 FTy = getTypeByID(ID: FTyID);
4235 if (!FTy)
4236 return error(Message: "Missing element type for old-style function");
4237 }
4238
4239 if (!isa<FunctionType>(Val: FTy))
4240 return error(Message: "Invalid type for value");
4241 auto CC = static_cast<CallingConv::ID>(Record[1]);
4242 if (CC & ~CallingConv::MaxID)
4243 return error(Message: "Invalid calling convention ID");
4244
4245 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4246 if (Record.size() > 16)
4247 AddrSpace = Record[16];
4248
4249 Function *Func =
4250 Function::Create(Ty: cast<FunctionType>(Val: FTy), Linkage: GlobalValue::ExternalLinkage,
4251 AddrSpace, N: Name, M: TheModule);
4252
4253 assert(Func->getFunctionType() == FTy &&
4254 "Incorrect fully specified type provided for function");
4255 FunctionTypeIDs[Func] = FTyID;
4256
4257 Func->setCallingConv(CC);
4258 bool isProto = Record[2];
4259 uint64_t RawLinkage = Record[3];
4260 Func->setLinkage(getDecodedLinkage(Val: RawLinkage));
4261 Func->setAttributes(getAttributes(i: Record[4]));
4262 callValueTypeCallback(F: Func, TypeID: FTyID);
4263
4264 // Upgrade any old-style byval or sret without a type by propagating the
4265 // argument's pointee type. There should be no opaque pointers where the byval
4266 // type is implicit.
4267 for (unsigned i = 0; i != Func->arg_size(); ++i) {
4268 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4269 Attribute::InAlloca}) {
4270 if (!Func->hasParamAttribute(ArgNo: i, Kind))
4271 continue;
4272
4273 if (Func->getParamAttribute(ArgNo: i, Kind).getValueAsType())
4274 continue;
4275
4276 Func->removeParamAttr(ArgNo: i, Kind);
4277
4278 unsigned ParamTypeID = getContainedTypeID(ID: FTyID, Idx: i + 1);
4279 Type *PtrEltTy = getPtrElementTypeByID(ID: ParamTypeID);
4280 if (!PtrEltTy)
4281 return error(Message: "Missing param element type for attribute upgrade");
4282
4283 Attribute NewAttr;
4284 switch (Kind) {
4285 case Attribute::ByVal:
4286 NewAttr = Attribute::getWithByValType(Context, Ty: PtrEltTy);
4287 break;
4288 case Attribute::StructRet:
4289 NewAttr = Attribute::getWithStructRetType(Context, Ty: PtrEltTy);
4290 break;
4291 case Attribute::InAlloca:
4292 NewAttr = Attribute::getWithInAllocaType(Context, Ty: PtrEltTy);
4293 break;
4294 default:
4295 llvm_unreachable("not an upgraded type attribute");
4296 }
4297
4298 Func->addParamAttr(ArgNo: i, Attr: NewAttr);
4299 }
4300 }
4301
4302 if (Func->getCallingConv() == CallingConv::X86_INTR &&
4303 !Func->arg_empty() && !Func->hasParamAttribute(ArgNo: 0, Kind: Attribute::ByVal)) {
4304 unsigned ParamTypeID = getContainedTypeID(ID: FTyID, Idx: 1);
4305 Type *ByValTy = getPtrElementTypeByID(ID: ParamTypeID);
4306 if (!ByValTy)
4307 return error(Message: "Missing param element type for x86_intrcc upgrade");
4308 Attribute NewAttr = Attribute::getWithByValType(Context, Ty: ByValTy);
4309 Func->addParamAttr(ArgNo: 0, Attr: NewAttr);
4310 }
4311
4312 MaybeAlign Alignment;
4313 if (Error Err = parseAlignmentValue(Exponent: Record[5], Alignment))
4314 return Err;
4315 if (Alignment)
4316 Func->setAlignment(*Alignment);
4317 if (Record[6]) {
4318 if (Record[6] - 1 >= SectionTable.size())
4319 return error(Message: "Invalid ID");
4320 Func->setSection(SectionTable[Record[6] - 1]);
4321 }
4322 // Local linkage must have default visibility.
4323 // auto-upgrade `hidden` and `protected` for old bitcode.
4324 if (!Func->hasLocalLinkage())
4325 Func->setVisibility(getDecodedVisibility(Val: Record[7]));
4326 if (Record.size() > 8 && Record[8]) {
4327 if (Record[8] - 1 >= GCTable.size())
4328 return error(Message: "Invalid ID");
4329 Func->setGC(GCTable[Record[8] - 1]);
4330 }
4331 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4332 if (Record.size() > 9)
4333 UnnamedAddr = getDecodedUnnamedAddrType(Val: Record[9]);
4334 Func->setUnnamedAddr(UnnamedAddr);
4335
4336 FunctionOperandInfo OperandInfo = {.F: Func, .PersonalityFn: 0, .Prefix: 0, .Prologue: 0};
4337 if (Record.size() > 10)
4338 OperandInfo.Prologue = Record[10];
4339
4340 if (Record.size() > 11) {
4341 // A GlobalValue with local linkage cannot have a DLL storage class.
4342 if (!Func->hasLocalLinkage()) {
4343 Func->setDLLStorageClass(getDecodedDLLStorageClass(Val: Record[11]));
4344 }
4345 } else {
4346 upgradeDLLImportExportLinkage(GV: Func, Val: RawLinkage);
4347 }
4348
4349 if (Record.size() > 12) {
4350 if (unsigned ComdatID = Record[12]) {
4351 if (ComdatID > ComdatList.size())
4352 return error(Message: "Invalid function comdat ID");
4353 Func->setComdat(ComdatList[ComdatID - 1]);
4354 }
4355 } else if (hasImplicitComdat(Val: RawLinkage)) {
4356 ImplicitComdatObjects.insert(V: Func);
4357 }
4358
4359 if (Record.size() > 13)
4360 OperandInfo.Prefix = Record[13];
4361
4362 if (Record.size() > 14)
4363 OperandInfo.PersonalityFn = Record[14];
4364
4365 if (Record.size() > 15) {
4366 Func->setDSOLocal(getDecodedDSOLocal(Val: Record[15]));
4367 }
4368 inferDSOLocal(GV: Func);
4369
4370 // Record[16] is the address space number.
4371
4372 // Check whether we have enough values to read a partition name. Also make
4373 // sure Strtab has enough values.
4374 if (Record.size() > 18 && Strtab.data() &&
4375 Record[17] + Record[18] <= Strtab.size()) {
4376 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4377 }
4378
4379 ValueList.push_back(V: Func, TypeID: getVirtualTypeID(Ty: Func->getType(), ChildTypeIDs: FTyID));
4380
4381 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4382 FunctionOperands.push_back(x: OperandInfo);
4383
4384 // If this is a function with a body, remember the prototype we are
4385 // creating now, so that we can match up the body with them later.
4386 if (!isProto) {
4387 Func->setIsMaterializable(true);
4388 FunctionsWithBodies.push_back(x: Func);
4389 DeferredFunctionInfo[Func] = 0;
4390 }
4391 return Error::success();
4392}
4393
4394Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4395 unsigned BitCode, ArrayRef<uint64_t> Record) {
4396 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4397 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4398 // dllstorageclass, threadlocal, unnamed_addr,
4399 // preemption specifier] (name in VST)
4400 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4401 // visibility, dllstorageclass, threadlocal, unnamed_addr,
4402 // preemption specifier] (name in VST)
4403 // v2: [strtab_offset, strtab_size, v1]
4404 StringRef Name;
4405 std::tie(args&: Name, args&: Record) = readNameFromStrtab(Record);
4406
4407 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4408 if (Record.size() < (3 + (unsigned)NewRecord))
4409 return error(Message: "Invalid record");
4410 unsigned OpNum = 0;
4411 unsigned TypeID = Record[OpNum++];
4412 Type *Ty = getTypeByID(ID: TypeID);
4413 if (!Ty)
4414 return error(Message: "Invalid record");
4415
4416 unsigned AddrSpace;
4417 if (!NewRecord) {
4418 auto *PTy = dyn_cast<PointerType>(Val: Ty);
4419 if (!PTy)
4420 return error(Message: "Invalid type for value");
4421 AddrSpace = PTy->getAddressSpace();
4422 TypeID = getContainedTypeID(ID: TypeID);
4423 Ty = getTypeByID(ID: TypeID);
4424 if (!Ty)
4425 return error(Message: "Missing element type for old-style indirect symbol");
4426 } else {
4427 AddrSpace = Record[OpNum++];
4428 }
4429
4430 auto Val = Record[OpNum++];
4431 auto Linkage = Record[OpNum++];
4432 GlobalValue *NewGA;
4433 if (BitCode == bitc::MODULE_CODE_ALIAS ||
4434 BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4435 NewGA = GlobalAlias::create(Ty, AddressSpace: AddrSpace, Linkage: getDecodedLinkage(Val: Linkage), Name,
4436 Parent: TheModule);
4437 else
4438 NewGA = GlobalIFunc::create(Ty, AddressSpace: AddrSpace, Linkage: getDecodedLinkage(Val: Linkage), Name,
4439 Resolver: nullptr, Parent: TheModule);
4440
4441 // Local linkage must have default visibility.
4442 // auto-upgrade `hidden` and `protected` for old bitcode.
4443 if (OpNum != Record.size()) {
4444 auto VisInd = OpNum++;
4445 if (!NewGA->hasLocalLinkage())
4446 NewGA->setVisibility(getDecodedVisibility(Val: Record[VisInd]));
4447 }
4448 if (BitCode == bitc::MODULE_CODE_ALIAS ||
4449 BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4450 if (OpNum != Record.size()) {
4451 auto S = Record[OpNum++];
4452 // A GlobalValue with local linkage cannot have a DLL storage class.
4453 if (!NewGA->hasLocalLinkage())
4454 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Val: S));
4455 }
4456 else
4457 upgradeDLLImportExportLinkage(GV: NewGA, Val: Linkage);
4458 if (OpNum != Record.size())
4459 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Val: Record[OpNum++]));
4460 if (OpNum != Record.size())
4461 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Val: Record[OpNum++]));
4462 }
4463 if (OpNum != Record.size())
4464 NewGA->setDSOLocal(getDecodedDSOLocal(Val: Record[OpNum++]));
4465 inferDSOLocal(GV: NewGA);
4466
4467 // Check whether we have enough values to read a partition name.
4468 if (OpNum + 1 < Record.size()) {
4469 // Check Strtab has enough values for the partition.
4470 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4471 return error(Message: "Malformed partition, too large.");
4472 NewGA->setPartition(
4473 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4474 }
4475
4476 ValueList.push_back(V: NewGA, TypeID: getVirtualTypeID(Ty: NewGA->getType(), ChildTypeIDs: TypeID));
4477 IndirectSymbolInits.push_back(x: std::make_pair(x&: NewGA, y&: Val));
4478 return Error::success();
4479}
4480
4481Error BitcodeReader::parseModule(uint64_t ResumeBit,
4482 bool ShouldLazyLoadMetadata,
4483 ParserCallbacks Callbacks) {
4484 this->ValueTypeCallback = std::move(Callbacks.ValueType);
4485 if (ResumeBit) {
4486 if (Error JumpFailed = Stream.JumpToBit(BitNo: ResumeBit))
4487 return JumpFailed;
4488 } else if (Error Err = Stream.EnterSubBlock(BlockID: bitc::MODULE_BLOCK_ID))
4489 return Err;
4490
4491 SmallVector<uint64_t, 64> Record;
4492
4493 // Parts of bitcode parsing depend on the datalayout. Make sure we
4494 // finalize the datalayout before we run any of that code.
4495 bool ResolvedDataLayout = false;
4496 // In order to support importing modules with illegal data layout strings,
4497 // delay parsing the data layout string until after upgrades and overrides
4498 // have been applied, allowing to fix illegal data layout strings.
4499 // Initialize to the current module's layout string in case none is specified.
4500 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4501
4502 auto ResolveDataLayout = [&]() -> Error {
4503 if (ResolvedDataLayout)
4504 return Error::success();
4505
4506 // Datalayout and triple can't be parsed after this point.
4507 ResolvedDataLayout = true;
4508
4509 // Auto-upgrade the layout string
4510 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4511 DL: TentativeDataLayoutStr, Triple: TheModule->getTargetTriple().str());
4512
4513 // Apply override
4514 if (Callbacks.DataLayout) {
4515 if (auto LayoutOverride = (*Callbacks.DataLayout)(
4516 TheModule->getTargetTriple().str(), TentativeDataLayoutStr))
4517 TentativeDataLayoutStr = *LayoutOverride;
4518 }
4519
4520 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4521 Expected<DataLayout> MaybeDL = DataLayout::parse(LayoutString: TentativeDataLayoutStr);
4522 if (!MaybeDL)
4523 return MaybeDL.takeError();
4524
4525 TheModule->setDataLayout(MaybeDL.get());
4526 return Error::success();
4527 };
4528
4529 // Read all the records for this module.
4530 while (true) {
4531 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4532 if (!MaybeEntry)
4533 return MaybeEntry.takeError();
4534 llvm::BitstreamEntry Entry = MaybeEntry.get();
4535
4536 switch (Entry.Kind) {
4537 case BitstreamEntry::Error:
4538 return error(Message: "Malformed block");
4539 case BitstreamEntry::EndBlock:
4540 if (Error Err = ResolveDataLayout())
4541 return Err;
4542 return globalCleanup();
4543
4544 case BitstreamEntry::SubBlock:
4545 switch (Entry.ID) {
4546 default: // Skip unknown content.
4547 if (Error Err = Stream.SkipBlock())
4548 return Err;
4549 break;
4550 case bitc::BLOCKINFO_BLOCK_ID:
4551 if (Error Err = readBlockInfo())
4552 return Err;
4553 break;
4554 case bitc::PARAMATTR_BLOCK_ID:
4555 if (Error Err = parseAttributeBlock())
4556 return Err;
4557 break;
4558 case bitc::PARAMATTR_GROUP_BLOCK_ID:
4559 if (Error Err = parseAttributeGroupBlock())
4560 return Err;
4561 break;
4562 case bitc::TYPE_BLOCK_ID_NEW:
4563 if (Error Err = parseTypeTable())
4564 return Err;
4565 break;
4566 case bitc::VALUE_SYMTAB_BLOCK_ID:
4567 if (!SeenValueSymbolTable) {
4568 // Either this is an old form VST without function index and an
4569 // associated VST forward declaration record (which would have caused
4570 // the VST to be jumped to and parsed before it was encountered
4571 // normally in the stream), or there were no function blocks to
4572 // trigger an earlier parsing of the VST.
4573 assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4574 if (Error Err = parseValueSymbolTable())
4575 return Err;
4576 SeenValueSymbolTable = true;
4577 } else {
4578 // We must have had a VST forward declaration record, which caused
4579 // the parser to jump to and parse the VST earlier.
4580 assert(VSTOffset > 0);
4581 if (Error Err = Stream.SkipBlock())
4582 return Err;
4583 }
4584 break;
4585 case bitc::CONSTANTS_BLOCK_ID:
4586 if (Error Err = parseConstants())
4587 return Err;
4588 if (Error Err = resolveGlobalAndIndirectSymbolInits())
4589 return Err;
4590 break;
4591 case bitc::METADATA_BLOCK_ID:
4592 if (ShouldLazyLoadMetadata) {
4593 if (Error Err = rememberAndSkipMetadata())
4594 return Err;
4595 break;
4596 }
4597 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4598 if (Error Err = MDLoader->parseModuleMetadata())
4599 return Err;
4600 break;
4601 case bitc::METADATA_KIND_BLOCK_ID:
4602 if (Error Err = MDLoader->parseMetadataKinds())
4603 return Err;
4604 break;
4605 case bitc::FUNCTION_BLOCK_ID:
4606 if (Error Err = ResolveDataLayout())
4607 return Err;
4608
4609 // If this is the first function body we've seen, reverse the
4610 // FunctionsWithBodies list.
4611 if (!SeenFirstFunctionBody) {
4612 std::reverse(first: FunctionsWithBodies.begin(), last: FunctionsWithBodies.end());
4613 if (Error Err = globalCleanup())
4614 return Err;
4615 SeenFirstFunctionBody = true;
4616 }
4617
4618 if (VSTOffset > 0) {
4619 // If we have a VST forward declaration record, make sure we
4620 // parse the VST now if we haven't already. It is needed to
4621 // set up the DeferredFunctionInfo vector for lazy reading.
4622 if (!SeenValueSymbolTable) {
4623 if (Error Err = BitcodeReader::parseValueSymbolTable(Offset: VSTOffset))
4624 return Err;
4625 SeenValueSymbolTable = true;
4626 // Fall through so that we record the NextUnreadBit below.
4627 // This is necessary in case we have an anonymous function that
4628 // is later materialized. Since it will not have a VST entry we
4629 // need to fall back to the lazy parse to find its offset.
4630 } else {
4631 // If we have a VST forward declaration record, but have already
4632 // parsed the VST (just above, when the first function body was
4633 // encountered here), then we are resuming the parse after
4634 // materializing functions. The ResumeBit points to the
4635 // start of the last function block recorded in the
4636 // DeferredFunctionInfo map. Skip it.
4637 if (Error Err = Stream.SkipBlock())
4638 return Err;
4639 continue;
4640 }
4641 }
4642
4643 // Support older bitcode files that did not have the function
4644 // index in the VST, nor a VST forward declaration record, as
4645 // well as anonymous functions that do not have VST entries.
4646 // Build the DeferredFunctionInfo vector on the fly.
4647 if (Error Err = rememberAndSkipFunctionBody())
4648 return Err;
4649
4650 // Suspend parsing when we reach the function bodies. Subsequent
4651 // materialization calls will resume it when necessary. If the bitcode
4652 // file is old, the symbol table will be at the end instead and will not
4653 // have been seen yet. In this case, just finish the parse now.
4654 if (SeenValueSymbolTable) {
4655 NextUnreadBit = Stream.GetCurrentBitNo();
4656 // After the VST has been parsed, we need to make sure intrinsic name
4657 // are auto-upgraded.
4658 return globalCleanup();
4659 }
4660 break;
4661 case bitc::USELIST_BLOCK_ID:
4662 if (Error Err = parseUseLists())
4663 return Err;
4664 break;
4665 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4666 if (Error Err = parseOperandBundleTags())
4667 return Err;
4668 break;
4669 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4670 if (Error Err = parseSyncScopeNames())
4671 return Err;
4672 break;
4673 }
4674 continue;
4675
4676 case BitstreamEntry::Record:
4677 // The interesting case.
4678 break;
4679 }
4680
4681 // Read a record.
4682 Expected<unsigned> MaybeBitCode = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
4683 if (!MaybeBitCode)
4684 return MaybeBitCode.takeError();
4685 switch (unsigned BitCode = MaybeBitCode.get()) {
4686 default: break; // Default behavior, ignore unknown content.
4687 case bitc::MODULE_CODE_VERSION: {
4688 Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4689 if (!VersionOrErr)
4690 return VersionOrErr.takeError();
4691 UseRelativeIDs = *VersionOrErr >= 1;
4692 break;
4693 }
4694 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
4695 if (ResolvedDataLayout)
4696 return error(Message: "target triple too late in module");
4697 std::string S;
4698 if (convertToString(Record, Idx: 0, Result&: S))
4699 return error(Message: "Invalid record");
4700 TheModule->setTargetTriple(Triple(std::move(S)));
4701 break;
4702 }
4703 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
4704 if (ResolvedDataLayout)
4705 return error(Message: "datalayout too late in module");
4706 if (convertToString(Record, Idx: 0, Result&: TentativeDataLayoutStr))
4707 return error(Message: "Invalid record");
4708 break;
4709 }
4710 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
4711 std::string S;
4712 if (convertToString(Record, Idx: 0, Result&: S))
4713 return error(Message: "Invalid record");
4714 TheModule->setModuleInlineAsm(S);
4715 break;
4716 }
4717 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
4718 // Deprecated, but still needed to read old bitcode files.
4719 std::string S;
4720 if (convertToString(Record, Idx: 0, Result&: S))
4721 return error(Message: "Invalid record");
4722 // Ignore value.
4723 break;
4724 }
4725 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
4726 std::string S;
4727 if (convertToString(Record, Idx: 0, Result&: S))
4728 return error(Message: "Invalid record");
4729 SectionTable.push_back(x: S);
4730 break;
4731 }
4732 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
4733 std::string S;
4734 if (convertToString(Record, Idx: 0, Result&: S))
4735 return error(Message: "Invalid record");
4736 GCTable.push_back(x: S);
4737 break;
4738 }
4739 case bitc::MODULE_CODE_COMDAT:
4740 if (Error Err = parseComdatRecord(Record))
4741 return Err;
4742 break;
4743 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4744 // written by ThinLinkBitcodeWriter. See
4745 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4746 // record
4747 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4748 case bitc::MODULE_CODE_GLOBALVAR:
4749 if (Error Err = parseGlobalVarRecord(Record))
4750 return Err;
4751 break;
4752 case bitc::MODULE_CODE_FUNCTION:
4753 if (Error Err = ResolveDataLayout())
4754 return Err;
4755 if (Error Err = parseFunctionRecord(Record))
4756 return Err;
4757 break;
4758 case bitc::MODULE_CODE_IFUNC:
4759 case bitc::MODULE_CODE_ALIAS:
4760 case bitc::MODULE_CODE_ALIAS_OLD:
4761 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4762 return Err;
4763 break;
4764 /// MODULE_CODE_VSTOFFSET: [offset]
4765 case bitc::MODULE_CODE_VSTOFFSET:
4766 if (Record.empty())
4767 return error(Message: "Invalid record");
4768 // Note that we subtract 1 here because the offset is relative to one word
4769 // before the start of the identification or module block, which was
4770 // historically always the start of the regular bitcode header.
