| 1 | //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the AsmPrinter class. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/CodeGen/AsmPrinter.h" |
| 14 | #include "CodeViewDebug.h" |
| 15 | #include "DwarfDebug.h" |
| 16 | #include "DwarfException.h" |
| 17 | #include "PseudoProbePrinter.h" |
| 18 | #include "WasmException.h" |
| 19 | #include "WinCFGuard.h" |
| 20 | #include "WinException.h" |
| 21 | #include "llvm/ADT/APFloat.h" |
| 22 | #include "llvm/ADT/APInt.h" |
| 23 | #include "llvm/ADT/DenseMap.h" |
| 24 | #include "llvm/ADT/STLExtras.h" |
| 25 | #include "llvm/ADT/SmallPtrSet.h" |
| 26 | #include "llvm/ADT/SmallString.h" |
| 27 | #include "llvm/ADT/SmallVector.h" |
| 28 | #include "llvm/ADT/Statistic.h" |
| 29 | #include "llvm/ADT/StringExtras.h" |
| 30 | #include "llvm/ADT/StringRef.h" |
| 31 | #include "llvm/ADT/TinyPtrVector.h" |
| 32 | #include "llvm/ADT/Twine.h" |
| 33 | #include "llvm/Analysis/ConstantFolding.h" |
| 34 | #include "llvm/Analysis/MemoryLocation.h" |
| 35 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| 36 | #include "llvm/BinaryFormat/COFF.h" |
| 37 | #include "llvm/BinaryFormat/Dwarf.h" |
| 38 | #include "llvm/BinaryFormat/ELF.h" |
| 39 | #include "llvm/CodeGen/GCMetadata.h" |
| 40 | #include "llvm/CodeGen/GCMetadataPrinter.h" |
| 41 | #include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h" |
| 42 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 43 | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
| 44 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 45 | #include "llvm/CodeGen/MachineDominators.h" |
| 46 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 47 | #include "llvm/CodeGen/MachineFunction.h" |
| 48 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 49 | #include "llvm/CodeGen/MachineInstr.h" |
| 50 | #include "llvm/CodeGen/MachineInstrBundle.h" |
| 51 | #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| 52 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 53 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 54 | #include "llvm/CodeGen/MachineModuleInfoImpls.h" |
| 55 | #include "llvm/CodeGen/MachineOperand.h" |
| 56 | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
| 57 | #include "llvm/CodeGen/StackMaps.h" |
| 58 | #include "llvm/CodeGen/TargetFrameLowering.h" |
| 59 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 60 | #include "llvm/CodeGen/TargetLowering.h" |
| 61 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 62 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 63 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 64 | #include "llvm/Config/config.h" |
| 65 | #include "llvm/IR/BasicBlock.h" |
| 66 | #include "llvm/IR/Comdat.h" |
| 67 | #include "llvm/IR/Constant.h" |
| 68 | #include "llvm/IR/Constants.h" |
| 69 | #include "llvm/IR/DataLayout.h" |
| 70 | #include "llvm/IR/DebugInfoMetadata.h" |
| 71 | #include "llvm/IR/DerivedTypes.h" |
| 72 | #include "llvm/IR/EHPersonalities.h" |
| 73 | #include "llvm/IR/Function.h" |
| 74 | #include "llvm/IR/GCStrategy.h" |
| 75 | #include "llvm/IR/GlobalAlias.h" |
| 76 | #include "llvm/IR/GlobalIFunc.h" |
| 77 | #include "llvm/IR/GlobalObject.h" |
| 78 | #include "llvm/IR/GlobalValue.h" |
| 79 | #include "llvm/IR/GlobalVariable.h" |
| 80 | #include "llvm/IR/Instruction.h" |
| 81 | #include "llvm/IR/Mangler.h" |
| 82 | #include "llvm/IR/Metadata.h" |
| 83 | #include "llvm/IR/Module.h" |
| 84 | #include "llvm/IR/Operator.h" |
| 85 | #include "llvm/IR/PseudoProbe.h" |
| 86 | #include "llvm/IR/Type.h" |
| 87 | #include "llvm/IR/Value.h" |
| 88 | #include "llvm/IR/ValueHandle.h" |
| 89 | #include "llvm/MC/MCAsmInfo.h" |
| 90 | #include "llvm/MC/MCContext.h" |
| 91 | #include "llvm/MC/MCDirectives.h" |
| 92 | #include "llvm/MC/MCExpr.h" |
| 93 | #include "llvm/MC/MCInst.h" |
| 94 | #include "llvm/MC/MCSchedule.h" |
| 95 | #include "llvm/MC/MCSection.h" |
| 96 | #include "llvm/MC/MCSectionCOFF.h" |
| 97 | #include "llvm/MC/MCSectionELF.h" |
| 98 | #include "llvm/MC/MCSectionMachO.h" |
| 99 | #include "llvm/MC/MCSectionXCOFF.h" |
| 100 | #include "llvm/MC/MCStreamer.h" |
| 101 | #include "llvm/MC/MCSubtargetInfo.h" |
| 102 | #include "llvm/MC/MCSymbol.h" |
| 103 | #include "llvm/MC/MCSymbolELF.h" |
| 104 | #include "llvm/MC/MCTargetOptions.h" |
| 105 | #include "llvm/MC/MCValue.h" |
| 106 | #include "llvm/MC/SectionKind.h" |
| 107 | #include "llvm/Object/ELFTypes.h" |
| 108 | #include "llvm/Pass.h" |
| 109 | #include "llvm/Remarks/RemarkStreamer.h" |
| 110 | #include "llvm/Support/Casting.h" |
| 111 | #include "llvm/Support/CommandLine.h" |
| 112 | #include "llvm/Support/Compiler.h" |
| 113 | #include "llvm/Support/ErrorHandling.h" |
| 114 | #include "llvm/Support/FileSystem.h" |
| 115 | #include "llvm/Support/Format.h" |
| 116 | #include "llvm/Support/MathExtras.h" |
| 117 | #include "llvm/Support/Path.h" |
| 118 | #include "llvm/Support/VCSRevision.h" |
| 119 | #include "llvm/Support/raw_ostream.h" |
| 120 | #include "llvm/Target/TargetLoweringObjectFile.h" |
| 121 | #include "llvm/Target/TargetMachine.h" |
| 122 | #include "llvm/Target/TargetOptions.h" |
| 123 | #include "llvm/TargetParser/Triple.h" |
| 124 | #include <algorithm> |
| 125 | #include <cassert> |
| 126 | #include <cinttypes> |
| 127 | #include <cstdint> |
| 128 | #include <iterator> |
| 129 | #include <memory> |
| 130 | #include <optional> |
| 131 | #include <string> |
| 132 | #include <utility> |
| 133 | #include <vector> |
| 134 | |
| 135 | using namespace llvm; |
| 136 | |
| 137 | #define DEBUG_TYPE "asm-printer" |
| 138 | |
| 139 | // This is a replication of fields of object::PGOAnalysisMap::Features. It |
| 140 | // should match the order of the fields so that |
| 141 | // `object::PGOAnalysisMap::Features::decode(PgoAnalysisMapFeatures.getBits())` |
| 142 | // succeeds. |
| 143 | enum class PGOMapFeaturesEnum { |
| 144 | None, |
| 145 | FuncEntryCount, |
| 146 | BBFreq, |
| 147 | BrProb, |
| 148 | All, |
| 149 | }; |
| 150 | static cl::bits<PGOMapFeaturesEnum> PgoAnalysisMapFeatures( |
| 151 | "pgo-analysis-map" , cl::Hidden, cl::CommaSeparated, |
| 152 | cl::values( |
| 153 | clEnumValN(PGOMapFeaturesEnum::None, "none" , "Disable all options" ), |
| 154 | clEnumValN(PGOMapFeaturesEnum::FuncEntryCount, "func-entry-count" , |
| 155 | "Function Entry Count" ), |
| 156 | clEnumValN(PGOMapFeaturesEnum::BBFreq, "bb-freq" , |
| 157 | "Basic Block Frequency" ), |
| 158 | clEnumValN(PGOMapFeaturesEnum::BrProb, "br-prob" , "Branch Probability" ), |
| 159 | clEnumValN(PGOMapFeaturesEnum::All, "all" , "Enable all options" )), |
| 160 | cl::desc( |
| 161 | "Enable extended information within the SHT_LLVM_BB_ADDR_MAP that is " |
| 162 | "extracted from PGO related analysis." )); |
| 163 | |
| 164 | static cl::opt<bool> BBAddrMapSkipEmitBBEntries( |
| 165 | "basic-block-address-map-skip-bb-entries" , |
| 166 | cl::desc("Skip emitting basic block entries in the SHT_LLVM_BB_ADDR_MAP " |
| 167 | "section. It's used to save binary size when BB entries are " |
| 168 | "unnecessary for some PGOAnalysisMap features." ), |
| 169 | cl::Hidden, cl::init(Val: false)); |
| 170 | |
| 171 | static cl::opt<bool> EmitJumpTableSizesSection( |
| 172 | "emit-jump-table-sizes-section" , |
| 173 | cl::desc("Emit a section containing jump table addresses and sizes" ), |
| 174 | cl::Hidden, cl::init(Val: false)); |
| 175 | |
| 176 | // This isn't turned on by default, since several of the scheduling models are |
| 177 | // not completely accurate, and we don't want to be misleading. |
| 178 | static cl::opt<bool> PrintLatency( |
| 179 | "asm-print-latency" , |
| 180 | cl::desc("Print instruction latencies as verbose asm comments" ), cl::Hidden, |
| 181 | cl::init(Val: false)); |
| 182 | |
| 183 | STATISTIC(EmittedInsts, "Number of machine instrs printed" ); |
| 184 | |
| 185 | char AsmPrinter::ID = 0; |
| 186 | |
| 187 | namespace { |
| 188 | class AddrLabelMapCallbackPtr final : CallbackVH { |
| 189 | AddrLabelMap *Map = nullptr; |
| 190 | |
| 191 | public: |
| 192 | AddrLabelMapCallbackPtr() = default; |
| 193 | AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {} |
| 194 | |
| 195 | void setPtr(BasicBlock *BB) { |
| 196 | ValueHandleBase::operator=(RHS: BB); |
| 197 | } |
| 198 | |
| 199 | void setMap(AddrLabelMap *map) { Map = map; } |
| 200 | |
| 201 | void deleted() override; |
| 202 | void allUsesReplacedWith(Value *V2) override; |
| 203 | }; |
| 204 | } // namespace |
| 205 | |
| 206 | class llvm::AddrLabelMap { |
| 207 | MCContext &Context; |
| 208 | struct AddrLabelSymEntry { |
| 209 | /// The symbols for the label. |
| 210 | TinyPtrVector<MCSymbol *> Symbols; |
| 211 | |
| 212 | Function *Fn; // The containing function of the BasicBlock. |
| 213 | unsigned Index; // The index in BBCallbacks for the BasicBlock. |
| 214 | }; |
| 215 | |
| 216 | DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols; |
| 217 | |
| 218 | /// Callbacks for the BasicBlock's that we have entries for. We use this so |
| 219 | /// we get notified if a block is deleted or RAUWd. |
| 220 | std::vector<AddrLabelMapCallbackPtr> BBCallbacks; |
| 221 | |
| 222 | /// This is a per-function list of symbols whose corresponding BasicBlock got |
| 223 | /// deleted. These symbols need to be emitted at some point in the file, so |
| 224 | /// AsmPrinter emits them after the function body. |
| 225 | DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>> |
| 226 | DeletedAddrLabelsNeedingEmission; |
| 227 | |
| 228 | public: |
| 229 | AddrLabelMap(MCContext &context) : Context(context) {} |
| 230 | |
| 231 | ~AddrLabelMap() { |
| 232 | assert(DeletedAddrLabelsNeedingEmission.empty() && |
| 233 | "Some labels for deleted blocks never got emitted" ); |
| 234 | } |
| 235 | |
| 236 | ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB); |
| 237 | |
| 238 | void takeDeletedSymbolsForFunction(Function *F, |
| 239 | std::vector<MCSymbol *> &Result); |
| 240 | |
| 241 | void UpdateForDeletedBlock(BasicBlock *BB); |
| 242 | void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New); |
| 243 | }; |
| 244 | |
| 245 | ArrayRef<MCSymbol *> AddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) { |
| 246 | assert(BB->hasAddressTaken() && |
| 247 | "Shouldn't get label for block without address taken" ); |
| 248 | AddrLabelSymEntry &Entry = AddrLabelSymbols[BB]; |
| 249 | |
| 250 | // If we already had an entry for this block, just return it. |
| 251 | if (!Entry.Symbols.empty()) { |
| 252 | assert(BB->getParent() == Entry.Fn && "Parent changed" ); |
| 253 | return Entry.Symbols; |
| 254 | } |
| 255 | |
| 256 | // Otherwise, this is a new entry, create a new symbol for it and add an |
| 257 | // entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd. |
| 258 | BBCallbacks.emplace_back(args&: BB); |
| 259 | BBCallbacks.back().setMap(this); |
| 260 | Entry.Index = BBCallbacks.size() - 1; |
| 261 | Entry.Fn = BB->getParent(); |
| 262 | MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol() |
| 263 | : Context.createTempSymbol(); |
| 264 | Entry.Symbols.push_back(NewVal: Sym); |
| 265 | return Entry.Symbols; |
| 266 | } |
| 267 | |
| 268 | /// If we have any deleted symbols for F, return them. |
| 269 | void AddrLabelMap::takeDeletedSymbolsForFunction( |
| 270 | Function *F, std::vector<MCSymbol *> &Result) { |
| 271 | DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I = |
| 272 | DeletedAddrLabelsNeedingEmission.find(Val: F); |
| 273 | |
| 274 | // If there are no entries for the function, just return. |
| 275 | if (I == DeletedAddrLabelsNeedingEmission.end()) |
| 276 | return; |
| 277 | |
| 278 | // Otherwise, take the list. |
| 279 | std::swap(x&: Result, y&: I->second); |
| 280 | DeletedAddrLabelsNeedingEmission.erase(I); |
| 281 | } |
| 282 | |
| 283 | //===- Address of Block Management ----------------------------------------===// |
| 284 | |
| 285 | ArrayRef<MCSymbol *> |
| 286 | AsmPrinter::getAddrLabelSymbolToEmit(const BasicBlock *BB) { |
| 287 | // Lazily create AddrLabelSymbols. |
| 288 | if (!AddrLabelSymbols) |
| 289 | AddrLabelSymbols = std::make_unique<AddrLabelMap>(args&: OutContext); |
| 290 | return AddrLabelSymbols->getAddrLabelSymbolToEmit( |
| 291 | BB: const_cast<BasicBlock *>(BB)); |
| 292 | } |
| 293 | |
| 294 | void AsmPrinter::takeDeletedSymbolsForFunction( |
| 295 | const Function *F, std::vector<MCSymbol *> &Result) { |
| 296 | // If no blocks have had their addresses taken, we're done. |
| 297 | if (!AddrLabelSymbols) |
| 298 | return; |
| 299 | return AddrLabelSymbols->takeDeletedSymbolsForFunction( |
| 300 | F: const_cast<Function *>(F), Result); |
| 301 | } |
| 302 | |
| 303 | void AddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) { |
| 304 | // If the block got deleted, there is no need for the symbol. If the symbol |
| 305 | // was already emitted, we can just forget about it, otherwise we need to |
| 306 | // queue it up for later emission when the function is output. |
| 307 | AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]); |
| 308 | AddrLabelSymbols.erase(Val: BB); |
| 309 | assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?" ); |
| 310 | BBCallbacks[Entry.Index] = nullptr; // Clear the callback. |
| 311 | |
| 312 | #if !LLVM_MEMORY_SANITIZER_BUILD |
| 313 | // BasicBlock is destroyed already, so this access is UB detectable by msan. |
| 314 | assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) && |
| 315 | "Block/parent mismatch" ); |
| 316 | #endif |
| 317 | |
| 318 | for (MCSymbol *Sym : Entry.Symbols) { |
| 319 | if (Sym->isDefined()) |
| 320 | return; |
| 321 | |
| 322 | // If the block is not yet defined, we need to emit it at the end of the |
| 323 | // function. Add the symbol to the DeletedAddrLabelsNeedingEmission list |
| 324 | // for the containing Function. Since the block is being deleted, its |
| 325 | // parent may already be removed, we have to get the function from 'Entry'. |
| 326 | DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(x: Sym); |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | void AddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) { |
| 331 | // Get the entry for the RAUW'd block and remove it from our map. |
| 332 | AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]); |
| 333 | AddrLabelSymbols.erase(Val: Old); |
| 334 | assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?" ); |
| 335 | |
| 336 | AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New]; |
| 337 | |
| 338 | // If New is not address taken, just move our symbol over to it. |
| 339 | if (NewEntry.Symbols.empty()) { |
| 340 | BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback. |
| 341 | NewEntry = std::move(OldEntry); // Set New's entry. |
| 342 | return; |
| 343 | } |
| 344 | |
| 345 | BBCallbacks[OldEntry.Index] = nullptr; // Update the callback. |
| 346 | |
| 347 | // Otherwise, we need to add the old symbols to the new block's set. |
| 348 | llvm::append_range(C&: NewEntry.Symbols, R&: OldEntry.Symbols); |
| 349 | } |
| 350 | |
| 351 | void AddrLabelMapCallbackPtr::deleted() { |
| 352 | Map->UpdateForDeletedBlock(BB: cast<BasicBlock>(Val: getValPtr())); |
| 353 | } |
| 354 | |
| 355 | void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) { |
| 356 | Map->UpdateForRAUWBlock(Old: cast<BasicBlock>(Val: getValPtr()), New: cast<BasicBlock>(Val: V2)); |
| 357 | } |
| 358 | |
| 359 | /// getGVAlignment - Return the alignment to use for the specified global |
| 360 | /// value. This rounds up to the preferred alignment if possible and legal. |
| 361 | Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL, |
| 362 | Align InAlign) { |
| 363 | Align Alignment; |
| 364 | if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(Val: GV)) |
| 365 | Alignment = DL.getPreferredAlign(GV: GVar); |
| 366 | |
| 367 | // If InAlign is specified, round it to it. |
| 368 | if (InAlign > Alignment) |
| 369 | Alignment = InAlign; |
| 370 | |
| 371 | // If the GV has a specified alignment, take it into account. |
| 372 | MaybeAlign GVAlign; |
| 373 | if (auto *GVar = dyn_cast<GlobalVariable>(Val: GV)) |
| 374 | GVAlign = GVar->getAlign(); |
| 375 | else if (auto *F = dyn_cast<Function>(Val: GV)) |
| 376 | GVAlign = F->getAlign(); |
| 377 | if (!GVAlign) |
| 378 | return Alignment; |
| 379 | |
| 380 | assert(GVAlign && "GVAlign must be set" ); |
| 381 | |
| 382 | // If the GVAlign is larger than NumBits, or if we are required to obey |
| 383 | // NumBits because the GV has an assigned section, obey it. |
| 384 | if (*GVAlign > Alignment || GV->hasSection()) |
| 385 | Alignment = *GVAlign; |
| 386 | return Alignment; |
| 387 | } |
| 388 | |
| 389 | AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer, |
| 390 | char &ID) |
| 391 | : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), |
| 392 | OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)), |
| 393 | SM(*this) { |
| 394 | VerboseAsm = OutStreamer->isVerboseAsm(); |
| 395 | DwarfUsesRelocationsAcrossSections = |
| 396 | MAI->doesDwarfUseRelocationsAcrossSections(); |
| 397 | } |
| 398 | |
| 399 | AsmPrinter::~AsmPrinter() { |
| 400 | assert(!DD && Handlers.size() == NumUserHandlers && |
| 401 | "Debug/EH info didn't get finalized" ); |
| 402 | } |
| 403 | |
| 404 | bool AsmPrinter::isPositionIndependent() const { |
| 405 | return TM.isPositionIndependent(); |
| 406 | } |
| 407 | |
| 408 | /// getFunctionNumber - Return a unique ID for the current function. |
| 409 | unsigned AsmPrinter::getFunctionNumber() const { |
| 410 | return MF->getFunctionNumber(); |
| 411 | } |
| 412 | |
| 413 | const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { |
| 414 | return *TM.getObjFileLowering(); |
| 415 | } |
| 416 | |
| 417 | const DataLayout &AsmPrinter::getDataLayout() const { |
| 418 | assert(MMI && "MMI could not be nullptr!" ); |
| 419 | return MMI->getModule()->getDataLayout(); |
| 420 | } |
| 421 | |
| 422 | // Do not use the cached DataLayout because some client use it without a Module |
| 423 | // (dsymutil, llvm-dwarfdump). |
| 424 | unsigned AsmPrinter::getPointerSize() const { |
| 425 | return TM.getPointerSize(AS: 0); // FIXME: Default address space |
| 426 | } |
| 427 | |
| 428 | const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { |
| 429 | assert(MF && "getSubtargetInfo requires a valid MachineFunction!" ); |
| 430 | return MF->getSubtarget<MCSubtargetInfo>(); |
| 431 | } |
| 432 | |
| 433 | void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { |
| 434 | S.emitInstruction(Inst, STI: getSubtargetInfo()); |
| 435 | } |
| 436 | |
| 437 | void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { |
| 438 | if (DD) { |
| 439 | assert(OutStreamer->hasRawTextSupport() && |
| 440 | "Expected assembly output mode." ); |
| 441 | // This is NVPTX specific and it's unclear why. |
| 442 | // PR51079: If we have code without debug information we need to give up. |
| 443 | DISubprogram *MFSP = MF.getFunction().getSubprogram(); |
| 444 | if (!MFSP) |
| 445 | return; |
| 446 | (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | /// getCurrentSection() - Return the current section we are emitting to. |
| 451 | const MCSection *AsmPrinter::getCurrentSection() const { |
| 452 | return OutStreamer->getCurrentSectionOnly(); |
| 453 | } |
| 454 | |
| 455 | void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { |
| 456 | AU.setPreservesAll(); |
| 457 | MachineFunctionPass::getAnalysisUsage(AU); |
| 458 | AU.addRequired<MachineOptimizationRemarkEmitterPass>(); |
| 459 | AU.addRequired<GCModuleInfo>(); |
| 460 | AU.addRequired<LazyMachineBlockFrequencyInfoPass>(); |
