| 1 | //===- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Bitcode writer implementation. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/Bitcode/BitcodeWriter.h" |
| 14 | #include "ValueEnumerator.h" |
| 15 | #include "llvm/ADT/APFloat.h" |
| 16 | #include "llvm/ADT/APInt.h" |
| 17 | #include "llvm/ADT/ArrayRef.h" |
| 18 | #include "llvm/ADT/DenseMap.h" |
| 19 | #include "llvm/ADT/STLExtras.h" |
| 20 | #include "llvm/ADT/SetVector.h" |
| 21 | #include "llvm/ADT/SmallPtrSet.h" |
| 22 | #include "llvm/ADT/SmallString.h" |
| 23 | #include "llvm/ADT/SmallVector.h" |
| 24 | #include "llvm/ADT/StringMap.h" |
| 25 | #include "llvm/ADT/StringRef.h" |
| 26 | #include "llvm/Analysis/MemoryProfileInfo.h" |
| 27 | #include "llvm/BinaryFormat/Dwarf.h" |
| 28 | #include "llvm/Bitcode/BitcodeCommon.h" |
| 29 | #include "llvm/Bitcode/BitcodeReader.h" |
| 30 | #include "llvm/Bitcode/LLVMBitCodes.h" |
| 31 | #include "llvm/Bitstream/BitCodes.h" |
| 32 | #include "llvm/Bitstream/BitstreamWriter.h" |
| 33 | #include "llvm/Config/llvm-config.h" |
| 34 | #include "llvm/IR/Attributes.h" |
| 35 | #include "llvm/IR/BasicBlock.h" |
| 36 | #include "llvm/IR/Comdat.h" |
| 37 | #include "llvm/IR/Constant.h" |
| 38 | #include "llvm/IR/ConstantRangeList.h" |
| 39 | #include "llvm/IR/Constants.h" |
| 40 | #include "llvm/IR/DebugInfoMetadata.h" |
| 41 | #include "llvm/IR/DebugLoc.h" |
| 42 | #include "llvm/IR/DerivedTypes.h" |
| 43 | #include "llvm/IR/Function.h" |
| 44 | #include "llvm/IR/GlobalAlias.h" |
| 45 | #include "llvm/IR/GlobalIFunc.h" |
| 46 | #include "llvm/IR/GlobalObject.h" |
| 47 | #include "llvm/IR/GlobalValue.h" |
| 48 | #include "llvm/IR/GlobalVariable.h" |
| 49 | #include "llvm/IR/InlineAsm.h" |
| 50 | #include "llvm/IR/InstrTypes.h" |
| 51 | #include "llvm/IR/Instruction.h" |
| 52 | #include "llvm/IR/Instructions.h" |
| 53 | #include "llvm/IR/LLVMContext.h" |
| 54 | #include "llvm/IR/Metadata.h" |
| 55 | #include "llvm/IR/Module.h" |
| 56 | #include "llvm/IR/ModuleSummaryIndex.h" |
| 57 | #include "llvm/IR/Operator.h" |
| 58 | #include "llvm/IR/Type.h" |
| 59 | #include "llvm/IR/UseListOrder.h" |
| 60 | #include "llvm/IR/Value.h" |
| 61 | #include "llvm/IR/ValueSymbolTable.h" |
| 62 | #include "llvm/MC/StringTableBuilder.h" |
| 63 | #include "llvm/MC/TargetRegistry.h" |
| 64 | #include "llvm/Object/IRSymtab.h" |
| 65 | #include "llvm/ProfileData/MemProf.h" |
| 66 | #include "llvm/ProfileData/MemProfRadixTree.h" |
| 67 | #include "llvm/Support/AtomicOrdering.h" |
| 68 | #include "llvm/Support/Casting.h" |
| 69 | #include "llvm/Support/CommandLine.h" |
| 70 | #include "llvm/Support/Compiler.h" |
| 71 | #include "llvm/Support/Endian.h" |
| 72 | #include "llvm/Support/Error.h" |
| 73 | #include "llvm/Support/ErrorHandling.h" |
| 74 | #include "llvm/Support/MathExtras.h" |
| 75 | #include "llvm/Support/SHA1.h" |
| 76 | #include "llvm/Support/raw_ostream.h" |
| 77 | #include "llvm/TargetParser/Triple.h" |
| 78 | #include <algorithm> |
| 79 | #include <cassert> |
| 80 | #include <cstddef> |
| 81 | #include <cstdint> |
| 82 | #include <iterator> |
| 83 | #include <map> |
| 84 | #include <memory> |
| 85 | #include <optional> |
| 86 | #include <string> |
| 87 | #include <utility> |
| 88 | #include <vector> |
| 89 | |
| 90 | using namespace llvm; |
| 91 | using namespace llvm::memprof; |
| 92 | |
| 93 | static cl::opt<unsigned> |
| 94 | IndexThreshold("bitcode-mdindex-threshold" , cl::Hidden, cl::init(Val: 25), |
| 95 | cl::desc("Number of metadatas above which we emit an index " |
| 96 | "to enable lazy-loading" )); |
| 97 | static cl::opt<uint32_t> FlushThreshold( |
| 98 | "bitcode-flush-threshold" , cl::Hidden, cl::init(Val: 512), |
| 99 | cl::desc("The threshold (unit M) for flushing LLVM bitcode." )); |
| 100 | |
| 101 | static cl::opt<bool> WriteRelBFToSummary( |
| 102 | "write-relbf-to-summary" , cl::Hidden, cl::init(Val: false), |
| 103 | cl::desc("Write relative block frequency to function summary " )); |
| 104 | |
| 105 | // Since we only use the context information in the memprof summary records in |
| 106 | // the LTO backends to do assertion checking, save time and space by only |
| 107 | // serializing the context for non-NDEBUG builds. |
| 108 | // TODO: Currently this controls writing context of the allocation info records, |
| 109 | // which are larger and more expensive, but we should do this for the callsite |
| 110 | // records as well. |
| 111 | // FIXME: Convert to a const once this has undergone more sigificant testing. |
| 112 | static cl::opt<bool> |
| 113 | CombinedIndexMemProfContext("combined-index-memprof-context" , cl::Hidden, |
| 114 | #ifdef NDEBUG |
| 115 | cl::init(Val: false), |
| 116 | #else |
| 117 | cl::init(true), |
| 118 | #endif |
| 119 | cl::desc("" )); |
| 120 | |
| 121 | namespace llvm { |
| 122 | extern FunctionSummary::ForceSummaryHotnessType ForceSummaryEdgesCold; |
| 123 | } |
| 124 | |
| 125 | namespace { |
| 126 | |
| 127 | /// These are manifest constants used by the bitcode writer. They do not need to |
| 128 | /// be kept in sync with the reader, but need to be consistent within this file. |
| 129 | enum { |
| 130 | // VALUE_SYMTAB_BLOCK abbrev id's. |
| 131 | VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV, |
| 132 | VST_ENTRY_7_ABBREV, |
| 133 | VST_ENTRY_6_ABBREV, |
| 134 | VST_BBENTRY_6_ABBREV, |
| 135 | |
| 136 | // CONSTANTS_BLOCK abbrev id's. |
| 137 | CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV, |
| 138 | CONSTANTS_INTEGER_ABBREV, |
| 139 | CONSTANTS_CE_CAST_Abbrev, |
| 140 | CONSTANTS_NULL_Abbrev, |
| 141 | |
| 142 | // FUNCTION_BLOCK abbrev id's. |
| 143 | FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV, |
| 144 | FUNCTION_INST_STORE_ABBREV, |
| 145 | FUNCTION_INST_UNOP_ABBREV, |
| 146 | FUNCTION_INST_UNOP_FLAGS_ABBREV, |
| 147 | FUNCTION_INST_BINOP_ABBREV, |
| 148 | FUNCTION_INST_BINOP_FLAGS_ABBREV, |
| 149 | FUNCTION_INST_CAST_ABBREV, |
| 150 | FUNCTION_INST_CAST_FLAGS_ABBREV, |
| 151 | FUNCTION_INST_RET_VOID_ABBREV, |
| 152 | FUNCTION_INST_RET_VAL_ABBREV, |
| 153 | FUNCTION_INST_BR_UNCOND_ABBREV, |
| 154 | FUNCTION_INST_BR_COND_ABBREV, |
| 155 | FUNCTION_INST_UNREACHABLE_ABBREV, |
| 156 | FUNCTION_INST_GEP_ABBREV, |
| 157 | FUNCTION_INST_CMP_ABBREV, |
| 158 | FUNCTION_INST_CMP_FLAGS_ABBREV, |
| 159 | FUNCTION_DEBUG_RECORD_VALUE_ABBREV, |
| 160 | }; |
| 161 | |
| 162 | /// Abstract class to manage the bitcode writing, subclassed for each bitcode |
| 163 | /// file type. |
| 164 | class BitcodeWriterBase { |
| 165 | protected: |
| 166 | /// The stream created and owned by the client. |
| 167 | BitstreamWriter &Stream; |
| 168 | |
| 169 | StringTableBuilder &StrtabBuilder; |
| 170 | |
| 171 | public: |
| 172 | /// Constructs a BitcodeWriterBase object that writes to the provided |
| 173 | /// \p Stream. |
| 174 | BitcodeWriterBase(BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder) |
| 175 | : Stream(Stream), StrtabBuilder(StrtabBuilder) {} |
| 176 | |
| 177 | protected: |
| 178 | void writeModuleVersion(); |
| 179 | }; |
| 180 | |
| 181 | void BitcodeWriterBase::writeModuleVersion() { |
| 182 | // VERSION: [version#] |
| 183 | Stream.EmitRecord(Code: bitc::MODULE_CODE_VERSION, Vals: ArrayRef<uint64_t>{2}); |
| 184 | } |
| 185 | |
| 186 | /// Base class to manage the module bitcode writing, currently subclassed for |
| 187 | /// ModuleBitcodeWriter and ThinLinkBitcodeWriter. |
| 188 | class ModuleBitcodeWriterBase : public BitcodeWriterBase { |
| 189 | protected: |
| 190 | /// The Module to write to bitcode. |
| 191 | const Module &M; |
| 192 | |
| 193 | /// Enumerates ids for all values in the module. |
| 194 | ValueEnumerator VE; |
| 195 | |
| 196 | /// Optional per-module index to write for ThinLTO. |
| 197 | const ModuleSummaryIndex *Index; |
| 198 | |
| 199 | /// Map that holds the correspondence between GUIDs in the summary index, |
| 200 | /// that came from indirect call profiles, and a value id generated by this |
| 201 | /// class to use in the VST and summary block records. |
| 202 | std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; |
| 203 | |
| 204 | /// Tracks the last value id recorded in the GUIDToValueMap. |
| 205 | unsigned GlobalValueId; |
| 206 | |
| 207 | /// Saves the offset of the VSTOffset record that must eventually be |
| 208 | /// backpatched with the offset of the actual VST. |
| 209 | uint64_t VSTOffsetPlaceholder = 0; |
| 210 | |
| 211 | public: |
| 212 | /// Constructs a ModuleBitcodeWriterBase object for the given Module, |
| 213 | /// writing to the provided \p Buffer. |
| 214 | ModuleBitcodeWriterBase(const Module &M, StringTableBuilder &StrtabBuilder, |
| 215 | BitstreamWriter &Stream, |
| 216 | bool ShouldPreserveUseListOrder, |
| 217 | const ModuleSummaryIndex *Index) |
| 218 | : BitcodeWriterBase(Stream, StrtabBuilder), M(M), |
| 219 | VE(M, ShouldPreserveUseListOrder), Index(Index) { |
| 220 | // Assign ValueIds to any callee values in the index that came from |
| 221 | // indirect call profiles and were recorded as a GUID not a Value* |
| 222 | // (which would have been assigned an ID by the ValueEnumerator). |
| 223 | // The starting ValueId is just after the number of values in the |
| 224 | // ValueEnumerator, so that they can be emitted in the VST. |
| 225 | GlobalValueId = VE.getValues().size(); |
| 226 | if (!Index) |
| 227 | return; |
| 228 | for (const auto &GUIDSummaryLists : *Index) |
| 229 | // Examine all summaries for this GUID. |
| 230 | for (auto &Summary : GUIDSummaryLists.second.SummaryList) |
| 231 | if (auto FS = dyn_cast<FunctionSummary>(Val: Summary.get())) { |
| 232 | // For each call in the function summary, see if the call |
| 233 | // is to a GUID (which means it is for an indirect call, |
| 234 | // otherwise we would have a Value for it). If so, synthesize |
| 235 | // a value id. |
| 236 | for (auto &CallEdge : FS->calls()) |
| 237 | if (!CallEdge.first.haveGVs() || !CallEdge.first.getValue()) |
| 238 | assignValueId(ValGUID: CallEdge.first.getGUID()); |
| 239 | |
| 240 | // For each referenced variables in the function summary, see if the |
| 241 | // variable is represented by a GUID (as opposed to a symbol to |
| 242 | // declarations or definitions in the module). If so, synthesize a |
| 243 | // value id. |
| 244 | for (auto &RefEdge : FS->refs()) |
| 245 | if (!RefEdge.haveGVs() || !RefEdge.getValue()) |
| 246 | assignValueId(ValGUID: RefEdge.getGUID()); |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | protected: |
| 251 | void writePerModuleGlobalValueSummary(); |
| 252 | |
| 253 | private: |
| 254 | void writePerModuleFunctionSummaryRecord( |
| 255 | SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, |
| 256 | unsigned ValueID, unsigned FSCallsAbbrev, unsigned FSCallsProfileAbbrev, |
| 257 | unsigned CallsiteAbbrev, unsigned AllocAbbrev, unsigned ContextIdAbbvId, |
| 258 | const Function &F, DenseMap<CallStackId, LinearCallStackId> &CallStackPos, |
| 259 | CallStackId &CallStackCount); |
| 260 | void writeModuleLevelReferences(const GlobalVariable &V, |
| 261 | SmallVector<uint64_t, 64> &NameVals, |
| 262 | unsigned FSModRefsAbbrev, |
| 263 | unsigned FSModVTableRefsAbbrev); |
| 264 | |
| 265 | void assignValueId(GlobalValue::GUID ValGUID) { |
| 266 | GUIDToValueIdMap[ValGUID] = ++GlobalValueId; |
| 267 | } |
| 268 | |
| 269 | unsigned getValueId(GlobalValue::GUID ValGUID) { |
| 270 | const auto &VMI = GUIDToValueIdMap.find(x: ValGUID); |
| 271 | // Expect that any GUID value had a value Id assigned by an |
| 272 | // earlier call to assignValueId. |
| 273 | assert(VMI != GUIDToValueIdMap.end() && |
| 274 | "GUID does not have assigned value Id" ); |
| 275 | return VMI->second; |
| 276 | } |
| 277 | |
| 278 | // Helper to get the valueId for the type of value recorded in VI. |
| 279 | unsigned getValueId(ValueInfo VI) { |
| 280 | if (!VI.haveGVs() || !VI.getValue()) |
| 281 | return getValueId(ValGUID: VI.getGUID()); |
| 282 | return VE.getValueID(V: VI.getValue()); |
| 283 | } |
| 284 | |
| 285 | std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } |
| 286 | }; |
| 287 | |
| 288 | /// Class to manage the bitcode writing for a module. |
| 289 | class ModuleBitcodeWriter : public ModuleBitcodeWriterBase { |
| 290 | /// True if a module hash record should be written. |
| 291 | bool GenerateHash; |
| 292 | |
| 293 | /// If non-null, when GenerateHash is true, the resulting hash is written |
| 294 | /// into ModHash. |
| 295 | ModuleHash *ModHash; |
| 296 | |
| 297 | SHA1 Hasher; |
| 298 | |
| 299 | /// The start bit of the identification block. |
| 300 | uint64_t BitcodeStartBit; |
| 301 | |
| 302 | public: |
| 303 | /// Constructs a ModuleBitcodeWriter object for the given Module, |
| 304 | /// writing to the provided \p Buffer. |
| 305 | ModuleBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, |
| 306 | BitstreamWriter &Stream, bool ShouldPreserveUseListOrder, |
| 307 | const ModuleSummaryIndex *Index, bool GenerateHash, |
| 308 | ModuleHash *ModHash = nullptr) |
| 309 | : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, |
| 310 | ShouldPreserveUseListOrder, Index), |
| 311 | GenerateHash(GenerateHash), ModHash(ModHash), |
| 312 | BitcodeStartBit(Stream.GetCurrentBitNo()) {} |
| 313 | |
| 314 | /// Emit the current module to the bitstream. |
| 315 | void write(); |
| 316 | |
| 317 | private: |
| 318 | uint64_t bitcodeStartBit() { return BitcodeStartBit; } |
| 319 | |
| 320 | size_t addToStrtab(StringRef Str); |
| 321 | |
| 322 | void writeAttributeGroupTable(); |
| 323 | void writeAttributeTable(); |
| 324 | void writeTypeTable(); |
| 325 | void writeComdats(); |
| 326 | void writeValueSymbolTableForwardDecl(); |
| 327 | void writeModuleInfo(); |
| 328 | void writeValueAsMetadata(const ValueAsMetadata *MD, |
| 329 | SmallVectorImpl<uint64_t> &Record); |
| 330 | void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record, |
| 331 | unsigned Abbrev); |
| 332 | unsigned createDILocationAbbrev(); |
| 333 | void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record, |
| 334 | unsigned &Abbrev); |
| 335 | unsigned createGenericDINodeAbbrev(); |
| 336 | void writeGenericDINode(const GenericDINode *N, |
| 337 | SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev); |
| 338 | void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record, |
| 339 | unsigned Abbrev); |
| 340 | void writeDIGenericSubrange(const DIGenericSubrange *N, |
| 341 | SmallVectorImpl<uint64_t> &Record, |
| 342 | unsigned Abbrev); |
| 343 | void writeDIEnumerator(const DIEnumerator *N, |
| 344 | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); |
| 345 | void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record, |
| 346 | unsigned Abbrev); |
| 347 | void writeDIFixedPointType(const DIFixedPointType *N, |
| 348 | SmallVectorImpl<uint64_t> &Record, |
| 349 | unsigned Abbrev); |
| 350 | void writeDIStringType(const DIStringType *N, |
| 351 | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); |
| 352 | void writeDIDerivedType(const DIDerivedType *N, |
| 353 | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); |
| 354 | void writeDISubrangeType(const DISubrangeType *N, |
| 355 | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); |
| 356 | void writeDICompositeType(const DICompositeType *N, |
| 357 | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); |
| 358 | void writeDISubroutineType(const DISubroutineType *N, |
| 359 | SmallVectorImpl<uint64_t> &Record, |
| 360 | unsigned Abbrev); |
| 361 | void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record, |
| 362 | unsigned Abbrev); |
| 363 | void writeDICompileUnit(const DICompileUnit *N, |
| 364 | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); |
| 365 | void writeDISubprogram(const DISubprogram *N, |
| 366 | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); |
| 367 | void writeDILexicalBlock(const DILexicalBlock *N, |
| 368 | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); |
| 369 | void writeDILexicalBlockFile(const DILexicalBlockFile *N, |
| 370 | SmallVectorImpl<uint64_t> &Record, |
| 371 | unsigned Abbrev); |
| 372 | void writeDICommonBlock(const DICommonBlock *N, |
| 373 | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); |
| 374 | void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record, |
| 375 | unsigned Abbrev); |
| 376 | void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record, |
| 377 | unsigned Abbrev); |
| 378 | void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record, |
| 379 | unsigned Abbrev); |
| 380 | void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record); |
| 381 | void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record, |
| 382 | unsigned Abbrev); |
| 383 | void writeDIAssignID(const DIAssignID *N, SmallVectorImpl<uint64_t> &Record, |
| 384 | unsigned Abbrev); |
| 385 | void writeDITemplateTypeParameter(const DITemplateTypeParameter *N, |
| 386 | SmallVectorImpl<uint64_t> &Record, |
| 387 | unsigned Abbrev); |
| 388 | void writeDITemplateValueParameter(const DITemplateValueParameter *N, |
| 389 | SmallVectorImpl<uint64_t> &Record, |
| 390 | unsigned Abbrev); |
| 391 | void writeDIGlobalVariable(const DIGlobalVariable *N, |
| 392 | SmallVectorImpl<uint64_t> &Record, |
| 393 | unsigned Abbrev); |
| 394 | void writeDILocalVariable(const DILocalVariable *N, |
| 395 | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); |
| 396 | void writeDILabel(const DILabel *N, |
| 397 | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); |
| 398 | void writeDIExpression(const DIExpression *N, |
| 399 | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); |
| 400 | void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N, |
| 401 | SmallVectorImpl<uint64_t> &Record, |
| 402 | unsigned Abbrev); |
| 403 | void writeDIObjCProperty(const DIObjCProperty *N, |
| 404 | SmallVectorImpl<uint64_t> &Record, unsigned Abbrev); |
| 405 | void writeDIImportedEntity(const DIImportedEntity *N, |
| 406 | SmallVectorImpl<uint64_t> &Record, |
| 407 | unsigned Abbrev); |
| 408 | unsigned createNamedMetadataAbbrev(); |
| 409 | void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record); |
| 410 | unsigned createMetadataStringsAbbrev(); |
| 411 | void writeMetadataStrings(ArrayRef<const Metadata *> Strings, |
| 412 | SmallVectorImpl<uint64_t> &Record); |
| 413 | void writeMetadataRecords(ArrayRef<const Metadata *> MDs, |
| 414 | SmallVectorImpl<uint64_t> &Record, |
| 415 | std::vector<unsigned> *MDAbbrevs = nullptr, |
| 416 | std::vector<uint64_t> *IndexPos = nullptr); |
| 417 | void writeModuleMetadata(); |
| 418 | void writeFunctionMetadata(const Function &F); |
| 419 | void writeFunctionMetadataAttachment(const Function &F); |
| 420 | void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record, |
| 421 | const GlobalObject &GO); |
| 422 | void writeModuleMetadataKinds(); |
| 423 | void writeOperandBundleTags(); |
| 424 | void writeSyncScopeNames(); |
| 425 | void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal); |
| 426 | void writeModuleConstants(); |
| 427 | bool pushValueAndType(const Value *V, unsigned InstID, |
| 428 | SmallVectorImpl<unsigned> &Vals); |
| 429 | bool pushValueOrMetadata(const Value *V, unsigned InstID, |
| 430 | SmallVectorImpl<unsigned> &Vals); |
| 431 | void writeOperandBundles(const CallBase &CB, unsigned InstID); |
| 432 | void pushValue(const Value *V, unsigned InstID, |
| 433 | SmallVectorImpl<unsigned> &Vals); |
| 434 | void pushValueSigned(const Value *V, unsigned InstID, |
| 435 | SmallVectorImpl<uint64_t> &Vals); |
| 436 | void writeInstruction(const Instruction &I, unsigned InstID, |
| 437 | SmallVectorImpl<unsigned> &Vals); |
| 438 | void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST); |
| 439 | void writeGlobalValueSymbolTable( |
| 440 | DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); |
| 441 | void writeUseList(UseListOrder &&Order); |
| 442 | void writeUseListBlock(const Function *F); |
| 443 | void |
| 444 | writeFunction(const Function &F, |
| 445 | DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex); |
| 446 | void writeBlockInfo(); |
| 447 | void writeModuleHash(StringRef View); |
| 448 | |
| 449 | unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { |
| 450 | return unsigned(SSID); |
| 451 | } |
| 452 | |
| 453 | unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(A: Alignment); } |
| 454 | }; |
| 455 | |
| 456 | /// Class to manage the bitcode writing for a combined index. |
| 457 | class IndexBitcodeWriter : public BitcodeWriterBase { |
| 458 | /// The combined index to write to bitcode. |
| 459 | const ModuleSummaryIndex &Index; |
| 460 | |
| 461 | /// When writing combined summaries, provides the set of global value |
| 462 | /// summaries for which the value (function, function alias, etc) should be |
| 463 | /// imported as a declaration. |
| 464 | const GVSummaryPtrSet *DecSummaries = nullptr; |
| 465 | |
| 466 | /// When writing a subset of the index for distributed backends, client |
| 467 | /// provides a map of modules to the corresponding GUIDs/summaries to write. |
| 468 | const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex; |
| 469 | |
| 470 | /// Map that holds the correspondence between the GUID used in the combined |
| 471 | /// index and a value id generated by this class to use in references. |
| 472 | std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap; |
| 473 | |
| 474 | // The stack ids used by this index, which will be a subset of those in |
| 475 | // the full index in the case of distributed indexes. |
| 476 | std::vector<uint64_t> StackIds; |
| 477 | |
| 478 | // Keep a map of the stack id indices used by records being written for this |
| 479 | // index to the index of the corresponding stack id in the above StackIds |
| 480 | // vector. Ensures we write each referenced stack id once. |
| 481 | DenseMap<unsigned, unsigned> StackIdIndicesToIndex; |
| 482 | |
| 483 | /// Tracks the last value id recorded in the GUIDToValueMap. |
| 484 | unsigned GlobalValueId = 0; |
| 485 | |
| 486 | /// Tracks the assignment of module paths in the module path string table to |
| 487 | /// an id assigned for use in summary references to the module path. |
| 488 | DenseMap<StringRef, uint64_t> ModuleIdMap; |
| 489 | |
| 490 | public: |
| 491 | /// Constructs a IndexBitcodeWriter object for the given combined index, |
| 492 | /// writing to the provided \p Buffer. When writing a subset of the index |
| 493 | /// for a distributed backend, provide a \p ModuleToSummariesForIndex map. |
| 494 | /// If provided, \p DecSummaries specifies the set of summaries for which |
| 495 | /// the corresponding functions or aliased functions should be imported as a |
| 496 | /// declaration (but not definition) for each module. |
| 497 | IndexBitcodeWriter( |
| 498 | BitstreamWriter &Stream, StringTableBuilder &StrtabBuilder, |
| 499 | const ModuleSummaryIndex &Index, |
| 500 | const GVSummaryPtrSet *DecSummaries = nullptr, |
| 501 | const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex = nullptr) |
| 502 | : BitcodeWriterBase(Stream, StrtabBuilder), Index(Index), |
| 503 | DecSummaries(DecSummaries), |
| 504 | ModuleToSummariesForIndex(ModuleToSummariesForIndex) { |
| 505 | |
| 506 | // See if the StackIdIndex was already added to the StackId map and |
| 507 | // vector. If not, record it. |
| 508 | auto RecordStackIdReference = [&](unsigned StackIdIndex) { |
| 509 | // If the StackIdIndex is not yet in the map, the below insert ensures |
| 510 | // that it will point to the new StackIds vector entry we push to just |
| 511 | // below. |
| 512 | auto Inserted = |
| 513 | StackIdIndicesToIndex.insert(KV: {StackIdIndex, StackIds.size()}); |
| 514 | if (Inserted.second) |
| 515 | StackIds.push_back(x: Index.getStackIdAtIndex(Index: StackIdIndex)); |
| 516 | }; |
| 517 | |
| 518 | // Assign unique value ids to all summaries to be written, for use |
| 519 | // in writing out the call graph edges. Save the mapping from GUID |
| 520 | // to the new global value id to use when writing those edges, which |
| 521 | // are currently saved in the index in terms of GUID. |
| 522 | forEachSummary(Callback: [&](GVInfo I, bool IsAliasee) { |
| 523 | GUIDToValueIdMap[I.first] = ++GlobalValueId; |
| 524 | // If this is invoked for an aliasee, we want to record the above mapping, |
| 525 | // but not the information needed for its summary entry (if the aliasee is |
| 526 | // to be imported, we will invoke this separately with IsAliasee=false). |
| 527 | if (IsAliasee) |
| 528 | return; |
| 529 | auto *FS = dyn_cast<FunctionSummary>(Val: I.second); |
| 530 | if (!FS) |
| 531 | return; |
| 532 | // Record all stack id indices actually used in the summary entries being |
| 533 | // written, so that we can compact them in the case of distributed ThinLTO |
| 534 | // indexes. |
| 535 | for (auto &CI : FS->callsites()) { |
| 536 | // If the stack id list is empty, this callsite info was synthesized for |
| 537 | // a missing tail call frame. Ensure that the callee's GUID gets a value |
| 538 | // id. Normally we only generate these for defined summaries, which in |
| 539 | // the case of distributed ThinLTO is only the functions already defined |
| 540 | // in the module or that we want to import. We don't bother to include |
| 541 | // all the callee symbols as they aren't normally needed in the backend. |
| 542 | // However, for the synthesized callsite infos we do need the callee |
| 543 | // GUID in the backend so that we can correlate the identified callee |
| 544 | // with this callsite info (which for non-tail calls is done by the |
| 545 | // ordering of the callsite infos and verified via stack ids). |
| 546 | if (CI.StackIdIndices.empty()) { |
| 547 | GUIDToValueIdMap[CI.Callee.getGUID()] = ++GlobalValueId; |
| 548 | continue; |
| 549 | } |
| 550 | for (auto Idx : CI.StackIdIndices) |
| 551 | RecordStackIdReference(Idx); |
| 552 | } |
| 553 | if (CombinedIndexMemProfContext) { |
| 554 | for (auto &AI : FS->allocs()) |
| 555 | for (auto &MIB : AI.MIBs) |
| 556 | for (auto Idx : MIB.StackIdIndices) |
| 557 | RecordStackIdReference(Idx); |
| 558 | } |
| 559 | }); |
| 560 | } |
| 561 | |
| 562 | /// The below iterator returns the GUID and associated summary. |
| 563 | using GVInfo = std::pair<GlobalValue::GUID, GlobalValueSummary *>; |
| 564 | |
| 565 | /// Calls the callback for each value GUID and summary to be written to |
| 566 | /// bitcode. This hides the details of whether they are being pulled from the |
| 567 | /// entire index or just those in a provided ModuleToSummariesForIndex map. |
| 568 | template<typename Functor> |
| 569 | void forEachSummary(Functor Callback) { |
| 570 | if (ModuleToSummariesForIndex) { |
| 571 | for (auto &M : *ModuleToSummariesForIndex) |
| 572 | for (auto &Summary : M.second) { |
| 573 | Callback(Summary, false); |
| 574 | // Ensure aliasee is handled, e.g. for assigning a valueId, |
| 575 | // even if we are not importing the aliasee directly (the |
| 576 | // imported alias will contain a copy of aliasee). |
| 577 | if (auto *AS = dyn_cast<AliasSummary>(Val: Summary.getSecond())) |
| 578 | Callback({AS->getAliaseeGUID(), &AS->getAliasee()}, true); |
| 579 | } |
| 580 | } else { |
| 581 | for (auto &Summaries : Index) |
| 582 | for (auto &Summary : Summaries.second.SummaryList) |
| 583 | Callback({Summaries.first, Summary.get()}, false); |
| 584 | } |
| 585 | } |
| 586 | |
| 587 | /// Calls the callback for each entry in the modulePaths StringMap that |
| 588 | /// should be written to the module path string table. This hides the details |
| 589 | /// of whether they are being pulled from the entire index or just those in a |
| 590 | /// provided ModuleToSummariesForIndex map. |
| 591 | template <typename Functor> void forEachModule(Functor Callback) { |
| 592 | if (ModuleToSummariesForIndex) { |
| 593 | for (const auto &M : *ModuleToSummariesForIndex) { |
| 594 | const auto &MPI = Index.modulePaths().find(Key: M.first); |
| 595 | if (MPI == Index.modulePaths().end()) { |
| 596 | // This should only happen if the bitcode file was empty, in which |
| 597 | // case we shouldn't be importing (the ModuleToSummariesForIndex |
| 598 | // would only include the module we are writing and index for). |
| 599 | assert(ModuleToSummariesForIndex->size() == 1); |
| 600 | continue; |
| 601 | } |
| 602 | Callback(*MPI); |
| 603 | } |
| 604 | } else { |
| 605 | // Since StringMap iteration order isn't guaranteed, order by path string |
| 606 | // first. |
| 607 | // FIXME: Make this a vector of StringMapEntry instead to avoid the later |
| 608 | // map lookup. |
| 609 | std::vector<StringRef> ModulePaths; |
| 610 | for (auto &[ModPath, _] : Index.modulePaths()) |
| 611 | ModulePaths.push_back(x: ModPath); |
| 612 | llvm::sort(Start: ModulePaths.begin(), End: ModulePaths.end()); |
| 613 | for (auto &ModPath : ModulePaths) |
| 614 | Callback(*Index.modulePaths().find(Key: ModPath)); |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | /// Main entry point for writing a combined index to bitcode. |
| 619 | void write(); |
| 620 | |
| 621 | private: |
| 622 | void writeModStrings(); |
| 623 | void writeCombinedGlobalValueSummary(); |
| 624 | |
| 625 | std::optional<unsigned> getValueId(GlobalValue::GUID ValGUID) { |
| 626 | auto VMI = GUIDToValueIdMap.find(x: ValGUID); |
| 627 | if (VMI == GUIDToValueIdMap.end()) |
| 628 | return std::nullopt; |
| 629 | return VMI->second; |
| 630 | } |
| 631 | |
| 632 | std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; } |
| 633 | }; |
| 634 | |
| 635 | } // end anonymous namespace |
| 636 | |
| 637 | static unsigned getEncodedCastOpcode(unsigned Opcode) { |
| 638 | switch (Opcode) { |
| 639 | default: llvm_unreachable("Unknown cast instruction!" ); |
| 640 | case Instruction::Trunc : return bitc::CAST_TRUNC; |
| 641 | case Instruction::ZExt : return bitc::CAST_ZEXT; |
| 642 | case Instruction::SExt : return bitc::CAST_SEXT; |
| 643 | case Instruction::FPToUI : return bitc::CAST_FPTOUI; |
| 644 | case Instruction::FPToSI : return bitc::CAST_FPTOSI; |
| 645 | case Instruction::UIToFP : return bitc::CAST_UITOFP; |
| 646 | case Instruction::SIToFP : return bitc::CAST_SITOFP; |
| 647 | case Instruction::FPTrunc : return bitc::CAST_FPTRUNC; |
| 648 | case Instruction::FPExt : return bitc::CAST_FPEXT; |
| 649 | case Instruction::PtrToInt: return bitc::CAST_PTRTOINT; |
| 650 | case Instruction::IntToPtr: return bitc::CAST_INTTOPTR; |
| 651 | case Instruction::BitCast : return bitc::CAST_BITCAST; |
| 652 | case Instruction::AddrSpaceCast: return bitc::CAST_ADDRSPACECAST; |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | static unsigned getEncodedUnaryOpcode(unsigned Opcode) { |
| 657 | switch (Opcode) { |
| 658 | default: llvm_unreachable("Unknown binary instruction!" ); |
| 659 | case Instruction::FNeg: return bitc::UNOP_FNEG; |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | static unsigned getEncodedBinaryOpcode(unsigned Opcode) { |
| 664 | switch (Opcode) { |
| 665 | default: llvm_unreachable("Unknown binary instruction!" ); |
| 666 | case Instruction::Add: |
| 667 | case Instruction::FAdd: return bitc::BINOP_ADD; |
| 668 | case Instruction::Sub: |
| 669 | case Instruction::FSub: return bitc::BINOP_SUB; |
| 670 | case Instruction::Mul: |
| 671 | case Instruction::FMul: return bitc::BINOP_MUL; |
| 672 | case Instruction::UDiv: return bitc::BINOP_UDIV; |
| 673 | case Instruction::FDiv: |
| 674 | case Instruction::SDiv: return bitc::BINOP_SDIV; |
| 675 | case Instruction::URem: return bitc::BINOP_UREM; |
| 676 | case Instruction::FRem: |
| 677 | case Instruction::SRem: return bitc::BINOP_SREM; |
| 678 | case Instruction::Shl: return bitc::BINOP_SHL; |
| 679 | case Instruction::LShr: return bitc::BINOP_LSHR; |
| 680 | case Instruction::AShr: return bitc::BINOP_ASHR; |
| 681 | case Instruction::And: return bitc::BINOP_AND; |
| 682 | case Instruction::Or: return bitc::BINOP_OR; |
| 683 | case Instruction::Xor: return bitc::BINOP_XOR; |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op) { |
| 688 | switch (Op) { |
| 689 | default: llvm_unreachable("Unknown RMW operation!" ); |
| 690 | case AtomicRMWInst::Xchg: return bitc::RMW_XCHG; |
| 691 | case AtomicRMWInst::Add: return bitc::RMW_ADD; |
| 692 | case AtomicRMWInst::Sub: return bitc::RMW_SUB; |
| 693 | case AtomicRMWInst::And: return bitc::RMW_AND; |
| 694 | case AtomicRMWInst::Nand: return bitc::RMW_NAND; |
| 695 | case AtomicRMWInst::Or: return bitc::RMW_OR; |
| 696 | case AtomicRMWInst::Xor: return bitc::RMW_XOR; |
| 697 | case AtomicRMWInst::Max: return bitc::RMW_MAX; |
| 698 | case AtomicRMWInst::Min: return bitc::RMW_MIN; |
| 699 | case AtomicRMWInst::UMax: return bitc::RMW_UMAX; |
| 700 | case AtomicRMWInst::UMin: return bitc::RMW_UMIN; |
| 701 | case AtomicRMWInst::FAdd: return bitc::RMW_FADD; |
| 702 | case AtomicRMWInst::FSub: return bitc::RMW_FSUB; |
| 703 | case AtomicRMWInst::FMax: return bitc::RMW_FMAX; |
| 704 | case AtomicRMWInst::FMin: return bitc::RMW_FMIN; |
| 705 | case AtomicRMWInst::FMaximum: |
| 706 | return bitc::RMW_FMAXIMUM; |
| 707 | case AtomicRMWInst::FMinimum: |
| 708 | return bitc::RMW_FMINIMUM; |
| 709 | case AtomicRMWInst::UIncWrap: |
| 710 | return bitc::RMW_UINC_WRAP; |
| 711 | case AtomicRMWInst::UDecWrap: |
| 712 | return bitc::RMW_UDEC_WRAP; |
| 713 | case AtomicRMWInst::USubCond: |
| 714 | return bitc::RMW_USUB_COND; |
| 715 | case AtomicRMWInst::USubSat: |
| 716 | return bitc::RMW_USUB_SAT; |
| 717 | } |
| 718 | } |
| 719 | |
| 720 | static unsigned getEncodedOrdering(AtomicOrdering Ordering) { |
| 721 | switch (Ordering) { |
| 722 | case AtomicOrdering::NotAtomic: return bitc::ORDERING_NOTATOMIC; |
| 723 | case AtomicOrdering::Unordered: return bitc::ORDERING_UNORDERED; |
| 724 | case AtomicOrdering::Monotonic: return bitc::ORDERING_MONOTONIC; |
| 725 | case AtomicOrdering::Acquire: return bitc::ORDERING_ACQUIRE; |
| 726 | case AtomicOrdering::Release: return bitc::ORDERING_RELEASE; |
| 727 | case AtomicOrdering::AcquireRelease: return bitc::ORDERING_ACQREL; |
| 728 | case AtomicOrdering::SequentiallyConsistent: return bitc::ORDERING_SEQCST; |
| 729 | } |
| 730 | llvm_unreachable("Invalid ordering" ); |
| 731 | } |
| 732 | |
| 733 | static void writeStringRecord(BitstreamWriter &Stream, unsigned Code, |
| 734 | StringRef Str, unsigned AbbrevToUse) { |
| 735 | SmallVector<unsigned, 64> Vals; |
| 736 | |
| 737 | // Code: [strchar x N] |
| 738 | for (char C : Str) { |
| 739 | if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C)) |
| 740 | AbbrevToUse = 0; |
| 741 | Vals.push_back(Elt: C); |
| 742 | } |
| 743 | |
| 744 | // Emit the finished record. |
| 745 | Stream.EmitRecord(Code, Vals, Abbrev: AbbrevToUse); |
| 746 | } |
| 747 | |
| 748 | static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind) { |
| 749 | switch (Kind) { |
| 750 | case Attribute::Alignment: |
| 751 | return bitc::ATTR_KIND_ALIGNMENT; |
| 752 | case Attribute::AllocAlign: |
| 753 | return bitc::ATTR_KIND_ALLOC_ALIGN; |
| 754 | case Attribute::AllocSize: |
| 755 | return bitc::ATTR_KIND_ALLOC_SIZE; |
| 756 | case Attribute::AlwaysInline: |