4771 VSTOffset = Record[0] - 1;
4772 break;
4773 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4774 case bitc::MODULE_CODE_SOURCE_FILENAME:
4775 SmallString<128> ValueName;
4776 if (convertToString(Record, Idx: 0, Result&: ValueName))
4777 return error(Message: "Invalid record");
4778 TheModule->setSourceFileName(ValueName);
4779 break;
4780 }
4781 Record.clear();
4782 }
4783 this->ValueTypeCallback = std::nullopt;
4784 return Error::success();
4785}
4786
4787Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4788 bool IsImporting,
4789 ParserCallbacks Callbacks) {
4790 TheModule = M;
4791 MetadataLoaderCallbacks MDCallbacks;
4792 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4793 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4794 return getContainedTypeID(ID: I, Idx: J);
4795 };
4796 MDCallbacks.MDType = Callbacks.MDType;
4797 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4798 return parseModule(ResumeBit: 0, ShouldLazyLoadMetadata, Callbacks);
4799}
4800
4801Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4802 if (!isa<PointerType>(Val: PtrType))
4803 return error(Message: "Load/Store operand is not a pointer type");
4804 if (!PointerType::isLoadableOrStorableType(ElemTy: ValType))
4805 return error(Message: "Cannot load/store from pointer");
4806 return Error::success();
4807}
4808
4809Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4810 ArrayRef<unsigned> ArgTyIDs) {
4811 AttributeList Attrs = CB->getAttributes();
4812 for (unsigned i = 0; i != CB->arg_size(); ++i) {
4813 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4814 Attribute::InAlloca}) {
4815 if (!Attrs.hasParamAttr(ArgNo: i, Kind) ||
4816 Attrs.getParamAttr(ArgNo: i, Kind).getValueAsType())
4817 continue;
4818
4819 Type *PtrEltTy = getPtrElementTypeByID(ID: ArgTyIDs[i]);
4820 if (!PtrEltTy)
4821 return error(Message: "Missing element type for typed attribute upgrade");
4822
4823 Attribute NewAttr;
4824 switch (Kind) {
4825 case Attribute::ByVal:
4826 NewAttr = Attribute::getWithByValType(Context, Ty: PtrEltTy);
4827 break;
4828 case Attribute::StructRet:
4829 NewAttr = Attribute::getWithStructRetType(Context, Ty: PtrEltTy);
4830 break;
4831 case Attribute::InAlloca:
4832 NewAttr = Attribute::getWithInAllocaType(Context, Ty: PtrEltTy);
4833 break;
4834 default:
4835 llvm_unreachable("not an upgraded type attribute");
4836 }
4837
4838 Attrs = Attrs.addParamAttribute(C&: Context, ArgNos: i, A: NewAttr);
4839 }
4840 }
4841
4842 if (CB->isInlineAsm()) {
4843 const InlineAsm *IA = cast<InlineAsm>(Val: CB->getCalledOperand());
4844 unsigned ArgNo = 0;
4845 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4846 if (!CI.hasArg())
4847 continue;
4848
4849 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4850 Type *ElemTy = getPtrElementTypeByID(ID: ArgTyIDs[ArgNo]);
4851 if (!ElemTy)
4852 return error(Message: "Missing element type for inline asm upgrade");
4853 Attrs = Attrs.addParamAttribute(
4854 C&: Context, ArgNos: ArgNo,
4855 A: Attribute::get(Context, Kind: Attribute::ElementType, Ty: ElemTy));
4856 }
4857
4858 ArgNo++;
4859 }
4860 }
4861
4862 switch (CB->getIntrinsicID()) {
4863 case Intrinsic::preserve_array_access_index:
4864 case Intrinsic::preserve_struct_access_index:
4865 case Intrinsic::aarch64_ldaxr:
4866 case Intrinsic::aarch64_ldxr:
4867 case Intrinsic::aarch64_stlxr:
4868 case Intrinsic::aarch64_stxr:
4869 case Intrinsic::arm_ldaex:
4870 case Intrinsic::arm_ldrex:
4871 case Intrinsic::arm_stlex:
4872 case Intrinsic::arm_strex: {
4873 unsigned ArgNo;
4874 switch (CB->getIntrinsicID()) {
4875 case Intrinsic::aarch64_stlxr:
4876 case Intrinsic::aarch64_stxr:
4877 case Intrinsic::arm_stlex:
4878 case Intrinsic::arm_strex:
4879 ArgNo = 1;
4880 break;
4881 default:
4882 ArgNo = 0;
4883 break;
4884 }
4885 if (!Attrs.getParamElementType(ArgNo)) {
4886 Type *ElTy = getPtrElementTypeByID(ID: ArgTyIDs[ArgNo]);
4887 if (!ElTy)
4888 return error(Message: "Missing element type for elementtype upgrade");
4889 Attribute NewAttr = Attribute::get(Context, Kind: Attribute::ElementType, Ty: ElTy);
4890 Attrs = Attrs.addParamAttribute(C&: Context, ArgNos: ArgNo, A: NewAttr);
4891 }
4892 break;
4893 }
4894 default:
4895 break;
4896 }
4897
4898 CB->setAttributes(Attrs);
4899 return Error::success();
4900}
4901
4902/// Lazily parse the specified function body block.
4903Error BitcodeReader::parseFunctionBody(Function *F) {
4904 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::FUNCTION_BLOCK_ID))
4905 return Err;
4906
4907 // Unexpected unresolved metadata when parsing function.
4908 if (MDLoader->hasFwdRefs())
4909 return error(Message: "Invalid function metadata: incoming forward references");
4910
4911 InstructionList.clear();
4912 unsigned ModuleValueListSize = ValueList.size();
4913 unsigned ModuleMDLoaderSize = MDLoader->size();
4914
4915 // Add all the function arguments to the value table.
4916 unsigned ArgNo = 0;
4917 unsigned FTyID = FunctionTypeIDs[F];
4918 for (Argument &I : F->args()) {
4919 unsigned ArgTyID = getContainedTypeID(ID: FTyID, Idx: ArgNo + 1);
4920 assert(I.getType() == getTypeByID(ArgTyID) &&
4921 "Incorrect fully specified type for Function Argument");
4922 ValueList.push_back(V: &I, TypeID: ArgTyID);
4923 ++ArgNo;
4924 }
4925 unsigned NextValueNo = ValueList.size();
4926 BasicBlock *CurBB = nullptr;
4927 unsigned CurBBNo = 0;
4928 // Block into which constant expressions from phi nodes are materialized.
4929 BasicBlock *PhiConstExprBB = nullptr;
4930 // Edge blocks for phi nodes into which constant expressions have been
4931 // expanded.
4932 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4933 ConstExprEdgeBBs;
4934
4935 DebugLoc LastLoc;
4936 auto getLastInstruction = [&]() -> Instruction * {
4937 if (CurBB && !CurBB->empty())
4938 return &CurBB->back();
4939 else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4940 !FunctionBBs[CurBBNo - 1]->empty())
4941 return &FunctionBBs[CurBBNo - 1]->back();
4942 return nullptr;
4943 };
4944
4945 std::vector<OperandBundleDef> OperandBundles;
4946
4947 // Read all the records.
4948 SmallVector<uint64_t, 64> Record;
4949
4950 while (true) {
4951 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4952 if (!MaybeEntry)
4953 return MaybeEntry.takeError();
4954 llvm::BitstreamEntry Entry = MaybeEntry.get();
4955
4956 switch (Entry.Kind) {
4957 case BitstreamEntry::Error:
4958 return error(Message: "Malformed block");
4959 case BitstreamEntry::EndBlock:
4960 goto OutOfRecordLoop;
4961
4962 case BitstreamEntry::SubBlock:
4963 switch (Entry.ID) {
4964 default: // Skip unknown content.
4965 if (Error Err = Stream.SkipBlock())
4966 return Err;
4967 break;
4968 case bitc::CONSTANTS_BLOCK_ID:
4969 if (Error Err = parseConstants())
4970 return Err;
4971 NextValueNo = ValueList.size();
4972 break;
4973 case bitc::VALUE_SYMTAB_BLOCK_ID:
4974 if (Error Err = parseValueSymbolTable())
4975 return Err;
4976 break;
4977 case bitc::METADATA_ATTACHMENT_ID:
4978 if (Error Err = MDLoader->parseMetadataAttachment(F&: *F, InstructionList))
4979 return Err;
4980 break;
4981 case bitc::METADATA_BLOCK_ID:
4982 assert(DeferredMetadataInfo.empty() &&
4983 "Must read all module-level metadata before function-level");
4984 if (Error Err = MDLoader->parseFunctionMetadata())
4985 return Err;
4986 break;
4987 case bitc::USELIST_BLOCK_ID:
4988 if (Error Err = parseUseLists())
4989 return Err;
4990 break;
4991 }
4992 continue;
4993
4994 case BitstreamEntry::Record:
4995 // The interesting case.
4996 break;
4997 }
4998
4999 // Read a record.
5000 Record.clear();
5001 Instruction *I = nullptr;
5002 unsigned ResTypeID = InvalidTypeID;
5003 Expected<unsigned> MaybeBitCode = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
5004 if (!MaybeBitCode)
5005 return MaybeBitCode.takeError();
5006 switch (unsigned BitCode = MaybeBitCode.get()) {
5007 default: // Default behavior: reject
5008 return error(Message: "Invalid value");
5009 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
5010 if (Record.empty() || Record[0] == 0)
5011 return error(Message: "Invalid record");
5012 // Create all the basic blocks for the function.
5013 FunctionBBs.resize(new_size: Record[0]);
5014
5015 // See if anything took the address of blocks in this function.
5016 auto BBFRI = BasicBlockFwdRefs.find(Val: F);
5017 if (BBFRI == BasicBlockFwdRefs.end()) {
5018 for (BasicBlock *&BB : FunctionBBs)
5019 BB = BasicBlock::Create(Context, Name: "", Parent: F);
5020 } else {
5021 auto &BBRefs = BBFRI->second;
5022 // Check for invalid basic block references.
5023 if (BBRefs.size() > FunctionBBs.size())
5024 return error(Message: "Invalid ID");
5025 assert(!BBRefs.empty() && "Unexpected empty array");
5026 assert(!BBRefs.front() && "Invalid reference to entry block");
5027 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
5028 ++I)
5029 if (I < RE && BBRefs[I]) {
5030 BBRefs[I]->insertInto(Parent: F);
5031 FunctionBBs[I] = BBRefs[I];
5032 } else {
5033 FunctionBBs[I] = BasicBlock::Create(Context, Name: "", Parent: F);
5034 }
5035
5036 // Erase from the table.
5037 BasicBlockFwdRefs.erase(I: BBFRI);
5038 }
5039
5040 CurBB = FunctionBBs[0];
5041 continue;
5042 }
5043
5044 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
5045 // The record should not be emitted if it's an empty list.
5046 if (Record.empty())
5047 return error(Message: "Invalid record");
5048 // When we have the RARE case of a BlockAddress Constant that is not
5049 // scoped to the Function it refers to, we need to conservatively
5050 // materialize the referred to Function, regardless of whether or not
5051 // that Function will ultimately be linked, otherwise users of
5052 // BitcodeReader might start splicing out Function bodies such that we
5053 // might no longer be able to materialize the BlockAddress since the
5054 // BasicBlock (and entire body of the Function) the BlockAddress refers
5055 // to may have been moved. In the case that the user of BitcodeReader
5056 // decides ultimately not to link the Function body, materializing here
5057 // could be considered wasteful, but it's better than a deserialization
5058 // failure as described. This keeps BitcodeReader unaware of complex
5059 // linkage policy decisions such as those use by LTO, leaving those
5060 // decisions "one layer up."
5061 for (uint64_t ValID : Record)
5062 if (auto *F = dyn_cast<Function>(Val: ValueList[ValID]))
5063 BackwardRefFunctions.push_back(x: F);
5064 else
5065 return error(Message: "Invalid record");
5066
5067 continue;
5068
5069 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
5070 // This record indicates that the last instruction is at the same
5071 // location as the previous instruction with a location.
5072 I = getLastInstruction();
5073
5074 if (!I)
5075 return error(Message: "Invalid record");
5076 I->setDebugLoc(LastLoc);
5077 I = nullptr;
5078 continue;
5079
5080 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
5081 I = getLastInstruction();
5082 if (!I || Record.size() < 4)
5083 return error(Message: "Invalid record");
5084
5085 unsigned Line = Record[0], Col = Record[1];
5086 unsigned ScopeID = Record[2], IAID = Record[3];
5087 bool isImplicitCode = Record.size() == 5 && Record[4];
5088
5089 MDNode *Scope = nullptr, *IA = nullptr;
5090 if (ScopeID) {
5091 Scope = dyn_cast_or_null<MDNode>(
5092 Val: MDLoader->getMetadataFwdRefOrLoad(Idx: ScopeID - 1));
5093 if (!Scope)
5094 return error(Message: "Invalid record");
5095 }
5096 if (IAID) {
5097 IA = dyn_cast_or_null<MDNode>(
5098 Val: MDLoader->getMetadataFwdRefOrLoad(Idx: IAID - 1));
5099 if (!IA)
5100 return error(Message: "Invalid record");
5101 }
5102 LastLoc = DILocation::get(Context&: Scope->getContext(), Line, Column: Col, Scope, InlinedAt: IA,
5103 ImplicitCode: isImplicitCode);
5104 I->setDebugLoc(LastLoc);
5105 I = nullptr;
5106 continue;
5107 }
5108 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
5109 unsigned OpNum = 0;
5110 Value *LHS;
5111 unsigned TypeID;
5112 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: LHS, TypeID, ConstExprInsertBB: CurBB) ||
5113 OpNum+1 > Record.size())
5114 return error(Message: "Invalid record");
5115
5116 int Opc = getDecodedUnaryOpcode(Val: Record[OpNum++], Ty: LHS->getType());
5117 if (Opc == -1)
5118 return error(Message: "Invalid record");
5119 I = UnaryOperator::Create(Op: (Instruction::UnaryOps)Opc, S: LHS);
5120 ResTypeID = TypeID;
5121 InstructionList.push_back(Elt: I);
5122 if (OpNum < Record.size()) {
5123 if (isa<FPMathOperator>(Val: I)) {
5124 FastMathFlags FMF = getDecodedFastMathFlags(Val: Record[OpNum]);
5125 if (FMF.any())
5126 I->setFastMathFlags(FMF);
5127 }
5128 }
5129 break;
5130 }
5131 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
5132 unsigned OpNum = 0;
5133 Value *LHS, *RHS;
5134 unsigned TypeID;
5135 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: LHS, TypeID, ConstExprInsertBB: CurBB) ||
5136 popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: LHS->getType(), TyID: TypeID, ResVal&: RHS,
5137 ConstExprInsertBB: CurBB) ||
5138 OpNum+1 > Record.size())
5139 return error(Message: "Invalid record");
5140
5141 int Opc = getDecodedBinaryOpcode(Val: Record[OpNum++], Ty: LHS->getType());
5142 if (Opc == -1)
5143 return error(Message: "Invalid record");
5144 I = BinaryOperator::Create(Op: (Instruction::BinaryOps)Opc, S1: LHS, S2: RHS);
5145 ResTypeID = TypeID;
5146 InstructionList.push_back(Elt: I);
5147 if (OpNum < Record.size()) {
5148 if (Opc == Instruction::Add ||
5149 Opc == Instruction::Sub ||
5150 Opc == Instruction::Mul ||
5151 Opc == Instruction::Shl) {
5152 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
5153 cast<BinaryOperator>(Val: I)->setHasNoSignedWrap(true);
5154 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
5155 cast<BinaryOperator>(Val: I)->setHasNoUnsignedWrap(true);
5156 } else if (Opc == Instruction::SDiv ||
5157 Opc == Instruction::UDiv ||
5158 Opc == Instruction::LShr ||
5159 Opc == Instruction::AShr) {
5160 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
5161 cast<BinaryOperator>(Val: I)->setIsExact(true);
5162 } else if (Opc == Instruction::Or) {
5163 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
5164 cast<PossiblyDisjointInst>(Val: I)->setIsDisjoint(true);
5165 } else if (isa<FPMathOperator>(Val: I)) {
5166 FastMathFlags FMF = getDecodedFastMathFlags(Val: Record[OpNum]);
5167 if (FMF.any())
5168 I->setFastMathFlags(FMF);
5169 }
5170 }
5171 break;
5172 }
5173 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
5174 unsigned OpNum = 0;
5175 Value *Op;
5176 unsigned OpTypeID;
5177 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB) ||
5178 OpNum + 1 > Record.size())
5179 return error(Message: "Invalid record");
5180
5181 ResTypeID = Record[OpNum++];
5182 Type *ResTy = getTypeByID(ID: ResTypeID);
5183 int Opc = getDecodedCastOpcode(Val: Record[OpNum++]);
5184
5185 if (Opc == -1 || !ResTy)
5186 return error(Message: "Invalid record");
5187 Instruction *Temp = nullptr;
5188 if ((I = UpgradeBitCastInst(Opc, V: Op, DestTy: ResTy, Temp))) {
5189 if (Temp) {
5190 InstructionList.push_back(Elt: Temp);
5191 assert(CurBB && "No current BB?");
5192 Temp->insertInto(ParentBB: CurBB, It: CurBB->end());
5193 }
5194 } else {
5195 auto CastOp = (Instruction::CastOps)Opc;
5196 if (!CastInst::castIsValid(op: CastOp, S: Op, DstTy: ResTy))
5197 return error(Message: "Invalid cast");
5198 I = CastInst::Create(CastOp, S: Op, Ty: ResTy);
5199 }
5200
5201 if (OpNum < Record.size()) {
5202 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) {
5203 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))
5204 cast<PossiblyNonNegInst>(Val: I)->setNonNeg(true);
5205 } else if (Opc == Instruction::Trunc) {
5206 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP))
5207 cast<TruncInst>(Val: I)->setHasNoUnsignedWrap(true);
5208 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP))
5209 cast<TruncInst>(Val: I)->setHasNoSignedWrap(true);
5210 }
5211 if (isa<FPMathOperator>(Val: I)) {
5212 FastMathFlags FMF = getDecodedFastMathFlags(Val: Record[OpNum]);
5213 if (FMF.any())
5214 I->setFastMathFlags(FMF);
5215 }
5216 }
5217
5218 InstructionList.push_back(Elt: I);
5219 break;
5220 }
5221 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
5222 case bitc::FUNC_CODE_INST_GEP_OLD:
5223 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
5224 unsigned OpNum = 0;
5225
5226 unsigned TyID;
5227 Type *Ty;
5228 GEPNoWrapFlags NW;
5229
5230 if (BitCode == bitc::FUNC_CODE_INST_GEP) {
5231 NW = toGEPNoWrapFlags(Flags: Record[OpNum++]);
5232 TyID = Record[OpNum++];
5233 Ty = getTypeByID(ID: TyID);
5234 } else {
5235 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD)
5236 NW = GEPNoWrapFlags::inBounds();
5237 TyID = InvalidTypeID;
5238 Ty = nullptr;
5239 }
5240
5241 Value *BasePtr;
5242 unsigned BasePtrTypeID;
5243 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: BasePtr, TypeID&: BasePtrTypeID,
5244 ConstExprInsertBB: CurBB))
5245 return error(Message: "Invalid record");
5246
5247 if (!Ty) {
5248 TyID = getContainedTypeID(ID: BasePtrTypeID);
5249 if (BasePtr->getType()->isVectorTy())
5250 TyID = getContainedTypeID(ID: TyID);
5251 Ty = getTypeByID(ID: TyID);
5252 }
5253
5254 SmallVector<Value*, 16> GEPIdx;
5255 while (OpNum != Record.size()) {
5256 Value *Op;
5257 unsigned OpTypeID;
5258 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB))
5259 return error(Message: "Invalid record");
5260 GEPIdx.push_back(Elt: Op);
5261 }
5262
5263 auto *GEP = GetElementPtrInst::Create(PointeeType: Ty, Ptr: BasePtr, IdxList: GEPIdx);
5264 I = GEP;
5265
5266 ResTypeID = TyID;
5267 if (cast<GEPOperator>(Val: I)->getNumIndices() != 0) {
5268 auto GTI = std::next(x: gep_type_begin(GEP: I));
5269 for (Value *Idx : drop_begin(RangeOrContainer: cast<GEPOperator>(Val: I)->indices())) {
5270 unsigned SubType = 0;
5271 if (GTI.isStruct()) {
5272 ConstantInt *IdxC =
5273 Idx->getType()->isVectorTy()
5274 ? cast<ConstantInt>(Val: cast<Constant>(Val: Idx)->getSplatValue())
5275 : cast<ConstantInt>(Val: Idx);
5276 SubType = IdxC->getZExtValue();
5277 }
5278 ResTypeID = getContainedTypeID(ID: ResTypeID, Idx: SubType);
5279 ++GTI;
5280 }
5281 }
5282
5283 // At this point ResTypeID is the result element type. We need a pointer
5284 // or vector of pointer to it.