| 461 | AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); |
| 462 | } |
| 463 | |
| 464 | bool AsmPrinter::doInitialization(Module &M) { |
| 465 | auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); |
| 466 | MMI = MMIWP ? &MMIWP->getMMI() : nullptr; |
| 467 | HasSplitStack = false; |
| 468 | HasNoSplitStack = false; |
| 469 | DbgInfoAvailable = !M.debug_compile_units().empty(); |
| 470 | |
| 471 | AddrLabelSymbols = nullptr; |
| 472 | |
| 473 | // Initialize TargetLoweringObjectFile. |
| 474 | const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) |
| 475 | .Initialize(ctx&: OutContext, TM); |
| 476 | |
| 477 | const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) |
| 478 | .getModuleMetadata(M); |
| 479 | |
| 480 | // On AIX, we delay emitting any section information until |
| 481 | // after emitting the .file pseudo-op. This allows additional |
| 482 | // information (such as the embedded command line) to be associated |
| 483 | // with all sections in the object file rather than a single section. |
| 484 | if (!TM.getTargetTriple().isOSBinFormatXCOFF()) |
| 485 | OutStreamer->initSections(NoExecStack: false, STI: *TM.getMCSubtargetInfo()); |
| 486 | |
| 487 | // Emit the version-min deployment target directive if needed. |
| 488 | // |
| 489 | // FIXME: If we end up with a collection of these sorts of Darwin-specific |
| 490 | // or ELF-specific things, it may make sense to have a platform helper class |
| 491 | // that will work with the target helper class. For now keep it here, as the |
| 492 | // alternative is duplicated code in each of the target asm printers that |
| 493 | // use the directive, where it would need the same conditionalization |
| 494 | // anyway. |
| 495 | const Triple &Target = TM.getTargetTriple(); |
| 496 | if (Target.isOSBinFormatMachO() && Target.isOSDarwin()) { |
| 497 | Triple TVT(M.getDarwinTargetVariantTriple()); |
| 498 | OutStreamer->emitVersionForTarget( |
| 499 | Target, SDKVersion: M.getSDKVersion(), |
| 500 | DarwinTargetVariantTriple: M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT, |
| 501 | DarwinTargetVariantSDKVersion: M.getDarwinTargetVariantSDKVersion()); |
| 502 | } |
| 503 | |
| 504 | // Allow the target to emit any magic that it wants at the start of the file. |
| 505 | emitStartOfAsmFile(M); |
| 506 | |
| 507 | // Very minimal debug info. It is ignored if we emit actual debug info. If we |
| 508 | // don't, this at least helps the user find where a global came from. |
| 509 | if (MAI->hasSingleParameterDotFile()) { |
| 510 | // .file "foo.c" |
| 511 | if (MAI->isAIX()) { |
| 512 | const char VerStr[] = |
| 513 | #ifdef PACKAGE_VENDOR |
| 514 | PACKAGE_VENDOR " " |
| 515 | #endif |
| 516 | PACKAGE_NAME " version " PACKAGE_VERSION |
| 517 | #ifdef LLVM_REVISION |
| 518 | " (" LLVM_REVISION ")" |
| 519 | #endif |
| 520 | ; |
| 521 | // TODO: Add timestamp and description. |
| 522 | OutStreamer->emitFileDirective(Filename: M.getSourceFileName(), CompilerVersion: VerStr, TimeStamp: "" , Description: "" ); |
| 523 | } else { |
| 524 | OutStreamer->emitFileDirective( |
| 525 | Filename: llvm::sys::path::filename(path: M.getSourceFileName())); |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | // On AIX, emit bytes for llvm.commandline metadata after .file so that the |
| 530 | // C_INFO symbol is preserved if any csect is kept by the linker. |
| 531 | if (TM.getTargetTriple().isOSBinFormatXCOFF()) { |
| 532 | emitModuleCommandLines(M); |
| 533 | // Now we can generate section information. |
| 534 | OutStreamer->switchSection( |
| 535 | Section: OutContext.getObjectFileInfo()->getTextSection()); |
| 536 | |
| 537 | // To work around an AIX assembler and/or linker bug, generate |
| 538 | // a rename for the default text-section symbol name. This call has |
| 539 | // no effect when generating object code directly. |
| 540 | MCSection *TextSection = |
| 541 | OutStreamer->getContext().getObjectFileInfo()->getTextSection(); |
| 542 | MCSymbolXCOFF *XSym = |
| 543 | static_cast<MCSectionXCOFF *>(TextSection)->getQualNameSymbol(); |
| 544 | if (XSym->hasRename()) |
| 545 | OutStreamer->emitXCOFFRenameDirective(Name: XSym, Rename: XSym->getSymbolTableName()); |
| 546 | } |
| 547 | |
| 548 | GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); |
| 549 | assert(MI && "AsmPrinter didn't require GCModuleInfo?" ); |
| 550 | for (const auto &I : *MI) |
| 551 | if (GCMetadataPrinter *MP = getOrCreateGCPrinter(S&: *I)) |
| 552 | MP->beginAssembly(M, Info&: *MI, AP&: *this); |
| 553 | |
| 554 | // Emit module-level inline asm if it exists. |
| 555 | if (!M.getModuleInlineAsm().empty()) { |
| 556 | OutStreamer->AddComment(T: "Start of file scope inline assembly" ); |
| 557 | OutStreamer->addBlankLine(); |
| 558 | emitInlineAsm( |
| 559 | Str: M.getModuleInlineAsm() + "\n" , STI: *TM.getMCSubtargetInfo(), |
| 560 | MCOptions: TM.Options.MCOptions, LocMDNode: nullptr, |
| 561 | AsmDialect: InlineAsm::AsmDialect(TM.getMCAsmInfo()->getAssemblerDialect())); |
| 562 | OutStreamer->AddComment(T: "End of file scope inline assembly" ); |
| 563 | OutStreamer->addBlankLine(); |
| 564 | } |
| 565 | |
| 566 | if (MAI->doesSupportDebugInformation()) { |
| 567 | bool EmitCodeView = M.getCodeViewFlag(); |
| 568 | // On Windows targets, emit minimal CodeView compiler info even when debug |
| 569 | // info is disabled. |
| 570 | if ((TM.getTargetTriple().isOSWindows() && |
| 571 | M.getNamedMetadata(Name: "llvm.dbg.cu" )) || |
| 572 | (TM.getTargetTriple().isUEFI() && EmitCodeView)) |
| 573 | Handlers.push_back(Elt: std::make_unique<CodeViewDebug>(args: this)); |
| 574 | if (!EmitCodeView || M.getDwarfVersion()) { |
| 575 | if (hasDebugInfo()) { |
| 576 | DD = new DwarfDebug(this); |
| 577 | Handlers.push_back(Elt: std::unique_ptr<DwarfDebug>(DD)); |
| 578 | } |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | if (M.getNamedMetadata(Name: PseudoProbeDescMetadataName)) |
| 583 | PP = std::make_unique<PseudoProbeHandler>(args: this); |
| 584 | |
| 585 | switch (MAI->getExceptionHandlingType()) { |
| 586 | case ExceptionHandling::None: |
| 587 | // We may want to emit CFI for debug. |
| 588 | [[fallthrough]]; |
| 589 | case ExceptionHandling::SjLj: |
| 590 | case ExceptionHandling::DwarfCFI: |
| 591 | case ExceptionHandling::ARM: |
| 592 | for (auto &F : M.getFunctionList()) { |
| 593 | if (getFunctionCFISectionType(F) != CFISection::None) |
| 594 | ModuleCFISection = getFunctionCFISectionType(F); |
| 595 | // If any function needsUnwindTableEntry(), it needs .eh_frame and hence |
| 596 | // the module needs .eh_frame. If we have found that case, we are done. |
| 597 | if (ModuleCFISection == CFISection::EH) |
| 598 | break; |
| 599 | } |
| 600 | assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI || |
| 601 | usesCFIWithoutEH() || ModuleCFISection != CFISection::EH); |
| 602 | break; |
| 603 | default: |
| 604 | break; |
| 605 | } |
| 606 | |
| 607 | EHStreamer *ES = nullptr; |
| 608 | switch (MAI->getExceptionHandlingType()) { |
| 609 | case ExceptionHandling::None: |
| 610 | if (!usesCFIWithoutEH()) |
| 611 | break; |
| 612 | [[fallthrough]]; |
| 613 | case ExceptionHandling::SjLj: |
| 614 | case ExceptionHandling::DwarfCFI: |
| 615 | case ExceptionHandling::ZOS: |
| 616 | ES = new DwarfCFIException(this); |
| 617 | break; |
| 618 | case ExceptionHandling::ARM: |
| 619 | ES = new ARMException(this); |
| 620 | break; |
| 621 | case ExceptionHandling::WinEH: |
| 622 | switch (MAI->getWinEHEncodingType()) { |
| 623 | default: llvm_unreachable("unsupported unwinding information encoding" ); |
| 624 | case WinEH::EncodingType::Invalid: |
| 625 | break; |
| 626 | case WinEH::EncodingType::X86: |
| 627 | case WinEH::EncodingType::Itanium: |
| 628 | ES = new WinException(this); |
| 629 | break; |
| 630 | } |
| 631 | break; |
| 632 | case ExceptionHandling::Wasm: |
| 633 | ES = new WasmException(this); |
| 634 | break; |
| 635 | case ExceptionHandling::AIX: |
| 636 | ES = new AIXException(this); |
| 637 | break; |
| 638 | } |
| 639 | if (ES) |
| 640 | Handlers.push_back(Elt: std::unique_ptr<EHStreamer>(ES)); |
| 641 | |
| 642 | // Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2). |
| 643 | if (mdconst::extract_or_null<ConstantInt>(MD: M.getModuleFlag(Key: "cfguard" ))) |
| 644 | EHHandlers.push_back(Elt: std::make_unique<WinCFGuard>(args: this)); |
| 645 | |
| 646 | for (auto &Handler : Handlers) |
| 647 | Handler->beginModule(M: &M); |
| 648 | for (auto &Handler : EHHandlers) |
| 649 | Handler->beginModule(M: &M); |
| 650 | |
| 651 | return false; |
| 652 | } |
| 653 | |
| 654 | static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { |
| 655 | if (!MAI.hasWeakDefCanBeHiddenDirective()) |
| 656 | return false; |
| 657 | |
| 658 | return GV->canBeOmittedFromSymbolTable(); |
| 659 | } |
| 660 | |
| 661 | void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { |
| 662 | GlobalValue::LinkageTypes Linkage = GV->getLinkage(); |
| 663 | switch (Linkage) { |
| 664 | case GlobalValue::CommonLinkage: |
| 665 | case GlobalValue::LinkOnceAnyLinkage: |
| 666 | case GlobalValue::LinkOnceODRLinkage: |
| 667 | case GlobalValue::WeakAnyLinkage: |
| 668 | case GlobalValue::WeakODRLinkage: |
| 669 | if (MAI->isMachO()) { |
| 670 | // .globl _foo |
| 671 | OutStreamer->emitSymbolAttribute(Symbol: GVSym, Attribute: MCSA_Global); |
| 672 | |
| 673 | if (!canBeHidden(GV, MAI: *MAI)) |
| 674 | // .weak_definition _foo |
| 675 | OutStreamer->emitSymbolAttribute(Symbol: GVSym, Attribute: MCSA_WeakDefinition); |
| 676 | else |
| 677 | OutStreamer->emitSymbolAttribute(Symbol: GVSym, Attribute: MCSA_WeakDefAutoPrivate); |
| 678 | } else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) { |
| 679 | // .globl _foo |
| 680 | OutStreamer->emitSymbolAttribute(Symbol: GVSym, Attribute: MCSA_Global); |
| 681 | //NOTE: linkonce is handled by the section the symbol was assigned to. |
| 682 | } else { |
| 683 | // .weak _foo |
| 684 | OutStreamer->emitSymbolAttribute(Symbol: GVSym, Attribute: MCSA_Weak); |
| 685 | } |
| 686 | return; |
| 687 | case GlobalValue::ExternalLinkage: |
| 688 | OutStreamer->emitSymbolAttribute(Symbol: GVSym, Attribute: MCSA_Global); |
| 689 | return; |
| 690 | case GlobalValue::PrivateLinkage: |
| 691 | case GlobalValue::InternalLinkage: |
| 692 | return; |
| 693 | case GlobalValue::ExternalWeakLinkage: |
| 694 | case GlobalValue::AvailableExternallyLinkage: |
| 695 | case GlobalValue::AppendingLinkage: |
| 696 | llvm_unreachable("Should never emit this" ); |
| 697 | } |
| 698 | llvm_unreachable("Unknown linkage type!" ); |
| 699 | } |
| 700 | |
| 701 | void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, |
| 702 | const GlobalValue *GV) const { |
| 703 | TM.getNameWithPrefix(Name, GV, Mang&: getObjFileLowering().getMangler()); |
| 704 | } |
| 705 | |
| 706 | MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { |
| 707 | return TM.getSymbol(GV); |
| 708 | } |
| 709 | |
| 710 | MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const { |
| 711 | // On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an |
| 712 | // exact definion (intersection of GlobalValue::hasExactDefinition() and |
| 713 | // !isInterposable()). These linkages include: external, appending, internal, |
| 714 | // private. It may be profitable to use a local alias for external. The |
| 715 | // assembler would otherwise be conservative and assume a global default |
| 716 | // visibility symbol can be interposable, even if the code generator already |
| 717 | // assumed it. |
| 718 | if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) { |
| 719 | const Module &M = *GV.getParent(); |
| 720 | if (TM.getRelocationModel() != Reloc::Static && |
| 721 | M.getPIELevel() == PIELevel::Default && GV.isDSOLocal()) |
| 722 | return getSymbolWithGlobalValueBase(GV: &GV, Suffix: "$local" ); |
| 723 | } |
| 724 | return TM.getSymbol(GV: &GV); |
| 725 | } |
| 726 | |
| 727 | /// EmitGlobalVariable - Emit the specified global variable to the .s file. |
| 728 | void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) { |
| 729 | bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); |
| 730 | assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && |
| 731 | "No emulated TLS variables in the common section" ); |
| 732 | |
| 733 | // Never emit TLS variable xyz in emulated TLS model. |
| 734 | // The initialization value is in __emutls_t.xyz instead of xyz. |
| 735 | if (IsEmuTLSVar) |
| 736 | return; |
| 737 | |
| 738 | if (GV->hasInitializer()) { |
| 739 | // Check to see if this is a special global used by LLVM, if so, emit it. |
| 740 | if (emitSpecialLLVMGlobal(GV)) |
| 741 | return; |
| 742 | |
| 743 | // Skip the emission of global equivalents. The symbol can be emitted later |
| 744 | // on by emitGlobalGOTEquivs in case it turns out to be needed. |
| 745 | if (GlobalGOTEquivs.count(Key: getSymbol(GV))) |
| 746 | return; |
| 747 | |
| 748 | if (isVerbose()) { |
| 749 | // When printing the control variable __emutls_v.*, |
| 750 | // we don't need to print the original TLS variable name. |
| 751 | GV->printAsOperand(O&: OutStreamer->getCommentOS(), |
| 752 | /*PrintType=*/false, M: GV->getParent()); |
| 753 | OutStreamer->getCommentOS() << '\n'; |
| 754 | } |
| 755 | } |
| 756 | |
| 757 | MCSymbol *GVSym = getSymbol(GV); |
| 758 | MCSymbol *EmittedSym = GVSym; |
| 759 | |
| 760 | // getOrCreateEmuTLSControlSym only creates the symbol with name and default |
| 761 | // attributes. |
| 762 | // GV's or GVSym's attributes will be used for the EmittedSym. |
| 763 | emitVisibility(Sym: EmittedSym, Visibility: GV->getVisibility(), IsDefinition: !GV->isDeclaration()); |
| 764 | |
| 765 | if (GV->isTagged()) { |
| 766 | Triple T = TM.getTargetTriple(); |
| 767 | |
| 768 | if (T.getArch() != Triple::aarch64 || !T.isAndroid()) |
| 769 | OutContext.reportError(L: SMLoc(), |
| 770 | Msg: "tagged symbols (-fsanitize=memtag-globals) are " |
| 771 | "only supported on AArch64 Android" ); |
| 772 | OutStreamer->emitSymbolAttribute(Symbol: EmittedSym, Attribute: MCSA_Memtag); |
| 773 | } |
| 774 | |
| 775 | if (!GV->hasInitializer()) // External globals require no extra code. |
| 776 | return; |
| 777 | |
| 778 | GVSym->redefineIfPossible(); |
| 779 | if (GVSym->isDefined() || GVSym->isVariable()) |
| 780 | OutContext.reportError(L: SMLoc(), Msg: "symbol '" + Twine(GVSym->getName()) + |
| 781 | "' is already defined" ); |
| 782 | |
| 783 | if (MAI->hasDotTypeDotSizeDirective()) |
| 784 | OutStreamer->emitSymbolAttribute(Symbol: EmittedSym, Attribute: MCSA_ELF_TypeObject); |
| 785 | |
| 786 | SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GO: GV, TM); |
| 787 | |
| 788 | const DataLayout &DL = GV->getDataLayout(); |
| 789 | uint64_t Size = DL.getTypeAllocSize(Ty: GV->getValueType()); |
| 790 | |
| 791 | // If the alignment is specified, we *must* obey it. Overaligning a global |
| 792 | // with a specified alignment is a prompt way to break globals emitted to |
| 793 | // sections and expected to be contiguous (e.g. ObjC metadata). |
| 794 | const Align Alignment = getGVAlignment(GV, DL); |
| 795 | |
| 796 | for (auto &Handler : Handlers) |
| 797 | Handler->setSymbolSize(Sym: GVSym, Size); |
| 798 | |
| 799 | // Handle common symbols |
| 800 | if (GVKind.isCommon()) { |
| 801 | if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. |
| 802 | // .comm _foo, 42, 4 |
| 803 | OutStreamer->emitCommonSymbol(Symbol: GVSym, Size, ByteAlignment: Alignment); |
| 804 | return; |
| 805 | } |
| 806 | |
| 807 | // Determine to which section this global should be emitted. |
| 808 | MCSection *TheSection = getObjFileLowering().SectionForGlobal(GO: GV, Kind: GVKind, TM); |
| 809 | |
| 810 | // If we have a bss global going to a section that supports the |
| 811 | // zerofill directive, do so here. |
| 812 | if (GVKind.isBSS() && MAI->isMachO() && TheSection->isVirtualSection()) { |
| 813 | if (Size == 0) |
| 814 | Size = 1; // zerofill of 0 bytes is undefined. |
| 815 | emitLinkage(GV, GVSym); |
| 816 | // .zerofill __DATA, __bss, _foo, 400, 5 |
| 817 | OutStreamer->emitZerofill(Section: TheSection, Symbol: GVSym, Size, ByteAlignment: Alignment); |
| 818 | return; |
| 819 | } |
| 820 | |
| 821 | // If this is a BSS local symbol and we are emitting in the BSS |
| 822 | // section use .lcomm/.comm directive. |
| 823 | if (GVKind.isBSSLocal() && |
| 824 | getObjFileLowering().getBSSSection() == TheSection) { |
| 825 | if (Size == 0) |
| 826 | Size = 1; // .comm Foo, 0 is undefined, avoid it. |
| 827 | |
| 828 | // Use .lcomm only if it supports user-specified alignment. |
| 829 | // Otherwise, while it would still be correct to use .lcomm in some |
| 830 | // cases (e.g. when Align == 1), the external assembler might enfore |
| 831 | // some -unknown- default alignment behavior, which could cause |
| 832 | // spurious differences between external and integrated assembler. |
| 833 | // Prefer to simply fall back to .local / .comm in this case. |
| 834 | if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { |
| 835 | // .lcomm _foo, 42 |
| 836 | OutStreamer->emitLocalCommonSymbol(Symbol: GVSym, Size, ByteAlignment: Alignment); |
| 837 | return; |
| 838 | } |
| 839 | |
| 840 | // .local _foo |
| 841 | OutStreamer->emitSymbolAttribute(Symbol: GVSym, Attribute: MCSA_Local); |
| 842 | // .comm _foo, 42, 4 |
| 843 | OutStreamer->emitCommonSymbol(Symbol: GVSym, Size, ByteAlignment: Alignment); |
| 844 | return; |
| 845 | } |
| 846 | |
| 847 | // Handle thread local data for mach-o which requires us to output an |
| 848 | // additional structure of data and mangle the original symbol so that we |
| 849 | // can reference it later. |
| 850 | // |
| 851 | // TODO: This should become an "emit thread local global" method on TLOF. |
| 852 | // All of this macho specific stuff should be sunk down into TLOFMachO and |
| 853 | // stuff like "TLSExtraDataSection" should no longer be part of the parent |
| 854 | // TLOF class. This will also make it more obvious that stuff like |
| 855 | // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho |
| 856 | // specific code. |
| 857 | if (GVKind.isThreadLocal() && MAI->isMachO()) { |
| 858 | // Emit the .tbss symbol |
| 859 | MCSymbol *MangSym = |
| 860 | OutContext.getOrCreateSymbol(Name: GVSym->getName() + Twine("$tlv$init" )); |
| 861 | |
| 862 | if (GVKind.isThreadBSS()) { |
| 863 | TheSection = getObjFileLowering().getTLSBSSSection(); |
| 864 | OutStreamer->emitTBSSSymbol(Section: TheSection, Symbol: MangSym, Size, ByteAlignment: Alignment); |
| 865 | } else if (GVKind.isThreadData()) { |
| 866 | OutStreamer->switchSection(Section: TheSection); |
| 867 | |
| 868 | emitAlignment(Alignment, GV); |
| 869 | OutStreamer->emitLabel(Symbol: MangSym); |
| 870 | |
| 871 | emitGlobalConstant(DL: GV->getDataLayout(), |
| 872 | CV: GV->getInitializer()); |
| 873 | } |
| 874 | |
| 875 | OutStreamer->addBlankLine(); |
| 876 | |
| 877 | // Emit the variable struct for the runtime. |
| 878 | MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); |
| 879 | |
| 880 | OutStreamer->switchSection(Section: TLVSect); |
| 881 | // Emit the linkage here. |
| 882 | emitLinkage(GV, GVSym); |
| 883 | OutStreamer->emitLabel(Symbol: GVSym); |
| 884 | |
| 885 | // Three pointers in size: |
| 886 | // - __tlv_bootstrap - used to make sure support exists |
| 887 | // - spare pointer, used when mapped by the runtime |
| 888 | // - pointer to mangled symbol above with initializer |
| 889 | unsigned PtrSize = DL.getPointerTypeSize(Ty: GV->getType()); |