| 757 | return bitc::ATTR_KIND_ALWAYS_INLINE; |
| 758 | case Attribute::Builtin: |
| 759 | return bitc::ATTR_KIND_BUILTIN; |
| 760 | case Attribute::ByVal: |
| 761 | return bitc::ATTR_KIND_BY_VAL; |
| 762 | case Attribute::Convergent: |
| 763 | return bitc::ATTR_KIND_CONVERGENT; |
| 764 | case Attribute::InAlloca: |
| 765 | return bitc::ATTR_KIND_IN_ALLOCA; |
| 766 | case Attribute::Cold: |
| 767 | return bitc::ATTR_KIND_COLD; |
| 768 | case Attribute::DisableSanitizerInstrumentation: |
| 769 | return bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION; |
| 770 | case Attribute::FnRetThunkExtern: |
| 771 | return bitc::ATTR_KIND_FNRETTHUNK_EXTERN; |
| 772 | case Attribute::Hot: |
| 773 | return bitc::ATTR_KIND_HOT; |
| 774 | case Attribute::ElementType: |
| 775 | return bitc::ATTR_KIND_ELEMENTTYPE; |
| 776 | case Attribute::HybridPatchable: |
| 777 | return bitc::ATTR_KIND_HYBRID_PATCHABLE; |
| 778 | case Attribute::InlineHint: |
| 779 | return bitc::ATTR_KIND_INLINE_HINT; |
| 780 | case Attribute::InReg: |
| 781 | return bitc::ATTR_KIND_IN_REG; |
| 782 | case Attribute::JumpTable: |
| 783 | return bitc::ATTR_KIND_JUMP_TABLE; |
| 784 | case Attribute::MinSize: |
| 785 | return bitc::ATTR_KIND_MIN_SIZE; |
| 786 | case Attribute::AllocatedPointer: |
| 787 | return bitc::ATTR_KIND_ALLOCATED_POINTER; |
| 788 | case Attribute::AllocKind: |
| 789 | return bitc::ATTR_KIND_ALLOC_KIND; |
| 790 | case Attribute::Memory: |
| 791 | return bitc::ATTR_KIND_MEMORY; |
| 792 | case Attribute::NoFPClass: |
| 793 | return bitc::ATTR_KIND_NOFPCLASS; |
| 794 | case Attribute::Naked: |
| 795 | return bitc::ATTR_KIND_NAKED; |
| 796 | case Attribute::Nest: |
| 797 | return bitc::ATTR_KIND_NEST; |
| 798 | case Attribute::NoAlias: |
| 799 | return bitc::ATTR_KIND_NO_ALIAS; |
| 800 | case Attribute::NoBuiltin: |
| 801 | return bitc::ATTR_KIND_NO_BUILTIN; |
| 802 | case Attribute::NoCallback: |
| 803 | return bitc::ATTR_KIND_NO_CALLBACK; |
| 804 | case Attribute::NoDivergenceSource: |
| 805 | return bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE; |
| 806 | case Attribute::NoDuplicate: |
| 807 | return bitc::ATTR_KIND_NO_DUPLICATE; |
| 808 | case Attribute::NoFree: |
| 809 | return bitc::ATTR_KIND_NOFREE; |
| 810 | case Attribute::NoImplicitFloat: |
| 811 | return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT; |
| 812 | case Attribute::NoInline: |
| 813 | return bitc::ATTR_KIND_NO_INLINE; |
| 814 | case Attribute::NoRecurse: |
| 815 | return bitc::ATTR_KIND_NO_RECURSE; |
| 816 | case Attribute::NoMerge: |
| 817 | return bitc::ATTR_KIND_NO_MERGE; |
| 818 | case Attribute::NonLazyBind: |
| 819 | return bitc::ATTR_KIND_NON_LAZY_BIND; |
| 820 | case Attribute::NonNull: |
| 821 | return bitc::ATTR_KIND_NON_NULL; |
| 822 | case Attribute::Dereferenceable: |
| 823 | return bitc::ATTR_KIND_DEREFERENCEABLE; |
| 824 | case Attribute::DereferenceableOrNull: |
| 825 | return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL; |
| 826 | case Attribute::NoRedZone: |
| 827 | return bitc::ATTR_KIND_NO_RED_ZONE; |
| 828 | case Attribute::NoReturn: |
| 829 | return bitc::ATTR_KIND_NO_RETURN; |
| 830 | case Attribute::NoSync: |
| 831 | return bitc::ATTR_KIND_NOSYNC; |
| 832 | case Attribute::NoCfCheck: |
| 833 | return bitc::ATTR_KIND_NOCF_CHECK; |
| 834 | case Attribute::NoProfile: |
| 835 | return bitc::ATTR_KIND_NO_PROFILE; |
| 836 | case Attribute::SkipProfile: |
| 837 | return bitc::ATTR_KIND_SKIP_PROFILE; |
| 838 | case Attribute::NoUnwind: |
| 839 | return bitc::ATTR_KIND_NO_UNWIND; |
| 840 | case Attribute::NoSanitizeBounds: |
| 841 | return bitc::ATTR_KIND_NO_SANITIZE_BOUNDS; |
| 842 | case Attribute::NoSanitizeCoverage: |
| 843 | return bitc::ATTR_KIND_NO_SANITIZE_COVERAGE; |
| 844 | case Attribute::NullPointerIsValid: |
| 845 | return bitc::ATTR_KIND_NULL_POINTER_IS_VALID; |
| 846 | case Attribute::OptimizeForDebugging: |
| 847 | return bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING; |
| 848 | case Attribute::OptForFuzzing: |
| 849 | return bitc::ATTR_KIND_OPT_FOR_FUZZING; |
| 850 | case Attribute::OptimizeForSize: |
| 851 | return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE; |
| 852 | case Attribute::OptimizeNone: |
| 853 | return bitc::ATTR_KIND_OPTIMIZE_NONE; |
| 854 | case Attribute::ReadNone: |
| 855 | return bitc::ATTR_KIND_READ_NONE; |
| 856 | case Attribute::ReadOnly: |
| 857 | return bitc::ATTR_KIND_READ_ONLY; |
| 858 | case Attribute::Returned: |
| 859 | return bitc::ATTR_KIND_RETURNED; |
| 860 | case Attribute::ReturnsTwice: |
| 861 | return bitc::ATTR_KIND_RETURNS_TWICE; |
| 862 | case Attribute::SExt: |
| 863 | return bitc::ATTR_KIND_S_EXT; |
| 864 | case Attribute::Speculatable: |
| 865 | return bitc::ATTR_KIND_SPECULATABLE; |
| 866 | case Attribute::StackAlignment: |
| 867 | return bitc::ATTR_KIND_STACK_ALIGNMENT; |
| 868 | case Attribute::StackProtect: |
| 869 | return bitc::ATTR_KIND_STACK_PROTECT; |
| 870 | case Attribute::StackProtectReq: |
| 871 | return bitc::ATTR_KIND_STACK_PROTECT_REQ; |
| 872 | case Attribute::StackProtectStrong: |
| 873 | return bitc::ATTR_KIND_STACK_PROTECT_STRONG; |
| 874 | case Attribute::SafeStack: |
| 875 | return bitc::ATTR_KIND_SAFESTACK; |
| 876 | case Attribute::ShadowCallStack: |
| 877 | return bitc::ATTR_KIND_SHADOWCALLSTACK; |
| 878 | case Attribute::StrictFP: |
| 879 | return bitc::ATTR_KIND_STRICT_FP; |
| 880 | case Attribute::StructRet: |
| 881 | return bitc::ATTR_KIND_STRUCT_RET; |
| 882 | case Attribute::SanitizeAddress: |
| 883 | return bitc::ATTR_KIND_SANITIZE_ADDRESS; |
| 884 | case Attribute::SanitizeHWAddress: |
| 885 | return bitc::ATTR_KIND_SANITIZE_HWADDRESS; |
| 886 | case Attribute::SanitizeThread: |
| 887 | return bitc::ATTR_KIND_SANITIZE_THREAD; |
| 888 | case Attribute::SanitizeType: |
| 889 | return bitc::ATTR_KIND_SANITIZE_TYPE; |
| 890 | case Attribute::SanitizeMemory: |
| 891 | return bitc::ATTR_KIND_SANITIZE_MEMORY; |
| 892 | case Attribute::SanitizeNumericalStability: |
| 893 | return bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY; |
| 894 | case Attribute::SanitizeRealtime: |
| 895 | return bitc::ATTR_KIND_SANITIZE_REALTIME; |
| 896 | case Attribute::SanitizeRealtimeBlocking: |
| 897 | return bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING; |
| 898 | case Attribute::SpeculativeLoadHardening: |
| 899 | return bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING; |
| 900 | case Attribute::SwiftError: |
| 901 | return bitc::ATTR_KIND_SWIFT_ERROR; |
| 902 | case Attribute::SwiftSelf: |
| 903 | return bitc::ATTR_KIND_SWIFT_SELF; |
| 904 | case Attribute::SwiftAsync: |
| 905 | return bitc::ATTR_KIND_SWIFT_ASYNC; |
| 906 | case Attribute::UWTable: |
| 907 | return bitc::ATTR_KIND_UW_TABLE; |
| 908 | case Attribute::VScaleRange: |
| 909 | return bitc::ATTR_KIND_VSCALE_RANGE; |
| 910 | case Attribute::WillReturn: |
| 911 | return bitc::ATTR_KIND_WILLRETURN; |
| 912 | case Attribute::WriteOnly: |
| 913 | return bitc::ATTR_KIND_WRITEONLY; |
| 914 | case Attribute::ZExt: |
| 915 | return bitc::ATTR_KIND_Z_EXT; |
| 916 | case Attribute::ImmArg: |
| 917 | return bitc::ATTR_KIND_IMMARG; |
| 918 | case Attribute::SanitizeMemTag: |
| 919 | return bitc::ATTR_KIND_SANITIZE_MEMTAG; |
| 920 | case Attribute::Preallocated: |
| 921 | return bitc::ATTR_KIND_PREALLOCATED; |
| 922 | case Attribute::NoUndef: |
| 923 | return bitc::ATTR_KIND_NOUNDEF; |
| 924 | case Attribute::ByRef: |
| 925 | return bitc::ATTR_KIND_BYREF; |
| 926 | case Attribute::MustProgress: |
| 927 | return bitc::ATTR_KIND_MUSTPROGRESS; |
| 928 | case Attribute::PresplitCoroutine: |
| 929 | return bitc::ATTR_KIND_PRESPLIT_COROUTINE; |
| 930 | case Attribute::Writable: |
| 931 | return bitc::ATTR_KIND_WRITABLE; |
| 932 | case Attribute::CoroDestroyOnlyWhenComplete: |
| 933 | return bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE; |
| 934 | case Attribute::CoroElideSafe: |
| 935 | return bitc::ATTR_KIND_CORO_ELIDE_SAFE; |
| 936 | case Attribute::DeadOnUnwind: |
| 937 | return bitc::ATTR_KIND_DEAD_ON_UNWIND; |
| 938 | case Attribute::Range: |
| 939 | return bitc::ATTR_KIND_RANGE; |
| 940 | case Attribute::Initializes: |
| 941 | return bitc::ATTR_KIND_INITIALIZES; |
| 942 | case Attribute::NoExt: |
| 943 | return bitc::ATTR_KIND_NO_EXT; |
| 944 | case Attribute::Captures: |
| 945 | return bitc::ATTR_KIND_CAPTURES; |
| 946 | case Attribute::DeadOnReturn: |
| 947 | return bitc::ATTR_KIND_DEAD_ON_RETURN; |
| 948 | case Attribute::EndAttrKinds: |
| 949 | llvm_unreachable("Can not encode end-attribute kinds marker." ); |
| 950 | case Attribute::None: |
| 951 | llvm_unreachable("Can not encode none-attribute." ); |
| 952 | case Attribute::EmptyKey: |
| 953 | case Attribute::TombstoneKey: |
| 954 | llvm_unreachable("Trying to encode EmptyKey/TombstoneKey" ); |
| 955 | } |
| 956 | |
| 957 | llvm_unreachable("Trying to encode unknown attribute" ); |
| 958 | } |
| 959 | |
| 960 | static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V) { |
| 961 | if ((int64_t)V >= 0) |
| 962 | Vals.push_back(Elt: V << 1); |
| 963 | else |
| 964 | Vals.push_back(Elt: (-V << 1) | 1); |
| 965 | } |
| 966 | |
| 967 | static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A) { |
| 968 | // We have an arbitrary precision integer value to write whose |
| 969 | // bit width is > 64. However, in canonical unsigned integer |
| 970 | // format it is likely that the high bits are going to be zero. |
| 971 | // So, we only write the number of active words. |
| 972 | unsigned NumWords = A.getActiveWords(); |
| 973 | const uint64_t *RawData = A.getRawData(); |
| 974 | for (unsigned i = 0; i < NumWords; i++) |
| 975 | emitSignedInt64(Vals, V: RawData[i]); |
| 976 | } |
| 977 | |
| 978 | static void emitConstantRange(SmallVectorImpl<uint64_t> &Record, |
| 979 | const ConstantRange &CR, bool EmitBitWidth) { |
| 980 | unsigned BitWidth = CR.getBitWidth(); |
| 981 | if (EmitBitWidth) |
| 982 | Record.push_back(Elt: BitWidth); |
| 983 | if (BitWidth > 64) { |
| 984 | Record.push_back(Elt: CR.getLower().getActiveWords() | |
| 985 | (uint64_t(CR.getUpper().getActiveWords()) << 32)); |
| 986 | emitWideAPInt(Vals&: Record, A: CR.getLower()); |
| 987 | emitWideAPInt(Vals&: Record, A: CR.getUpper()); |
| 988 | } else { |
| 989 | emitSignedInt64(Vals&: Record, V: CR.getLower().getSExtValue()); |
| 990 | emitSignedInt64(Vals&: Record, V: CR.getUpper().getSExtValue()); |
| 991 | } |
| 992 | } |
| 993 | |
| 994 | void ModuleBitcodeWriter::writeAttributeGroupTable() { |
| 995 | const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps = |
| 996 | VE.getAttributeGroups(); |
| 997 | if (AttrGrps.empty()) return; |
| 998 | |
| 999 | Stream.EnterSubblock(BlockID: bitc::PARAMATTR_GROUP_BLOCK_ID, CodeLen: 3); |
| 1000 | |
| 1001 | SmallVector<uint64_t, 64> Record; |
| 1002 | for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) { |
| 1003 | unsigned AttrListIndex = Pair.first; |
| 1004 | AttributeSet AS = Pair.second; |
| 1005 | Record.push_back(Elt: VE.getAttributeGroupID(Group: Pair)); |
| 1006 | Record.push_back(Elt: AttrListIndex); |
| 1007 | |
| 1008 | for (Attribute Attr : AS) { |
| 1009 | if (Attr.isEnumAttribute()) { |
| 1010 | Record.push_back(Elt: 0); |
| 1011 | Record.push_back(Elt: getAttrKindEncoding(Kind: Attr.getKindAsEnum())); |
| 1012 | } else if (Attr.isIntAttribute()) { |
| 1013 | Record.push_back(Elt: 1); |
| 1014 | Attribute::AttrKind Kind = Attr.getKindAsEnum(); |
| 1015 | Record.push_back(Elt: getAttrKindEncoding(Kind)); |
| 1016 | if (Kind == Attribute::Memory) { |
| 1017 | // Version field for upgrading old memory effects. |
| 1018 | const uint64_t Version = 1; |
| 1019 | Record.push_back(Elt: (Version << 56) | Attr.getValueAsInt()); |
| 1020 | } else { |
| 1021 | Record.push_back(Elt: Attr.getValueAsInt()); |
| 1022 | } |
| 1023 | } else if (Attr.isStringAttribute()) { |
| 1024 | StringRef Kind = Attr.getKindAsString(); |
| 1025 | StringRef Val = Attr.getValueAsString(); |
| 1026 | |
| 1027 | Record.push_back(Elt: Val.empty() ? 3 : 4); |
| 1028 | Record.append(in_start: Kind.begin(), in_end: Kind.end()); |
| 1029 | Record.push_back(Elt: 0); |
| 1030 | if (!Val.empty()) { |
| 1031 | Record.append(in_start: Val.begin(), in_end: Val.end()); |
| 1032 | Record.push_back(Elt: 0); |
| 1033 | } |
| 1034 | } else if (Attr.isTypeAttribute()) { |
| 1035 | Type *Ty = Attr.getValueAsType(); |
| 1036 | Record.push_back(Elt: Ty ? 6 : 5); |
| 1037 | Record.push_back(Elt: getAttrKindEncoding(Kind: Attr.getKindAsEnum())); |
| 1038 | if (Ty) |
| 1039 | Record.push_back(Elt: VE.getTypeID(T: Attr.getValueAsType())); |
| 1040 | } else if (Attr.isConstantRangeAttribute()) { |
| 1041 | Record.push_back(Elt: 7); |
| 1042 | Record.push_back(Elt: getAttrKindEncoding(Kind: Attr.getKindAsEnum())); |
| 1043 | emitConstantRange(Record, CR: Attr.getValueAsConstantRange(), |
| 1044 | /*EmitBitWidth=*/true); |
| 1045 | } else { |
| 1046 | assert(Attr.isConstantRangeListAttribute()); |
| 1047 | Record.push_back(Elt: 8); |
| 1048 | Record.push_back(Elt: getAttrKindEncoding(Kind: Attr.getKindAsEnum())); |
| 1049 | ArrayRef<ConstantRange> Val = Attr.getValueAsConstantRangeList(); |
| 1050 | Record.push_back(Elt: Val.size()); |
| 1051 | Record.push_back(Elt: Val[0].getBitWidth()); |
| 1052 | for (auto &CR : Val) |
| 1053 | emitConstantRange(Record, CR, /*EmitBitWidth=*/false); |
| 1054 | } |
| 1055 | } |
| 1056 | |
| 1057 | Stream.EmitRecord(Code: bitc::PARAMATTR_GRP_CODE_ENTRY, Vals: Record); |
| 1058 | Record.clear(); |
| 1059 | } |
| 1060 | |
| 1061 | Stream.ExitBlock(); |
| 1062 | } |
| 1063 | |
| 1064 | void ModuleBitcodeWriter::writeAttributeTable() { |
| 1065 | const std::vector<AttributeList> &Attrs = VE.getAttributeLists(); |
| 1066 | if (Attrs.empty()) return; |
| 1067 | |
| 1068 | Stream.EnterSubblock(BlockID: bitc::PARAMATTR_BLOCK_ID, CodeLen: 3); |
| 1069 | |
| 1070 | SmallVector<uint64_t, 64> Record; |
| 1071 | for (const AttributeList &AL : Attrs) { |
| 1072 | for (unsigned i : AL.indexes()) { |
| 1073 | AttributeSet AS = AL.getAttributes(Index: i); |
| 1074 | if (AS.hasAttributes()) |
| 1075 | Record.push_back(Elt: VE.getAttributeGroupID(Group: {i, AS})); |
| 1076 | } |
| 1077 | |
| 1078 | Stream.EmitRecord(Code: bitc::PARAMATTR_CODE_ENTRY, Vals: Record); |
| 1079 | Record.clear(); |
| 1080 | } |
| 1081 | |
| 1082 | Stream.ExitBlock(); |
| 1083 | } |
| 1084 | |
| 1085 | /// WriteTypeTable - Write out the type table for a module. |
| 1086 | void ModuleBitcodeWriter::writeTypeTable() { |
| 1087 | const ValueEnumerator::TypeList &TypeList = VE.getTypes(); |
| 1088 | |
| 1089 | Stream.EnterSubblock(BlockID: bitc::TYPE_BLOCK_ID_NEW, CodeLen: 4 /*count from # abbrevs */); |
| 1090 | SmallVector<uint64_t, 64> TypeVals; |
| 1091 | |
| 1092 | uint64_t NumBits = VE.computeBitsRequiredForTypeIndices(); |
| 1093 | |
| 1094 | // Abbrev for TYPE_CODE_OPAQUE_POINTER. |
| 1095 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 1096 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::TYPE_CODE_OPAQUE_POINTER)); |
| 1097 | Abbv->Add(OpInfo: BitCodeAbbrevOp(0)); // Addrspace = 0 |
| 1098 | unsigned OpaquePtrAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 1099 | |
| 1100 | // Abbrev for TYPE_CODE_FUNCTION. |
| 1101 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 1102 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION)); |
| 1103 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg |
| 1104 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 1105 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); |
| 1106 | unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 1107 | |
| 1108 | // Abbrev for TYPE_CODE_STRUCT_ANON. |
| 1109 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 1110 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON)); |
| 1111 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked |
| 1112 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 1113 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); |
| 1114 | unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 1115 | |
| 1116 | // Abbrev for TYPE_CODE_STRUCT_NAME. |
| 1117 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 1118 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME)); |
| 1119 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 1120 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); |
| 1121 | unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 1122 | |
| 1123 | // Abbrev for TYPE_CODE_STRUCT_NAMED. |
| 1124 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 1125 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED)); |
| 1126 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked |
| 1127 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 1128 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); |
| 1129 | unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 1130 | |
| 1131 | // Abbrev for TYPE_CODE_ARRAY. |
| 1132 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 1133 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY)); |
| 1134 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size |
| 1135 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits)); |
| 1136 | unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 1137 | |
| 1138 | // Emit an entry count so the reader can reserve space. |
| 1139 | TypeVals.push_back(Elt: TypeList.size()); |
| 1140 | Stream.EmitRecord(Code: bitc::TYPE_CODE_NUMENTRY, Vals: TypeVals); |
| 1141 | TypeVals.clear(); |
| 1142 | |
| 1143 | // Loop over all of the types, emitting each in turn. |
| 1144 | for (Type *T : TypeList) { |
| 1145 | int AbbrevToUse = 0; |
| 1146 | unsigned Code = 0; |
| 1147 | |
| 1148 | switch (T->getTypeID()) { |
| 1149 | case Type::VoidTyID: Code = bitc::TYPE_CODE_VOID; break; |
| 1150 | case Type::HalfTyID: Code = bitc::TYPE_CODE_HALF; break; |
| 1151 | case Type::BFloatTyID: Code = bitc::TYPE_CODE_BFLOAT; break; |
| 1152 | case Type::FloatTyID: Code = bitc::TYPE_CODE_FLOAT; break; |
| 1153 | case Type::DoubleTyID: Code = bitc::TYPE_CODE_DOUBLE; break; |
| 1154 | case Type::X86_FP80TyID: Code = bitc::TYPE_CODE_X86_FP80; break; |
| 1155 | case Type::FP128TyID: Code = bitc::TYPE_CODE_FP128; break; |
| 1156 | case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break; |
| 1157 | case Type::LabelTyID: Code = bitc::TYPE_CODE_LABEL; break; |
| 1158 | case Type::MetadataTyID: |
| 1159 | Code = bitc::TYPE_CODE_METADATA; |
| 1160 | break; |
| 1161 | case Type::X86_AMXTyID: Code = bitc::TYPE_CODE_X86_AMX; break; |
| 1162 | case Type::TokenTyID: Code = bitc::TYPE_CODE_TOKEN; break; |
| 1163 | case Type::IntegerTyID: |
| 1164 | // INTEGER: [width] |
| 1165 | Code = bitc::TYPE_CODE_INTEGER; |
| 1166 | TypeVals.push_back(Elt: cast<IntegerType>(Val: T)->getBitWidth()); |
| 1167 | break; |
| 1168 | case Type::PointerTyID: { |
| 1169 | PointerType *PTy = cast<PointerType>(Val: T); |
| 1170 | unsigned AddressSpace = PTy->getAddressSpace(); |
| 1171 | // OPAQUE_POINTER: [address space] |
| 1172 | Code = bitc::TYPE_CODE_OPAQUE_POINTER; |
| 1173 | TypeVals.push_back(Elt: AddressSpace); |
| 1174 | if (AddressSpace == 0) |
| 1175 | AbbrevToUse = OpaquePtrAbbrev; |
| 1176 | break; |
| 1177 | } |
| 1178 | case Type::FunctionTyID: { |
| 1179 | FunctionType *FT = cast<FunctionType>(Val: T); |
| 1180 | // FUNCTION: [isvararg, retty, paramty x N] |
| 1181 | Code = bitc::TYPE_CODE_FUNCTION; |
| 1182 | TypeVals.push_back(Elt: FT->isVarArg()); |
| 1183 | TypeVals.push_back(Elt: VE.getTypeID(T: FT->getReturnType())); |
| 1184 | for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) |
| 1185 | TypeVals.push_back(Elt: VE.getTypeID(T: FT->getParamType(i))); |
| 1186 | AbbrevToUse = FunctionAbbrev; |
| 1187 | break; |
| 1188 | } |
| 1189 | case Type::StructTyID: { |
| 1190 | StructType *ST = cast<StructType>(Val: T); |
| 1191 | // STRUCT: [ispacked, eltty x N] |
| 1192 | TypeVals.push_back(Elt: ST->isPacked()); |
| 1193 | // Output all of the element types. |
| 1194 | for (Type *ET : ST->elements()) |
| 1195 | TypeVals.push_back(Elt: VE.getTypeID(T: ET)); |
| 1196 | |
| 1197 | if (ST->isLiteral()) { |
| 1198 | Code = bitc::TYPE_CODE_STRUCT_ANON; |
| 1199 | AbbrevToUse = StructAnonAbbrev; |
| 1200 | } else { |
| 1201 | if (ST->isOpaque()) { |
| 1202 | Code = bitc::TYPE_CODE_OPAQUE; |
| 1203 | } else { |
| 1204 | Code = bitc::TYPE_CODE_STRUCT_NAMED; |
| 1205 | AbbrevToUse = StructNamedAbbrev; |
| 1206 | } |
| 1207 | |
| 1208 | // Emit the name if it is present. |
| 1209 | if (!ST->getName().empty()) |
| 1210 | writeStringRecord(Stream, Code: bitc::TYPE_CODE_STRUCT_NAME, Str: ST->getName(), |
| 1211 | AbbrevToUse: StructNameAbbrev); |
| 1212 | } |
| 1213 | break; |
| 1214 | } |
| 1215 | case Type::ArrayTyID: { |
| 1216 | ArrayType *AT = cast<ArrayType>(Val: T); |
| 1217 | // ARRAY: [numelts, eltty] |
| 1218 | Code = bitc::TYPE_CODE_ARRAY; |
| 1219 | TypeVals.push_back(Elt: AT->getNumElements()); |
| 1220 | TypeVals.push_back(Elt: VE.getTypeID(T: AT->getElementType())); |
| 1221 | AbbrevToUse = ArrayAbbrev; |
| 1222 | break; |
| 1223 | } |
| 1224 | case Type::FixedVectorTyID: |
| 1225 | case Type::ScalableVectorTyID: { |
| 1226 | VectorType *VT = cast<VectorType>(Val: T); |
| 1227 | // VECTOR [numelts, eltty] or |
| 1228 | // [numelts, eltty, scalable] |
| 1229 | Code = bitc::TYPE_CODE_VECTOR; |
| 1230 | TypeVals.push_back(Elt: VT->getElementCount().getKnownMinValue()); |
| 1231 | TypeVals.push_back(Elt: VE.getTypeID(T: VT->getElementType())); |
| 1232 | if (isa<ScalableVectorType>(Val: VT)) |
| 1233 | TypeVals.push_back(Elt: true); |
| 1234 | break; |
| 1235 | } |
| 1236 | case Type::TargetExtTyID: { |
| 1237 | TargetExtType *TET = cast<TargetExtType>(Val: T); |
| 1238 | Code = bitc::TYPE_CODE_TARGET_TYPE; |
| 1239 | writeStringRecord(Stream, Code: bitc::TYPE_CODE_STRUCT_NAME, Str: TET->getName(), |
| 1240 | AbbrevToUse: StructNameAbbrev); |
| 1241 | TypeVals.push_back(Elt: TET->getNumTypeParameters()); |
| 1242 | for (Type *InnerTy : TET->type_params()) |
| 1243 | TypeVals.push_back(Elt: VE.getTypeID(T: InnerTy)); |
| 1244 | llvm::append_range(C&: TypeVals, R: TET->int_params()); |
| 1245 | break; |
| 1246 | } |
| 1247 | case Type::TypedPointerTyID: |
| 1248 | llvm_unreachable("Typed pointers cannot be added to IR modules" ); |
| 1249 | } |
| 1250 | |
| 1251 | // Emit the finished record. |
| 1252 | Stream.EmitRecord(Code, Vals: TypeVals, Abbrev: AbbrevToUse); |
| 1253 | TypeVals.clear(); |
| 1254 | } |
| 1255 | |
| 1256 | Stream.ExitBlock(); |
| 1257 | } |
| 1258 | |
| 1259 | static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) { |
| 1260 | switch (Linkage) { |
| 1261 | case GlobalValue::ExternalLinkage: |
| 1262 | return 0; |
| 1263 | case GlobalValue::WeakAnyLinkage: |
| 1264 | return 16; |
| 1265 | case GlobalValue::AppendingLinkage: |
| 1266 | return 2; |
| 1267 | case GlobalValue::InternalLinkage: |
| 1268 | return 3; |
| 1269 | case GlobalValue::LinkOnceAnyLinkage: |
| 1270 | return 18; |
| 1271 | case GlobalValue::ExternalWeakLinkage: |
| 1272 | return 7; |
| 1273 | case GlobalValue::CommonLinkage: |
| 1274 | return 8; |
| 1275 | case GlobalValue::PrivateLinkage: |
| 1276 | return 9; |
| 1277 | case GlobalValue::WeakODRLinkage: |
| 1278 | return 17; |
| 1279 | case GlobalValue::LinkOnceODRLinkage: |
| 1280 | return 19; |
| 1281 | case GlobalValue::AvailableExternallyLinkage: |
| 1282 | return 12; |
| 1283 | } |
| 1284 | llvm_unreachable("Invalid linkage" ); |
| 1285 | } |
| 1286 | |
| 1287 | static unsigned getEncodedLinkage(const GlobalValue &GV) { |
| 1288 | return getEncodedLinkage(Linkage: GV.getLinkage()); |
| 1289 | } |
| 1290 | |
| 1291 | static uint64_t getEncodedFFlags(FunctionSummary::FFlags Flags) { |
| 1292 | uint64_t RawFlags = 0; |
| 1293 | RawFlags |= Flags.ReadNone; |
| 1294 | RawFlags |= (Flags.ReadOnly << 1); |
| 1295 | RawFlags |= (Flags.NoRecurse << 2); |
| 1296 | RawFlags |= (Flags.ReturnDoesNotAlias << 3); |
| 1297 | RawFlags |= (Flags.NoInline << 4); |
| 1298 | RawFlags |= (Flags.AlwaysInline << 5); |
| 1299 | RawFlags |= (Flags.NoUnwind << 6); |
| 1300 | RawFlags |= (Flags.MayThrow << 7); |
| 1301 | RawFlags |= (Flags.HasUnknownCall << 8); |
| 1302 | RawFlags |= (Flags.MustBeUnreachable << 9); |
| 1303 | return RawFlags; |
| 1304 | } |
| 1305 | |
| 1306 | // Decode the flags for GlobalValue in the summary. See getDecodedGVSummaryFlags |
| 1307 | // in BitcodeReader.cpp. |
| 1308 | static uint64_t getEncodedGVSummaryFlags(GlobalValueSummary::GVFlags Flags, |
| 1309 | bool ImportAsDecl = false) { |
| 1310 | uint64_t RawFlags = 0; |
| 1311 | |
| 1312 | RawFlags |= Flags.NotEligibleToImport; // bool |
| 1313 | RawFlags |= (Flags.Live << 1); |
| 1314 | RawFlags |= (Flags.DSOLocal << 2); |
| 1315 | RawFlags |= (Flags.CanAutoHide << 3); |
| 1316 | |
| 1317 | // Linkage don't need to be remapped at that time for the summary. Any future |
| 1318 | // change to the getEncodedLinkage() function will need to be taken into |
| 1319 | // account here as well. |
| 1320 | RawFlags = (RawFlags << 4) | Flags.Linkage; // 4 bits |
| 1321 | |
| 1322 | RawFlags |= (Flags.Visibility << 8); // 2 bits |
| 1323 | |
| 1324 | unsigned ImportType = Flags.ImportType | ImportAsDecl; |
| 1325 | RawFlags |= (ImportType << 10); // 1 bit |
| 1326 | |
| 1327 | return RawFlags; |
| 1328 | } |
| 1329 | |
| 1330 | static uint64_t getEncodedGVarFlags(GlobalVarSummary::GVarFlags Flags) { |
| 1331 | uint64_t RawFlags = Flags.MaybeReadOnly | (Flags.MaybeWriteOnly << 1) | |
| 1332 | (Flags.Constant << 2) | Flags.VCallVisibility << 3; |
| 1333 | return RawFlags; |
| 1334 | } |
| 1335 | |
| 1336 | static uint64_t getEncodedHotnessCallEdgeInfo(const CalleeInfo &CI) { |
| 1337 | uint64_t RawFlags = 0; |
| 1338 | |
| 1339 | RawFlags |= CI.Hotness; // 3 bits |
| 1340 | RawFlags |= (CI.HasTailCall << 3); // 1 bit |
| 1341 | |
| 1342 | return RawFlags; |
| 1343 | } |
| 1344 | |
| 1345 | static uint64_t getEncodedRelBFCallEdgeInfo(const CalleeInfo &CI) { |
| 1346 | uint64_t RawFlags = 0; |
| 1347 | |
| 1348 | RawFlags |= CI.RelBlockFreq; // CalleeInfo::RelBlockFreqBits bits |
| 1349 | RawFlags |= (CI.HasTailCall << CalleeInfo::RelBlockFreqBits); // 1 bit |
| 1350 | |
| 1351 | return RawFlags; |
| 1352 | } |
| 1353 | |
| 1354 | static unsigned getEncodedVisibility(const GlobalValue &GV) { |
| 1355 | switch (GV.getVisibility()) { |
| 1356 | case GlobalValue::DefaultVisibility: return 0; |
| 1357 | case GlobalValue::HiddenVisibility: return 1; |
| 1358 | case GlobalValue::ProtectedVisibility: return 2; |
| 1359 | } |
| 1360 | llvm_unreachable("Invalid visibility" ); |
| 1361 | } |
| 1362 | |
| 1363 | static unsigned getEncodedDLLStorageClass(const GlobalValue &GV) { |
| 1364 | switch (GV.getDLLStorageClass()) { |
| 1365 | case GlobalValue::DefaultStorageClass: return 0; |
| 1366 | case GlobalValue::DLLImportStorageClass: return 1; |
| 1367 | case GlobalValue::DLLExportStorageClass: return 2; |
| 1368 | } |
| 1369 | llvm_unreachable("Invalid DLL storage class" ); |
| 1370 | } |
| 1371 | |
| 1372 | static unsigned getEncodedThreadLocalMode(const GlobalValue &GV) { |
| 1373 | switch (GV.getThreadLocalMode()) { |
| 1374 | case GlobalVariable::NotThreadLocal: return 0; |
| 1375 | case GlobalVariable::GeneralDynamicTLSModel: return 1; |
| 1376 | case GlobalVariable::LocalDynamicTLSModel: return 2; |
| 1377 | case GlobalVariable::InitialExecTLSModel: return 3; |
| 1378 | case GlobalVariable::LocalExecTLSModel: return 4; |
| 1379 | } |
| 1380 | llvm_unreachable("Invalid TLS model" ); |
| 1381 | } |
| 1382 | |
| 1383 | static unsigned getEncodedComdatSelectionKind(const Comdat &C) { |
| 1384 | switch (C.getSelectionKind()) { |
| 1385 | case Comdat::Any: |
| 1386 | return bitc::COMDAT_SELECTION_KIND_ANY; |
| 1387 | case Comdat::ExactMatch: |
| 1388 | return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH; |
| 1389 | case Comdat::Largest: |
| 1390 | return bitc::COMDAT_SELECTION_KIND_LARGEST; |
| 1391 | case Comdat::NoDeduplicate: |
| 1392 | return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES; |
| 1393 | case Comdat::SameSize: |
| 1394 | return bitc::COMDAT_SELECTION_KIND_SAME_SIZE; |
| 1395 | } |
| 1396 | llvm_unreachable("Invalid selection kind" ); |
| 1397 | } |
| 1398 | |
| 1399 | static unsigned getEncodedUnnamedAddr(const GlobalValue &GV) { |
| 1400 | switch (GV.getUnnamedAddr()) { |
| 1401 | case GlobalValue::UnnamedAddr::None: return 0; |
| 1402 | case GlobalValue::UnnamedAddr::Local: return 2; |
| 1403 | case GlobalValue::UnnamedAddr::Global: return 1; |
| 1404 | } |
| 1405 | llvm_unreachable("Invalid unnamed_addr" ); |
| 1406 | } |
| 1407 | |
| 1408 | size_t ModuleBitcodeWriter::addToStrtab(StringRef Str) { |
| 1409 | if (GenerateHash) |
| 1410 | Hasher.update(Str); |
| 1411 | return StrtabBuilder.add(S: Str); |
| 1412 | } |
| 1413 | |
| 1414 | void ModuleBitcodeWriter::writeComdats() { |
| 1415 | SmallVector<unsigned, 64> Vals; |
| 1416 | for (const Comdat *C : VE.getComdats()) { |
| 1417 | // COMDAT: [strtab offset, strtab size, selection_kind] |
| 1418 | Vals.push_back(Elt: addToStrtab(Str: C->getName())); |
| 1419 | Vals.push_back(Elt: C->getName().size()); |
| 1420 | Vals.push_back(Elt: getEncodedComdatSelectionKind(C: *C)); |
| 1421 | Stream.EmitRecord(Code: bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/Abbrev: 0); |
| 1422 | Vals.clear(); |
| 1423 | } |
| 1424 | } |
| 1425 | |
| 1426 | /// Write a record that will eventually hold the word offset of the |
| 1427 | /// module-level VST. For now the offset is 0, which will be backpatched |
| 1428 | /// after the real VST is written. Saves the bit offset to backpatch. |
| 1429 | void ModuleBitcodeWriter::writeValueSymbolTableForwardDecl() { |
| 1430 | // Write a placeholder value in for the offset of the real VST, |
| 1431 | // which is written after the function blocks so that it can include |
| 1432 | // the offset of each function. The placeholder offset will be |
| 1433 | // updated when the real VST is written. |
| 1434 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 1435 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::MODULE_CODE_VSTOFFSET)); |
| 1436 | // Blocks are 32-bit aligned, so we can use a 32-bit word offset to |
| 1437 | // hold the real VST offset. Must use fixed instead of VBR as we don't |
| 1438 | // know how many VBR chunks to reserve ahead of time. |
| 1439 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); |
| 1440 | unsigned VSTOffsetAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 1441 | |
| 1442 | // Emit the placeholder |
| 1443 | uint64_t Vals[] = {bitc::MODULE_CODE_VSTOFFSET, 0}; |
| 1444 | Stream.EmitRecordWithAbbrev(Abbrev: VSTOffsetAbbrev, Vals); |
| 1445 | |
| 1446 | // Compute and save the bit offset to the placeholder, which will be |
| 1447 | // patched when the real VST is written. We can simply subtract the 32-bit |
| 1448 | // fixed size from the current bit number to get the location to backpatch. |
| 1449 | VSTOffsetPlaceholder = Stream.GetCurrentBitNo() - 32; |
| 1450 | } |
| 1451 | |
| 1452 | enum StringEncoding { SE_Char6, SE_Fixed7, SE_Fixed8 }; |
| 1453 | |
| 1454 | /// Determine the encoding to use for the given string name and length. |
| 1455 | static StringEncoding getStringEncoding(StringRef Str) { |
| 1456 | bool isChar6 = true; |
| 1457 | for (char C : Str) { |
| 1458 | if (isChar6) |
| 1459 | isChar6 = BitCodeAbbrevOp::isChar6(C); |
| 1460 | if ((unsigned char)C & 128) |
| 1461 | // don't bother scanning the rest. |
| 1462 | return SE_Fixed8; |
| 1463 | } |
| 1464 | if (isChar6) |
| 1465 | return SE_Char6; |
| 1466 | return SE_Fixed7; |
| 1467 | } |
| 1468 | |
| 1469 | static_assert(sizeof(GlobalValue::SanitizerMetadata) <= sizeof(unsigned), |
| 1470 | "Sanitizer Metadata is too large for naive serialization." ); |
| 1471 | static unsigned |
| 1472 | serializeSanitizerMetadata(const GlobalValue::SanitizerMetadata &Meta) { |
| 1473 | return Meta.NoAddress | (Meta.NoHWAddress << 1) | |
| 1474 | (Meta.Memtag << 2) | (Meta.IsDynInit << 3); |
| 1475 | } |
| 1476 | |
| 1477 | /// Emit top-level description of module, including target triple, inline asm, |
| 1478 | /// descriptors for global variables, and function prototype info. |
| 1479 | /// Returns the bit offset to backpatch with the location of the real VST. |
| 1480 | void ModuleBitcodeWriter::writeModuleInfo() { |
| 1481 | // Emit various pieces of data attached to a module. |
| 1482 | if (!M.getTargetTriple().empty()) |
| 1483 | writeStringRecord(Stream, Code: bitc::MODULE_CODE_TRIPLE, |
| 1484 | Str: M.getTargetTriple().str(), AbbrevToUse: 0 /*TODO*/); |
| 1485 | const std::string &DL = M.getDataLayoutStr(); |
| 1486 | if (!DL.empty()) |
| 1487 | writeStringRecord(Stream, Code: bitc::MODULE_CODE_DATALAYOUT, Str: DL, AbbrevToUse: 0 /*TODO*/); |
| 1488 | if (!M.getModuleInlineAsm().empty()) |
| 1489 | writeStringRecord(Stream, Code: bitc::MODULE_CODE_ASM, Str: M.getModuleInlineAsm(), |
| 1490 | AbbrevToUse: 0 /*TODO*/); |
| 1491 | |
| 1492 | // Emit information about sections and GC, computing how many there are. Also |
| 1493 | // compute the maximum alignment value. |
| 1494 | std::map<std::string, unsigned> SectionMap; |
| 1495 | std::map<std::string, unsigned> GCMap; |
| 1496 | MaybeAlign MaxAlignment; |
| 1497 | unsigned MaxGlobalType = 0; |
| 1498 | const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) { |
| 1499 | if (A) |
| 1500 | MaxAlignment = !MaxAlignment ? *A : std::max(a: *MaxAlignment, b: *A); |
| 1501 | }; |
| 1502 | for (const GlobalVariable &GV : M.globals()) { |
| 1503 | UpdateMaxAlignment(GV.getAlign()); |
| 1504 | MaxGlobalType = std::max(a: MaxGlobalType, b: VE.getTypeID(T: GV.getValueType())); |
| 1505 | if (GV.hasSection()) { |
| 1506 | // Give section names unique ID's. |
| 1507 | unsigned &Entry = SectionMap[std::string(GV.getSection())]; |
| 1508 | if (!Entry) { |
| 1509 | writeStringRecord(Stream, Code: bitc::MODULE_CODE_SECTIONNAME, Str: GV.getSection(), |
| 1510 | AbbrevToUse: 0 /*TODO*/); |
| 1511 | Entry = SectionMap.size(); |
| 1512 | } |
| 1513 | } |
| 1514 | } |
| 1515 | for (const Function &F : M) { |
| 1516 | UpdateMaxAlignment(F.getAlign()); |
| 1517 | if (F.hasSection()) { |
| 1518 | // Give section names unique ID's. |
| 1519 | unsigned &Entry = SectionMap[std::string(F.getSection())]; |
| 1520 | if (!Entry) { |
| 1521 | writeStringRecord(Stream, Code: bitc::MODULE_CODE_SECTIONNAME, Str: F.getSection(), |
| 1522 | AbbrevToUse: 0 /*TODO*/); |
| 1523 | Entry = SectionMap.size(); |
| 1524 | } |
| 1525 | } |
| 1526 | if (F.hasGC()) { |
| 1527 | // Same for GC names. |
| 1528 | unsigned &Entry = GCMap[F.getGC()]; |
| 1529 | if (!Entry) { |
| 1530 | writeStringRecord(Stream, Code: bitc::MODULE_CODE_GCNAME, Str: F.getGC(), |
| 1531 | AbbrevToUse: 0 /*TODO*/); |
| 1532 | Entry = GCMap.size(); |
| 1533 | } |
| 1534 | } |
| 1535 | } |
| 1536 | |
| 1537 | // Emit abbrev for globals, now that we know # sections and max alignment. |
| 1538 | unsigned SimpleGVarAbbrev = 0; |
| 1539 | if (!M.global_empty()) { |
| 1540 | // Add an abbrev for common globals with no visibility or thread localness. |