5285 ResTypeID = getVirtualTypeID(Ty: I->getType()->getScalarType(), ChildTypeIDs: ResTypeID);
5286 if (I->getType()->isVectorTy())
5287 ResTypeID = getVirtualTypeID(Ty: I->getType(), ChildTypeIDs: ResTypeID);
5288
5289 InstructionList.push_back(Elt: I);
5290 GEP->setNoWrapFlags(NW);
5291 break;
5292 }
5293
5294 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5295 // EXTRACTVAL: [opty, opval, n x indices]
5296 unsigned OpNum = 0;
5297 Value *Agg;
5298 unsigned AggTypeID;
5299 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Agg, TypeID&: AggTypeID, ConstExprInsertBB: CurBB))
5300 return error(Message: "Invalid record");
5301 Type *Ty = Agg->getType();
5302
5303 unsigned RecSize = Record.size();
5304 if (OpNum == RecSize)
5305 return error(Message: "EXTRACTVAL: Invalid instruction with 0 indices");
5306
5307 SmallVector<unsigned, 4> EXTRACTVALIdx;
5308 ResTypeID = AggTypeID;
5309 for (; OpNum != RecSize; ++OpNum) {
5310 bool IsArray = Ty->isArrayTy();
5311 bool IsStruct = Ty->isStructTy();
5312 uint64_t Index = Record[OpNum];
5313
5314 if (!IsStruct && !IsArray)
5315 return error(Message: "EXTRACTVAL: Invalid type");
5316 if ((unsigned)Index != Index)
5317 return error(Message: "Invalid value");
5318 if (IsStruct && Index >= Ty->getStructNumElements())
5319 return error(Message: "EXTRACTVAL: Invalid struct index");
5320 if (IsArray && Index >= Ty->getArrayNumElements())
5321 return error(Message: "EXTRACTVAL: Invalid array index");
5322 EXTRACTVALIdx.push_back(Elt: (unsigned)Index);
5323
5324 if (IsStruct) {
5325 Ty = Ty->getStructElementType(N: Index);
5326 ResTypeID = getContainedTypeID(ID: ResTypeID, Idx: Index);
5327 } else {
5328 Ty = Ty->getArrayElementType();
5329 ResTypeID = getContainedTypeID(ID: ResTypeID);
5330 }
5331 }
5332
5333 I = ExtractValueInst::Create(Agg, Idxs: EXTRACTVALIdx);
5334 InstructionList.push_back(Elt: I);
5335 break;
5336 }
5337
5338 case bitc::FUNC_CODE_INST_INSERTVAL: {
5339 // INSERTVAL: [opty, opval, opty, opval, n x indices]
5340 unsigned OpNum = 0;
5341 Value *Agg;
5342 unsigned AggTypeID;
5343 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Agg, TypeID&: AggTypeID, ConstExprInsertBB: CurBB))
5344 return error(Message: "Invalid record");
5345 Value *Val;
5346 unsigned ValTypeID;
5347 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Val, TypeID&: ValTypeID, ConstExprInsertBB: CurBB))
5348 return error(Message: "Invalid record");
5349
5350 unsigned RecSize = Record.size();
5351 if (OpNum == RecSize)
5352 return error(Message: "INSERTVAL: Invalid instruction with 0 indices");
5353
5354 SmallVector<unsigned, 4> INSERTVALIdx;
5355 Type *CurTy = Agg->getType();
5356 for (; OpNum != RecSize; ++OpNum) {
5357 bool IsArray = CurTy->isArrayTy();
5358 bool IsStruct = CurTy->isStructTy();
5359 uint64_t Index = Record[OpNum];
5360
5361 if (!IsStruct && !IsArray)
5362 return error(Message: "INSERTVAL: Invalid type");
5363 if ((unsigned)Index != Index)
5364 return error(Message: "Invalid value");
5365 if (IsStruct && Index >= CurTy->getStructNumElements())
5366 return error(Message: "INSERTVAL: Invalid struct index");
5367 if (IsArray && Index >= CurTy->getArrayNumElements())
5368 return error(Message: "INSERTVAL: Invalid array index");
5369
5370 INSERTVALIdx.push_back(Elt: (unsigned)Index);
5371 if (IsStruct)
5372 CurTy = CurTy->getStructElementType(N: Index);
5373 else
5374 CurTy = CurTy->getArrayElementType();
5375 }
5376
5377 if (CurTy != Val->getType())
5378 return error(Message: "Inserted value type doesn't match aggregate type");
5379
5380 I = InsertValueInst::Create(Agg, Val, Idxs: INSERTVALIdx);
5381 ResTypeID = AggTypeID;
5382 InstructionList.push_back(Elt: I);
5383 break;
5384 }
5385
5386 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5387 // obsolete form of select
5388 // handles select i1 ... in old bitcode
5389 unsigned OpNum = 0;
5390 Value *TrueVal, *FalseVal, *Cond;
5391 unsigned TypeID;
5392 Type *CondType = Type::getInt1Ty(C&: Context);
5393 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: TrueVal, TypeID,
5394 ConstExprInsertBB: CurBB) ||
5395 popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: TrueVal->getType(), TyID: TypeID,
5396 ResVal&: FalseVal, ConstExprInsertBB: CurBB) ||
5397 popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: CondType,
5398 TyID: getVirtualTypeID(Ty: CondType), ResVal&: Cond, ConstExprInsertBB: CurBB))
5399 return error(Message: "Invalid record");
5400
5401 I = SelectInst::Create(C: Cond, S1: TrueVal, S2: FalseVal);
5402 ResTypeID = TypeID;
5403 InstructionList.push_back(Elt: I);
5404 break;
5405 }
5406
5407 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5408 // new form of select
5409 // handles select i1 or select [N x i1]
5410 unsigned OpNum = 0;
5411 Value *TrueVal, *FalseVal, *Cond;
5412 unsigned ValTypeID, CondTypeID;
5413 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: TrueVal, TypeID&: ValTypeID,
5414 ConstExprInsertBB: CurBB) ||
5415 popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: TrueVal->getType(), TyID: ValTypeID,
5416 ResVal&: FalseVal, ConstExprInsertBB: CurBB) ||
5417 getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Cond, TypeID&: CondTypeID, ConstExprInsertBB: CurBB))
5418 return error(Message: "Invalid record");
5419
5420 // select condition can be either i1 or [N x i1]
5421 if (VectorType* vector_type =
5422 dyn_cast<VectorType>(Val: Cond->getType())) {
5423 // expect <n x i1>
5424 if (vector_type->getElementType() != Type::getInt1Ty(C&: Context))
5425 return error(Message: "Invalid type for value");
5426 } else {
5427 // expect i1
5428 if (Cond->getType() != Type::getInt1Ty(C&: Context))
5429 return error(Message: "Invalid type for value");
5430 }
5431
5432 I = SelectInst::Create(C: Cond, S1: TrueVal, S2: FalseVal);
5433 ResTypeID = ValTypeID;
5434 InstructionList.push_back(Elt: I);
5435 if (OpNum < Record.size() && isa<FPMathOperator>(Val: I)) {
5436 FastMathFlags FMF = getDecodedFastMathFlags(Val: Record[OpNum]);
5437 if (FMF.any())
5438 I->setFastMathFlags(FMF);
5439 }
5440 break;
5441 }
5442
5443 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5444 unsigned OpNum = 0;
5445 Value *Vec, *Idx;
5446 unsigned VecTypeID, IdxTypeID;
5447 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Vec, TypeID&: VecTypeID, ConstExprInsertBB: CurBB) ||
5448 getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Idx, TypeID&: IdxTypeID, ConstExprInsertBB: CurBB))
5449 return error(Message: "Invalid record");
5450 if (!Vec->getType()->isVectorTy())
5451 return error(Message: "Invalid type for value");
5452 I = ExtractElementInst::Create(Vec, Idx);
5453 ResTypeID = getContainedTypeID(ID: VecTypeID);
5454 InstructionList.push_back(Elt: I);
5455 break;
5456 }
5457
5458 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5459 unsigned OpNum = 0;
5460 Value *Vec, *Elt, *Idx;
5461 unsigned VecTypeID, IdxTypeID;
5462 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Vec, TypeID&: VecTypeID, ConstExprInsertBB: CurBB))
5463 return error(Message: "Invalid record");
5464 if (!Vec->getType()->isVectorTy())
5465 return error(Message: "Invalid type for value");
5466 if (popValue(Record, Slot&: OpNum, InstNum: NextValueNo,
5467 Ty: cast<VectorType>(Val: Vec->getType())->getElementType(),
5468 TyID: getContainedTypeID(ID: VecTypeID), ResVal&: Elt, ConstExprInsertBB: CurBB) ||
5469 getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Idx, TypeID&: IdxTypeID, ConstExprInsertBB: CurBB))
5470 return error(Message: "Invalid record");
5471 I = InsertElementInst::Create(Vec, NewElt: Elt, Idx);
5472 ResTypeID = VecTypeID;
5473 InstructionList.push_back(Elt: I);
5474 break;
5475 }
5476
5477 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5478 unsigned OpNum = 0;
5479 Value *Vec1, *Vec2, *Mask;
5480 unsigned Vec1TypeID;
5481 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Vec1, TypeID&: Vec1TypeID,
5482 ConstExprInsertBB: CurBB) ||
5483 popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: Vec1->getType(), TyID: Vec1TypeID,
5484 ResVal&: Vec2, ConstExprInsertBB: CurBB))
5485 return error(Message: "Invalid record");
5486
5487 unsigned MaskTypeID;
5488 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Mask, TypeID&: MaskTypeID, ConstExprInsertBB: CurBB))
5489 return error(Message: "Invalid record");
5490 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5491 return error(Message: "Invalid type for value");
5492
5493 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5494 ResTypeID =
5495 getVirtualTypeID(Ty: I->getType(), ChildTypeIDs: getContainedTypeID(ID: Vec1TypeID));
5496 InstructionList.push_back(Elt: I);
5497 break;
5498 }
5499
5500 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
5501 // Old form of ICmp/FCmp returning bool
5502 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5503 // both legal on vectors but had different behaviour.
5504 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5505 // FCmp/ICmp returning bool or vector of bool
5506
5507 unsigned OpNum = 0;
5508 Value *LHS, *RHS;
5509 unsigned LHSTypeID;
5510 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: LHS, TypeID&: LHSTypeID, ConstExprInsertBB: CurBB) ||
5511 popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: LHS->getType(), TyID: LHSTypeID, ResVal&: RHS,
5512 ConstExprInsertBB: CurBB))
5513 return error(Message: "Invalid record");
5514
5515 if (OpNum >= Record.size())
5516 return error(
5517 Message: "Invalid record: operand number exceeded available operands");
5518
5519 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5520 bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5521 FastMathFlags FMF;
5522 if (IsFP && Record.size() > OpNum+1)
5523 FMF = getDecodedFastMathFlags(Val: Record[++OpNum]);
5524
5525 if (IsFP) {
5526 if (!CmpInst::isFPPredicate(P: PredVal))
5527 return error(Message: "Invalid fcmp predicate");
5528 I = new FCmpInst(PredVal, LHS, RHS);
5529 } else {
5530 if (!CmpInst::isIntPredicate(P: PredVal))
5531 return error(Message: "Invalid icmp predicate");
5532 I = new ICmpInst(PredVal, LHS, RHS);
5533 if (Record.size() > OpNum + 1 &&
5534 (Record[++OpNum] & (1 << bitc::ICMP_SAME_SIGN)))
5535 cast<ICmpInst>(Val: I)->setSameSign();
5536 }
5537
5538 if (OpNum + 1 != Record.size())
5539 return error(Message: "Invalid record");
5540
5541 ResTypeID = getVirtualTypeID(Ty: I->getType()->getScalarType());
5542 if (LHS->getType()->isVectorTy())
5543 ResTypeID = getVirtualTypeID(Ty: I->getType(), ChildTypeIDs: ResTypeID);
5544
5545 if (FMF.any())
5546 I->setFastMathFlags(FMF);
5547 InstructionList.push_back(Elt: I);
5548 break;
5549 }
5550
5551 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5552 {
5553 unsigned Size = Record.size();
5554 if (Size == 0) {
5555 I = ReturnInst::Create(C&: Context);
5556 InstructionList.push_back(Elt: I);
5557 break;
5558 }
5559
5560 unsigned OpNum = 0;
5561 Value *Op = nullptr;
5562 unsigned OpTypeID;
5563 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB))
5564 return error(Message: "Invalid record");
5565 if (OpNum != Record.size())
5566 return error(Message: "Invalid record");
5567
5568 I = ReturnInst::Create(C&: Context, retVal: Op);
5569 InstructionList.push_back(Elt: I);
5570 break;
5571 }
5572 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5573 if (Record.size() != 1 && Record.size() != 3)
5574 return error(Message: "Invalid record");
5575 BasicBlock *TrueDest = getBasicBlock(ID: Record[0]);
5576 if (!TrueDest)
5577 return error(Message: "Invalid record");
5578
5579 if (Record.size() == 1) {
5580 I = BranchInst::Create(IfTrue: TrueDest);
5581 InstructionList.push_back(Elt: I);
5582 }
5583 else {
5584 BasicBlock *FalseDest = getBasicBlock(ID: Record[1]);
5585 Type *CondType = Type::getInt1Ty(C&: Context);
5586 Value *Cond = getValue(Record, Slot: 2, InstNum: NextValueNo, Ty: CondType,
5587 TyID: getVirtualTypeID(Ty: CondType), ConstExprInsertBB: CurBB);
5588 if (!FalseDest || !Cond)
5589 return error(Message: "Invalid record");
5590 I = BranchInst::Create(IfTrue: TrueDest, IfFalse: FalseDest, Cond);
5591 InstructionList.push_back(Elt: I);
5592 }
5593 break;
5594 }
5595 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5596 if (Record.size() != 1 && Record.size() != 2)
5597 return error(Message: "Invalid record");
5598 unsigned Idx = 0;
5599 Type *TokenTy = Type::getTokenTy(C&: Context);
5600 Value *CleanupPad = getValue(Record, Slot: Idx++, InstNum: NextValueNo, Ty: TokenTy,
5601 TyID: getVirtualTypeID(Ty: TokenTy), ConstExprInsertBB: CurBB);
5602 if (!CleanupPad)
5603 return error(Message: "Invalid record");
5604 BasicBlock *UnwindDest = nullptr;
5605 if (Record.size() == 2) {
5606 UnwindDest = getBasicBlock(ID: Record[Idx++]);
5607 if (!UnwindDest)
5608 return error(Message: "Invalid record");
5609 }
5610
5611 I = CleanupReturnInst::Create(CleanupPad, UnwindBB: UnwindDest);
5612 InstructionList.push_back(Elt: I);
5613 break;
5614 }
5615 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5616 if (Record.size() != 2)
5617 return error(Message: "Invalid record");
5618 unsigned Idx = 0;
5619 Type *TokenTy = Type::getTokenTy(C&: Context);
5620 Value *CatchPad = getValue(Record, Slot: Idx++, InstNum: NextValueNo, Ty: TokenTy,
5621 TyID: getVirtualTypeID(Ty: TokenTy), ConstExprInsertBB: CurBB);
5622 if (!CatchPad)
5623 return error(Message: "Invalid record");
5624 BasicBlock *BB = getBasicBlock(ID: Record[Idx++]);
5625 if (!BB)
5626 return error(Message: "Invalid record");
5627
5628 I = CatchReturnInst::Create(CatchPad, BB);
5629 InstructionList.push_back(Elt: I);
5630 break;
5631 }
5632 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5633 // We must have, at minimum, the outer scope and the number of arguments.
5634 if (Record.size() < 2)
5635 return error(Message: "Invalid record");
5636
5637 unsigned Idx = 0;
5638
5639 Type *TokenTy = Type::getTokenTy(C&: Context);
5640 Value *ParentPad = getValue(Record, Slot: Idx++, InstNum: NextValueNo, Ty: TokenTy,
5641 TyID: getVirtualTypeID(Ty: TokenTy), ConstExprInsertBB: CurBB);
5642 if (!ParentPad)
5643 return error(Message: "Invalid record");
5644
5645 unsigned NumHandlers = Record[Idx++];
5646
5647 SmallVector<BasicBlock *, 2> Handlers;
5648 for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5649 BasicBlock *BB = getBasicBlock(ID: Record[Idx++]);
5650 if (!BB)
5651 return error(Message: "Invalid record");
5652 Handlers.push_back(Elt: BB);
5653 }
5654
5655 BasicBlock *UnwindDest = nullptr;
5656 if (Idx + 1 == Record.size()) {
5657 UnwindDest = getBasicBlock(ID: Record[Idx++]);
5658 if (!UnwindDest)
5659 return error(Message: "Invalid record");
5660 }
5661
5662 if (Record.size() != Idx)
5663 return error(Message: "Invalid record");
5664
5665 auto *CatchSwitch =
5666 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5667 for (BasicBlock *Handler : Handlers)
5668 CatchSwitch->addHandler(Dest: Handler);
5669 I = CatchSwitch;
5670 ResTypeID = getVirtualTypeID(Ty: I->getType());
5671 InstructionList.push_back(Elt: I);
5672 break;
5673 }
5674 case bitc::FUNC_CODE_INST_CATCHPAD:
5675 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5676 // We must have, at minimum, the outer scope and the number of arguments.
5677 if (Record.size() < 2)
5678 return error(Message: "Invalid record");
5679
5680 unsigned Idx = 0;
5681
5682 Type *TokenTy = Type::getTokenTy(C&: Context);
5683 Value *ParentPad = getValue(Record, Slot: Idx++, InstNum: NextValueNo, Ty: TokenTy,
5684 TyID: getVirtualTypeID(Ty: TokenTy), ConstExprInsertBB: CurBB);
5685 if (!ParentPad)
5686 return error(Message: "Invald record");
5687
5688 unsigned NumArgOperands = Record[Idx++];
5689
5690 SmallVector<Value *, 2> Args;
5691 for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5692 Value *Val;
5693 unsigned ValTypeID;
5694 if (getValueTypePair(Record, Slot&: Idx, InstNum: NextValueNo, ResVal&: Val, TypeID&: ValTypeID, ConstExprInsertBB: nullptr))
5695 return error(Message: "Invalid record");
5696 Args.push_back(Elt: Val);
5697 }
5698
5699 if (Record.size() != Idx)
5700 return error(Message: "Invalid record");
5701
5702 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5703 I = CleanupPadInst::Create(ParentPad, Args);
5704 else
5705 I = CatchPadInst::Create(CatchSwitch: ParentPad, Args);
5706 ResTypeID = getVirtualTypeID(Ty: I->getType());
5707 InstructionList.push_back(Elt: I);
5708 break;
5709 }
5710 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5711 // Check magic
5712 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5713 // "New" SwitchInst format with case ranges. The changes to write this
5714 // format were reverted but we still recognize bitcode that uses it.
5715 // Hopefully someday we will have support for case ranges and can use
5716 // this format again.
5717
5718 unsigned OpTyID = Record[1];
5719 Type *OpTy = getTypeByID(ID: OpTyID);
5720 unsigned ValueBitWidth = cast<IntegerType>(Val: OpTy)->getBitWidth();
5721
5722 Value *Cond = getValue(Record, Slot: 2, InstNum: NextValueNo, Ty: OpTy, TyID: OpTyID, ConstExprInsertBB: CurBB);
5723 BasicBlock *Default = getBasicBlock(ID: Record[3]);
5724 if (!OpTy || !Cond || !Default)
5725 return error(Message: "Invalid record");
5726
5727 unsigned NumCases = Record[4];
5728
5729 SwitchInst *SI = SwitchInst::Create(Value: Cond, Default, NumCases);
5730 InstructionList.push_back(Elt: SI);
5731
5732 unsigned CurIdx = 5;
5733 for (unsigned i = 0; i != NumCases; ++i) {
5734 SmallVector<ConstantInt*, 1> CaseVals;
5735 unsigned NumItems = Record[CurIdx++];
5736 for (unsigned ci = 0; ci != NumItems; ++ci) {
5737 bool isSingleNumber = Record[CurIdx++];
5738
5739 APInt Low;
5740 unsigned ActiveWords = 1;
5741 if (ValueBitWidth > 64)
5742 ActiveWords = Record[CurIdx++];
5743 Low = readWideAPInt(Vals: ArrayRef(&Record[CurIdx], ActiveWords),
5744 TypeBits: ValueBitWidth);
5745 CurIdx += ActiveWords;
5746
5747 if (!isSingleNumber) {
5748 ActiveWords = 1;
5749 if (ValueBitWidth > 64)
5750 ActiveWords = Record[CurIdx++];
5751 APInt High = readWideAPInt(Vals: ArrayRef(&Record[CurIdx], ActiveWords),
5752 TypeBits: ValueBitWidth);
5753 CurIdx += ActiveWords;
5754
5755 // FIXME: It is not clear whether values in the range should be
5756 // compared as signed or unsigned values. The partially
5757 // implemented changes that used this format in the past used
5758 // unsigned comparisons.
5759 for ( ; Low.ule(RHS: High); ++Low)
5760 CaseVals.push_back(Elt: ConstantInt::get(Context, V: Low));
5761 } else
5762 CaseVals.push_back(Elt: ConstantInt::get(Context, V: Low));
5763 }
5764 BasicBlock *DestBB = getBasicBlock(ID: Record[CurIdx++]);
5765 for (ConstantInt *Cst : CaseVals)
5766 SI->addCase(OnVal: Cst, Dest: DestBB);
5767 }
5768 I = SI;
5769 break;
5770 }
5771
5772 // Old SwitchInst format without case ranges.
5773
5774 if (Record.size() < 3 || (Record.size() & 1) == 0)
5775 return error(Message: "Invalid record");
5776 unsigned OpTyID = Record[0];
5777 Type *OpTy = getTypeByID(ID: OpTyID);
5778 Value *Cond = getValue(Record, Slot: 1, InstNum: NextValueNo, Ty: OpTy, TyID: OpTyID, ConstExprInsertBB: CurBB);
5779 BasicBlock *Default = getBasicBlock(ID: Record[2]);
5780 if (!OpTy || !Cond || !Default)
5781 return error(Message: "Invalid record");
5782 unsigned NumCases = (Record.size()-3)/2;
5783 SwitchInst *SI = SwitchInst::Create(Value: Cond, Default, NumCases);
5784 InstructionList.push_back(Elt: SI);
5785 for (unsigned i = 0, e = NumCases; i != e; ++i) {
5786 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5787 Val: getFnValueByID(ID: Record[3+i*2], Ty: OpTy, TyID: OpTyID, ConstExprInsertBB: nullptr));
5788 BasicBlock *DestBB = getBasicBlock(ID: Record[1+3+i*2]);
5789 if (!CaseVal || !DestBB) {
5790 delete SI;
5791 return error(Message: "Invalid record");
5792 }
5793 SI->addCase(OnVal: CaseVal, Dest: DestBB);
5794 }
5795 I = SI;
5796 break;
5797 }
5798 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5799 if (Record.size() < 2)
5800 return error(Message: "Invalid record");
5801 unsigned OpTyID = Record[0];
5802 Type *OpTy = getTypeByID(ID: OpTyID);
5803 Value *Address = getValue(Record, Slot: 1, InstNum: NextValueNo, Ty: OpTy, TyID: OpTyID, ConstExprInsertBB: CurBB);
5804 if (!OpTy || !Address)
5805 return error(Message: "Invalid record");
5806 unsigned NumDests = Record.size()-2;
5807 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5808 InstructionList.push_back(Elt: IBI);
5809 for (unsigned i = 0, e = NumDests; i != e; ++i) {
5810 if (BasicBlock *DestBB = getBasicBlock(ID: Record[2+i])) {
5811 IBI->addDestination(Dest: DestBB);
5812 } else {
5813 delete IBI;
5814 return error(Message: "Invalid record");
5815 }
5816 }
5817 I = IBI;
5818 break;
5819 }
5820
5821 case bitc::FUNC_CODE_INST_INVOKE: {
5822 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5823 if (Record.size() < 4)
5824 return error(Message: "Invalid record");
5825 unsigned OpNum = 0;
5826 AttributeList PAL = getAttributes(i: Record[OpNum++]);
5827 unsigned CCInfo = Record[OpNum++];
5828 BasicBlock *NormalBB = getBasicBlock(ID: Record[OpNum++]);
5829 BasicBlock *UnwindBB = getBasicBlock(ID: Record[OpNum++]);
5830
5831 unsigned FTyID = InvalidTypeID;
5832 FunctionType *FTy = nullptr;
5833 if ((CCInfo >> 13) & 1) {
5834 FTyID = Record[OpNum++];
5835 FTy = dyn_cast<FunctionType>(Val: getTypeByID(ID: FTyID));
5836 if (!FTy)
5837 return error(Message: "Explicit invoke type is not a function type");
5838 }
5839
5840 Value *Callee;
5841 unsigned CalleeTypeID;
5842 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Callee, TypeID&: CalleeTypeID,
5843 ConstExprInsertBB: CurBB))
5844 return error(Message: "Invalid record");
5845
5846 PointerType *CalleeTy = dyn_cast<PointerType>(Val: Callee->getType());
5847 if (!CalleeTy)
5848 return error(Message: "Callee is not a pointer");
5849 if (!FTy) {
5850 FTyID = getContainedTypeID(ID: CalleeTypeID);
5851 FTy = dyn_cast_or_null<FunctionType>(Val: getTypeByID(ID: FTyID));
5852 if (!FTy)
5853 return error(Message: "Callee is not of pointer to function type");
5854 }
5855 if (Record.size() < FTy->getNumParams() + OpNum)
5856 return error(Message: "Insufficient operands to call");
5857
5858 SmallVector<Value*, 16> Ops;
5859 SmallVector<unsigned, 16> ArgTyIDs;
5860 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5861 unsigned ArgTyID = getContainedTypeID(ID: FTyID, Idx: i + 1);
5862 Ops.push_back(Elt: getValue(Record, Slot: OpNum, InstNum: NextValueNo, Ty: FTy->getParamType(i),
5863 TyID: ArgTyID, ConstExprInsertBB: CurBB));
5864 ArgTyIDs.push_back(Elt: ArgTyID);
5865 if (!Ops.back())
5866 return error(Message: "Invalid record");
5867 }
5868
5869 if (!FTy->isVarArg()) {
5870 if (Record.size() != OpNum)
5871 return error(Message: "Invalid record");
5872 } else {
5873 // Read type/value pairs for varargs params.
5874 while (OpNum != Record.size()) {
5875 Value *Op;
5876 unsigned OpTypeID;
5877 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB))
5878 return error(Message: "Invalid record");
5879 Ops.push_back(Elt: Op);
5880 ArgTyIDs.push_back(Elt: OpTypeID);
5881 }
5882 }
5883
5884 // Upgrade the bundles if needed.