| 890 | OutStreamer->emitSymbolValue(Sym: GetExternalSymbolSymbol(Sym: "_tlv_bootstrap" ), |
| 891 | Size: PtrSize); |
| 892 | OutStreamer->emitIntValue(Value: 0, Size: PtrSize); |
| 893 | OutStreamer->emitSymbolValue(Sym: MangSym, Size: PtrSize); |
| 894 | |
| 895 | OutStreamer->addBlankLine(); |
| 896 | return; |
| 897 | } |
| 898 | |
| 899 | MCSymbol *EmittedInitSym = GVSym; |
| 900 | |
| 901 | OutStreamer->switchSection(Section: TheSection); |
| 902 | |
| 903 | emitLinkage(GV, GVSym: EmittedInitSym); |
| 904 | emitAlignment(Alignment, GV); |
| 905 | |
| 906 | OutStreamer->emitLabel(Symbol: EmittedInitSym); |
| 907 | MCSymbol *LocalAlias = getSymbolPreferLocal(GV: *GV); |
| 908 | if (LocalAlias != EmittedInitSym) |
| 909 | OutStreamer->emitLabel(Symbol: LocalAlias); |
| 910 | |
| 911 | emitGlobalConstant(DL: GV->getDataLayout(), CV: GV->getInitializer()); |
| 912 | |
| 913 | if (MAI->hasDotTypeDotSizeDirective()) |
| 914 | // .size foo, 42 |
| 915 | OutStreamer->emitELFSize(Symbol: EmittedInitSym, |
| 916 | Value: MCConstantExpr::create(Value: Size, Ctx&: OutContext)); |
| 917 | |
| 918 | OutStreamer->addBlankLine(); |
| 919 | } |
| 920 | |
| 921 | /// Emit the directive and value for debug thread local expression |
| 922 | /// |
| 923 | /// \p Value - The value to emit. |
| 924 | /// \p Size - The size of the integer (in bytes) to emit. |
| 925 | void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const { |
| 926 | OutStreamer->emitValue(Value, Size); |
| 927 | } |
| 928 | |
| 929 | void AsmPrinter::() {} |
| 930 | |
| 931 | void AsmPrinter::emitFunctionPrefix(ArrayRef<const Constant *> Prefix) { |
| 932 | const Function &F = MF->getFunction(); |
| 933 | if (!MAI->hasSubsectionsViaSymbols()) { |
| 934 | for (auto &C : Prefix) |
| 935 | emitGlobalConstant(DL: F.getDataLayout(), CV: C); |
| 936 | return; |
| 937 | } |
| 938 | // Preserving prefix-like data on platforms which use subsections-via-symbols |
| 939 | // is a bit tricky. Here we introduce a symbol for the prefix-like data |
| 940 | // and use the .alt_entry attribute to mark the function's real entry point |
| 941 | // as an alternative entry point to the symbol that precedes the function.. |
| 942 | OutStreamer->emitLabel(Symbol: OutContext.createLinkerPrivateTempSymbol()); |
| 943 | |
| 944 | for (auto &C : Prefix) { |
| 945 | emitGlobalConstant(DL: F.getDataLayout(), CV: C); |
| 946 | } |
| 947 | |
| 948 | // Emit an .alt_entry directive for the actual function symbol. |
| 949 | OutStreamer->emitSymbolAttribute(Symbol: CurrentFnSym, Attribute: MCSA_AltEntry); |
| 950 | } |
| 951 | |
| 952 | /// EmitFunctionHeader - This method emits the header for the current |
| 953 | /// function. |
| 954 | void AsmPrinter::() { |
| 955 | const Function &F = MF->getFunction(); |
| 956 | |
| 957 | if (isVerbose()) |
| 958 | OutStreamer->getCommentOS() |
| 959 | << "-- Begin function " |
| 960 | << GlobalValue::dropLLVMManglingEscape(Name: F.getName()) << '\n'; |
| 961 | |
| 962 | // Print out constants referenced by the function |
| 963 | emitConstantPool(); |
| 964 | |
| 965 | // Print the 'header' of function. |
| 966 | // If basic block sections are desired, explicitly request a unique section |
| 967 | // for this function's entry block. |
| 968 | if (MF->front().isBeginSection()) |
| 969 | MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM)); |
| 970 | else |
| 971 | MF->setSection(getObjFileLowering().SectionForGlobal(GO: &F, TM)); |
| 972 | OutStreamer->switchSection(Section: MF->getSection()); |
| 973 | |
| 974 | if (MAI->isAIX()) |
| 975 | emitLinkage(GV: &F, GVSym: CurrentFnDescSym); |
| 976 | else |
| 977 | emitVisibility(Sym: CurrentFnSym, Visibility: F.getVisibility()); |
| 978 | |
| 979 | emitLinkage(GV: &F, GVSym: CurrentFnSym); |
| 980 | if (MAI->hasFunctionAlignment()) |
| 981 | emitAlignment(Alignment: MF->getAlignment(), GV: &F); |
| 982 | |
| 983 | if (MAI->hasDotTypeDotSizeDirective()) |
| 984 | OutStreamer->emitSymbolAttribute(Symbol: CurrentFnSym, Attribute: MCSA_ELF_TypeFunction); |
| 985 | |
| 986 | if (F.hasFnAttribute(Kind: Attribute::Cold)) |
| 987 | OutStreamer->emitSymbolAttribute(Symbol: CurrentFnSym, Attribute: MCSA_Cold); |
| 988 | |
| 989 | // Emit the prefix data. |
| 990 | if (F.hasPrefixData()) |
| 991 | emitFunctionPrefix(Prefix: {F.getPrefixData()}); |
| 992 | |
| 993 | // Emit KCFI type information before patchable-function-prefix nops. |
| 994 | emitKCFITypeId(MF: *MF); |
| 995 | |
| 996 | // Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily |
| 997 | // place prefix data before NOPs. |
| 998 | unsigned PatchableFunctionPrefix = 0; |
| 999 | unsigned PatchableFunctionEntry = 0; |
| 1000 | (void)F.getFnAttribute(Kind: "patchable-function-prefix" ) |
| 1001 | .getValueAsString() |
| 1002 | .getAsInteger(Radix: 10, Result&: PatchableFunctionPrefix); |
| 1003 | (void)F.getFnAttribute(Kind: "patchable-function-entry" ) |
| 1004 | .getValueAsString() |
| 1005 | .getAsInteger(Radix: 10, Result&: PatchableFunctionEntry); |
| 1006 | if (PatchableFunctionPrefix) { |
| 1007 | CurrentPatchableFunctionEntrySym = |
| 1008 | OutContext.createLinkerPrivateTempSymbol(); |
| 1009 | OutStreamer->emitLabel(Symbol: CurrentPatchableFunctionEntrySym); |
| 1010 | emitNops(N: PatchableFunctionPrefix); |
| 1011 | } else if (PatchableFunctionEntry) { |
| 1012 | // May be reassigned when emitting the body, to reference the label after |
| 1013 | // the initial BTI (AArch64) or endbr32/endbr64 (x86). |
| 1014 | CurrentPatchableFunctionEntrySym = CurrentFnBegin; |
| 1015 | } |
| 1016 | |
| 1017 | // Emit the function prologue data for the indirect call sanitizer. |
| 1018 | if (const MDNode *MD = F.getMetadata(KindID: LLVMContext::MD_func_sanitize)) { |
| 1019 | assert(MD->getNumOperands() == 2); |
| 1020 | |
| 1021 | auto *PrologueSig = mdconst::extract<Constant>(MD: MD->getOperand(I: 0)); |
| 1022 | auto *TypeHash = mdconst::extract<Constant>(MD: MD->getOperand(I: 1)); |
| 1023 | emitFunctionPrefix(Prefix: {PrologueSig, TypeHash}); |
| 1024 | } |
| 1025 | |
| 1026 | if (isVerbose()) { |
| 1027 | F.printAsOperand(O&: OutStreamer->getCommentOS(), |
| 1028 | /*PrintType=*/false, M: F.getParent()); |
| 1029 | emitFunctionHeaderComment(); |
| 1030 | OutStreamer->getCommentOS() << '\n'; |
| 1031 | } |
| 1032 | |
| 1033 | // Emit the function descriptor. This is a virtual function to allow targets |
| 1034 | // to emit their specific function descriptor. Right now it is only used by |
| 1035 | // the AIX target. The PowerPC 64-bit V1 ELF target also uses function |
| 1036 | // descriptors and should be converted to use this hook as well. |
| 1037 | if (MAI->isAIX()) |
| 1038 | emitFunctionDescriptor(); |
| 1039 | |
| 1040 | // Emit the CurrentFnSym. This is a virtual function to allow targets to do |
| 1041 | // their wild and crazy things as required. |
| 1042 | emitFunctionEntryLabel(); |
| 1043 | |
| 1044 | // If the function had address-taken blocks that got deleted, then we have |
| 1045 | // references to the dangling symbols. Emit them at the start of the function |
| 1046 | // so that we don't get references to undefined symbols. |
| 1047 | std::vector<MCSymbol*> DeadBlockSyms; |
| 1048 | takeDeletedSymbolsForFunction(F: &F, Result&: DeadBlockSyms); |
| 1049 | for (MCSymbol *DeadBlockSym : DeadBlockSyms) { |
| 1050 | OutStreamer->AddComment(T: "Address taken block that was later removed" ); |
| 1051 | OutStreamer->emitLabel(Symbol: DeadBlockSym); |
| 1052 | } |
| 1053 | |
| 1054 | if (CurrentFnBegin) { |
| 1055 | if (MAI->useAssignmentForEHBegin()) { |
| 1056 | MCSymbol *CurPos = OutContext.createTempSymbol(); |
| 1057 | OutStreamer->emitLabel(Symbol: CurPos); |
| 1058 | OutStreamer->emitAssignment(Symbol: CurrentFnBegin, |
| 1059 | Value: MCSymbolRefExpr::create(Symbol: CurPos, Ctx&: OutContext)); |
| 1060 | } else { |
| 1061 | OutStreamer->emitLabel(Symbol: CurrentFnBegin); |
| 1062 | } |
| 1063 | } |
| 1064 | |
| 1065 | // Emit pre-function debug and/or EH information. |
| 1066 | for (auto &Handler : Handlers) { |
| 1067 | Handler->beginFunction(MF); |
| 1068 | Handler->beginBasicBlockSection(MBB: MF->front()); |
| 1069 | } |
| 1070 | for (auto &Handler : EHHandlers) { |
| 1071 | Handler->beginFunction(MF); |
| 1072 | Handler->beginBasicBlockSection(MBB: MF->front()); |
| 1073 | } |
| 1074 | |
| 1075 | // Emit the prologue data. |
| 1076 | if (F.hasPrologueData()) |
| 1077 | emitGlobalConstant(DL: F.getDataLayout(), CV: F.getPrologueData()); |
| 1078 | } |
| 1079 | |
| 1080 | /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the |
| 1081 | /// function. This can be overridden by targets as required to do custom stuff. |
| 1082 | void AsmPrinter::emitFunctionEntryLabel() { |
| 1083 | CurrentFnSym->redefineIfPossible(); |
| 1084 | OutStreamer->emitLabel(Symbol: CurrentFnSym); |
| 1085 | |
| 1086 | if (TM.getTargetTriple().isOSBinFormatELF()) { |
| 1087 | MCSymbol *Sym = getSymbolPreferLocal(GV: MF->getFunction()); |
| 1088 | if (Sym != CurrentFnSym) { |
| 1089 | CurrentFnBeginLocal = Sym; |
| 1090 | OutStreamer->emitLabel(Symbol: Sym); |
| 1091 | OutStreamer->emitSymbolAttribute(Symbol: Sym, Attribute: MCSA_ELF_TypeFunction); |
| 1092 | } |
| 1093 | } |
| 1094 | } |
| 1095 | |
| 1096 | /// emitComments - Pretty-print comments for instructions. |
| 1097 | static void (const MachineInstr &MI, const MCSubtargetInfo *STI, |
| 1098 | raw_ostream &) { |
| 1099 | const MachineFunction *MF = MI.getMF(); |
| 1100 | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
| 1101 | |
| 1102 | // Check for spills and reloads |
| 1103 | |
| 1104 | // We assume a single instruction only has a spill or reload, not |
| 1105 | // both. |
| 1106 | std::optional<LocationSize> Size; |
| 1107 | if ((Size = MI.getRestoreSize(TII))) { |
| 1108 | CommentOS << Size->getValue() << "-byte Reload\n" ; |
| 1109 | } else if ((Size = MI.getFoldedRestoreSize(TII))) { |
| 1110 | if (!Size->hasValue()) |
| 1111 | CommentOS << "Unknown-size Folded Reload\n" ; |
| 1112 | else if (Size->getValue()) |
| 1113 | CommentOS << Size->getValue() << "-byte Folded Reload\n" ; |
| 1114 | } else if ((Size = MI.getSpillSize(TII))) { |
| 1115 | CommentOS << Size->getValue() << "-byte Spill\n" ; |
| 1116 | } else if ((Size = MI.getFoldedSpillSize(TII))) { |
| 1117 | if (!Size->hasValue()) |
| 1118 | CommentOS << "Unknown-size Folded Spill\n" ; |
| 1119 | else if (Size->getValue()) |
| 1120 | CommentOS << Size->getValue() << "-byte Folded Spill\n" ; |
| 1121 | } |
| 1122 | |
| 1123 | // Check for spill-induced copies |
| 1124 | if (MI.getAsmPrinterFlag(Flag: MachineInstr::ReloadReuse)) |
| 1125 | CommentOS << " Reload Reuse\n" ; |
| 1126 | |
| 1127 | if (PrintLatency) { |
| 1128 | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
| 1129 | const MCSchedModel &SCModel = STI->getSchedModel(); |
| 1130 | int Latency = SCModel.computeInstrLatency<MCSubtargetInfo, MCInstrInfo, |
| 1131 | InstrItineraryData, MachineInstr>( |
| 1132 | STI: *STI, MCII: *TII, Inst: MI); |
| 1133 | // Report only interesting latencies. |
| 1134 | if (1 < Latency) |
| 1135 | CommentOS << " Latency: " << Latency << "\n" ; |
| 1136 | } |
| 1137 | } |
| 1138 | |
| 1139 | /// emitImplicitDef - This method emits the specified machine instruction |
| 1140 | /// that is an implicit def. |
| 1141 | void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { |
| 1142 | Register RegNo = MI->getOperand(i: 0).getReg(); |
| 1143 | |
| 1144 | SmallString<128> Str; |
| 1145 | raw_svector_ostream OS(Str); |
| 1146 | OS << "implicit-def: " |
| 1147 | << printReg(Reg: RegNo, TRI: MF->getSubtarget().getRegisterInfo()); |
| 1148 | |
| 1149 | OutStreamer->AddComment(T: OS.str()); |
| 1150 | OutStreamer->addBlankLine(); |
| 1151 | } |
| 1152 | |
| 1153 | static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { |
| 1154 | std::string Str; |
| 1155 | raw_string_ostream OS(Str); |
| 1156 | OS << "kill:" ; |
| 1157 | for (const MachineOperand &Op : MI->operands()) { |
| 1158 | assert(Op.isReg() && "KILL instruction must have only register operands" ); |
| 1159 | OS << ' ' << (Op.isDef() ? "def " : "killed " ) |
| 1160 | << printReg(Reg: Op.getReg(), TRI: AP.MF->getSubtarget().getRegisterInfo()); |
| 1161 | } |
| 1162 | AP.OutStreamer->AddComment(T: Str); |
| 1163 | AP.OutStreamer->addBlankLine(); |
| 1164 | } |
| 1165 | |
| 1166 | static void emitFakeUse(const MachineInstr *MI, AsmPrinter &AP) { |
| 1167 | std::string Str; |
| 1168 | raw_string_ostream OS(Str); |
| 1169 | OS << "fake_use:" ; |
| 1170 | for (const MachineOperand &Op : MI->operands()) { |
| 1171 | // In some circumstances we can end up with fake uses of constants; skip |
| 1172 | // these. |
| 1173 | if (!Op.isReg()) |
| 1174 | continue; |
| 1175 | OS << ' ' << printReg(Reg: Op.getReg(), TRI: AP.MF->getSubtarget().getRegisterInfo()); |
| 1176 | } |
| 1177 | AP.OutStreamer->AddComment(T: OS.str()); |
| 1178 | AP.OutStreamer->addBlankLine(); |
| 1179 | } |
| 1180 | |
| 1181 | /// emitDebugValueComment - This method handles the target-independent form |
| 1182 | /// of DBG_VALUE, returning true if it was able to do so. A false return |
| 1183 | /// means the target will need to handle MI in EmitInstruction. |
| 1184 | static bool (const MachineInstr *MI, AsmPrinter &AP) { |
| 1185 | // This code handles only the 4-operand target-independent form. |
| 1186 | if (MI->isNonListDebugValue() && MI->getNumOperands() != 4) |
| 1187 | return false; |
| 1188 | |
| 1189 | SmallString<128> Str; |
| 1190 | raw_svector_ostream OS(Str); |
| 1191 | OS << "DEBUG_VALUE: " ; |
| 1192 | |
| 1193 | const DILocalVariable *V = MI->getDebugVariable(); |
| 1194 | if (auto *SP = dyn_cast<DISubprogram>(Val: V->getScope())) { |
| 1195 | StringRef Name = SP->getName(); |
| 1196 | if (!Name.empty()) |
| 1197 | OS << Name << ":" ; |
| 1198 | } |
| 1199 | OS << V->getName(); |
| 1200 | OS << " <- " ; |
| 1201 | |
| 1202 | const DIExpression *Expr = MI->getDebugExpression(); |
| 1203 | // First convert this to a non-variadic expression if possible, to simplify |
| 1204 | // the output. |
| 1205 | if (auto NonVariadicExpr = DIExpression::convertToNonVariadicExpression(Expr)) |
| 1206 | Expr = *NonVariadicExpr; |
| 1207 | // Then, output the possibly-simplified expression. |
| 1208 | if (Expr->getNumElements()) { |
| 1209 | OS << '['; |
| 1210 | ListSeparator LS; |
| 1211 | for (auto &Op : Expr->expr_ops()) { |
| 1212 | OS << LS << dwarf::OperationEncodingString(Encoding: Op.getOp()); |
| 1213 | for (unsigned I = 0; I < Op.getNumArgs(); ++I) |
| 1214 | OS << ' ' << Op.getArg(I); |
| 1215 | } |
| 1216 | OS << "] " ; |
| 1217 | } |
| 1218 | |
| 1219 | // Register or immediate value. Register 0 means undef. |
| 1220 | for (const MachineOperand &Op : MI->debug_operands()) { |
| 1221 | if (&Op != MI->debug_operands().begin()) |
| 1222 | OS << ", " ; |
| 1223 | switch (Op.getType()) { |
| 1224 | case MachineOperand::MO_FPImmediate: { |
| 1225 | APFloat APF = APFloat(Op.getFPImm()->getValueAPF()); |
| 1226 | Type *ImmTy = Op.getFPImm()->getType(); |
| 1227 | if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() || |
| 1228 | ImmTy->isDoubleTy()) { |
| 1229 | OS << APF.convertToDouble(); |
| 1230 | } else { |
| 1231 | // There is no good way to print long double. Convert a copy to |
| 1232 | // double. Ah well, it's only a comment. |
| 1233 | bool ignored; |
| 1234 | APF.convert(ToSemantics: APFloat::IEEEdouble(), RM: APFloat::rmNearestTiesToEven, |
| 1235 | losesInfo: &ignored); |
| 1236 | OS << "(long double) " << APF.convertToDouble(); |
| 1237 | } |
| 1238 | break; |
| 1239 | } |
| 1240 | case MachineOperand::MO_Immediate: { |
| 1241 | OS << Op.getImm(); |
| 1242 | break; |
| 1243 | } |
| 1244 | case MachineOperand::MO_CImmediate: { |
| 1245 | Op.getCImm()->getValue().print(OS, isSigned: false /*isSigned*/); |
| 1246 | break; |
| 1247 | } |
| 1248 | case MachineOperand::MO_TargetIndex: { |
| 1249 | OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")" ; |
| 1250 | break; |
| 1251 | } |
| 1252 | case MachineOperand::MO_Register: |
| 1253 | case MachineOperand::MO_FrameIndex: { |
| 1254 | Register Reg; |
| 1255 | std::optional<StackOffset> Offset; |
| 1256 | if (Op.isReg()) { |
| 1257 | Reg = Op.getReg(); |
| 1258 | } else { |
| 1259 | const TargetFrameLowering *TFI = |
| 1260 | AP.MF->getSubtarget().getFrameLowering(); |
| 1261 | Offset = TFI->getFrameIndexReference(MF: *AP.MF, FI: Op.getIndex(), FrameReg&: Reg); |
| 1262 | } |
| 1263 | if (!Reg) { |
| 1264 | // Suppress offset, it is not meaningful here. |
| 1265 | OS << "undef" ; |
| 1266 | break; |
| 1267 | } |
| 1268 | // The second operand is only an offset if it's an immediate. |
| 1269 | if (MI->isIndirectDebugValue()) |
| 1270 | Offset = StackOffset::getFixed(Fixed: MI->getDebugOffset().getImm()); |
| 1271 | if (Offset) |
| 1272 | OS << '['; |
| 1273 | OS << printReg(Reg, TRI: AP.MF->getSubtarget().getRegisterInfo()); |
| 1274 | if (Offset) |
| 1275 | OS << '+' << Offset->getFixed() << ']'; |
| 1276 | break; |
| 1277 | } |
| 1278 | default: |
| 1279 | llvm_unreachable("Unknown operand type" ); |
| 1280 | } |
| 1281 | } |
| 1282 | |
| 1283 | // NOTE: Want this comment at start of line, don't emit with AddComment. |
| 1284 | AP.OutStreamer->emitRawComment(T: Str); |
| 1285 | return true; |
| 1286 | } |
| 1287 | |
| 1288 | /// This method handles the target-independent form of DBG_LABEL, returning |
| 1289 | /// true if it was able to do so. A false return means the target will need |
| 1290 | /// to handle MI in EmitInstruction. |
| 1291 | static bool (const MachineInstr *MI, AsmPrinter &AP) { |
| 1292 | if (MI->getNumOperands() != 1) |
| 1293 | return false; |
| 1294 | |
| 1295 | SmallString<128> Str; |
| 1296 | raw_svector_ostream OS(Str); |
| 1297 | OS << "DEBUG_LABEL: " ; |
| 1298 | |
| 1299 | const DILabel *V = MI->getDebugLabel(); |
| 1300 | if (auto *SP = dyn_cast<DISubprogram>( |
| 1301 | Val: V->getScope()->getNonLexicalBlockFileScope())) { |
| 1302 | StringRef Name = SP->getName(); |
| 1303 | if (!Name.empty()) |
| 1304 | OS << Name << ":" ; |
| 1305 | } |
| 1306 | OS << V->getName(); |
| 1307 | |
| 1308 | // NOTE: Want this comment at start of line, don't emit with AddComment. |
| 1309 | AP.OutStreamer->emitRawComment(T: OS.str()); |
| 1310 | return true; |
| 1311 | } |
| 1312 | |
| 1313 | AsmPrinter::CFISection |
| 1314 | AsmPrinter::getFunctionCFISectionType(const Function &F) const { |
| 1315 | // Ignore functions that won't get emitted. |
| 1316 | if (F.isDeclarationForLinker()) |
| 1317 | return CFISection::None; |
| 1318 | |
| 1319 | if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && |
| 1320 | F.needsUnwindTableEntry()) |
| 1321 | return CFISection::EH; |
| 1322 | |
| 1323 | if (MAI->usesCFIWithoutEH() && F.hasUWTable()) |
| 1324 | return CFISection::EH; |
| 1325 | |
| 1326 | if (hasDebugInfo() || TM.Options.ForceDwarfFrameSection) |
| 1327 | return CFISection::Debug; |
| 1328 | |
| 1329 | return CFISection::None; |
| 1330 | } |
| 1331 | |
| 1332 | AsmPrinter::CFISection |
| 1333 | AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const { |
| 1334 | return getFunctionCFISectionType(F: MF.getFunction()); |
| 1335 | } |
| 1336 | |
| 1337 | bool AsmPrinter::needsSEHMoves() { |
| 1338 | return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); |
| 1339 | } |
| 1340 | |
| 1341 | bool AsmPrinter::usesCFIWithoutEH() const { |
| 1342 | return MAI->usesCFIWithoutEH() && ModuleCFISection != CFISection::None; |
| 1343 | } |
| 1344 | |
| 1345 | void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { |
| 1346 | ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); |
| 1347 | if (!usesCFIWithoutEH() && |
| 1348 | ExceptionHandlingType != ExceptionHandling::DwarfCFI && |
| 1349 | ExceptionHandlingType != ExceptionHandling::ARM) |
| 1350 | return; |
| 1351 | |
| 1352 | if (getFunctionCFISectionType(MF: *MF) == CFISection::None) |
| 1353 | return; |
| 1354 | |
| 1355 | // If there is no "real" instruction following this CFI instruction, skip |
| 1356 | // emitting it; it would be beyond the end of the function's FDE range. |
| 1357 | auto *MBB = MI.getParent(); |
| 1358 | auto I = std::next(x: MI.getIterator()); |
| 1359 | while (I != MBB->end() && I->isTransient()) |
| 1360 | ++I; |
| 1361 | if (I == MBB->instr_end() && |
| 1362 | MBB->getReverseIterator() == MBB->getParent()->rbegin()) |
| 1363 | return; |
| 1364 | |
| 1365 | const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); |
| 1366 | unsigned CFIIndex = MI.getOperand(i: 0).getCFIIndex(); |
| 1367 | const MCCFIInstruction &CFI = Instrs[CFIIndex]; |
| 1368 | emitCFIInstruction(Inst: CFI); |
| 1369 | } |
| 1370 | |
| 1371 | void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { |
| 1372 | // The operands are the MCSymbol and the frame offset of the allocation. |
| 1373 | MCSymbol *FrameAllocSym = MI.getOperand(i: 0).getMCSymbol(); |
| 1374 | int FrameOffset = MI.getOperand(i: 1).getImm(); |
| 1375 | |
| 1376 | // Emit a symbol assignment. |
| 1377 | OutStreamer->emitAssignment(Symbol: FrameAllocSym, |
| 1378 | Value: MCConstantExpr::create(Value: FrameOffset, Ctx&: OutContext)); |
| 1379 | } |
| 1380 | |
| 1381 | /// Returns the BB metadata to be emitted in the SHT_LLVM_BB_ADDR_MAP section |
| 1382 | /// for a given basic block. This can be used to capture more precise profile |
| 1383 | /// information. |
| 1384 | static uint32_t getBBAddrMapMetadata(const MachineBasicBlock &MBB) { |
| 1385 | const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); |
| 1386 | return object::BBAddrMap::BBEntry::Metadata{ |
| 1387 | .HasReturn: MBB.isReturnBlock(), .HasTailCall: !MBB.empty() && TII->isTailCall(Inst: MBB.back()), |
| 1388 | .IsEHPad: MBB.isEHPad(), .CanFallThrough: const_cast<MachineBasicBlock &>(MBB).canFallThrough(), |
| 1389 | .HasIndirectBranch: !MBB.empty() && MBB.rbegin()->isIndirectBranch()} |
| 1390 | .encode(); |
| 1391 | } |
| 1392 | |
| 1393 | static llvm::object::BBAddrMap::Features |
| 1394 | getBBAddrMapFeature(const MachineFunction &MF, int NumMBBSectionRanges) { |
| 1395 | // Ensure that the user has not passed in additional options while also |
| 1396 | // specifying all or none. |
| 1397 | if ((PgoAnalysisMapFeatures.isSet(V: PGOMapFeaturesEnum::None) || |
| 1398 | PgoAnalysisMapFeatures.isSet(V: PGOMapFeaturesEnum::All)) && |
| 1399 | popcount(Value: PgoAnalysisMapFeatures.getBits()) != 1) { |
| 1400 | MF.getFunction().getContext().emitError( |
| 1401 | ErrorStr: "-pgo-anaylsis-map can accept only all or none with no additional " |
| 1402 | "values." ); |
| 1403 | } |
| 1404 | |
| 1405 | bool NoFeatures = PgoAnalysisMapFeatures.isSet(V: PGOMapFeaturesEnum::None); |
| 1406 | bool AllFeatures = PgoAnalysisMapFeatures.isSet(V: PGOMapFeaturesEnum::All); |
| 1407 | bool FuncEntryCountEnabled = |
| 1408 | AllFeatures || (!NoFeatures && PgoAnalysisMapFeatures.isSet( |
| 1409 | V: PGOMapFeaturesEnum::FuncEntryCount)); |
| 1410 | bool BBFreqEnabled = |
| 1411 | AllFeatures || |
| 1412 | (!NoFeatures && PgoAnalysisMapFeatures.isSet(V: PGOMapFeaturesEnum::BBFreq)); |
| 1413 | bool BrProbEnabled = |
| 1414 | AllFeatures || |
| 1415 | (!NoFeatures && PgoAnalysisMapFeatures.isSet(V: PGOMapFeaturesEnum::BrProb)); |
| 1416 | |
| 1417 | if ((BBFreqEnabled || BrProbEnabled) && BBAddrMapSkipEmitBBEntries) { |
| 1418 | MF.getFunction().getContext().emitError( |
| 1419 | ErrorStr: "BB entries info is required for BBFreq and BrProb " |
| 1420 | "features" ); |
| 1421 | } |
| 1422 | return {.FuncEntryCount: FuncEntryCountEnabled, |
| 1423 | .BBFreq: BBFreqEnabled, |
| 1424 | .BrProb: BrProbEnabled, |
| 1425 | .MultiBBRange: MF.hasBBSections() && NumMBBSectionRanges > 1, |
| 1426 | .OmitBBEntries: static_cast<bool>(BBAddrMapSkipEmitBBEntries), |
| 1427 | .CallsiteOffsets: false}; |
| 1428 | } |
| 1429 | |
| 1430 | void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) { |
| 1431 | MCSection *BBAddrMapSection = |
| 1432 | getObjFileLowering().getBBAddrMapSection(TextSec: *MF.getSection()); |
| 1433 | assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized." ); |
| 1434 | |
| 1435 | const MCSymbol *FunctionSymbol = getFunctionBegin(); |
| 1436 | |
| 1437 | OutStreamer->pushSection(); |
| 1438 | OutStreamer->switchSection(Section: BBAddrMapSection); |
| 1439 | OutStreamer->AddComment(T: "version" ); |
| 1440 | uint8_t BBAddrMapVersion = OutStreamer->getContext().getBBAddrMapVersion(); |
| 1441 | OutStreamer->emitInt8(Value: BBAddrMapVersion); |
| 1442 | OutStreamer->AddComment(T: "feature" ); |
| 1443 | auto Features = getBBAddrMapFeature(MF, NumMBBSectionRanges: MBBSectionRanges.size()); |
| 1444 | OutStreamer->emitInt8(Value: Features.encode()); |
| 1445 | // Emit BB Information for each basic block in the function. |
| 1446 | if (Features.MultiBBRange) { |
| 1447 | OutStreamer->AddComment(T: "number of basic block ranges" ); |
| 1448 | OutStreamer->emitULEB128IntValue(Value: MBBSectionRanges.size()); |
| 1449 | } |
| 1450 | // Number of blocks in each MBB section. |
| 1451 | MapVector<MBBSectionID, unsigned> MBBSectionNumBlocks; |
| 1452 | const MCSymbol *PrevMBBEndSymbol = nullptr; |
| 1453 | if (!Features.MultiBBRange) { |
| 1454 | OutStreamer->AddComment(T: "function address" ); |
| 1455 | OutStreamer->emitSymbolValue(Sym: FunctionSymbol, Size: getPointerSize()); |
| 1456 | OutStreamer->AddComment(T: "number of basic blocks" ); |
| 1457 | OutStreamer->emitULEB128IntValue(Value: MF.size()); |
| 1458 | PrevMBBEndSymbol = FunctionSymbol; |
| 1459 | } else { |
| 1460 | unsigned BBCount = 0; |
| 1461 | for (const MachineBasicBlock &MBB : MF) { |
| 1462 | BBCount++; |
| 1463 | if (MBB.isEndSection()) { |
| 1464 | // Store each section's basic block count when it ends. |
| 1465 | MBBSectionNumBlocks[MBB.getSectionID()] = BBCount; |
| 1466 | // Reset the count for the next section. |
| 1467 | BBCount = 0; |
| 1468 | } |
| 1469 | } |
| 1470 | } |
| 1471 | // Emit the BB entry for each basic block in the function. |
| 1472 | for (const MachineBasicBlock &MBB : MF) { |
| 1473 | const MCSymbol *MBBSymbol = |
| 1474 | MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol(); |
| 1475 | bool IsBeginSection = |
| 1476 | Features.MultiBBRange && (MBB.isBeginSection() || MBB.isEntryBlock()); |
| 1477 | if (IsBeginSection) { |
| 1478 | OutStreamer->AddComment(T: "base address" ); |
| 1479 | OutStreamer->emitSymbolValue(Sym: MBBSymbol, Size: getPointerSize()); |
| 1480 | OutStreamer->AddComment(T: "number of basic blocks" ); |
| 1481 | OutStreamer->emitULEB128IntValue(Value: MBBSectionNumBlocks[MBB.getSectionID()]); |
| 1482 | PrevMBBEndSymbol = MBBSymbol; |
| 1483 | } |
| 1484 | |
| 1485 | if (!Features.OmitBBEntries) { |
| 1486 | OutStreamer->AddComment(T: "BB id" ); |
| 1487 | // Emit the BB ID for this basic block. |
| 1488 | // We only emit BaseID since CloneID is unset for |
| 1489 | // -basic-block-adress-map. |
| 1490 | // TODO: Emit the full BBID when labels and sections can be mixed |
| 1491 | // together. |
| 1492 | OutStreamer->emitULEB128IntValue(Value: MBB.getBBID()->BaseID); |
| 1493 | // Emit the basic block offset relative to the end of the previous block. |
| 1494 | // This is zero unless the block is padded due to alignment. |
| 1495 | emitLabelDifferenceAsULEB128(Hi: MBBSymbol, Lo: PrevMBBEndSymbol); |
| 1496 | // Emit the basic block size. When BBs have alignments, their size cannot |
| 1497 | // always be computed from their offsets. |
| 1498 | emitLabelDifferenceAsULEB128(Hi: MBB.getEndSymbol(), Lo: MBBSymbol); |
| 1499 | // Emit the Metadata. |
| 1500 | OutStreamer->emitULEB128IntValue(Value: getBBAddrMapMetadata(MBB)); |
| 1501 | } |
| 1502 | |
| 1503 | PrevMBBEndSymbol = MBB.getEndSymbol(); |
| 1504 | } |
| 1505 | |
| 1506 | if (Features.hasPGOAnalysis()) { |
| 1507 | assert(BBAddrMapVersion >= 2 && |
| 1508 | "PGOAnalysisMap only supports version 2 or later" ); |
| 1509 | |
| 1510 | if (Features.FuncEntryCount) { |
| 1511 | OutStreamer->AddComment(T: "function entry count" ); |
| 1512 | auto MaybeEntryCount = MF.getFunction().getEntryCount(); |
| 1513 | OutStreamer->emitULEB128IntValue( |
| 1514 | Value: MaybeEntryCount ? MaybeEntryCount->getCount() : 0); |
| 1515 | } |
| 1516 | const MachineBlockFrequencyInfo *MBFI = |
| 1517 | Features.BBFreq |
| 1518 | ? &getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI() |
| 1519 | : nullptr; |
| 1520 | const MachineBranchProbabilityInfo *MBPI = |
| 1521 | Features.BrProb |
| 1522 | ? &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI() |
| 1523 | : nullptr; |
| 1524 | |
| 1525 | if (Features.BBFreq || Features.BrProb) { |
| 1526 | for (const MachineBasicBlock &MBB : MF) { |
| 1527 | if (Features.BBFreq) { |
| 1528 | OutStreamer->AddComment(T: "basic block frequency" ); |
| 1529 | OutStreamer->emitULEB128IntValue( |
| 1530 | Value: MBFI->getBlockFreq(MBB: &MBB).getFrequency()); |
| 1531 | } |
| 1532 | if (Features.BrProb) { |
| 1533 | unsigned SuccCount = MBB.succ_size(); |
| 1534 | OutStreamer->AddComment(T: "basic block successor count" ); |
| 1535 | OutStreamer->emitULEB128IntValue(Value: SuccCount); |
| 1536 | for (const MachineBasicBlock *SuccMBB : MBB.successors()) { |
| 1537 | OutStreamer->AddComment(T: "successor BB ID" ); |
| 1538 | OutStreamer->emitULEB128IntValue(Value: SuccMBB->getBBID()->BaseID); |
| 1539 | OutStreamer->AddComment(T: "successor branch probability" ); |
| 1540 | OutStreamer->emitULEB128IntValue( |
| 1541 | Value: MBPI->getEdgeProbability(Src: &MBB, Dst: SuccMBB).getNumerator()); |
| 1542 | } |
| 1543 | } |
| 1544 | } |
| 1545 | } |
| 1546 | } |
| 1547 | |
| 1548 | OutStreamer->popSection(); |
| 1549 | } |
| 1550 | |
| 1551 | void AsmPrinter::emitKCFITrapEntry(const MachineFunction &MF, |
| 1552 | const MCSymbol *Symbol) { |
| 1553 | MCSection *Section = |
| 1554 | getObjFileLowering().getKCFITrapSection(TextSec: *MF.getSection()); |
| 1555 | if (!Section) |
| 1556 | return; |
| 1557 | |
| 1558 | OutStreamer->pushSection(); |
| 1559 | OutStreamer->switchSection(Section); |
| 1560 | |
| 1561 | MCSymbol *Loc = OutContext.createLinkerPrivateTempSymbol(); |
| 1562 | OutStreamer->emitLabel(Symbol: Loc); |
| 1563 | OutStreamer->emitAbsoluteSymbolDiff(Hi: Symbol, Lo: Loc, Size: 4); |
| 1564 | |
| 1565 | OutStreamer->popSection(); |
| 1566 | } |
| 1567 | |
| 1568 | void AsmPrinter::emitKCFITypeId(const MachineFunction &MF) { |
| 1569 | const Function &F = MF.getFunction(); |
| 1570 | if (const MDNode *MD = F.getMetadata(KindID: LLVMContext::MD_kcfi_type)) |
| 1571 | emitGlobalConstant(DL: F.getDataLayout(), |
| 1572 | CV: mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 0))); |
| 1573 | } |
| 1574 | |
| 1575 | void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) { |
| 1576 | if (PP) { |
| 1577 | auto GUID = MI.getOperand(i: 0).getImm(); |
| 1578 | auto Index = MI.getOperand(i: 1).getImm(); |
| 1579 | auto Type = MI.getOperand(i: 2).getImm(); |
| 1580 | auto Attr = MI.getOperand(i: 3).getImm(); |
| 1581 | DILocation *DebugLoc = MI.getDebugLoc(); |
| 1582 | PP->emitPseudoProbe(Guid: GUID, Index, Type, Attr, DebugLoc); |
| 1583 | } |
| 1584 | } |
| 1585 | |
| 1586 | void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { |
| 1587 | if (!MF.getTarget().Options.EmitStackSizeSection) |
| 1588 | return; |
| 1589 | |
| 1590 | MCSection *StackSizeSection = |
| 1591 | getObjFileLowering().getStackSizesSection(TextSec: *MF.getSection()); |
| 1592 | if (!StackSizeSection) |
| 1593 | return; |
| 1594 | |
| 1595 | const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); |
| 1596 | // Don't emit functions with dynamic stack allocations. |
| 1597 | if (FrameInfo.hasVarSizedObjects()) |
| 1598 | return; |
| 1599 | |
| 1600 | OutStreamer->pushSection(); |
| 1601 | OutStreamer->switchSection(Section: StackSizeSection); |
| 1602 | |
| 1603 | const MCSymbol *FunctionSymbol = getFunctionBegin(); |
| 1604 | uint64_t StackSize = |
| 1605 | FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); |
| 1606 | OutStreamer->emitSymbolValue(Sym: FunctionSymbol, Size: TM.getProgramPointerSize()); |
| 1607 | OutStreamer->emitULEB128IntValue(Value: StackSize); |
| 1608 | |
| 1609 | OutStreamer->popSection(); |
| 1610 | } |
| 1611 | |
| 1612 | void AsmPrinter::emitStackUsage(const MachineFunction &MF) { |
| 1613 | const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput; |
| 1614 | |
| 1615 | // OutputFilename empty implies -fstack-usage is not passed. |
| 1616 | if (OutputFilename.empty()) |
| 1617 | return; |
| 1618 | |
| 1619 | const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); |
| 1620 | uint64_t StackSize = |
| 1621 | FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize(); |
| 1622 | |
| 1623 | if (StackUsageStream == nullptr) { |
| 1624 | std::error_code EC; |
| 1625 | StackUsageStream = |
| 1626 | std::make_unique<raw_fd_ostream>(args: OutputFilename, args&: EC, args: sys::fs::OF_Text); |
| 1627 | if (EC) { |
| 1628 | errs() << "Could not open file: " << EC.message(); |
| 1629 | return; |
| 1630 | } |
| 1631 | } |
| 1632 | |
| 1633 | if (const DISubprogram *DSP = MF.getFunction().getSubprogram()) |
| 1634 | *StackUsageStream << DSP->getFilename() << ':' << DSP->getLine(); |
| 1635 | else |
| 1636 | *StackUsageStream << MF.getFunction().getParent()->getName(); |
| 1637 | |
| 1638 | *StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t'; |
| 1639 | if (FrameInfo.hasVarSizedObjects()) |
| 1640 | *StackUsageStream << "dynamic\n" ; |
| 1641 | else |
| 1642 | *StackUsageStream << "static\n" ; |
| 1643 | } |
| 1644 | |
| 1645 | void AsmPrinter::emitPCSectionsLabel(const MachineFunction &MF, |
| 1646 | const MDNode &MD) { |
| 1647 | MCSymbol *S = MF.getContext().createTempSymbol(Name: "pcsection" ); |
| 1648 | OutStreamer->emitLabel(Symbol: S); |
| 1649 | PCSectionsSymbols[&MD].emplace_back(Args&: S); |
| 1650 | } |
| 1651 | |
| 1652 | void AsmPrinter::emitPCSections(const MachineFunction &MF) { |
| 1653 | const Function &F = MF.getFunction(); |
| 1654 | if (PCSectionsSymbols.empty() && !F.hasMetadata(KindID: LLVMContext::MD_pcsections)) |
| 1655 | return; |
| 1656 | |
| 1657 | const CodeModel::Model CM = MF.getTarget().getCodeModel(); |
| 1658 | const unsigned RelativeRelocSize = |
| 1659 | (CM == CodeModel::Medium || CM == CodeModel::Large) ? getPointerSize() |
| 1660 | : 4; |
| 1661 | |
| 1662 | // Switch to PCSection, short-circuiting the common case where the current |
| 1663 | // section is still valid (assume most MD_pcsections contain just 1 section). |
| 1664 | auto SwitchSection = [&, Prev = StringRef()](const StringRef &Sec) mutable { |
| 1665 | if (Sec == Prev) |
| 1666 | return; |
| 1667 | MCSection *S = getObjFileLowering().getPCSection(Name: Sec, TextSec: MF.getSection()); |
| 1668 | assert(S && "PC section is not initialized" ); |
| 1669 | OutStreamer->switchSection(Section: S); |
| 1670 | Prev = Sec; |
| 1671 | }; |
| 1672 | // Emit symbols into sections and data as specified in the pcsections MDNode. |
| 1673 | auto EmitForMD = [&](const MDNode &MD, ArrayRef<const MCSymbol *> Syms, |
| 1674 | bool Deltas) { |
| 1675 | // Expect the first operand to be a section name. After that, a tuple of |
| 1676 | // constants may appear, which will simply be emitted into the current |
| 1677 | // section (the user of MD_pcsections decides the format of encoded data). |
| 1678 | assert(isa<MDString>(MD.getOperand(0)) && "first operand not a string" ); |
| 1679 | bool ConstULEB128 = false; |
| 1680 | for (const MDOperand &MDO : MD.operands()) { |
| 1681 | if (auto *S = dyn_cast<MDString>(Val: MDO)) { |
| 1682 | // Found string, start of new section! |
| 1683 | // Find options for this section "<section>!<opts>" - supported options: |
| 1684 | // C = Compress constant integers of size 2-8 bytes as ULEB128. |
| 1685 | const StringRef SecWithOpt = S->getString(); |
| 1686 | const size_t OptStart = SecWithOpt.find(C: '!'); // likely npos |
| 1687 | const StringRef Sec = SecWithOpt.substr(Start: 0, N: OptStart); |
| 1688 | const StringRef Opts = SecWithOpt.substr(Start: OptStart); // likely empty |
| 1689 | ConstULEB128 = Opts.contains(C: 'C'); |
| 1690 | #ifndef NDEBUG |
| 1691 | for (char O : Opts) |
| 1692 | assert((O == '!' || O == 'C') && "Invalid !pcsections options" ); |
| 1693 | #endif |
| 1694 | SwitchSection(Sec); |
| 1695 | const MCSymbol *Prev = Syms.front(); |
| 1696 | for (const MCSymbol *Sym : Syms) { |
| 1697 | if (Sym == Prev || !Deltas) { |
| 1698 | // Use the entry itself as the base of the relative offset. |
| 1699 | MCSymbol *Base = MF.getContext().createTempSymbol(Name: "pcsection_base" ); |
| 1700 | OutStreamer->emitLabel(Symbol: Base); |
| 1701 | // Emit relative relocation `addr - base`, which avoids a dynamic |
| 1702 | // relocation in the final binary. User will get the address with |
| 1703 | // `base + addr`. |
| 1704 | emitLabelDifference(Hi: Sym, Lo: Base, Size: RelativeRelocSize); |
| 1705 | } else { |
| 1706 | // Emit delta between symbol and previous symbol. |
| 1707 | if (ConstULEB128) |
| 1708 | emitLabelDifferenceAsULEB128(Hi: Sym, Lo: Prev); |
| 1709 | else |
| 1710 | emitLabelDifference(Hi: Sym, Lo: Prev, Size: 4); |
| 1711 | } |
| 1712 | Prev = Sym; |
| 1713 | } |
| 1714 | } else { |
| 1715 | // Emit auxiliary data after PC. |
| 1716 | assert(isa<MDNode>(MDO) && "expecting either string or tuple" ); |
| 1717 | const auto *AuxMDs = cast<MDNode>(Val: MDO); |
| 1718 | for (const MDOperand &AuxMDO : AuxMDs->operands()) { |
| 1719 | assert(isa<ConstantAsMetadata>(AuxMDO) && "expecting a constant" ); |
| 1720 | const Constant *C = cast<ConstantAsMetadata>(Val: AuxMDO)->getValue(); |
| 1721 | const DataLayout &DL = F.getDataLayout(); |
| 1722 | const uint64_t Size = DL.getTypeStoreSize(Ty: C->getType()); |
| 1723 | |
| 1724 | if (auto *CI = dyn_cast<ConstantInt>(Val: C); |
| 1725 | CI && ConstULEB128 && Size > 1 && Size <= 8) { |
| 1726 | emitULEB128(Value: CI->getZExtValue()); |
| 1727 | } else { |
| 1728 | emitGlobalConstant(DL, CV: C); |
| 1729 | } |
| 1730 | } |
| 1731 | } |
| 1732 | } |
| 1733 | }; |
| 1734 | |
| 1735 | OutStreamer->pushSection(); |
| 1736 | // Emit PCs for function start and function size. |
| 1737 | if (const MDNode *MD = F.getMetadata(KindID: LLVMContext::MD_pcsections)) |
| 1738 | EmitForMD(*MD, {getFunctionBegin(), getFunctionEnd()}, true); |
| 1739 | // Emit PCs for instructions collected. |
| 1740 | for (const auto &MS : PCSectionsSymbols) |
| 1741 | EmitForMD(*MS.first, MS.second, false); |
| 1742 | OutStreamer->popSection(); |
| 1743 | PCSectionsSymbols.clear(); |
| 1744 | } |
| 1745 | |
| 1746 | /// Returns true if function begin and end labels should be emitted. |
| 1747 | static bool needFuncLabels(const MachineFunction &MF, const AsmPrinter &Asm) { |
| 1748 | if (Asm.hasDebugInfo() || !MF.getLandingPads().empty() || |
| 1749 | MF.hasEHFunclets() || |
| 1750 | MF.getFunction().hasMetadata(KindID: LLVMContext::MD_pcsections)) |
| 1751 | return true; |
| 1752 | |
| 1753 | // We might emit an EH table that uses function begin and end labels even if |
| 1754 | // we don't have any landingpads. |
| 1755 | if (!MF.getFunction().hasPersonalityFn()) |