| 1541 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 1542 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR)); |
| 1543 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 1544 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 1545 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, |
| 1546 | Log2_32_Ceil(Value: MaxGlobalType+1))); |
| 1547 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2 |
| 1548 | //| explicitType << 1 |
| 1549 | //| constant |
| 1550 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer. |
| 1551 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage. |
| 1552 | if (!MaxAlignment) // Alignment. |
| 1553 | Abbv->Add(OpInfo: BitCodeAbbrevOp(0)); |
| 1554 | else { |
| 1555 | unsigned MaxEncAlignment = getEncodedAlign(Alignment: MaxAlignment); |
| 1556 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, |
| 1557 | Log2_32_Ceil(Value: MaxEncAlignment+1))); |
| 1558 | } |
| 1559 | if (SectionMap.empty()) // Section. |
| 1560 | Abbv->Add(OpInfo: BitCodeAbbrevOp(0)); |
| 1561 | else |
| 1562 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, |
| 1563 | Log2_32_Ceil(Value: SectionMap.size()+1))); |
| 1564 | // Don't bother emitting vis + thread local. |
| 1565 | SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 1566 | } |
| 1567 | |
| 1568 | SmallVector<unsigned, 64> Vals; |
| 1569 | // Emit the module's source file name. |
| 1570 | { |
| 1571 | StringEncoding Bits = getStringEncoding(Str: M.getSourceFileName()); |
| 1572 | BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); |
| 1573 | if (Bits == SE_Char6) |
| 1574 | AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); |
| 1575 | else if (Bits == SE_Fixed7) |
| 1576 | AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); |
| 1577 | |
| 1578 | // MODULE_CODE_SOURCE_FILENAME: [namechar x N] |
| 1579 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 1580 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); |
| 1581 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 1582 | Abbv->Add(OpInfo: AbbrevOpToUse); |
| 1583 | unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 1584 | |
| 1585 | for (const auto P : M.getSourceFileName()) |
| 1586 | Vals.push_back(Elt: (unsigned char)P); |
| 1587 | |
| 1588 | // Emit the finished record. |
| 1589 | Stream.EmitRecord(Code: bitc::MODULE_CODE_SOURCE_FILENAME, Vals, Abbrev: FilenameAbbrev); |
| 1590 | Vals.clear(); |
| 1591 | } |
| 1592 | |
| 1593 | // Emit the global variable information. |
| 1594 | for (const GlobalVariable &GV : M.globals()) { |
| 1595 | unsigned AbbrevToUse = 0; |
| 1596 | |
| 1597 | // GLOBALVAR: [strtab offset, strtab size, type, isconst, initid, |
| 1598 | // linkage, alignment, section, visibility, threadlocal, |
| 1599 | // unnamed_addr, externally_initialized, dllstorageclass, |
| 1600 | // comdat, attributes, DSO_Local, GlobalSanitizer, code_model] |
| 1601 | Vals.push_back(Elt: addToStrtab(Str: GV.getName())); |
| 1602 | Vals.push_back(Elt: GV.getName().size()); |
| 1603 | Vals.push_back(Elt: VE.getTypeID(T: GV.getValueType())); |
| 1604 | Vals.push_back(Elt: GV.getType()->getAddressSpace() << 2 | 2 | GV.isConstant()); |
| 1605 | Vals.push_back(Elt: GV.isDeclaration() ? 0 : |
| 1606 | (VE.getValueID(V: GV.getInitializer()) + 1)); |
| 1607 | Vals.push_back(Elt: getEncodedLinkage(GV)); |
| 1608 | Vals.push_back(Elt: getEncodedAlign(Alignment: GV.getAlign())); |
| 1609 | Vals.push_back(Elt: GV.hasSection() ? SectionMap[std::string(GV.getSection())] |
| 1610 | : 0); |
| 1611 | if (GV.isThreadLocal() || |
| 1612 | GV.getVisibility() != GlobalValue::DefaultVisibility || |
| 1613 | GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None || |
| 1614 | GV.isExternallyInitialized() || |
| 1615 | GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass || |
| 1616 | GV.hasComdat() || GV.hasAttributes() || GV.isDSOLocal() || |
| 1617 | GV.hasPartition() || GV.hasSanitizerMetadata() || GV.getCodeModel()) { |
| 1618 | Vals.push_back(Elt: getEncodedVisibility(GV)); |
| 1619 | Vals.push_back(Elt: getEncodedThreadLocalMode(GV)); |
| 1620 | Vals.push_back(Elt: getEncodedUnnamedAddr(GV)); |
| 1621 | Vals.push_back(Elt: GV.isExternallyInitialized()); |
| 1622 | Vals.push_back(Elt: getEncodedDLLStorageClass(GV)); |
| 1623 | Vals.push_back(Elt: GV.hasComdat() ? VE.getComdatID(C: GV.getComdat()) : 0); |
| 1624 | |
| 1625 | auto AL = GV.getAttributesAsList(index: AttributeList::FunctionIndex); |
| 1626 | Vals.push_back(Elt: VE.getAttributeListID(PAL: AL)); |
| 1627 | |
| 1628 | Vals.push_back(Elt: GV.isDSOLocal()); |
| 1629 | Vals.push_back(Elt: addToStrtab(Str: GV.getPartition())); |
| 1630 | Vals.push_back(Elt: GV.getPartition().size()); |
| 1631 | |
| 1632 | Vals.push_back(Elt: (GV.hasSanitizerMetadata() ? serializeSanitizerMetadata( |
| 1633 | Meta: GV.getSanitizerMetadata()) |
| 1634 | : 0)); |
| 1635 | Vals.push_back(Elt: GV.getCodeModelRaw()); |
| 1636 | } else { |
| 1637 | AbbrevToUse = SimpleGVarAbbrev; |
| 1638 | } |
| 1639 | |
| 1640 | Stream.EmitRecord(Code: bitc::MODULE_CODE_GLOBALVAR, Vals, Abbrev: AbbrevToUse); |
| 1641 | Vals.clear(); |
| 1642 | } |
| 1643 | |
| 1644 | // Emit the function proto information. |
| 1645 | for (const Function &F : M) { |
| 1646 | // FUNCTION: [strtab offset, strtab size, type, callingconv, isproto, |
| 1647 | // linkage, paramattrs, alignment, section, visibility, gc, |
| 1648 | // unnamed_addr, prologuedata, dllstorageclass, comdat, |
| 1649 | // prefixdata, personalityfn, DSO_Local, addrspace] |
| 1650 | Vals.push_back(Elt: addToStrtab(Str: F.getName())); |
| 1651 | Vals.push_back(Elt: F.getName().size()); |
| 1652 | Vals.push_back(Elt: VE.getTypeID(T: F.getFunctionType())); |
| 1653 | Vals.push_back(Elt: F.getCallingConv()); |
| 1654 | Vals.push_back(Elt: F.isDeclaration()); |
| 1655 | Vals.push_back(Elt: getEncodedLinkage(GV: F)); |
| 1656 | Vals.push_back(Elt: VE.getAttributeListID(PAL: F.getAttributes())); |
| 1657 | Vals.push_back(Elt: getEncodedAlign(Alignment: F.getAlign())); |
| 1658 | Vals.push_back(Elt: F.hasSection() ? SectionMap[std::string(F.getSection())] |
| 1659 | : 0); |
| 1660 | Vals.push_back(Elt: getEncodedVisibility(GV: F)); |
| 1661 | Vals.push_back(Elt: F.hasGC() ? GCMap[F.getGC()] : 0); |
| 1662 | Vals.push_back(Elt: getEncodedUnnamedAddr(GV: F)); |
| 1663 | Vals.push_back(Elt: F.hasPrologueData() ? (VE.getValueID(V: F.getPrologueData()) + 1) |
| 1664 | : 0); |
| 1665 | Vals.push_back(Elt: getEncodedDLLStorageClass(GV: F)); |
| 1666 | Vals.push_back(Elt: F.hasComdat() ? VE.getComdatID(C: F.getComdat()) : 0); |
| 1667 | Vals.push_back(Elt: F.hasPrefixData() ? (VE.getValueID(V: F.getPrefixData()) + 1) |
| 1668 | : 0); |
| 1669 | Vals.push_back( |
| 1670 | Elt: F.hasPersonalityFn() ? (VE.getValueID(V: F.getPersonalityFn()) + 1) : 0); |
| 1671 | |
| 1672 | Vals.push_back(Elt: F.isDSOLocal()); |
| 1673 | Vals.push_back(Elt: F.getAddressSpace()); |
| 1674 | Vals.push_back(Elt: addToStrtab(Str: F.getPartition())); |
| 1675 | Vals.push_back(Elt: F.getPartition().size()); |
| 1676 | |
| 1677 | unsigned AbbrevToUse = 0; |
| 1678 | Stream.EmitRecord(Code: bitc::MODULE_CODE_FUNCTION, Vals, Abbrev: AbbrevToUse); |
| 1679 | Vals.clear(); |
| 1680 | } |
| 1681 | |
| 1682 | // Emit the alias information. |
| 1683 | for (const GlobalAlias &A : M.aliases()) { |
| 1684 | // ALIAS: [strtab offset, strtab size, alias type, aliasee val#, linkage, |
| 1685 | // visibility, dllstorageclass, threadlocal, unnamed_addr, |
| 1686 | // DSO_Local] |
| 1687 | Vals.push_back(Elt: addToStrtab(Str: A.getName())); |
| 1688 | Vals.push_back(Elt: A.getName().size()); |
| 1689 | Vals.push_back(Elt: VE.getTypeID(T: A.getValueType())); |
| 1690 | Vals.push_back(Elt: A.getType()->getAddressSpace()); |
| 1691 | Vals.push_back(Elt: VE.getValueID(V: A.getAliasee())); |
| 1692 | Vals.push_back(Elt: getEncodedLinkage(GV: A)); |
| 1693 | Vals.push_back(Elt: getEncodedVisibility(GV: A)); |
| 1694 | Vals.push_back(Elt: getEncodedDLLStorageClass(GV: A)); |
| 1695 | Vals.push_back(Elt: getEncodedThreadLocalMode(GV: A)); |
| 1696 | Vals.push_back(Elt: getEncodedUnnamedAddr(GV: A)); |
| 1697 | Vals.push_back(Elt: A.isDSOLocal()); |
| 1698 | Vals.push_back(Elt: addToStrtab(Str: A.getPartition())); |
| 1699 | Vals.push_back(Elt: A.getPartition().size()); |
| 1700 | |
| 1701 | unsigned AbbrevToUse = 0; |
| 1702 | Stream.EmitRecord(Code: bitc::MODULE_CODE_ALIAS, Vals, Abbrev: AbbrevToUse); |
| 1703 | Vals.clear(); |
| 1704 | } |
| 1705 | |
| 1706 | // Emit the ifunc information. |
| 1707 | for (const GlobalIFunc &I : M.ifuncs()) { |
| 1708 | // IFUNC: [strtab offset, strtab size, ifunc type, address space, resolver |
| 1709 | // val#, linkage, visibility, DSO_Local] |
| 1710 | Vals.push_back(Elt: addToStrtab(Str: I.getName())); |
| 1711 | Vals.push_back(Elt: I.getName().size()); |
| 1712 | Vals.push_back(Elt: VE.getTypeID(T: I.getValueType())); |
| 1713 | Vals.push_back(Elt: I.getType()->getAddressSpace()); |
| 1714 | Vals.push_back(Elt: VE.getValueID(V: I.getResolver())); |
| 1715 | Vals.push_back(Elt: getEncodedLinkage(GV: I)); |
| 1716 | Vals.push_back(Elt: getEncodedVisibility(GV: I)); |
| 1717 | Vals.push_back(Elt: I.isDSOLocal()); |
| 1718 | Vals.push_back(Elt: addToStrtab(Str: I.getPartition())); |
| 1719 | Vals.push_back(Elt: I.getPartition().size()); |
| 1720 | Stream.EmitRecord(Code: bitc::MODULE_CODE_IFUNC, Vals); |
| 1721 | Vals.clear(); |
| 1722 | } |
| 1723 | |
| 1724 | writeValueSymbolTableForwardDecl(); |
| 1725 | } |
| 1726 | |
| 1727 | static uint64_t getOptimizationFlags(const Value *V) { |
| 1728 | uint64_t Flags = 0; |
| 1729 | |
| 1730 | if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(Val: V)) { |
| 1731 | if (OBO->hasNoSignedWrap()) |
| 1732 | Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP; |
| 1733 | if (OBO->hasNoUnsignedWrap()) |
| 1734 | Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP; |
| 1735 | } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(Val: V)) { |
| 1736 | if (PEO->isExact()) |
| 1737 | Flags |= 1 << bitc::PEO_EXACT; |
| 1738 | } else if (const auto *PDI = dyn_cast<PossiblyDisjointInst>(Val: V)) { |
| 1739 | if (PDI->isDisjoint()) |
| 1740 | Flags |= 1 << bitc::PDI_DISJOINT; |
| 1741 | } else if (const auto *FPMO = dyn_cast<FPMathOperator>(Val: V)) { |
| 1742 | if (FPMO->hasAllowReassoc()) |
| 1743 | Flags |= bitc::AllowReassoc; |
| 1744 | if (FPMO->hasNoNaNs()) |
| 1745 | Flags |= bitc::NoNaNs; |
| 1746 | if (FPMO->hasNoInfs()) |
| 1747 | Flags |= bitc::NoInfs; |
| 1748 | if (FPMO->hasNoSignedZeros()) |
| 1749 | Flags |= bitc::NoSignedZeros; |
| 1750 | if (FPMO->hasAllowReciprocal()) |
| 1751 | Flags |= bitc::AllowReciprocal; |
| 1752 | if (FPMO->hasAllowContract()) |
| 1753 | Flags |= bitc::AllowContract; |
| 1754 | if (FPMO->hasApproxFunc()) |
| 1755 | Flags |= bitc::ApproxFunc; |
| 1756 | } else if (const auto *NNI = dyn_cast<PossiblyNonNegInst>(Val: V)) { |
| 1757 | if (NNI->hasNonNeg()) |
| 1758 | Flags |= 1 << bitc::PNNI_NON_NEG; |
| 1759 | } else if (const auto *TI = dyn_cast<TruncInst>(Val: V)) { |
| 1760 | if (TI->hasNoSignedWrap()) |
| 1761 | Flags |= 1 << bitc::TIO_NO_SIGNED_WRAP; |
| 1762 | if (TI->hasNoUnsignedWrap()) |
| 1763 | Flags |= 1 << bitc::TIO_NO_UNSIGNED_WRAP; |
| 1764 | } else if (const auto *GEP = dyn_cast<GEPOperator>(Val: V)) { |
| 1765 | if (GEP->isInBounds()) |
| 1766 | Flags |= 1 << bitc::GEP_INBOUNDS; |
| 1767 | if (GEP->hasNoUnsignedSignedWrap()) |
| 1768 | Flags |= 1 << bitc::GEP_NUSW; |
| 1769 | if (GEP->hasNoUnsignedWrap()) |
| 1770 | Flags |= 1 << bitc::GEP_NUW; |
| 1771 | } else if (const auto *ICmp = dyn_cast<ICmpInst>(Val: V)) { |
| 1772 | if (ICmp->hasSameSign()) |
| 1773 | Flags |= 1 << bitc::ICMP_SAME_SIGN; |
| 1774 | } |
| 1775 | |
| 1776 | return Flags; |
| 1777 | } |
| 1778 | |
| 1779 | void ModuleBitcodeWriter::writeValueAsMetadata( |
| 1780 | const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) { |
| 1781 | // Mimic an MDNode with a value as one operand. |
| 1782 | Value *V = MD->getValue(); |
| 1783 | Record.push_back(Elt: VE.getTypeID(T: V->getType())); |
| 1784 | Record.push_back(Elt: VE.getValueID(V)); |
| 1785 | Stream.EmitRecord(Code: bitc::METADATA_VALUE, Vals: Record, Abbrev: 0); |
| 1786 | Record.clear(); |
| 1787 | } |
| 1788 | |
| 1789 | void ModuleBitcodeWriter::writeMDTuple(const MDTuple *N, |
| 1790 | SmallVectorImpl<uint64_t> &Record, |
| 1791 | unsigned Abbrev) { |
| 1792 | for (const MDOperand &MDO : N->operands()) { |
| 1793 | Metadata *MD = MDO; |
| 1794 | assert(!(MD && isa<LocalAsMetadata>(MD)) && |
| 1795 | "Unexpected function-local metadata" ); |
| 1796 | Record.push_back(Elt: VE.getMetadataOrNullID(MD)); |
| 1797 | } |
| 1798 | Stream.EmitRecord(Code: N->isDistinct() ? bitc::METADATA_DISTINCT_NODE |
| 1799 | : bitc::METADATA_NODE, |
| 1800 | Vals: Record, Abbrev); |
| 1801 | Record.clear(); |
| 1802 | } |
| 1803 | |
| 1804 | unsigned ModuleBitcodeWriter::createDILocationAbbrev() { |
| 1805 | // Assume the column is usually under 128, and always output the inlined-at |
| 1806 | // location (it's never more expensive than building an array size 1). |
| 1807 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 1808 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::METADATA_LOCATION)); |
| 1809 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); |
| 1810 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); |
| 1811 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 1812 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); |
| 1813 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); |
| 1814 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); |
| 1815 | return Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 1816 | } |
| 1817 | |
| 1818 | void ModuleBitcodeWriter::writeDILocation(const DILocation *N, |
| 1819 | SmallVectorImpl<uint64_t> &Record, |
| 1820 | unsigned &Abbrev) { |
| 1821 | if (!Abbrev) |
| 1822 | Abbrev = createDILocationAbbrev(); |
| 1823 | |
| 1824 | Record.push_back(Elt: N->isDistinct()); |
| 1825 | Record.push_back(Elt: N->getLine()); |
| 1826 | Record.push_back(Elt: N->getColumn()); |
| 1827 | Record.push_back(Elt: VE.getMetadataID(MD: N->getScope())); |
| 1828 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getInlinedAt())); |
| 1829 | Record.push_back(Elt: N->isImplicitCode()); |
| 1830 | |
| 1831 | Stream.EmitRecord(Code: bitc::METADATA_LOCATION, Vals: Record, Abbrev); |
| 1832 | Record.clear(); |
| 1833 | } |
| 1834 | |
| 1835 | unsigned ModuleBitcodeWriter::createGenericDINodeAbbrev() { |
| 1836 | // Assume the column is usually under 128, and always output the inlined-at |
| 1837 | // location (it's never more expensive than building an array size 1). |
| 1838 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 1839 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG)); |
| 1840 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); |
| 1841 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); |
| 1842 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); |
| 1843 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); |
| 1844 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 1845 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); |
| 1846 | return Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 1847 | } |
| 1848 | |
| 1849 | void ModuleBitcodeWriter::writeGenericDINode(const GenericDINode *N, |
| 1850 | SmallVectorImpl<uint64_t> &Record, |
| 1851 | unsigned &Abbrev) { |
| 1852 | if (!Abbrev) |
| 1853 | Abbrev = createGenericDINodeAbbrev(); |
| 1854 | |
| 1855 | Record.push_back(Elt: N->isDistinct()); |
| 1856 | Record.push_back(Elt: N->getTag()); |
| 1857 | Record.push_back(Elt: 0); // Per-tag version field; unused for now. |
| 1858 | |
| 1859 | for (auto &I : N->operands()) |
| 1860 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: I)); |
| 1861 | |
| 1862 | Stream.EmitRecord(Code: bitc::METADATA_GENERIC_DEBUG, Vals: Record, Abbrev); |
| 1863 | Record.clear(); |
| 1864 | } |
| 1865 | |
| 1866 | void ModuleBitcodeWriter::writeDISubrange(const DISubrange *N, |
| 1867 | SmallVectorImpl<uint64_t> &Record, |
| 1868 | unsigned Abbrev) { |
| 1869 | const uint64_t Version = 2 << 1; |
| 1870 | Record.push_back(Elt: (uint64_t)N->isDistinct() | Version); |
| 1871 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawCountNode())); |
| 1872 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawLowerBound())); |
| 1873 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawUpperBound())); |
| 1874 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawStride())); |
| 1875 | |
| 1876 | Stream.EmitRecord(Code: bitc::METADATA_SUBRANGE, Vals: Record, Abbrev); |
| 1877 | Record.clear(); |
| 1878 | } |
| 1879 | |
| 1880 | void ModuleBitcodeWriter::writeDIGenericSubrange( |
| 1881 | const DIGenericSubrange *N, SmallVectorImpl<uint64_t> &Record, |
| 1882 | unsigned Abbrev) { |
| 1883 | Record.push_back(Elt: (uint64_t)N->isDistinct()); |
| 1884 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawCountNode())); |
| 1885 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawLowerBound())); |
| 1886 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawUpperBound())); |
| 1887 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawStride())); |
| 1888 | |
| 1889 | Stream.EmitRecord(Code: bitc::METADATA_GENERIC_SUBRANGE, Vals: Record, Abbrev); |
| 1890 | Record.clear(); |
| 1891 | } |
| 1892 | |
| 1893 | void ModuleBitcodeWriter::writeDIEnumerator(const DIEnumerator *N, |
| 1894 | SmallVectorImpl<uint64_t> &Record, |
| 1895 | unsigned Abbrev) { |
| 1896 | const uint64_t IsBigInt = 1 << 2; |
| 1897 | Record.push_back(Elt: IsBigInt | (N->isUnsigned() << 1) | N->isDistinct()); |
| 1898 | Record.push_back(Elt: N->getValue().getBitWidth()); |
| 1899 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 1900 | emitWideAPInt(Vals&: Record, A: N->getValue()); |
| 1901 | |
| 1902 | Stream.EmitRecord(Code: bitc::METADATA_ENUMERATOR, Vals: Record, Abbrev); |
| 1903 | Record.clear(); |
| 1904 | } |
| 1905 | |
| 1906 | void ModuleBitcodeWriter::writeDIBasicType(const DIBasicType *N, |
| 1907 | SmallVectorImpl<uint64_t> &Record, |
| 1908 | unsigned Abbrev) { |
| 1909 | const unsigned SizeIsMetadata = 0x2; |
| 1910 | Record.push_back(Elt: SizeIsMetadata | (unsigned)N->isDistinct()); |
| 1911 | Record.push_back(Elt: N->getTag()); |
| 1912 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 1913 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSizeInBits())); |
| 1914 | Record.push_back(Elt: N->getAlignInBits()); |
| 1915 | Record.push_back(Elt: N->getEncoding()); |
| 1916 | Record.push_back(Elt: N->getFlags()); |
| 1917 | Record.push_back(Elt: N->getNumExtraInhabitants()); |
| 1918 | |
| 1919 | Stream.EmitRecord(Code: bitc::METADATA_BASIC_TYPE, Vals: Record, Abbrev); |
| 1920 | Record.clear(); |
| 1921 | } |
| 1922 | |
| 1923 | void ModuleBitcodeWriter::writeDIFixedPointType( |
| 1924 | const DIFixedPointType *N, SmallVectorImpl<uint64_t> &Record, |
| 1925 | unsigned Abbrev) { |
| 1926 | const unsigned SizeIsMetadata = 0x2; |
| 1927 | Record.push_back(Elt: SizeIsMetadata | (unsigned)N->isDistinct()); |
| 1928 | Record.push_back(Elt: N->getTag()); |
| 1929 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 1930 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSizeInBits())); |
| 1931 | Record.push_back(Elt: N->getAlignInBits()); |
| 1932 | Record.push_back(Elt: N->getEncoding()); |
| 1933 | Record.push_back(Elt: N->getFlags()); |
| 1934 | Record.push_back(Elt: N->getKind()); |
| 1935 | Record.push_back(Elt: N->getFactorRaw()); |
| 1936 | |
| 1937 | auto WriteWideInt = [&](const APInt &Value) { |
| 1938 | // Write an encoded word that holds the number of active words and |
| 1939 | // the number of bits. |
| 1940 | uint64_t NumWords = Value.getActiveWords(); |
| 1941 | uint64_t Encoded = (NumWords << 32) | Value.getBitWidth(); |
| 1942 | Record.push_back(Elt: Encoded); |
| 1943 | emitWideAPInt(Vals&: Record, A: Value); |
| 1944 | }; |
| 1945 | |
| 1946 | WriteWideInt(N->getNumeratorRaw()); |
| 1947 | WriteWideInt(N->getDenominatorRaw()); |
| 1948 | |
| 1949 | Stream.EmitRecord(Code: bitc::METADATA_FIXED_POINT_TYPE, Vals: Record, Abbrev); |
| 1950 | Record.clear(); |
| 1951 | } |
| 1952 | |
| 1953 | void ModuleBitcodeWriter::writeDIStringType(const DIStringType *N, |
| 1954 | SmallVectorImpl<uint64_t> &Record, |
| 1955 | unsigned Abbrev) { |
| 1956 | const unsigned SizeIsMetadata = 0x2; |
| 1957 | Record.push_back(Elt: SizeIsMetadata | (unsigned)N->isDistinct()); |
| 1958 | Record.push_back(Elt: N->getTag()); |
| 1959 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 1960 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getStringLength())); |
| 1961 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getStringLengthExp())); |
| 1962 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getStringLocationExp())); |
| 1963 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSizeInBits())); |
| 1964 | Record.push_back(Elt: N->getAlignInBits()); |
| 1965 | Record.push_back(Elt: N->getEncoding()); |
| 1966 | |
| 1967 | Stream.EmitRecord(Code: bitc::METADATA_STRING_TYPE, Vals: Record, Abbrev); |
| 1968 | Record.clear(); |
| 1969 | } |
| 1970 | |
| 1971 | void ModuleBitcodeWriter::writeDIDerivedType(const DIDerivedType *N, |
| 1972 | SmallVectorImpl<uint64_t> &Record, |
| 1973 | unsigned Abbrev) { |
| 1974 | const unsigned SizeIsMetadata = 0x2; |
| 1975 | Record.push_back(Elt: SizeIsMetadata | (unsigned)N->isDistinct()); |
| 1976 | Record.push_back(Elt: N->getTag()); |
| 1977 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 1978 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile())); |
| 1979 | Record.push_back(Elt: N->getLine()); |
| 1980 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope())); |
| 1981 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getBaseType())); |
| 1982 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSizeInBits())); |
| 1983 | Record.push_back(Elt: N->getAlignInBits()); |
| 1984 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawOffsetInBits())); |
| 1985 | Record.push_back(Elt: N->getFlags()); |
| 1986 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getExtraData())); |
| 1987 | |
| 1988 | // DWARF address space is encoded as N->getDWARFAddressSpace() + 1. 0 means |
| 1989 | // that there is no DWARF address space associated with DIDerivedType. |
| 1990 | if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace()) |
| 1991 | Record.push_back(Elt: *DWARFAddressSpace + 1); |
| 1992 | else |
| 1993 | Record.push_back(Elt: 0); |
| 1994 | |
| 1995 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getAnnotations().get())); |
| 1996 | |
| 1997 | if (auto PtrAuthData = N->getPtrAuthData()) |
| 1998 | Record.push_back(Elt: PtrAuthData->RawData); |
| 1999 | else |
| 2000 | Record.push_back(Elt: 0); |
| 2001 | |
| 2002 | Stream.EmitRecord(Code: bitc::METADATA_DERIVED_TYPE, Vals: Record, Abbrev); |
| 2003 | Record.clear(); |
| 2004 | } |
| 2005 | |
| 2006 | void ModuleBitcodeWriter::writeDISubrangeType(const DISubrangeType *N, |
| 2007 | SmallVectorImpl<uint64_t> &Record, |
| 2008 | unsigned Abbrev) { |
| 2009 | const unsigned SizeIsMetadata = 0x2; |
| 2010 | Record.push_back(Elt: SizeIsMetadata | (unsigned)N->isDistinct()); |
| 2011 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 2012 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile())); |
| 2013 | Record.push_back(Elt: N->getLine()); |
| 2014 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope())); |
| 2015 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSizeInBits())); |
| 2016 | Record.push_back(Elt: N->getAlignInBits()); |
| 2017 | Record.push_back(Elt: N->getFlags()); |
| 2018 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getBaseType())); |
| 2019 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawLowerBound())); |
| 2020 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawUpperBound())); |
| 2021 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawStride())); |
| 2022 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawBias())); |
| 2023 | |
| 2024 | Stream.EmitRecord(Code: bitc::METADATA_SUBRANGE_TYPE, Vals: Record, Abbrev); |
| 2025 | Record.clear(); |
| 2026 | } |
| 2027 | |
| 2028 | void ModuleBitcodeWriter::writeDICompositeType( |
| 2029 | const DICompositeType *N, SmallVectorImpl<uint64_t> &Record, |
| 2030 | unsigned Abbrev) { |
| 2031 | const unsigned IsNotUsedInOldTypeRef = 0x2; |
| 2032 | const unsigned SizeIsMetadata = 0x4; |
| 2033 | Record.push_back(Elt: SizeIsMetadata | IsNotUsedInOldTypeRef | |
| 2034 | (unsigned)N->isDistinct()); |
| 2035 | Record.push_back(Elt: N->getTag()); |
| 2036 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 2037 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile())); |
| 2038 | Record.push_back(Elt: N->getLine()); |
| 2039 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope())); |
| 2040 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getBaseType())); |
| 2041 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSizeInBits())); |
| 2042 | Record.push_back(Elt: N->getAlignInBits()); |
| 2043 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawOffsetInBits())); |
| 2044 | Record.push_back(Elt: N->getFlags()); |
| 2045 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getElements().get())); |
| 2046 | Record.push_back(Elt: N->getRuntimeLang()); |
| 2047 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getVTableHolder())); |
| 2048 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getTemplateParams().get())); |
| 2049 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawIdentifier())); |
| 2050 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getDiscriminator())); |
| 2051 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawDataLocation())); |
| 2052 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawAssociated())); |
| 2053 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawAllocated())); |
| 2054 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawRank())); |
| 2055 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getAnnotations().get())); |
| 2056 | Record.push_back(Elt: N->getNumExtraInhabitants()); |
| 2057 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSpecification())); |
| 2058 | Record.push_back( |
| 2059 | Elt: N->getEnumKind().value_or(u: dwarf::DW_APPLE_ENUM_KIND_invalid)); |
| 2060 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawBitStride())); |
| 2061 | |
| 2062 | Stream.EmitRecord(Code: bitc::METADATA_COMPOSITE_TYPE, Vals: Record, Abbrev); |
| 2063 | Record.clear(); |
| 2064 | } |
| 2065 | |
| 2066 | void ModuleBitcodeWriter::writeDISubroutineType( |
| 2067 | const DISubroutineType *N, SmallVectorImpl<uint64_t> &Record, |
| 2068 | unsigned Abbrev) { |
| 2069 | const unsigned HasNoOldTypeRefs = 0x2; |
| 2070 | Record.push_back(Elt: HasNoOldTypeRefs | (unsigned)N->isDistinct()); |
| 2071 | Record.push_back(Elt: N->getFlags()); |
| 2072 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getTypeArray().get())); |
| 2073 | Record.push_back(Elt: N->getCC()); |
| 2074 | |
| 2075 | Stream.EmitRecord(Code: bitc::METADATA_SUBROUTINE_TYPE, Vals: Record, Abbrev); |
| 2076 | Record.clear(); |
| 2077 | } |
| 2078 | |
| 2079 | void ModuleBitcodeWriter::writeDIFile(const DIFile *N, |
| 2080 | SmallVectorImpl<uint64_t> &Record, |
| 2081 | unsigned Abbrev) { |
| 2082 | Record.push_back(Elt: N->isDistinct()); |
| 2083 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawFilename())); |
| 2084 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawDirectory())); |
| 2085 | if (N->getRawChecksum()) { |
| 2086 | Record.push_back(Elt: N->getRawChecksum()->Kind); |
| 2087 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawChecksum()->Value)); |
| 2088 | } else { |
| 2089 | // Maintain backwards compatibility with the old internal representation of |
| 2090 | // CSK_None in ChecksumKind by writing nulls here when Checksum is None. |
| 2091 | Record.push_back(Elt: 0); |
| 2092 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: nullptr)); |
| 2093 | } |
| 2094 | auto Source = N->getRawSource(); |
| 2095 | if (Source) |
| 2096 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: Source)); |
| 2097 | |
| 2098 | Stream.EmitRecord(Code: bitc::METADATA_FILE, Vals: Record, Abbrev); |
| 2099 | Record.clear(); |
| 2100 | } |
| 2101 | |
| 2102 | void ModuleBitcodeWriter::writeDICompileUnit(const DICompileUnit *N, |
| 2103 | SmallVectorImpl<uint64_t> &Record, |
| 2104 | unsigned Abbrev) { |
| 2105 | assert(N->isDistinct() && "Expected distinct compile units" ); |
| 2106 | Record.push_back(/* IsDistinct */ Elt: true); |
| 2107 | Record.push_back(Elt: N->getSourceLanguage()); |
| 2108 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile())); |
| 2109 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawProducer())); |
| 2110 | Record.push_back(Elt: N->isOptimized()); |
| 2111 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawFlags())); |
| 2112 | Record.push_back(Elt: N->getRuntimeVersion()); |
| 2113 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSplitDebugFilename())); |
| 2114 | Record.push_back(Elt: N->getEmissionKind()); |
| 2115 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getEnumTypes().get())); |
| 2116 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRetainedTypes().get())); |
| 2117 | Record.push_back(/* subprograms */ Elt: 0); |
| 2118 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getGlobalVariables().get())); |
| 2119 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getImportedEntities().get())); |
| 2120 | Record.push_back(Elt: N->getDWOId()); |
| 2121 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getMacros().get())); |
| 2122 | Record.push_back(Elt: N->getSplitDebugInlining()); |
| 2123 | Record.push_back(Elt: N->getDebugInfoForProfiling()); |
| 2124 | Record.push_back(Elt: (unsigned)N->getNameTableKind()); |
| 2125 | Record.push_back(Elt: N->getRangesBaseAddress()); |
| 2126 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSysRoot())); |
| 2127 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSDK())); |
| 2128 | |
| 2129 | Stream.EmitRecord(Code: bitc::METADATA_COMPILE_UNIT, Vals: Record, Abbrev); |
| 2130 | Record.clear(); |
| 2131 | } |
| 2132 | |
| 2133 | void ModuleBitcodeWriter::writeDISubprogram(const DISubprogram *N, |
| 2134 | SmallVectorImpl<uint64_t> &Record, |
| 2135 | unsigned Abbrev) { |
| 2136 | const uint64_t HasUnitFlag = 1 << 1; |
| 2137 | const uint64_t HasSPFlagsFlag = 1 << 2; |
| 2138 | Record.push_back(Elt: uint64_t(N->isDistinct()) | HasUnitFlag | HasSPFlagsFlag); |
| 2139 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope())); |
| 2140 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 2141 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawLinkageName())); |
| 2142 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile())); |
| 2143 | Record.push_back(Elt: N->getLine()); |
| 2144 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getType())); |
| 2145 | Record.push_back(Elt: N->getScopeLine()); |
| 2146 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getContainingType())); |
| 2147 | Record.push_back(Elt: N->getSPFlags()); |
| 2148 | Record.push_back(Elt: N->getVirtualIndex()); |
| 2149 | Record.push_back(Elt: N->getFlags()); |
| 2150 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawUnit())); |
| 2151 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getTemplateParams().get())); |
| 2152 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getDeclaration())); |
| 2153 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRetainedNodes().get())); |
| 2154 | Record.push_back(Elt: N->getThisAdjustment()); |
| 2155 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getThrownTypes().get())); |
| 2156 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getAnnotations().get())); |
| 2157 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawTargetFuncName())); |
| 2158 | |
| 2159 | Stream.EmitRecord(Code: bitc::METADATA_SUBPROGRAM, Vals: Record, Abbrev); |
| 2160 | Record.clear(); |
| 2161 | } |
| 2162 | |
| 2163 | void ModuleBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N, |
| 2164 | SmallVectorImpl<uint64_t> &Record, |
| 2165 | unsigned Abbrev) { |
| 2166 | Record.push_back(Elt: N->isDistinct()); |
| 2167 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope())); |
| 2168 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile())); |
| 2169 | Record.push_back(Elt: N->getLine()); |
| 2170 | Record.push_back(Elt: N->getColumn()); |
| 2171 | |
| 2172 | Stream.EmitRecord(Code: bitc::METADATA_LEXICAL_BLOCK, Vals: Record, Abbrev); |
| 2173 | Record.clear(); |
| 2174 | } |
| 2175 | |
| 2176 | void ModuleBitcodeWriter::writeDILexicalBlockFile( |
| 2177 | const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record, |
| 2178 | unsigned Abbrev) { |
| 2179 | Record.push_back(Elt: N->isDistinct()); |
| 2180 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope())); |
| 2181 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile())); |
| 2182 | Record.push_back(Elt: N->getDiscriminator()); |
| 2183 | |
| 2184 | Stream.EmitRecord(Code: bitc::METADATA_LEXICAL_BLOCK_FILE, Vals: Record, Abbrev); |
| 2185 | Record.clear(); |
| 2186 | } |
| 2187 | |
| 2188 | void ModuleBitcodeWriter::writeDICommonBlock(const DICommonBlock *N, |
| 2189 | SmallVectorImpl<uint64_t> &Record, |
| 2190 | unsigned Abbrev) { |
| 2191 | Record.push_back(Elt: N->isDistinct()); |
| 2192 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope())); |
| 2193 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getDecl())); |
| 2194 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 2195 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile())); |
| 2196 | Record.push_back(Elt: N->getLineNo()); |
| 2197 | |
| 2198 | Stream.EmitRecord(Code: bitc::METADATA_COMMON_BLOCK, Vals: Record, Abbrev); |
| 2199 | Record.clear(); |
| 2200 | } |
| 2201 | |
| 2202 | void ModuleBitcodeWriter::writeDINamespace(const DINamespace *N, |
| 2203 | SmallVectorImpl<uint64_t> &Record, |
| 2204 | unsigned Abbrev) { |
| 2205 | Record.push_back(Elt: N->isDistinct() | N->getExportSymbols() << 1); |
| 2206 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope())); |
| 2207 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 2208 | |
| 2209 | Stream.EmitRecord(Code: bitc::METADATA_NAMESPACE, Vals: Record, Abbrev); |
| 2210 | Record.clear(); |
| 2211 | } |
| 2212 | |
| 2213 | void ModuleBitcodeWriter::writeDIMacro(const DIMacro *N, |
| 2214 | SmallVectorImpl<uint64_t> &Record, |
| 2215 | unsigned Abbrev) { |
| 2216 | Record.push_back(Elt: N->isDistinct()); |
| 2217 | Record.push_back(Elt: N->getMacinfoType()); |
| 2218 | Record.push_back(Elt: N->getLine()); |
| 2219 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 2220 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawValue())); |
| 2221 | |
| 2222 | Stream.EmitRecord(Code: bitc::METADATA_MACRO, Vals: Record, Abbrev); |
| 2223 | Record.clear(); |
| 2224 | } |
| 2225 | |