5885 if (!OperandBundles.empty())
5886 UpgradeOperandBundles(OperandBundles);
5887
5888 I = InvokeInst::Create(Ty: FTy, Func: Callee, IfNormal: NormalBB, IfException: UnwindBB, Args: Ops,
5889 Bundles: OperandBundles);
5890 ResTypeID = getContainedTypeID(ID: FTyID);
5891 OperandBundles.clear();
5892 InstructionList.push_back(Elt: I);
5893 cast<InvokeInst>(Val: I)->setCallingConv(
5894 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5895 cast<InvokeInst>(Val: I)->setAttributes(PAL);
5896 if (Error Err = propagateAttributeTypes(CB: cast<CallBase>(Val: I), ArgTyIDs)) {
5897 I->deleteValue();
5898 return Err;
5899 }
5900
5901 break;
5902 }
5903 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5904 unsigned Idx = 0;
5905 Value *Val = nullptr;
5906 unsigned ValTypeID;
5907 if (getValueTypePair(Record, Slot&: Idx, InstNum: NextValueNo, ResVal&: Val, TypeID&: ValTypeID, ConstExprInsertBB: CurBB))
5908 return error(Message: "Invalid record");
5909 I = ResumeInst::Create(Exn: Val);
5910 InstructionList.push_back(Elt: I);
5911 break;
5912 }
5913 case bitc::FUNC_CODE_INST_CALLBR: {
5914 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5915 unsigned OpNum = 0;
5916 AttributeList PAL = getAttributes(i: Record[OpNum++]);
5917 unsigned CCInfo = Record[OpNum++];
5918
5919 BasicBlock *DefaultDest = getBasicBlock(ID: Record[OpNum++]);
5920 unsigned NumIndirectDests = Record[OpNum++];
5921 SmallVector<BasicBlock *, 16> IndirectDests;
5922 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5923 IndirectDests.push_back(Elt: getBasicBlock(ID: Record[OpNum++]));
5924
5925 unsigned FTyID = InvalidTypeID;
5926 FunctionType *FTy = nullptr;
5927 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5928 FTyID = Record[OpNum++];
5929 FTy = dyn_cast_or_null<FunctionType>(Val: getTypeByID(ID: FTyID));
5930 if (!FTy)
5931 return error(Message: "Explicit call type is not a function type");
5932 }
5933
5934 Value *Callee;
5935 unsigned CalleeTypeID;
5936 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Callee, TypeID&: CalleeTypeID,
5937 ConstExprInsertBB: CurBB))
5938 return error(Message: "Invalid record");
5939
5940 PointerType *OpTy = dyn_cast<PointerType>(Val: Callee->getType());
5941 if (!OpTy)
5942 return error(Message: "Callee is not a pointer type");
5943 if (!FTy) {
5944 FTyID = getContainedTypeID(ID: CalleeTypeID);
5945 FTy = dyn_cast_or_null<FunctionType>(Val: getTypeByID(ID: FTyID));
5946 if (!FTy)
5947 return error(Message: "Callee is not of pointer to function type");
5948 }
5949 if (Record.size() < FTy->getNumParams() + OpNum)
5950 return error(Message: "Insufficient operands to call");
5951
5952 SmallVector<Value*, 16> Args;
5953 SmallVector<unsigned, 16> ArgTyIDs;
5954 // Read the fixed params.
5955 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5956 Value *Arg;
5957 unsigned ArgTyID = getContainedTypeID(ID: FTyID, Idx: i + 1);
5958 if (FTy->getParamType(i)->isLabelTy())
5959 Arg = getBasicBlock(ID: Record[OpNum]);
5960 else
5961 Arg = getValue(Record, Slot: OpNum, InstNum: NextValueNo, Ty: FTy->getParamType(i),
5962 TyID: ArgTyID, ConstExprInsertBB: CurBB);
5963 if (!Arg)
5964 return error(Message: "Invalid record");
5965 Args.push_back(Elt: Arg);
5966 ArgTyIDs.push_back(Elt: ArgTyID);
5967 }
5968
5969 // Read type/value pairs for varargs params.
5970 if (!FTy->isVarArg()) {
5971 if (OpNum != Record.size())
5972 return error(Message: "Invalid record");
5973 } else {
5974 while (OpNum != Record.size()) {
5975 Value *Op;
5976 unsigned OpTypeID;
5977 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB))
5978 return error(Message: "Invalid record");
5979 Args.push_back(Elt: Op);
5980 ArgTyIDs.push_back(Elt: OpTypeID);
5981 }
5982 }
5983
5984 // Upgrade the bundles if needed.
5985 if (!OperandBundles.empty())
5986 UpgradeOperandBundles(OperandBundles);
5987
5988 if (auto *IA = dyn_cast<InlineAsm>(Val: Callee)) {
5989 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5990 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5991 return CI.Type == InlineAsm::isLabel;
5992 };
5993 if (none_of(Range&: ConstraintInfo, P: IsLabelConstraint)) {
5994 // Upgrade explicit blockaddress arguments to label constraints.
5995 // Verify that the last arguments are blockaddress arguments that
5996 // match the indirect destinations. Clang always generates callbr
5997 // in this form. We could support reordering with more effort.
5998 unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5999 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
6000 unsigned LabelNo = ArgNo - FirstBlockArg;
6001 auto *BA = dyn_cast<BlockAddress>(Val: Args[ArgNo]);
6002 if (!BA || BA->getFunction() != F ||
6003 LabelNo > IndirectDests.size() ||
6004 BA->getBasicBlock() != IndirectDests[LabelNo])
6005 return error(Message: "callbr argument does not match indirect dest");
6006 }
6007
6008 // Remove blockaddress arguments.
6009 Args.erase(CS: Args.begin() + FirstBlockArg, CE: Args.end());
6010 ArgTyIDs.erase(CS: ArgTyIDs.begin() + FirstBlockArg, CE: ArgTyIDs.end());
6011
6012 // Recreate the function type with less arguments.
6013 SmallVector<Type *> ArgTys;
6014 for (Value *Arg : Args)
6015 ArgTys.push_back(Elt: Arg->getType());
6016 FTy =
6017 FunctionType::get(Result: FTy->getReturnType(), Params: ArgTys, isVarArg: FTy->isVarArg());
6018
6019 // Update constraint string to use label constraints.
6020 std::string Constraints = IA->getConstraintString().str();
6021 unsigned ArgNo = 0;
6022 size_t Pos = 0;
6023 for (const auto &CI : ConstraintInfo) {
6024 if (CI.hasArg()) {
6025 if (ArgNo >= FirstBlockArg)
6026 Constraints.insert(pos: Pos, s: "!");
6027 ++ArgNo;
6028 }
6029
6030 // Go to next constraint in string.
6031 Pos = Constraints.find(c: ',', pos: Pos);
6032 if (Pos == std::string::npos)
6033 break;
6034 ++Pos;
6035 }
6036
6037 Callee = InlineAsm::get(Ty: FTy, AsmString: IA->getAsmString(), Constraints,
6038 hasSideEffects: IA->hasSideEffects(), isAlignStack: IA->isAlignStack(),
6039 asmDialect: IA->getDialect(), canThrow: IA->canThrow());
6040 }
6041 }
6042
6043 I = CallBrInst::Create(Ty: FTy, Func: Callee, DefaultDest, IndirectDests, Args,
6044 Bundles: OperandBundles);
6045 ResTypeID = getContainedTypeID(ID: FTyID);
6046 OperandBundles.clear();
6047 InstructionList.push_back(Elt: I);
6048 cast<CallBrInst>(Val: I)->setCallingConv(
6049 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6050 cast<CallBrInst>(Val: I)->setAttributes(PAL);
6051 if (Error Err = propagateAttributeTypes(CB: cast<CallBase>(Val: I), ArgTyIDs)) {
6052 I->deleteValue();
6053 return Err;
6054 }
6055 break;
6056 }
6057 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
6058 I = new UnreachableInst(Context);
6059 InstructionList.push_back(Elt: I);
6060 break;
6061 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
6062 if (Record.empty())
6063 return error(Message: "Invalid phi record");
6064 // The first record specifies the type.
6065 unsigned TyID = Record[0];
6066 Type *Ty = getTypeByID(ID: TyID);
6067 if (!Ty)
6068 return error(Message: "Invalid phi record");
6069
6070 // Phi arguments are pairs of records of [value, basic block].
6071 // There is an optional final record for fast-math-flags if this phi has a
6072 // floating-point type.
6073 size_t NumArgs = (Record.size() - 1) / 2;
6074 PHINode *PN = PHINode::Create(Ty, NumReservedValues: NumArgs);
6075 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(Val: PN)) {
6076 PN->deleteValue();
6077 return error(Message: "Invalid phi record");
6078 }
6079 InstructionList.push_back(Elt: PN);
6080
6081 SmallDenseMap<BasicBlock *, Value *> Args;
6082 for (unsigned i = 0; i != NumArgs; i++) {
6083 BasicBlock *BB = getBasicBlock(ID: Record[i * 2 + 2]);
6084 if (!BB) {
6085 PN->deleteValue();
6086 return error(Message: "Invalid phi BB");
6087 }
6088
6089 // Phi nodes may contain the same predecessor multiple times, in which
6090 // case the incoming value must be identical. Directly reuse the already
6091 // seen value here, to avoid expanding a constant expression multiple
6092 // times.
6093 auto It = Args.find(Val: BB);
6094 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup(Key: {BB, CurBB});
6095 if (It != Args.end()) {
6096 // If this predecessor was also replaced with a constexpr basic
6097 // block, it must be de-duplicated.
6098 if (!EdgeBB) {
6099 PN->addIncoming(V: It->second, BB);
6100 }
6101 continue;
6102 }
6103
6104 // If there already is a block for this edge (from a different phi),
6105 // use it.
6106 if (!EdgeBB) {
6107 // Otherwise, use a temporary block (that we will discard if it
6108 // turns out to be unnecessary).
6109 if (!PhiConstExprBB)
6110 PhiConstExprBB = BasicBlock::Create(Context, Name: "phi.constexpr", Parent: F);
6111 EdgeBB = PhiConstExprBB;
6112 }
6113
6114 // With the new function encoding, it is possible that operands have
6115 // negative IDs (for forward references). Use a signed VBR
6116 // representation to keep the encoding small.
6117 Value *V;
6118 if (UseRelativeIDs)
6119 V = getValueSigned(Record, Slot: i * 2 + 1, InstNum: NextValueNo, Ty, TyID, ConstExprInsertBB: EdgeBB);
6120 else
6121 V = getValue(Record, Slot: i * 2 + 1, InstNum: NextValueNo, Ty, TyID, ConstExprInsertBB: EdgeBB);
6122 if (!V) {
6123 PN->deleteValue();
6124 PhiConstExprBB->eraseFromParent();
6125 return error(Message: "Invalid phi record");
6126 }
6127
6128 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
6129 ConstExprEdgeBBs.insert(KV: {{BB, CurBB}, EdgeBB});
6130 PhiConstExprBB = nullptr;
6131 }
6132 PN->addIncoming(V, BB);
6133 Args.insert(KV: {BB, V});
6134 }
6135 I = PN;
6136 ResTypeID = TyID;
6137
6138 // If there are an even number of records, the final record must be FMF.
6139 if (Record.size() % 2 == 0) {
6140 assert(isa<FPMathOperator>(I) && "Unexpected phi type");
6141 FastMathFlags FMF = getDecodedFastMathFlags(Val: Record[Record.size() - 1]);
6142 if (FMF.any())
6143 I->setFastMathFlags(FMF);
6144 }
6145
6146 break;
6147 }
6148
6149 case bitc::FUNC_CODE_INST_LANDINGPAD:
6150 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
6151 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
6152 unsigned Idx = 0;
6153 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
6154 if (Record.size() < 3)
6155 return error(Message: "Invalid record");
6156 } else {
6157 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
6158 if (Record.size() < 4)
6159 return error(Message: "Invalid record");
6160 }
6161 ResTypeID = Record[Idx++];
6162 Type *Ty = getTypeByID(ID: ResTypeID);
6163 if (!Ty)
6164 return error(Message: "Invalid record");
6165 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
6166 Value *PersFn = nullptr;
6167 unsigned PersFnTypeID;
6168 if (getValueTypePair(Record, Slot&: Idx, InstNum: NextValueNo, ResVal&: PersFn, TypeID&: PersFnTypeID,
6169 ConstExprInsertBB: nullptr))
6170 return error(Message: "Invalid record");
6171
6172 if (!F->hasPersonalityFn())
6173 F->setPersonalityFn(cast<Constant>(Val: PersFn));
6174 else if (F->getPersonalityFn() != cast<Constant>(Val: PersFn))
6175 return error(Message: "Personality function mismatch");
6176 }
6177
6178 bool IsCleanup = !!Record[Idx++];
6179 unsigned NumClauses = Record[Idx++];
6180 LandingPadInst *LP = LandingPadInst::Create(RetTy: Ty, NumReservedClauses: NumClauses);
6181 LP->setCleanup(IsCleanup);
6182 for (unsigned J = 0; J != NumClauses; ++J) {
6183 LandingPadInst::ClauseType CT =
6184 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
6185 Value *Val;
6186 unsigned ValTypeID;
6187
6188 if (getValueTypePair(Record, Slot&: Idx, InstNum: NextValueNo, ResVal&: Val, TypeID&: ValTypeID,
6189 ConstExprInsertBB: nullptr)) {
6190 delete LP;
6191 return error(Message: "Invalid record");
6192 }
6193
6194 assert((CT != LandingPadInst::Catch ||
6195 !isa<ArrayType>(Val->getType())) &&
6196 "Catch clause has a invalid type!");
6197 assert((CT != LandingPadInst::Filter ||
6198 isa<ArrayType>(Val->getType())) &&
6199 "Filter clause has invalid type!");
6200 LP->addClause(ClauseVal: cast<Constant>(Val));
6201 }
6202
6203 I = LP;
6204 InstructionList.push_back(Elt: I);
6205 break;
6206 }
6207
6208 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
6209 if (Record.size() != 4 && Record.size() != 5)
6210 return error(Message: "Invalid record");
6211 using APV = AllocaPackedValues;
6212 const uint64_t Rec = Record[3];
6213 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Packed: Rec);
6214 const bool SwiftError = Bitfield::get<APV::SwiftError>(Packed: Rec);
6215 unsigned TyID = Record[0];
6216 Type *Ty = getTypeByID(ID: TyID);
6217 if (!Bitfield::get<APV::ExplicitType>(Packed: Rec)) {
6218 TyID = getContainedTypeID(ID: TyID);
6219 Ty = getTypeByID(ID: TyID);
6220 if (!Ty)
6221 return error(Message: "Missing element type for old-style alloca");
6222 }
6223 unsigned OpTyID = Record[1];
6224 Type *OpTy = getTypeByID(ID: OpTyID);
6225 Value *Size = getFnValueByID(ID: Record[2], Ty: OpTy, TyID: OpTyID, ConstExprInsertBB: CurBB);
6226 MaybeAlign Align;
6227 uint64_t AlignExp =
6228 Bitfield::get<APV::AlignLower>(Packed: Rec) |
6229 (Bitfield::get<APV::AlignUpper>(Packed: Rec) << APV::AlignLower::Bits);
6230 if (Error Err = parseAlignmentValue(Exponent: AlignExp, Alignment&: Align)) {
6231 return Err;
6232 }
6233 if (!Ty || !Size)
6234 return error(Message: "Invalid record");
6235
6236 const DataLayout &DL = TheModule->getDataLayout();
6237 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
6238
6239 SmallPtrSet<Type *, 4> Visited;
6240 if (!Align && !Ty->isSized(Visited: &Visited))
6241 return error(Message: "alloca of unsized type");
6242 if (!Align)
6243 Align = DL.getPrefTypeAlign(Ty);
6244
6245 if (!Size->getType()->isIntegerTy())
6246 return error(Message: "alloca element count must have integer type");
6247
6248 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
6249 AI->setUsedWithInAlloca(InAlloca);
6250 AI->setSwiftError(SwiftError);
6251 I = AI;
6252 ResTypeID = getVirtualTypeID(Ty: AI->getType(), ChildTypeIDs: TyID);
6253 InstructionList.push_back(Elt: I);
6254 break;
6255 }
6256 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
6257 unsigned OpNum = 0;
6258 Value *Op;
6259 unsigned OpTypeID;
6260 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB) ||
6261 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
6262 return error(Message: "Invalid record");
6263
6264 if (!isa<PointerType>(Val: Op->getType()))
6265 return error(Message: "Load operand is not a pointer type");
6266
6267 Type *Ty = nullptr;
6268 if (OpNum + 3 == Record.size()) {
6269 ResTypeID = Record[OpNum++];
6270 Ty = getTypeByID(ID: ResTypeID);
6271 } else {
6272 ResTypeID = getContainedTypeID(ID: OpTypeID);
6273 Ty = getTypeByID(ID: ResTypeID);
6274 }
6275
6276 if (!Ty)
6277 return error(Message: "Missing load type");
6278
6279 if (Error Err = typeCheckLoadStoreInst(ValType: Ty, PtrType: Op->getType()))
6280 return Err;
6281
6282 MaybeAlign Align;
6283 if (Error Err = parseAlignmentValue(Exponent: Record[OpNum], Alignment&: Align))
6284 return Err;
6285 SmallPtrSet<Type *, 4> Visited;
6286 if (!Align && !Ty->isSized(Visited: &Visited))
6287 return error(Message: "load of unsized type");
6288 if (!Align)
6289 Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6290 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6291 InstructionList.push_back(Elt: I);
6292 break;
6293 }
6294 case bitc::FUNC_CODE_INST_LOADATOMIC: {
6295 // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6296 unsigned OpNum = 0;
6297 Value *Op;
6298 unsigned OpTypeID;
6299 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB) ||
6300 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6301 return error(Message: "Invalid record");
6302
6303 if (!isa<PointerType>(Val: Op->getType()))
6304 return error(Message: "Load operand is not a pointer type");
6305
6306 Type *Ty = nullptr;
6307 if (OpNum + 5 == Record.size()) {
6308 ResTypeID = Record[OpNum++];
6309 Ty = getTypeByID(ID: ResTypeID);
6310 } else {
6311 ResTypeID = getContainedTypeID(ID: OpTypeID);
6312 Ty = getTypeByID(ID: ResTypeID);
6313 }
6314
6315 if (!Ty)
6316 return error(Message: "Missing atomic load type");
6317
6318 if (Error Err = typeCheckLoadStoreInst(ValType: Ty, PtrType: Op->getType()))
6319 return Err;
6320
6321 AtomicOrdering Ordering = getDecodedOrdering(Val: Record[OpNum + 2]);
6322 if (Ordering == AtomicOrdering::NotAtomic ||
6323 Ordering == AtomicOrdering::Release ||
6324 Ordering == AtomicOrdering::AcquireRelease)
6325 return error(Message: "Invalid record");
6326 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6327 return error(Message: "Invalid record");
6328 SyncScope::ID SSID = getDecodedSyncScopeID(Val: Record[OpNum + 3]);
6329
6330 MaybeAlign Align;
6331 if (Error Err = parseAlignmentValue(Exponent: Record[OpNum], Alignment&: Align))
6332 return Err;
6333 if (!Align)
6334 return error(Message: "Alignment missing from atomic load");
6335 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6336 InstructionList.push_back(Elt: I);
6337 break;
6338 }
6339 case bitc::FUNC_CODE_INST_STORE:
6340 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6341 unsigned OpNum = 0;
6342 Value *Val, *Ptr;
6343 unsigned PtrTypeID, ValTypeID;
6344 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Ptr, TypeID&: PtrTypeID, ConstExprInsertBB: CurBB))
6345 return error(Message: "Invalid record");
6346
6347 if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6348 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Val, TypeID&: ValTypeID, ConstExprInsertBB: CurBB))
6349 return error(Message: "Invalid record");
6350 } else {
6351 ValTypeID = getContainedTypeID(ID: PtrTypeID);
6352 if (popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: getTypeByID(ID: ValTypeID),
6353 TyID: ValTypeID, ResVal&: Val, ConstExprInsertBB: CurBB))
6354 return error(Message: "Invalid record");
6355 }
6356
6357 if (OpNum + 2 != Record.size())
6358 return error(Message: "Invalid record");
6359
6360 if (Error Err = typeCheckLoadStoreInst(ValType: Val->getType(), PtrType: Ptr->getType()))
6361 return Err;
6362 MaybeAlign Align;
6363 if (Error Err = parseAlignmentValue(Exponent: Record[OpNum], Alignment&: Align))
6364 return Err;
6365 SmallPtrSet<Type *, 4> Visited;
6366 if (!Align && !Val->getType()->isSized(Visited: &Visited))
6367 return error(Message: "store of unsized type");
6368 if (!Align)
6369 Align = TheModule->getDataLayout().getABITypeAlign(Ty: Val->getType());
6370 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6371 InstructionList.push_back(Elt: I);
6372 break;
6373 }
6374 case bitc::FUNC_CODE_INST_STOREATOMIC:
6375 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6376 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6377 unsigned OpNum = 0;
6378 Value *Val, *Ptr;
6379 unsigned PtrTypeID, ValTypeID;
6380 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Ptr, TypeID&: PtrTypeID, ConstExprInsertBB: CurBB) ||
6381 !isa<PointerType>(Val: Ptr->getType()))
6382 return error(Message: "Invalid record");
6383 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6384 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Val, TypeID&: ValTypeID, ConstExprInsertBB: CurBB))
6385 return error(Message: "Invalid record");
6386 } else {
6387 ValTypeID = getContainedTypeID(ID: PtrTypeID);
6388 if (popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: getTypeByID(ID: ValTypeID),
6389 TyID: ValTypeID, ResVal&: Val, ConstExprInsertBB: CurBB))
6390 return error(Message: "Invalid record");
6391 }
6392
6393 if (OpNum + 4 != Record.size())
6394 return error(Message: "Invalid record");
6395
6396 if (Error Err = typeCheckLoadStoreInst(ValType: Val->getType(), PtrType: Ptr->getType()))
6397 return Err;
6398 AtomicOrdering Ordering = getDecodedOrdering(Val: Record[OpNum + 2]);
6399 if (Ordering == AtomicOrdering::NotAtomic ||
6400 Ordering == AtomicOrdering::Acquire ||
6401 Ordering == AtomicOrdering::AcquireRelease)
6402 return error(Message: "Invalid record");
6403 SyncScope::ID SSID = getDecodedSyncScopeID(Val: Record[OpNum + 3]);
6404 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6405 return error(Message: "Invalid record");
6406
6407 MaybeAlign Align;
6408 if (Error Err = parseAlignmentValue(Exponent: Record[OpNum], Alignment&: Align))
6409 return Err;
6410 if (!Align)
6411 return error(Message: "Alignment missing from atomic store");
6412 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6413 InstructionList.push_back(Elt: I);
6414 break;
6415 }
6416 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6417 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6418 // failure_ordering?, weak?]
6419 const size_t NumRecords = Record.size();
6420 unsigned OpNum = 0;
6421 Value *Ptr = nullptr;
6422 unsigned PtrTypeID;
6423 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Ptr, TypeID&: PtrTypeID, ConstExprInsertBB: CurBB))
6424 return error(Message: "Invalid record");
6425
6426 if (!isa<PointerType>(Val: Ptr->getType()))
6427 return error(Message: "Cmpxchg operand is not a pointer type");
6428
6429 Value *Cmp = nullptr;
6430 unsigned CmpTypeID = getContainedTypeID(ID: PtrTypeID);
6431 if (popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: getTypeByID(ID: CmpTypeID),
6432 TyID: CmpTypeID, ResVal&: Cmp, ConstExprInsertBB: CurBB))
6433 return error(Message: "Invalid record");
6434
6435 Value *New = nullptr;
6436 if (popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: Cmp->getType(), TyID: CmpTypeID,
6437 ResVal&: New, ConstExprInsertBB: CurBB) ||
6438 NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6439 return error(Message: "Invalid record");
6440
6441 const AtomicOrdering SuccessOrdering =
6442 getDecodedOrdering(Val: Record[OpNum + 1]);
6443 if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6444 SuccessOrdering == AtomicOrdering::Unordered)
6445 return error(Message: "Invalid record");
6446
6447 const SyncScope::ID SSID = getDecodedSyncScopeID(Val: Record[OpNum + 2]);
6448
6449 if (Error Err = typeCheckLoadStoreInst(ValType: Cmp->getType(), PtrType: Ptr->getType()))
6450 return Err;
6451
6452 const AtomicOrdering FailureOrdering =
6453 NumRecords < 7
6454 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6455 : getDecodedOrdering(Val: Record[OpNum + 3]);
6456
6457 if (FailureOrdering == AtomicOrdering::NotAtomic ||
6458 FailureOrdering == AtomicOrdering::Unordered)
6459 return error(Message: "Invalid record");
6460
6461 const Align Alignment(
6462 TheModule->getDataLayout().getTypeStoreSize(Ty: Cmp->getType()));
6463
6464 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6465 FailureOrdering, SSID);
6466 cast<AtomicCmpXchgInst>(Val: I)->setVolatile(Record[OpNum]);
6467
6468 if (NumRecords < 8) {
6469 // Before weak cmpxchgs existed, the instruction simply returned the
6470 // value loaded from memory, so bitcode files from that era will be
6471 // expecting the first component of a modern cmpxchg.