| 1756 | return false; |
| 1757 | return !isNoOpWithoutInvoke( |
| 1758 | Pers: classifyEHPersonality(Pers: MF.getFunction().getPersonalityFn())); |
| 1759 | } |
| 1760 | |
| 1761 | // Return the mnemonic of a MachineInstr if available, or the MachineInstr |
| 1762 | // opcode name otherwise. |
| 1763 | static StringRef getMIMnemonic(const MachineInstr &MI, MCStreamer &Streamer) { |
| 1764 | const TargetInstrInfo *TII = |
| 1765 | MI.getParent()->getParent()->getSubtarget().getInstrInfo(); |
| 1766 | MCInst MCI; |
| 1767 | MCI.setOpcode(MI.getOpcode()); |
| 1768 | if (StringRef Name = Streamer.getMnemonic(MI: MCI); !Name.empty()) |
| 1769 | return Name; |
| 1770 | StringRef Name = TII->getName(Opcode: MI.getOpcode()); |
| 1771 | assert(!Name.empty() && "Missing mnemonic and name for opcode" ); |
| 1772 | return Name; |
| 1773 | } |
| 1774 | |
| 1775 | /// EmitFunctionBody - This method emits the body and trailer for a |
| 1776 | /// function. |
| 1777 | void AsmPrinter::emitFunctionBody() { |
| 1778 | emitFunctionHeader(); |
| 1779 | |
| 1780 | // Emit target-specific gunk before the function body. |
| 1781 | emitFunctionBodyStart(); |
| 1782 | |
| 1783 | if (isVerbose()) { |
| 1784 | // Get MachineDominatorTree or compute it on the fly if it's unavailable |
| 1785 | auto MDTWrapper = getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>(); |
| 1786 | MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr; |
| 1787 | if (!MDT) { |
| 1788 | OwnedMDT = std::make_unique<MachineDominatorTree>(); |
| 1789 | OwnedMDT->recalculate(Func&: *MF); |
| 1790 | MDT = OwnedMDT.get(); |
| 1791 | } |
| 1792 | |
| 1793 | // Get MachineLoopInfo or compute it on the fly if it's unavailable |
| 1794 | auto *MLIWrapper = getAnalysisIfAvailable<MachineLoopInfoWrapperPass>(); |
| 1795 | MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr; |
| 1796 | if (!MLI) { |
| 1797 | OwnedMLI = std::make_unique<MachineLoopInfo>(); |
| 1798 | OwnedMLI->analyze(DomTree: *MDT); |
| 1799 | MLI = OwnedMLI.get(); |
| 1800 | } |
| 1801 | } |
| 1802 | |
| 1803 | // Print out code for the function. |
| 1804 | bool HasAnyRealCode = false; |
| 1805 | int NumInstsInFunction = 0; |
| 1806 | bool IsEHa = MMI->getModule()->getModuleFlag(Key: "eh-asynch" ); |
| 1807 | |
| 1808 | const MCSubtargetInfo *STI = nullptr; |
| 1809 | if (this->MF) |
| 1810 | STI = &getSubtargetInfo(); |
| 1811 | else |
| 1812 | STI = TM.getMCSubtargetInfo(); |
| 1813 | |
| 1814 | bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); |
| 1815 | // Create a slot for the entry basic block section so that the section |
| 1816 | // order is preserved when iterating over MBBSectionRanges. |
| 1817 | if (!MF->empty()) |
| 1818 | MBBSectionRanges[MF->front().getSectionID()] = |
| 1819 | MBBSectionRange{.BeginLabel: CurrentFnBegin, .EndLabel: nullptr}; |
| 1820 | |
| 1821 | for (auto &MBB : *MF) { |
| 1822 | // Print a label for the basic block. |
| 1823 | emitBasicBlockStart(MBB); |
| 1824 | DenseMap<StringRef, unsigned> MnemonicCounts; |
| 1825 | for (auto &MI : MBB) { |
| 1826 | // Print the assembly for the instruction. |
| 1827 | if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && |
| 1828 | !MI.isDebugInstr()) { |
| 1829 | HasAnyRealCode = true; |
| 1830 | } |
| 1831 | |
| 1832 | // If there is a pre-instruction symbol, emit a label for it here. |
| 1833 | if (MCSymbol *S = MI.getPreInstrSymbol()) |
| 1834 | OutStreamer->emitLabel(Symbol: S); |
| 1835 | |
| 1836 | if (MDNode *MD = MI.getPCSections()) |
| 1837 | emitPCSectionsLabel(MF: *MF, MD: *MD); |
| 1838 | |
| 1839 | for (auto &Handler : Handlers) |
| 1840 | Handler->beginInstruction(MI: &MI); |
| 1841 | |
| 1842 | if (isVerbose()) |
| 1843 | emitComments(MI, STI, CommentOS&: OutStreamer->getCommentOS()); |
| 1844 | |
| 1845 | switch (MI.getOpcode()) { |
| 1846 | case TargetOpcode::CFI_INSTRUCTION: |
| 1847 | emitCFIInstruction(MI); |
| 1848 | break; |
| 1849 | case TargetOpcode::LOCAL_ESCAPE: |
| 1850 | emitFrameAlloc(MI); |
| 1851 | break; |
| 1852 | case TargetOpcode::ANNOTATION_LABEL: |
| 1853 | case TargetOpcode::GC_LABEL: |
| 1854 | OutStreamer->emitLabel(Symbol: MI.getOperand(i: 0).getMCSymbol()); |
| 1855 | break; |
| 1856 | case TargetOpcode::EH_LABEL: |
| 1857 | OutStreamer->emitLabel(Symbol: MI.getOperand(i: 0).getMCSymbol()); |
| 1858 | // For AsynchEH, insert a Nop if followed by a trap inst |
| 1859 | // Or the exception won't be caught. |
| 1860 | // (see MCConstantExpr::create(1,..) in WinException.cpp) |
| 1861 | // Ignore SDiv/UDiv because a DIV with Const-0 divisor |
| 1862 | // must have being turned into an UndefValue. |
| 1863 | // Div with variable opnds won't be the first instruction in |
| 1864 | // an EH region as it must be led by at least a Load |
| 1865 | { |
| 1866 | auto MI2 = std::next(x: MI.getIterator()); |
| 1867 | if (IsEHa && MI2 != MBB.end() && |
| 1868 | (MI2->mayLoadOrStore() || MI2->mayRaiseFPException())) |
| 1869 | emitNops(N: 1); |
| 1870 | } |
| 1871 | break; |
| 1872 | case TargetOpcode::INLINEASM: |
| 1873 | case TargetOpcode::INLINEASM_BR: |
| 1874 | emitInlineAsm(MI: &MI); |
| 1875 | break; |
| 1876 | case TargetOpcode::DBG_VALUE: |
| 1877 | case TargetOpcode::DBG_VALUE_LIST: |
| 1878 | if (isVerbose()) { |
| 1879 | if (!emitDebugValueComment(MI: &MI, AP&: *this)) |
| 1880 | emitInstruction(&MI); |
| 1881 | } |
| 1882 | break; |
| 1883 | case TargetOpcode::DBG_INSTR_REF: |
| 1884 | // This instruction reference will have been resolved to a machine |
| 1885 | // location, and a nearby DBG_VALUE created. We can safely ignore |
| 1886 | // the instruction reference. |
| 1887 | break; |
| 1888 | case TargetOpcode::DBG_PHI: |
| 1889 | // This instruction is only used to label a program point, it's purely |
| 1890 | // meta information. |
| 1891 | break; |
| 1892 | case TargetOpcode::DBG_LABEL: |
| 1893 | if (isVerbose()) { |
| 1894 | if (!emitDebugLabelComment(MI: &MI, AP&: *this)) |
| 1895 | emitInstruction(&MI); |
| 1896 | } |
| 1897 | break; |
| 1898 | case TargetOpcode::IMPLICIT_DEF: |
| 1899 | if (isVerbose()) emitImplicitDef(MI: &MI); |
| 1900 | break; |
| 1901 | case TargetOpcode::KILL: |
| 1902 | if (isVerbose()) emitKill(MI: &MI, AP&: *this); |
| 1903 | break; |
| 1904 | case TargetOpcode::FAKE_USE: |
| 1905 | if (isVerbose()) |
| 1906 | emitFakeUse(MI: &MI, AP&: *this); |
| 1907 | break; |
| 1908 | case TargetOpcode::PSEUDO_PROBE: |
| 1909 | emitPseudoProbe(MI); |
| 1910 | break; |
| 1911 | case TargetOpcode::ARITH_FENCE: |
| 1912 | if (isVerbose()) |
| 1913 | OutStreamer->emitRawComment(T: "ARITH_FENCE" ); |
| 1914 | break; |
| 1915 | case TargetOpcode::MEMBARRIER: |
| 1916 | OutStreamer->emitRawComment(T: "MEMBARRIER" ); |
| 1917 | break; |
| 1918 | case TargetOpcode::JUMP_TABLE_DEBUG_INFO: |
| 1919 | // This instruction is only used to note jump table debug info, it's |
| 1920 | // purely meta information. |
| 1921 | break; |
| 1922 | case TargetOpcode::INIT_UNDEF: |
| 1923 | // This is only used to influence register allocation behavior, no |
| 1924 | // actual initialization is needed. |
| 1925 | break; |
| 1926 | default: |
| 1927 | emitInstruction(&MI); |
| 1928 | |
| 1929 | auto CountInstruction = [&](const MachineInstr &MI) { |
| 1930 | // Skip Meta instructions inside bundles. |
| 1931 | if (MI.isMetaInstruction()) |
| 1932 | return; |
| 1933 | ++NumInstsInFunction; |
| 1934 | if (CanDoExtraAnalysis) { |
| 1935 | StringRef Name = getMIMnemonic(MI, Streamer&: *OutStreamer); |
| 1936 | ++MnemonicCounts[Name]; |
| 1937 | } |
| 1938 | }; |
| 1939 | if (!MI.isBundle()) { |
| 1940 | CountInstruction(MI); |
| 1941 | break; |
| 1942 | } |
| 1943 | // Separately count all the instructions in a bundle. |
| 1944 | for (auto It = std::next(x: MI.getIterator()); |
| 1945 | It != MBB.end() && It->isInsideBundle(); ++It) { |
| 1946 | CountInstruction(*It); |
| 1947 | } |
| 1948 | break; |
| 1949 | } |
| 1950 | |
| 1951 | // If there is a post-instruction symbol, emit a label for it here. |
| 1952 | if (MCSymbol *S = MI.getPostInstrSymbol()) |
| 1953 | OutStreamer->emitLabel(Symbol: S); |
| 1954 | |
| 1955 | for (auto &Handler : Handlers) |
| 1956 | Handler->endInstruction(); |
| 1957 | } |
| 1958 | |
| 1959 | // We must emit temporary symbol for the end of this basic block, if either |
| 1960 | // we have BBLabels enabled or if this basic blocks marks the end of a |
| 1961 | // section. |
| 1962 | if (MF->getTarget().Options.BBAddrMap || |
| 1963 | (MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection())) |
| 1964 | OutStreamer->emitLabel(Symbol: MBB.getEndSymbol()); |
| 1965 | |
| 1966 | if (MBB.isEndSection()) { |
| 1967 | // The size directive for the section containing the entry block is |
| 1968 | // handled separately by the function section. |
| 1969 | if (!MBB.sameSection(MBB: &MF->front())) { |
| 1970 | if (MAI->hasDotTypeDotSizeDirective()) { |
| 1971 | // Emit the size directive for the basic block section. |
| 1972 | const MCExpr *SizeExp = MCBinaryExpr::createSub( |
| 1973 | LHS: MCSymbolRefExpr::create(Symbol: MBB.getEndSymbol(), Ctx&: OutContext), |
| 1974 | RHS: MCSymbolRefExpr::create(Symbol: CurrentSectionBeginSym, Ctx&: OutContext), |
| 1975 | Ctx&: OutContext); |
| 1976 | OutStreamer->emitELFSize(Symbol: CurrentSectionBeginSym, Value: SizeExp); |
| 1977 | } |
| 1978 | assert(!MBBSectionRanges.contains(MBB.getSectionID()) && |
| 1979 | "Overwrite section range" ); |
| 1980 | MBBSectionRanges[MBB.getSectionID()] = |
| 1981 | MBBSectionRange{.BeginLabel: CurrentSectionBeginSym, .EndLabel: MBB.getEndSymbol()}; |
| 1982 | } |
| 1983 | } |
| 1984 | emitBasicBlockEnd(MBB); |
| 1985 | |
| 1986 | if (CanDoExtraAnalysis) { |
| 1987 | // Skip empty blocks. |
| 1988 | if (MBB.empty()) |
| 1989 | continue; |
| 1990 | |
| 1991 | MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix" , |
| 1992 | MBB.begin()->getDebugLoc(), &MBB); |
| 1993 | |
| 1994 | // Generate instruction mix remark. First, sort counts in descending order |
| 1995 | // by count and name. |
| 1996 | SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec; |
| 1997 | for (auto &KV : MnemonicCounts) |
| 1998 | MnemonicVec.emplace_back(Args&: KV.first, Args&: KV.second); |
| 1999 | |
| 2000 | sort(C&: MnemonicVec, Comp: [](const std::pair<StringRef, unsigned> &A, |
| 2001 | const std::pair<StringRef, unsigned> &B) { |
| 2002 | if (A.second > B.second) |
| 2003 | return true; |
| 2004 | if (A.second == B.second) |
| 2005 | return StringRef(A.first) < StringRef(B.first); |
| 2006 | return false; |
| 2007 | }); |
| 2008 | R << "BasicBlock: " << ore::NV("BasicBlock" , MBB.getName()) << "\n" ; |
| 2009 | for (auto &KV : MnemonicVec) { |
| 2010 | auto Name = (Twine("INST_" ) + getToken(Source: KV.first.trim()).first).str(); |
| 2011 | R << KV.first << ": " << ore::NV(Name, KV.second) << "\n" ; |
| 2012 | } |
| 2013 | ORE->emit(OptDiag&: R); |
| 2014 | } |
| 2015 | } |
| 2016 | |
| 2017 | EmittedInsts += NumInstsInFunction; |
| 2018 | MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount" , |
| 2019 | MF->getFunction().getSubprogram(), |
| 2020 | &MF->front()); |
| 2021 | R << ore::NV("NumInstructions" , NumInstsInFunction) |
| 2022 | << " instructions in function" ; |
| 2023 | ORE->emit(OptDiag&: R); |
| 2024 | |
| 2025 | // If the function is empty and the object file uses .subsections_via_symbols, |
| 2026 | // then we need to emit *something* to the function body to prevent the |
| 2027 | // labels from collapsing together. Just emit a noop. |
| 2028 | // Similarly, don't emit empty functions on Windows either. It can lead to |
| 2029 | // duplicate entries (two functions with the same RVA) in the Guard CF Table |
| 2030 | // after linking, causing the kernel not to load the binary: |
| 2031 | // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html |
| 2032 | // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. |
| 2033 | const Triple &TT = TM.getTargetTriple(); |
| 2034 | if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || |
| 2035 | (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { |
| 2036 | MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop(); |
| 2037 | |
| 2038 | // Targets can opt-out of emitting the noop here by leaving the opcode |
| 2039 | // unspecified. |
| 2040 | if (Noop.getOpcode()) { |
| 2041 | OutStreamer->AddComment(T: "avoids zero-length function" ); |
| 2042 | emitNops(N: 1); |
| 2043 | } |
| 2044 | } |
| 2045 | |
| 2046 | // Switch to the original section in case basic block sections was used. |
| 2047 | OutStreamer->switchSection(Section: MF->getSection()); |
| 2048 | |
| 2049 | const Function &F = MF->getFunction(); |
| 2050 | for (const auto &BB : F) { |
| 2051 | if (!BB.hasAddressTaken()) |
| 2052 | continue; |
| 2053 | MCSymbol *Sym = GetBlockAddressSymbol(BB: &BB); |
| 2054 | if (Sym->isDefined()) |
| 2055 | continue; |
| 2056 | OutStreamer->AddComment(T: "Address of block that was removed by CodeGen" ); |
| 2057 | OutStreamer->emitLabel(Symbol: Sym); |
| 2058 | } |
| 2059 | |
| 2060 | // Emit target-specific gunk after the function body. |
| 2061 | emitFunctionBodyEnd(); |
| 2062 | |
| 2063 | // Even though wasm supports .type and .size in general, function symbols |
| 2064 | // are automatically sized. |
| 2065 | bool EmitFunctionSize = MAI->hasDotTypeDotSizeDirective() && !TT.isWasm(); |
| 2066 | |
| 2067 | // SPIR-V supports label instructions only inside a block, not after the |
| 2068 | // function body. |
| 2069 | if (TT.getObjectFormat() != Triple::SPIRV && |
| 2070 | (EmitFunctionSize || needFuncLabels(MF: *MF, Asm: *this))) { |
| 2071 | // Create a symbol for the end of function. |
| 2072 | CurrentFnEnd = createTempSymbol(Name: "func_end" ); |
| 2073 | OutStreamer->emitLabel(Symbol: CurrentFnEnd); |
| 2074 | } |
| 2075 | |
| 2076 | // If the target wants a .size directive for the size of the function, emit |
| 2077 | // it. |
| 2078 | if (EmitFunctionSize) { |
| 2079 | // We can get the size as difference between the function label and the |
| 2080 | // temp label. |
| 2081 | const MCExpr *SizeExp = MCBinaryExpr::createSub( |
| 2082 | LHS: MCSymbolRefExpr::create(Symbol: CurrentFnEnd, Ctx&: OutContext), |
| 2083 | RHS: MCSymbolRefExpr::create(Symbol: CurrentFnSymForSize, Ctx&: OutContext), Ctx&: OutContext); |
| 2084 | OutStreamer->emitELFSize(Symbol: CurrentFnSym, Value: SizeExp); |
| 2085 | if (CurrentFnBeginLocal) |
| 2086 | OutStreamer->emitELFSize(Symbol: CurrentFnBeginLocal, Value: SizeExp); |
| 2087 | } |
| 2088 | |
| 2089 | // Call endBasicBlockSection on the last block now, if it wasn't already |
| 2090 | // called. |
| 2091 | if (!MF->back().isEndSection()) { |
| 2092 | for (auto &Handler : Handlers) |
| 2093 | Handler->endBasicBlockSection(MBB: MF->back()); |
| 2094 | for (auto &Handler : EHHandlers) |
| 2095 | Handler->endBasicBlockSection(MBB: MF->back()); |
| 2096 | } |
| 2097 | for (auto &Handler : Handlers) |
| 2098 | Handler->markFunctionEnd(); |
| 2099 | for (auto &Handler : EHHandlers) |
| 2100 | Handler->markFunctionEnd(); |
| 2101 | // Update the end label of the entry block's section. |
| 2102 | MBBSectionRanges[MF->front().getSectionID()].EndLabel = CurrentFnEnd; |
| 2103 | |
| 2104 | // Print out jump tables referenced by the function. |
| 2105 | emitJumpTableInfo(); |
| 2106 | |
| 2107 | // Emit post-function debug and/or EH information. |
| 2108 | for (auto &Handler : Handlers) |
| 2109 | Handler->endFunction(MF); |
| 2110 | for (auto &Handler : EHHandlers) |
| 2111 | Handler->endFunction(MF); |
| 2112 | |
| 2113 | // Emit section containing BB address offsets and their metadata, when |
| 2114 | // BB labels are requested for this function. Skip empty functions. |
| 2115 | if (HasAnyRealCode) { |
| 2116 | if (MF->getTarget().Options.BBAddrMap) |
| 2117 | emitBBAddrMapSection(MF: *MF); |
| 2118 | else if (PgoAnalysisMapFeatures.getBits() != 0) |
| 2119 | MF->getContext().reportWarning( |
| 2120 | L: SMLoc(), Msg: "pgo-analysis-map is enabled for function " + MF->getName() + |
| 2121 | " but it does not have labels" ); |
| 2122 | } |
| 2123 | |
| 2124 | // Emit sections containing instruction and function PCs. |
| 2125 | emitPCSections(MF: *MF); |
| 2126 | |
| 2127 | // Emit section containing stack size metadata. |
| 2128 | emitStackSizeSection(MF: *MF); |
| 2129 | |
| 2130 | // Emit .su file containing function stack size information. |
| 2131 | emitStackUsage(MF: *MF); |
| 2132 | |
| 2133 | emitPatchableFunctionEntries(); |
| 2134 | |
| 2135 | if (isVerbose()) |
| 2136 | OutStreamer->getCommentOS() << "-- End function\n" ; |
| 2137 | |
| 2138 | OutStreamer->addBlankLine(); |
| 2139 | } |
| 2140 | |
| 2141 | /// Compute the number of Global Variables that uses a Constant. |
| 2142 | static unsigned getNumGlobalVariableUses(const Constant *C, |
| 2143 | bool &HasNonGlobalUsers) { |
| 2144 | if (!C) { |
| 2145 | HasNonGlobalUsers = true; |
| 2146 | return 0; |
| 2147 | } |
| 2148 | |
| 2149 | if (isa<GlobalVariable>(Val: C)) |
| 2150 | return 1; |
| 2151 | |
| 2152 | unsigned NumUses = 0; |
| 2153 | for (const auto *CU : C->users()) |
| 2154 | NumUses += |
| 2155 | getNumGlobalVariableUses(C: dyn_cast<Constant>(Val: CU), HasNonGlobalUsers); |
| 2156 | |
| 2157 | return NumUses; |
| 2158 | } |
| 2159 | |
| 2160 | /// Only consider global GOT equivalents if at least one user is a |
| 2161 | /// cstexpr inside an initializer of another global variables. Also, don't |
| 2162 | /// handle cstexpr inside instructions. During global variable emission, |
| 2163 | /// candidates are skipped and are emitted later in case at least one cstexpr |
| 2164 | /// isn't replaced by a PC relative GOT entry access. |
| 2165 | static bool isGOTEquivalentCandidate(const GlobalVariable *GV, |
| 2166 | unsigned &NumGOTEquivUsers, |
| 2167 | bool &HasNonGlobalUsers) { |
| 2168 | // Global GOT equivalents are unnamed private globals with a constant |
| 2169 | // pointer initializer to another global symbol. They must point to a |
| 2170 | // GlobalVariable or Function, i.e., as GlobalValue. |
| 2171 | if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || |
| 2172 | !GV->isConstant() || !GV->isDiscardableIfUnused() || |
| 2173 | !isa<GlobalValue>(Val: GV->getOperand(i_nocapture: 0))) |
| 2174 | return false; |
| 2175 | |
| 2176 | // To be a got equivalent, at least one of its users need to be a constant |
| 2177 | // expression used by another global variable. |
| 2178 | for (const auto *U : GV->users()) |
| 2179 | NumGOTEquivUsers += |
| 2180 | getNumGlobalVariableUses(C: dyn_cast<Constant>(Val: U), HasNonGlobalUsers); |
| 2181 | |
| 2182 | return NumGOTEquivUsers > 0; |
| 2183 | } |
| 2184 | |
| 2185 | /// Unnamed constant global variables solely contaning a pointer to |
| 2186 | /// another globals variable is equivalent to a GOT table entry; it contains the |
| 2187 | /// the address of another symbol. Optimize it and replace accesses to these |
| 2188 | /// "GOT equivalents" by using the GOT entry for the final global instead. |
| 2189 | /// Compute GOT equivalent candidates among all global variables to avoid |
| 2190 | /// emitting them if possible later on, after it use is replaced by a GOT entry |
| 2191 | /// access. |
| 2192 | void AsmPrinter::computeGlobalGOTEquivs(Module &M) { |
| 2193 | if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) |
| 2194 | return; |
| 2195 | |
| 2196 | for (const auto &G : M.globals()) { |
| 2197 | unsigned NumGOTEquivUsers = 0; |
| 2198 | bool HasNonGlobalUsers = false; |
| 2199 | if (!isGOTEquivalentCandidate(GV: &G, NumGOTEquivUsers, HasNonGlobalUsers)) |