| 2226 | void ModuleBitcodeWriter::writeDIMacroFile(const DIMacroFile *N, |
| 2227 | SmallVectorImpl<uint64_t> &Record, |
| 2228 | unsigned Abbrev) { |
| 2229 | Record.push_back(Elt: N->isDistinct()); |
| 2230 | Record.push_back(Elt: N->getMacinfoType()); |
| 2231 | Record.push_back(Elt: N->getLine()); |
| 2232 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile())); |
| 2233 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getElements().get())); |
| 2234 | |
| 2235 | Stream.EmitRecord(Code: bitc::METADATA_MACRO_FILE, Vals: Record, Abbrev); |
| 2236 | Record.clear(); |
| 2237 | } |
| 2238 | |
| 2239 | void ModuleBitcodeWriter::writeDIArgList(const DIArgList *N, |
| 2240 | SmallVectorImpl<uint64_t> &Record) { |
| 2241 | Record.reserve(N: N->getArgs().size()); |
| 2242 | for (ValueAsMetadata *MD : N->getArgs()) |
| 2243 | Record.push_back(Elt: VE.getMetadataID(MD)); |
| 2244 | |
| 2245 | Stream.EmitRecord(Code: bitc::METADATA_ARG_LIST, Vals: Record); |
| 2246 | Record.clear(); |
| 2247 | } |
| 2248 | |
| 2249 | void ModuleBitcodeWriter::writeDIModule(const DIModule *N, |
| 2250 | SmallVectorImpl<uint64_t> &Record, |
| 2251 | unsigned Abbrev) { |
| 2252 | Record.push_back(Elt: N->isDistinct()); |
| 2253 | for (auto &I : N->operands()) |
| 2254 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: I)); |
| 2255 | Record.push_back(Elt: N->getLineNo()); |
| 2256 | Record.push_back(Elt: N->getIsDecl()); |
| 2257 | |
| 2258 | Stream.EmitRecord(Code: bitc::METADATA_MODULE, Vals: Record, Abbrev); |
| 2259 | Record.clear(); |
| 2260 | } |
| 2261 | |
| 2262 | void ModuleBitcodeWriter::writeDIAssignID(const DIAssignID *N, |
| 2263 | SmallVectorImpl<uint64_t> &Record, |
| 2264 | unsigned Abbrev) { |
| 2265 | // There are no arguments for this metadata type. |
| 2266 | Record.push_back(Elt: N->isDistinct()); |
| 2267 | Stream.EmitRecord(Code: bitc::METADATA_ASSIGN_ID, Vals: Record, Abbrev); |
| 2268 | Record.clear(); |
| 2269 | } |
| 2270 | |
| 2271 | void ModuleBitcodeWriter::writeDITemplateTypeParameter( |
| 2272 | const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record, |
| 2273 | unsigned Abbrev) { |
| 2274 | Record.push_back(Elt: N->isDistinct()); |
| 2275 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 2276 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getType())); |
| 2277 | Record.push_back(Elt: N->isDefault()); |
| 2278 | |
| 2279 | Stream.EmitRecord(Code: bitc::METADATA_TEMPLATE_TYPE, Vals: Record, Abbrev); |
| 2280 | Record.clear(); |
| 2281 | } |
| 2282 | |
| 2283 | void ModuleBitcodeWriter::writeDITemplateValueParameter( |
| 2284 | const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record, |
| 2285 | unsigned Abbrev) { |
| 2286 | Record.push_back(Elt: N->isDistinct()); |
| 2287 | Record.push_back(Elt: N->getTag()); |
| 2288 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 2289 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getType())); |
| 2290 | Record.push_back(Elt: N->isDefault()); |
| 2291 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getValue())); |
| 2292 | |
| 2293 | Stream.EmitRecord(Code: bitc::METADATA_TEMPLATE_VALUE, Vals: Record, Abbrev); |
| 2294 | Record.clear(); |
| 2295 | } |
| 2296 | |
| 2297 | void ModuleBitcodeWriter::writeDIGlobalVariable( |
| 2298 | const DIGlobalVariable *N, SmallVectorImpl<uint64_t> &Record, |
| 2299 | unsigned Abbrev) { |
| 2300 | const uint64_t Version = 2 << 1; |
| 2301 | Record.push_back(Elt: (uint64_t)N->isDistinct() | Version); |
| 2302 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope())); |
| 2303 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 2304 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawLinkageName())); |
| 2305 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile())); |
| 2306 | Record.push_back(Elt: N->getLine()); |
| 2307 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getType())); |
| 2308 | Record.push_back(Elt: N->isLocalToUnit()); |
| 2309 | Record.push_back(Elt: N->isDefinition()); |
| 2310 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getStaticDataMemberDeclaration())); |
| 2311 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getTemplateParams())); |
| 2312 | Record.push_back(Elt: N->getAlignInBits()); |
| 2313 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getAnnotations().get())); |
| 2314 | |
| 2315 | Stream.EmitRecord(Code: bitc::METADATA_GLOBAL_VAR, Vals: Record, Abbrev); |
| 2316 | Record.clear(); |
| 2317 | } |
| 2318 | |
| 2319 | void ModuleBitcodeWriter::writeDILocalVariable( |
| 2320 | const DILocalVariable *N, SmallVectorImpl<uint64_t> &Record, |
| 2321 | unsigned Abbrev) { |
| 2322 | // In order to support all possible bitcode formats in BitcodeReader we need |
| 2323 | // to distinguish the following cases: |
| 2324 | // 1) Record has no artificial tag (Record[1]), |
| 2325 | // has no obsolete inlinedAt field (Record[9]). |
| 2326 | // In this case Record size will be 8, HasAlignment flag is false. |
| 2327 | // 2) Record has artificial tag (Record[1]), |
| 2328 | // has no obsolete inlignedAt field (Record[9]). |
| 2329 | // In this case Record size will be 9, HasAlignment flag is false. |
| 2330 | // 3) Record has both artificial tag (Record[1]) and |
| 2331 | // obsolete inlignedAt field (Record[9]). |
| 2332 | // In this case Record size will be 10, HasAlignment flag is false. |
| 2333 | // 4) Record has neither artificial tag, nor inlignedAt field, but |
| 2334 | // HasAlignment flag is true and Record[8] contains alignment value. |
| 2335 | const uint64_t HasAlignmentFlag = 1 << 1; |
| 2336 | Record.push_back(Elt: (uint64_t)N->isDistinct() | HasAlignmentFlag); |
| 2337 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope())); |
| 2338 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 2339 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile())); |
| 2340 | Record.push_back(Elt: N->getLine()); |
| 2341 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getType())); |
| 2342 | Record.push_back(Elt: N->getArg()); |
| 2343 | Record.push_back(Elt: N->getFlags()); |
| 2344 | Record.push_back(Elt: N->getAlignInBits()); |
| 2345 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getAnnotations().get())); |
| 2346 | |
| 2347 | Stream.EmitRecord(Code: bitc::METADATA_LOCAL_VAR, Vals: Record, Abbrev); |
| 2348 | Record.clear(); |
| 2349 | } |
| 2350 | |
| 2351 | void ModuleBitcodeWriter::writeDILabel( |
| 2352 | const DILabel *N, SmallVectorImpl<uint64_t> &Record, |
| 2353 | unsigned Abbrev) { |
| 2354 | uint64_t IsArtificialFlag = uint64_t(N->isArtificial()) << 1; |
| 2355 | Record.push_back(Elt: (uint64_t)N->isDistinct() | IsArtificialFlag); |
| 2356 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope())); |
| 2357 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 2358 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile())); |
| 2359 | Record.push_back(Elt: N->getLine()); |
| 2360 | Record.push_back(Elt: N->getColumn()); |
| 2361 | Record.push_back(Elt: N->getCoroSuspendIdx().has_value() |
| 2362 | ? (uint64_t)N->getCoroSuspendIdx().value() |
| 2363 | : std::numeric_limits<uint64_t>::max()); |
| 2364 | |
| 2365 | Stream.EmitRecord(Code: bitc::METADATA_LABEL, Vals: Record, Abbrev); |
| 2366 | Record.clear(); |
| 2367 | } |
| 2368 | |
| 2369 | void ModuleBitcodeWriter::writeDIExpression(const DIExpression *N, |
| 2370 | SmallVectorImpl<uint64_t> &Record, |
| 2371 | unsigned Abbrev) { |
| 2372 | Record.reserve(N: N->getElements().size() + 1); |
| 2373 | const uint64_t Version = 3 << 1; |
| 2374 | Record.push_back(Elt: (uint64_t)N->isDistinct() | Version); |
| 2375 | Record.append(in_start: N->elements_begin(), in_end: N->elements_end()); |
| 2376 | |
| 2377 | Stream.EmitRecord(Code: bitc::METADATA_EXPRESSION, Vals: Record, Abbrev); |
| 2378 | Record.clear(); |
| 2379 | } |
| 2380 | |
| 2381 | void ModuleBitcodeWriter::writeDIGlobalVariableExpression( |
| 2382 | const DIGlobalVariableExpression *N, SmallVectorImpl<uint64_t> &Record, |
| 2383 | unsigned Abbrev) { |
| 2384 | Record.push_back(Elt: N->isDistinct()); |
| 2385 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getVariable())); |
| 2386 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getExpression())); |
| 2387 | |
| 2388 | Stream.EmitRecord(Code: bitc::METADATA_GLOBAL_VAR_EXPR, Vals: Record, Abbrev); |
| 2389 | Record.clear(); |
| 2390 | } |
| 2391 | |
| 2392 | void ModuleBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N, |
| 2393 | SmallVectorImpl<uint64_t> &Record, |
| 2394 | unsigned Abbrev) { |
| 2395 | Record.push_back(Elt: N->isDistinct()); |
| 2396 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 2397 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getFile())); |
| 2398 | Record.push_back(Elt: N->getLine()); |
| 2399 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawSetterName())); |
| 2400 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawGetterName())); |
| 2401 | Record.push_back(Elt: N->getAttributes()); |
| 2402 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getType())); |
| 2403 | |
| 2404 | Stream.EmitRecord(Code: bitc::METADATA_OBJC_PROPERTY, Vals: Record, Abbrev); |
| 2405 | Record.clear(); |
| 2406 | } |
| 2407 | |
| 2408 | void ModuleBitcodeWriter::writeDIImportedEntity( |
| 2409 | const DIImportedEntity *N, SmallVectorImpl<uint64_t> &Record, |
| 2410 | unsigned Abbrev) { |
| 2411 | Record.push_back(Elt: N->isDistinct()); |
| 2412 | Record.push_back(Elt: N->getTag()); |
| 2413 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getScope())); |
| 2414 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getEntity())); |
| 2415 | Record.push_back(Elt: N->getLine()); |
| 2416 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawName())); |
| 2417 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getRawFile())); |
| 2418 | Record.push_back(Elt: VE.getMetadataOrNullID(MD: N->getElements().get())); |
| 2419 | |
| 2420 | Stream.EmitRecord(Code: bitc::METADATA_IMPORTED_ENTITY, Vals: Record, Abbrev); |
| 2421 | Record.clear(); |
| 2422 | } |
| 2423 | |
| 2424 | unsigned ModuleBitcodeWriter::createNamedMetadataAbbrev() { |
| 2425 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 2426 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::METADATA_NAME)); |
| 2427 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 2428 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); |
| 2429 | return Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 2430 | } |
| 2431 | |
| 2432 | void ModuleBitcodeWriter::writeNamedMetadata( |
| 2433 | SmallVectorImpl<uint64_t> &Record) { |
| 2434 | if (M.named_metadata_empty()) |
| 2435 | return; |
| 2436 | |
| 2437 | unsigned Abbrev = createNamedMetadataAbbrev(); |
| 2438 | for (const NamedMDNode &NMD : M.named_metadata()) { |
| 2439 | // Write name. |
| 2440 | StringRef Str = NMD.getName(); |
| 2441 | Record.append(in_start: Str.bytes_begin(), in_end: Str.bytes_end()); |
| 2442 | Stream.EmitRecord(Code: bitc::METADATA_NAME, Vals: Record, Abbrev); |
| 2443 | Record.clear(); |
| 2444 | |
| 2445 | // Write named metadata operands. |
| 2446 | for (const MDNode *N : NMD.operands()) |
| 2447 | Record.push_back(Elt: VE.getMetadataID(MD: N)); |
| 2448 | Stream.EmitRecord(Code: bitc::METADATA_NAMED_NODE, Vals: Record, Abbrev: 0); |
| 2449 | Record.clear(); |
| 2450 | } |
| 2451 | } |
| 2452 | |
| 2453 | unsigned ModuleBitcodeWriter::createMetadataStringsAbbrev() { |
| 2454 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 2455 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::METADATA_STRINGS)); |
| 2456 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // # of strings |
| 2457 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // offset to chars |
| 2458 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); |
| 2459 | return Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 2460 | } |
| 2461 | |
| 2462 | /// Write out a record for MDString. |
| 2463 | /// |
| 2464 | /// All the metadata strings in a metadata block are emitted in a single |
| 2465 | /// record. The sizes and strings themselves are shoved into a blob. |
| 2466 | void ModuleBitcodeWriter::writeMetadataStrings( |
| 2467 | ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) { |
| 2468 | if (Strings.empty()) |
| 2469 | return; |
| 2470 | |
| 2471 | // Start the record with the number of strings. |
| 2472 | Record.push_back(Elt: bitc::METADATA_STRINGS); |
| 2473 | Record.push_back(Elt: Strings.size()); |
| 2474 | |
| 2475 | // Emit the sizes of the strings in the blob. |
| 2476 | SmallString<256> Blob; |
| 2477 | { |
| 2478 | BitstreamWriter W(Blob); |
| 2479 | for (const Metadata *MD : Strings) |
| 2480 | W.EmitVBR(Val: cast<MDString>(Val: MD)->getLength(), NumBits: 6); |
| 2481 | W.FlushToWord(); |
| 2482 | } |
| 2483 | |
| 2484 | // Add the offset to the strings to the record. |
| 2485 | Record.push_back(Elt: Blob.size()); |
| 2486 | |
| 2487 | // Add the strings to the blob. |
| 2488 | for (const Metadata *MD : Strings) |
| 2489 | Blob.append(RHS: cast<MDString>(Val: MD)->getString()); |
| 2490 | |
| 2491 | // Emit the final record. |
| 2492 | Stream.EmitRecordWithBlob(Abbrev: createMetadataStringsAbbrev(), Vals: Record, Blob); |
| 2493 | Record.clear(); |
| 2494 | } |
| 2495 | |
| 2496 | // Generates an enum to use as an index in the Abbrev array of Metadata record. |
| 2497 | enum MetadataAbbrev : unsigned { |
| 2498 | #define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID, |
| 2499 | #include "llvm/IR/Metadata.def" |
| 2500 | LastPlusOne |
| 2501 | }; |
| 2502 | |
| 2503 | void ModuleBitcodeWriter::writeMetadataRecords( |
| 2504 | ArrayRef<const Metadata *> MDs, SmallVectorImpl<uint64_t> &Record, |
| 2505 | std::vector<unsigned> *MDAbbrevs, std::vector<uint64_t> *IndexPos) { |
| 2506 | if (MDs.empty()) |
| 2507 | return; |
| 2508 | |
| 2509 | // Initialize MDNode abbreviations. |
| 2510 | #define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0; |
| 2511 | #include "llvm/IR/Metadata.def" |
| 2512 | |
| 2513 | for (const Metadata *MD : MDs) { |
| 2514 | if (IndexPos) |
| 2515 | IndexPos->push_back(x: Stream.GetCurrentBitNo()); |
| 2516 | if (const MDNode *N = dyn_cast<MDNode>(Val: MD)) { |
| 2517 | assert(N->isResolved() && "Expected forward references to be resolved" ); |
| 2518 | |
| 2519 | switch (N->getMetadataID()) { |
| 2520 | default: |
| 2521 | llvm_unreachable("Invalid MDNode subclass" ); |
| 2522 | #define HANDLE_MDNODE_LEAF(CLASS) \ |
| 2523 | case Metadata::CLASS##Kind: \ |
| 2524 | if (MDAbbrevs) \ |
| 2525 | write##CLASS(cast<CLASS>(N), Record, \ |
| 2526 | (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \ |
| 2527 | else \ |
| 2528 | write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \ |
| 2529 | continue; |
| 2530 | #include "llvm/IR/Metadata.def" |
| 2531 | } |
| 2532 | } |
| 2533 | if (auto *AL = dyn_cast<DIArgList>(Val: MD)) { |
| 2534 | writeDIArgList(N: AL, Record); |
| 2535 | continue; |
| 2536 | } |
| 2537 | writeValueAsMetadata(MD: cast<ValueAsMetadata>(Val: MD), Record); |
| 2538 | } |
| 2539 | } |
| 2540 | |
| 2541 | void ModuleBitcodeWriter::writeModuleMetadata() { |
| 2542 | if (!VE.hasMDs() && M.named_metadata_empty()) |
| 2543 | return; |
| 2544 | |
| 2545 | Stream.EnterSubblock(BlockID: bitc::METADATA_BLOCK_ID, CodeLen: 4); |
| 2546 | SmallVector<uint64_t, 64> Record; |
| 2547 | |
| 2548 | // Emit all abbrevs upfront, so that the reader can jump in the middle of the |
| 2549 | // block and load any metadata. |
| 2550 | std::vector<unsigned> MDAbbrevs; |
| 2551 | |
| 2552 | MDAbbrevs.resize(new_size: MetadataAbbrev::LastPlusOne); |
| 2553 | MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev(); |
| 2554 | MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] = |
| 2555 | createGenericDINodeAbbrev(); |
| 2556 | |
| 2557 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 2558 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::METADATA_INDEX_OFFSET)); |
| 2559 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); |
| 2560 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); |
| 2561 | unsigned OffsetAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 2562 | |
| 2563 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 2564 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::METADATA_INDEX)); |
| 2565 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 2566 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); |
| 2567 | unsigned IndexAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 2568 | |
| 2569 | // Emit MDStrings together upfront. |
| 2570 | writeMetadataStrings(Strings: VE.getMDStrings(), Record); |
| 2571 | |
| 2572 | // We only emit an index for the metadata record if we have more than a given |
| 2573 | // (naive) threshold of metadatas, otherwise it is not worth it. |
| 2574 | if (VE.getNonMDStrings().size() > IndexThreshold) { |
| 2575 | // Write a placeholder value in for the offset of the metadata index, |
| 2576 | // which is written after the records, so that it can include |
| 2577 | // the offset of each entry. The placeholder offset will be |
| 2578 | // updated after all records are emitted. |
| 2579 | uint64_t Vals[] = {0, 0}; |
| 2580 | Stream.EmitRecord(Code: bitc::METADATA_INDEX_OFFSET, Vals, Abbrev: OffsetAbbrev); |
| 2581 | } |
| 2582 | |
| 2583 | // Compute and save the bit offset to the current position, which will be |
| 2584 | // patched when we emit the index later. We can simply subtract the 64-bit |
| 2585 | // fixed size from the current bit number to get the location to backpatch. |
| 2586 | uint64_t IndexOffsetRecordBitPos = Stream.GetCurrentBitNo(); |
| 2587 | |
| 2588 | // This index will contain the bitpos for each individual record. |
| 2589 | std::vector<uint64_t> IndexPos; |
| 2590 | IndexPos.reserve(n: VE.getNonMDStrings().size()); |
| 2591 | |
| 2592 | // Write all the records |
| 2593 | writeMetadataRecords(MDs: VE.getNonMDStrings(), Record, MDAbbrevs: &MDAbbrevs, IndexPos: &IndexPos); |
| 2594 | |
| 2595 | if (VE.getNonMDStrings().size() > IndexThreshold) { |
| 2596 | // Now that we have emitted all the records we will emit the index. But |
| 2597 | // first |
| 2598 | // backpatch the forward reference so that the reader can skip the records |
| 2599 | // efficiently. |
| 2600 | Stream.BackpatchWord64(BitNo: IndexOffsetRecordBitPos - 64, |
| 2601 | Val: Stream.GetCurrentBitNo() - IndexOffsetRecordBitPos); |
| 2602 | |
| 2603 | // Delta encode the index. |
| 2604 | uint64_t PreviousValue = IndexOffsetRecordBitPos; |
| 2605 | for (auto &Elt : IndexPos) { |
| 2606 | auto EltDelta = Elt - PreviousValue; |
| 2607 | PreviousValue = Elt; |
| 2608 | Elt = EltDelta; |
| 2609 | } |
| 2610 | // Emit the index record. |
| 2611 | Stream.EmitRecord(Code: bitc::METADATA_INDEX, Vals: IndexPos, Abbrev: IndexAbbrev); |
| 2612 | IndexPos.clear(); |
| 2613 | } |
| 2614 | |
| 2615 | // Write the named metadata now. |
| 2616 | writeNamedMetadata(Record); |
| 2617 | |
| 2618 | auto AddDeclAttachedMetadata = [&](const GlobalObject &GO) { |
| 2619 | SmallVector<uint64_t, 4> Record; |
| 2620 | Record.push_back(Elt: VE.getValueID(V: &GO)); |
| 2621 | pushGlobalMetadataAttachment(Record, GO); |
| 2622 | Stream.EmitRecord(Code: bitc::METADATA_GLOBAL_DECL_ATTACHMENT, Vals: Record); |
| 2623 | }; |
| 2624 | for (const Function &F : M) |
| 2625 | if (F.isDeclaration() && F.hasMetadata()) |
| 2626 | AddDeclAttachedMetadata(F); |
| 2627 | // FIXME: Only store metadata for declarations here, and move data for global |
| 2628 | // variable definitions to a separate block (PR28134). |
| 2629 | for (const GlobalVariable &GV : M.globals()) |
| 2630 | if (GV.hasMetadata()) |
| 2631 | AddDeclAttachedMetadata(GV); |
| 2632 | |
| 2633 | Stream.ExitBlock(); |
| 2634 | } |
| 2635 | |
| 2636 | void ModuleBitcodeWriter::writeFunctionMetadata(const Function &F) { |
| 2637 | if (!VE.hasMDs()) |
| 2638 | return; |
| 2639 | |
| 2640 | Stream.EnterSubblock(BlockID: bitc::METADATA_BLOCK_ID, CodeLen: 3); |
| 2641 | SmallVector<uint64_t, 64> Record; |
| 2642 | writeMetadataStrings(Strings: VE.getMDStrings(), Record); |
| 2643 | writeMetadataRecords(MDs: VE.getNonMDStrings(), Record); |
| 2644 | Stream.ExitBlock(); |
| 2645 | } |
| 2646 | |
| 2647 | void ModuleBitcodeWriter::pushGlobalMetadataAttachment( |
| 2648 | SmallVectorImpl<uint64_t> &Record, const GlobalObject &GO) { |
| 2649 | // [n x [id, mdnode]] |
| 2650 | SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| 2651 | GO.getAllMetadata(MDs); |
| 2652 | for (const auto &I : MDs) { |
| 2653 | Record.push_back(Elt: I.first); |
| 2654 | Record.push_back(Elt: VE.getMetadataID(MD: I.second)); |
| 2655 | } |
| 2656 | } |
| 2657 | |
| 2658 | void ModuleBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) { |
| 2659 | Stream.EnterSubblock(BlockID: bitc::METADATA_ATTACHMENT_ID, CodeLen: 3); |
| 2660 | |
| 2661 | SmallVector<uint64_t, 64> Record; |
| 2662 | |
| 2663 | if (F.hasMetadata()) { |
| 2664 | pushGlobalMetadataAttachment(Record, GO: F); |
| 2665 | Stream.EmitRecord(Code: bitc::METADATA_ATTACHMENT, Vals: Record, Abbrev: 0); |
| 2666 | Record.clear(); |
| 2667 | } |
| 2668 | |
| 2669 | // Write metadata attachments |
| 2670 | // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]] |
| 2671 | SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; |
| 2672 | for (const BasicBlock &BB : F) |
| 2673 | for (const Instruction &I : BB) { |
| 2674 | MDs.clear(); |
| 2675 | I.getAllMetadataOtherThanDebugLoc(MDs); |
| 2676 | |
| 2677 | // If no metadata, ignore instruction. |
| 2678 | if (MDs.empty()) continue; |
| 2679 | |
| 2680 | Record.push_back(Elt: VE.getInstructionID(I: &I)); |
| 2681 | |
| 2682 | for (const auto &[ID, MD] : MDs) { |
| 2683 | Record.push_back(Elt: ID); |
| 2684 | Record.push_back(Elt: VE.getMetadataID(MD)); |
| 2685 | } |
| 2686 | Stream.EmitRecord(Code: bitc::METADATA_ATTACHMENT, Vals: Record, Abbrev: 0); |
| 2687 | Record.clear(); |
| 2688 | } |
| 2689 | |
| 2690 | Stream.ExitBlock(); |
| 2691 | } |
| 2692 | |
| 2693 | void ModuleBitcodeWriter::writeModuleMetadataKinds() { |
| 2694 | SmallVector<uint64_t, 64> Record; |
| 2695 | |
| 2696 | // Write metadata kinds |
| 2697 | // METADATA_KIND - [n x [id, name]] |
| 2698 | SmallVector<StringRef, 8> Names; |
| 2699 | M.getMDKindNames(Result&: Names); |
| 2700 | |
| 2701 | if (Names.empty()) return; |
| 2702 | |
| 2703 | Stream.EnterSubblock(BlockID: bitc::METADATA_KIND_BLOCK_ID, CodeLen: 3); |
| 2704 | |
| 2705 | for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) { |
| 2706 | Record.push_back(Elt: MDKindID); |
| 2707 | StringRef KName = Names[MDKindID]; |
| 2708 | Record.append(in_start: KName.begin(), in_end: KName.end()); |
| 2709 | |
| 2710 | Stream.EmitRecord(Code: bitc::METADATA_KIND, Vals: Record, Abbrev: 0); |
| 2711 | Record.clear(); |
| 2712 | } |
| 2713 | |
| 2714 | Stream.ExitBlock(); |
| 2715 | } |
| 2716 | |
| 2717 | void ModuleBitcodeWriter::writeOperandBundleTags() { |
| 2718 | // Write metadata kinds |
| 2719 | // |
| 2720 | // OPERAND_BUNDLE_TAGS_BLOCK_ID : N x OPERAND_BUNDLE_TAG |
| 2721 | // |
| 2722 | // OPERAND_BUNDLE_TAG - [strchr x N] |
| 2723 | |
| 2724 | SmallVector<StringRef, 8> Tags; |
| 2725 | M.getOperandBundleTags(Result&: Tags); |
| 2726 | |
| 2727 | if (Tags.empty()) |
| 2728 | return; |
| 2729 | |
| 2730 | Stream.EnterSubblock(BlockID: bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID, CodeLen: 3); |
| 2731 | |
| 2732 | SmallVector<uint64_t, 64> Record; |
| 2733 | |
| 2734 | for (auto Tag : Tags) { |
| 2735 | Record.append(in_start: Tag.begin(), in_end: Tag.end()); |
| 2736 | |
| 2737 | Stream.EmitRecord(Code: bitc::OPERAND_BUNDLE_TAG, Vals: Record, Abbrev: 0); |
| 2738 | Record.clear(); |
| 2739 | } |
| 2740 | |
| 2741 | Stream.ExitBlock(); |
| 2742 | } |
| 2743 | |
| 2744 | void ModuleBitcodeWriter::writeSyncScopeNames() { |
| 2745 | SmallVector<StringRef, 8> SSNs; |
| 2746 | M.getContext().getSyncScopeNames(SSNs); |
| 2747 | if (SSNs.empty()) |
| 2748 | return; |
| 2749 | |
| 2750 | Stream.EnterSubblock(BlockID: bitc::SYNC_SCOPE_NAMES_BLOCK_ID, CodeLen: 2); |
| 2751 | |
| 2752 | SmallVector<uint64_t, 64> Record; |
| 2753 | for (auto SSN : SSNs) { |
| 2754 | Record.append(in_start: SSN.begin(), in_end: SSN.end()); |
| 2755 | Stream.EmitRecord(Code: bitc::SYNC_SCOPE_NAME, Vals: Record, Abbrev: 0); |
| 2756 | Record.clear(); |
| 2757 | } |
| 2758 | |
| 2759 | Stream.ExitBlock(); |
| 2760 | } |
| 2761 | |
| 2762 | void ModuleBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal, |
| 2763 | bool isGlobal) { |
| 2764 | if (FirstVal == LastVal) return; |
| 2765 | |
| 2766 | Stream.EnterSubblock(BlockID: bitc::CONSTANTS_BLOCK_ID, CodeLen: 4); |
| 2767 | |
| 2768 | unsigned AggregateAbbrev = 0; |
| 2769 | unsigned String8Abbrev = 0; |
| 2770 | unsigned CString7Abbrev = 0; |
| 2771 | unsigned CString6Abbrev = 0; |
| 2772 | // If this is a constant pool for the module, emit module-specific abbrevs. |
| 2773 | if (isGlobal) { |
| 2774 | // Abbrev for CST_CODE_AGGREGATE. |
| 2775 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 2776 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE)); |
| 2777 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 2778 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(Value: LastVal+1))); |
| 2779 | AggregateAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 2780 | |
| 2781 | // Abbrev for CST_CODE_STRING. |
| 2782 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 2783 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::CST_CODE_STRING)); |
| 2784 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 2785 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); |
| 2786 | String8Abbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 2787 | // Abbrev for CST_CODE_CSTRING. |
| 2788 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 2789 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); |
| 2790 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 2791 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); |
| 2792 | CString7Abbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 2793 | // Abbrev for CST_CODE_CSTRING. |
| 2794 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 2795 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::CST_CODE_CSTRING)); |
| 2796 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 2797 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); |
| 2798 | CString6Abbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 2799 | } |
| 2800 | |
| 2801 | SmallVector<uint64_t, 64> Record; |
| 2802 | |
| 2803 | const ValueEnumerator::ValueList &Vals = VE.getValues(); |
| 2804 | Type *LastTy = nullptr; |
| 2805 | for (unsigned i = FirstVal; i != LastVal; ++i) { |
| 2806 | const Value *V = Vals[i].first; |
| 2807 | // If we need to switch types, do so now. |
| 2808 | if (V->getType() != LastTy) { |
| 2809 | LastTy = V->getType(); |
| 2810 | Record.push_back(Elt: VE.getTypeID(T: LastTy)); |
| 2811 | Stream.EmitRecord(Code: bitc::CST_CODE_SETTYPE, Vals: Record, |
| 2812 | Abbrev: CONSTANTS_SETTYPE_ABBREV); |
| 2813 | Record.clear(); |
| 2814 | } |
| 2815 | |
| 2816 | if (const InlineAsm *IA = dyn_cast<InlineAsm>(Val: V)) { |
| 2817 | Record.push_back(Elt: VE.getTypeID(T: IA->getFunctionType())); |
| 2818 | Record.push_back( |
| 2819 | Elt: unsigned(IA->hasSideEffects()) | unsigned(IA->isAlignStack()) << 1 | |
| 2820 | unsigned(IA->getDialect() & 1) << 2 | unsigned(IA->canThrow()) << 3); |
| 2821 | |
| 2822 | // Add the asm string. |
| 2823 | StringRef AsmStr = IA->getAsmString(); |
| 2824 | Record.push_back(Elt: AsmStr.size()); |
| 2825 | Record.append(in_start: AsmStr.begin(), in_end: AsmStr.end()); |
| 2826 | |
| 2827 | // Add the constraint string. |
| 2828 | StringRef ConstraintStr = IA->getConstraintString(); |
| 2829 | Record.push_back(Elt: ConstraintStr.size()); |
| 2830 | Record.append(in_start: ConstraintStr.begin(), in_end: ConstraintStr.end()); |
| 2831 | Stream.EmitRecord(Code: bitc::CST_CODE_INLINEASM, Vals: Record); |
| 2832 | Record.clear(); |
| 2833 | continue; |
| 2834 | } |
| 2835 | const Constant *C = cast<Constant>(Val: V); |
| 2836 | unsigned Code = -1U; |
| 2837 | unsigned AbbrevToUse = 0; |
| 2838 | if (C->isNullValue()) { |
| 2839 | Code = bitc::CST_CODE_NULL; |
| 2840 | } else if (isa<PoisonValue>(Val: C)) { |
| 2841 | Code = bitc::CST_CODE_POISON; |
| 2842 | } else if (isa<UndefValue>(Val: C)) { |
| 2843 | Code = bitc::CST_CODE_UNDEF; |
| 2844 | } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(Val: C)) { |
| 2845 | if (IV->getBitWidth() <= 64) { |
| 2846 | uint64_t V = IV->getSExtValue(); |
| 2847 | emitSignedInt64(Vals&: Record, V); |
| 2848 | Code = bitc::CST_CODE_INTEGER; |
| 2849 | AbbrevToUse = CONSTANTS_INTEGER_ABBREV; |
| 2850 | } else { // Wide integers, > 64 bits in size. |
| 2851 | emitWideAPInt(Vals&: Record, A: IV->getValue()); |
| 2852 | Code = bitc::CST_CODE_WIDE_INTEGER; |
| 2853 | } |
| 2854 | } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Val: C)) { |
| 2855 | Code = bitc::CST_CODE_FLOAT; |
| 2856 | Type *Ty = CFP->getType()->getScalarType(); |
| 2857 | if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || |
| 2858 | Ty->isDoubleTy()) { |
| 2859 | Record.push_back(Elt: CFP->getValueAPF().bitcastToAPInt().getZExtValue()); |
| 2860 | } else if (Ty->isX86_FP80Ty()) { |
| 2861 | // api needed to prevent premature destruction |
| 2862 | // bits are not in the same order as a normal i80 APInt, compensate. |
| 2863 | APInt api = CFP->getValueAPF().bitcastToAPInt(); |
| 2864 | const uint64_t *p = api.getRawData(); |
| 2865 | Record.push_back(Elt: (p[1] << 48) | (p[0] >> 16)); |
| 2866 | Record.push_back(Elt: p[0] & 0xffffLL); |
| 2867 | } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) { |
| 2868 | APInt api = CFP->getValueAPF().bitcastToAPInt(); |
| 2869 | const uint64_t *p = api.getRawData(); |
| 2870 | Record.push_back(Elt: p[0]); |
| 2871 | Record.push_back(Elt: p[1]); |
| 2872 | } else { |
| 2873 | assert(0 && "Unknown FP type!" ); |
| 2874 | } |
| 2875 | } else if (isa<ConstantDataSequential>(Val: C) && |
| 2876 | cast<ConstantDataSequential>(Val: C)->isString()) { |
| 2877 | const ConstantDataSequential *Str = cast<ConstantDataSequential>(Val: C); |
| 2878 | // Emit constant strings specially. |
| 2879 | uint64_t NumElts = Str->getNumElements(); |
| 2880 | // If this is a null-terminated string, use the denser CSTRING encoding. |
| 2881 | if (Str->isCString()) { |
| 2882 | Code = bitc::CST_CODE_CSTRING; |
| 2883 | --NumElts; // Don't encode the null, which isn't allowed by char6. |
| 2884 | } else { |
| 2885 | Code = bitc::CST_CODE_STRING; |
| 2886 | AbbrevToUse = String8Abbrev; |
| 2887 | } |
| 2888 | bool isCStr7 = Code == bitc::CST_CODE_CSTRING; |
| 2889 | bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING; |
| 2890 | for (uint64_t i = 0; i != NumElts; ++i) { |
| 2891 | unsigned char V = Str->getElementAsInteger(i); |
| 2892 | Record.push_back(Elt: V); |
| 2893 | isCStr7 &= (V & 128) == 0; |
| 2894 | if (isCStrChar6) |
| 2895 | isCStrChar6 = BitCodeAbbrevOp::isChar6(C: V); |
| 2896 | } |
| 2897 | |
| 2898 | if (isCStrChar6) |
| 2899 | AbbrevToUse = CString6Abbrev; |
| 2900 | else if (isCStr7) |
| 2901 | AbbrevToUse = CString7Abbrev; |
| 2902 | } else if (const ConstantDataSequential *CDS = |
| 2903 | dyn_cast<ConstantDataSequential>(Val: C)) { |
| 2904 | Code = bitc::CST_CODE_DATA; |
| 2905 | Type *EltTy = CDS->getElementType(); |
| 2906 | if (isa<IntegerType>(Val: EltTy)) { |
| 2907 | for (uint64_t i = 0, e = CDS->getNumElements(); i != e; ++i) |
| 2908 | Record.push_back(Elt: CDS->getElementAsInteger(i)); |
| 2909 | } else { |
| 2910 | for (uint64_t i = 0, e = CDS->getNumElements(); i != e; ++i) |
| 2911 | Record.push_back( |
| 2912 | Elt: CDS->getElementAsAPFloat(i).bitcastToAPInt().getLimitedValue()); |
| 2913 | } |
| 2914 | } else if (isa<ConstantAggregate>(Val: C)) { |
| 2915 | Code = bitc::CST_CODE_AGGREGATE; |
| 2916 | for (const Value *Op : C->operands()) |
| 2917 | Record.push_back(Elt: VE.getValueID(V: Op)); |
| 2918 | AbbrevToUse = AggregateAbbrev; |
| 2919 | } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: C)) { |
| 2920 | switch (CE->getOpcode()) { |
| 2921 | default: |
| 2922 | if (Instruction::isCast(Opcode: CE->getOpcode())) { |
| 2923 | Code = bitc::CST_CODE_CE_CAST; |
| 2924 | Record.push_back(Elt: getEncodedCastOpcode(Opcode: CE->getOpcode())); |
| 2925 | Record.push_back(Elt: VE.getTypeID(T: C->getOperand(i: 0)->getType())); |
| 2926 | Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 0))); |
| 2927 | AbbrevToUse = CONSTANTS_CE_CAST_Abbrev; |
| 2928 | } else { |
| 2929 | assert(CE->getNumOperands() == 2 && "Unknown constant expr!" ); |
| 2930 | Code = bitc::CST_CODE_CE_BINOP; |
| 2931 | Record.push_back(Elt: getEncodedBinaryOpcode(Opcode: CE->getOpcode())); |
| 2932 | Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 0))); |
| 2933 | Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 1))); |
| 2934 | uint64_t Flags = getOptimizationFlags(V: CE); |
| 2935 | if (Flags != 0) |
| 2936 | Record.push_back(Elt: Flags); |
| 2937 | } |
| 2938 | break; |
| 2939 | case Instruction::FNeg: { |
| 2940 | assert(CE->getNumOperands() == 1 && "Unknown constant expr!" ); |
| 2941 | Code = bitc::CST_CODE_CE_UNOP; |
| 2942 | Record.push_back(Elt: getEncodedUnaryOpcode(Opcode: CE->getOpcode())); |
| 2943 | Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 0))); |
| 2944 | uint64_t Flags = getOptimizationFlags(V: CE); |
| 2945 | if (Flags != 0) |
| 2946 | Record.push_back(Elt: Flags); |
| 2947 | break; |
| 2948 | } |
| 2949 | case Instruction::GetElementPtr: { |
| 2950 | Code = bitc::CST_CODE_CE_GEP; |
| 2951 | const auto *GO = cast<GEPOperator>(Val: C); |
| 2952 | Record.push_back(Elt: VE.getTypeID(T: GO->getSourceElementType())); |
| 2953 | Record.push_back(Elt: getOptimizationFlags(V: GO)); |
| 2954 | if (std::optional<ConstantRange> Range = GO->getInRange()) { |
| 2955 | Code = bitc::CST_CODE_CE_GEP_WITH_INRANGE; |
| 2956 | emitConstantRange(Record, CR: *Range, /*EmitBitWidth=*/true); |
| 2957 | } |
| 2958 | for (const Value *Op : CE->operands()) { |
| 2959 | Record.push_back(Elt: VE.getTypeID(T: Op->getType())); |
| 2960 | Record.push_back(Elt: VE.getValueID(V: Op)); |
| 2961 | } |
| 2962 | break; |
| 2963 | } |
| 2964 | case Instruction::ExtractElement: |
| 2965 | Code = bitc::CST_CODE_CE_EXTRACTELT; |
| 2966 | Record.push_back(Elt: VE.getTypeID(T: C->getOperand(i: 0)->getType())); |
| 2967 | Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 0))); |
| 2968 | Record.push_back(Elt: VE.getTypeID(T: C->getOperand(i: 1)->getType())); |
| 2969 | Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 1))); |
| 2970 | break; |
| 2971 | case Instruction::InsertElement: |
| 2972 | Code = bitc::CST_CODE_CE_INSERTELT; |
| 2973 | Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 0))); |
| 2974 | Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 1))); |
| 2975 | Record.push_back(Elt: VE.getTypeID(T: C->getOperand(i: 2)->getType())); |
| 2976 | Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 2))); |
| 2977 | break; |