6472 I->insertInto(ParentBB: CurBB, It: CurBB->end());
6473 I = ExtractValueInst::Create(Agg: I, Idxs: 0);
6474 ResTypeID = CmpTypeID;
6475 } else {
6476 cast<AtomicCmpXchgInst>(Val: I)->setWeak(Record[OpNum + 4]);
6477 unsigned I1TypeID = getVirtualTypeID(Ty: Type::getInt1Ty(C&: Context));
6478 ResTypeID = getVirtualTypeID(Ty: I->getType(), ChildTypeIDs: {CmpTypeID, I1TypeID});
6479 }
6480
6481 InstructionList.push_back(Elt: I);
6482 break;
6483 }
6484 case bitc::FUNC_CODE_INST_CMPXCHG: {
6485 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6486 // failure_ordering, weak, align?]
6487 const size_t NumRecords = Record.size();
6488 unsigned OpNum = 0;
6489 Value *Ptr = nullptr;
6490 unsigned PtrTypeID;
6491 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Ptr, TypeID&: PtrTypeID, ConstExprInsertBB: CurBB))
6492 return error(Message: "Invalid record");
6493
6494 if (!isa<PointerType>(Val: Ptr->getType()))
6495 return error(Message: "Cmpxchg operand is not a pointer type");
6496
6497 Value *Cmp = nullptr;
6498 unsigned CmpTypeID;
6499 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Cmp, TypeID&: CmpTypeID, ConstExprInsertBB: CurBB))
6500 return error(Message: "Invalid record");
6501
6502 Value *Val = nullptr;
6503 if (popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: Cmp->getType(), TyID: CmpTypeID, ResVal&: Val,
6504 ConstExprInsertBB: CurBB))
6505 return error(Message: "Invalid record");
6506
6507 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6508 return error(Message: "Invalid record");
6509
6510 const bool IsVol = Record[OpNum];
6511
6512 const AtomicOrdering SuccessOrdering =
6513 getDecodedOrdering(Val: Record[OpNum + 1]);
6514 if (!AtomicCmpXchgInst::isValidSuccessOrdering(Ordering: SuccessOrdering))
6515 return error(Message: "Invalid cmpxchg success ordering");
6516
6517 const SyncScope::ID SSID = getDecodedSyncScopeID(Val: Record[OpNum + 2]);
6518
6519 if (Error Err = typeCheckLoadStoreInst(ValType: Cmp->getType(), PtrType: Ptr->getType()))
6520 return Err;
6521
6522 const AtomicOrdering FailureOrdering =
6523 getDecodedOrdering(Val: Record[OpNum + 3]);
6524 if (!AtomicCmpXchgInst::isValidFailureOrdering(Ordering: FailureOrdering))
6525 return error(Message: "Invalid cmpxchg failure ordering");
6526
6527 const bool IsWeak = Record[OpNum + 4];
6528
6529 MaybeAlign Alignment;
6530
6531 if (NumRecords == (OpNum + 6)) {
6532 if (Error Err = parseAlignmentValue(Exponent: Record[OpNum + 5], Alignment))
6533 return Err;
6534 }
6535 if (!Alignment)
6536 Alignment =
6537 Align(TheModule->getDataLayout().getTypeStoreSize(Ty: Cmp->getType()));
6538
6539 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6540 FailureOrdering, SSID);
6541 cast<AtomicCmpXchgInst>(Val: I)->setVolatile(IsVol);
6542 cast<AtomicCmpXchgInst>(Val: I)->setWeak(IsWeak);
6543
6544 unsigned I1TypeID = getVirtualTypeID(Ty: Type::getInt1Ty(C&: Context));
6545 ResTypeID = getVirtualTypeID(Ty: I->getType(), ChildTypeIDs: {CmpTypeID, I1TypeID});
6546
6547 InstructionList.push_back(Elt: I);
6548 break;
6549 }
6550 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6551 case bitc::FUNC_CODE_INST_ATOMICRMW: {
6552 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6553 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6554 const size_t NumRecords = Record.size();
6555 unsigned OpNum = 0;
6556
6557 Value *Ptr = nullptr;
6558 unsigned PtrTypeID;
6559 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Ptr, TypeID&: PtrTypeID, ConstExprInsertBB: CurBB))
6560 return error(Message: "Invalid record");
6561
6562 if (!isa<PointerType>(Val: Ptr->getType()))
6563 return error(Message: "Invalid record");
6564
6565 Value *Val = nullptr;
6566 unsigned ValTypeID = InvalidTypeID;
6567 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6568 ValTypeID = getContainedTypeID(ID: PtrTypeID);
6569 if (popValue(Record, Slot&: OpNum, InstNum: NextValueNo,
6570 Ty: getTypeByID(ID: ValTypeID), TyID: ValTypeID, ResVal&: Val, ConstExprInsertBB: CurBB))
6571 return error(Message: "Invalid record");
6572 } else {
6573 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Val, TypeID&: ValTypeID, ConstExprInsertBB: CurBB))
6574 return error(Message: "Invalid record");
6575 }
6576
6577 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6578 return error(Message: "Invalid record");
6579
6580 const AtomicRMWInst::BinOp Operation =
6581 getDecodedRMWOperation(Val: Record[OpNum]);
6582 if (Operation < AtomicRMWInst::FIRST_BINOP ||
6583 Operation > AtomicRMWInst::LAST_BINOP)
6584 return error(Message: "Invalid record");
6585
6586 const bool IsVol = Record[OpNum + 1];
6587
6588 const AtomicOrdering Ordering = getDecodedOrdering(Val: Record[OpNum + 2]);
6589 if (Ordering == AtomicOrdering::NotAtomic ||
6590 Ordering == AtomicOrdering::Unordered)
6591 return error(Message: "Invalid record");
6592
6593 const SyncScope::ID SSID = getDecodedSyncScopeID(Val: Record[OpNum + 3]);
6594
6595 MaybeAlign Alignment;
6596
6597 if (NumRecords == (OpNum + 5)) {
6598 if (Error Err = parseAlignmentValue(Exponent: Record[OpNum + 4], Alignment))
6599 return Err;
6600 }
6601
6602 if (!Alignment)
6603 Alignment =
6604 Align(TheModule->getDataLayout().getTypeStoreSize(Ty: Val->getType()));
6605
6606 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6607 ResTypeID = ValTypeID;
6608 cast<AtomicRMWInst>(Val: I)->setVolatile(IsVol);
6609
6610 InstructionList.push_back(Elt: I);
6611 break;
6612 }
6613 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6614 if (2 != Record.size())
6615 return error(Message: "Invalid record");
6616 AtomicOrdering Ordering = getDecodedOrdering(Val: Record[0]);
6617 if (Ordering == AtomicOrdering::NotAtomic ||
6618 Ordering == AtomicOrdering::Unordered ||
6619 Ordering == AtomicOrdering::Monotonic)
6620 return error(Message: "Invalid record");
6621 SyncScope::ID SSID = getDecodedSyncScopeID(Val: Record[1]);
6622 I = new FenceInst(Context, Ordering, SSID);
6623 InstructionList.push_back(Elt: I);
6624 break;
6625 }
6626 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
6627 // DbgLabelRecords are placed after the Instructions that they are
6628 // attached to.
6629 SeenDebugRecord = true;
6630 Instruction *Inst = getLastInstruction();
6631 if (!Inst)
6632 return error(Message: "Invalid dbg record: missing instruction");
6633 DILocation *DIL = cast<DILocation>(Val: getFnMetadataByID(ID: Record[0]));
6634 DILabel *Label = cast<DILabel>(Val: getFnMetadataByID(ID: Record[1]));
6635 Inst->getParent()->insertDbgRecordBefore(
6636 DR: new DbgLabelRecord(Label, DebugLoc(DIL)), Here: Inst->getIterator());
6637 continue; // This isn't an instruction.
6638 }
6639 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6640 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6641 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6642 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6643 // DbgVariableRecords are placed after the Instructions that they are
6644 // attached to.
6645 SeenDebugRecord = true;
6646 Instruction *Inst = getLastInstruction();
6647 if (!Inst)
6648 return error(Message: "Invalid dbg record: missing instruction");
6649
6650 // First 3 fields are common to all kinds:
6651 // DILocation, DILocalVariable, DIExpression
6652 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
6653 // ..., LocationMetadata
6654 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
6655 // ..., Value
6656 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
6657 // ..., LocationMetadata
6658 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
6659 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
6660 unsigned Slot = 0;
6661 // Common fields (0-2).
6662 DILocation *DIL = cast<DILocation>(Val: getFnMetadataByID(ID: Record[Slot++]));
6663 DILocalVariable *Var =
6664 cast<DILocalVariable>(Val: getFnMetadataByID(ID: Record[Slot++]));
6665 DIExpression *Expr =
6666 cast<DIExpression>(Val: getFnMetadataByID(ID: Record[Slot++]));
6667
6668 // Union field (3: LocationMetadata | Value).
6669 Metadata *RawLocation = nullptr;
6670 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
6671 Value *V = nullptr;
6672 unsigned TyID = 0;
6673 // We never expect to see a fwd reference value here because
6674 // use-before-defs are encoded with the standard non-abbrev record
6675 // type (they'd require encoding the type too, and they're rare). As a
6676 // result, getValueTypePair only ever increments Slot by one here (once
6677 // for the value, never twice for value and type).
6678 unsigned SlotBefore = Slot;
6679 if (getValueTypePair(Record, Slot, InstNum: NextValueNo, ResVal&: V, TypeID&: TyID, ConstExprInsertBB: CurBB))
6680 return error(Message: "Invalid dbg record: invalid value");
6681 (void)SlotBefore;
6682 assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
6683 RawLocation = ValueAsMetadata::get(V);
6684 } else {
6685 RawLocation = getFnMetadataByID(ID: Record[Slot++]);
6686 }
6687
6688 DbgVariableRecord *DVR = nullptr;
6689 switch (BitCode) {
6690 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6691 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6692 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6693 DbgVariableRecord::LocationType::Value);
6694 break;
6695 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6696 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6697 DbgVariableRecord::LocationType::Declare);
6698 break;
6699 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6700 DIAssignID *ID = cast<DIAssignID>(Val: getFnMetadataByID(ID: Record[Slot++]));
6701 DIExpression *AddrExpr =
6702 cast<DIExpression>(Val: getFnMetadataByID(ID: Record[Slot++]));
6703 Metadata *Addr = getFnMetadataByID(ID: Record[Slot++]);
6704 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr,
6705 DIL);
6706 break;
6707 }
6708 default:
6709 llvm_unreachable("Unknown DbgVariableRecord bitcode");
6710 }
6711 Inst->getParent()->insertDbgRecordBefore(DR: DVR, Here: Inst->getIterator());
6712 continue; // This isn't an instruction.
6713 }
6714 case bitc::FUNC_CODE_INST_CALL: {
6715 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6716 if (Record.size() < 3)
6717 return error(Message: "Invalid record");
6718
6719 unsigned OpNum = 0;
6720 AttributeList PAL = getAttributes(i: Record[OpNum++]);
6721 unsigned CCInfo = Record[OpNum++];
6722
6723 FastMathFlags FMF;
6724 if ((CCInfo >> bitc::CALL_FMF) & 1) {
6725 FMF = getDecodedFastMathFlags(Val: Record[OpNum++]);
6726 if (!FMF.any())
6727 return error(Message: "Fast math flags indicator set for call with no FMF");
6728 }
6729
6730 unsigned FTyID = InvalidTypeID;
6731 FunctionType *FTy = nullptr;
6732 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6733 FTyID = Record[OpNum++];
6734 FTy = dyn_cast_or_null<FunctionType>(Val: getTypeByID(ID: FTyID));
6735 if (!FTy)
6736 return error(Message: "Explicit call type is not a function type");
6737 }
6738
6739 Value *Callee;
6740 unsigned CalleeTypeID;
6741 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Callee, TypeID&: CalleeTypeID,
6742 ConstExprInsertBB: CurBB))
6743 return error(Message: "Invalid record");
6744
6745 PointerType *OpTy = dyn_cast<PointerType>(Val: Callee->getType());
6746 if (!OpTy)
6747 return error(Message: "Callee is not a pointer type");
6748 if (!FTy) {
6749 FTyID = getContainedTypeID(ID: CalleeTypeID);
6750 FTy = dyn_cast_or_null<FunctionType>(Val: getTypeByID(ID: FTyID));
6751 if (!FTy)
6752 return error(Message: "Callee is not of pointer to function type");
6753 }
6754 if (Record.size() < FTy->getNumParams() + OpNum)
6755 return error(Message: "Insufficient operands to call");
6756
6757 SmallVector<Value*, 16> Args;
6758 SmallVector<unsigned, 16> ArgTyIDs;
6759 // Read the fixed params.
6760 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6761 unsigned ArgTyID = getContainedTypeID(ID: FTyID, Idx: i + 1);
6762 if (FTy->getParamType(i)->isLabelTy())
6763 Args.push_back(Elt: getBasicBlock(ID: Record[OpNum]));
6764 else
6765 Args.push_back(Elt: getValue(Record, Slot: OpNum, InstNum: NextValueNo,
6766 Ty: FTy->getParamType(i), TyID: ArgTyID, ConstExprInsertBB: CurBB));
6767 ArgTyIDs.push_back(Elt: ArgTyID);
6768 if (!Args.back())
6769 return error(Message: "Invalid record");
6770 }
6771
6772 // Read type/value pairs for varargs params.
6773 if (!FTy->isVarArg()) {
6774 if (OpNum != Record.size())
6775 return error(Message: "Invalid record");
6776 } else {
6777 while (OpNum != Record.size()) {
6778 Value *Op;
6779 unsigned OpTypeID;
6780 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB))
6781 return error(Message: "Invalid record");
6782 Args.push_back(Elt: Op);
6783 ArgTyIDs.push_back(Elt: OpTypeID);
6784 }
6785 }
6786
6787 // Upgrade the bundles if needed.
6788 if (!OperandBundles.empty())
6789 UpgradeOperandBundles(OperandBundles);
6790
6791 I = CallInst::Create(Ty: FTy, Func: Callee, Args, Bundles: OperandBundles);
6792 ResTypeID = getContainedTypeID(ID: FTyID);
6793 OperandBundles.clear();
6794 InstructionList.push_back(Elt: I);
6795 cast<CallInst>(Val: I)->setCallingConv(
6796 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6797 CallInst::TailCallKind TCK = CallInst::TCK_None;
6798 if (CCInfo & (1 << bitc::CALL_TAIL))
6799 TCK = CallInst::TCK_Tail;
6800 if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6801 TCK = CallInst::TCK_MustTail;
6802 if (CCInfo & (1 << bitc::CALL_NOTAIL))
6803 TCK = CallInst::TCK_NoTail;
6804 cast<CallInst>(Val: I)->setTailCallKind(TCK);
6805 cast<CallInst>(Val: I)->setAttributes(PAL);
6806 if (isa<DbgInfoIntrinsic>(Val: I))
6807 SeenDebugIntrinsic = true;
6808 if (Error Err = propagateAttributeTypes(CB: cast<CallBase>(Val: I), ArgTyIDs)) {
6809 I->deleteValue();
6810 return Err;
6811 }
6812 if (FMF.any()) {
6813 if (!isa<FPMathOperator>(Val: I))
6814 return error(Message: "Fast-math-flags specified for call without "
6815 "floating-point scalar or vector return type");
6816 I->setFastMathFlags(FMF);
6817 }
6818 break;
6819 }
6820 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6821 if (Record.size() < 3)
6822 return error(Message: "Invalid record");
6823 unsigned OpTyID = Record[0];
6824 Type *OpTy = getTypeByID(ID: OpTyID);
6825 Value *Op = getValue(Record, Slot: 1, InstNum: NextValueNo, Ty: OpTy, TyID: OpTyID, ConstExprInsertBB: CurBB);
6826 ResTypeID = Record[2];
6827 Type *ResTy = getTypeByID(ID: ResTypeID);
6828 if (!OpTy || !Op || !ResTy)
6829 return error(Message: "Invalid record");
6830 I = new VAArgInst(Op, ResTy);
6831 InstructionList.push_back(Elt: I);
6832 break;
6833 }
6834
6835 case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6836 // A call or an invoke can be optionally prefixed with some variable
6837 // number of operand bundle blocks. These blocks are read into
6838 // OperandBundles and consumed at the next call or invoke instruction.
6839
6840 if (Record.empty() || Record[0] >= BundleTags.size())
6841 return error(Message: "Invalid record");
6842
6843 std::vector<Value *> Inputs;
6844
6845 unsigned OpNum = 1;
6846 while (OpNum != Record.size()) {
6847 Value *Op;
6848 if (getValueOrMetadata(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, ConstExprInsertBB: CurBB))
6849 return error(Message: "Invalid record");
6850 Inputs.push_back(x: Op);
6851 }
6852
6853 OperandBundles.emplace_back(args&: BundleTags[Record[0]], args: std::move(Inputs));
6854 continue;
6855 }
6856
6857 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6858 unsigned OpNum = 0;
6859 Value *Op = nullptr;
6860 unsigned OpTypeID;
6861 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB))
6862 return error(Message: "Invalid record");
6863 if (OpNum != Record.size())
6864 return error(Message: "Invalid record");
6865
6866 I = new FreezeInst(Op);
6867 ResTypeID = OpTypeID;
6868 InstructionList.push_back(Elt: I);
6869 break;
6870 }
6871 }
6872
6873 // Add instruction to end of current BB. If there is no current BB, reject
6874 // this file.
6875 if (!CurBB) {
6876 I->deleteValue();
6877 return error(Message: "Invalid instruction with no BB");
6878 }
6879 if (!OperandBundles.empty()) {
6880 I->deleteValue();
6881 return error(Message: "Operand bundles found with no consumer");
6882 }
6883 I->insertInto(ParentBB: CurBB, It: CurBB->end());
6884
6885 // If this was a terminator instruction, move to the next block.
6886 if (I->isTerminator()) {
6887 ++CurBBNo;
6888 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6889 }
6890
6891 // Non-void values get registered in the value table for future use.
6892 if (!I->getType()->isVoidTy()) {
6893 assert(I->getType() == getTypeByID(ResTypeID) &&
6894 "Incorrect result type ID");
6895 if (Error Err = ValueList.assignValue(Idx: NextValueNo++, V: I, TypeID: ResTypeID))
6896 return Err;
6897 }
6898 }
6899
6900OutOfRecordLoop:
6901
6902 if (!OperandBundles.empty())
6903 return error(Message: "Operand bundles found with no consumer");
6904
6905 // Check the function list for unresolved values.
6906 if (Argument *A = dyn_cast<Argument>(Val: ValueList.back())) {
6907 if (!A->getParent()) {
6908 // We found at least one unresolved value. Nuke them all to avoid leaks.
6909 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6910 if ((A = dyn_cast_or_null<Argument>(Val: ValueList[i])) && !A->getParent()) {
6911 A->replaceAllUsesWith(V: PoisonValue::get(T: A->getType()));
6912 delete A;
6913 }
6914 }
6915 return error(Message: "Never resolved value found in function");
6916 }
6917 }
6918
6919 // Unexpected unresolved metadata about to be dropped.
6920 if (MDLoader->hasFwdRefs())
6921 return error(Message: "Invalid function metadata: outgoing forward refs");
6922
6923 if (PhiConstExprBB)
6924 PhiConstExprBB->eraseFromParent();
6925
6926 for (const auto &Pair : ConstExprEdgeBBs) {
6927 BasicBlock *From = Pair.first.first;
6928 BasicBlock *To = Pair.first.second;
6929 BasicBlock *EdgeBB = Pair.second;
6930 BranchInst::Create(IfTrue: To, InsertBefore: EdgeBB);
6931 From->getTerminator()->replaceSuccessorWith(OldBB: To, NewBB: EdgeBB);
6932 To->replacePhiUsesWith(Old: From, New: EdgeBB);
6933 EdgeBB->moveBefore(MovePos: To);
6934 }
6935
6936 // Trim the value list down to the size it was before we parsed this function.
6937 ValueList.shrinkTo(N: ModuleValueListSize);
6938 MDLoader->shrinkTo(N: ModuleMDLoaderSize);
6939 std::vector<BasicBlock*>().swap(x&: FunctionBBs);
6940 return Error::success();
6941}
6942
6943/// Find the function body in the bitcode stream
6944Error BitcodeReader::findFunctionInStream(
6945 Function *F,
6946 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6947 while (DeferredFunctionInfoIterator->second == 0) {
6948 // This is the fallback handling for the old format bitcode that
6949 // didn't contain the function index in the VST, or when we have
6950 // an anonymous function which would not have a VST entry.
6951 // Assert that we have one of those two cases.
6952 assert(VSTOffset == 0 || !F->hasName());
6953 // Parse the next body in the stream and set its position in the
6954 // DeferredFunctionInfo map.
6955 if (Error Err = rememberAndSkipFunctionBodies())
6956 return Err;
6957 }
6958 return Error::success();
6959}
6960
6961SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6962 if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6963 return SyncScope::ID(Val);
6964 if (Val >= SSIDs.size())
6965 return SyncScope::System; // Map unknown synchronization scopes to system.
6966 return SSIDs[Val];
6967}
6968
6969//===----------------------------------------------------------------------===//
6970// GVMaterializer implementation
6971//===----------------------------------------------------------------------===//
6972
6973Error BitcodeReader::materialize(GlobalValue *GV) {
6974 Function *F = dyn_cast<Function>(Val: GV);
6975 // If it's not a function or is already material, ignore the request.
6976 if (!F || !F->isMaterializable())
6977 return Error::success();
6978
6979 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(Val: F);
6980 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6981 // If its position is recorded as 0, its body is somewhere in the stream
6982 // but we haven't seen it yet.
6983 if (DFII->second == 0)
6984 if (Error Err = findFunctionInStream(F, DeferredFunctionInfoIterator: DFII))
6985 return Err;
6986
6987 // Materialize metadata before parsing any function bodies.
6988 if (Error Err = materializeMetadata())
6989 return Err;
6990
6991 // Move the bit stream to the saved position of the deferred function body.
6992 if (Error JumpFailed = Stream.JumpToBit(BitNo: DFII->second))
6993 return JumpFailed;
6994
6995 if (Error Err = parseFunctionBody(F))
6996 return Err;
6997 F->setIsMaterializable(false);
6998
6999 // All parsed Functions should load into the debug info format dictated by the
7000 // Module.
7001 if (SeenDebugIntrinsic && SeenDebugRecord)
7002 return error(Message: "Mixed debug intrinsics and debug records in bitcode module!");
7003
7004 if (StripDebugInfo)
7005 stripDebugInfo(F&: *F);
7006
7007 // Upgrade any old intrinsic calls in the function.
7008 for (auto &I : UpgradedIntrinsics) {
7009 for (User *U : llvm::make_early_inc_range(Range: I.first->materialized_users()))
7010 if (CallInst *CI = dyn_cast<CallInst>(Val: U))
7011 UpgradeIntrinsicCall(CB: CI, NewFn: I.second);
7012 }
7013
7014 // Finish fn->subprogram upgrade for materialized functions.