| 2200 | continue; |
| 2201 | // If non-global variables use it, we still need to emit it. |
| 2202 | // Add 1 here, then emit it in `emitGlobalGOTEquivs`. |
| 2203 | if (HasNonGlobalUsers) |
| 2204 | NumGOTEquivUsers += 1; |
| 2205 | const MCSymbol *GOTEquivSym = getSymbol(GV: &G); |
| 2206 | GlobalGOTEquivs[GOTEquivSym] = std::make_pair(x: &G, y&: NumGOTEquivUsers); |
| 2207 | } |
| 2208 | } |
| 2209 | |
| 2210 | /// Constant expressions using GOT equivalent globals may not be eligible |
| 2211 | /// for PC relative GOT entry conversion, in such cases we need to emit such |
| 2212 | /// globals we previously omitted in EmitGlobalVariable. |
| 2213 | void AsmPrinter::emitGlobalGOTEquivs() { |
| 2214 | if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) |
| 2215 | return; |
| 2216 | |
| 2217 | SmallVector<const GlobalVariable *, 8> FailedCandidates; |
| 2218 | for (auto &I : GlobalGOTEquivs) { |
| 2219 | const GlobalVariable *GV = I.second.first; |
| 2220 | unsigned Cnt = I.second.second; |
| 2221 | if (Cnt) |
| 2222 | FailedCandidates.push_back(Elt: GV); |
| 2223 | } |
| 2224 | GlobalGOTEquivs.clear(); |
| 2225 | |
| 2226 | for (const auto *GV : FailedCandidates) |
| 2227 | emitGlobalVariable(GV); |
| 2228 | } |
| 2229 | |
| 2230 | void AsmPrinter::emitGlobalAlias(const Module &M, const GlobalAlias &GA) { |
| 2231 | MCSymbol *Name = getSymbol(GV: &GA); |
| 2232 | bool IsFunction = GA.getValueType()->isFunctionTy(); |
| 2233 | // Treat bitcasts of functions as functions also. This is important at least |
| 2234 | // on WebAssembly where object and function addresses can't alias each other. |
| 2235 | if (!IsFunction) |
| 2236 | IsFunction = isa<Function>(Val: GA.getAliasee()->stripPointerCasts()); |
| 2237 | |
| 2238 | // AIX's assembly directive `.set` is not usable for aliasing purpose, |
| 2239 | // so AIX has to use the extra-label-at-definition strategy. At this |
| 2240 | // point, all the extra label is emitted, we just have to emit linkage for |
| 2241 | // those labels. |
| 2242 | if (TM.getTargetTriple().isOSBinFormatXCOFF()) { |
| 2243 | // Linkage for alias of global variable has been emitted. |
| 2244 | if (isa<GlobalVariable>(Val: GA.getAliaseeObject())) |
| 2245 | return; |
| 2246 | |
| 2247 | emitLinkage(GV: &GA, GVSym: Name); |
| 2248 | // If it's a function, also emit linkage for aliases of function entry |
| 2249 | // point. |
| 2250 | if (IsFunction) |
| 2251 | emitLinkage(GV: &GA, |
| 2252 | GVSym: getObjFileLowering().getFunctionEntryPointSymbol(Func: &GA, TM)); |
| 2253 | return; |
| 2254 | } |
| 2255 | |
| 2256 | if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective()) |
| 2257 | OutStreamer->emitSymbolAttribute(Symbol: Name, Attribute: MCSA_Global); |
| 2258 | else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage()) |
| 2259 | OutStreamer->emitSymbolAttribute(Symbol: Name, Attribute: MCSA_WeakReference); |
| 2260 | else |
| 2261 | assert(GA.hasLocalLinkage() && "Invalid alias linkage" ); |
| 2262 | |
| 2263 | // Set the symbol type to function if the alias has a function type. |
| 2264 | // This affects codegen when the aliasee is not a function. |
| 2265 | if (IsFunction) { |
| 2266 | OutStreamer->emitSymbolAttribute(Symbol: Name, Attribute: MCSA_ELF_TypeFunction); |
| 2267 | if (TM.getTargetTriple().isOSBinFormatCOFF()) { |
| 2268 | OutStreamer->beginCOFFSymbolDef(Symbol: Name); |
| 2269 | OutStreamer->emitCOFFSymbolStorageClass( |
| 2270 | StorageClass: GA.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC |
| 2271 | : COFF::IMAGE_SYM_CLASS_EXTERNAL); |
| 2272 | OutStreamer->emitCOFFSymbolType(Type: COFF::IMAGE_SYM_DTYPE_FUNCTION |
| 2273 | << COFF::SCT_COMPLEX_TYPE_SHIFT); |
| 2274 | OutStreamer->endCOFFSymbolDef(); |
| 2275 | } |
| 2276 | } |
| 2277 | |
| 2278 | emitVisibility(Sym: Name, Visibility: GA.getVisibility()); |
| 2279 | |
| 2280 | const MCExpr *Expr = lowerConstant(CV: GA.getAliasee()); |
| 2281 | |
| 2282 | if (MAI->isMachO() && isa<MCBinaryExpr>(Val: Expr)) |
| 2283 | OutStreamer->emitSymbolAttribute(Symbol: Name, Attribute: MCSA_AltEntry); |
| 2284 | |
| 2285 | // Emit the directives as assignments aka .set: |
| 2286 | OutStreamer->emitAssignment(Symbol: Name, Value: Expr); |
| 2287 | MCSymbol *LocalAlias = getSymbolPreferLocal(GV: GA); |
| 2288 | if (LocalAlias != Name) |
| 2289 | OutStreamer->emitAssignment(Symbol: LocalAlias, Value: Expr); |
| 2290 | |
| 2291 | // If the aliasee does not correspond to a symbol in the output, i.e. the |
| 2292 | // alias is not of an object or the aliased object is private, then set the |
| 2293 | // size of the alias symbol from the type of the alias. We don't do this in |
| 2294 | // other situations as the alias and aliasee having differing types but same |
| 2295 | // size may be intentional. |
| 2296 | const GlobalObject *BaseObject = GA.getAliaseeObject(); |
| 2297 | if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() && |
| 2298 | (!BaseObject || BaseObject->hasPrivateLinkage())) { |
| 2299 | const DataLayout &DL = M.getDataLayout(); |
| 2300 | uint64_t Size = DL.getTypeAllocSize(Ty: GA.getValueType()); |
| 2301 | OutStreamer->emitELFSize(Symbol: Name, Value: MCConstantExpr::create(Value: Size, Ctx&: OutContext)); |
| 2302 | } |
| 2303 | } |
| 2304 | |
| 2305 | void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) { |
| 2306 | assert(!TM.getTargetTriple().isOSBinFormatXCOFF() && |
| 2307 | "IFunc is not supported on AIX." ); |
| 2308 | |
| 2309 | auto EmitLinkage = [&](MCSymbol *Sym) { |
| 2310 | if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective()) |
| 2311 | OutStreamer->emitSymbolAttribute(Symbol: Sym, Attribute: MCSA_Global); |
| 2312 | else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage()) |
| 2313 | OutStreamer->emitSymbolAttribute(Symbol: Sym, Attribute: MCSA_WeakReference); |
| 2314 | else |
| 2315 | assert(GI.hasLocalLinkage() && "Invalid ifunc linkage" ); |
| 2316 | }; |
| 2317 | |
| 2318 | if (TM.getTargetTriple().isOSBinFormatELF()) { |
| 2319 | MCSymbol *Name = getSymbol(GV: &GI); |
| 2320 | EmitLinkage(Name); |
| 2321 | OutStreamer->emitSymbolAttribute(Symbol: Name, Attribute: MCSA_ELF_TypeIndFunction); |
| 2322 | emitVisibility(Sym: Name, Visibility: GI.getVisibility()); |
| 2323 | |
| 2324 | // Emit the directives as assignments aka .set: |
| 2325 | const MCExpr *Expr = lowerConstant(CV: GI.getResolver()); |
| 2326 | OutStreamer->emitAssignment(Symbol: Name, Value: Expr); |
| 2327 | MCSymbol *LocalAlias = getSymbolPreferLocal(GV: GI); |
| 2328 | if (LocalAlias != Name) |
| 2329 | OutStreamer->emitAssignment(Symbol: LocalAlias, Value: Expr); |
| 2330 | |
| 2331 | return; |
| 2332 | } |
| 2333 | |
| 2334 | if (!TM.getTargetTriple().isOSBinFormatMachO() || !getIFuncMCSubtargetInfo()) |
| 2335 | reportFatalUsageError(reason: "IFuncs are not supported on this platform" ); |
| 2336 | |
| 2337 | // On Darwin platforms, emit a manually-constructed .symbol_resolver that |
| 2338 | // implements the symbol resolution duties of the IFunc. |
| 2339 | // |
| 2340 | // Normally, this would be handled by linker magic, but unfortunately there |
| 2341 | // are a few limitations in ld64 and ld-prime's implementation of |
| 2342 | // .symbol_resolver that mean we can't always use them: |
| 2343 | // |
| 2344 | // * resolvers cannot be the target of an alias |
| 2345 | // * resolvers cannot have private linkage |
| 2346 | // * resolvers cannot have linkonce linkage |
| 2347 | // * resolvers cannot appear in executables |
| 2348 | // * resolvers cannot appear in bundles |
| 2349 | // |
| 2350 | // This works around that by emitting a close approximation of what the |
| 2351 | // linker would have done. |
| 2352 | |
| 2353 | MCSymbol *LazyPointer = |
| 2354 | GetExternalSymbolSymbol(Sym: GI.getName() + ".lazy_pointer" ); |
| 2355 | MCSymbol *StubHelper = GetExternalSymbolSymbol(Sym: GI.getName() + ".stub_helper" ); |
| 2356 | |
| 2357 | OutStreamer->switchSection(Section: OutContext.getObjectFileInfo()->getDataSection()); |
| 2358 | |
| 2359 | const DataLayout &DL = M.getDataLayout(); |
| 2360 | emitAlignment(Alignment: Align(DL.getPointerSize())); |
| 2361 | OutStreamer->emitLabel(Symbol: LazyPointer); |
| 2362 | emitVisibility(Sym: LazyPointer, Visibility: GI.getVisibility()); |
| 2363 | OutStreamer->emitValue(Value: MCSymbolRefExpr::create(Symbol: StubHelper, Ctx&: OutContext), Size: 8); |
| 2364 | |
| 2365 | OutStreamer->switchSection(Section: OutContext.getObjectFileInfo()->getTextSection()); |
| 2366 | |
| 2367 | const TargetSubtargetInfo *STI = |
| 2368 | TM.getSubtargetImpl(*GI.getResolverFunction()); |
| 2369 | const TargetLowering *TLI = STI->getTargetLowering(); |
| 2370 | Align TextAlign(TLI->getMinFunctionAlignment()); |
| 2371 | |
| 2372 | MCSymbol *Stub = getSymbol(GV: &GI); |
| 2373 | EmitLinkage(Stub); |
| 2374 | OutStreamer->emitCodeAlignment(Alignment: TextAlign, STI: getIFuncMCSubtargetInfo()); |
| 2375 | OutStreamer->emitLabel(Symbol: Stub); |
| 2376 | emitVisibility(Sym: Stub, Visibility: GI.getVisibility()); |
| 2377 | emitMachOIFuncStubBody(M, GI, LazyPointer); |
| 2378 | |
| 2379 | OutStreamer->emitCodeAlignment(Alignment: TextAlign, STI: getIFuncMCSubtargetInfo()); |
| 2380 | OutStreamer->emitLabel(Symbol: StubHelper); |
| 2381 | emitVisibility(Sym: StubHelper, Visibility: GI.getVisibility()); |
| 2382 | emitMachOIFuncStubHelperBody(M, GI, LazyPointer); |
| 2383 | } |
| 2384 | |
| 2385 | void AsmPrinter::(remarks::RemarkStreamer &RS) { |
| 2386 | if (!RS.needsSection()) |
| 2387 | return; |
| 2388 | |
| 2389 | MCSection * = |
| 2390 | OutContext.getObjectFileInfo()->getRemarksSection(); |
| 2391 | if (!RemarksSection) { |
| 2392 | OutContext.reportWarning(L: SMLoc(), Msg: "Current object file format does not " |
| 2393 | "support remarks sections. Use the yaml " |
| 2394 | "remark format instead." ); |
| 2395 | return; |
| 2396 | } |
| 2397 | |
| 2398 | remarks::RemarkSerializer & = RS.getSerializer(); |
| 2399 | |
| 2400 | std::optional<SmallString<128>> Filename; |
| 2401 | if (std::optional<StringRef> FilenameRef = RS.getFilename()) { |
| 2402 | Filename = *FilenameRef; |
| 2403 | sys::fs::make_absolute(path&: *Filename); |
| 2404 | assert(!Filename->empty() && "The filename can't be empty." ); |
| 2405 | } |
| 2406 | |
| 2407 | std::string Buf; |
| 2408 | raw_string_ostream OS(Buf); |
| 2409 | std::unique_ptr<remarks::MetaSerializer> MetaSerializer = |
| 2410 | Filename ? RemarkSerializer.metaSerializer(OS, ExternalFilename: Filename->str()) |
| 2411 | : RemarkSerializer.metaSerializer(OS); |
| 2412 | MetaSerializer->emit(); |
| 2413 | |
| 2414 | // Switch to the remarks section. |
| 2415 | OutStreamer->switchSection(Section: RemarksSection); |
| 2416 | OutStreamer->emitBinaryData(Data: Buf); |
| 2417 | } |
| 2418 | |
| 2419 | static uint64_t globalSize(const llvm::GlobalVariable &G) { |
| 2420 | const Constant *Initializer = G.getInitializer(); |
| 2421 | return G.getParent()->getDataLayout().getTypeAllocSize( |
| 2422 | Ty: Initializer->getType()); |
| 2423 | } |
| 2424 | |
| 2425 | static bool shouldTagGlobal(const llvm::GlobalVariable &G) { |
| 2426 | // We used to do this in clang, but there are optimization passes that turn |
| 2427 | // non-constant globals into constants. So now, clang only tells us whether |
| 2428 | // it would *like* a global to be tagged, but we still make the decision here. |
| 2429 | // |
| 2430 | // For now, don't instrument constant data, as it'll be in .rodata anyway. It |
| 2431 | // may be worth instrumenting these in future to stop them from being used as |
| 2432 | // gadgets. |
| 2433 | if (G.getName().starts_with(Prefix: "llvm." ) || G.isThreadLocal() || G.isConstant()) |
| 2434 | return false; |
| 2435 | |
| 2436 | // Globals can be placed implicitly or explicitly in sections. There's two |
| 2437 | // different types of globals that meet this criteria that cause problems: |
| 2438 | // 1. Function pointers that are going into various init arrays (either |
| 2439 | // explicitly through `__attribute__((section(<foo>)))` or implicitly |
| 2440 | // through `__attribute__((constructor)))`, such as ".(pre)init(_array)", |
| 2441 | // ".fini(_array)", ".ctors", and ".dtors". These function pointers end up |
| 2442 | // overaligned and overpadded, making iterating over them problematic, and |
| 2443 | // each function pointer is individually tagged (so the iteration over |
| 2444 | // them causes SIGSEGV/MTE[AS]ERR). |
| 2445 | // 2. Global variables put into an explicit section, where the section's name |
| 2446 | // is a valid C-style identifier. The linker emits a `__start_<name>` and |
| 2447 | // `__stop_<name>` symbol for the section, so that you can iterate over |
| 2448 | // globals within this section. Unfortunately, again, these globals would |
| 2449 | // be tagged and so iteration causes SIGSEGV/MTE[AS]ERR. |
| 2450 | // |
| 2451 | // To mitigate both these cases, and because specifying a section is rare |
| 2452 | // outside of these two cases, disable MTE protection for globals in any |
| 2453 | // section. |
| 2454 | if (G.hasSection()) |
| 2455 | return false; |
| 2456 | |
| 2457 | return globalSize(G) > 0; |
| 2458 | } |
| 2459 | |
| 2460 | static void tagGlobalDefinition(Module &M, GlobalVariable *G) { |
| 2461 | uint64_t SizeInBytes = globalSize(G: *G); |
| 2462 | |
| 2463 | uint64_t NewSize = alignTo(Value: SizeInBytes, Align: 16); |
| 2464 | if (SizeInBytes != NewSize) { |
| 2465 | // Pad the initializer out to the next multiple of 16 bytes. |
| 2466 | llvm::SmallVector<uint8_t> Init(NewSize - SizeInBytes, 0); |
| 2467 | Constant *Padding = ConstantDataArray::get(Context&: M.getContext(), Elts&: Init); |
| 2468 | Constant *Initializer = G->getInitializer(); |
| 2469 | Initializer = ConstantStruct::getAnon(V: {Initializer, Padding}); |
| 2470 | auto *NewGV = new GlobalVariable( |
| 2471 | M, Initializer->getType(), G->isConstant(), G->getLinkage(), |
| 2472 | Initializer, "" , G, G->getThreadLocalMode(), G->getAddressSpace()); |
| 2473 | NewGV->copyAttributesFrom(Src: G); |
| 2474 | NewGV->setComdat(G->getComdat()); |
| 2475 | NewGV->copyMetadata(Src: G, Offset: 0); |
| 2476 | |
| 2477 | NewGV->takeName(V: G); |
| 2478 | G->replaceAllUsesWith(V: NewGV); |
| 2479 | G->eraseFromParent(); |
| 2480 | G = NewGV; |
| 2481 | } |
| 2482 | |
| 2483 | if (G->getAlign().valueOrOne() < 16) |
| 2484 | G->setAlignment(Align(16)); |
| 2485 | |
| 2486 | // Ensure that tagged globals don't get merged by ICF - as they should have |
| 2487 | // different tags at runtime. |
| 2488 | G->setUnnamedAddr(GlobalValue::UnnamedAddr::None); |
| 2489 | } |
| 2490 | |
| 2491 | static void removeMemtagFromGlobal(GlobalVariable &G) { |
| 2492 | auto Meta = G.getSanitizerMetadata(); |
| 2493 | Meta.Memtag = false; |
| 2494 | G.setSanitizerMetadata(Meta); |
| 2495 | } |
| 2496 | |
| 2497 | bool AsmPrinter::doFinalization(Module &M) { |
| 2498 | // Set the MachineFunction to nullptr so that we can catch attempted |
| 2499 | // accesses to MF specific features at the module level and so that |
| 2500 | // we can conditionalize accesses based on whether or not it is nullptr. |
| 2501 | MF = nullptr; |
| 2502 | |
| 2503 | std::vector<GlobalVariable *> GlobalsToTag; |
| 2504 | for (GlobalVariable &G : M.globals()) { |
| 2505 | if (G.isDeclaration() || !G.isTagged()) |
| 2506 | continue; |
| 2507 | if (!shouldTagGlobal(G)) { |
| 2508 | assert(G.hasSanitizerMetadata()); // because isTagged. |
| 2509 | removeMemtagFromGlobal(G); |
| 2510 | assert(!G.isTagged()); |
| 2511 | continue; |
| 2512 | } |
| 2513 | GlobalsToTag.push_back(x: &G); |
| 2514 | } |
| 2515 | for (GlobalVariable *G : GlobalsToTag) |
| 2516 | tagGlobalDefinition(M, G); |
| 2517 | |
| 2518 | // Gather all GOT equivalent globals in the module. We really need two |
| 2519 | // passes over the globals: one to compute and another to avoid its emission |
| 2520 | // in EmitGlobalVariable, otherwise we would not be able to handle cases |
| 2521 | // where the got equivalent shows up before its use. |
| 2522 | computeGlobalGOTEquivs(M); |
| 2523 | |
| 2524 | // Emit global variables. |
| 2525 | for (const auto &G : M.globals()) |
| 2526 | emitGlobalVariable(GV: &G); |
| 2527 | |
| 2528 | // Emit remaining GOT equivalent globals. |
| 2529 | emitGlobalGOTEquivs(); |
| 2530 | |
| 2531 | const TargetLoweringObjectFile &TLOF = getObjFileLowering(); |
| 2532 | |
| 2533 | // Emit linkage(XCOFF) and visibility info for declarations |
| 2534 | for (const Function &F : M) { |
| 2535 | if (!F.isDeclarationForLinker()) |
| 2536 | continue; |
| 2537 | |
| 2538 | MCSymbol *Name = getSymbol(GV: &F); |
| 2539 | // Function getSymbol gives us the function descriptor symbol for XCOFF. |
| 2540 | |
| 2541 | if (!TM.getTargetTriple().isOSBinFormatXCOFF()) { |
| 2542 | GlobalValue::VisibilityTypes V = F.getVisibility(); |
| 2543 | if (V == GlobalValue::DefaultVisibility) |
| 2544 | continue; |
| 2545 | |
| 2546 | emitVisibility(Sym: Name, Visibility: V, IsDefinition: false); |
| 2547 | continue; |
| 2548 | } |
| 2549 | |
| 2550 | if (F.isIntrinsic()) |
| 2551 | continue; |
| 2552 | |
| 2553 | // Handle the XCOFF case. |
| 2554 | // Variable `Name` is the function descriptor symbol (see above). Get the |
| 2555 | // function entry point symbol. |
| 2556 | MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(Func: &F, TM); |
| 2557 | // Emit linkage for the function entry point. |
| 2558 | emitLinkage(GV: &F, GVSym: FnEntryPointSym); |
| 2559 | |
| 2560 | // If a function's address is taken, which means it may be called via a |
| 2561 | // function pointer, we need the function descriptor for it. |
| 2562 | if (F.hasAddressTaken()) |
| 2563 | emitLinkage(GV: &F, GVSym: Name); |
| 2564 | } |
| 2565 | |
| 2566 | // Emit the remarks section contents. |
| 2567 | // FIXME: Figure out when is the safest time to emit this section. It should |
| 2568 | // not come after debug info. |
| 2569 | if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer()) |
| 2570 | emitRemarksSection(RS&: *RS); |
| 2571 | |
| 2572 | TLOF.emitModuleMetadata(Streamer&: *OutStreamer, M); |
| 2573 | |
| 2574 | if (TM.getTargetTriple().isOSBinFormatELF()) { |
| 2575 | MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); |
| 2576 | |
| 2577 | // Output stubs for external and common global variables. |
| 2578 | MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); |
| 2579 | if (!Stubs.empty()) { |
| 2580 | OutStreamer->switchSection(Section: TLOF.getDataSection()); |
| 2581 | const DataLayout &DL = M.getDataLayout(); |
| 2582 | |
| 2583 | emitAlignment(Alignment: Align(DL.getPointerSize())); |
| 2584 | for (const auto &Stub : Stubs) { |
| 2585 | OutStreamer->emitLabel(Symbol: Stub.first); |
| 2586 | OutStreamer->emitSymbolValue(Sym: Stub.second.getPointer(), |
| 2587 | Size: DL.getPointerSize()); |
| 2588 | } |
| 2589 | } |
| 2590 | } |
| 2591 | |
| 2592 | if (TM.getTargetTriple().isOSBinFormatCOFF()) { |
| 2593 | MachineModuleInfoCOFF &MMICOFF = |
| 2594 | MMI->getObjFileInfo<MachineModuleInfoCOFF>(); |
| 2595 | |
| 2596 | // Output stubs for external and common global variables. |
| 2597 | MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); |
| 2598 | if (!Stubs.empty()) { |
| 2599 | const DataLayout &DL = M.getDataLayout(); |
| 2600 | |
| 2601 | for (const auto &Stub : Stubs) { |
| 2602 | SmallString<256> SectionName = StringRef(".rdata$" ); |
| 2603 | SectionName += Stub.first->getName(); |
| 2604 | OutStreamer->switchSection(Section: OutContext.getCOFFSection( |