| 2978 | case Instruction::ShuffleVector: |
| 2979 | // If the return type and argument types are the same, this is a |
| 2980 | // standard shufflevector instruction. If the types are different, |
| 2981 | // then the shuffle is widening or truncating the input vectors, and |
| 2982 | // the argument type must also be encoded. |
| 2983 | if (C->getType() == C->getOperand(i: 0)->getType()) { |
| 2984 | Code = bitc::CST_CODE_CE_SHUFFLEVEC; |
| 2985 | } else { |
| 2986 | Code = bitc::CST_CODE_CE_SHUFVEC_EX; |
| 2987 | Record.push_back(Elt: VE.getTypeID(T: C->getOperand(i: 0)->getType())); |
| 2988 | } |
| 2989 | Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 0))); |
| 2990 | Record.push_back(Elt: VE.getValueID(V: C->getOperand(i: 1))); |
| 2991 | Record.push_back(Elt: VE.getValueID(V: CE->getShuffleMaskForBitcode())); |
| 2992 | break; |
| 2993 | } |
| 2994 | } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(Val: C)) { |
| 2995 | Code = bitc::CST_CODE_BLOCKADDRESS; |
| 2996 | Record.push_back(Elt: VE.getTypeID(T: BA->getFunction()->getType())); |
| 2997 | Record.push_back(Elt: VE.getValueID(V: BA->getFunction())); |
| 2998 | Record.push_back(Elt: VE.getGlobalBasicBlockID(BB: BA->getBasicBlock())); |
| 2999 | } else if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(Val: C)) { |
| 3000 | Code = bitc::CST_CODE_DSO_LOCAL_EQUIVALENT; |
| 3001 | Record.push_back(Elt: VE.getTypeID(T: Equiv->getGlobalValue()->getType())); |
| 3002 | Record.push_back(Elt: VE.getValueID(V: Equiv->getGlobalValue())); |
| 3003 | } else if (const auto *NC = dyn_cast<NoCFIValue>(Val: C)) { |
| 3004 | Code = bitc::CST_CODE_NO_CFI_VALUE; |
| 3005 | Record.push_back(Elt: VE.getTypeID(T: NC->getGlobalValue()->getType())); |
| 3006 | Record.push_back(Elt: VE.getValueID(V: NC->getGlobalValue())); |
| 3007 | } else if (const auto *CPA = dyn_cast<ConstantPtrAuth>(Val: C)) { |
| 3008 | Code = bitc::CST_CODE_PTRAUTH; |
| 3009 | Record.push_back(Elt: VE.getValueID(V: CPA->getPointer())); |
| 3010 | Record.push_back(Elt: VE.getValueID(V: CPA->getKey())); |
| 3011 | Record.push_back(Elt: VE.getValueID(V: CPA->getDiscriminator())); |
| 3012 | Record.push_back(Elt: VE.getValueID(V: CPA->getAddrDiscriminator())); |
| 3013 | } else { |
| 3014 | #ifndef NDEBUG |
| 3015 | C->dump(); |
| 3016 | #endif |
| 3017 | llvm_unreachable("Unknown constant!" ); |
| 3018 | } |
| 3019 | Stream.EmitRecord(Code, Vals: Record, Abbrev: AbbrevToUse); |
| 3020 | Record.clear(); |
| 3021 | } |
| 3022 | |
| 3023 | Stream.ExitBlock(); |
| 3024 | } |
| 3025 | |
| 3026 | void ModuleBitcodeWriter::writeModuleConstants() { |
| 3027 | const ValueEnumerator::ValueList &Vals = VE.getValues(); |
| 3028 | |
| 3029 | // Find the first constant to emit, which is the first non-globalvalue value. |
| 3030 | // We know globalvalues have been emitted by WriteModuleInfo. |
| 3031 | for (unsigned i = 0, e = Vals.size(); i != e; ++i) { |
| 3032 | if (!isa<GlobalValue>(Val: Vals[i].first)) { |
| 3033 | writeConstants(FirstVal: i, LastVal: Vals.size(), isGlobal: true); |
| 3034 | return; |
| 3035 | } |
| 3036 | } |
| 3037 | } |
| 3038 | |
| 3039 | /// pushValueAndType - The file has to encode both the value and type id for |
| 3040 | /// many values, because we need to know what type to create for forward |
| 3041 | /// references. However, most operands are not forward references, so this type |
| 3042 | /// field is not needed. |
| 3043 | /// |
| 3044 | /// This function adds V's value ID to Vals. If the value ID is higher than the |
| 3045 | /// instruction ID, then it is a forward reference, and it also includes the |
| 3046 | /// type ID. The value ID that is written is encoded relative to the InstID. |
| 3047 | bool ModuleBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID, |
| 3048 | SmallVectorImpl<unsigned> &Vals) { |
| 3049 | unsigned ValID = VE.getValueID(V); |
| 3050 | // Make encoding relative to the InstID. |
| 3051 | Vals.push_back(Elt: InstID - ValID); |
| 3052 | if (ValID >= InstID) { |
| 3053 | Vals.push_back(Elt: VE.getTypeID(T: V->getType())); |
| 3054 | return true; |
| 3055 | } |
| 3056 | return false; |
| 3057 | } |
| 3058 | |
| 3059 | bool ModuleBitcodeWriter::pushValueOrMetadata(const Value *V, unsigned InstID, |
| 3060 | SmallVectorImpl<unsigned> &Vals) { |
| 3061 | bool IsMetadata = V->getType()->isMetadataTy(); |
| 3062 | if (IsMetadata) { |
| 3063 | Vals.push_back(Elt: bitc::OB_METADATA); |
| 3064 | Metadata *MD = cast<MetadataAsValue>(Val: V)->getMetadata(); |
| 3065 | unsigned ValID = VE.getMetadataID(MD); |
| 3066 | Vals.push_back(Elt: InstID - ValID); |
| 3067 | return false; |
| 3068 | } |
| 3069 | return pushValueAndType(V, InstID, Vals); |
| 3070 | } |
| 3071 | |
| 3072 | void ModuleBitcodeWriter::writeOperandBundles(const CallBase &CS, |
| 3073 | unsigned InstID) { |
| 3074 | SmallVector<unsigned, 64> Record; |
| 3075 | LLVMContext &C = CS.getContext(); |
| 3076 | |
| 3077 | for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) { |
| 3078 | const auto &Bundle = CS.getOperandBundleAt(Index: i); |
| 3079 | Record.push_back(Elt: C.getOperandBundleTagID(Tag: Bundle.getTagName())); |
| 3080 | |
| 3081 | for (auto &Input : Bundle.Inputs) |
| 3082 | pushValueOrMetadata(V: Input, InstID, Vals&: Record); |
| 3083 | |
| 3084 | Stream.EmitRecord(Code: bitc::FUNC_CODE_OPERAND_BUNDLE, Vals: Record); |
| 3085 | Record.clear(); |
| 3086 | } |
| 3087 | } |
| 3088 | |
| 3089 | /// pushValue - Like pushValueAndType, but where the type of the value is |
| 3090 | /// omitted (perhaps it was already encoded in an earlier operand). |
| 3091 | void ModuleBitcodeWriter::pushValue(const Value *V, unsigned InstID, |
| 3092 | SmallVectorImpl<unsigned> &Vals) { |
| 3093 | unsigned ValID = VE.getValueID(V); |
| 3094 | Vals.push_back(Elt: InstID - ValID); |
| 3095 | } |
| 3096 | |
| 3097 | void ModuleBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID, |
| 3098 | SmallVectorImpl<uint64_t> &Vals) { |
| 3099 | unsigned ValID = VE.getValueID(V); |
| 3100 | int64_t diff = ((int32_t)InstID - (int32_t)ValID); |
| 3101 | emitSignedInt64(Vals, V: diff); |
| 3102 | } |
| 3103 | |
| 3104 | /// WriteInstruction - Emit an instruction to the specified stream. |
| 3105 | void ModuleBitcodeWriter::writeInstruction(const Instruction &I, |
| 3106 | unsigned InstID, |
| 3107 | SmallVectorImpl<unsigned> &Vals) { |
| 3108 | unsigned Code = 0; |
| 3109 | unsigned AbbrevToUse = 0; |
| 3110 | VE.setInstructionID(&I); |
| 3111 | switch (I.getOpcode()) { |
| 3112 | default: |
| 3113 | if (Instruction::isCast(Opcode: I.getOpcode())) { |
| 3114 | Code = bitc::FUNC_CODE_INST_CAST; |
| 3115 | if (!pushValueAndType(V: I.getOperand(i: 0), InstID, Vals)) |
| 3116 | AbbrevToUse = FUNCTION_INST_CAST_ABBREV; |
| 3117 | Vals.push_back(Elt: VE.getTypeID(T: I.getType())); |
| 3118 | Vals.push_back(Elt: getEncodedCastOpcode(Opcode: I.getOpcode())); |
| 3119 | uint64_t Flags = getOptimizationFlags(V: &I); |
| 3120 | if (Flags != 0) { |
| 3121 | if (AbbrevToUse == FUNCTION_INST_CAST_ABBREV) |
| 3122 | AbbrevToUse = FUNCTION_INST_CAST_FLAGS_ABBREV; |
| 3123 | Vals.push_back(Elt: Flags); |
| 3124 | } |
| 3125 | } else { |
| 3126 | assert(isa<BinaryOperator>(I) && "Unknown instruction!" ); |
| 3127 | Code = bitc::FUNC_CODE_INST_BINOP; |
| 3128 | if (!pushValueAndType(V: I.getOperand(i: 0), InstID, Vals)) |
| 3129 | AbbrevToUse = FUNCTION_INST_BINOP_ABBREV; |
| 3130 | pushValue(V: I.getOperand(i: 1), InstID, Vals); |
| 3131 | Vals.push_back(Elt: getEncodedBinaryOpcode(Opcode: I.getOpcode())); |
| 3132 | uint64_t Flags = getOptimizationFlags(V: &I); |
| 3133 | if (Flags != 0) { |
| 3134 | if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV) |
| 3135 | AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV; |
| 3136 | Vals.push_back(Elt: Flags); |
| 3137 | } |
| 3138 | } |
| 3139 | break; |
| 3140 | case Instruction::FNeg: { |
| 3141 | Code = bitc::FUNC_CODE_INST_UNOP; |
| 3142 | if (!pushValueAndType(V: I.getOperand(i: 0), InstID, Vals)) |
| 3143 | AbbrevToUse = FUNCTION_INST_UNOP_ABBREV; |
| 3144 | Vals.push_back(Elt: getEncodedUnaryOpcode(Opcode: I.getOpcode())); |
| 3145 | uint64_t Flags = getOptimizationFlags(V: &I); |
| 3146 | if (Flags != 0) { |
| 3147 | if (AbbrevToUse == FUNCTION_INST_UNOP_ABBREV) |
| 3148 | AbbrevToUse = FUNCTION_INST_UNOP_FLAGS_ABBREV; |
| 3149 | Vals.push_back(Elt: Flags); |
| 3150 | } |
| 3151 | break; |
| 3152 | } |
| 3153 | case Instruction::GetElementPtr: { |
| 3154 | Code = bitc::FUNC_CODE_INST_GEP; |
| 3155 | AbbrevToUse = FUNCTION_INST_GEP_ABBREV; |
| 3156 | auto &GEPInst = cast<GetElementPtrInst>(Val: I); |
| 3157 | Vals.push_back(Elt: getOptimizationFlags(V: &I)); |
| 3158 | Vals.push_back(Elt: VE.getTypeID(T: GEPInst.getSourceElementType())); |
| 3159 | for (const Value *Op : I.operands()) |
| 3160 | pushValueAndType(V: Op, InstID, Vals); |
| 3161 | break; |
| 3162 | } |
| 3163 | case Instruction::ExtractValue: { |
| 3164 | Code = bitc::FUNC_CODE_INST_EXTRACTVAL; |
| 3165 | pushValueAndType(V: I.getOperand(i: 0), InstID, Vals); |
| 3166 | const ExtractValueInst *EVI = cast<ExtractValueInst>(Val: &I); |
| 3167 | Vals.append(in_start: EVI->idx_begin(), in_end: EVI->idx_end()); |
| 3168 | break; |
| 3169 | } |
| 3170 | case Instruction::InsertValue: { |
| 3171 | Code = bitc::FUNC_CODE_INST_INSERTVAL; |
| 3172 | pushValueAndType(V: I.getOperand(i: 0), InstID, Vals); |
| 3173 | pushValueAndType(V: I.getOperand(i: 1), InstID, Vals); |
| 3174 | const InsertValueInst *IVI = cast<InsertValueInst>(Val: &I); |
| 3175 | Vals.append(in_start: IVI->idx_begin(), in_end: IVI->idx_end()); |
| 3176 | break; |
| 3177 | } |
| 3178 | case Instruction::Select: { |
| 3179 | Code = bitc::FUNC_CODE_INST_VSELECT; |
| 3180 | pushValueAndType(V: I.getOperand(i: 1), InstID, Vals); |
| 3181 | pushValue(V: I.getOperand(i: 2), InstID, Vals); |
| 3182 | pushValueAndType(V: I.getOperand(i: 0), InstID, Vals); |
| 3183 | uint64_t Flags = getOptimizationFlags(V: &I); |
| 3184 | if (Flags != 0) |
| 3185 | Vals.push_back(Elt: Flags); |
| 3186 | break; |
| 3187 | } |
| 3188 | case Instruction::ExtractElement: |
| 3189 | Code = bitc::FUNC_CODE_INST_EXTRACTELT; |
| 3190 | pushValueAndType(V: I.getOperand(i: 0), InstID, Vals); |
| 3191 | pushValueAndType(V: I.getOperand(i: 1), InstID, Vals); |
| 3192 | break; |
| 3193 | case Instruction::InsertElement: |
| 3194 | Code = bitc::FUNC_CODE_INST_INSERTELT; |
| 3195 | pushValueAndType(V: I.getOperand(i: 0), InstID, Vals); |
| 3196 | pushValue(V: I.getOperand(i: 1), InstID, Vals); |
| 3197 | pushValueAndType(V: I.getOperand(i: 2), InstID, Vals); |
| 3198 | break; |
| 3199 | case Instruction::ShuffleVector: |
| 3200 | Code = bitc::FUNC_CODE_INST_SHUFFLEVEC; |
| 3201 | pushValueAndType(V: I.getOperand(i: 0), InstID, Vals); |
| 3202 | pushValue(V: I.getOperand(i: 1), InstID, Vals); |
| 3203 | pushValue(V: cast<ShuffleVectorInst>(Val: I).getShuffleMaskForBitcode(), InstID, |
| 3204 | Vals); |
| 3205 | break; |
| 3206 | case Instruction::ICmp: |
| 3207 | case Instruction::FCmp: { |
| 3208 | // compare returning Int1Ty or vector of Int1Ty |
| 3209 | Code = bitc::FUNC_CODE_INST_CMP2; |
| 3210 | AbbrevToUse = FUNCTION_INST_CMP_ABBREV; |
| 3211 | if (pushValueAndType(V: I.getOperand(i: 0), InstID, Vals)) |
| 3212 | AbbrevToUse = 0; |
| 3213 | pushValue(V: I.getOperand(i: 1), InstID, Vals); |
| 3214 | Vals.push_back(Elt: cast<CmpInst>(Val: I).getPredicate()); |
| 3215 | uint64_t Flags = getOptimizationFlags(V: &I); |
| 3216 | if (Flags != 0) { |
| 3217 | Vals.push_back(Elt: Flags); |
| 3218 | if (AbbrevToUse) |
| 3219 | AbbrevToUse = FUNCTION_INST_CMP_FLAGS_ABBREV; |
| 3220 | } |
| 3221 | break; |
| 3222 | } |
| 3223 | |
| 3224 | case Instruction::Ret: |
| 3225 | { |
| 3226 | Code = bitc::FUNC_CODE_INST_RET; |
| 3227 | unsigned NumOperands = I.getNumOperands(); |
| 3228 | if (NumOperands == 0) |
| 3229 | AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV; |
| 3230 | else if (NumOperands == 1) { |
| 3231 | if (!pushValueAndType(V: I.getOperand(i: 0), InstID, Vals)) |
| 3232 | AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV; |
| 3233 | } else { |
| 3234 | for (const Value *Op : I.operands()) |
| 3235 | pushValueAndType(V: Op, InstID, Vals); |
| 3236 | } |
| 3237 | } |
| 3238 | break; |
| 3239 | case Instruction::Br: |
| 3240 | { |
| 3241 | Code = bitc::FUNC_CODE_INST_BR; |
| 3242 | AbbrevToUse = FUNCTION_INST_BR_UNCOND_ABBREV; |
| 3243 | const BranchInst &II = cast<BranchInst>(Val: I); |
| 3244 | Vals.push_back(Elt: VE.getValueID(V: II.getSuccessor(i: 0))); |
| 3245 | if (II.isConditional()) { |
| 3246 | Vals.push_back(Elt: VE.getValueID(V: II.getSuccessor(i: 1))); |
| 3247 | pushValue(V: II.getCondition(), InstID, Vals); |
| 3248 | AbbrevToUse = FUNCTION_INST_BR_COND_ABBREV; |
| 3249 | } |
| 3250 | } |
| 3251 | break; |
| 3252 | case Instruction::Switch: |
| 3253 | { |
| 3254 | Code = bitc::FUNC_CODE_INST_SWITCH; |
| 3255 | const SwitchInst &SI = cast<SwitchInst>(Val: I); |
| 3256 | Vals.push_back(Elt: VE.getTypeID(T: SI.getCondition()->getType())); |
| 3257 | pushValue(V: SI.getCondition(), InstID, Vals); |
| 3258 | Vals.push_back(Elt: VE.getValueID(V: SI.getDefaultDest())); |
| 3259 | for (auto Case : SI.cases()) { |
| 3260 | Vals.push_back(Elt: VE.getValueID(V: Case.getCaseValue())); |
| 3261 | Vals.push_back(Elt: VE.getValueID(V: Case.getCaseSuccessor())); |
| 3262 | } |
| 3263 | } |
| 3264 | break; |
| 3265 | case Instruction::IndirectBr: |
| 3266 | Code = bitc::FUNC_CODE_INST_INDIRECTBR; |
| 3267 | Vals.push_back(Elt: VE.getTypeID(T: I.getOperand(i: 0)->getType())); |
| 3268 | // Encode the address operand as relative, but not the basic blocks. |
| 3269 | pushValue(V: I.getOperand(i: 0), InstID, Vals); |
| 3270 | for (const Value *Op : drop_begin(RangeOrContainer: I.operands())) |
| 3271 | Vals.push_back(Elt: VE.getValueID(V: Op)); |
| 3272 | break; |
| 3273 | |
| 3274 | case Instruction::Invoke: { |
| 3275 | const InvokeInst *II = cast<InvokeInst>(Val: &I); |
| 3276 | const Value *Callee = II->getCalledOperand(); |
| 3277 | FunctionType *FTy = II->getFunctionType(); |
| 3278 | |
| 3279 | if (II->hasOperandBundles()) |
| 3280 | writeOperandBundles(CS: *II, InstID); |
| 3281 | |
| 3282 | Code = bitc::FUNC_CODE_INST_INVOKE; |
| 3283 | |
| 3284 | Vals.push_back(Elt: VE.getAttributeListID(PAL: II->getAttributes())); |
| 3285 | Vals.push_back(Elt: II->getCallingConv() | 1 << 13); |
| 3286 | Vals.push_back(Elt: VE.getValueID(V: II->getNormalDest())); |
| 3287 | Vals.push_back(Elt: VE.getValueID(V: II->getUnwindDest())); |
| 3288 | Vals.push_back(Elt: VE.getTypeID(T: FTy)); |
| 3289 | pushValueAndType(V: Callee, InstID, Vals); |
| 3290 | |
| 3291 | // Emit value #'s for the fixed parameters. |
| 3292 | for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) |
| 3293 | pushValue(V: I.getOperand(i), InstID, Vals); // fixed param. |
| 3294 | |
| 3295 | // Emit type/value pairs for varargs params. |
| 3296 | if (FTy->isVarArg()) { |
| 3297 | for (unsigned i = FTy->getNumParams(), e = II->arg_size(); i != e; ++i) |
| 3298 | pushValueAndType(V: I.getOperand(i), InstID, Vals); // vararg |
| 3299 | } |
| 3300 | break; |
| 3301 | } |
| 3302 | case Instruction::Resume: |
| 3303 | Code = bitc::FUNC_CODE_INST_RESUME; |
| 3304 | pushValueAndType(V: I.getOperand(i: 0), InstID, Vals); |
| 3305 | break; |
| 3306 | case Instruction::CleanupRet: { |
| 3307 | Code = bitc::FUNC_CODE_INST_CLEANUPRET; |
| 3308 | const auto &CRI = cast<CleanupReturnInst>(Val: I); |
| 3309 | pushValue(V: CRI.getCleanupPad(), InstID, Vals); |
| 3310 | if (CRI.hasUnwindDest()) |
| 3311 | Vals.push_back(Elt: VE.getValueID(V: CRI.getUnwindDest())); |
| 3312 | break; |
| 3313 | } |
| 3314 | case Instruction::CatchRet: { |
| 3315 | Code = bitc::FUNC_CODE_INST_CATCHRET; |
| 3316 | const auto &CRI = cast<CatchReturnInst>(Val: I); |
| 3317 | pushValue(V: CRI.getCatchPad(), InstID, Vals); |
| 3318 | Vals.push_back(Elt: VE.getValueID(V: CRI.getSuccessor())); |
| 3319 | break; |
| 3320 | } |
| 3321 | case Instruction::CleanupPad: |
| 3322 | case Instruction::CatchPad: { |
| 3323 | const auto &FuncletPad = cast<FuncletPadInst>(Val: I); |
| 3324 | Code = isa<CatchPadInst>(Val: FuncletPad) ? bitc::FUNC_CODE_INST_CATCHPAD |
| 3325 | : bitc::FUNC_CODE_INST_CLEANUPPAD; |
| 3326 | pushValue(V: FuncletPad.getParentPad(), InstID, Vals); |
| 3327 | |
| 3328 | unsigned NumArgOperands = FuncletPad.arg_size(); |
| 3329 | Vals.push_back(Elt: NumArgOperands); |
| 3330 | for (unsigned Op = 0; Op != NumArgOperands; ++Op) |
| 3331 | pushValueAndType(V: FuncletPad.getArgOperand(i: Op), InstID, Vals); |
| 3332 | break; |
| 3333 | } |
| 3334 | case Instruction::CatchSwitch: { |
| 3335 | Code = bitc::FUNC_CODE_INST_CATCHSWITCH; |
| 3336 | const auto &CatchSwitch = cast<CatchSwitchInst>(Val: I); |
| 3337 | |
| 3338 | pushValue(V: CatchSwitch.getParentPad(), InstID, Vals); |
| 3339 | |
| 3340 | unsigned NumHandlers = CatchSwitch.getNumHandlers(); |
| 3341 | Vals.push_back(Elt: NumHandlers); |
| 3342 | for (const BasicBlock *CatchPadBB : CatchSwitch.handlers()) |
| 3343 | Vals.push_back(Elt: VE.getValueID(V: CatchPadBB)); |
| 3344 | |
| 3345 | if (CatchSwitch.hasUnwindDest()) |
| 3346 | Vals.push_back(Elt: VE.getValueID(V: CatchSwitch.getUnwindDest())); |
| 3347 | break; |
| 3348 | } |
| 3349 | case Instruction::CallBr: { |
| 3350 | const CallBrInst *CBI = cast<CallBrInst>(Val: &I); |
| 3351 | const Value *Callee = CBI->getCalledOperand(); |
| 3352 | FunctionType *FTy = CBI->getFunctionType(); |
| 3353 | |
| 3354 | if (CBI->hasOperandBundles()) |
| 3355 | writeOperandBundles(CS: *CBI, InstID); |
| 3356 | |
| 3357 | Code = bitc::FUNC_CODE_INST_CALLBR; |
| 3358 | |
| 3359 | Vals.push_back(Elt: VE.getAttributeListID(PAL: CBI->getAttributes())); |
| 3360 | |
| 3361 | Vals.push_back(Elt: CBI->getCallingConv() << bitc::CALL_CCONV | |
| 3362 | 1 << bitc::CALL_EXPLICIT_TYPE); |
| 3363 | |
| 3364 | Vals.push_back(Elt: VE.getValueID(V: CBI->getDefaultDest())); |
| 3365 | Vals.push_back(Elt: CBI->getNumIndirectDests()); |
| 3366 | for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) |
| 3367 | Vals.push_back(Elt: VE.getValueID(V: CBI->getIndirectDest(i))); |
| 3368 | |
| 3369 | Vals.push_back(Elt: VE.getTypeID(T: FTy)); |
| 3370 | pushValueAndType(V: Callee, InstID, Vals); |
| 3371 | |
| 3372 | // Emit value #'s for the fixed parameters. |
| 3373 | for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) |
| 3374 | pushValue(V: I.getOperand(i), InstID, Vals); // fixed param. |
| 3375 | |
| 3376 | // Emit type/value pairs for varargs params. |
| 3377 | if (FTy->isVarArg()) { |
| 3378 | for (unsigned i = FTy->getNumParams(), e = CBI->arg_size(); i != e; ++i) |
| 3379 | pushValueAndType(V: I.getOperand(i), InstID, Vals); // vararg |
| 3380 | } |
| 3381 | break; |
| 3382 | } |
| 3383 | case Instruction::Unreachable: |
| 3384 | Code = bitc::FUNC_CODE_INST_UNREACHABLE; |
| 3385 | AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV; |
| 3386 | break; |
| 3387 | |
| 3388 | case Instruction::PHI: { |
| 3389 | const PHINode &PN = cast<PHINode>(Val: I); |
| 3390 | Code = bitc::FUNC_CODE_INST_PHI; |
| 3391 | // With the newer instruction encoding, forward references could give |
| 3392 | // negative valued IDs. This is most common for PHIs, so we use |
| 3393 | // signed VBRs. |
| 3394 | SmallVector<uint64_t, 128> Vals64; |
| 3395 | Vals64.push_back(Elt: VE.getTypeID(T: PN.getType())); |
| 3396 | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { |
| 3397 | pushValueSigned(V: PN.getIncomingValue(i), InstID, Vals&: Vals64); |
| 3398 | Vals64.push_back(Elt: VE.getValueID(V: PN.getIncomingBlock(i))); |
| 3399 | } |
| 3400 | |
| 3401 | uint64_t Flags = getOptimizationFlags(V: &I); |
| 3402 | if (Flags != 0) |
| 3403 | Vals64.push_back(Elt: Flags); |
| 3404 | |
| 3405 | // Emit a Vals64 vector and exit. |
| 3406 | Stream.EmitRecord(Code, Vals: Vals64, Abbrev: AbbrevToUse); |
| 3407 | Vals64.clear(); |
| 3408 | return; |
| 3409 | } |
| 3410 | |
| 3411 | case Instruction::LandingPad: { |
| 3412 | const LandingPadInst &LP = cast<LandingPadInst>(Val: I); |
| 3413 | Code = bitc::FUNC_CODE_INST_LANDINGPAD; |
| 3414 | Vals.push_back(Elt: VE.getTypeID(T: LP.getType())); |
| 3415 | Vals.push_back(Elt: LP.isCleanup()); |
| 3416 | Vals.push_back(Elt: LP.getNumClauses()); |
| 3417 | for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) { |
| 3418 | if (LP.isCatch(Idx: I)) |
| 3419 | Vals.push_back(Elt: LandingPadInst::Catch); |
| 3420 | else |
| 3421 | Vals.push_back(Elt: LandingPadInst::Filter); |
| 3422 | pushValueAndType(V: LP.getClause(Idx: I), InstID, Vals); |
| 3423 | } |
| 3424 | break; |
| 3425 | } |
| 3426 | |
| 3427 | case Instruction::Alloca: { |
| 3428 | Code = bitc::FUNC_CODE_INST_ALLOCA; |
| 3429 | const AllocaInst &AI = cast<AllocaInst>(Val: I); |
| 3430 | Vals.push_back(Elt: VE.getTypeID(T: AI.getAllocatedType())); |
| 3431 | Vals.push_back(Elt: VE.getTypeID(T: I.getOperand(i: 0)->getType())); |
| 3432 | Vals.push_back(Elt: VE.getValueID(V: I.getOperand(i: 0))); // size. |
| 3433 | using APV = AllocaPackedValues; |
| 3434 | unsigned Record = 0; |
| 3435 | unsigned EncodedAlign = getEncodedAlign(Alignment: AI.getAlign()); |
| 3436 | Bitfield::set<APV::AlignLower>( |
| 3437 | Packed&: Record, Value: EncodedAlign & ((1 << APV::AlignLower::Bits) - 1)); |
| 3438 | Bitfield::set<APV::AlignUpper>(Packed&: Record, |
| 3439 | Value: EncodedAlign >> APV::AlignLower::Bits); |
| 3440 | Bitfield::set<APV::UsedWithInAlloca>(Packed&: Record, Value: AI.isUsedWithInAlloca()); |
| 3441 | Bitfield::set<APV::ExplicitType>(Packed&: Record, Value: true); |
| 3442 | Bitfield::set<APV::SwiftError>(Packed&: Record, Value: AI.isSwiftError()); |
| 3443 | Vals.push_back(Elt: Record); |
| 3444 | |
| 3445 | unsigned AS = AI.getAddressSpace(); |
| 3446 | if (AS != M.getDataLayout().getAllocaAddrSpace()) |
| 3447 | Vals.push_back(Elt: AS); |
| 3448 | break; |
| 3449 | } |
| 3450 | |
| 3451 | case Instruction::Load: |
| 3452 | if (cast<LoadInst>(Val: I).isAtomic()) { |
| 3453 | Code = bitc::FUNC_CODE_INST_LOADATOMIC; |
| 3454 | pushValueAndType(V: I.getOperand(i: 0), InstID, Vals); |
| 3455 | } else { |
| 3456 | Code = bitc::FUNC_CODE_INST_LOAD; |
| 3457 | if (!pushValueAndType(V: I.getOperand(i: 0), InstID, Vals)) // ptr |
| 3458 | AbbrevToUse = FUNCTION_INST_LOAD_ABBREV; |
| 3459 | } |
| 3460 | Vals.push_back(Elt: VE.getTypeID(T: I.getType())); |
| 3461 | Vals.push_back(Elt: getEncodedAlign(Alignment: cast<LoadInst>(Val: I).getAlign())); |
| 3462 | Vals.push_back(Elt: cast<LoadInst>(Val: I).isVolatile()); |
| 3463 | if (cast<LoadInst>(Val: I).isAtomic()) { |
| 3464 | Vals.push_back(Elt: getEncodedOrdering(Ordering: cast<LoadInst>(Val: I).getOrdering())); |
| 3465 | Vals.push_back(Elt: getEncodedSyncScopeID(SSID: cast<LoadInst>(Val: I).getSyncScopeID())); |
| 3466 | } |
| 3467 | break; |
| 3468 | case Instruction::Store: |
| 3469 | if (cast<StoreInst>(Val: I).isAtomic()) { |
| 3470 | Code = bitc::FUNC_CODE_INST_STOREATOMIC; |
| 3471 | } else { |
| 3472 | Code = bitc::FUNC_CODE_INST_STORE; |
| 3473 | AbbrevToUse = FUNCTION_INST_STORE_ABBREV; |
| 3474 | } |
| 3475 | if (pushValueAndType(V: I.getOperand(i: 1), InstID, Vals)) // ptrty + ptr |
| 3476 | AbbrevToUse = 0; |
| 3477 | if (pushValueAndType(V: I.getOperand(i: 0), InstID, Vals)) // valty + val |
| 3478 | AbbrevToUse = 0; |
| 3479 | Vals.push_back(Elt: getEncodedAlign(Alignment: cast<StoreInst>(Val: I).getAlign())); |
| 3480 | Vals.push_back(Elt: cast<StoreInst>(Val: I).isVolatile()); |
| 3481 | if (cast<StoreInst>(Val: I).isAtomic()) { |
| 3482 | Vals.push_back(Elt: getEncodedOrdering(Ordering: cast<StoreInst>(Val: I).getOrdering())); |
| 3483 | Vals.push_back( |
| 3484 | Elt: getEncodedSyncScopeID(SSID: cast<StoreInst>(Val: I).getSyncScopeID())); |
| 3485 | } |
| 3486 | break; |
| 3487 | case Instruction::AtomicCmpXchg: |
| 3488 | Code = bitc::FUNC_CODE_INST_CMPXCHG; |
| 3489 | pushValueAndType(V: I.getOperand(i: 0), InstID, Vals); // ptrty + ptr |
| 3490 | pushValueAndType(V: I.getOperand(i: 1), InstID, Vals); // cmp. |
| 3491 | pushValue(V: I.getOperand(i: 2), InstID, Vals); // newval. |
| 3492 | Vals.push_back(Elt: cast<AtomicCmpXchgInst>(Val: I).isVolatile()); |
| 3493 | Vals.push_back( |
| 3494 | Elt: getEncodedOrdering(Ordering: cast<AtomicCmpXchgInst>(Val: I).getSuccessOrdering())); |
| 3495 | Vals.push_back( |
| 3496 | Elt: getEncodedSyncScopeID(SSID: cast<AtomicCmpXchgInst>(Val: I).getSyncScopeID())); |
| 3497 | Vals.push_back( |
| 3498 | Elt: getEncodedOrdering(Ordering: cast<AtomicCmpXchgInst>(Val: I).getFailureOrdering())); |
| 3499 | Vals.push_back(Elt: cast<AtomicCmpXchgInst>(Val: I).isWeak()); |
| 3500 | Vals.push_back(Elt: getEncodedAlign(Alignment: cast<AtomicCmpXchgInst>(Val: I).getAlign())); |
| 3501 | break; |
| 3502 | case Instruction::AtomicRMW: |
| 3503 | Code = bitc::FUNC_CODE_INST_ATOMICRMW; |
| 3504 | pushValueAndType(V: I.getOperand(i: 0), InstID, Vals); // ptrty + ptr |
| 3505 | pushValueAndType(V: I.getOperand(i: 1), InstID, Vals); // valty + val |
| 3506 | Vals.push_back( |
| 3507 | Elt: getEncodedRMWOperation(Op: cast<AtomicRMWInst>(Val: I).getOperation())); |
| 3508 | Vals.push_back(Elt: cast<AtomicRMWInst>(Val: I).isVolatile()); |
| 3509 | Vals.push_back(Elt: getEncodedOrdering(Ordering: cast<AtomicRMWInst>(Val: I).getOrdering())); |
| 3510 | Vals.push_back( |
| 3511 | Elt: getEncodedSyncScopeID(SSID: cast<AtomicRMWInst>(Val: I).getSyncScopeID())); |
| 3512 | Vals.push_back(Elt: getEncodedAlign(Alignment: cast<AtomicRMWInst>(Val: I).getAlign())); |
| 3513 | break; |
| 3514 | case Instruction::Fence: |
| 3515 | Code = bitc::FUNC_CODE_INST_FENCE; |
| 3516 | Vals.push_back(Elt: getEncodedOrdering(Ordering: cast<FenceInst>(Val: I).getOrdering())); |
| 3517 | Vals.push_back(Elt: getEncodedSyncScopeID(SSID: cast<FenceInst>(Val: I).getSyncScopeID())); |
| 3518 | break; |
| 3519 | case Instruction::Call: { |
| 3520 | const CallInst &CI = cast<CallInst>(Val: I); |
| 3521 | FunctionType *FTy = CI.getFunctionType(); |
| 3522 | |
| 3523 | if (CI.hasOperandBundles()) |
| 3524 | writeOperandBundles(CS: CI, InstID); |
| 3525 | |
| 3526 | Code = bitc::FUNC_CODE_INST_CALL; |
| 3527 | |
| 3528 | Vals.push_back(Elt: VE.getAttributeListID(PAL: CI.getAttributes())); |
| 3529 | |
| 3530 | unsigned Flags = getOptimizationFlags(V: &I); |
| 3531 | Vals.push_back(Elt: CI.getCallingConv() << bitc::CALL_CCONV | |
| 3532 | unsigned(CI.isTailCall()) << bitc::CALL_TAIL | |
| 3533 | unsigned(CI.isMustTailCall()) << bitc::CALL_MUSTTAIL | |
| 3534 | 1 << bitc::CALL_EXPLICIT_TYPE | |
| 3535 | unsigned(CI.isNoTailCall()) << bitc::CALL_NOTAIL | |
| 3536 | unsigned(Flags != 0) << bitc::CALL_FMF); |
| 3537 | if (Flags != 0) |
| 3538 | Vals.push_back(Elt: Flags); |
| 3539 | |
| 3540 | Vals.push_back(Elt: VE.getTypeID(T: FTy)); |
| 3541 | pushValueAndType(V: CI.getCalledOperand(), InstID, Vals); // Callee |
| 3542 | |
| 3543 | // Emit value #'s for the fixed parameters. |
| 3544 | for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) |
| 3545 | pushValue(V: CI.getArgOperand(i), InstID, Vals); // fixed param. |
| 3546 | |
| 3547 | // Emit type/value pairs for varargs params. |
| 3548 | if (FTy->isVarArg()) { |
| 3549 | for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i) |
| 3550 | pushValueAndType(V: CI.getArgOperand(i), InstID, Vals); // varargs |
| 3551 | } |
| 3552 | break; |
| 3553 | } |
| 3554 | case Instruction::VAArg: |
| 3555 | Code = bitc::FUNC_CODE_INST_VAARG; |
| 3556 | Vals.push_back(Elt: VE.getTypeID(T: I.getOperand(i: 0)->getType())); // valistty |
| 3557 | pushValue(V: I.getOperand(i: 0), InstID, Vals); // valist. |
| 3558 | Vals.push_back(Elt: VE.getTypeID(T: I.getType())); // restype. |
| 3559 | break; |
| 3560 | case Instruction::Freeze: |
| 3561 | Code = bitc::FUNC_CODE_INST_FREEZE; |
| 3562 | pushValueAndType(V: I.getOperand(i: 0), InstID, Vals); |
| 3563 | break; |
| 3564 | } |
| 3565 | |
| 3566 | Stream.EmitRecord(Code, Vals, Abbrev: AbbrevToUse); |
| 3567 | Vals.clear(); |
| 3568 | } |
| 3569 | |
| 3570 | /// Write a GlobalValue VST to the module. The purpose of this data structure is |
| 3571 | /// to allow clients to efficiently find the function body. |
| 3572 | void ModuleBitcodeWriter::writeGlobalValueSymbolTable( |
| 3573 | DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { |
| 3574 | // Get the offset of the VST we are writing, and backpatch it into |
| 3575 | // the VST forward declaration record. |
| 3576 | uint64_t VSTOffset = Stream.GetCurrentBitNo(); |
| 3577 | // The BitcodeStartBit was the stream offset of the identification block. |
| 3578 | VSTOffset -= bitcodeStartBit(); |
| 3579 | assert((VSTOffset & 31) == 0 && "VST block not 32-bit aligned" ); |
| 3580 | // Note that we add 1 here because the offset is relative to one word |
| 3581 | // before the start of the identification block, which was historically |
| 3582 | // always the start of the regular bitcode header. |
| 3583 | Stream.BackpatchWord(BitNo: VSTOffsetPlaceholder, Val: VSTOffset / 32 + 1); |
| 3584 | |
| 3585 | Stream.EnterSubblock(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID, CodeLen: 4); |
| 3586 | |
| 3587 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 3588 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::VST_CODE_FNENTRY)); |
| 3589 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id |
| 3590 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // funcoffset |
| 3591 | unsigned FnEntryAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 3592 | |
| 3593 | for (const Function &F : M) { |
| 3594 | uint64_t Record[2]; |
| 3595 | |
| 3596 | if (F.isDeclaration()) |
| 3597 | continue; |
| 3598 | |
| 3599 | Record[0] = VE.getValueID(V: &F); |
| 3600 | |
| 3601 | // Save the word offset of the function (from the start of the |
| 3602 | // actual bitcode written to the stream). |
| 3603 | uint64_t BitcodeIndex = FunctionToBitcodeIndex[&F] - bitcodeStartBit(); |
| 3604 | assert((BitcodeIndex & 31) == 0 && "function block not 32-bit aligned" ); |
| 3605 | // Note that we add 1 here because the offset is relative to one word |
| 3606 | // before the start of the identification block, which was historically |
| 3607 | // always the start of the regular bitcode header. |
| 3608 | Record[1] = BitcodeIndex / 32 + 1; |
| 3609 | |
| 3610 | Stream.EmitRecord(Code: bitc::VST_CODE_FNENTRY, Vals: Record, Abbrev: FnEntryAbbrev); |
| 3611 | } |
| 3612 | |
| 3613 | Stream.ExitBlock(); |
| 3614 | } |
| 3615 | |
| 3616 | /// Emit names for arguments, instructions and basic blocks in a function. |
| 3617 | void ModuleBitcodeWriter::writeFunctionLevelValueSymbolTable( |
| 3618 | const ValueSymbolTable &VST) { |
| 3619 | if (VST.empty()) |
| 3620 | return; |
| 3621 | |
| 3622 | Stream.EnterSubblock(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID, CodeLen: 4); |
| 3623 | |
| 3624 | // FIXME: Set up the abbrev, we know how many values there are! |
| 3625 | // FIXME: We know if the type names can use 7-bit ascii. |
| 3626 | SmallVector<uint64_t, 64> NameVals; |
| 3627 | |
| 3628 | for (const ValueName &Name : VST) { |
| 3629 | // Figure out the encoding to use for the name. |
| 3630 | StringEncoding Bits = getStringEncoding(Str: Name.getKey()); |
| 3631 | |
| 3632 | unsigned AbbrevToUse = VST_ENTRY_8_ABBREV; |
| 3633 | NameVals.push_back(Elt: VE.getValueID(V: Name.getValue())); |
| 3634 | |
| 3635 | // VST_CODE_ENTRY: [valueid, namechar x N] |
| 3636 | // VST_CODE_BBENTRY: [bbid, namechar x N] |
| 3637 | unsigned Code; |
| 3638 | if (isa<BasicBlock>(Val: Name.getValue())) { |
| 3639 | Code = bitc::VST_CODE_BBENTRY; |
| 3640 | if (Bits == SE_Char6) |
| 3641 | AbbrevToUse = VST_BBENTRY_6_ABBREV; |
| 3642 | } else { |
| 3643 | Code = bitc::VST_CODE_ENTRY; |
| 3644 | if (Bits == SE_Char6) |
| 3645 | AbbrevToUse = VST_ENTRY_6_ABBREV; |
| 3646 | else if (Bits == SE_Fixed7) |
| 3647 | AbbrevToUse = VST_ENTRY_7_ABBREV; |
| 3648 | } |
| 3649 | |
| 3650 | for (const auto P : Name.getKey()) |
| 3651 | NameVals.push_back(Elt: (unsigned char)P); |
| 3652 | |
| 3653 | // Emit the finished record. |
| 3654 | Stream.EmitRecord(Code, Vals: NameVals, Abbrev: AbbrevToUse); |
| 3655 | NameVals.clear(); |
| 3656 | } |
| 3657 | |
| 3658 | Stream.ExitBlock(); |
| 3659 | } |
| 3660 | |
| 3661 | void ModuleBitcodeWriter::writeUseList(UseListOrder &&Order) { |
| 3662 | assert(Order.Shuffle.size() >= 2 && "Shuffle too small" ); |
| 3663 | unsigned Code; |
| 3664 | if (isa<BasicBlock>(Val: Order.V)) |
| 3665 | Code = bitc::USELIST_CODE_BB; |
| 3666 | else |
| 3667 | Code = bitc::USELIST_CODE_DEFAULT; |
| 3668 | |
| 3669 | SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end()); |
| 3670 | Record.push_back(Elt: VE.getValueID(V: Order.V)); |
| 3671 | Stream.EmitRecord(Code, Vals: Record); |
| 3672 | } |
| 3673 | |
| 3674 | void ModuleBitcodeWriter::writeUseListBlock(const Function *F) { |
| 3675 | assert(VE.shouldPreserveUseListOrder() && |
| 3676 | "Expected to be preserving use-list order" ); |
| 3677 | |
| 3678 | auto hasMore = [&]() { |
| 3679 | return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F; |
| 3680 | }; |
| 3681 | if (!hasMore()) |
| 3682 | // Nothing to do. |
| 3683 | return; |
| 3684 | |
| 3685 | Stream.EnterSubblock(BlockID: bitc::USELIST_BLOCK_ID, CodeLen: 3); |
| 3686 | while (hasMore()) { |
| 3687 | writeUseList(Order: std::move(VE.UseListOrders.back())); |
| 3688 | VE.UseListOrders.pop_back(); |
| 3689 | } |
| 3690 | Stream.ExitBlock(); |
| 3691 | } |
| 3692 | |
| 3693 | /// Emit a function body to the module stream. |
| 3694 | void ModuleBitcodeWriter::writeFunction( |
| 3695 | const Function &F, |
| 3696 | DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex) { |
| 3697 | // Save the bitcode index of the start of this function block for recording |
| 3698 | // in the VST. |
| 3699 | FunctionToBitcodeIndex[&F] = Stream.GetCurrentBitNo(); |
| 3700 | |
| 3701 | Stream.EnterSubblock(BlockID: bitc::FUNCTION_BLOCK_ID, CodeLen: 5); |
| 3702 | VE.incorporateFunction(F); |
| 3703 | |
| 3704 | SmallVector<unsigned, 64> Vals; |
| 3705 | |
| 3706 | // Emit the number of basic blocks, so the reader can create them ahead of |
| 3707 | // time. |
| 3708 | Vals.push_back(Elt: VE.getBasicBlocks().size()); |
| 3709 | Stream.EmitRecord(Code: bitc::FUNC_CODE_DECLAREBLOCKS, Vals); |
| 3710 | Vals.clear(); |
| 3711 | |
| 3712 | // If there are function-local constants, emit them now. |
| 3713 | unsigned CstStart, CstEnd; |
| 3714 | VE.getFunctionConstantRange(Start&: CstStart, End&: CstEnd); |
| 3715 | writeConstants(FirstVal: CstStart, LastVal: CstEnd, isGlobal: false); |
| 3716 | |
| 3717 | // If there is function-local metadata, emit it now. |
| 3718 | writeFunctionMetadata(F); |
| 3719 | |
| 3720 | // Keep a running idea of what the instruction ID is. |
| 3721 | unsigned InstID = CstEnd; |
| 3722 | |
| 3723 | bool NeedsMetadataAttachment = F.hasMetadata(); |
| 3724 | |
| 3725 | DILocation *LastDL = nullptr; |
| 3726 | SmallSetVector<Function *, 4> BlockAddressUsers; |
| 3727 | |
| 3728 | // Finally, emit all the instructions, in order. |