7015 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
7016 F->setSubprogram(SP);
7017
7018 // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
7019 if (!MDLoader->isStrippingTBAA()) {
7020 for (auto &I : instructions(F)) {
7021 MDNode *TBAA = I.getMetadata(KindID: LLVMContext::MD_tbaa);
7022 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, MD: TBAA))
7023 continue;
7024 MDLoader->setStripTBAA(true);
7025 stripTBAA(M: F->getParent());
7026 }
7027 }
7028
7029 for (auto &I : instructions(F)) {
7030 // "Upgrade" older incorrect branch weights by dropping them.
7031 if (auto *MD = I.getMetadata(KindID: LLVMContext::MD_prof)) {
7032 if (MD->getOperand(I: 0) != nullptr && isa<MDString>(Val: MD->getOperand(I: 0))) {
7033 MDString *MDS = cast<MDString>(Val: MD->getOperand(I: 0));
7034 StringRef ProfName = MDS->getString();
7035 // Check consistency of !prof branch_weights metadata.
7036 if (ProfName != MDProfLabels::BranchWeights)
7037 continue;
7038 unsigned ExpectedNumOperands = 0;
7039 if (BranchInst *BI = dyn_cast<BranchInst>(Val: &I))
7040 ExpectedNumOperands = BI->getNumSuccessors();
7041 else if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: &I))
7042 ExpectedNumOperands = SI->getNumSuccessors();
7043 else if (isa<CallInst>(Val: &I))
7044 ExpectedNumOperands = 1;
7045 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(Val: &I))
7046 ExpectedNumOperands = IBI->getNumDestinations();
7047 else if (isa<SelectInst>(Val: &I))
7048 ExpectedNumOperands = 2;
7049 else
7050 continue; // ignore and continue.
7051
7052 unsigned Offset = getBranchWeightOffset(ProfileData: MD);
7053
7054 // If branch weight doesn't match, just strip branch weight.
7055 if (MD->getNumOperands() != Offset + ExpectedNumOperands)
7056 I.setMetadata(KindID: LLVMContext::MD_prof, Node: nullptr);
7057 }
7058 }
7059
7060 // Remove incompatible attributes on function calls.
7061 if (auto *CI = dyn_cast<CallBase>(Val: &I)) {
7062 CI->removeRetAttrs(AttrsToRemove: AttributeFuncs::typeIncompatible(
7063 Ty: CI->getFunctionType()->getReturnType(), AS: CI->getRetAttributes()));
7064
7065 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
7066 CI->removeParamAttrs(ArgNo, AttrsToRemove: AttributeFuncs::typeIncompatible(
7067 Ty: CI->getArgOperand(i: ArgNo)->getType(),
7068 AS: CI->getParamAttributes(ArgNo)));
7069 }
7070 }
7071
7072 // Look for functions that rely on old function attribute behavior.
7073 UpgradeFunctionAttributes(F&: *F);
7074
7075 // Bring in any functions that this function forward-referenced via
7076 // blockaddresses.
7077 return materializeForwardReferencedFunctions();
7078}
7079
7080Error BitcodeReader::materializeModule() {
7081 if (Error Err = materializeMetadata())
7082 return Err;
7083
7084 // Promise to materialize all forward references.
7085 WillMaterializeAllForwardRefs = true;
7086
7087 // Iterate over the module, deserializing any functions that are still on
7088 // disk.
7089 for (Function &F : *TheModule) {
7090 if (Error Err = materialize(GV: &F))
7091 return Err;
7092 }
7093 // At this point, if there are any function bodies, parse the rest of
7094 // the bits in the module past the last function block we have recorded
7095 // through either lazy scanning or the VST.
7096 if (LastFunctionBlockBit || NextUnreadBit)
7097 if (Error Err = parseModule(ResumeBit: LastFunctionBlockBit > NextUnreadBit
7098 ? LastFunctionBlockBit
7099 : NextUnreadBit))
7100 return Err;
7101
7102 // Check that all block address forward references got resolved (as we
7103 // promised above).
7104 if (!BasicBlockFwdRefs.empty())
7105 return error(Message: "Never resolved function from blockaddress");
7106
7107 // Upgrade any intrinsic calls that slipped through (should not happen!) and
7108 // delete the old functions to clean up. We can't do this unless the entire
7109 // module is materialized because there could always be another function body
7110 // with calls to the old function.
7111 for (auto &I : UpgradedIntrinsics) {
7112 for (auto *U : I.first->users()) {
7113 if (CallInst *CI = dyn_cast<CallInst>(Val: U))
7114 UpgradeIntrinsicCall(CB: CI, NewFn: I.second);
7115 }
7116 if (!I.first->use_empty())
7117 I.first->replaceAllUsesWith(V: I.second);
7118 I.first->eraseFromParent();
7119 }
7120 UpgradedIntrinsics.clear();
7121
7122 UpgradeDebugInfo(M&: *TheModule);
7123
7124 UpgradeModuleFlags(M&: *TheModule);
7125
7126 UpgradeNVVMAnnotations(M&: *TheModule);
7127
7128 UpgradeARCRuntime(M&: *TheModule);
7129
7130 return Error::success();
7131}
7132
7133std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
7134 return IdentifiedStructTypes;
7135}
7136
7137ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
7138 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
7139 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
7140 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
7141 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
7142
7143void ModuleSummaryIndexBitcodeReader::addThisModule() {
7144 TheIndex.addModule(ModPath: ModulePath);
7145}
7146
7147ModuleSummaryIndex::ModuleInfo *
7148ModuleSummaryIndexBitcodeReader::getThisModule() {
7149 return TheIndex.getModule(ModPath: ModulePath);
7150}
7151
7152template <bool AllowNullValueInfo>
7153std::pair<ValueInfo, GlobalValue::GUID>
7154ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
7155 auto VGI = ValueIdToValueInfoMap[ValueId];
7156 // We can have a null value info for memprof callsite info records in
7157 // distributed ThinLTO index files when the callee function summary is not
7158 // included in the index. The bitcode writer records 0 in that case,
7159 // and the caller of this helper will set AllowNullValueInfo to true.
7160 assert(AllowNullValueInfo || std::get<0>(VGI));
7161 return VGI;
7162}
7163
7164void ModuleSummaryIndexBitcodeReader::setValueGUID(
7165 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
7166 StringRef SourceFileName) {
7167 std::string GlobalId =
7168 GlobalValue::getGlobalIdentifier(Name: ValueName, Linkage, FileName: SourceFileName);
7169 auto ValueGUID = GlobalValue::getGUIDAssumingExternalLinkage(GlobalName: GlobalId);
7170 auto OriginalNameID = ValueGUID;
7171 if (GlobalValue::isLocalLinkage(Linkage))
7172 OriginalNameID = GlobalValue::getGUIDAssumingExternalLinkage(GlobalName: ValueName);
7173 if (PrintSummaryGUIDs)
7174 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
7175 << ValueName << "\n";
7176
7177 // UseStrtab is false for legacy summary formats and value names are
7178 // created on stack. In that case we save the name in a string saver in
7179 // the index so that the value name can be recorded.
7180 ValueIdToValueInfoMap[ValueID] = std::make_pair(
7181 x: TheIndex.getOrInsertValueInfo(
7182 GUID: ValueGUID, Name: UseStrtab ? ValueName : TheIndex.saveString(String: ValueName)),
7183 y&: OriginalNameID);
7184}
7185
7186// Specialized value symbol table parser used when reading module index
7187// blocks where we don't actually create global values. The parsed information
7188// is saved in the bitcode reader for use when later parsing summaries.
7189Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
7190 uint64_t Offset,
7191 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
7192 // With a strtab the VST is not required to parse the summary.
7193 if (UseStrtab)
7194 return Error::success();
7195
7196 assert(Offset > 0 && "Expected non-zero VST offset");
7197 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
7198 if (!MaybeCurrentBit)
7199 return MaybeCurrentBit.takeError();
7200 uint64_t CurrentBit = MaybeCurrentBit.get();
7201
7202 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID))
7203 return Err;
7204
7205 SmallVector<uint64_t, 64> Record;
7206
7207 // Read all the records for this value table.
7208 SmallString<128> ValueName;
7209
7210 while (true) {
7211 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7212 if (!MaybeEntry)
7213 return MaybeEntry.takeError();
7214 BitstreamEntry Entry = MaybeEntry.get();
7215
7216 switch (Entry.Kind) {
7217 case BitstreamEntry::SubBlock: // Handled for us already.
7218 case BitstreamEntry::Error:
7219 return error(Message: "Malformed block");
7220 case BitstreamEntry::EndBlock:
7221 // Done parsing VST, jump back to wherever we came from.
7222 if (Error JumpFailed = Stream.JumpToBit(BitNo: CurrentBit))
7223 return JumpFailed;
7224 return Error::success();
7225 case BitstreamEntry::Record:
7226 // The interesting case.
7227 break;
7228 }
7229
7230 // Read a record.
7231 Record.clear();
7232 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
7233 if (!MaybeRecord)
7234 return MaybeRecord.takeError();
7235 switch (MaybeRecord.get()) {
7236 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
7237 break;
7238 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
7239 if (convertToString(Record, Idx: 1, Result&: ValueName))
7240 return error(Message: "Invalid record");
7241 unsigned ValueID = Record[0];
7242 assert(!SourceFileName.empty());
7243 auto VLI = ValueIdToLinkageMap.find(Val: ValueID);
7244 assert(VLI != ValueIdToLinkageMap.end() &&
7245 "No linkage found for VST entry?");
7246 auto Linkage = VLI->second;
7247 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7248 ValueName.clear();
7249 break;
7250 }
7251 case bitc::VST_CODE_FNENTRY: {
7252 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
7253 if (convertToString(Record, Idx: 2, Result&: ValueName))
7254 return error(Message: "Invalid record");
7255 unsigned ValueID = Record[0];
7256 assert(!SourceFileName.empty());
7257 auto VLI = ValueIdToLinkageMap.find(Val: ValueID);
7258 assert(VLI != ValueIdToLinkageMap.end() &&
7259 "No linkage found for VST entry?");
7260 auto Linkage = VLI->second;
7261 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7262 ValueName.clear();
7263 break;
7264 }
7265 case bitc::VST_CODE_COMBINED_ENTRY: {
7266 // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
7267 unsigned ValueID = Record[0];
7268 GlobalValue::GUID RefGUID = Record[1];
7269 // The "original name", which is the second value of the pair will be
7270 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
7271 ValueIdToValueInfoMap[ValueID] =
7272 std::make_pair(x: TheIndex.getOrInsertValueInfo(GUID: RefGUID), y&: RefGUID);
7273 break;
7274 }
7275 }
7276 }
7277}
7278
7279// Parse just the blocks needed for building the index out of the module.
7280// At the end of this routine the module Index is populated with a map
7281// from global value id to GlobalValueSummary objects.
7282Error ModuleSummaryIndexBitcodeReader::parseModule() {
7283 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::MODULE_BLOCK_ID))
7284 return Err;
7285
7286 SmallVector<uint64_t, 64> Record;
7287 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
7288 unsigned ValueId = 0;
7289
7290 // Read the index for this module.
7291 while (true) {
7292 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7293 if (!MaybeEntry)
7294 return MaybeEntry.takeError();
7295 llvm::BitstreamEntry Entry = MaybeEntry.get();
7296
7297 switch (Entry.Kind) {
7298 case BitstreamEntry::Error:
7299 return error(Message: "Malformed block");
7300 case BitstreamEntry::EndBlock:
7301 return Error::success();
7302
7303 case BitstreamEntry::SubBlock:
7304 switch (Entry.ID) {
7305 default: // Skip unknown content.
7306 if (Error Err = Stream.SkipBlock())
7307 return Err;
7308 break;
7309 case bitc::BLOCKINFO_BLOCK_ID:
7310 // Need to parse these to get abbrev ids (e.g. for VST)
7311 if (Error Err = readBlockInfo())
7312 return Err;
7313 break;
7314 case bitc::VALUE_SYMTAB_BLOCK_ID:
7315 // Should have been parsed earlier via VSTOffset, unless there
7316 // is no summary section.
7317 assert(((SeenValueSymbolTable && VSTOffset > 0) ||
7318 !SeenGlobalValSummary) &&
7319 "Expected early VST parse via VSTOffset record");
7320 if (Error Err = Stream.SkipBlock())
7321 return Err;
7322 break;
7323 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
7324 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
7325 // Add the module if it is a per-module index (has a source file name).
7326 if (!SourceFileName.empty())
7327 addThisModule();
7328 assert(!SeenValueSymbolTable &&
7329 "Already read VST when parsing summary block?");
7330 // We might not have a VST if there were no values in the
7331 // summary. An empty summary block generated when we are
7332 // performing ThinLTO compiles so we don't later invoke
7333 // the regular LTO process on them.
7334 if (VSTOffset > 0) {
7335 if (Error Err = parseValueSymbolTable(Offset: VSTOffset, ValueIdToLinkageMap))
7336 return Err;
7337 SeenValueSymbolTable = true;
7338 }
7339 SeenGlobalValSummary = true;
7340 if (Error Err = parseEntireSummary(ID: Entry.ID))
7341 return Err;
7342 break;
7343 case bitc::MODULE_STRTAB_BLOCK_ID:
7344 if (Error Err = parseModuleStringTable())
7345 return Err;
7346 break;
7347 }
7348 continue;
7349
7350 case BitstreamEntry::Record: {
7351 Record.clear();
7352 Expected<unsigned> MaybeBitCode = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
7353 if (!MaybeBitCode)
7354 return MaybeBitCode.takeError();
7355 switch (MaybeBitCode.get()) {
7356 default:
7357 break; // Default behavior, ignore unknown content.
7358 case bitc::MODULE_CODE_VERSION: {
7359 if (Error Err = parseVersionRecord(Record).takeError())
7360 return Err;
7361 break;
7362 }
7363 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
7364 case bitc::MODULE_CODE_SOURCE_FILENAME: {
7365 SmallString<128> ValueName;
7366 if (convertToString(Record, Idx: 0, Result&: ValueName))
7367 return error(Message: "Invalid record");
7368 SourceFileName = ValueName.c_str();
7369 break;
7370 }
7371 /// MODULE_CODE_HASH: [5*i32]
7372 case bitc::MODULE_CODE_HASH: {
7373 if (Record.size() != 5)
7374 return error(Message: "Invalid hash length " + Twine(Record.size()).str());
7375 auto &Hash = getThisModule()->second;
7376 int Pos = 0;
7377 for (auto &Val : Record) {
7378 assert(!(Val >> 32) && "Unexpected high bits set");
7379 Hash[Pos++] = Val;
7380 }
7381 break;
7382 }
7383 /// MODULE_CODE_VSTOFFSET: [offset]
7384 case bitc::MODULE_CODE_VSTOFFSET:
7385 if (Record.empty())
7386 return error(Message: "Invalid record");
7387 // Note that we subtract 1 here because the offset is relative to one
7388 // word before the start of the identification or module block, which
7389 // was historically always the start of the regular bitcode header.
7390 VSTOffset = Record[0] - 1;
7391 break;
7392 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
7393 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
7394 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
7395 // v2: [strtab offset, strtab size, v1]
7396 case bitc::MODULE_CODE_GLOBALVAR:
7397 case bitc::MODULE_CODE_FUNCTION:
7398 case bitc::MODULE_CODE_ALIAS: {
7399 StringRef Name;
7400 ArrayRef<uint64_t> GVRecord;
7401 std::tie(args&: Name, args&: GVRecord) = readNameFromStrtab(Record);
7402 if (GVRecord.size() <= 3)
7403 return error(Message: "Invalid record");
7404 uint64_t RawLinkage = GVRecord[3];
7405 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(Val: RawLinkage);
7406 if (!UseStrtab) {
7407 ValueIdToLinkageMap[ValueId++] = Linkage;
7408 break;
7409 }
7410
7411 setValueGUID(ValueID: ValueId++, ValueName: Name, Linkage, SourceFileName);
7412 break;
7413 }
7414 }
7415 }
7416 continue;
7417 }
7418 }
7419}
7420
7421SmallVector<ValueInfo, 0>
7422ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7423 SmallVector<ValueInfo, 0> Ret;
7424 Ret.reserve(N: Record.size());
7425 for (uint64_t RefValueId : Record)
7426 Ret.push_back(Elt: std::get<0>(in: getValueInfoFromValueId(ValueId: RefValueId)));
7427 return Ret;
7428}
7429
7430SmallVector<FunctionSummary::EdgeTy, 0>
7431ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7432 bool IsOldProfileFormat,
7433 bool HasProfile, bool HasRelBF) {
7434 SmallVector<FunctionSummary::EdgeTy, 0> Ret;
7435 // In the case of new profile formats, there are two Record entries per
7436 // Edge. Otherwise, conservatively reserve up to Record.size.
7437 if (!IsOldProfileFormat && (HasProfile || HasRelBF))
7438 Ret.reserve(N: Record.size() / 2);
7439 else
7440 Ret.reserve(N: Record.size());
7441
7442 for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7443 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7444 bool HasTailCall = false;
7445 uint64_t RelBF = 0;
7446 ValueInfo Callee = std::get<0>(in: getValueInfoFromValueId(ValueId: Record[I]));
7447 if (IsOldProfileFormat) {
7448 I += 1; // Skip old callsitecount field
7449 if (HasProfile)
7450 I += 1; // Skip old profilecount field
7451 } else if (HasProfile)
7452 std::tie(args&: Hotness, args&: HasTailCall) =
7453 getDecodedHotnessCallEdgeInfo(RawFlags: Record[++I]);
7454 else if (HasRelBF)
7455 getDecodedRelBFCallEdgeInfo(RawFlags: Record[++I], RelBF, HasTailCall);
7456 Ret.push_back(Elt: FunctionSummary::EdgeTy{
7457 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7458 }
7459 return Ret;
7460}
7461
7462static void
7463parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7464 WholeProgramDevirtResolution &Wpd) {
7465 uint64_t ArgNum = Record[Slot++];
7466 WholeProgramDevirtResolution::ByArg &B =
7467 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7468 Slot += ArgNum;
7469
7470 B.TheKind =
7471 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7472 B.Info = Record[Slot++];
7473 B.Byte = Record[Slot++];
7474 B.Bit = Record[Slot++];
7475}
7476
7477static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7478 StringRef Strtab, size_t &Slot,
7479 TypeIdSummary &TypeId) {
7480 uint64_t Id = Record[Slot++];
7481 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7482
7483 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7484 Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7485 static_cast<size_t>(Record[Slot + 1])};
7486 Slot += 2;
7487
7488 uint64_t ResByArgNum = Record[Slot++];
7489 for (uint64_t I = 0; I != ResByArgNum; ++I)
7490 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7491}
7492
7493static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7494 StringRef Strtab,
7495 ModuleSummaryIndex &TheIndex) {
7496 size_t Slot = 0;
7497 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7498 TypeId: {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7499 Slot += 2;
7500
7501 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7502 TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7503 TypeId.TTRes.AlignLog2 = Record[Slot++];
7504 TypeId.TTRes.SizeM1 = Record[Slot++];
7505 TypeId.TTRes.BitMask = Record[Slot++];
7506 TypeId.TTRes.InlineBits = Record[Slot++];
7507
7508 while (Slot < Record.size())
7509 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7510}
7511
7512std::vector<FunctionSummary::ParamAccess>
7513ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7514 auto ReadRange = [&]() {
7515 APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7516 BitcodeReader::decodeSignRotatedValue(V: Record.front()));
7517 Record = Record.drop_front();
7518 APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7519 BitcodeReader::decodeSignRotatedValue(V: Record.front()));
7520 Record = Record.drop_front();
7521 ConstantRange Range{Lower, Upper};
7522 assert(!Range.isFullSet());
7523 assert(!Range.isUpperSignWrapped());
7524 return Range;
7525 };
7526
7527 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7528 while (!Record.empty()) {
7529 PendingParamAccesses.emplace_back();
7530 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7531 ParamAccess.ParamNo = Record.front();
7532 Record = Record.drop_front();
7533 ParamAccess.Use = ReadRange();
7534 ParamAccess.Calls.resize(new_size: Record.front());
7535 Record = Record.drop_front();
7536 for (auto &Call : ParamAccess.Calls) {
7537 Call.ParamNo = Record.front();
7538 Record = Record.drop_front();
7539 Call.Callee = std::get<0>(in: getValueInfoFromValueId(ValueId: Record.front()));
7540 Record = Record.drop_front();
7541 Call.Offsets = ReadRange();
7542 }
7543 }
7544 return PendingParamAccesses;
7545}
7546
7547void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7548 ArrayRef<uint64_t> Record, size_t &Slot,
7549 TypeIdCompatibleVtableInfo &TypeId) {
7550 uint64_t Offset = Record[Slot++];
7551 ValueInfo Callee = std::get<0>(in: getValueInfoFromValueId(ValueId: Record[Slot++]));
7552 TypeId.push_back(x: {Offset, Callee});
7553}
7554
7555void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7556 ArrayRef<uint64_t> Record) {
7557 size_t Slot = 0;
7558 TypeIdCompatibleVtableInfo &TypeId =
7559 TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7560 TypeId: {Strtab.data() + Record[Slot],
7561 static_cast<size_t>(Record[Slot + 1])});
7562 Slot += 2;
7563
7564 while (Slot < Record.size())
7565 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7566}
7567
7568SmallVector<unsigned> ModuleSummaryIndexBitcodeReader::parseAllocInfoContext(
7569 ArrayRef<uint64_t> Record, unsigned &I) {
7570 SmallVector<unsigned> StackIdList;
7571 // For backwards compatibility with old format before radix tree was
7572 // used, simply see if we found a radix tree array record (and thus if
7573 // the RadixArray is non-empty).
7574 if (RadixArray.empty()) {
7575 unsigned NumStackEntries = Record[I++];
7576 assert(Record.size() - I >= NumStackEntries);
7577 StackIdList.reserve(N: NumStackEntries);
7578 for (unsigned J = 0; J < NumStackEntries; J++) {
7579 assert(Record[I] < StackIds.size());
7580 StackIdList.push_back(
7581 Elt: TheIndex.addOrGetStackIdIndex(StackId: StackIds[Record[I++]]));
7582 }
7583 } else {
7584 unsigned RadixIndex = Record[I++];
7585 // See the comments above CallStackRadixTreeBuilder in ProfileData/MemProf.h
7586 // for a detailed description of the radix tree array format. Briefly, the
7587 // first entry will be the number of frames, any negative values are the
7588 // negative of the offset of the next frame, and otherwise the frames are in
7589 // increasing linear order.
7590 assert(RadixIndex < RadixArray.size());
7591 unsigned NumStackIds = RadixArray[RadixIndex++];
7592 StackIdList.reserve(N: NumStackIds);
7593 while (NumStackIds--) {
7594 assert(RadixIndex < RadixArray.size());
7595 unsigned Elem = RadixArray[RadixIndex];
7596 if (static_cast<std::make_signed_t<unsigned>>(Elem) < 0) {
7597 RadixIndex = RadixIndex - Elem;
7598 assert(RadixIndex < RadixArray.size());
7599 Elem = RadixArray[RadixIndex];
7600 // We shouldn't encounter a second offset in a row.
7601 assert(static_cast<std::make_signed_t<unsigned>>(Elem) >= 0);
7602 }
7603 RadixIndex++;
7604 StackIdList.push_back(Elt: TheIndex.addOrGetStackIdIndex(StackId: StackIds[Elem]));
7605 }
7606 }
7607 return StackIdList;
7608}
7609
7610static void setSpecialRefs(SmallVectorImpl<ValueInfo> &Refs, unsigned ROCnt,
7611 unsigned WOCnt) {
7612 // Readonly and writeonly refs are in the end of the refs list.