| 2605 | Section: SectionName, |
| 2606 | Characteristics: COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | |
| 2607 | COFF::IMAGE_SCN_LNK_COMDAT, |
| 2608 | COMDATSymName: Stub.first->getName(), Selection: COFF::IMAGE_COMDAT_SELECT_ANY)); |
| 2609 | emitAlignment(Alignment: Align(DL.getPointerSize())); |
| 2610 | OutStreamer->emitSymbolAttribute(Symbol: Stub.first, Attribute: MCSA_Global); |
| 2611 | OutStreamer->emitLabel(Symbol: Stub.first); |
| 2612 | OutStreamer->emitSymbolValue(Sym: Stub.second.getPointer(), |
| 2613 | Size: DL.getPointerSize()); |
| 2614 | } |
| 2615 | } |
| 2616 | } |
| 2617 | |
| 2618 | // This needs to happen before emitting debug information since that can end |
| 2619 | // arbitrary sections. |
| 2620 | if (auto *TS = OutStreamer->getTargetStreamer()) |
| 2621 | TS->emitConstantPools(); |
| 2622 | |
| 2623 | // Emit Stack maps before any debug info. Mach-O requires that no data or |
| 2624 | // text sections come after debug info has been emitted. This matters for |
| 2625 | // stack maps as they are arbitrary data, and may even have a custom format |
| 2626 | // through user plugins. |
| 2627 | emitStackMaps(); |
| 2628 | |
| 2629 | // Print aliases in topological order, that is, for each alias a = b, |
| 2630 | // b must be printed before a. |
| 2631 | // This is because on some targets (e.g. PowerPC) linker expects aliases in |
| 2632 | // such an order to generate correct TOC information. |
| 2633 | SmallVector<const GlobalAlias *, 16> AliasStack; |
| 2634 | SmallPtrSet<const GlobalAlias *, 16> AliasVisited; |
| 2635 | for (const auto &Alias : M.aliases()) { |
| 2636 | if (Alias.hasAvailableExternallyLinkage()) |
| 2637 | continue; |
| 2638 | for (const GlobalAlias *Cur = &Alias; Cur; |
| 2639 | Cur = dyn_cast<GlobalAlias>(Val: Cur->getAliasee())) { |
| 2640 | if (!AliasVisited.insert(Ptr: Cur).second) |
| 2641 | break; |
| 2642 | AliasStack.push_back(Elt: Cur); |
| 2643 | } |
| 2644 | for (const GlobalAlias *AncestorAlias : llvm::reverse(C&: AliasStack)) |
| 2645 | emitGlobalAlias(M, GA: *AncestorAlias); |
| 2646 | AliasStack.clear(); |
| 2647 | } |
| 2648 | |
| 2649 | // IFuncs must come before deubginfo in case the backend decides to emit them |
| 2650 | // as actual functions, since on Mach-O targets, we cannot create regular |
| 2651 | // sections after DWARF. |
| 2652 | for (const auto &IFunc : M.ifuncs()) |
| 2653 | emitGlobalIFunc(M, GI: IFunc); |
| 2654 | |
| 2655 | // Finalize debug and EH information. |
| 2656 | for (auto &Handler : Handlers) |
| 2657 | Handler->endModule(); |
| 2658 | for (auto &Handler : EHHandlers) |
| 2659 | Handler->endModule(); |
| 2660 | |
| 2661 | // This deletes all the ephemeral handlers that AsmPrinter added, while |
| 2662 | // keeping all the user-added handlers alive until the AsmPrinter is |
| 2663 | // destroyed. |
| 2664 | EHHandlers.clear(); |
| 2665 | Handlers.erase(CS: Handlers.begin() + NumUserHandlers, CE: Handlers.end()); |
| 2666 | DD = nullptr; |
| 2667 | |
| 2668 | // If the target wants to know about weak references, print them all. |
| 2669 | if (MAI->getWeakRefDirective()) { |
| 2670 | // FIXME: This is not lazy, it would be nice to only print weak references |
| 2671 | // to stuff that is actually used. Note that doing so would require targets |
| 2672 | // to notice uses in operands (due to constant exprs etc). This should |
| 2673 | // happen with the MC stuff eventually. |
| 2674 | |
| 2675 | // Print out module-level global objects here. |
| 2676 | for (const auto &GO : M.global_objects()) { |
| 2677 | if (!GO.hasExternalWeakLinkage()) |
| 2678 | continue; |
| 2679 | OutStreamer->emitSymbolAttribute(Symbol: getSymbol(GV: &GO), Attribute: MCSA_WeakReference); |
| 2680 | } |
| 2681 | if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) { |
| 2682 | auto SymbolName = "swift_async_extendedFramePointerFlags" ; |
| 2683 | auto Global = M.getGlobalVariable(Name: SymbolName); |
| 2684 | if (!Global) { |
| 2685 | auto PtrTy = PointerType::getUnqual(C&: M.getContext()); |
| 2686 | Global = new GlobalVariable(M, PtrTy, false, |
| 2687 | GlobalValue::ExternalWeakLinkage, nullptr, |
| 2688 | SymbolName); |
| 2689 | OutStreamer->emitSymbolAttribute(Symbol: getSymbol(GV: Global), Attribute: MCSA_WeakReference); |
| 2690 | } |
| 2691 | } |
| 2692 | } |
| 2693 | |
| 2694 | GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); |
| 2695 | assert(MI && "AsmPrinter didn't require GCModuleInfo?" ); |
| 2696 | for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) |
| 2697 | if (GCMetadataPrinter *MP = getOrCreateGCPrinter(S&: **--I)) |
| 2698 | MP->finishAssembly(M, Info&: *MI, AP&: *this); |
| 2699 | |
| 2700 | // Emit llvm.ident metadata in an '.ident' directive. |
| 2701 | emitModuleIdents(M); |
| 2702 | |
| 2703 | // Emit bytes for llvm.commandline metadata. |
| 2704 | // The command line metadata is emitted earlier on XCOFF. |
| 2705 | if (!TM.getTargetTriple().isOSBinFormatXCOFF()) |
| 2706 | emitModuleCommandLines(M); |
| 2707 | |
| 2708 | // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if |
| 2709 | // split-stack is used. |
| 2710 | if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) { |
| 2711 | OutStreamer->switchSection(Section: OutContext.getELFSection(Section: ".note.GNU-split-stack" , |
| 2712 | Type: ELF::SHT_PROGBITS, Flags: 0)); |
| 2713 | if (HasNoSplitStack) |
| 2714 | OutStreamer->switchSection(Section: OutContext.getELFSection( |
| 2715 | Section: ".note.GNU-no-split-stack" , Type: ELF::SHT_PROGBITS, Flags: 0)); |
| 2716 | } |
| 2717 | |
| 2718 | // If we don't have any trampolines, then we don't require stack memory |
| 2719 | // to be executable. Some targets have a directive to declare this. |
| 2720 | Function *InitTrampolineIntrinsic = M.getFunction(Name: "llvm.init.trampoline" ); |
| 2721 | if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) |
| 2722 | if (MCSection *S = MAI->getNonexecutableStackSection(Ctx&: OutContext)) |
| 2723 | OutStreamer->switchSection(Section: S); |
| 2724 | |
| 2725 | if (TM.Options.EmitAddrsig) { |
| 2726 | // Emit address-significance attributes for all globals. |
| 2727 | OutStreamer->emitAddrsig(); |
| 2728 | for (const GlobalValue &GV : M.global_values()) { |
| 2729 | if (!GV.use_empty() && !GV.isThreadLocal() && |
| 2730 | !GV.hasDLLImportStorageClass() && |
| 2731 | !GV.getName().starts_with(Prefix: "llvm." ) && |
| 2732 | !GV.hasAtLeastLocalUnnamedAddr()) |
| 2733 | OutStreamer->emitAddrsigSym(Sym: getSymbol(GV: &GV)); |
| 2734 | } |
| 2735 | } |
| 2736 | |
| 2737 | // Emit symbol partition specifications (ELF only). |
| 2738 | if (TM.getTargetTriple().isOSBinFormatELF()) { |
| 2739 | unsigned UniqueID = 0; |
| 2740 | for (const GlobalValue &GV : M.global_values()) { |
| 2741 | if (!GV.hasPartition() || GV.isDeclarationForLinker() || |
| 2742 | GV.getVisibility() != GlobalValue::DefaultVisibility) |
| 2743 | continue; |
| 2744 | |
| 2745 | OutStreamer->switchSection( |
| 2746 | Section: OutContext.getELFSection(Section: ".llvm_sympart" , Type: ELF::SHT_LLVM_SYMPART, Flags: 0, EntrySize: 0, |
| 2747 | Group: "" , IsComdat: false, UniqueID: ++UniqueID, LinkedToSym: nullptr)); |
| 2748 | OutStreamer->emitBytes(Data: GV.getPartition()); |
| 2749 | OutStreamer->emitZeros(NumBytes: 1); |
| 2750 | OutStreamer->emitValue( |
| 2751 | Value: MCSymbolRefExpr::create(Symbol: getSymbol(GV: &GV), Ctx&: OutContext), |
| 2752 | Size: MAI->getCodePointerSize()); |
| 2753 | } |
| 2754 | } |
| 2755 | |
| 2756 | // Allow the target to emit any magic that it wants at the end of the file, |
| 2757 | // after everything else has gone out. |
| 2758 | emitEndOfAsmFile(M); |
| 2759 | |
| 2760 | MMI = nullptr; |
| 2761 | AddrLabelSymbols = nullptr; |
| 2762 | |
| 2763 | OutStreamer->finish(); |
| 2764 | OutStreamer->reset(); |
| 2765 | OwnedMLI.reset(); |
| 2766 | OwnedMDT.reset(); |
| 2767 | |
| 2768 | return false; |
| 2769 | } |
| 2770 | |
| 2771 | MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) { |
| 2772 | auto Res = MBBSectionExceptionSyms.try_emplace(Key: MBB.getSectionID()); |
| 2773 | if (Res.second) |
| 2774 | Res.first->second = createTempSymbol(Name: "exception" ); |
| 2775 | return Res.first->second; |
| 2776 | } |
| 2777 | |
| 2778 | void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { |
| 2779 | this->MF = &MF; |
| 2780 | const Function &F = MF.getFunction(); |
| 2781 | |
| 2782 | // Record that there are split-stack functions, so we will emit a special |
| 2783 | // section to tell the linker. |
| 2784 | if (MF.shouldSplitStack()) { |
| 2785 | HasSplitStack = true; |
| 2786 | |
| 2787 | if (!MF.getFrameInfo().needsSplitStackProlog()) |
| 2788 | HasNoSplitStack = true; |
| 2789 | } else |
| 2790 | HasNoSplitStack = true; |
| 2791 | |
| 2792 | // Get the function symbol. |
| 2793 | if (!MAI->isAIX()) { |
| 2794 | CurrentFnSym = getSymbol(GV: &MF.getFunction()); |
| 2795 | } else { |
| 2796 | assert(TM.getTargetTriple().isOSAIX() && |
| 2797 | "Only AIX uses the function descriptor hooks." ); |
| 2798 | // AIX is unique here in that the name of the symbol emitted for the |
| 2799 | // function body does not have the same name as the source function's |
| 2800 | // C-linkage name. |
| 2801 | assert(CurrentFnDescSym && "The function descriptor symbol needs to be" |
| 2802 | " initalized first." ); |
| 2803 | |
| 2804 | // Get the function entry point symbol. |
| 2805 | CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(Func: &F, TM); |
| 2806 | } |
| 2807 | |
| 2808 | CurrentFnSymForSize = CurrentFnSym; |
| 2809 | CurrentFnBegin = nullptr; |
| 2810 | CurrentFnBeginLocal = nullptr; |
| 2811 | CurrentSectionBeginSym = nullptr; |
| 2812 | MBBSectionRanges.clear(); |
| 2813 | MBBSectionExceptionSyms.clear(); |
| 2814 | bool NeedsLocalForSize = MAI->needsLocalForSize(); |
| 2815 | if (F.hasFnAttribute(Kind: "patchable-function-entry" ) || |
| 2816 | F.hasFnAttribute(Kind: "function-instrument" ) || |
| 2817 | F.hasFnAttribute(Kind: "xray-instruction-threshold" ) || |
| 2818 | needFuncLabels(MF, Asm: *this) || NeedsLocalForSize || |
| 2819 | MF.getTarget().Options.EmitStackSizeSection || |
| 2820 | MF.getTarget().Options.BBAddrMap) { |
| 2821 | CurrentFnBegin = createTempSymbol(Name: "func_begin" ); |
| 2822 | if (NeedsLocalForSize) |
| 2823 | CurrentFnSymForSize = CurrentFnBegin; |
| 2824 | } |
| 2825 | |
| 2826 | ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); |
| 2827 | } |
| 2828 | |
| 2829 | namespace { |
| 2830 | |
| 2831 | // Keep track the alignment, constpool entries per Section. |
| 2832 | struct SectionCPs { |
| 2833 | MCSection *S; |
| 2834 | Align Alignment; |
| 2835 | SmallVector<unsigned, 4> CPEs; |
| 2836 | |
| 2837 | SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {} |
| 2838 | }; |
| 2839 | |
| 2840 | } // end anonymous namespace |
| 2841 | |
| 2842 | StringRef AsmPrinter::getConstantSectionSuffix(const Constant *C) const { |
| 2843 | if (TM.Options.EnableStaticDataPartitioning && C && SDPI && PSI) |
| 2844 | return SDPI->getConstantSectionPrefix(C, PSI); |
| 2845 | |
| 2846 | return "" ; |
| 2847 | } |
| 2848 | |
| 2849 | /// EmitConstantPool - Print to the current output stream assembly |
| 2850 | /// representations of the constants in the constant pool MCP. This is |
| 2851 | /// used to print out constants which have been "spilled to memory" by |
| 2852 | /// the code generator. |
| 2853 | void AsmPrinter::emitConstantPool() { |
| 2854 | const MachineConstantPool *MCP = MF->getConstantPool(); |
| 2855 | const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); |
| 2856 | if (CP.empty()) return; |
| 2857 | |
| 2858 | // Calculate sections for constant pool entries. We collect entries to go into |
| 2859 | // the same section together to reduce amount of section switch statements. |
| 2860 | SmallVector<SectionCPs, 4> CPSections; |
| 2861 | for (unsigned i = 0, e = CP.size(); i != e; ++i) { |
| 2862 | const MachineConstantPoolEntry &CPE = CP[i]; |
| 2863 | Align Alignment = CPE.getAlign(); |
| 2864 | |
| 2865 | SectionKind Kind = CPE.getSectionKind(DL: &getDataLayout()); |
| 2866 | |
| 2867 | const Constant *C = nullptr; |
| 2868 | if (!CPE.isMachineConstantPoolEntry()) |
| 2869 | C = CPE.Val.ConstVal; |
| 2870 | |
| 2871 | MCSection *S = getObjFileLowering().getSectionForConstant( |
| 2872 | DL: getDataLayout(), Kind, C, Alignment, SectionSuffix: getConstantSectionSuffix(C)); |
| 2873 | |
| 2874 | // The number of sections are small, just do a linear search from the |
| 2875 | // last section to the first. |
| 2876 | bool Found = false; |
| 2877 | unsigned SecIdx = CPSections.size(); |
| 2878 | while (SecIdx != 0) { |
| 2879 | if (CPSections[--SecIdx].S == S) { |
| 2880 | Found = true; |
| 2881 | break; |
| 2882 | } |
| 2883 | } |
| 2884 | if (!Found) { |
| 2885 | SecIdx = CPSections.size(); |
| 2886 | CPSections.push_back(Elt: SectionCPs(S, Alignment)); |
| 2887 | } |
| 2888 | |
| 2889 | if (Alignment > CPSections[SecIdx].Alignment) |
| 2890 | CPSections[SecIdx].Alignment = Alignment; |
| 2891 | CPSections[SecIdx].CPEs.push_back(Elt: i); |
| 2892 | } |
| 2893 | |
| 2894 | // Now print stuff into the calculated sections. |
| 2895 | const MCSection *CurSection = nullptr; |
| 2896 | unsigned Offset = 0; |
| 2897 | for (const SectionCPs &CPSection : CPSections) { |
| 2898 | for (unsigned CPI : CPSection.CPEs) { |
| 2899 | MCSymbol *Sym = GetCPISymbol(CPID: CPI); |
| 2900 | if (!Sym->isUndefined()) |
| 2901 | continue; |
| 2902 | |
| 2903 | if (CurSection != CPSection.S) { |
| 2904 | OutStreamer->switchSection(Section: CPSection.S); |
| 2905 | emitAlignment(Alignment: Align(CPSection.Alignment)); |
| 2906 | CurSection = CPSection.S; |
| 2907 | Offset = 0; |
| 2908 | } |
| 2909 | |
| 2910 | MachineConstantPoolEntry CPE = CP[CPI]; |
| 2911 | |
| 2912 | // Emit inter-object padding for alignment. |
| 2913 | unsigned NewOffset = alignTo(Size: Offset, A: CPE.getAlign()); |
| 2914 | OutStreamer->emitZeros(NumBytes: NewOffset - Offset); |
| 2915 | |
| 2916 | Offset = NewOffset + CPE.getSizeInBytes(DL: getDataLayout()); |
| 2917 | |
| 2918 | OutStreamer->emitLabel(Symbol: Sym); |
| 2919 | if (CPE.isMachineConstantPoolEntry()) |
| 2920 | emitMachineConstantPoolValue(MCPV: CPE.Val.MachineCPVal); |
| 2921 | else |
| 2922 | emitGlobalConstant(DL: getDataLayout(), CV: CPE.Val.ConstVal); |
| 2923 | } |
| 2924 | } |
| 2925 | } |
| 2926 | |
| 2927 | // Print assembly representations of the jump tables used by the current |
| 2928 | // function. |
| 2929 | void AsmPrinter::emitJumpTableInfo() { |
| 2930 | const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); |
| 2931 | if (!MJTI) return; |
| 2932 | |
| 2933 | const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| 2934 | if (JT.empty()) return; |
| 2935 | |
| 2936 | if (!TM.Options.EnableStaticDataPartitioning) { |
| 2937 | emitJumpTableImpl(MJTI: *MJTI, JumpTableIndices: llvm::to_vector(Range: llvm::seq<unsigned>(Size: JT.size()))); |
| 2938 | return; |
| 2939 | } |
| 2940 | |
| 2941 | SmallVector<unsigned> HotJumpTableIndices, ColdJumpTableIndices; |
| 2942 | // When static data partitioning is enabled, collect jump table entries that |
| 2943 | // go into the same section together to reduce the amount of section switch |
| 2944 | // statements. |
| 2945 | for (unsigned JTI = 0, JTSize = JT.size(); JTI < JTSize; ++JTI) { |
| 2946 | if (JT[JTI].Hotness == MachineFunctionDataHotness::Cold) { |
| 2947 | ColdJumpTableIndices.push_back(Elt: JTI); |
| 2948 | } else { |
| 2949 | HotJumpTableIndices.push_back(Elt: JTI); |
| 2950 | } |
| 2951 | } |
| 2952 | |
| 2953 | emitJumpTableImpl(MJTI: *MJTI, JumpTableIndices: HotJumpTableIndices); |
| 2954 | emitJumpTableImpl(MJTI: *MJTI, JumpTableIndices: ColdJumpTableIndices); |
| 2955 | } |
| 2956 | |
| 2957 | void AsmPrinter::emitJumpTableImpl(const MachineJumpTableInfo &MJTI, |
| 2958 | ArrayRef<unsigned> JumpTableIndices) { |
| 2959 | if (MJTI.getEntryKind() == MachineJumpTableInfo::EK_Inline || |
| 2960 | JumpTableIndices.empty()) |
| 2961 | return; |
| 2962 | |
| 2963 | const TargetLoweringObjectFile &TLOF = getObjFileLowering(); |
| 2964 | const Function &F = MF->getFunction(); |
| 2965 | const std::vector<MachineJumpTableEntry> &JT = MJTI.getJumpTables(); |
| 2966 | MCSection *JumpTableSection = nullptr; |
| 2967 | |
| 2968 | const bool UseLabelDifference = |
| 2969 | MJTI.getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || |
| 2970 | MJTI.getEntryKind() == MachineJumpTableInfo::EK_LabelDifference64; |
| 2971 | // Pick the directive to use to print the jump table entries, and switch to |
| 2972 | // the appropriate section. |
| 2973 | const bool JTInDiffSection = |
| 2974 | !TLOF.shouldPutJumpTableInFunctionSection(UsesLabelDifference: UseLabelDifference, F); |
| 2975 | if (JTInDiffSection) { |
| 2976 | if (TM.Options.EnableStaticDataPartitioning) { |
| 2977 | JumpTableSection = |
| 2978 | TLOF.getSectionForJumpTable(F, TM, JTE: &JT[JumpTableIndices.front()]); |
| 2979 | } else { |
| 2980 | JumpTableSection = TLOF.getSectionForJumpTable(F, TM); |
| 2981 | } |
| 2982 | OutStreamer->switchSection(Section: JumpTableSection); |
| 2983 | } |
| 2984 | |
| 2985 | const DataLayout &DL = MF->getDataLayout(); |
| 2986 | emitAlignment(Alignment: Align(MJTI.getEntryAlignment(TD: DL))); |
| 2987 | |
| 2988 | // Jump tables in code sections are marked with a data_region directive |
| 2989 | // where that's supported. |
| 2990 | if (!JTInDiffSection) |
| 2991 | OutStreamer->emitDataRegion(Kind: MCDR_DataRegionJT32); |
| 2992 | |
| 2993 | for (const unsigned JumpTableIndex : JumpTableIndices) { |
| 2994 | ArrayRef<MachineBasicBlock *> JTBBs = JT[JumpTableIndex].MBBs; |
| 2995 | |
| 2996 | // If this jump table was deleted, ignore it. |
| 2997 | if (JTBBs.empty()) |
| 2998 | continue; |
| 2999 | |
| 3000 | // For the EK_LabelDifference32 entry, if using .set avoids a relocation, |
| 3001 | /// emit a .set directive for each unique entry. |
| 3002 | if (MJTI.getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && |
| 3003 | MAI->doesSetDirectiveSuppressReloc()) { |
| 3004 | SmallPtrSet<const MachineBasicBlock *, 16> EmittedSets; |
| 3005 | const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); |
| 3006 | const MCExpr *Base = |
| 3007 | TLI->getPICJumpTableRelocBaseExpr(MF, JTI: JumpTableIndex, Ctx&: OutContext); |
| 3008 | for (const MachineBasicBlock *MBB : JTBBs) { |
| 3009 | if (!EmittedSets.insert(Ptr: MBB).second) |
| 3010 | continue; |
| 3011 | |
| 3012 | // .set LJTSet, LBB32-base |
| 3013 | const MCExpr *LHS = |
| 3014 | MCSymbolRefExpr::create(Symbol: MBB->getSymbol(), Ctx&: OutContext); |
| 3015 | OutStreamer->emitAssignment( |
| 3016 | Symbol: GetJTSetSymbol(UID: JumpTableIndex, MBBID: MBB->getNumber()), |
| 3017 | Value: MCBinaryExpr::createSub(LHS, RHS: Base, Ctx&: OutContext)); |
| 3018 | } |
| 3019 | } |
| 3020 | |
| 3021 | // On some targets (e.g. Darwin) we want to emit two consecutive labels |
| 3022 | // before each jump table. The first label is never referenced, but tells |
| 3023 | // the assembler and linker the extents of the jump table object. The |
| 3024 | // second label is actually referenced by the code. |
| 3025 | if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) |
| 3026 | // FIXME: This doesn't have to have any specific name, just any randomly |
| 3027 | // named and numbered local label started with 'l' would work. Simplify |
| 3028 | // GetJTISymbol. |
| 3029 | OutStreamer->emitLabel(Symbol: GetJTISymbol(JTID: JumpTableIndex, isLinkerPrivate: true)); |
| 3030 | |