| 3729 | for (const BasicBlock &BB : F) { |
| 3730 | for (const Instruction &I : BB) { |
| 3731 | writeInstruction(I, InstID, Vals); |
| 3732 | |
| 3733 | if (!I.getType()->isVoidTy()) |
| 3734 | ++InstID; |
| 3735 | |
| 3736 | // If the instruction has metadata, write a metadata attachment later. |
| 3737 | NeedsMetadataAttachment |= I.hasMetadataOtherThanDebugLoc(); |
| 3738 | |
| 3739 | // If the instruction has a debug location, emit it. |
| 3740 | if (DILocation *DL = I.getDebugLoc()) { |
| 3741 | if (DL == LastDL) { |
| 3742 | // Just repeat the same debug loc as last time. |
| 3743 | Stream.EmitRecord(Code: bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals); |
| 3744 | } else { |
| 3745 | Vals.push_back(Elt: DL->getLine()); |
| 3746 | Vals.push_back(Elt: DL->getColumn()); |
| 3747 | Vals.push_back(Elt: VE.getMetadataOrNullID(MD: DL->getScope())); |
| 3748 | Vals.push_back(Elt: VE.getMetadataOrNullID(MD: DL->getInlinedAt())); |
| 3749 | Vals.push_back(Elt: DL->isImplicitCode()); |
| 3750 | Stream.EmitRecord(Code: bitc::FUNC_CODE_DEBUG_LOC, Vals); |
| 3751 | Vals.clear(); |
| 3752 | LastDL = DL; |
| 3753 | } |
| 3754 | } |
| 3755 | |
| 3756 | // If the instruction has DbgRecords attached to it, emit them. Note that |
| 3757 | // they come after the instruction so that it's easy to attach them again |
| 3758 | // when reading the bitcode, even though conceptually the debug locations |
| 3759 | // start "before" the instruction. |
| 3760 | if (I.hasDbgRecords()) { |
| 3761 | /// Try to push the value only (unwrapped), otherwise push the |
| 3762 | /// metadata wrapped value. Returns true if the value was pushed |
| 3763 | /// without the ValueAsMetadata wrapper. |
| 3764 | auto PushValueOrMetadata = [&Vals, InstID, |
| 3765 | this](Metadata *RawLocation) { |
| 3766 | assert(RawLocation && |
| 3767 | "RawLocation unexpectedly null in DbgVariableRecord" ); |
| 3768 | if (ValueAsMetadata *VAM = dyn_cast<ValueAsMetadata>(Val: RawLocation)) { |
| 3769 | SmallVector<unsigned, 2> ValAndType; |
| 3770 | // If the value is a fwd-ref the type is also pushed. We don't |
| 3771 | // want the type, so fwd-refs are kept wrapped (pushValueAndType |
| 3772 | // returns false if the value is pushed without type). |
| 3773 | if (!pushValueAndType(V: VAM->getValue(), InstID, Vals&: ValAndType)) { |
| 3774 | Vals.push_back(Elt: ValAndType[0]); |
| 3775 | return true; |
| 3776 | } |
| 3777 | } |
| 3778 | // The metadata is a DIArgList, or ValueAsMetadata wrapping a |
| 3779 | // fwd-ref. Push the metadata ID. |
| 3780 | Vals.push_back(Elt: VE.getMetadataID(MD: RawLocation)); |
| 3781 | return false; |
| 3782 | }; |
| 3783 | |
| 3784 | // Write out non-instruction debug information attached to this |
| 3785 | // instruction. Write it after the instruction so that it's easy to |
| 3786 | // re-attach to the instruction reading the records in. |
| 3787 | for (DbgRecord &DR : I.DebugMarker->getDbgRecordRange()) { |
| 3788 | if (DbgLabelRecord *DLR = dyn_cast<DbgLabelRecord>(Val: &DR)) { |
| 3789 | Vals.push_back(Elt: VE.getMetadataID(MD: &*DLR->getDebugLoc())); |
| 3790 | Vals.push_back(Elt: VE.getMetadataID(MD: DLR->getLabel())); |
| 3791 | Stream.EmitRecord(Code: bitc::FUNC_CODE_DEBUG_RECORD_LABEL, Vals); |
| 3792 | Vals.clear(); |
| 3793 | continue; |
| 3794 | } |
| 3795 | |
| 3796 | // First 3 fields are common to all kinds: |
| 3797 | // DILocation, DILocalVariable, DIExpression |
| 3798 | // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) |
| 3799 | // ..., LocationMetadata |
| 3800 | // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) |
| 3801 | // ..., Value |
| 3802 | // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) |
| 3803 | // ..., LocationMetadata |
| 3804 | // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) |
| 3805 | // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata |
| 3806 | DbgVariableRecord &DVR = cast<DbgVariableRecord>(Val&: DR); |
| 3807 | Vals.push_back(Elt: VE.getMetadataID(MD: &*DVR.getDebugLoc())); |
| 3808 | Vals.push_back(Elt: VE.getMetadataID(MD: DVR.getVariable())); |
| 3809 | Vals.push_back(Elt: VE.getMetadataID(MD: DVR.getExpression())); |
| 3810 | if (DVR.isDbgValue()) { |
| 3811 | if (PushValueOrMetadata(DVR.getRawLocation())) |
| 3812 | Stream.EmitRecord(Code: bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE, Vals, |
| 3813 | Abbrev: FUNCTION_DEBUG_RECORD_VALUE_ABBREV); |
| 3814 | else |
| 3815 | Stream.EmitRecord(Code: bitc::FUNC_CODE_DEBUG_RECORD_VALUE, Vals); |
| 3816 | } else if (DVR.isDbgDeclare()) { |
| 3817 | Vals.push_back(Elt: VE.getMetadataID(MD: DVR.getRawLocation())); |
| 3818 | Stream.EmitRecord(Code: bitc::FUNC_CODE_DEBUG_RECORD_DECLARE, Vals); |
| 3819 | } else { |
| 3820 | assert(DVR.isDbgAssign() && "Unexpected DbgRecord kind" ); |
| 3821 | Vals.push_back(Elt: VE.getMetadataID(MD: DVR.getRawLocation())); |
| 3822 | Vals.push_back(Elt: VE.getMetadataID(MD: DVR.getAssignID())); |
| 3823 | Vals.push_back(Elt: VE.getMetadataID(MD: DVR.getAddressExpression())); |
| 3824 | Vals.push_back(Elt: VE.getMetadataID(MD: DVR.getRawAddress())); |
| 3825 | Stream.EmitRecord(Code: bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN, Vals); |
| 3826 | } |
| 3827 | Vals.clear(); |
| 3828 | } |
| 3829 | } |
| 3830 | } |
| 3831 | |
| 3832 | if (BlockAddress *BA = BlockAddress::lookup(BB: &BB)) { |
| 3833 | SmallVector<Value *> Worklist{BA}; |
| 3834 | SmallPtrSet<Value *, 8> Visited{BA}; |
| 3835 | while (!Worklist.empty()) { |
| 3836 | Value *V = Worklist.pop_back_val(); |
| 3837 | for (User *U : V->users()) { |
| 3838 | if (auto *I = dyn_cast<Instruction>(Val: U)) { |
| 3839 | Function *P = I->getFunction(); |
| 3840 | if (P != &F) |
| 3841 | BlockAddressUsers.insert(X: P); |
| 3842 | } else if (isa<Constant>(Val: U) && !isa<GlobalValue>(Val: U) && |
| 3843 | Visited.insert(Ptr: U).second) |
| 3844 | Worklist.push_back(Elt: U); |
| 3845 | } |
| 3846 | } |
| 3847 | } |
| 3848 | } |
| 3849 | |
| 3850 | if (!BlockAddressUsers.empty()) { |
| 3851 | Vals.resize(N: BlockAddressUsers.size()); |
| 3852 | for (auto I : llvm::enumerate(First&: BlockAddressUsers)) |
| 3853 | Vals[I.index()] = VE.getValueID(V: I.value()); |
| 3854 | Stream.EmitRecord(Code: bitc::FUNC_CODE_BLOCKADDR_USERS, Vals); |
| 3855 | Vals.clear(); |
| 3856 | } |
| 3857 | |
| 3858 | // Emit names for all the instructions etc. |
| 3859 | if (auto *Symtab = F.getValueSymbolTable()) |
| 3860 | writeFunctionLevelValueSymbolTable(VST: *Symtab); |
| 3861 | |
| 3862 | if (NeedsMetadataAttachment) |
| 3863 | writeFunctionMetadataAttachment(F); |
| 3864 | if (VE.shouldPreserveUseListOrder()) |
| 3865 | writeUseListBlock(F: &F); |
| 3866 | VE.purgeFunction(); |
| 3867 | Stream.ExitBlock(); |
| 3868 | } |
| 3869 | |
| 3870 | // Emit blockinfo, which defines the standard abbreviations etc. |
| 3871 | void ModuleBitcodeWriter::writeBlockInfo() { |
| 3872 | // We only want to emit block info records for blocks that have multiple |
| 3873 | // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK. |
| 3874 | // Other blocks can define their abbrevs inline. |
| 3875 | Stream.EnterBlockInfoBlock(); |
| 3876 | |
| 3877 | // Encode type indices using fixed size based on number of types. |
| 3878 | BitCodeAbbrevOp TypeAbbrevOp(BitCodeAbbrevOp::Fixed, |
| 3879 | VE.computeBitsRequiredForTypeIndices()); |
| 3880 | // Encode value indices as 6-bit VBR. |
| 3881 | BitCodeAbbrevOp ValAbbrevOp(BitCodeAbbrevOp::VBR, 6); |
| 3882 | |
| 3883 | { // 8-bit fixed-width VST_CODE_ENTRY/VST_CODE_BBENTRY strings. |
| 3884 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 3885 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); |
| 3886 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 3887 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 3888 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); |
| 3889 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != |
| 3890 | VST_ENTRY_8_ABBREV) |
| 3891 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 3892 | } |
| 3893 | |
| 3894 | { // 7-bit fixed width VST_CODE_ENTRY strings. |
| 3895 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 3896 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); |
| 3897 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 3898 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 3899 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); |
| 3900 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != |
| 3901 | VST_ENTRY_7_ABBREV) |
| 3902 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 3903 | } |
| 3904 | { // 6-bit char6 VST_CODE_ENTRY strings. |
| 3905 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 3906 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::VST_CODE_ENTRY)); |
| 3907 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 3908 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 3909 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); |
| 3910 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != |
| 3911 | VST_ENTRY_6_ABBREV) |
| 3912 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 3913 | } |
| 3914 | { // 6-bit char6 VST_CODE_BBENTRY strings. |
| 3915 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 3916 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY)); |
| 3917 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 3918 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 3919 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); |
| 3920 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID, Abbv) != |
| 3921 | VST_BBENTRY_6_ABBREV) |
| 3922 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 3923 | } |
| 3924 | |
| 3925 | { // SETTYPE abbrev for CONSTANTS_BLOCK. |
| 3926 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 3927 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE)); |
| 3928 | Abbv->Add(OpInfo: TypeAbbrevOp); |
| 3929 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::CONSTANTS_BLOCK_ID, Abbv) != |
| 3930 | CONSTANTS_SETTYPE_ABBREV) |
| 3931 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 3932 | } |
| 3933 | |
| 3934 | { // INTEGER abbrev for CONSTANTS_BLOCK. |
| 3935 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 3936 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::CST_CODE_INTEGER)); |
| 3937 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 3938 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::CONSTANTS_BLOCK_ID, Abbv) != |
| 3939 | CONSTANTS_INTEGER_ABBREV) |
| 3940 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 3941 | } |
| 3942 | |
| 3943 | { // CE_CAST abbrev for CONSTANTS_BLOCK. |
| 3944 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 3945 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST)); |
| 3946 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc |
| 3947 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid |
| 3948 | VE.computeBitsRequiredForTypeIndices())); |
| 3949 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id |
| 3950 | |
| 3951 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::CONSTANTS_BLOCK_ID, Abbv) != |
| 3952 | CONSTANTS_CE_CAST_Abbrev) |
| 3953 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 3954 | } |
| 3955 | { // NULL abbrev for CONSTANTS_BLOCK. |
| 3956 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 3957 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::CST_CODE_NULL)); |
| 3958 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::CONSTANTS_BLOCK_ID, Abbv) != |
| 3959 | CONSTANTS_NULL_Abbrev) |
| 3960 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 3961 | } |
| 3962 | |
| 3963 | // FIXME: This should only use space for first class types! |
| 3964 | |
| 3965 | { // INST_LOAD abbrev for FUNCTION_BLOCK. |
| 3966 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 3967 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD)); |
| 3968 | Abbv->Add(OpInfo: ValAbbrevOp); // Ptr |
| 3969 | Abbv->Add(OpInfo: TypeAbbrevOp); // dest ty |
| 3970 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align |
| 3971 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile |
| 3972 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) != |
| 3973 | FUNCTION_INST_LOAD_ABBREV) |
| 3974 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 3975 | } |
| 3976 | { |
| 3977 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 3978 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_STORE)); |
| 3979 | Abbv->Add(OpInfo: ValAbbrevOp); // op1 |
| 3980 | Abbv->Add(OpInfo: ValAbbrevOp); // op0 |
| 3981 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // align |
| 3982 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile |
| 3983 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) != |
| 3984 | FUNCTION_INST_STORE_ABBREV) |
| 3985 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 3986 | } |
| 3987 | { // INST_UNOP abbrev for FUNCTION_BLOCK. |
| 3988 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 3989 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); |
| 3990 | Abbv->Add(OpInfo: ValAbbrevOp); // LHS |
| 3991 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc |
| 3992 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) != |
| 3993 | FUNCTION_INST_UNOP_ABBREV) |
| 3994 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 3995 | } |
| 3996 | { // INST_UNOP_FLAGS abbrev for FUNCTION_BLOCK. |
| 3997 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 3998 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNOP)); |
| 3999 | Abbv->Add(OpInfo: ValAbbrevOp); // LHS |
| 4000 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc |
| 4001 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags |
| 4002 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) != |
| 4003 | FUNCTION_INST_UNOP_FLAGS_ABBREV) |
| 4004 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 4005 | } |
| 4006 | { // INST_BINOP abbrev for FUNCTION_BLOCK. |
| 4007 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4008 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); |
| 4009 | Abbv->Add(OpInfo: ValAbbrevOp); // LHS |
| 4010 | Abbv->Add(OpInfo: ValAbbrevOp); // RHS |
| 4011 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc |
| 4012 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) != |
| 4013 | FUNCTION_INST_BINOP_ABBREV) |
| 4014 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 4015 | } |
| 4016 | { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK. |
| 4017 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4018 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP)); |
| 4019 | Abbv->Add(OpInfo: ValAbbrevOp); // LHS |
| 4020 | Abbv->Add(OpInfo: ValAbbrevOp); // RHS |
| 4021 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc |
| 4022 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags |
| 4023 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) != |
| 4024 | FUNCTION_INST_BINOP_FLAGS_ABBREV) |
| 4025 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 4026 | } |
| 4027 | { // INST_CAST abbrev for FUNCTION_BLOCK. |
| 4028 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4029 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); |
| 4030 | Abbv->Add(OpInfo: ValAbbrevOp); // OpVal |
| 4031 | Abbv->Add(OpInfo: TypeAbbrevOp); // dest ty |
| 4032 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc |
| 4033 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) != |
| 4034 | FUNCTION_INST_CAST_ABBREV) |
| 4035 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 4036 | } |
| 4037 | { // INST_CAST_FLAGS abbrev for FUNCTION_BLOCK. |
| 4038 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4039 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST)); |
| 4040 | Abbv->Add(OpInfo: ValAbbrevOp); // OpVal |
| 4041 | Abbv->Add(OpInfo: TypeAbbrevOp); // dest ty |
| 4042 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc |
| 4043 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags |
| 4044 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) != |
| 4045 | FUNCTION_INST_CAST_FLAGS_ABBREV) |
| 4046 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 4047 | } |
| 4048 | |
| 4049 | { // INST_RET abbrev for FUNCTION_BLOCK. |
| 4050 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4051 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); |
| 4052 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) != |
| 4053 | FUNCTION_INST_RET_VOID_ABBREV) |
| 4054 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 4055 | } |
| 4056 | { // INST_RET abbrev for FUNCTION_BLOCK. |
| 4057 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4058 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET)); |
| 4059 | Abbv->Add(OpInfo: ValAbbrevOp); |
| 4060 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) != |
| 4061 | FUNCTION_INST_RET_VAL_ABBREV) |
| 4062 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 4063 | } |
| 4064 | { |
| 4065 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4066 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BR)); |
| 4067 | // TODO: Use different abbrev for absolute value reference (succ0)? |
| 4068 | Abbv->Add(OpInfo: ValAbbrevOp); // succ0 |
| 4069 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) != |
| 4070 | FUNCTION_INST_BR_UNCOND_ABBREV) |
| 4071 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 4072 | } |
| 4073 | { |
| 4074 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4075 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BR)); |
| 4076 | // TODO: Use different abbrev for absolute value references (succ0, succ1)? |
| 4077 | Abbv->Add(OpInfo: ValAbbrevOp); // succ0 |
| 4078 | Abbv->Add(OpInfo: ValAbbrevOp); // succ1 |
| 4079 | Abbv->Add(OpInfo: ValAbbrevOp); // cond |
| 4080 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) != |
| 4081 | FUNCTION_INST_BR_COND_ABBREV) |
| 4082 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 4083 | } |
| 4084 | { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK. |
| 4085 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4086 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE)); |
| 4087 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) != |
| 4088 | FUNCTION_INST_UNREACHABLE_ABBREV) |
| 4089 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 4090 | } |
| 4091 | { |
| 4092 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4093 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP)); |
| 4094 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3)); // flags |
| 4095 | Abbv->Add(OpInfo: TypeAbbrevOp); // dest ty |
| 4096 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 4097 | Abbv->Add(OpInfo: ValAbbrevOp); |
| 4098 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) != |
| 4099 | FUNCTION_INST_GEP_ABBREV) |
| 4100 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 4101 | } |
| 4102 | { |
| 4103 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4104 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CMP2)); |
| 4105 | Abbv->Add(OpInfo: ValAbbrevOp); // op0 |
| 4106 | Abbv->Add(OpInfo: ValAbbrevOp); // op1 |
| 4107 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 6)); // pred |
| 4108 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) != |
| 4109 | FUNCTION_INST_CMP_ABBREV) |
| 4110 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 4111 | } |
| 4112 | { |
| 4113 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4114 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CMP2)); |
| 4115 | Abbv->Add(OpInfo: ValAbbrevOp); // op0 |
| 4116 | Abbv->Add(OpInfo: ValAbbrevOp); // op1 |
| 4117 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 6)); // pred |
| 4118 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); // flags |
| 4119 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) != |
| 4120 | FUNCTION_INST_CMP_FLAGS_ABBREV) |
| 4121 | llvm_unreachable("Unexpected abbrev ordering!" ); |
| 4122 | } |
| 4123 | { |
| 4124 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4125 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE)); |
| 4126 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // dbgloc |
| 4127 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // var |
| 4128 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 7)); // expr |
| 4129 | Abbv->Add(OpInfo: ValAbbrevOp); // val |
| 4130 | if (Stream.EmitBlockInfoAbbrev(BlockID: bitc::FUNCTION_BLOCK_ID, Abbv) != |
| 4131 | FUNCTION_DEBUG_RECORD_VALUE_ABBREV) |
| 4132 | llvm_unreachable("Unexpected abbrev ordering! 1" ); |
| 4133 | } |
| 4134 | Stream.ExitBlock(); |
| 4135 | } |
| 4136 | |
| 4137 | /// Write the module path strings, currently only used when generating |
| 4138 | /// a combined index file. |
| 4139 | void IndexBitcodeWriter::writeModStrings() { |
| 4140 | Stream.EnterSubblock(BlockID: bitc::MODULE_STRTAB_BLOCK_ID, CodeLen: 3); |
| 4141 | |
| 4142 | // TODO: See which abbrev sizes we actually need to emit |
| 4143 | |
| 4144 | // 8-bit fixed-width MST_ENTRY strings. |
| 4145 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4146 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); |
| 4147 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 4148 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 4149 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8)); |
| 4150 | unsigned Abbrev8Bit = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4151 | |
| 4152 | // 7-bit fixed width MST_ENTRY strings. |
| 4153 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4154 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); |
| 4155 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 4156 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 4157 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); |
| 4158 | unsigned Abbrev7Bit = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4159 | |
| 4160 | // 6-bit char6 MST_ENTRY strings. |
| 4161 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4162 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::MST_CODE_ENTRY)); |
| 4163 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 4164 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 4165 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); |
| 4166 | unsigned Abbrev6Bit = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4167 | |
| 4168 | // Module Hash, 160 bits SHA1. Optionally, emitted after each MST_CODE_ENTRY. |
| 4169 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4170 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::MST_CODE_HASH)); |
| 4171 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); |
| 4172 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); |
| 4173 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); |
| 4174 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); |
| 4175 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); |
| 4176 | unsigned AbbrevHash = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4177 | |
| 4178 | SmallVector<unsigned, 64> Vals; |
| 4179 | forEachModule(Callback: [&](const StringMapEntry<ModuleHash> &MPSE) { |
| 4180 | StringRef Key = MPSE.getKey(); |
| 4181 | const auto &Hash = MPSE.getValue(); |
| 4182 | StringEncoding Bits = getStringEncoding(Str: Key); |
| 4183 | unsigned AbbrevToUse = Abbrev8Bit; |
| 4184 | if (Bits == SE_Char6) |
| 4185 | AbbrevToUse = Abbrev6Bit; |
| 4186 | else if (Bits == SE_Fixed7) |
| 4187 | AbbrevToUse = Abbrev7Bit; |
| 4188 | |
| 4189 | auto ModuleId = ModuleIdMap.size(); |
| 4190 | ModuleIdMap[Key] = ModuleId; |
| 4191 | Vals.push_back(Elt: ModuleId); |
| 4192 | Vals.append(in_start: Key.begin(), in_end: Key.end()); |
| 4193 | |
| 4194 | // Emit the finished record. |
| 4195 | Stream.EmitRecord(Code: bitc::MST_CODE_ENTRY, Vals, Abbrev: AbbrevToUse); |
| 4196 | |
| 4197 | // Emit an optional hash for the module now |
| 4198 | if (llvm::any_of(Range: Hash, P: [](uint32_t H) { return H; })) { |
| 4199 | Vals.assign(in_start: Hash.begin(), in_end: Hash.end()); |
| 4200 | // Emit the hash record. |
| 4201 | Stream.EmitRecord(Code: bitc::MST_CODE_HASH, Vals, Abbrev: AbbrevHash); |
| 4202 | } |
| 4203 | |
| 4204 | Vals.clear(); |
| 4205 | }); |
| 4206 | Stream.ExitBlock(); |
| 4207 | } |
| 4208 | |
| 4209 | /// Write the function type metadata related records that need to appear before |
| 4210 | /// a function summary entry (whether per-module or combined). |
| 4211 | template <typename Fn> |
| 4212 | static void writeFunctionTypeMetadataRecords(BitstreamWriter &Stream, |
| 4213 | FunctionSummary *FS, |
| 4214 | Fn GetValueID) { |
| 4215 | if (!FS->type_tests().empty()) |
| 4216 | Stream.EmitRecord(Code: bitc::FS_TYPE_TESTS, Vals: FS->type_tests()); |
| 4217 | |
| 4218 | SmallVector<uint64_t, 64> Record; |
| 4219 | |
| 4220 | auto WriteVFuncIdVec = [&](uint64_t Ty, |
| 4221 | ArrayRef<FunctionSummary::VFuncId> VFs) { |
| 4222 | if (VFs.empty()) |
| 4223 | return; |
| 4224 | Record.clear(); |
| 4225 | for (auto &VF : VFs) { |
| 4226 | Record.push_back(Elt: VF.GUID); |
| 4227 | Record.push_back(Elt: VF.Offset); |
| 4228 | } |
| 4229 | Stream.EmitRecord(Code: Ty, Vals: Record); |
| 4230 | }; |
| 4231 | |
| 4232 | WriteVFuncIdVec(bitc::FS_TYPE_TEST_ASSUME_VCALLS, |
| 4233 | FS->type_test_assume_vcalls()); |
| 4234 | WriteVFuncIdVec(bitc::FS_TYPE_CHECKED_LOAD_VCALLS, |
| 4235 | FS->type_checked_load_vcalls()); |
| 4236 | |
| 4237 | auto WriteConstVCallVec = [&](uint64_t Ty, |
| 4238 | ArrayRef<FunctionSummary::ConstVCall> VCs) { |
| 4239 | for (auto &VC : VCs) { |
| 4240 | Record.clear(); |
| 4241 | Record.push_back(Elt: VC.VFunc.GUID); |
| 4242 | Record.push_back(Elt: VC.VFunc.Offset); |
| 4243 | llvm::append_range(C&: Record, R: VC.Args); |
| 4244 | Stream.EmitRecord(Code: Ty, Vals: Record); |
| 4245 | } |
| 4246 | }; |
| 4247 | |
| 4248 | WriteConstVCallVec(bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL, |
| 4249 | FS->type_test_assume_const_vcalls()); |
| 4250 | WriteConstVCallVec(bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL, |
| 4251 | FS->type_checked_load_const_vcalls()); |
| 4252 | |
| 4253 | auto WriteRange = [&](ConstantRange Range) { |
| 4254 | Range = Range.sextOrTrunc(BitWidth: FunctionSummary::ParamAccess::RangeWidth); |
| 4255 | assert(Range.getLower().getNumWords() == 1); |
| 4256 | assert(Range.getUpper().getNumWords() == 1); |
| 4257 | emitSignedInt64(Vals&: Record, V: *Range.getLower().getRawData()); |
| 4258 | emitSignedInt64(Vals&: Record, V: *Range.getUpper().getRawData()); |
| 4259 | }; |
| 4260 | |
| 4261 | if (!FS->paramAccesses().empty()) { |
| 4262 | Record.clear(); |
| 4263 | for (auto &Arg : FS->paramAccesses()) { |
| 4264 | size_t UndoSize = Record.size(); |
| 4265 | Record.push_back(Elt: Arg.ParamNo); |
| 4266 | WriteRange(Arg.Use); |
| 4267 | Record.push_back(Elt: Arg.Calls.size()); |
| 4268 | for (auto &Call : Arg.Calls) { |
| 4269 | Record.push_back(Elt: Call.ParamNo); |
| 4270 | std::optional<unsigned> ValueID = GetValueID(Call.Callee); |
| 4271 | if (!ValueID) { |
| 4272 | // If ValueID is unknown we can't drop just this call, we must drop |
| 4273 | // entire parameter. |
| 4274 | Record.resize(N: UndoSize); |
| 4275 | break; |
| 4276 | } |
| 4277 | Record.push_back(Elt: *ValueID); |
| 4278 | WriteRange(Call.Offsets); |
| 4279 | } |
| 4280 | } |
| 4281 | if (!Record.empty()) |
| 4282 | Stream.EmitRecord(Code: bitc::FS_PARAM_ACCESS, Vals: Record); |
| 4283 | } |
| 4284 | } |
| 4285 | |
| 4286 | /// Collect type IDs from type tests used by function. |
| 4287 | static void |
| 4288 | getReferencedTypeIds(FunctionSummary *FS, |
| 4289 | std::set<GlobalValue::GUID> &ReferencedTypeIds) { |
| 4290 | if (!FS->type_tests().empty()) |
| 4291 | for (auto &TT : FS->type_tests()) |
| 4292 | ReferencedTypeIds.insert(x: TT); |
| 4293 | |
| 4294 | auto GetReferencedTypesFromVFuncIdVec = |
| 4295 | [&](ArrayRef<FunctionSummary::VFuncId> VFs) { |
| 4296 | for (auto &VF : VFs) |
| 4297 | ReferencedTypeIds.insert(x: VF.GUID); |
| 4298 | }; |
| 4299 | |
| 4300 | GetReferencedTypesFromVFuncIdVec(FS->type_test_assume_vcalls()); |
| 4301 | GetReferencedTypesFromVFuncIdVec(FS->type_checked_load_vcalls()); |
| 4302 | |
| 4303 | auto GetReferencedTypesFromConstVCallVec = |
| 4304 | [&](ArrayRef<FunctionSummary::ConstVCall> VCs) { |
| 4305 | for (auto &VC : VCs) |
| 4306 | ReferencedTypeIds.insert(x: VC.VFunc.GUID); |
| 4307 | }; |
| 4308 | |
| 4309 | GetReferencedTypesFromConstVCallVec(FS->type_test_assume_const_vcalls()); |
| 4310 | GetReferencedTypesFromConstVCallVec(FS->type_checked_load_const_vcalls()); |
| 4311 | } |
| 4312 | |
| 4313 | static void writeWholeProgramDevirtResolutionByArg( |
| 4314 | SmallVector<uint64_t, 64> &NameVals, const std::vector<uint64_t> &args, |
| 4315 | const WholeProgramDevirtResolution::ByArg &ByArg) { |
| 4316 | NameVals.push_back(Elt: args.size()); |
| 4317 | llvm::append_range(C&: NameVals, R: args); |
| 4318 | |
| 4319 | NameVals.push_back(Elt: ByArg.TheKind); |
| 4320 | NameVals.push_back(Elt: ByArg.Info); |
| 4321 | NameVals.push_back(Elt: ByArg.Byte); |
| 4322 | NameVals.push_back(Elt: ByArg.Bit); |
| 4323 | } |
| 4324 | |
| 4325 | static void writeWholeProgramDevirtResolution( |
| 4326 | SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, |
| 4327 | uint64_t Id, const WholeProgramDevirtResolution &Wpd) { |
| 4328 | NameVals.push_back(Elt: Id); |
| 4329 | |
| 4330 | NameVals.push_back(Elt: Wpd.TheKind); |
| 4331 | NameVals.push_back(Elt: StrtabBuilder.add(S: Wpd.SingleImplName)); |
| 4332 | NameVals.push_back(Elt: Wpd.SingleImplName.size()); |
| 4333 | |
| 4334 | NameVals.push_back(Elt: Wpd.ResByArg.size()); |
| 4335 | for (auto &A : Wpd.ResByArg) |
| 4336 | writeWholeProgramDevirtResolutionByArg(NameVals, args: A.first, ByArg: A.second); |
| 4337 | } |
| 4338 | |
| 4339 | static void writeTypeIdSummaryRecord(SmallVector<uint64_t, 64> &NameVals, |
| 4340 | StringTableBuilder &StrtabBuilder, |
| 4341 | StringRef Id, |
| 4342 | const TypeIdSummary &Summary) { |
| 4343 | NameVals.push_back(Elt: StrtabBuilder.add(S: Id)); |
| 4344 | NameVals.push_back(Elt: Id.size()); |
| 4345 | |
| 4346 | NameVals.push_back(Elt: Summary.TTRes.TheKind); |
| 4347 | NameVals.push_back(Elt: Summary.TTRes.SizeM1BitWidth); |
| 4348 | NameVals.push_back(Elt: Summary.TTRes.AlignLog2); |
| 4349 | NameVals.push_back(Elt: Summary.TTRes.SizeM1); |
| 4350 | NameVals.push_back(Elt: Summary.TTRes.BitMask); |
| 4351 | NameVals.push_back(Elt: Summary.TTRes.InlineBits); |
| 4352 | |
| 4353 | for (auto &W : Summary.WPDRes) |
| 4354 | writeWholeProgramDevirtResolution(NameVals, StrtabBuilder, Id: W.first, |
| 4355 | Wpd: W.second); |
| 4356 | } |
| 4357 | |
| 4358 | static void writeTypeIdCompatibleVtableSummaryRecord( |
| 4359 | SmallVector<uint64_t, 64> &NameVals, StringTableBuilder &StrtabBuilder, |
| 4360 | StringRef Id, const TypeIdCompatibleVtableInfo &Summary, |
| 4361 | ValueEnumerator &VE) { |
| 4362 | NameVals.push_back(Elt: StrtabBuilder.add(S: Id)); |
| 4363 | NameVals.push_back(Elt: Id.size()); |
| 4364 | |
| 4365 | for (auto &P : Summary) { |
| 4366 | NameVals.push_back(Elt: P.AddressPointOffset); |
| 4367 | NameVals.push_back(Elt: VE.getValueID(V: P.VTableVI.getValue())); |
| 4368 | } |
| 4369 | } |
| 4370 | |
| 4371 | // Adds the allocation contexts to the CallStacks map. We simply use the |
| 4372 | // size at the time the context was added as the CallStackId. This works because |
| 4373 | // when we look up the call stacks later on we process the function summaries |
| 4374 | // and their allocation records in the same exact order. |
| 4375 | static void collectMemProfCallStacks( |
| 4376 | FunctionSummary *FS, std::function<LinearFrameId(unsigned)> GetStackIndex, |
| 4377 | MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> &CallStacks) { |
| 4378 | // The interfaces in ProfileData/MemProf.h use a type alias for a stack frame |
| 4379 | // id offset into the index of the full stack frames. The ModuleSummaryIndex |
| 4380 | // currently uses unsigned. Make sure these stay in sync. |
| 4381 | static_assert(std::is_same_v<LinearFrameId, unsigned>); |
| 4382 | for (auto &AI : FS->allocs()) { |
| 4383 | for (auto &MIB : AI.MIBs) { |
| 4384 | SmallVector<unsigned> StackIdIndices; |
| 4385 | StackIdIndices.reserve(N: MIB.StackIdIndices.size()); |
| 4386 | for (auto Id : MIB.StackIdIndices) |
| 4387 | StackIdIndices.push_back(Elt: GetStackIndex(Id)); |
| 4388 | // The CallStackId is the size at the time this context was inserted. |
| 4389 | CallStacks.insert(KV: {CallStacks.size(), StackIdIndices}); |
| 4390 | } |
| 4391 | } |
| 4392 | } |
| 4393 | |
| 4394 | // Build the radix tree from the accumulated CallStacks, write out the resulting |
| 4395 | // linearized radix tree array, and return the map of call stack positions into |
| 4396 | // this array for use when writing the allocation records. The returned map is |
| 4397 | // indexed by a CallStackId which in this case is implicitly determined by the |
| 4398 | // order of function summaries and their allocation infos being written. |
| 4399 | static DenseMap<CallStackId, LinearCallStackId> writeMemoryProfileRadixTree( |
| 4400 | MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> &&CallStacks, |
| 4401 | BitstreamWriter &Stream, unsigned RadixAbbrev) { |
| 4402 | assert(!CallStacks.empty()); |
| 4403 | DenseMap<unsigned, FrameStat> FrameHistogram = |
| 4404 | computeFrameHistogram<LinearFrameId>(MemProfCallStackData&: CallStacks); |
| 4405 | CallStackRadixTreeBuilder<LinearFrameId> Builder; |
| 4406 | // We don't need a MemProfFrameIndexes map as we have already converted the |
| 4407 | // full stack id hash to a linear offset into the StackIds array. |
| 4408 | Builder.build(MemProfCallStackData: std::move(CallStacks), /*MemProfFrameIndexes=*/nullptr, |
| 4409 | FrameHistogram); |
| 4410 | Stream.EmitRecord(Code: bitc::FS_CONTEXT_RADIX_TREE_ARRAY, Vals: Builder.getRadixArray(), |
| 4411 | Abbrev: RadixAbbrev); |
| 4412 | return Builder.takeCallStackPos(); |
| 4413 | } |
| 4414 | |
| 4415 | static void writeFunctionHeapProfileRecords( |
| 4416 | BitstreamWriter &Stream, FunctionSummary *FS, unsigned CallsiteAbbrev, |
| 4417 | unsigned AllocAbbrev, unsigned ContextIdAbbvId, bool PerModule, |
| 4418 | std::function<unsigned(const ValueInfo &VI)> GetValueID, |
| 4419 | std::function<unsigned(unsigned)> GetStackIndex, |
| 4420 | bool WriteContextSizeInfoIndex, |
| 4421 | DenseMap<CallStackId, LinearCallStackId> &CallStackPos, |
| 4422 | CallStackId &CallStackCount) { |
| 4423 | SmallVector<uint64_t> Record; |
| 4424 | |
| 4425 | for (auto &CI : FS->callsites()) { |
| 4426 | Record.clear(); |
| 4427 | // Per module callsite clones should always have a single entry of |
| 4428 | // value 0. |
| 4429 | assert(!PerModule || (CI.Clones.size() == 1 && CI.Clones[0] == 0)); |
| 4430 | Record.push_back(Elt: GetValueID(CI.Callee)); |
| 4431 | if (!PerModule) { |
| 4432 | Record.push_back(Elt: CI.StackIdIndices.size()); |
| 4433 | Record.push_back(Elt: CI.Clones.size()); |
| 4434 | } |
| 4435 | for (auto Id : CI.StackIdIndices) |
| 4436 | Record.push_back(Elt: GetStackIndex(Id)); |
| 4437 | if (!PerModule) |
| 4438 | llvm::append_range(C&: Record, R: CI.Clones); |