7613 assert(ROCnt + WOCnt <= Refs.size());
7614 unsigned FirstWORef = Refs.size() - WOCnt;
7615 unsigned RefNo = FirstWORef - ROCnt;
7616 for (; RefNo < FirstWORef; ++RefNo)
7617 Refs[RefNo].setReadOnly();
7618 for (; RefNo < Refs.size(); ++RefNo)
7619 Refs[RefNo].setWriteOnly();
7620}
7621
7622// Eagerly parse the entire summary block. This populates the GlobalValueSummary
7623// objects in the index.
7624Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7625 if (Error Err = Stream.EnterSubBlock(BlockID: ID))
7626 return Err;
7627 SmallVector<uint64_t, 64> Record;
7628
7629 // Parse version
7630 {
7631 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7632 if (!MaybeEntry)
7633 return MaybeEntry.takeError();
7634 BitstreamEntry Entry = MaybeEntry.get();
7635
7636 if (Entry.Kind != BitstreamEntry::Record)
7637 return error(Message: "Invalid Summary Block: record for version expected");
7638 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
7639 if (!MaybeRecord)
7640 return MaybeRecord.takeError();
7641 if (MaybeRecord.get() != bitc::FS_VERSION)
7642 return error(Message: "Invalid Summary Block: version expected");
7643 }
7644 const uint64_t Version = Record[0];
7645 const bool IsOldProfileFormat = Version == 1;
7646 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7647 return error(Message: "Invalid summary version " + Twine(Version) +
7648 ". Version should be in the range [1-" +
7649 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7650 "].");
7651 Record.clear();
7652
7653 // Keep around the last seen summary to be used when we see an optional
7654 // "OriginalName" attachement.
7655 GlobalValueSummary *LastSeenSummary = nullptr;
7656 GlobalValue::GUID LastSeenGUID = 0;
7657
7658 // We can expect to see any number of type ID information records before
7659 // each function summary records; these variables store the information
7660 // collected so far so that it can be used to create the summary object.
7661 std::vector<GlobalValue::GUID> PendingTypeTests;
7662 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7663 PendingTypeCheckedLoadVCalls;
7664 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7665 PendingTypeCheckedLoadConstVCalls;
7666 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7667
7668 std::vector<CallsiteInfo> PendingCallsites;
7669 std::vector<AllocInfo> PendingAllocs;
7670 std::vector<uint64_t> PendingContextIds;
7671
7672 while (true) {
7673 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7674 if (!MaybeEntry)
7675 return MaybeEntry.takeError();
7676 BitstreamEntry Entry = MaybeEntry.get();
7677
7678 switch (Entry.Kind) {
7679 case BitstreamEntry::SubBlock: // Handled for us already.
7680 case BitstreamEntry::Error:
7681 return error(Message: "Malformed block");
7682 case BitstreamEntry::EndBlock:
7683 return Error::success();
7684 case BitstreamEntry::Record:
7685 // The interesting case.
7686 break;
7687 }
7688
7689 // Read a record. The record format depends on whether this
7690 // is a per-module index or a combined index file. In the per-module
7691 // case the records contain the associated value's ID for correlation
7692 // with VST entries. In the combined index the correlation is done
7693 // via the bitcode offset of the summary records (which were saved
7694 // in the combined index VST entries). The records also contain
7695 // information used for ThinLTO renaming and importing.
7696 Record.clear();
7697 Expected<unsigned> MaybeBitCode = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
7698 if (!MaybeBitCode)
7699 return MaybeBitCode.takeError();
7700 switch (unsigned BitCode = MaybeBitCode.get()) {
7701 default: // Default behavior: ignore.
7702 break;
7703 case bitc::FS_FLAGS: { // [flags]
7704 TheIndex.setFlags(Record[0]);
7705 break;
7706 }
7707 case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32]
7708 uint64_t ValueID = Record[0];
7709 GlobalValue::GUID RefGUID;
7710 if (Version >= 11) {
7711 RefGUID = Record[1] << 32 | Record[2];
7712 } else {
7713 RefGUID = Record[1];
7714 }
7715 ValueIdToValueInfoMap[ValueID] =
7716 std::make_pair(x: TheIndex.getOrInsertValueInfo(GUID: RefGUID), y&: RefGUID);
7717 break;
7718 }
7719 // FS_PERMODULE is legacy and does not have support for the tail call flag.
7720 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7721 // numrefs x valueid, n x (valueid)]
7722 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7723 // numrefs x valueid,
7724 // n x (valueid, hotness+tailcall flags)]
7725 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7726 // numrefs x valueid,
7727 // n x (valueid, relblockfreq+tailcall)]
7728 case bitc::FS_PERMODULE:
7729 case bitc::FS_PERMODULE_RELBF:
7730 case bitc::FS_PERMODULE_PROFILE: {
7731 unsigned ValueID = Record[0];
7732 uint64_t RawFlags = Record[1];
7733 unsigned InstCount = Record[2];
7734 uint64_t RawFunFlags = 0;
7735 unsigned NumRefs = Record[3];
7736 unsigned NumRORefs = 0, NumWORefs = 0;
7737 int RefListStartIndex = 4;
7738 if (Version >= 4) {
7739 RawFunFlags = Record[3];
7740 NumRefs = Record[4];
7741 RefListStartIndex = 5;
7742 if (Version >= 5) {
7743 NumRORefs = Record[5];
7744 RefListStartIndex = 6;
7745 if (Version >= 7) {
7746 NumWORefs = Record[6];
7747 RefListStartIndex = 7;
7748 }
7749 }
7750 }
7751
7752 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7753 // The module path string ref set in the summary must be owned by the
7754 // index's module string table. Since we don't have a module path
7755 // string table section in the per-module index, we create a single
7756 // module path string table entry with an empty (0) ID to take
7757 // ownership.
7758 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7759 assert(Record.size() >= RefListStartIndex + NumRefs &&
7760 "Record size inconsistent with number of references");
7761 SmallVector<ValueInfo, 0> Refs = makeRefList(
7762 Record: ArrayRef<uint64_t>(Record).slice(N: RefListStartIndex, M: NumRefs));
7763 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7764 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7765 SmallVector<FunctionSummary::EdgeTy, 0> Calls = makeCallList(
7766 Record: ArrayRef<uint64_t>(Record).slice(N: CallGraphEdgeStartIndex),
7767 IsOldProfileFormat, HasProfile, HasRelBF);
7768 setSpecialRefs(Refs, ROCnt: NumRORefs, WOCnt: NumWORefs);
7769 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueId: ValueID);
7770 // In order to save memory, only record the memprof summaries if this is
7771 // the prevailing copy of a symbol. The linker doesn't resolve local
7772 // linkage values so don't check whether those are prevailing.
7773 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7774 if (IsPrevailing && !GlobalValue::isLocalLinkage(Linkage: LT) &&
7775 !IsPrevailing(VIAndOriginalGUID.first.getGUID())) {
7776 PendingCallsites.clear();
7777 PendingAllocs.clear();
7778 }
7779 auto FS = std::make_unique<FunctionSummary>(
7780 args&: Flags, args&: InstCount, args: getDecodedFFlags(RawFlags: RawFunFlags), args: std::move(Refs),
7781 args: std::move(Calls), args: std::move(PendingTypeTests),
7782 args: std::move(PendingTypeTestAssumeVCalls),
7783 args: std::move(PendingTypeCheckedLoadVCalls),
7784 args: std::move(PendingTypeTestAssumeConstVCalls),
7785 args: std::move(PendingTypeCheckedLoadConstVCalls),
7786 args: std::move(PendingParamAccesses), args: std::move(PendingCallsites),
7787 args: std::move(PendingAllocs));
7788 FS->setModulePath(getThisModule()->first());
7789 FS->setOriginalName(std::get<1>(in&: VIAndOriginalGUID));
7790 TheIndex.addGlobalValueSummary(VI: std::get<0>(in&: VIAndOriginalGUID),
7791 Summary: std::move(FS));
7792 break;
7793 }
7794 // FS_ALIAS: [valueid, flags, valueid]
7795 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7796 // they expect all aliasee summaries to be available.
7797 case bitc::FS_ALIAS: {
7798 unsigned ValueID = Record[0];
7799 uint64_t RawFlags = Record[1];
7800 unsigned AliaseeID = Record[2];
7801 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7802 auto AS = std::make_unique<AliasSummary>(args&: Flags);
7803 // The module path string ref set in the summary must be owned by the
7804 // index's module string table. Since we don't have a module path
7805 // string table section in the per-module index, we create a single
7806 // module path string table entry with an empty (0) ID to take
7807 // ownership.
7808 AS->setModulePath(getThisModule()->first());
7809
7810 auto AliaseeVI = std::get<0>(in: getValueInfoFromValueId(ValueId: AliaseeID));
7811 auto AliaseeInModule = TheIndex.findSummaryInModule(VI: AliaseeVI, ModuleId: ModulePath);
7812 if (!AliaseeInModule)
7813 return error(Message: "Alias expects aliasee summary to be parsed");
7814 AS->setAliasee(AliaseeVI, Aliasee: AliaseeInModule);
7815
7816 auto GUID = getValueInfoFromValueId(ValueId: ValueID);
7817 AS->setOriginalName(std::get<1>(in&: GUID));
7818 TheIndex.addGlobalValueSummary(VI: std::get<0>(in&: GUID), Summary: std::move(AS));
7819 break;
7820 }
7821 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7822 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7823 unsigned ValueID = Record[0];
7824 uint64_t RawFlags = Record[1];
7825 unsigned RefArrayStart = 2;
7826 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7827 /* WriteOnly */ false,
7828 /* Constant */ false,
7829 GlobalObject::VCallVisibilityPublic);
7830 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7831 if (Version >= 5) {
7832 GVF = getDecodedGVarFlags(RawFlags: Record[2]);
7833 RefArrayStart = 3;
7834 }
7835 SmallVector<ValueInfo, 0> Refs =
7836 makeRefList(Record: ArrayRef<uint64_t>(Record).slice(N: RefArrayStart));
7837 auto FS =
7838 std::make_unique<GlobalVarSummary>(args&: Flags, args&: GVF, args: std::move(Refs));
7839 FS->setModulePath(getThisModule()->first());
7840 auto GUID = getValueInfoFromValueId(ValueId: ValueID);
7841 FS->setOriginalName(std::get<1>(in&: GUID));
7842 TheIndex.addGlobalValueSummary(VI: std::get<0>(in&: GUID), Summary: std::move(FS));
7843 break;
7844 }
7845 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7846 // numrefs, numrefs x valueid,
7847 // n x (valueid, offset)]
7848 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7849 unsigned ValueID = Record[0];
7850 uint64_t RawFlags = Record[1];
7851 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(RawFlags: Record[2]);
7852 unsigned NumRefs = Record[3];
7853 unsigned RefListStartIndex = 4;
7854 unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7855 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7856 SmallVector<ValueInfo, 0> Refs = makeRefList(
7857 Record: ArrayRef<uint64_t>(Record).slice(N: RefListStartIndex, M: NumRefs));
7858 VTableFuncList VTableFuncs;
7859 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7860 ValueInfo Callee = std::get<0>(in: getValueInfoFromValueId(ValueId: Record[I]));
7861 uint64_t Offset = Record[++I];
7862 VTableFuncs.push_back(x: {Callee, Offset});
7863 }
7864 auto VS =
7865 std::make_unique<GlobalVarSummary>(args&: Flags, args&: GVF, args: std::move(Refs));
7866 VS->setModulePath(getThisModule()->first());
7867 VS->setVTableFuncs(VTableFuncs);
7868 auto GUID = getValueInfoFromValueId(ValueId: ValueID);
7869 VS->setOriginalName(std::get<1>(in&: GUID));
7870 TheIndex.addGlobalValueSummary(VI: std::get<0>(in&: GUID), Summary: std::move(VS));
7871 break;
7872 }
7873 // FS_COMBINED is legacy and does not have support for the tail call flag.
7874 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7875 // numrefs x valueid, n x (valueid)]
7876 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7877 // numrefs x valueid,
7878 // n x (valueid, hotness+tailcall flags)]
7879 case bitc::FS_COMBINED:
7880 case bitc::FS_COMBINED_PROFILE: {
7881 unsigned ValueID = Record[0];
7882 uint64_t ModuleId = Record[1];
7883 uint64_t RawFlags = Record[2];
7884 unsigned InstCount = Record[3];
7885 uint64_t RawFunFlags = 0;
7886 unsigned NumRefs = Record[4];
7887 unsigned NumRORefs = 0, NumWORefs = 0;
7888 int RefListStartIndex = 5;
7889
7890 if (Version >= 4) {
7891 RawFunFlags = Record[4];
7892 RefListStartIndex = 6;
7893 size_t NumRefsIndex = 5;
7894 if (Version >= 5) {
7895 unsigned NumRORefsOffset = 1;
7896 RefListStartIndex = 7;
7897 if (Version >= 6) {
7898 NumRefsIndex = 6;
7899 RefListStartIndex = 8;
7900 if (Version >= 7) {
7901 RefListStartIndex = 9;
7902 NumWORefs = Record[8];
7903 NumRORefsOffset = 2;
7904 }
7905 }
7906 NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7907 }
7908 NumRefs = Record[NumRefsIndex];
7909 }
7910
7911 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7912 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7913 assert(Record.size() >= RefListStartIndex + NumRefs &&
7914 "Record size inconsistent with number of references");
7915 SmallVector<ValueInfo, 0> Refs = makeRefList(
7916 Record: ArrayRef<uint64_t>(Record).slice(N: RefListStartIndex, M: NumRefs));
7917 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7918 SmallVector<FunctionSummary::EdgeTy, 0> Edges = makeCallList(
7919 Record: ArrayRef<uint64_t>(Record).slice(N: CallGraphEdgeStartIndex),
7920 IsOldProfileFormat, HasProfile, HasRelBF: false);
7921 ValueInfo VI = std::get<0>(in: getValueInfoFromValueId(ValueId: ValueID));
7922 setSpecialRefs(Refs, ROCnt: NumRORefs, WOCnt: NumWORefs);
7923 auto FS = std::make_unique<FunctionSummary>(
7924 args&: Flags, args&: InstCount, args: getDecodedFFlags(RawFlags: RawFunFlags), args: std::move(Refs),
7925 args: std::move(Edges), args: std::move(PendingTypeTests),
7926 args: std::move(PendingTypeTestAssumeVCalls),
7927 args: std::move(PendingTypeCheckedLoadVCalls),
7928 args: std::move(PendingTypeTestAssumeConstVCalls),
7929 args: std::move(PendingTypeCheckedLoadConstVCalls),
7930 args: std::move(PendingParamAccesses), args: std::move(PendingCallsites),
7931 args: std::move(PendingAllocs));
7932 LastSeenSummary = FS.get();
7933 LastSeenGUID = VI.getGUID();
7934 FS->setModulePath(ModuleIdMap[ModuleId]);
7935 TheIndex.addGlobalValueSummary(VI, Summary: std::move(FS));
7936 break;
7937 }
7938 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7939 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7940 // they expect all aliasee summaries to be available.
7941 case bitc::FS_COMBINED_ALIAS: {
7942 unsigned ValueID = Record[0];
7943 uint64_t ModuleId = Record[1];
7944 uint64_t RawFlags = Record[2];
7945 unsigned AliaseeValueId = Record[3];
7946 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7947 auto AS = std::make_unique<AliasSummary>(args&: Flags);
7948 LastSeenSummary = AS.get();
7949 AS->setModulePath(ModuleIdMap[ModuleId]);
7950
7951 auto AliaseeVI = std::get<0>(in: getValueInfoFromValueId(ValueId: AliaseeValueId));
7952 auto AliaseeInModule = TheIndex.findSummaryInModule(VI: AliaseeVI, ModuleId: AS->modulePath());
7953 AS->setAliasee(AliaseeVI, Aliasee: AliaseeInModule);
7954
7955 ValueInfo VI = std::get<0>(in: getValueInfoFromValueId(ValueId: ValueID));
7956 LastSeenGUID = VI.getGUID();
7957 TheIndex.addGlobalValueSummary(VI, Summary: std::move(AS));
7958 break;
7959 }
7960 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7961 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7962 unsigned ValueID = Record[0];
7963 uint64_t ModuleId = Record[1];
7964 uint64_t RawFlags = Record[2];
7965 unsigned RefArrayStart = 3;
7966 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7967 /* WriteOnly */ false,
7968 /* Constant */ false,
7969 GlobalObject::VCallVisibilityPublic);
7970 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7971 if (Version >= 5) {
7972 GVF = getDecodedGVarFlags(RawFlags: Record[3]);
7973 RefArrayStart = 4;
7974 }
7975 SmallVector<ValueInfo, 0> Refs =
7976 makeRefList(Record: ArrayRef<uint64_t>(Record).slice(N: RefArrayStart));
7977 auto FS =
7978 std::make_unique<GlobalVarSummary>(args&: Flags, args&: GVF, args: std::move(Refs));
7979 LastSeenSummary = FS.get();
7980 FS->setModulePath(ModuleIdMap[ModuleId]);
7981 ValueInfo VI = std::get<0>(in: getValueInfoFromValueId(ValueId: ValueID));
7982 LastSeenGUID = VI.getGUID();
7983 TheIndex.addGlobalValueSummary(VI, Summary: std::move(FS));
7984 break;
7985 }
7986 // FS_COMBINED_ORIGINAL_NAME: [original_name]
7987 case bitc::FS_COMBINED_ORIGINAL_NAME: {
7988 uint64_t OriginalName = Record[0];
7989 if (!LastSeenSummary)
7990 return error(Message: "Name attachment that does not follow a combined record");
7991 LastSeenSummary->setOriginalName(OriginalName);
7992 TheIndex.addOriginalName(ValueGUID: LastSeenGUID, OrigGUID: OriginalName);
7993 // Reset the LastSeenSummary
7994 LastSeenSummary = nullptr;
7995 LastSeenGUID = 0;
7996 break;
7997 }
7998 case bitc::FS_TYPE_TESTS:
7999 assert(PendingTypeTests.empty());
8000 llvm::append_range(C&: PendingTypeTests, R&: Record);
8001 break;
8002
8003 case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
8004 assert(PendingTypeTestAssumeVCalls.empty());
8005 for (unsigned I = 0; I != Record.size(); I += 2)
8006 PendingTypeTestAssumeVCalls.push_back(x: {.GUID: Record[I], .Offset: Record[I+1]});
8007 break;
8008
8009 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
8010 assert(PendingTypeCheckedLoadVCalls.empty());
8011 for (unsigned I = 0; I != Record.size(); I += 2)
8012 PendingTypeCheckedLoadVCalls.push_back(x: {.GUID: Record[I], .Offset: Record[I+1]});
8013 break;
8014
8015 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
8016 PendingTypeTestAssumeConstVCalls.push_back(
8017 x: {.VFunc: {.GUID: Record[0], .Offset: Record[1]}, .Args: {Record.begin() + 2, Record.end()}});
8018 break;
8019
8020 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
8021 PendingTypeCheckedLoadConstVCalls.push_back(
8022 x: {.VFunc: {.GUID: Record[0], .Offset: Record[1]}, .Args: {Record.begin() + 2, Record.end()}});
8023 break;
8024
8025 case bitc::FS_CFI_FUNCTION_DEFS: {
8026 auto &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
8027 for (unsigned I = 0; I != Record.size(); I += 2)
8028 CfiFunctionDefs.emplace(A: Strtab.data() + Record[I],
8029 A: static_cast<size_t>(Record[I + 1]));
8030 break;
8031 }
8032
8033 case bitc::FS_CFI_FUNCTION_DECLS: {
8034 auto &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
8035 for (unsigned I = 0; I != Record.size(); I += 2)
8036 CfiFunctionDecls.emplace(A: Strtab.data() + Record[I],
8037 A: static_cast<size_t>(Record[I + 1]));
8038 break;
8039 }
8040
8041 case bitc::FS_TYPE_ID:
8042 parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
8043 break;
8044
8045 case bitc::FS_TYPE_ID_METADATA:
8046 parseTypeIdCompatibleVtableSummaryRecord(Record);
8047 break;
8048
8049 case bitc::FS_BLOCK_COUNT:
8050 TheIndex.addBlockCount(C: Record[0]);
8051 break;
8052
8053 case bitc::FS_PARAM_ACCESS: {
8054 PendingParamAccesses = parseParamAccesses(Record);
8055 break;
8056 }
8057
8058 case bitc::FS_STACK_IDS: { // [n x stackid]
8059 // Save stack ids in the reader to consult when adding stack ids from the
8060 // lists in the stack node and alloc node entries.
8061 if (Version <= 11) {
8062 StackIds = ArrayRef<uint64_t>(Record);
8063 break;
8064 }
8065 // This is an array of 32-bit fixed-width values, holding each 64-bit
8066 // context id as a pair of adjacent (most significant first) 32-bit words.
8067 assert(Record.size() % 2 == 0);
8068 StackIds.reserve(n: Record.size() / 2);
8069 for (auto R = Record.begin(); R != Record.end(); R += 2)
8070 StackIds.push_back(x: *R << 32 | *(R + 1));
8071 break;
8072 }
8073
8074 case bitc::FS_CONTEXT_RADIX_TREE_ARRAY: { // [n x entry]
8075 RadixArray = ArrayRef<uint64_t>(Record);
8076 break;
8077 }
8078
8079 case bitc::FS_PERMODULE_CALLSITE_INFO: {
8080 unsigned ValueID = Record[0];
8081 SmallVector<unsigned> StackIdList;
8082 for (uint64_t R : drop_begin(RangeOrContainer&: Record)) {
8083 assert(R < StackIds.size());
8084 StackIdList.push_back(Elt: TheIndex.addOrGetStackIdIndex(StackId: StackIds[R]));
8085 }
8086 ValueInfo VI = std::get<0>(in: getValueInfoFromValueId(ValueId: ValueID));
8087 PendingCallsites.push_back(x: CallsiteInfo({VI, std::move(StackIdList)}));
8088 break;
8089 }
8090
8091 case bitc::FS_COMBINED_CALLSITE_INFO: {
8092 auto RecordIter = Record.begin();
8093 unsigned ValueID = *RecordIter++;
8094 unsigned NumStackIds = *RecordIter++;
8095 unsigned NumVersions = *RecordIter++;
8096 assert(Record.size() == 3 + NumStackIds + NumVersions);
8097 SmallVector<unsigned> StackIdList;
8098 for (unsigned J = 0; J < NumStackIds; J++) {
8099 assert(*RecordIter < StackIds.size());
8100 StackIdList.push_back(
8101 Elt: TheIndex.addOrGetStackIdIndex(StackId: StackIds[*RecordIter++]));
8102 }
8103 SmallVector<unsigned> Versions;
8104 for (unsigned J = 0; J < NumVersions; J++)
8105 Versions.push_back(Elt: *RecordIter++);
8106 ValueInfo VI = std::get<0>(
8107 in: getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueId: ValueID));
8108 PendingCallsites.push_back(
8109 x: CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
8110 break;
8111 }
8112
8113 case bitc::FS_ALLOC_CONTEXT_IDS: {
8114 // This is an array of 32-bit fixed-width values, holding each 64-bit
8115 // context id as a pair of adjacent (most significant first) 32-bit words.
8116 assert(Record.size() % 2 == 0);
8117 PendingContextIds.reserve(n: Record.size() / 2);
8118 for (auto R = Record.begin(); R != Record.end(); R += 2)
8119 PendingContextIds.push_back(x: *R << 32 | *(R + 1));
8120 break;
8121 }
8122
8123 case bitc::FS_PERMODULE_ALLOC_INFO: {
8124 unsigned I = 0;
8125 std::vector<MIBInfo> MIBs;
8126 unsigned NumMIBs = 0;
8127 if (Version >= 10)
8128 NumMIBs = Record[I++];
8129 unsigned MIBsRead = 0;
8130 while ((Version >= 10 && MIBsRead++ < NumMIBs) ||
8131 (Version < 10 && I < Record.size())) {
8132 assert(Record.size() - I >= 2);
8133 AllocationType AllocType = (AllocationType)Record[I++];
8134 auto StackIdList = parseAllocInfoContext(Record, I);
8135 MIBs.push_back(x: MIBInfo(AllocType, std::move(StackIdList)));
8136 }
8137 // We either have nothing left or at least NumMIBs context size info
8138 // indices left (for the total sizes included when reporting of hinted
8139 // bytes is enabled).
8140 assert(I == Record.size() || Record.size() - I >= NumMIBs);
8141 std::vector<std::vector<ContextTotalSize>> AllContextSizes;
8142 if (I < Record.size()) {
8143 assert(!PendingContextIds.empty() &&
8144 "Missing context ids for alloc sizes");
8145 unsigned ContextIdIndex = 0;
8146 MIBsRead = 0;
8147 // The sizes are a linearized array of sizes, where for each MIB there
8148 // is 1 or more sizes (due to context trimming, each MIB in the metadata
8149 // and summarized here can correspond to more than one original context
8150 // from the profile).
8151 while (MIBsRead++ < NumMIBs) {
8152 // First read the number of contexts recorded for this MIB.
8153 unsigned NumContextSizeInfoEntries = Record[I++];
8154 assert(Record.size() - I >= NumContextSizeInfoEntries);
8155 std::vector<ContextTotalSize> ContextSizes;
8156 ContextSizes.reserve(n: NumContextSizeInfoEntries);
8157 for (unsigned J = 0; J < NumContextSizeInfoEntries; J++) {
8158 assert(ContextIdIndex < PendingContextIds.size());
8159 // Skip any 0 entries for MIBs without the context size info.
8160 if (PendingContextIds[ContextIdIndex] == 0) {
8161 // The size should also be 0 if the context was 0.
8162 assert(!Record[I]);
8163 ContextIdIndex++;
8164 I++;
8165 continue;
8166 }
8167 // PendingContextIds read from the preceding FS_ALLOC_CONTEXT_IDS
8168 // should be in the same order as the total sizes.
8169 ContextSizes.push_back(
8170 x: {.FullStackId: PendingContextIds[ContextIdIndex++], .TotalSize: Record[I++]});
8171 }
8172 AllContextSizes.push_back(x: std::move(ContextSizes));
8173 }
8174 PendingContextIds.clear();
8175 }
8176 PendingAllocs.push_back(x: AllocInfo(std::move(MIBs)));
8177 if (!AllContextSizes.empty()) {
8178 assert(PendingAllocs.back().MIBs.size() == AllContextSizes.size());
8179 PendingAllocs.back().ContextSizeInfos = std::move(AllContextSizes);
8180 }
8181 break;
8182 }
8183
8184 case bitc::FS_COMBINED_ALLOC_INFO:
8185 case bitc::FS_COMBINED_ALLOC_INFO_NO_CONTEXT: {
8186 unsigned I = 0;
8187 std::vector<MIBInfo> MIBs;
8188 unsigned NumMIBs = Record[I++];
8189 unsigned NumVersions = Record[I++];
8190 unsigned MIBsRead = 0;
8191 while (MIBsRead++ < NumMIBs) {
8192 assert(Record.size() - I >= 2);
8193 AllocationType AllocType = (AllocationType)Record[I++];
8194 SmallVector<unsigned> StackIdList;
8195 if (BitCode == bitc::FS_COMBINED_ALLOC_INFO)
8196 StackIdList = parseAllocInfoContext(Record, I);
8197 MIBs.push_back(x: MIBInfo(AllocType, std::move(StackIdList)));
8198 }
8199 assert(Record.size() - I >= NumVersions);
8200 SmallVector<uint8_t> Versions;
8201 for (unsigned J = 0; J < NumVersions; J++)
8202 Versions.push_back(Elt: Record[I++]);
8203 assert(I == Record.size());
8204 PendingAllocs.push_back(x: AllocInfo(std::move(Versions), std::move(MIBs)));
8205 break;
8206 }
8207 }
8208 }
8209 llvm_unreachable("Exit infinite loop");
8210}
8211
8212// Parse the module string table block into the Index.
8213// This populates the ModulePathStringTable map in the index.
8214Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
8215 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::MODULE_STRTAB_BLOCK_ID))
8216 return Err;
8217
8218 SmallVector<uint64_t, 64> Record;
8219
8220 SmallString<128> ModulePath;
8221 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
8222
8223 while (true) {
8224 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
8225 if (!MaybeEntry)
8226 return MaybeEntry.takeError();
8227 BitstreamEntry Entry = MaybeEntry.get();
8228
8229 switch (Entry.Kind) {
8230 case BitstreamEntry::SubBlock: // Handled for us already.
8231 case BitstreamEntry::Error:
8232 return error(Message: "Malformed block");
8233 case BitstreamEntry::EndBlock:
8234 return Error::success();
8235 case BitstreamEntry::Record:
8236 // The interesting case.
8237 break;
8238 }
8239
8240 Record.clear();
8241 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
8242 if (!MaybeRecord)
8243 return MaybeRecord.takeError();
8244 switch (MaybeRecord.get()) {
8245 default: // Default behavior: ignore.
8246 break;
8247 case bitc::MST_CODE_ENTRY: {
8248 // MST_ENTRY: [modid, namechar x N]
8249 uint64_t ModuleId = Record[0];
8250
8251 if (convertToString(Record, Idx: 1, Result&: ModulePath))
8252 return error(Message: "Invalid record");
8253
8254 LastSeenModule = TheIndex.addModule(ModPath: ModulePath);
8255 ModuleIdMap[ModuleId] = LastSeenModule->first();
8256
8257 ModulePath.clear();
8258 break;
8259 }
8260 /// MST_CODE_HASH: [5*i32]
8261 case bitc::MST_CODE_HASH: {
8262 if (Record.size() != 5)
8263 return error(Message: "Invalid hash length " + Twine(Record.size()).str());
8264 if (!LastSeenModule)
8265 return error(Message: "Invalid hash that does not follow a module path");
8266 int Pos = 0;
8267 for (auto &Val : Record) {
8268 assert(!(Val >> 32) && "Unexpected high bits set");
8269 LastSeenModule->second[Pos++] = Val;
8270 }
8271 // Reset LastSeenModule to avoid overriding the hash unexpectedly.
8272 LastSeenModule = nullptr;
8273 break;
8274 }
8275 }
8276 }
8277 llvm_unreachable("Exit infinite loop");
8278}
8279
8280namespace {
8281
8282// FIXME: This class is only here to support the transition to llvm::Error. It
8283// will be removed once this transition is complete. Clients should prefer to
8284// deal with the Error value directly, rather than converting to error_code.
8285class BitcodeErrorCategoryType : public std::error_category {
8286 const char *name() const noexcept override {
8287 return "llvm.bitcode";
8288 }
8289
8290 std::string message(int IE) const override {
8291 BitcodeError E = static_cast<BitcodeError>(IE);
8292 switch (E) {
8293 case BitcodeError::CorruptedBitcode:
8294 return "Corrupted bitcode";
8295 }
8296 llvm_unreachable("Unknown error type!");
8297 }
8298};
8299
8300} // end anonymous namespace
8301
8302const std::error_category &llvm::BitcodeErrorCategory() {
8303 static BitcodeErrorCategoryType ErrorCategory;
8304 return ErrorCategory;
8305}
8306
8307static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
8308 unsigned Block, unsigned RecordID) {
8309 if (Error Err = Stream.EnterSubBlock(BlockID: Block))
8310 return std::move(Err);
8311
8312 StringRef Strtab;
8313 while (true) {
8314 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8315 if (!MaybeEntry)
8316 return MaybeEntry.takeError();
8317 llvm::BitstreamEntry Entry = MaybeEntry.get();
8318
8319 switch (Entry.Kind) {
8320 case BitstreamEntry::EndBlock:
8321 return Strtab;
8322
8323 case BitstreamEntry::Error:
8324 return error(Message: "Malformed block");
8325
8326 case BitstreamEntry::SubBlock:
8327 if (Error Err = Stream.SkipBlock())
8328 return std::move(Err);
8329 break;
8330
8331 case BitstreamEntry::Record:
8332 StringRef Blob;
8333 SmallVector<uint64_t, 1> Record;
8334 Expected<unsigned> MaybeRecord =
8335 Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record, Blob: &Blob);
8336 if (!MaybeRecord)
8337 return MaybeRecord.takeError();
8338 if (MaybeRecord.get() == RecordID)
8339 Strtab = Blob;
8340 break;
8341 }
8342 }
8343}
8344
8345//===----------------------------------------------------------------------===//
8346// External interface
8347//===----------------------------------------------------------------------===//
8348
8349Expected<std::vector<BitcodeModule>>
8350llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
8351 auto FOrErr = getBitcodeFileContents(Buffer);
8352 if (!FOrErr)
8353 return FOrErr.takeError();
8354 return std::move(FOrErr->Mods);
8355}
8356
8357Expected<BitcodeFileContents>
8358llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
8359 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8360 if (!StreamOrErr)
8361 return StreamOrErr.takeError();
8362 BitstreamCursor &Stream = *StreamOrErr;
8363
8364 BitcodeFileContents F;
8365 while (true) {
8366 uint64_t BCBegin = Stream.getCurrentByteNo();
8367
8368 // We may be consuming bitcode from a client that leaves garbage at the end
8369 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
8370 // the end that there cannot possibly be another module, stop looking.
8371 if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
8372 return F;
8373
8374 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8375 if (!MaybeEntry)
8376 return MaybeEntry.takeError();
8377 llvm::BitstreamEntry Entry = MaybeEntry.get();
8378
8379 switch (Entry.Kind) {
8380 case BitstreamEntry::EndBlock:
8381 case BitstreamEntry::Error:
8382 return error(Message: "Malformed block");
8383
8384 case BitstreamEntry::SubBlock: {
8385 uint64_t IdentificationBit = -1ull;
8386 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
8387 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8388 if (Error Err = Stream.SkipBlock())
8389 return std::move(Err);
8390
8391 {
8392 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8393 if (!MaybeEntry)
8394 return MaybeEntry.takeError();
8395 Entry = MaybeEntry.get();
8396 }
8397
8398 if (Entry.Kind != BitstreamEntry::SubBlock ||
8399 Entry.ID != bitc::MODULE_BLOCK_ID)
8400 return error(Message: "Malformed block");
8401 }
8402
8403 if (Entry.ID == bitc::MODULE_BLOCK_ID) {
8404 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8405 if (Error Err = Stream.SkipBlock())
8406 return std::move(Err);
8407
8408 F.Mods.push_back(x: {Stream.getBitcodeBytes().slice(
8409 N: BCBegin, M: Stream.getCurrentByteNo() - BCBegin),
8410 Buffer.getBufferIdentifier(), IdentificationBit,
8411 ModuleBit});
8412 continue;
8413 }
8414
8415 if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
8416 Expected<StringRef> Strtab =
8417 readBlobInRecord(Stream, Block: bitc::STRTAB_BLOCK_ID, RecordID: bitc::STRTAB_BLOB);
8418 if (!Strtab)
8419 return Strtab.takeError();
8420 // This string table is used by every preceding bitcode module that does
8421 // not have its own string table. A bitcode file may have multiple
8422 // string tables if it was created by binary concatenation, for example
8423 // with "llvm-cat -b".
8424 for (BitcodeModule &I : llvm::reverse(C&: F.Mods)) {
8425 if (!I.Strtab.empty())
8426 break;
8427 I.Strtab = *Strtab;
8428 }
8429 // Similarly, the string table is used by every preceding symbol table;
8430 // normally there will be just one unless the bitcode file was created
8431 // by binary concatenation.
8432 if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
8433 F.StrtabForSymtab = *Strtab;
8434 continue;
8435 }
8436
8437 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
8438 Expected<StringRef> SymtabOrErr =
8439 readBlobInRecord(Stream, Block: bitc::SYMTAB_BLOCK_ID, RecordID: bitc::SYMTAB_BLOB);
8440 if (!SymtabOrErr)
8441 return SymtabOrErr.takeError();
8442
8443 // We can expect the bitcode file to have multiple symbol tables if it
8444 // was created by binary concatenation. In that case we silently
8445 // ignore any subsequent symbol tables, which is fine because this is a
8446 // low level function. The client is expected to notice that the number
8447 // of modules in the symbol table does not match the number of modules
8448 // in the input file and regenerate the symbol table.
8449 if (F.Symtab.empty())
8450 F.Symtab = *SymtabOrErr;
8451 continue;
8452 }
8453
8454 if (Error Err = Stream.SkipBlock())
8455 return std::move(Err);
8456 continue;
8457 }
8458 case BitstreamEntry::Record:
8459 if (Error E = Stream.skipRecord(AbbrevID: Entry.ID).takeError())
8460 return std::move(E);
8461 continue;
8462 }
8463 }
8464}
8465
8466/// Get a lazy one-at-time loading module from bitcode.
8467///
8468/// This isn't always used in a lazy context. In particular, it's also used by
8469/// \a parseModule(). If this is truly lazy, then we need to eagerly pull
8470/// in forward-referenced functions from block address references.
8471///
8472/// \param[in] MaterializeAll Set to \c true if we should materialize
8473/// everything.
8474Expected<std::unique_ptr<Module>>
8475BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
8476 bool ShouldLazyLoadMetadata, bool IsImporting,
8477 ParserCallbacks Callbacks) {
8478 BitstreamCursor Stream(Buffer);
8479
8480 std::string ProducerIdentification;
8481 if (IdentificationBit != -1ull) {
8482 if (Error JumpFailed = Stream.JumpToBit(BitNo: IdentificationBit))
8483 return std::move(JumpFailed);
8484 if (Error E =
8485 readIdentificationBlock(Stream).moveInto(Value&: ProducerIdentification))
8486 return std::move(E);
8487 }
8488
8489 if (Error JumpFailed = Stream.JumpToBit(BitNo: ModuleBit))
8490 return std::move(JumpFailed);
8491 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8492 Context);
8493
8494 std::unique_ptr<Module> M =
8495 std::make_unique<Module>(args&: ModuleIdentifier, args&: Context);
8496 M->setMaterializer(R);
8497
8498 // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8499 if (Error Err = R->parseBitcodeInto(M: M.get(), ShouldLazyLoadMetadata,
8500 IsImporting, Callbacks))
8501 return std::move(Err);
8502
8503 if (MaterializeAll) {
8504 // Read in the entire module, and destroy the BitcodeReader.
8505 if (Error Err = M->materializeAll())
8506 return std::move(Err);
8507 } else {
8508 // Resolve forward references from blockaddresses.
8509 if (Error Err = R->materializeForwardReferencedFunctions())
8510 return std::move(Err);
8511 }
8512
8513 return std::move(M);
8514}
8515
8516Expected<std::unique_ptr<Module>>
8517BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8518 bool IsImporting, ParserCallbacks Callbacks) {
8519 return getModuleImpl(Context, MaterializeAll: false, ShouldLazyLoadMetadata, IsImporting,
8520 Callbacks);
8521}
8522
8523// Parse the specified bitcode buffer and merge the index into CombinedIndex.
8524// We don't use ModuleIdentifier here because the client may need to control the
8525// module path used in the combined summary (e.g. when reading summaries for
8526// regular LTO modules).
8527Error BitcodeModule::readSummary(
8528 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8529 std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8530 BitstreamCursor Stream(Buffer);
8531 if (Error JumpFailed = Stream.JumpToBit(BitNo: ModuleBit))
8532 return JumpFailed;
8533
8534 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8535 ModulePath, IsPrevailing);
8536 return R.parseModule();
8537}
8538
8539// Parse the specified bitcode buffer, returning the function info index.
8540Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8541 BitstreamCursor Stream(Buffer);
8542 if (Error JumpFailed = Stream.JumpToBit(BitNo: ModuleBit))
8543 return std::move(JumpFailed);
8544
8545 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/args: false);
8546 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8547 ModuleIdentifier, 0);
8548
8549 if (Error Err = R.parseModule())
8550 return std::move(Err);
8551
8552 return std::move(Index);
8553}
8554
8555static Expected<std::pair<bool, bool>>
8556getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8557 unsigned ID,
8558 BitcodeLTOInfo &LTOInfo) {
8559 if (Error Err = Stream.EnterSubBlock(BlockID: ID))
8560 return std::move(Err);
8561 SmallVector<uint64_t, 64> Record;
8562
8563 while (true) {
8564 BitstreamEntry Entry;
8565 std::pair<bool, bool> Result = {false,false};
8566 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Value&: Entry))
8567 return std::move(E);
8568
8569 switch (Entry.Kind) {
8570 case BitstreamEntry::SubBlock: // Handled for us already.
8571 case BitstreamEntry::Error:
8572 return error(Message: "Malformed block");
8573 case BitstreamEntry::EndBlock: {
8574 // If no flags record found, set both flags to false.
8575 return Result;
8576 }
8577 case BitstreamEntry::Record:
8578 // The interesting case.
8579 break;
8580 }
8581
8582 // Look for the FS_FLAGS record.
8583 Record.clear();
8584 Expected<unsigned> MaybeBitCode = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
8585 if (!MaybeBitCode)
8586 return MaybeBitCode.takeError();
8587 switch (MaybeBitCode.get()) {
8588 default: // Default behavior: ignore.
8589 break;
8590 case bitc::FS_FLAGS: { // [flags]
8591 uint64_t Flags = Record[0];
8592 // Scan flags.
8593 assert(Flags <= 0x2ff && "Unexpected bits in flag");
8594
8595 bool EnableSplitLTOUnit = Flags & 0x8;
8596 bool UnifiedLTO = Flags & 0x200;
8597 Result = {EnableSplitLTOUnit, UnifiedLTO};
8598
8599 return Result;
8600 }
8601 }
8602 }
8603 llvm_unreachable("Exit infinite loop");
8604}
8605
8606// Check if the given bitcode buffer contains a global value summary block.
8607Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8608 BitstreamCursor Stream(Buffer);
8609 if (Error JumpFailed = Stream.JumpToBit(BitNo: ModuleBit))
8610 return std::move(JumpFailed);
8611
8612 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::MODULE_BLOCK_ID))
8613 return std::move(Err);
8614
8615 while (true) {
8616 llvm::BitstreamEntry Entry;
8617 if (Error E = Stream.advance().moveInto(Value&: Entry))
8618 return std::move(E);
8619
8620 switch (Entry.Kind) {
8621 case BitstreamEntry::Error:
8622 return error(Message: "Malformed block");
8623 case BitstreamEntry::EndBlock:
8624 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8625 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8626
8627 case BitstreamEntry::SubBlock:
8628 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8629 BitcodeLTOInfo LTOInfo;
8630 Expected<std::pair<bool, bool>> Flags =
8631 getEnableSplitLTOUnitAndUnifiedFlag(Stream, ID: Entry.ID, LTOInfo);
8632 if (!Flags)
8633 return Flags.takeError();
8634 std::tie(args&: LTOInfo.EnableSplitLTOUnit, args&: LTOInfo.UnifiedLTO) = Flags.get();
8635 LTOInfo.IsThinLTO = true;
8636 LTOInfo.HasSummary = true;
8637 return LTOInfo;
8638 }
8639
8640 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8641 BitcodeLTOInfo LTOInfo;
8642 Expected<std::pair<bool, bool>> Flags =
8643 getEnableSplitLTOUnitAndUnifiedFlag(Stream, ID: Entry.ID, LTOInfo);
8644 if (!Flags)
8645 return Flags.takeError();
8646 std::tie(args&: LTOInfo.EnableSplitLTOUnit, args&: LTOInfo.UnifiedLTO) = Flags.get();
8647 LTOInfo.IsThinLTO = false;
8648 LTOInfo.HasSummary = true;
8649 return LTOInfo;
8650 }
8651
8652 // Ignore other sub-blocks.
8653 if (Error Err = Stream.SkipBlock())
8654 return std::move(Err);
8655 continue;
8656
8657 case BitstreamEntry::Record:
8658 if (Expected<unsigned> StreamFailed = Stream.skipRecord(AbbrevID: Entry.ID))
8659 continue;
8660 else
8661 return StreamFailed.takeError();
8662 }
8663 }
8664}
8665
8666static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8667 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8668 if (!MsOrErr)
8669 return MsOrErr.takeError();
8670
8671 if (MsOrErr->size() != 1)
8672 return error(Message: "Expected a single module");
8673
8674 return (*MsOrErr)[0];
8675}
8676
8677Expected<std::unique_ptr<Module>>
8678llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8679 bool ShouldLazyLoadMetadata, bool IsImporting,
8680 ParserCallbacks Callbacks) {
8681 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8682 if (!BM)
8683 return BM.takeError();
8684
8685 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8686 Callbacks);
8687}
8688
8689Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8690 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8691 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8692 auto MOrErr = getLazyBitcodeModule(Buffer: *Buffer, Context, ShouldLazyLoadMetadata,
8693 IsImporting, Callbacks);
8694 if (MOrErr)
8695 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8696 return MOrErr;
8697}
8698
8699Expected<std::unique_ptr<Module>>
8700BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8701 return getModuleImpl(Context, MaterializeAll: true, ShouldLazyLoadMetadata: false, IsImporting: false, Callbacks);
8702 // TODO: Restore the use-lists to the in-memory state when the bitcode was
8703 // written. We must defer until the Module has been fully materialized.
8704}
8705
8706Expected<std::unique_ptr<Module>>
8707llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8708 ParserCallbacks Callbacks) {
8709 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8710 if (!BM)
8711 return BM.takeError();
8712
8713 return BM->parseModule(Context, Callbacks);
8714}
8715
8716Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8717 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8718 if (!StreamOrErr)
8719 return StreamOrErr.takeError();
8720
8721 return readTriple(Stream&: *StreamOrErr);
8722}
8723
8724Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8725 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8726 if (!StreamOrErr)
8727 return StreamOrErr.takeError();
8728
8729 return hasObjCCategory(Stream&: *StreamOrErr);
8730}
8731
8732Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8733 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8734 if (!StreamOrErr)
8735 return StreamOrErr.takeError();
8736
8737 return readIdentificationCode(Stream&: *StreamOrErr);
8738}
8739
8740Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8741 ModuleSummaryIndex &CombinedIndex) {
8742 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8743 if (!BM)
8744 return BM.takeError();
8745
8746 return BM->readSummary(CombinedIndex, ModulePath: BM->getModuleIdentifier());
8747}
8748
8749Expected<std::unique_ptr<ModuleSummaryIndex>>
8750llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8751 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8752 if (!BM)
8753 return BM.takeError();
8754
8755 return BM->getSummary();
8756}
8757
8758Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8759 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8760 if (!BM)
8761 return BM.takeError();
8762
8763 return BM->getLTOInfo();
8764}
8765
8766Expected<std::unique_ptr<ModuleSummaryIndex>>
8767llvm::getModuleSummaryIndexForFile(StringRef Path,
8768 bool IgnoreEmptyThinLTOIndexFile) {
8769 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8770 MemoryBuffer::getFileOrSTDIN(Filename: Path);
8771 if (!FileOrErr)
8772 return errorCodeToError(EC: FileOrErr.getError());
8773 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8774 return nullptr;
8775 return getModuleSummaryIndex(Buffer: **FileOrErr);
8776}
8777