| 4439 | Stream.EmitRecord(Code: PerModule ? bitc::FS_PERMODULE_CALLSITE_INFO |
| 4440 | : bitc::FS_COMBINED_CALLSITE_INFO, |
| 4441 | Vals: Record, Abbrev: CallsiteAbbrev); |
| 4442 | } |
| 4443 | |
| 4444 | for (auto &AI : FS->allocs()) { |
| 4445 | Record.clear(); |
| 4446 | // Per module alloc versions should always have a single entry of |
| 4447 | // value 0. |
| 4448 | assert(!PerModule || (AI.Versions.size() == 1 && AI.Versions[0] == 0)); |
| 4449 | Record.push_back(Elt: AI.MIBs.size()); |
| 4450 | if (!PerModule) |
| 4451 | Record.push_back(Elt: AI.Versions.size()); |
| 4452 | for (auto &MIB : AI.MIBs) { |
| 4453 | Record.push_back(Elt: (uint8_t)MIB.AllocType); |
| 4454 | // The per-module summary always needs to include the alloc context, as we |
| 4455 | // use it during the thin link. For the combined index it is optional (see |
| 4456 | // comments where CombinedIndexMemProfContext is defined). |
| 4457 | if (PerModule || CombinedIndexMemProfContext) { |
| 4458 | // Record the index into the radix tree array for this context. |
| 4459 | assert(CallStackCount <= CallStackPos.size()); |
| 4460 | Record.push_back(Elt: CallStackPos[CallStackCount++]); |
| 4461 | } |
| 4462 | } |
| 4463 | if (!PerModule) |
| 4464 | llvm::append_range(C&: Record, R: AI.Versions); |
| 4465 | assert(AI.ContextSizeInfos.empty() || |
| 4466 | AI.ContextSizeInfos.size() == AI.MIBs.size()); |
| 4467 | // Optionally emit the context size information if it exists. |
| 4468 | if (WriteContextSizeInfoIndex && !AI.ContextSizeInfos.empty()) { |
| 4469 | // The abbreviation id for the context ids record should have been created |
| 4470 | // if we are emitting the per-module index, which is where we write this |
| 4471 | // info. |
| 4472 | assert(ContextIdAbbvId); |
| 4473 | SmallVector<uint32_t> ContextIds; |
| 4474 | // At least one context id per ContextSizeInfos entry (MIB), broken into 2 |
| 4475 | // halves. |
| 4476 | ContextIds.reserve(N: AI.ContextSizeInfos.size() * 2); |
| 4477 | for (auto &Infos : AI.ContextSizeInfos) { |
| 4478 | Record.push_back(Elt: Infos.size()); |
| 4479 | for (auto [FullStackId, TotalSize] : Infos) { |
| 4480 | // The context ids are emitted separately as a fixed width array, |
| 4481 | // which is more efficient than a VBR given that these hashes are |
| 4482 | // typically close to 64-bits. The max fixed width entry is 32 bits so |
| 4483 | // it is split into 2. |
| 4484 | ContextIds.push_back(Elt: static_cast<uint32_t>(FullStackId >> 32)); |
| 4485 | ContextIds.push_back(Elt: static_cast<uint32_t>(FullStackId)); |
| 4486 | Record.push_back(Elt: TotalSize); |
| 4487 | } |
| 4488 | } |
| 4489 | // The context ids are expected by the reader to immediately precede the |
| 4490 | // associated alloc info record. |
| 4491 | Stream.EmitRecord(Code: bitc::FS_ALLOC_CONTEXT_IDS, Vals: ContextIds, |
| 4492 | Abbrev: ContextIdAbbvId); |
| 4493 | } |
| 4494 | Stream.EmitRecord(Code: PerModule |
| 4495 | ? bitc::FS_PERMODULE_ALLOC_INFO |
| 4496 | : (CombinedIndexMemProfContext |
| 4497 | ? bitc::FS_COMBINED_ALLOC_INFO |
| 4498 | : bitc::FS_COMBINED_ALLOC_INFO_NO_CONTEXT), |
| 4499 | Vals: Record, Abbrev: AllocAbbrev); |
| 4500 | } |
| 4501 | } |
| 4502 | |
| 4503 | // Helper to emit a single function summary record. |
| 4504 | void ModuleBitcodeWriterBase::writePerModuleFunctionSummaryRecord( |
| 4505 | SmallVector<uint64_t, 64> &NameVals, GlobalValueSummary *Summary, |
| 4506 | unsigned ValueID, unsigned FSCallsRelBFAbbrev, |
| 4507 | unsigned FSCallsProfileAbbrev, unsigned CallsiteAbbrev, |
| 4508 | unsigned AllocAbbrev, unsigned ContextIdAbbvId, const Function &F, |
| 4509 | DenseMap<CallStackId, LinearCallStackId> &CallStackPos, |
| 4510 | CallStackId &CallStackCount) { |
| 4511 | NameVals.push_back(Elt: ValueID); |
| 4512 | |
| 4513 | FunctionSummary *FS = cast<FunctionSummary>(Val: Summary); |
| 4514 | |
| 4515 | writeFunctionTypeMetadataRecords( |
| 4516 | Stream, FS, GetValueID: [&](const ValueInfo &VI) -> std::optional<unsigned> { |
| 4517 | return {VE.getValueID(V: VI.getValue())}; |
| 4518 | }); |
| 4519 | |
| 4520 | writeFunctionHeapProfileRecords( |
| 4521 | Stream, FS, CallsiteAbbrev, AllocAbbrev, ContextIdAbbvId, |
| 4522 | /*PerModule*/ true, |
| 4523 | /*GetValueId*/ GetValueID: [&](const ValueInfo &VI) { return getValueId(VI); }, |
| 4524 | /*GetStackIndex*/ [&](unsigned I) { return I; }, |
| 4525 | /*WriteContextSizeInfoIndex*/ true, CallStackPos, CallStackCount); |
| 4526 | |
| 4527 | auto SpecialRefCnts = FS->specialRefCounts(); |
| 4528 | NameVals.push_back(Elt: getEncodedGVSummaryFlags(Flags: FS->flags())); |
| 4529 | NameVals.push_back(Elt: FS->instCount()); |
| 4530 | NameVals.push_back(Elt: getEncodedFFlags(Flags: FS->fflags())); |
| 4531 | NameVals.push_back(Elt: FS->refs().size()); |
| 4532 | NameVals.push_back(Elt: SpecialRefCnts.first); // rorefcnt |
| 4533 | NameVals.push_back(Elt: SpecialRefCnts.second); // worefcnt |
| 4534 | |
| 4535 | for (auto &RI : FS->refs()) |
| 4536 | NameVals.push_back(Elt: getValueId(VI: RI)); |
| 4537 | |
| 4538 | const bool UseRelBFRecord = |
| 4539 | WriteRelBFToSummary && !F.hasProfileData() && |
| 4540 | ForceSummaryEdgesCold == FunctionSummary::FSHT_None; |
| 4541 | for (auto &ECI : FS->calls()) { |
| 4542 | NameVals.push_back(Elt: getValueId(VI: ECI.first)); |
| 4543 | if (UseRelBFRecord) |
| 4544 | NameVals.push_back(Elt: getEncodedRelBFCallEdgeInfo(CI: ECI.second)); |
| 4545 | else |
| 4546 | NameVals.push_back(Elt: getEncodedHotnessCallEdgeInfo(CI: ECI.second)); |
| 4547 | } |
| 4548 | |
| 4549 | unsigned FSAbbrev = |
| 4550 | (UseRelBFRecord ? FSCallsRelBFAbbrev : FSCallsProfileAbbrev); |
| 4551 | unsigned Code = |
| 4552 | (UseRelBFRecord ? bitc::FS_PERMODULE_RELBF : bitc::FS_PERMODULE_PROFILE); |
| 4553 | |
| 4554 | // Emit the finished record. |
| 4555 | Stream.EmitRecord(Code, Vals: NameVals, Abbrev: FSAbbrev); |
| 4556 | NameVals.clear(); |
| 4557 | } |
| 4558 | |
| 4559 | // Collect the global value references in the given variable's initializer, |
| 4560 | // and emit them in a summary record. |
| 4561 | void ModuleBitcodeWriterBase::writeModuleLevelReferences( |
| 4562 | const GlobalVariable &V, SmallVector<uint64_t, 64> &NameVals, |
| 4563 | unsigned FSModRefsAbbrev, unsigned FSModVTableRefsAbbrev) { |
| 4564 | auto VI = Index->getValueInfo(GUID: V.getGUID()); |
| 4565 | if (!VI || VI.getSummaryList().empty()) { |
| 4566 | // Only declarations should not have a summary (a declaration might however |
| 4567 | // have a summary if the def was in module level asm). |
| 4568 | assert(V.isDeclaration()); |
| 4569 | return; |
| 4570 | } |
| 4571 | auto *Summary = VI.getSummaryList()[0].get(); |
| 4572 | NameVals.push_back(Elt: VE.getValueID(V: &V)); |
| 4573 | GlobalVarSummary *VS = cast<GlobalVarSummary>(Val: Summary); |
| 4574 | NameVals.push_back(Elt: getEncodedGVSummaryFlags(Flags: VS->flags())); |
| 4575 | NameVals.push_back(Elt: getEncodedGVarFlags(Flags: VS->varflags())); |
| 4576 | |
| 4577 | auto VTableFuncs = VS->vTableFuncs(); |
| 4578 | if (!VTableFuncs.empty()) |
| 4579 | NameVals.push_back(Elt: VS->refs().size()); |
| 4580 | |
| 4581 | unsigned SizeBeforeRefs = NameVals.size(); |
| 4582 | for (auto &RI : VS->refs()) |
| 4583 | NameVals.push_back(Elt: VE.getValueID(V: RI.getValue())); |
| 4584 | // Sort the refs for determinism output, the vector returned by FS->refs() has |
| 4585 | // been initialized from a DenseSet. |
| 4586 | llvm::sort(C: drop_begin(RangeOrContainer&: NameVals, N: SizeBeforeRefs)); |
| 4587 | |
| 4588 | if (VTableFuncs.empty()) |
| 4589 | Stream.EmitRecord(Code: bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS, Vals: NameVals, |
| 4590 | Abbrev: FSModRefsAbbrev); |
| 4591 | else { |
| 4592 | // VTableFuncs pairs should already be sorted by offset. |
| 4593 | for (auto &P : VTableFuncs) { |
| 4594 | NameVals.push_back(Elt: VE.getValueID(V: P.FuncVI.getValue())); |
| 4595 | NameVals.push_back(Elt: P.VTableOffset); |
| 4596 | } |
| 4597 | |
| 4598 | Stream.EmitRecord(Code: bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS, Vals: NameVals, |
| 4599 | Abbrev: FSModVTableRefsAbbrev); |
| 4600 | } |
| 4601 | NameVals.clear(); |
| 4602 | } |
| 4603 | |
| 4604 | /// Emit the per-module summary section alongside the rest of |
| 4605 | /// the module's bitcode. |
| 4606 | void ModuleBitcodeWriterBase::writePerModuleGlobalValueSummary() { |
| 4607 | // By default we compile with ThinLTO if the module has a summary, but the |
| 4608 | // client can request full LTO with a module flag. |
| 4609 | bool IsThinLTO = true; |
| 4610 | if (auto *MD = |
| 4611 | mdconst::extract_or_null<ConstantInt>(MD: M.getModuleFlag(Key: "ThinLTO" ))) |
| 4612 | IsThinLTO = MD->getZExtValue(); |
| 4613 | Stream.EnterSubblock(BlockID: IsThinLTO ? bitc::GLOBALVAL_SUMMARY_BLOCK_ID |
| 4614 | : bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID, |
| 4615 | CodeLen: 4); |
| 4616 | |
| 4617 | Stream.EmitRecord( |
| 4618 | Code: bitc::FS_VERSION, |
| 4619 | Vals: ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); |
| 4620 | |
| 4621 | // Write the index flags. |
| 4622 | uint64_t Flags = 0; |
| 4623 | // Bits 1-3 are set only in the combined index, skip them. |
| 4624 | if (Index->enableSplitLTOUnit()) |
| 4625 | Flags |= 0x8; |
| 4626 | if (Index->hasUnifiedLTO()) |
| 4627 | Flags |= 0x200; |
| 4628 | |
| 4629 | Stream.EmitRecord(Code: bitc::FS_FLAGS, Vals: ArrayRef<uint64_t>{Flags}); |
| 4630 | |
| 4631 | if (Index->begin() == Index->end()) { |
| 4632 | Stream.ExitBlock(); |
| 4633 | return; |
| 4634 | } |
| 4635 | |
| 4636 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4637 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); |
| 4638 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); |
| 4639 | // GUIDS often use up most of 64-bits, so encode as two Fixed 32. |
| 4640 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); |
| 4641 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); |
| 4642 | unsigned ValueGuidAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4643 | |
| 4644 | for (const auto &GVI : valueIds()) { |
| 4645 | Stream.EmitRecord(Code: bitc::FS_VALUE_GUID, |
| 4646 | Vals: ArrayRef<uint32_t>{GVI.second, |
| 4647 | static_cast<uint32_t>(GVI.first >> 32), |
| 4648 | static_cast<uint32_t>(GVI.first)}, |
| 4649 | Abbrev: ValueGuidAbbrev); |
| 4650 | } |
| 4651 | |
| 4652 | if (!Index->stackIds().empty()) { |
| 4653 | auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); |
| 4654 | StackIdAbbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_STACK_IDS)); |
| 4655 | // numids x stackid |
| 4656 | StackIdAbbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 4657 | // The stack ids are hashes that are close to 64 bits in size, so emitting |
| 4658 | // as a pair of 32-bit fixed-width values is more efficient than a VBR. |
| 4659 | StackIdAbbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); |
| 4660 | unsigned StackIdAbbvId = Stream.EmitAbbrev(Abbv: std::move(StackIdAbbv)); |
| 4661 | SmallVector<uint32_t> Vals; |
| 4662 | Vals.reserve(N: Index->stackIds().size() * 2); |
| 4663 | for (auto Id : Index->stackIds()) { |
| 4664 | Vals.push_back(Elt: static_cast<uint32_t>(Id >> 32)); |
| 4665 | Vals.push_back(Elt: static_cast<uint32_t>(Id)); |
| 4666 | } |
| 4667 | Stream.EmitRecord(Code: bitc::FS_STACK_IDS, Vals, Abbrev: StackIdAbbvId); |
| 4668 | } |
| 4669 | |
| 4670 | unsigned ContextIdAbbvId = 0; |
| 4671 | if (metadataMayIncludeContextSizeInfo()) { |
| 4672 | // n x context id |
| 4673 | auto ContextIdAbbv = std::make_shared<BitCodeAbbrev>(); |
| 4674 | ContextIdAbbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_ALLOC_CONTEXT_IDS)); |
| 4675 | ContextIdAbbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 4676 | // The context ids are hashes that are close to 64 bits in size, so emitting |
| 4677 | // as a pair of 32-bit fixed-width values is more efficient than a VBR if we |
| 4678 | // are emitting them for all MIBs. Otherwise we use VBR to better compress 0 |
| 4679 | // values that are expected to more frequently occur in an alloc's memprof |
| 4680 | // summary. |
| 4681 | if (metadataIncludesAllContextSizeInfo()) |
| 4682 | ContextIdAbbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); |
| 4683 | else |
| 4684 | ContextIdAbbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 4685 | ContextIdAbbvId = Stream.EmitAbbrev(Abbv: std::move(ContextIdAbbv)); |
| 4686 | } |
| 4687 | |
| 4688 | // Abbrev for FS_PERMODULE_PROFILE. |
| 4689 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4690 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_PERMODULE_PROFILE)); |
| 4691 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid |
| 4692 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // flags |
| 4693 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount |
| 4694 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags |
| 4695 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs |
| 4696 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt |
| 4697 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt |
| 4698 | // numrefs x valueid, n x (valueid, hotness+tailcall flags) |
| 4699 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 4700 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 4701 | unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4702 | |
| 4703 | // Abbrev for FS_PERMODULE_RELBF. |
| 4704 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4705 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_PERMODULE_RELBF)); |
| 4706 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid |
| 4707 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags |
| 4708 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount |
| 4709 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags |
| 4710 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs |
| 4711 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt |
| 4712 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt |
| 4713 | // numrefs x valueid, n x (valueid, rel_block_freq+tailcall]) |
| 4714 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 4715 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 4716 | unsigned FSCallsRelBFAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4717 | |
| 4718 | // Abbrev for FS_PERMODULE_GLOBALVAR_INIT_REFS. |
| 4719 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4720 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS)); |
| 4721 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid |
| 4722 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags |
| 4723 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids |
| 4724 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 4725 | unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4726 | |
| 4727 | // Abbrev for FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS. |
| 4728 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4729 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS)); |
| 4730 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid |
| 4731 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags |
| 4732 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs |
| 4733 | // numrefs x valueid, n x (valueid , offset) |
| 4734 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 4735 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 4736 | unsigned FSModVTableRefsAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4737 | |
| 4738 | // Abbrev for FS_ALIAS. |
| 4739 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4740 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_ALIAS)); |
| 4741 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid |
| 4742 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags |
| 4743 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid |
| 4744 | unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4745 | |
| 4746 | // Abbrev for FS_TYPE_ID_METADATA |
| 4747 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4748 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_TYPE_ID_METADATA)); |
| 4749 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid strtab index |
| 4750 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // typeid length |
| 4751 | // n x (valueid , offset) |
| 4752 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 4753 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 4754 | unsigned TypeIdCompatibleVtableAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4755 | |
| 4756 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4757 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_PERMODULE_CALLSITE_INFO)); |
| 4758 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid |
| 4759 | // n x stackidindex |
| 4760 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 4761 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 4762 | unsigned CallsiteAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4763 | |
| 4764 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4765 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_PERMODULE_ALLOC_INFO)); |
| 4766 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib |
| 4767 | // n x (alloc type, context radix tree index) |
| 4768 | // optional: nummib x (numcontext x total size) |
| 4769 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 4770 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 4771 | unsigned AllocAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4772 | |
| 4773 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4774 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_CONTEXT_RADIX_TREE_ARRAY)); |
| 4775 | // n x entry |
| 4776 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 4777 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 4778 | unsigned RadixAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4779 | |
| 4780 | // First walk through all the functions and collect the allocation contexts in |
| 4781 | // their associated summaries, for use in constructing a radix tree of |
| 4782 | // contexts. Note that we need to do this in the same order as the functions |
| 4783 | // are processed further below since the call stack positions in the resulting |
| 4784 | // radix tree array are identified based on this order. |
| 4785 | MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> CallStacks; |
| 4786 | for (const Function &F : M) { |
| 4787 | // Summary emission does not support anonymous functions, they have to be |
| 4788 | // renamed using the anonymous function renaming pass. |
| 4789 | if (!F.hasName()) |
| 4790 | report_fatal_error(reason: "Unexpected anonymous function when writing summary" ); |
| 4791 | |
| 4792 | ValueInfo VI = Index->getValueInfo(GUID: F.getGUID()); |
| 4793 | if (!VI || VI.getSummaryList().empty()) { |
| 4794 | // Only declarations should not have a summary (a declaration might |
| 4795 | // however have a summary if the def was in module level asm). |
| 4796 | assert(F.isDeclaration()); |
| 4797 | continue; |
| 4798 | } |
| 4799 | auto *Summary = VI.getSummaryList()[0].get(); |
| 4800 | FunctionSummary *FS = cast<FunctionSummary>(Val: Summary); |
| 4801 | collectMemProfCallStacks( |
| 4802 | FS, /*GetStackIndex*/ [](unsigned I) { return I; }, CallStacks); |
| 4803 | } |
| 4804 | // Finalize the radix tree, write it out, and get the map of positions in the |
| 4805 | // linearized tree array. |
| 4806 | DenseMap<CallStackId, LinearCallStackId> CallStackPos; |
| 4807 | if (!CallStacks.empty()) { |
| 4808 | CallStackPos = |
| 4809 | writeMemoryProfileRadixTree(CallStacks: std::move(CallStacks), Stream, RadixAbbrev); |
| 4810 | } |
| 4811 | |
| 4812 | // Keep track of the current index into the CallStackPos map. |
| 4813 | CallStackId CallStackCount = 0; |
| 4814 | |
| 4815 | SmallVector<uint64_t, 64> NameVals; |
| 4816 | // Iterate over the list of functions instead of the Index to |
| 4817 | // ensure the ordering is stable. |
| 4818 | for (const Function &F : M) { |
| 4819 | // Summary emission does not support anonymous functions, they have to |
| 4820 | // renamed using the anonymous function renaming pass. |
| 4821 | if (!F.hasName()) |
| 4822 | report_fatal_error(reason: "Unexpected anonymous function when writing summary" ); |
| 4823 | |
| 4824 | ValueInfo VI = Index->getValueInfo(GUID: F.getGUID()); |
| 4825 | if (!VI || VI.getSummaryList().empty()) { |
| 4826 | // Only declarations should not have a summary (a declaration might |
| 4827 | // however have a summary if the def was in module level asm). |
| 4828 | assert(F.isDeclaration()); |
| 4829 | continue; |
| 4830 | } |
| 4831 | auto *Summary = VI.getSummaryList()[0].get(); |
| 4832 | writePerModuleFunctionSummaryRecord( |
| 4833 | NameVals, Summary, ValueID: VE.getValueID(V: &F), FSCallsRelBFAbbrev, |
| 4834 | FSCallsProfileAbbrev, CallsiteAbbrev, AllocAbbrev, ContextIdAbbvId, F, |
| 4835 | CallStackPos, CallStackCount); |
| 4836 | } |
| 4837 | |
| 4838 | // Capture references from GlobalVariable initializers, which are outside |
| 4839 | // of a function scope. |
| 4840 | for (const GlobalVariable &G : M.globals()) |
| 4841 | writeModuleLevelReferences(V: G, NameVals, FSModRefsAbbrev, |
| 4842 | FSModVTableRefsAbbrev); |
| 4843 | |
| 4844 | for (const GlobalAlias &A : M.aliases()) { |
| 4845 | auto *Aliasee = A.getAliaseeObject(); |
| 4846 | // Skip ifunc and nameless functions which don't have an entry in the |
| 4847 | // summary. |
| 4848 | if (!Aliasee->hasName() || isa<GlobalIFunc>(Val: Aliasee)) |
| 4849 | continue; |
| 4850 | auto AliasId = VE.getValueID(V: &A); |
| 4851 | auto AliaseeId = VE.getValueID(V: Aliasee); |
| 4852 | NameVals.push_back(Elt: AliasId); |
| 4853 | auto *Summary = Index->getGlobalValueSummary(GV: A); |
| 4854 | AliasSummary *AS = cast<AliasSummary>(Val: Summary); |
| 4855 | NameVals.push_back(Elt: getEncodedGVSummaryFlags(Flags: AS->flags())); |
| 4856 | NameVals.push_back(Elt: AliaseeId); |
| 4857 | Stream.EmitRecord(Code: bitc::FS_ALIAS, Vals: NameVals, Abbrev: FSAliasAbbrev); |
| 4858 | NameVals.clear(); |
| 4859 | } |
| 4860 | |
| 4861 | for (auto &S : Index->typeIdCompatibleVtableMap()) { |
| 4862 | writeTypeIdCompatibleVtableSummaryRecord(NameVals, StrtabBuilder, Id: S.first, |
| 4863 | Summary: S.second, VE); |
| 4864 | Stream.EmitRecord(Code: bitc::FS_TYPE_ID_METADATA, Vals: NameVals, |
| 4865 | Abbrev: TypeIdCompatibleVtableAbbrev); |
| 4866 | NameVals.clear(); |
| 4867 | } |
| 4868 | |
| 4869 | if (Index->getBlockCount()) |
| 4870 | Stream.EmitRecord(Code: bitc::FS_BLOCK_COUNT, |
| 4871 | Vals: ArrayRef<uint64_t>{Index->getBlockCount()}); |
| 4872 | |
| 4873 | Stream.ExitBlock(); |
| 4874 | } |
| 4875 | |
| 4876 | /// Emit the combined summary section into the combined index file. |
| 4877 | void IndexBitcodeWriter::writeCombinedGlobalValueSummary() { |
| 4878 | Stream.EnterSubblock(BlockID: bitc::GLOBALVAL_SUMMARY_BLOCK_ID, CodeLen: 4); |
| 4879 | Stream.EmitRecord( |
| 4880 | Code: bitc::FS_VERSION, |
| 4881 | Vals: ArrayRef<uint64_t>{ModuleSummaryIndex::BitcodeSummaryVersion}); |
| 4882 | |
| 4883 | // Write the index flags. |
| 4884 | Stream.EmitRecord(Code: bitc::FS_FLAGS, Vals: ArrayRef<uint64_t>{Index.getFlags()}); |
| 4885 | |
| 4886 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4887 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_VALUE_GUID)); |
| 4888 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); |
| 4889 | // GUIDS often use up most of 64-bits, so encode as two Fixed 32. |
| 4890 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); |
| 4891 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); |
| 4892 | unsigned ValueGuidAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4893 | |
| 4894 | for (const auto &GVI : valueIds()) { |
| 4895 | Stream.EmitRecord(Code: bitc::FS_VALUE_GUID, |
| 4896 | Vals: ArrayRef<uint32_t>{GVI.second, |
| 4897 | static_cast<uint32_t>(GVI.first >> 32), |
| 4898 | static_cast<uint32_t>(GVI.first)}, |
| 4899 | Abbrev: ValueGuidAbbrev); |
| 4900 | } |
| 4901 | |
| 4902 | // Write the stack ids used by this index, which will be a subset of those in |
| 4903 | // the full index in the case of distributed indexes. |
| 4904 | if (!StackIds.empty()) { |
| 4905 | auto StackIdAbbv = std::make_shared<BitCodeAbbrev>(); |
| 4906 | StackIdAbbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_STACK_IDS)); |
| 4907 | // numids x stackid |
| 4908 | StackIdAbbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 4909 | // The stack ids are hashes that are close to 64 bits in size, so emitting |
| 4910 | // as a pair of 32-bit fixed-width values is more efficient than a VBR. |
| 4911 | StackIdAbbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 32)); |
| 4912 | unsigned StackIdAbbvId = Stream.EmitAbbrev(Abbv: std::move(StackIdAbbv)); |
| 4913 | SmallVector<uint32_t> Vals; |
| 4914 | Vals.reserve(N: StackIds.size() * 2); |
| 4915 | for (auto Id : StackIds) { |
| 4916 | Vals.push_back(Elt: static_cast<uint32_t>(Id >> 32)); |
| 4917 | Vals.push_back(Elt: static_cast<uint32_t>(Id)); |
| 4918 | } |
| 4919 | Stream.EmitRecord(Code: bitc::FS_STACK_IDS, Vals, Abbrev: StackIdAbbvId); |
| 4920 | } |
| 4921 | |
| 4922 | // Abbrev for FS_COMBINED_PROFILE. |
| 4923 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4924 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_COMBINED_PROFILE)); |
| 4925 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid |
| 4926 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid |
| 4927 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags |
| 4928 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // instcount |
| 4929 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // fflags |
| 4930 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // entrycount |
| 4931 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numrefs |
| 4932 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // rorefcnt |
| 4933 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // worefcnt |
| 4934 | // numrefs x valueid, n x (valueid, hotness+tailcall flags) |
| 4935 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 4936 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 4937 | unsigned FSCallsProfileAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4938 | |
| 4939 | // Abbrev for FS_COMBINED_GLOBALVAR_INIT_REFS. |
| 4940 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4941 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_COMBINED_GLOBALVAR_INIT_REFS)); |
| 4942 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid |
| 4943 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid |
| 4944 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags |
| 4945 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); // valueids |
| 4946 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 4947 | unsigned FSModRefsAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4948 | |
| 4949 | // Abbrev for FS_COMBINED_ALIAS. |
| 4950 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4951 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_COMBINED_ALIAS)); |
| 4952 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid |
| 4953 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // modid |
| 4954 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // flags |
| 4955 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid |
| 4956 | unsigned FSAliasAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4957 | |
| 4958 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4959 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_COMBINED_CALLSITE_INFO)); |
| 4960 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // valueid |
| 4961 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numstackindices |
| 4962 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver |
| 4963 | // numstackindices x stackidindex, numver x version |
| 4964 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 4965 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 4966 | unsigned CallsiteAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4967 | |
| 4968 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 4969 | Abbv->Add(OpInfo: BitCodeAbbrevOp(CombinedIndexMemProfContext |
| 4970 | ? bitc::FS_COMBINED_ALLOC_INFO |
| 4971 | : bitc::FS_COMBINED_ALLOC_INFO_NO_CONTEXT)); |
| 4972 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // nummib |
| 4973 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // numver |
| 4974 | // nummib x (alloc type, context radix tree index), |
| 4975 | // numver x version |
| 4976 | // optional: nummib x total size |
| 4977 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 4978 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 4979 | unsigned AllocAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 4980 | |
| 4981 | auto shouldImportValueAsDecl = [&](GlobalValueSummary *GVS) -> bool { |
| 4982 | if (DecSummaries == nullptr) |
| 4983 | return false; |
| 4984 | return DecSummaries->count(x: GVS); |
| 4985 | }; |
| 4986 | |
| 4987 | // The aliases are emitted as a post-pass, and will point to the value |
| 4988 | // id of the aliasee. Save them in a vector for post-processing. |
| 4989 | SmallVector<AliasSummary *, 64> Aliases; |
| 4990 | |
| 4991 | // Save the value id for each summary for alias emission. |
| 4992 | DenseMap<const GlobalValueSummary *, unsigned> SummaryToValueIdMap; |
| 4993 | |
| 4994 | SmallVector<uint64_t, 64> NameVals; |
| 4995 | |
| 4996 | // Set that will be populated during call to writeFunctionTypeMetadataRecords |
| 4997 | // with the type ids referenced by this index file. |
| 4998 | std::set<GlobalValue::GUID> ReferencedTypeIds; |
| 4999 | |
| 5000 | // For local linkage, we also emit the original name separately |
| 5001 | // immediately after the record. |
| 5002 | auto MaybeEmitOriginalName = [&](GlobalValueSummary &S) { |
| 5003 | // We don't need to emit the original name if we are writing the index for |
| 5004 | // distributed backends (in which case ModuleToSummariesForIndex is |
| 5005 | // non-null). The original name is only needed during the thin link, since |
| 5006 | // for SamplePGO the indirect call targets for local functions have |
| 5007 | // have the original name annotated in profile. |
| 5008 | // Continue to emit it when writing out the entire combined index, which is |
| 5009 | // used in testing the thin link via llvm-lto. |
| 5010 | if (ModuleToSummariesForIndex || !GlobalValue::isLocalLinkage(Linkage: S.linkage())) |
| 5011 | return; |
| 5012 | NameVals.push_back(Elt: S.getOriginalName()); |
| 5013 | Stream.EmitRecord(Code: bitc::FS_COMBINED_ORIGINAL_NAME, Vals: NameVals); |
| 5014 | NameVals.clear(); |
| 5015 | }; |
| 5016 | |
| 5017 | DenseMap<CallStackId, LinearCallStackId> CallStackPos; |
| 5018 | if (CombinedIndexMemProfContext) { |
| 5019 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 5020 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::FS_CONTEXT_RADIX_TREE_ARRAY)); |
| 5021 | // n x entry |
| 5022 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 5023 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); |
| 5024 | unsigned RadixAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 5025 | |
| 5026 | // First walk through all the functions and collect the allocation contexts |
| 5027 | // in their associated summaries, for use in constructing a radix tree of |
| 5028 | // contexts. Note that we need to do this in the same order as the functions |
| 5029 | // are processed further below since the call stack positions in the |
| 5030 | // resulting radix tree array are identified based on this order. |
| 5031 | MapVector<CallStackId, llvm::SmallVector<LinearFrameId>> CallStacks; |
| 5032 | forEachSummary(Callback: [&](GVInfo I, bool IsAliasee) { |
| 5033 | // Don't collect this when invoked for an aliasee, as it is not needed for |
| 5034 | // the alias summary. If the aliasee is to be imported, we will invoke |
| 5035 | // this separately with IsAliasee=false. |
| 5036 | if (IsAliasee) |
| 5037 | return; |
| 5038 | GlobalValueSummary *S = I.second; |
| 5039 | assert(S); |
| 5040 | auto *FS = dyn_cast<FunctionSummary>(Val: S); |
| 5041 | if (!FS) |
| 5042 | return; |
| 5043 | collectMemProfCallStacks( |
| 5044 | FS, |
| 5045 | /*GetStackIndex*/ |
| 5046 | [&](unsigned I) { |
| 5047 | // Get the corresponding index into the list of StackIds actually |
| 5048 | // being written for this combined index (which may be a subset in |
| 5049 | // the case of distributed indexes). |
| 5050 | assert(StackIdIndicesToIndex.contains(I)); |
| 5051 | return StackIdIndicesToIndex[I]; |
| 5052 | }, |
| 5053 | CallStacks); |
| 5054 | }); |
| 5055 | // Finalize the radix tree, write it out, and get the map of positions in |
| 5056 | // the linearized tree array. |
| 5057 | if (!CallStacks.empty()) { |
| 5058 | CallStackPos = writeMemoryProfileRadixTree(CallStacks: std::move(CallStacks), Stream, |
| 5059 | RadixAbbrev); |
| 5060 | } |
| 5061 | } |
| 5062 | |
| 5063 | // Keep track of the current index into the CallStackPos map. Not used if |
| 5064 | // CombinedIndexMemProfContext is false. |
| 5065 | CallStackId CallStackCount = 0; |
| 5066 | |
| 5067 | DenseSet<GlobalValue::GUID> DefOrUseGUIDs; |
| 5068 | forEachSummary(Callback: [&](GVInfo I, bool IsAliasee) { |
| 5069 | GlobalValueSummary *S = I.second; |
| 5070 | assert(S); |
| 5071 | DefOrUseGUIDs.insert(V: I.first); |
| 5072 | for (const ValueInfo &VI : S->refs()) |
| 5073 | DefOrUseGUIDs.insert(V: VI.getGUID()); |
| 5074 | |
| 5075 | auto ValueId = getValueId(ValGUID: I.first); |
| 5076 | assert(ValueId); |
| 5077 | SummaryToValueIdMap[S] = *ValueId; |
| 5078 | |
| 5079 | // If this is invoked for an aliasee, we want to record the above |
| 5080 | // mapping, but then not emit a summary entry (if the aliasee is |
| 5081 | // to be imported, we will invoke this separately with IsAliasee=false). |
| 5082 | if (IsAliasee) |
| 5083 | return; |
| 5084 | |
| 5085 | if (auto *AS = dyn_cast<AliasSummary>(Val: S)) { |
| 5086 | // Will process aliases as a post-pass because the reader wants all |
| 5087 | // global to be loaded first. |
| 5088 | Aliases.push_back(Elt: AS); |
| 5089 | return; |
| 5090 | } |
| 5091 | |
| 5092 | if (auto *VS = dyn_cast<GlobalVarSummary>(Val: S)) { |
| 5093 | NameVals.push_back(Elt: *ValueId); |
| 5094 | assert(ModuleIdMap.count(VS->modulePath())); |
| 5095 | NameVals.push_back(Elt: ModuleIdMap[VS->modulePath()]); |
| 5096 | NameVals.push_back( |
| 5097 | Elt: getEncodedGVSummaryFlags(Flags: VS->flags(), ImportAsDecl: shouldImportValueAsDecl(VS))); |
| 5098 | NameVals.push_back(Elt: getEncodedGVarFlags(Flags: VS->varflags())); |
| 5099 | for (auto &RI : VS->refs()) { |
| 5100 | auto RefValueId = getValueId(ValGUID: RI.getGUID()); |
| 5101 | if (!RefValueId) |
| 5102 | continue; |
| 5103 | NameVals.push_back(Elt: *RefValueId); |
| 5104 | } |
| 5105 | |
| 5106 | // Emit the finished record. |
| 5107 | Stream.EmitRecord(Code: bitc::FS_COMBINED_GLOBALVAR_INIT_REFS, Vals: NameVals, |
| 5108 | Abbrev: FSModRefsAbbrev); |
| 5109 | NameVals.clear(); |
| 5110 | MaybeEmitOriginalName(*S); |
| 5111 | return; |
| 5112 | } |
| 5113 | |
| 5114 | auto GetValueId = [&](const ValueInfo &VI) -> std::optional<unsigned> { |
| 5115 | if (!VI) |
| 5116 | return std::nullopt; |
| 5117 | return getValueId(ValGUID: VI.getGUID()); |
| 5118 | }; |
| 5119 | |
| 5120 | auto *FS = cast<FunctionSummary>(Val: S); |
| 5121 | writeFunctionTypeMetadataRecords(Stream, FS, GetValueID: GetValueId); |
| 5122 | getReferencedTypeIds(FS, ReferencedTypeIds); |
| 5123 | |
| 5124 | writeFunctionHeapProfileRecords( |
| 5125 | Stream, FS, CallsiteAbbrev, AllocAbbrev, /*ContextIdAbbvId*/ 0, |
| 5126 | /*PerModule*/ false, |
| 5127 | /*GetValueId*/ |
| 5128 | GetValueID: [&](const ValueInfo &VI) -> unsigned { |
| 5129 | std::optional<unsigned> ValueID = GetValueId(VI); |
| 5130 | // This can happen in shared index files for distributed ThinLTO if |
| 5131 | // the callee function summary is not included. Record 0 which we |
| 5132 | // will have to deal with conservatively when doing any kind of |
| 5133 | // validation in the ThinLTO backends. |
| 5134 | if (!ValueID) |
| 5135 | return 0; |
| 5136 | return *ValueID; |
| 5137 | }, |
| 5138 | /*GetStackIndex*/ |
| 5139 | [&](unsigned I) { |
| 5140 | // Get the corresponding index into the list of StackIds actually |
| 5141 | // being written for this combined index (which may be a subset in |
| 5142 | // the case of distributed indexes). |
| 5143 | assert(StackIdIndicesToIndex.contains(I)); |
| 5144 | return StackIdIndicesToIndex[I]; |
| 5145 | }, |
| 5146 | /*WriteContextSizeInfoIndex*/ false, CallStackPos, CallStackCount); |
| 5147 | |
| 5148 | NameVals.push_back(Elt: *ValueId); |
| 5149 | assert(ModuleIdMap.count(FS->modulePath())); |
| 5150 | NameVals.push_back(Elt: ModuleIdMap[FS->modulePath()]); |
| 5151 | NameVals.push_back( |
| 5152 | Elt: getEncodedGVSummaryFlags(Flags: FS->flags(), ImportAsDecl: shouldImportValueAsDecl(FS))); |
| 5153 | NameVals.push_back(Elt: FS->instCount()); |
| 5154 | NameVals.push_back(Elt: getEncodedFFlags(Flags: FS->fflags())); |
| 5155 | // TODO: Stop writing entry count and bump bitcode version. |
| 5156 | NameVals.push_back(Elt: 0 /* EntryCount */); |
| 5157 | |
| 5158 | // Fill in below |
| 5159 | NameVals.push_back(Elt: 0); // numrefs |
| 5160 | NameVals.push_back(Elt: 0); // rorefcnt |
| 5161 | NameVals.push_back(Elt: 0); // worefcnt |
| 5162 | |
| 5163 | unsigned Count = 0, RORefCnt = 0, WORefCnt = 0; |
| 5164 | for (auto &RI : FS->refs()) { |
| 5165 | auto RefValueId = getValueId(ValGUID: RI.getGUID()); |
| 5166 | if (!RefValueId) |
| 5167 | continue; |
| 5168 | NameVals.push_back(Elt: *RefValueId); |
| 5169 | if (RI.isReadOnly()) |
| 5170 | RORefCnt++; |
| 5171 | else if (RI.isWriteOnly()) |
| 5172 | WORefCnt++; |
| 5173 | Count++; |
| 5174 | } |
| 5175 | NameVals[6] = Count; |
| 5176 | NameVals[7] = RORefCnt; |
| 5177 | NameVals[8] = WORefCnt; |
| 5178 | |
| 5179 | for (auto &EI : FS->calls()) { |
| 5180 | // If this GUID doesn't have a value id, it doesn't have a function |
| 5181 | // summary and we don't need to record any calls to it. |
| 5182 | std::optional<unsigned> CallValueId = GetValueId(EI.first); |
| 5183 | if (!CallValueId) |
| 5184 | continue; |
| 5185 | NameVals.push_back(Elt: *CallValueId); |
| 5186 | NameVals.push_back(Elt: getEncodedHotnessCallEdgeInfo(CI: EI.second)); |
| 5187 | } |
| 5188 | |
| 5189 | // Emit the finished record. |
| 5190 | Stream.EmitRecord(Code: bitc::FS_COMBINED_PROFILE, Vals: NameVals, |
| 5191 | Abbrev: FSCallsProfileAbbrev); |
| 5192 | NameVals.clear(); |
| 5193 | MaybeEmitOriginalName(*S); |
| 5194 | }); |
| 5195 | |
| 5196 | for (auto *AS : Aliases) { |
| 5197 | auto AliasValueId = SummaryToValueIdMap[AS]; |
| 5198 | assert(AliasValueId); |
| 5199 | NameVals.push_back(Elt: AliasValueId); |
| 5200 | assert(ModuleIdMap.count(AS->modulePath())); |
| 5201 | NameVals.push_back(Elt: ModuleIdMap[AS->modulePath()]); |
| 5202 | NameVals.push_back( |
| 5203 | Elt: getEncodedGVSummaryFlags(Flags: AS->flags(), ImportAsDecl: shouldImportValueAsDecl(AS))); |
| 5204 | auto AliaseeValueId = SummaryToValueIdMap[&AS->getAliasee()]; |
| 5205 | assert(AliaseeValueId); |
| 5206 | NameVals.push_back(Elt: AliaseeValueId); |
| 5207 | |
| 5208 | // Emit the finished record. |
| 5209 | Stream.EmitRecord(Code: bitc::FS_COMBINED_ALIAS, Vals: NameVals, Abbrev: FSAliasAbbrev); |
| 5210 | NameVals.clear(); |
| 5211 | MaybeEmitOriginalName(*AS); |
| 5212 | |
| 5213 | if (auto *FS = dyn_cast<FunctionSummary>(Val: &AS->getAliasee())) |
| 5214 | getReferencedTypeIds(FS, ReferencedTypeIds); |
| 5215 | } |
| 5216 | |
| 5217 | SmallVector<StringRef, 4> Functions; |
| 5218 | auto EmitCfiFunctions = [&](const CfiFunctionIndex &CfiIndex, |
| 5219 | bitc::GlobalValueSummarySymtabCodes Code) { |
| 5220 | if (CfiIndex.empty()) |
| 5221 | return; |
| 5222 | for (GlobalValue::GUID GUID : DefOrUseGUIDs) { |
| 5223 | auto Defs = CfiIndex.forGuid(GUID); |
| 5224 | llvm::append_range(C&: Functions, R&: Defs); |
| 5225 | } |
| 5226 | if (Functions.empty()) |
| 5227 | return; |
| 5228 | llvm::sort(C&: Functions); |
| 5229 | for (const auto &S : Functions) { |
| 5230 | NameVals.push_back(Elt: StrtabBuilder.add(S)); |
| 5231 | NameVals.push_back(Elt: S.size()); |
| 5232 | } |
| 5233 | Stream.EmitRecord(Code, Vals: NameVals); |
| 5234 | NameVals.clear(); |
| 5235 | Functions.clear(); |
| 5236 | }; |
| 5237 | |
| 5238 | EmitCfiFunctions(Index.cfiFunctionDefs(), bitc::FS_CFI_FUNCTION_DEFS); |
| 5239 | EmitCfiFunctions(Index.cfiFunctionDecls(), bitc::FS_CFI_FUNCTION_DECLS); |
| 5240 | |
| 5241 | // Walk the GUIDs that were referenced, and write the |
| 5242 | // corresponding type id records. |
| 5243 | for (auto &T : ReferencedTypeIds) { |
| 5244 | auto TidIter = Index.typeIds().equal_range(x: T); |
| 5245 | for (const auto &[GUID, TypeIdPair] : make_range(p: TidIter)) { |
| 5246 | writeTypeIdSummaryRecord(NameVals, StrtabBuilder, Id: TypeIdPair.first, |
| 5247 | Summary: TypeIdPair.second); |
| 5248 | Stream.EmitRecord(Code: bitc::FS_TYPE_ID, Vals: NameVals); |
| 5249 | NameVals.clear(); |
| 5250 | } |
| 5251 | } |
| 5252 | |
| 5253 | if (Index.getBlockCount()) |
| 5254 | Stream.EmitRecord(Code: bitc::FS_BLOCK_COUNT, |
| 5255 | Vals: ArrayRef<uint64_t>{Index.getBlockCount()}); |
| 5256 | |
| 5257 | Stream.ExitBlock(); |
| 5258 | } |
| 5259 | |
| 5260 | /// Create the "IDENTIFICATION_BLOCK_ID" containing a single string with the |
| 5261 | /// current llvm version, and a record for the epoch number. |
| 5262 | static void writeIdentificationBlock(BitstreamWriter &Stream) { |
| 5263 | Stream.EnterSubblock(BlockID: bitc::IDENTIFICATION_BLOCK_ID, CodeLen: 5); |
| 5264 | |
| 5265 | // Write the "user readable" string identifying the bitcode producer |
| 5266 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 5267 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_STRING)); |
| 5268 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 5269 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Char6)); |
| 5270 | auto StringAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 5271 | writeStringRecord(Stream, Code: bitc::IDENTIFICATION_CODE_STRING, |
| 5272 | Str: "LLVM" LLVM_VERSION_STRING, AbbrevToUse: StringAbbrev); |
| 5273 | |
| 5274 | // Write the epoch version |
| 5275 | Abbv = std::make_shared<BitCodeAbbrev>(); |
| 5276 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::IDENTIFICATION_CODE_EPOCH)); |
| 5277 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); |
| 5278 | auto EpochAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 5279 | constexpr std::array<unsigned, 1> Vals = {._M_elems: {bitc::BITCODE_CURRENT_EPOCH}}; |
| 5280 | Stream.EmitRecord(Code: bitc::IDENTIFICATION_CODE_EPOCH, Vals, Abbrev: EpochAbbrev); |
| 5281 | Stream.ExitBlock(); |
| 5282 | } |
| 5283 | |
| 5284 | void ModuleBitcodeWriter::writeModuleHash(StringRef View) { |
| 5285 | // Emit the module's hash. |
| 5286 | // MODULE_CODE_HASH: [5*i32] |
| 5287 | if (GenerateHash) { |
| 5288 | uint32_t Vals[5]; |
| 5289 | Hasher.update(Data: ArrayRef<uint8_t>( |
| 5290 | reinterpret_cast<const uint8_t *>(View.data()), View.size())); |
| 5291 | std::array<uint8_t, 20> Hash = Hasher.result(); |
| 5292 | for (int Pos = 0; Pos < 20; Pos += 4) { |
| 5293 | Vals[Pos / 4] = support::endian::read32be(P: Hash.data() + Pos); |
| 5294 | } |
| 5295 | |
| 5296 | // Emit the finished record. |
| 5297 | Stream.EmitRecord(Code: bitc::MODULE_CODE_HASH, Vals); |
| 5298 | |
| 5299 | if (ModHash) |
| 5300 | // Save the written hash value. |
| 5301 | llvm::copy(Range&: Vals, Out: std::begin(cont&: *ModHash)); |
| 5302 | } |
| 5303 | } |
| 5304 | |
| 5305 | void ModuleBitcodeWriter::write() { |
| 5306 | writeIdentificationBlock(Stream); |
| 5307 | |
| 5308 | Stream.EnterSubblock(BlockID: bitc::MODULE_BLOCK_ID, CodeLen: 3); |
| 5309 | // We will want to write the module hash at this point. Block any flushing so |
| 5310 | // we can have access to the whole underlying data later. |
| 5311 | Stream.markAndBlockFlushing(); |
| 5312 | |
| 5313 | writeModuleVersion(); |
| 5314 | |
| 5315 | // Emit blockinfo, which defines the standard abbreviations etc. |
| 5316 | writeBlockInfo(); |
| 5317 | |
| 5318 | // Emit information describing all of the types in the module. |
| 5319 | writeTypeTable(); |
| 5320 | |
| 5321 | // Emit information about attribute groups. |
| 5322 | writeAttributeGroupTable(); |
| 5323 | |
| 5324 | // Emit information about parameter attributes. |
| 5325 | writeAttributeTable(); |
| 5326 | |
| 5327 | writeComdats(); |
| 5328 | |
| 5329 | // Emit top-level description of module, including target triple, inline asm, |
| 5330 | // descriptors for global variables, and function prototype info. |
| 5331 | writeModuleInfo(); |
| 5332 | |
| 5333 | // Emit constants. |
| 5334 | writeModuleConstants(); |
| 5335 | |
| 5336 | // Emit metadata kind names. |
| 5337 | writeModuleMetadataKinds(); |
| 5338 | |
| 5339 | // Emit metadata. |
| 5340 | writeModuleMetadata(); |
| 5341 | |
| 5342 | // Emit module-level use-lists. |
| 5343 | if (VE.shouldPreserveUseListOrder()) |
| 5344 | writeUseListBlock(F: nullptr); |
| 5345 | |
| 5346 | writeOperandBundleTags(); |
| 5347 | writeSyncScopeNames(); |
| 5348 | |
| 5349 | // Emit function bodies. |
| 5350 | DenseMap<const Function *, uint64_t> FunctionToBitcodeIndex; |
| 5351 | for (const Function &F : M) |
| 5352 | if (!F.isDeclaration()) |
| 5353 | writeFunction(F, FunctionToBitcodeIndex); |
| 5354 | |
| 5355 | // Need to write after the above call to WriteFunction which populates |
| 5356 | // the summary information in the index. |
| 5357 | if (Index) |
| 5358 | writePerModuleGlobalValueSummary(); |
| 5359 | |
| 5360 | writeGlobalValueSymbolTable(FunctionToBitcodeIndex); |
| 5361 | |
| 5362 | writeModuleHash(View: Stream.getMarkedBufferAndResumeFlushing()); |
| 5363 | |
| 5364 | Stream.ExitBlock(); |
| 5365 | } |
| 5366 | |
| 5367 | static void writeInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer, |
| 5368 | uint32_t &Position) { |
| 5369 | support::endian::write32le(P: &Buffer[Position], V: Value); |
| 5370 | Position += 4; |
| 5371 | } |
| 5372 | |
| 5373 | /// If generating a bc file on darwin, we have to emit a |
| 5374 | /// header and trailer to make it compatible with the system archiver. To do |
| 5375 | /// this we emit the following header, and then emit a trailer that pads the |
| 5376 | /// file out to be a multiple of 16 bytes. |
| 5377 | /// |
| 5378 | /// struct bc_header { |
| 5379 | /// uint32_t Magic; // 0x0B17C0DE |
| 5380 | /// uint32_t Version; // Version, currently always 0. |
| 5381 | /// uint32_t BitcodeOffset; // Offset to traditional bitcode file. |
| 5382 | /// uint32_t BitcodeSize; // Size of traditional bitcode file. |
| 5383 | /// uint32_t CPUType; // CPU specifier. |
| 5384 | /// ... potentially more later ... |
| 5385 | /// }; |
| 5386 | static void emitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer, |
| 5387 | const Triple &TT) { |
| 5388 | unsigned CPUType = ~0U; |
| 5389 | |
| 5390 | // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*, |
| 5391 | // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic |
| 5392 | // number from /usr/include/mach/machine.h. It is ok to reproduce the |
| 5393 | // specific constants here because they are implicitly part of the Darwin ABI. |
| 5394 | enum { |
| 5395 | DARWIN_CPU_ARCH_ABI64 = 0x01000000, |
| 5396 | DARWIN_CPU_TYPE_X86 = 7, |
| 5397 | DARWIN_CPU_TYPE_ARM = 12, |
| 5398 | DARWIN_CPU_TYPE_POWERPC = 18 |
| 5399 | }; |
| 5400 | |
| 5401 | Triple::ArchType Arch = TT.getArch(); |
| 5402 | if (Arch == Triple::x86_64) |
| 5403 | CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64; |
| 5404 | else if (Arch == Triple::x86) |
| 5405 | CPUType = DARWIN_CPU_TYPE_X86; |
| 5406 | else if (Arch == Triple::ppc) |
| 5407 | CPUType = DARWIN_CPU_TYPE_POWERPC; |
| 5408 | else if (Arch == Triple::ppc64) |
| 5409 | CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64; |
| 5410 | else if (Arch == Triple::arm || Arch == Triple::thumb) |
| 5411 | CPUType = DARWIN_CPU_TYPE_ARM; |
| 5412 | |
| 5413 | // Traditional Bitcode starts after header. |
| 5414 | assert(Buffer.size() >= BWH_HeaderSize && |
| 5415 | "Expected header size to be reserved" ); |
| 5416 | unsigned BCOffset = BWH_HeaderSize; |
| 5417 | unsigned BCSize = Buffer.size() - BWH_HeaderSize; |
| 5418 | |
| 5419 | // Write the magic and version. |
| 5420 | unsigned Position = 0; |
| 5421 | writeInt32ToBuffer(Value: 0x0B17C0DE, Buffer, Position); |
| 5422 | writeInt32ToBuffer(Value: 0, Buffer, Position); // Version. |
| 5423 | writeInt32ToBuffer(Value: BCOffset, Buffer, Position); |
| 5424 | writeInt32ToBuffer(Value: BCSize, Buffer, Position); |
| 5425 | writeInt32ToBuffer(Value: CPUType, Buffer, Position); |
| 5426 | |
| 5427 | // If the file is not a multiple of 16 bytes, insert dummy padding. |
| 5428 | while (Buffer.size() & 15) |
| 5429 | Buffer.push_back(Elt: 0); |
| 5430 | } |
| 5431 | |
| 5432 | /// Helper to write the header common to all bitcode files. |
| 5433 | static void (BitstreamWriter &Stream) { |
| 5434 | // Emit the file header. |
| 5435 | Stream.Emit(Val: (unsigned)'B', NumBits: 8); |
| 5436 | Stream.Emit(Val: (unsigned)'C', NumBits: 8); |
| 5437 | Stream.Emit(Val: 0x0, NumBits: 4); |
| 5438 | Stream.Emit(Val: 0xC, NumBits: 4); |
| 5439 | Stream.Emit(Val: 0xE, NumBits: 4); |
| 5440 | Stream.Emit(Val: 0xD, NumBits: 4); |
| 5441 | } |
| 5442 | |
| 5443 | BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer) |
| 5444 | : Stream(new BitstreamWriter(Buffer)) { |
| 5445 | writeBitcodeHeader(Stream&: *Stream); |
| 5446 | } |
| 5447 | |
| 5448 | BitcodeWriter::BitcodeWriter(raw_ostream &FS) |
| 5449 | : Stream(new BitstreamWriter(FS, FlushThreshold)) { |
| 5450 | writeBitcodeHeader(Stream&: *Stream); |
| 5451 | } |
| 5452 | |
| 5453 | BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); } |
| 5454 | |
| 5455 | void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) { |
| 5456 | Stream->EnterSubblock(BlockID: Block, CodeLen: 3); |
| 5457 | |
| 5458 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 5459 | Abbv->Add(OpInfo: BitCodeAbbrevOp(Record)); |
| 5460 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Blob)); |
| 5461 | auto AbbrevNo = Stream->EmitAbbrev(Abbv: std::move(Abbv)); |
| 5462 | |
| 5463 | Stream->EmitRecordWithBlob(Abbrev: AbbrevNo, Vals: ArrayRef<uint64_t>{Record}, Blob); |
| 5464 | |
| 5465 | Stream->ExitBlock(); |
| 5466 | } |
| 5467 | |
| 5468 | void BitcodeWriter::writeSymtab() { |
| 5469 | assert(!WroteStrtab && !WroteSymtab); |
| 5470 | |
| 5471 | // If any module has module-level inline asm, we will require a registered asm |
| 5472 | // parser for the target so that we can create an accurate symbol table for |
| 5473 | // the module. |
| 5474 | for (Module *M : Mods) { |
| 5475 | if (M->getModuleInlineAsm().empty()) |
| 5476 | continue; |
| 5477 | |
| 5478 | std::string Err; |
| 5479 | const Triple TT(M->getTargetTriple()); |
| 5480 | const Target *T = TargetRegistry::lookupTarget(TheTriple: TT, Error&: Err); |
| 5481 | if (!T || !T->hasMCAsmParser()) |
| 5482 | return; |
| 5483 | } |
| 5484 | |
| 5485 | WroteSymtab = true; |
| 5486 | SmallVector<char, 0> Symtab; |
| 5487 | // The irsymtab::build function may be unable to create a symbol table if the |
| 5488 | // module is malformed (e.g. it contains an invalid alias). Writing a symbol |
| 5489 | // table is not required for correctness, but we still want to be able to |
| 5490 | // write malformed modules to bitcode files, so swallow the error. |
| 5491 | if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) { |
| 5492 | consumeError(Err: std::move(E)); |
| 5493 | return; |
| 5494 | } |
| 5495 | |
| 5496 | writeBlob(Block: bitc::SYMTAB_BLOCK_ID, Record: bitc::SYMTAB_BLOB, |
| 5497 | Blob: {Symtab.data(), Symtab.size()}); |
| 5498 | } |
| 5499 | |
| 5500 | void BitcodeWriter::writeStrtab() { |
| 5501 | assert(!WroteStrtab); |
| 5502 | |
| 5503 | std::vector<char> Strtab; |
| 5504 | StrtabBuilder.finalizeInOrder(); |
| 5505 | Strtab.resize(new_size: StrtabBuilder.getSize()); |
| 5506 | StrtabBuilder.write(Buf: (uint8_t *)Strtab.data()); |
| 5507 | |
| 5508 | writeBlob(Block: bitc::STRTAB_BLOCK_ID, Record: bitc::STRTAB_BLOB, |
| 5509 | Blob: {Strtab.data(), Strtab.size()}); |
| 5510 | |
| 5511 | WroteStrtab = true; |
| 5512 | } |
| 5513 | |
| 5514 | void BitcodeWriter::copyStrtab(StringRef Strtab) { |
| 5515 | writeBlob(Block: bitc::STRTAB_BLOCK_ID, Record: bitc::STRTAB_BLOB, Blob: Strtab); |
| 5516 | WroteStrtab = true; |
| 5517 | } |
| 5518 | |
| 5519 | void BitcodeWriter::writeModule(const Module &M, |
| 5520 | bool ShouldPreserveUseListOrder, |
| 5521 | const ModuleSummaryIndex *Index, |
| 5522 | bool GenerateHash, ModuleHash *ModHash) { |
| 5523 | assert(!WroteStrtab); |
| 5524 | |
| 5525 | // The Mods vector is used by irsymtab::build, which requires non-const |
| 5526 | // Modules in case it needs to materialize metadata. But the bitcode writer |
| 5527 | // requires that the module is materialized, so we can cast to non-const here, |
| 5528 | // after checking that it is in fact materialized. |
| 5529 | assert(M.isMaterialized()); |
| 5530 | Mods.push_back(x: const_cast<Module *>(&M)); |
| 5531 | |
| 5532 | ModuleBitcodeWriter ModuleWriter(M, StrtabBuilder, *Stream, |
| 5533 | ShouldPreserveUseListOrder, Index, |
| 5534 | GenerateHash, ModHash); |
| 5535 | ModuleWriter.write(); |
| 5536 | } |
| 5537 | |
| 5538 | void BitcodeWriter::writeIndex( |
| 5539 | const ModuleSummaryIndex *Index, |
| 5540 | const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, |
| 5541 | const GVSummaryPtrSet *DecSummaries) { |
| 5542 | IndexBitcodeWriter IndexWriter(*Stream, StrtabBuilder, *Index, DecSummaries, |
| 5543 | ModuleToSummariesForIndex); |
| 5544 | IndexWriter.write(); |
| 5545 | } |
| 5546 | |
| 5547 | /// Write the specified module to the specified output stream. |
| 5548 | void llvm::WriteBitcodeToFile(const Module &M, raw_ostream &Out, |
| 5549 | bool ShouldPreserveUseListOrder, |
| 5550 | const ModuleSummaryIndex *Index, |
| 5551 | bool GenerateHash, ModuleHash *ModHash) { |
| 5552 | auto Write = [&](BitcodeWriter &Writer) { |
| 5553 | Writer.writeModule(M, ShouldPreserveUseListOrder, Index, GenerateHash, |
| 5554 | ModHash); |
| 5555 | Writer.writeSymtab(); |
| 5556 | Writer.writeStrtab(); |
| 5557 | }; |
| 5558 | Triple TT(M.getTargetTriple()); |
| 5559 | if (TT.isOSDarwin() || TT.isOSBinFormatMachO()) { |
| 5560 | // If this is darwin or another generic macho target, reserve space for the |
| 5561 | // header. Note that the header is computed *after* the output is known, so |
| 5562 | // we currently explicitly use a buffer, write to it, and then subsequently |
| 5563 | // flush to Out. |
| 5564 | SmallVector<char, 0> Buffer; |
| 5565 | Buffer.reserve(N: 256 * 1024); |
| 5566 | Buffer.insert(I: Buffer.begin(), NumToInsert: BWH_HeaderSize, Elt: 0); |
| 5567 | BitcodeWriter Writer(Buffer); |
| 5568 | Write(Writer); |
| 5569 | emitDarwinBCHeaderAndTrailer(Buffer, TT); |
| 5570 | Out.write(Ptr: Buffer.data(), Size: Buffer.size()); |
| 5571 | } else { |
| 5572 | BitcodeWriter Writer(Out); |
| 5573 | Write(Writer); |
| 5574 | } |
| 5575 | } |
| 5576 | |
| 5577 | void IndexBitcodeWriter::write() { |
| 5578 | Stream.EnterSubblock(BlockID: bitc::MODULE_BLOCK_ID, CodeLen: 3); |
| 5579 | |
| 5580 | writeModuleVersion(); |
| 5581 | |
| 5582 | // Write the module paths in the combined index. |
| 5583 | writeModStrings(); |
| 5584 | |
| 5585 | // Write the summary combined index records. |
| 5586 | writeCombinedGlobalValueSummary(); |
| 5587 | |
| 5588 | Stream.ExitBlock(); |
| 5589 | } |
| 5590 | |
| 5591 | // Write the specified module summary index to the given raw output stream, |
| 5592 | // where it will be written in a new bitcode block. This is used when |
| 5593 | // writing the combined index file for ThinLTO. When writing a subset of the |
| 5594 | // index for a distributed backend, provide a \p ModuleToSummariesForIndex map. |
| 5595 | void llvm::writeIndexToFile( |
| 5596 | const ModuleSummaryIndex &Index, raw_ostream &Out, |
| 5597 | const ModuleToSummariesForIndexTy *ModuleToSummariesForIndex, |
| 5598 | const GVSummaryPtrSet *DecSummaries) { |
| 5599 | SmallVector<char, 0> Buffer; |
| 5600 | Buffer.reserve(N: 256 * 1024); |
| 5601 | |
| 5602 | BitcodeWriter Writer(Buffer); |
| 5603 | Writer.writeIndex(Index: &Index, ModuleToSummariesForIndex, DecSummaries); |
| 5604 | Writer.writeStrtab(); |
| 5605 | |
| 5606 | Out.write(Ptr: (char *)&Buffer.front(), Size: Buffer.size()); |
| 5607 | } |
| 5608 | |
| 5609 | namespace { |
| 5610 | |
| 5611 | /// Class to manage the bitcode writing for a thin link bitcode file. |
| 5612 | class ThinLinkBitcodeWriter : public ModuleBitcodeWriterBase { |
| 5613 | /// ModHash is for use in ThinLTO incremental build, generated while writing |
| 5614 | /// the module bitcode file. |
| 5615 | const ModuleHash *ModHash; |
| 5616 | |
| 5617 | public: |
| 5618 | ThinLinkBitcodeWriter(const Module &M, StringTableBuilder &StrtabBuilder, |
| 5619 | BitstreamWriter &Stream, |
| 5620 | const ModuleSummaryIndex &Index, |
| 5621 | const ModuleHash &ModHash) |
| 5622 | : ModuleBitcodeWriterBase(M, StrtabBuilder, Stream, |
| 5623 | /*ShouldPreserveUseListOrder=*/false, &Index), |
| 5624 | ModHash(&ModHash) {} |
| 5625 | |
| 5626 | void write(); |
| 5627 | |
| 5628 | private: |
| 5629 | void writeSimplifiedModuleInfo(); |
| 5630 | }; |
| 5631 | |
| 5632 | } // end anonymous namespace |
| 5633 | |
| 5634 | // This function writes a simpilified module info for thin link bitcode file. |
| 5635 | // It only contains the source file name along with the name(the offset and |
| 5636 | // size in strtab) and linkage for global values. For the global value info |
| 5637 | // entry, in order to keep linkage at offset 5, there are three zeros used |
| 5638 | // as padding. |
| 5639 | void ThinLinkBitcodeWriter::writeSimplifiedModuleInfo() { |
| 5640 | SmallVector<unsigned, 64> Vals; |
| 5641 | // Emit the module's source file name. |
| 5642 | { |
| 5643 | StringEncoding Bits = getStringEncoding(Str: M.getSourceFileName()); |
| 5644 | BitCodeAbbrevOp AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8); |
| 5645 | if (Bits == SE_Char6) |
| 5646 | AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Char6); |
| 5647 | else if (Bits == SE_Fixed7) |
| 5648 | AbbrevOpToUse = BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7); |
| 5649 | |
| 5650 | // MODULE_CODE_SOURCE_FILENAME: [namechar x N] |
| 5651 | auto Abbv = std::make_shared<BitCodeAbbrev>(); |
| 5652 | Abbv->Add(OpInfo: BitCodeAbbrevOp(bitc::MODULE_CODE_SOURCE_FILENAME)); |
| 5653 | Abbv->Add(OpInfo: BitCodeAbbrevOp(BitCodeAbbrevOp::Array)); |
| 5654 | Abbv->Add(OpInfo: AbbrevOpToUse); |
| 5655 | unsigned FilenameAbbrev = Stream.EmitAbbrev(Abbv: std::move(Abbv)); |
| 5656 | |
| 5657 | for (const auto P : M.getSourceFileName()) |
| 5658 | Vals.push_back(Elt: (unsigned char)P); |
| 5659 | |
| 5660 | Stream.EmitRecord(Code: bitc::MODULE_CODE_SOURCE_FILENAME, Vals, Abbrev: FilenameAbbrev); |
| 5661 | Vals.clear(); |
| 5662 | } |
| 5663 | |
| 5664 | // Emit the global variable information. |
| 5665 | for (const GlobalVariable &GV : M.globals()) { |
| 5666 | // GLOBALVAR: [strtab offset, strtab size, 0, 0, 0, linkage] |
| 5667 | Vals.push_back(Elt: StrtabBuilder.add(S: GV.getName())); |
| 5668 | Vals.push_back(Elt: GV.getName().size()); |
| 5669 | Vals.push_back(Elt: 0); |
| 5670 | Vals.push_back(Elt: 0); |
| 5671 | Vals.push_back(Elt: 0); |
| 5672 | Vals.push_back(Elt: getEncodedLinkage(GV)); |
| 5673 | |
| 5674 | Stream.EmitRecord(Code: bitc::MODULE_CODE_GLOBALVAR, Vals); |
| 5675 | Vals.clear(); |
| 5676 | } |
| 5677 | |
| 5678 | // Emit the function proto information. |
| 5679 | for (const Function &F : M) { |
| 5680 | // FUNCTION: [strtab offset, strtab size, 0, 0, 0, linkage] |
| 5681 | Vals.push_back(Elt: StrtabBuilder.add(S: F.getName())); |
| 5682 | Vals.push_back(Elt: F.getName().size()); |
| 5683 | Vals.push_back(Elt: 0); |
| 5684 | Vals.push_back(Elt: 0); |
| 5685 | Vals.push_back(Elt: 0); |
| 5686 | Vals.push_back(Elt: getEncodedLinkage(GV: F)); |
| 5687 | |
| 5688 | Stream.EmitRecord(Code: bitc::MODULE_CODE_FUNCTION, Vals); |
| 5689 | Vals.clear(); |
| 5690 | } |
| 5691 | |
| 5692 | // Emit the alias information. |
| 5693 | for (const GlobalAlias &A : M.aliases()) { |
| 5694 | // ALIAS: [strtab offset, strtab size, 0, 0, 0, linkage] |
| 5695 | Vals.push_back(Elt: StrtabBuilder.add(S: A.getName())); |
| 5696 | Vals.push_back(Elt: A.getName().size()); |
| 5697 | Vals.push_back(Elt: 0); |
| 5698 | Vals.push_back(Elt: 0); |
| 5699 | Vals.push_back(Elt: 0); |
| 5700 | Vals.push_back(Elt: getEncodedLinkage(GV: A)); |
| 5701 | |
| 5702 | Stream.EmitRecord(Code: bitc::MODULE_CODE_ALIAS, Vals); |
| 5703 | Vals.clear(); |
| 5704 | } |
| 5705 | |
| 5706 | // Emit the ifunc information. |
| 5707 | for (const GlobalIFunc &I : M.ifuncs()) { |
| 5708 | // IFUNC: [strtab offset, strtab size, 0, 0, 0, linkage] |
| 5709 | Vals.push_back(Elt: StrtabBuilder.add(S: I.getName())); |
| 5710 | Vals.push_back(Elt: I.getName().size()); |
| 5711 | Vals.push_back(Elt: 0); |
| 5712 | Vals.push_back(Elt: 0); |
| 5713 | Vals.push_back(Elt: 0); |
| 5714 | Vals.push_back(Elt: getEncodedLinkage(GV: I)); |
| 5715 | |
| 5716 | Stream.EmitRecord(Code: bitc::MODULE_CODE_IFUNC, Vals); |
| 5717 | Vals.clear(); |
| 5718 | } |
| 5719 | } |
| 5720 | |
| 5721 | void ThinLinkBitcodeWriter::write() { |
| 5722 | Stream.EnterSubblock(BlockID: bitc::MODULE_BLOCK_ID, CodeLen: 3); |
| 5723 | |
| 5724 | writeModuleVersion(); |
| 5725 | |
| 5726 | writeSimplifiedModuleInfo(); |
| 5727 | |
| 5728 | writePerModuleGlobalValueSummary(); |
| 5729 | |
| 5730 | // Write module hash. |
| 5731 | Stream.EmitRecord(Code: bitc::MODULE_CODE_HASH, Vals: ArrayRef<uint32_t>(*ModHash)); |
| 5732 | |
| 5733 | Stream.ExitBlock(); |
| 5734 | } |
| 5735 | |
| 5736 | void BitcodeWriter::writeThinLinkBitcode(const Module &M, |
| 5737 | const ModuleSummaryIndex &Index, |
| 5738 | const ModuleHash &ModHash) { |
| 5739 | assert(!WroteStrtab); |
| 5740 | |
| 5741 | // The Mods vector is used by irsymtab::build, which requires non-const |
| 5742 | // Modules in case it needs to materialize metadata. But the bitcode writer |
| 5743 | // requires that the module is materialized, so we can cast to non-const here, |
| 5744 | // after checking that it is in fact materialized. |
| 5745 | assert(M.isMaterialized()); |
| 5746 | Mods.push_back(x: const_cast<Module *>(&M)); |
| 5747 | |
| 5748 | ThinLinkBitcodeWriter ThinLinkWriter(M, StrtabBuilder, *Stream, Index, |
| 5749 | ModHash); |
| 5750 | ThinLinkWriter.write(); |
| 5751 | } |
| 5752 | |
| 5753 | // Write the specified thin link bitcode file to the given raw output stream, |
| 5754 | // where it will be written in a new bitcode block. This is used when |
| 5755 | // writing the per-module index file for ThinLTO. |
| 5756 | void llvm::writeThinLinkBitcodeToFile(const Module &M, raw_ostream &Out, |
| 5757 | const ModuleSummaryIndex &Index, |
| 5758 | const ModuleHash &ModHash) { |
| 5759 | SmallVector<char, 0> Buffer; |
| 5760 | Buffer.reserve(N: 256 * 1024); |
| 5761 | |
| 5762 | BitcodeWriter Writer(Buffer); |
| 5763 | Writer.writeThinLinkBitcode(M, Index, ModHash); |
| 5764 | Writer.writeSymtab(); |
| 5765 | Writer.writeStrtab(); |
| 5766 | |
| 5767 | Out.write(Ptr: (char *)&Buffer.front(), Size: Buffer.size()); |
| 5768 | } |
| 5769 | |
| 5770 | static const char *getSectionNameForBitcode(const Triple &T) { |
| 5771 | switch (T.getObjectFormat()) { |
| 5772 | case Triple::MachO: |
| 5773 | return "__LLVM,__bitcode" ; |
| 5774 | case Triple::COFF: |
| 5775 | case Triple::ELF: |
| 5776 | case Triple::Wasm: |
| 5777 | case Triple::UnknownObjectFormat: |
| 5778 | return ".llvmbc" ; |
| 5779 | case Triple::GOFF: |
| 5780 | llvm_unreachable("GOFF is not yet implemented" ); |
| 5781 | break; |
| 5782 | case Triple::SPIRV: |
| 5783 | if (T.getVendor() == Triple::AMD) |
| 5784 | return ".llvmbc" ; |
| 5785 | llvm_unreachable("SPIRV is not yet implemented" ); |
| 5786 | break; |
| 5787 | case Triple::XCOFF: |
| 5788 | llvm_unreachable("XCOFF is not yet implemented" ); |
| 5789 | break; |
| 5790 | case Triple::DXContainer: |
| 5791 | llvm_unreachable("DXContainer is not yet implemented" ); |
| 5792 | break; |
| 5793 | } |
| 5794 | llvm_unreachable("Unimplemented ObjectFormatType" ); |
| 5795 | } |
| 5796 | |
| 5797 | static const char *getSectionNameForCommandline(const Triple &T) { |
| 5798 | switch (T.getObjectFormat()) { |
| 5799 | case Triple::MachO: |
| 5800 | return "__LLVM,__cmdline" ; |
| 5801 | case Triple::COFF: |
| 5802 | case Triple::ELF: |
| 5803 | case Triple::Wasm: |
| 5804 | case Triple::UnknownObjectFormat: |
| 5805 | return ".llvmcmd" ; |
| 5806 | case Triple::GOFF: |
| 5807 | llvm_unreachable("GOFF is not yet implemented" ); |
| 5808 | break; |
| 5809 | case Triple::SPIRV: |
| 5810 | if (T.getVendor() == Triple::AMD) |
| 5811 | return ".llvmcmd" ; |
| 5812 | llvm_unreachable("SPIRV is not yet implemented" ); |
| 5813 | break; |
| 5814 | case Triple::XCOFF: |
| 5815 | llvm_unreachable("XCOFF is not yet implemented" ); |
| 5816 | break; |
| 5817 | case Triple::DXContainer: |
| 5818 | llvm_unreachable("DXC is not yet implemented" ); |
| 5819 | break; |
| 5820 | } |
| 5821 | llvm_unreachable("Unimplemented ObjectFormatType" ); |
| 5822 | } |
| 5823 | |
| 5824 | void llvm::embedBitcodeInModule(llvm::Module &M, llvm::MemoryBufferRef Buf, |
| 5825 | bool EmbedBitcode, bool EmbedCmdline, |
| 5826 | const std::vector<uint8_t> &CmdArgs) { |
| 5827 | // Save llvm.compiler.used and remove it. |
| 5828 | SmallVector<Constant *, 2> UsedArray; |
| 5829 | SmallVector<GlobalValue *, 4> UsedGlobals; |
| 5830 | GlobalVariable *Used = collectUsedGlobalVariables(M, Vec&: UsedGlobals, CompilerUsed: true); |
| 5831 | Type *UsedElementType = Used ? Used->getValueType()->getArrayElementType() |
| 5832 | : PointerType::getUnqual(C&: M.getContext()); |
| 5833 | for (auto *GV : UsedGlobals) { |
| 5834 | if (GV->getName() != "llvm.embedded.module" && |
| 5835 | GV->getName() != "llvm.cmdline" ) |
| 5836 | UsedArray.push_back( |
| 5837 | Elt: ConstantExpr::getPointerBitCastOrAddrSpaceCast(C: GV, Ty: UsedElementType)); |
| 5838 | } |
| 5839 | if (Used) |
| 5840 | Used->eraseFromParent(); |
| 5841 | |
| 5842 | // Embed the bitcode for the llvm module. |
| 5843 | std::string Data; |
| 5844 | ArrayRef<uint8_t> ModuleData; |
| 5845 | Triple T(M.getTargetTriple()); |
| 5846 | |
| 5847 | if (EmbedBitcode) { |
| 5848 | if (Buf.getBufferSize() == 0 || |
| 5849 | !isBitcode(BufPtr: (const unsigned char *)Buf.getBufferStart(), |
| 5850 | BufEnd: (const unsigned char *)Buf.getBufferEnd())) { |
| 5851 | // If the input is LLVM Assembly, bitcode is produced by serializing |
| 5852 | // the module. Use-lists order need to be preserved in this case. |
| 5853 | llvm::raw_string_ostream OS(Data); |
| 5854 | llvm::WriteBitcodeToFile(M, Out&: OS, /* ShouldPreserveUseListOrder */ true); |
| 5855 | ModuleData = |
| 5856 | ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size()); |
| 5857 | } else |
| 5858 | // If the input is LLVM bitcode, write the input byte stream directly. |
| 5859 | ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(), |
| 5860 | Buf.getBufferSize()); |
| 5861 | } |
| 5862 | llvm::Constant *ModuleConstant = |
| 5863 | llvm::ConstantDataArray::get(Context&: M.getContext(), Elts: ModuleData); |
| 5864 | llvm::GlobalVariable *GV = new llvm::GlobalVariable( |
| 5865 | M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage, |
| 5866 | ModuleConstant); |
| 5867 | GV->setSection(getSectionNameForBitcode(T)); |
| 5868 | // Set alignment to 1 to prevent padding between two contributions from input |
| 5869 | // sections after linking. |
| 5870 | GV->setAlignment(Align(1)); |
| 5871 | UsedArray.push_back( |
| 5872 | Elt: ConstantExpr::getPointerBitCastOrAddrSpaceCast(C: GV, Ty: UsedElementType)); |
| 5873 | if (llvm::GlobalVariable *Old = |
| 5874 | M.getGlobalVariable(Name: "llvm.embedded.module" , AllowInternal: true)) { |
| 5875 | assert(Old->hasZeroLiveUses() && |
| 5876 | "llvm.embedded.module can only be used once in llvm.compiler.used" ); |
| 5877 | GV->takeName(V: Old); |
| 5878 | Old->eraseFromParent(); |
| 5879 | } else { |
| 5880 | GV->setName("llvm.embedded.module" ); |
| 5881 | } |
| 5882 | |
| 5883 | // Skip if only bitcode needs to be embedded. |
| 5884 | if (EmbedCmdline) { |
| 5885 | // Embed command-line options. |
| 5886 | ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CmdArgs.data()), |
| 5887 | CmdArgs.size()); |
| 5888 | llvm::Constant *CmdConstant = |
| 5889 | llvm::ConstantDataArray::get(Context&: M.getContext(), Elts: CmdData); |
| 5890 | GV = new llvm::GlobalVariable(M, CmdConstant->getType(), true, |
| 5891 | llvm::GlobalValue::PrivateLinkage, |
| 5892 | CmdConstant); |
| 5893 | GV->setSection(getSectionNameForCommandline(T)); |
| 5894 | GV->setAlignment(Align(1)); |
| 5895 | UsedArray.push_back( |
| 5896 | Elt: ConstantExpr::getPointerBitCastOrAddrSpaceCast(C: GV, Ty: UsedElementType)); |
| 5897 | if (llvm::GlobalVariable *Old = M.getGlobalVariable(Name: "llvm.cmdline" , AllowInternal: true)) { |
| 5898 | assert(Old->hasZeroLiveUses() && |
| 5899 | "llvm.cmdline can only be used once in llvm.compiler.used" ); |
| 5900 | GV->takeName(V: Old); |
| 5901 | Old->eraseFromParent(); |
| 5902 | } else { |
| 5903 | GV->setName("llvm.cmdline" ); |
| 5904 | } |
| 5905 | } |
| 5906 | |
| 5907 | if (UsedArray.empty()) |
| 5908 | return; |
| 5909 | |
| 5910 | // Recreate llvm.compiler.used. |
| 5911 | ArrayType *ATy = ArrayType::get(ElementType: UsedElementType, NumElements: UsedArray.size()); |
| 5912 | auto *NewUsed = new GlobalVariable( |
| 5913 | M, ATy, false, llvm::GlobalValue::AppendingLinkage, |
| 5914 | llvm::ConstantArray::get(T: ATy, V: UsedArray), "llvm.compiler.used" ); |
| 5915 | NewUsed->setSection("llvm.metadata" ); |
| 5916 | } |
| 5917 | |