| 3031 | MCSymbol *JTISymbol = GetJTISymbol(JTID: JumpTableIndex); |
| 3032 | OutStreamer->emitLabel(Symbol: JTISymbol); |
| 3033 | |
| 3034 | // Defer MCAssembler based constant folding due to a performance issue. The |
| 3035 | // label differences will be evaluated at write time. |
| 3036 | for (const MachineBasicBlock *MBB : JTBBs) |
| 3037 | emitJumpTableEntry(MJTI, MBB, uid: JumpTableIndex); |
| 3038 | } |
| 3039 | |
| 3040 | if (EmitJumpTableSizesSection) |
| 3041 | emitJumpTableSizesSection(MJTI, F: MF->getFunction()); |
| 3042 | |
| 3043 | if (!JTInDiffSection) |
| 3044 | OutStreamer->emitDataRegion(Kind: MCDR_DataRegionEnd); |
| 3045 | } |
| 3046 | |
| 3047 | void AsmPrinter::emitJumpTableSizesSection(const MachineJumpTableInfo &MJTI, |
| 3048 | const Function &F) const { |
| 3049 | const std::vector<MachineJumpTableEntry> &JT = MJTI.getJumpTables(); |
| 3050 | |
| 3051 | if (JT.empty()) |
| 3052 | return; |
| 3053 | |
| 3054 | StringRef GroupName = F.hasComdat() ? F.getComdat()->getName() : "" ; |
| 3055 | MCSection *JumpTableSizesSection = nullptr; |
| 3056 | StringRef sectionName = ".llvm_jump_table_sizes" ; |
| 3057 | |
| 3058 | bool isElf = TM.getTargetTriple().isOSBinFormatELF(); |
| 3059 | bool isCoff = TM.getTargetTriple().isOSBinFormatCOFF(); |
| 3060 | |
| 3061 | if (!isCoff && !isElf) |
| 3062 | return; |
| 3063 | |
| 3064 | if (isElf) { |
| 3065 | MCSymbolELF *LinkedToSym = dyn_cast<MCSymbolELF>(Val: CurrentFnSym); |
| 3066 | int Flags = F.hasComdat() ? static_cast<int>(ELF::SHF_GROUP) : 0; |
| 3067 | |
| 3068 | JumpTableSizesSection = OutContext.getELFSection( |
| 3069 | Section: sectionName, Type: ELF::SHT_LLVM_JT_SIZES, Flags, EntrySize: 0, Group: GroupName, IsComdat: F.hasComdat(), |
| 3070 | UniqueID: MCSection::NonUniqueID, LinkedToSym); |
| 3071 | } else if (isCoff) { |
| 3072 | if (F.hasComdat()) { |
| 3073 | JumpTableSizesSection = OutContext.getCOFFSection( |
| 3074 | Section: sectionName, |
| 3075 | Characteristics: COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | |
| 3076 | COFF::IMAGE_SCN_LNK_COMDAT | COFF::IMAGE_SCN_MEM_DISCARDABLE, |
| 3077 | COMDATSymName: F.getComdat()->getName(), Selection: COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE); |
| 3078 | } else { |
| 3079 | JumpTableSizesSection = OutContext.getCOFFSection( |
| 3080 | Section: sectionName, Characteristics: COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | |
| 3081 | COFF::IMAGE_SCN_MEM_READ | |
| 3082 | COFF::IMAGE_SCN_MEM_DISCARDABLE); |
| 3083 | } |
| 3084 | } |
| 3085 | |
| 3086 | OutStreamer->switchSection(Section: JumpTableSizesSection); |
| 3087 | |
| 3088 | for (unsigned JTI = 0, E = JT.size(); JTI != E; ++JTI) { |
| 3089 | const std::vector<MachineBasicBlock *> &JTBBs = JT[JTI].MBBs; |
| 3090 | OutStreamer->emitSymbolValue(Sym: GetJTISymbol(JTID: JTI), Size: TM.getProgramPointerSize()); |
| 3091 | OutStreamer->emitIntValue(Value: JTBBs.size(), Size: TM.getProgramPointerSize()); |
| 3092 | } |
| 3093 | } |
| 3094 | |
| 3095 | /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the |
| 3096 | /// current stream. |
| 3097 | void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo &MJTI, |
| 3098 | const MachineBasicBlock *MBB, |
| 3099 | unsigned UID) const { |
| 3100 | assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block" ); |
| 3101 | const MCExpr *Value = nullptr; |
| 3102 | switch (MJTI.getEntryKind()) { |
| 3103 | case MachineJumpTableInfo::EK_Inline: |
| 3104 | llvm_unreachable("Cannot emit EK_Inline jump table entry" ); |
| 3105 | case MachineJumpTableInfo::EK_GPRel32BlockAddress: |
| 3106 | case MachineJumpTableInfo::EK_GPRel64BlockAddress: |
| 3107 | llvm_unreachable("MIPS specific" ); |
| 3108 | case MachineJumpTableInfo::EK_Custom32: |
| 3109 | Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( |
| 3110 | &MJTI, MBB, UID, OutContext); |
| 3111 | break; |
| 3112 | case MachineJumpTableInfo::EK_BlockAddress: |
| 3113 | // EK_BlockAddress - Each entry is a plain address of block, e.g.: |
| 3114 | // .word LBB123 |
| 3115 | Value = MCSymbolRefExpr::create(Symbol: MBB->getSymbol(), Ctx&: OutContext); |
| 3116 | break; |
| 3117 | |
| 3118 | case MachineJumpTableInfo::EK_LabelDifference32: |
| 3119 | case MachineJumpTableInfo::EK_LabelDifference64: { |
| 3120 | // Each entry is the address of the block minus the address of the jump |
| 3121 | // table. This is used for PIC jump tables where gprel32 is not supported. |
| 3122 | // e.g.: |
| 3123 | // .word LBB123 - LJTI1_2 |
| 3124 | // If the .set directive avoids relocations, this is emitted as: |
| 3125 | // .set L4_5_set_123, LBB123 - LJTI1_2 |
| 3126 | // .word L4_5_set_123 |
| 3127 | if (MJTI.getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && |
| 3128 | MAI->doesSetDirectiveSuppressReloc()) { |
| 3129 | Value = MCSymbolRefExpr::create(Symbol: GetJTSetSymbol(UID, MBBID: MBB->getNumber()), |
| 3130 | Ctx&: OutContext); |
| 3131 | break; |
| 3132 | } |
| 3133 | Value = MCSymbolRefExpr::create(Symbol: MBB->getSymbol(), Ctx&: OutContext); |
| 3134 | const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); |
| 3135 | const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, JTI: UID, Ctx&: OutContext); |
| 3136 | Value = MCBinaryExpr::createSub(LHS: Value, RHS: Base, Ctx&: OutContext); |
| 3137 | break; |
| 3138 | } |
| 3139 | } |
| 3140 | |
| 3141 | assert(Value && "Unknown entry kind!" ); |
| 3142 | |
| 3143 | unsigned EntrySize = MJTI.getEntrySize(TD: getDataLayout()); |
| 3144 | OutStreamer->emitValue(Value, Size: EntrySize); |
| 3145 | } |
| 3146 | |
| 3147 | /// EmitSpecialLLVMGlobal - Check to see if the specified global is a |
| 3148 | /// special global used by LLVM. If so, emit it and return true, otherwise |
| 3149 | /// do nothing and return false. |
| 3150 | bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) { |
| 3151 | if (GV->getName() == "llvm.used" ) { |
| 3152 | if (MAI->hasNoDeadStrip()) // No need to emit this at all. |
| 3153 | emitLLVMUsedList(InitList: cast<ConstantArray>(Val: GV->getInitializer())); |
| 3154 | return true; |
| 3155 | } |
| 3156 | |
| 3157 | // Ignore debug and non-emitted data. This handles llvm.compiler.used. |
| 3158 | if (GV->getSection() == "llvm.metadata" || |
| 3159 | GV->hasAvailableExternallyLinkage()) |
| 3160 | return true; |
| 3161 | |
| 3162 | if (GV->getName() == "llvm.arm64ec.symbolmap" ) { |
| 3163 | // For ARM64EC, print the table that maps between symbols and the |
| 3164 | // corresponding thunks to translate between x64 and AArch64 code. |
| 3165 | // This table is generated by AArch64Arm64ECCallLowering. |
| 3166 | OutStreamer->switchSection( |
| 3167 | Section: OutContext.getCOFFSection(Section: ".hybmp$x" , Characteristics: COFF::IMAGE_SCN_LNK_INFO)); |
| 3168 | auto *Arr = cast<ConstantArray>(Val: GV->getInitializer()); |
| 3169 | for (auto &U : Arr->operands()) { |
| 3170 | auto *C = cast<Constant>(Val: U); |
| 3171 | auto *Src = cast<GlobalValue>(Val: C->getOperand(i: 0)->stripPointerCasts()); |
| 3172 | auto *Dst = cast<GlobalValue>(Val: C->getOperand(i: 1)->stripPointerCasts()); |
| 3173 | int Kind = cast<ConstantInt>(Val: C->getOperand(i: 2))->getZExtValue(); |
| 3174 | |
| 3175 | if (Src->hasDLLImportStorageClass()) { |
| 3176 | // For now, we assume dllimport functions aren't directly called. |
| 3177 | // (We might change this later to match MSVC.) |
| 3178 | OutStreamer->emitCOFFSymbolIndex( |
| 3179 | Symbol: OutContext.getOrCreateSymbol(Name: "__imp_" + Src->getName())); |
| 3180 | OutStreamer->emitCOFFSymbolIndex(Symbol: getSymbol(GV: Dst)); |
| 3181 | OutStreamer->emitInt32(Value: Kind); |
| 3182 | } else { |
| 3183 | // FIXME: For non-dllimport functions, MSVC emits the same entry |
| 3184 | // twice, for reasons I don't understand. I have to assume the linker |
| 3185 | // ignores the redundant entry; there aren't any reasonable semantics |
| 3186 | // to attach to it. |
| 3187 | OutStreamer->emitCOFFSymbolIndex(Symbol: getSymbol(GV: Src)); |
| 3188 | OutStreamer->emitCOFFSymbolIndex(Symbol: getSymbol(GV: Dst)); |
| 3189 | OutStreamer->emitInt32(Value: Kind); |
| 3190 | } |
| 3191 | } |
| 3192 | return true; |
| 3193 | } |
| 3194 | |
| 3195 | if (!GV->hasAppendingLinkage()) return false; |
| 3196 | |
| 3197 | assert(GV->hasInitializer() && "Not a special LLVM global!" ); |
| 3198 | |
| 3199 | if (GV->getName() == "llvm.global_ctors" ) { |
| 3200 | emitXXStructorList(DL: GV->getDataLayout(), List: GV->getInitializer(), |
| 3201 | /* isCtor */ IsCtor: true); |
| 3202 | |
| 3203 | return true; |
| 3204 | } |
| 3205 | |
| 3206 | if (GV->getName() == "llvm.global_dtors" ) { |
| 3207 | emitXXStructorList(DL: GV->getDataLayout(), List: GV->getInitializer(), |
| 3208 | /* isCtor */ IsCtor: false); |
| 3209 | |
| 3210 | return true; |
| 3211 | } |
| 3212 | |
| 3213 | GV->getContext().emitError( |
| 3214 | ErrorStr: "unknown special variable with appending linkage: " + |
| 3215 | GV->getNameOrAsOperand()); |
| 3216 | return true; |
| 3217 | } |
| 3218 | |
| 3219 | /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each |
| 3220 | /// global in the specified llvm.used list. |
| 3221 | void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) { |
| 3222 | // Should be an array of 'i8*'. |
| 3223 | for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { |
| 3224 | const GlobalValue *GV = |
| 3225 | dyn_cast<GlobalValue>(Val: InitList->getOperand(i_nocapture: i)->stripPointerCasts()); |
| 3226 | if (GV) |
| 3227 | OutStreamer->emitSymbolAttribute(Symbol: getSymbol(GV), Attribute: MCSA_NoDeadStrip); |
| 3228 | } |
| 3229 | } |
| 3230 | |
| 3231 | void AsmPrinter::preprocessXXStructorList(const DataLayout &DL, |
| 3232 | const Constant *List, |
| 3233 | SmallVector<Structor, 8> &Structors) { |
| 3234 | // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is |
| 3235 | // the init priority. |
| 3236 | if (!isa<ConstantArray>(Val: List)) |
| 3237 | return; |
| 3238 | |
| 3239 | // Gather the structors in a form that's convenient for sorting by priority. |
| 3240 | for (Value *O : cast<ConstantArray>(Val: List)->operands()) { |
| 3241 | auto *CS = cast<ConstantStruct>(Val: O); |
| 3242 | if (CS->getOperand(i_nocapture: 1)->isNullValue()) |
| 3243 | break; // Found a null terminator, skip the rest. |
| 3244 | ConstantInt *Priority = dyn_cast<ConstantInt>(Val: CS->getOperand(i_nocapture: 0)); |
| 3245 | if (!Priority) |
| 3246 | continue; // Malformed. |
| 3247 | Structors.push_back(Elt: Structor()); |
| 3248 | Structor &S = Structors.back(); |
| 3249 | S.Priority = Priority->getLimitedValue(Limit: 65535); |
| 3250 | S.Func = CS->getOperand(i_nocapture: 1); |
| 3251 | if (!CS->getOperand(i_nocapture: 2)->isNullValue()) { |
| 3252 | if (TM.getTargetTriple().isOSAIX()) { |
| 3253 | CS->getContext().emitError( |
| 3254 | ErrorStr: "associated data of XXStructor list is not yet supported on AIX" ); |
| 3255 | } |
| 3256 | |
| 3257 | S.ComdatKey = |
| 3258 | dyn_cast<GlobalValue>(Val: CS->getOperand(i_nocapture: 2)->stripPointerCasts()); |
| 3259 | } |
| 3260 | } |
| 3261 | |
| 3262 | // Emit the function pointers in the target-specific order |
| 3263 | llvm::stable_sort(Range&: Structors, C: [](const Structor &L, const Structor &R) { |
| 3264 | return L.Priority < R.Priority; |
| 3265 | }); |
| 3266 | } |
| 3267 | |
| 3268 | /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init |
| 3269 | /// priority. |
| 3270 | void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List, |
| 3271 | bool IsCtor) { |
| 3272 | SmallVector<Structor, 8> Structors; |
| 3273 | preprocessXXStructorList(DL, List, Structors); |
| 3274 | if (Structors.empty()) |
| 3275 | return; |
| 3276 | |
| 3277 | // Emit the structors in reverse order if we are using the .ctor/.dtor |
| 3278 | // initialization scheme. |
| 3279 | if (!TM.Options.UseInitArray) |
| 3280 | std::reverse(first: Structors.begin(), last: Structors.end()); |
| 3281 | |
| 3282 | const Align Align = DL.getPointerPrefAlignment(); |
| 3283 | for (Structor &S : Structors) { |
| 3284 | const TargetLoweringObjectFile &Obj = getObjFileLowering(); |
| 3285 | const MCSymbol *KeySym = nullptr; |
| 3286 | if (GlobalValue *GV = S.ComdatKey) { |
| 3287 | if (GV->isDeclarationForLinker()) |
| 3288 | // If the associated variable is not defined in this module |
| 3289 | // (it might be available_externally, or have been an |
| 3290 | // available_externally definition that was dropped by the |
| 3291 | // EliminateAvailableExternally pass), some other TU |
| 3292 | // will provide its dynamic initializer. |
| 3293 | continue; |
| 3294 | |
| 3295 | KeySym = getSymbol(GV); |
| 3296 | } |
| 3297 | |
| 3298 | MCSection *OutputSection = |
| 3299 | (IsCtor ? Obj.getStaticCtorSection(Priority: S.Priority, KeySym) |
| 3300 | : Obj.getStaticDtorSection(Priority: S.Priority, KeySym)); |
| 3301 | OutStreamer->switchSection(Section: OutputSection); |
| 3302 | if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) |
| 3303 | emitAlignment(Alignment: Align); |
| 3304 | emitXXStructor(DL, CV: S.Func); |
| 3305 | } |
| 3306 | } |
| 3307 | |
| 3308 | void AsmPrinter::emitModuleIdents(Module &M) { |
| 3309 | if (!MAI->hasIdentDirective()) |
| 3310 | return; |
| 3311 | |
| 3312 | if (const NamedMDNode *NMD = M.getNamedMetadata(Name: "llvm.ident" )) { |
| 3313 | for (const MDNode *N : NMD->operands()) { |
| 3314 | assert(N->getNumOperands() == 1 && |
| 3315 | "llvm.ident metadata entry can have only one operand" ); |
| 3316 | const MDString *S = cast<MDString>(Val: N->getOperand(I: 0)); |
| 3317 | OutStreamer->emitIdent(IdentString: S->getString()); |
| 3318 | } |
| 3319 | } |
| 3320 | } |
| 3321 | |
| 3322 | void AsmPrinter::emitModuleCommandLines(Module &M) { |
| 3323 | MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); |
| 3324 | if (!CommandLine) |
| 3325 | return; |
| 3326 | |
| 3327 | const NamedMDNode *NMD = M.getNamedMetadata(Name: "llvm.commandline" ); |
| 3328 | if (!NMD || !NMD->getNumOperands()) |
| 3329 | return; |
| 3330 | |
| 3331 | OutStreamer->pushSection(); |
| 3332 | OutStreamer->switchSection(Section: CommandLine); |
| 3333 | OutStreamer->emitZeros(NumBytes: 1); |
| 3334 | for (const MDNode *N : NMD->operands()) { |
| 3335 | assert(N->getNumOperands() == 1 && |
| 3336 | "llvm.commandline metadata entry can have only one operand" ); |
| 3337 | const MDString *S = cast<MDString>(Val: N->getOperand(I: 0)); |
| 3338 | OutStreamer->emitBytes(Data: S->getString()); |
| 3339 | OutStreamer->emitZeros(NumBytes: 1); |
| 3340 | } |
| 3341 | OutStreamer->popSection(); |
| 3342 | } |
| 3343 | |
| 3344 | //===--------------------------------------------------------------------===// |
| 3345 | // Emission and print routines |
| 3346 | // |
| 3347 | |
| 3348 | /// Emit a byte directive and value. |
| 3349 | /// |
| 3350 | void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); } |
| 3351 | |
| 3352 | /// Emit a short directive and value. |
| 3353 | void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); } |
| 3354 | |
| 3355 | /// Emit a long directive and value. |
| 3356 | void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); } |
| 3357 | |
| 3358 | /// EmitSLEB128 - emit the specified signed leb128 value. |
| 3359 | void AsmPrinter::emitSLEB128(int64_t Value, const char *Desc) const { |
| 3360 | if (isVerbose() && Desc) |
| 3361 | OutStreamer->AddComment(T: Desc); |
| 3362 | |
| 3363 | OutStreamer->emitSLEB128IntValue(Value); |
| 3364 | } |
| 3365 | |
| 3366 | void AsmPrinter::emitULEB128(uint64_t Value, const char *Desc, |
| 3367 | unsigned PadTo) const { |
| 3368 | if (isVerbose() && Desc) |
| 3369 | OutStreamer->AddComment(T: Desc); |
| 3370 | |
| 3371 | OutStreamer->emitULEB128IntValue(Value, PadTo); |
| 3372 | } |
| 3373 | |
| 3374 | /// Emit a long long directive and value. |
| 3375 | void AsmPrinter::emitInt64(uint64_t Value) const { |
| 3376 | OutStreamer->emitInt64(Value); |
| 3377 | } |
| 3378 | |
| 3379 | /// Emit something like ".long Hi-Lo" where the size in bytes of the directive |
| 3380 | /// is specified by Size and Hi/Lo specify the labels. This implicitly uses |
| 3381 | /// .set if it avoids relocations. |
| 3382 | void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, |
| 3383 | unsigned Size) const { |
| 3384 | OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); |
| 3385 | } |
| 3386 | |
| 3387 | /// Emit something like ".uleb128 Hi-Lo". |
| 3388 | void AsmPrinter::emitLabelDifferenceAsULEB128(const MCSymbol *Hi, |
| 3389 | const MCSymbol *Lo) const { |
| 3390 | OutStreamer->emitAbsoluteSymbolDiffAsULEB128(Hi, Lo); |
| 3391 | } |
| 3392 | |
| 3393 | /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" |
| 3394 | /// where the size in bytes of the directive is specified by Size and Label |
| 3395 | /// specifies the label. This implicitly uses .set if it is available. |
| 3396 | void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, |
| 3397 | unsigned Size, |
| 3398 | bool IsSectionRelative) const { |
| 3399 | if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { |
| 3400 | OutStreamer->emitCOFFSecRel32(Symbol: Label, Offset); |
| 3401 | if (Size > 4) |
| 3402 | OutStreamer->emitZeros(NumBytes: Size - 4); |
| 3403 | return; |
| 3404 | } |
| 3405 | |
| 3406 | // Emit Label+Offset (or just Label if Offset is zero) |
| 3407 | const MCExpr *Expr = MCSymbolRefExpr::create(Symbol: Label, Ctx&: OutContext); |
| 3408 | if (Offset) |
| 3409 | Expr = MCBinaryExpr::createAdd( |
| 3410 | LHS: Expr, RHS: MCConstantExpr::create(Value: Offset, Ctx&: OutContext), Ctx&: OutContext); |
| 3411 | |
| 3412 | OutStreamer->emitValue(Value: Expr, Size); |
| 3413 | } |
| 3414 | |
| 3415 | //===----------------------------------------------------------------------===// |
| 3416 | |
| 3417 | // EmitAlignment - Emit an alignment directive to the specified power of |
| 3418 | // two boundary. If a global value is specified, and if that global has |
| 3419 | // an explicit alignment requested, it will override the alignment request |
| 3420 | // if required for correctness. |
| 3421 | void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV, |
| 3422 | unsigned MaxBytesToEmit) const { |
| 3423 | if (GV) |
| 3424 | Alignment = getGVAlignment(GV, DL: GV->getDataLayout(), InAlign: Alignment); |
| 3425 | |
| 3426 | if (Alignment == Align(1)) |
| 3427 | return; // 1-byte aligned: no need to emit alignment. |
| 3428 | |
| 3429 | if (getCurrentSection()->isText()) { |
| 3430 | const MCSubtargetInfo *STI = nullptr; |
| 3431 | if (this->MF) |
| 3432 | STI = &getSubtargetInfo(); |
| 3433 | else |
| 3434 | STI = TM.getMCSubtargetInfo(); |
| 3435 | OutStreamer->emitCodeAlignment(Alignment, STI, MaxBytesToEmit); |
| 3436 | } else |
| 3437 | OutStreamer->emitValueToAlignment(Alignment, Value: 0, ValueSize: 1, MaxBytesToEmit); |
| 3438 | } |
| 3439 | |
| 3440 | //===----------------------------------------------------------------------===// |
| 3441 | // Constant emission. |
| 3442 | //===----------------------------------------------------------------------===// |
| 3443 | |
| 3444 | const MCExpr *AsmPrinter::lowerConstant(const Constant *CV, |
| 3445 | const Constant *BaseCV, |
| 3446 | uint64_t Offset) { |
| 3447 | MCContext &Ctx = OutContext; |
| 3448 | |
| 3449 | if (CV->isNullValue() || isa<UndefValue>(Val: CV)) |
| 3450 | return MCConstantExpr::create(Value: 0, Ctx); |
| 3451 | |
| 3452 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: CV)) |
| 3453 | return MCConstantExpr::create(Value: CI->getZExtValue(), Ctx); |
| 3454 | |
| 3455 | if (const ConstantPtrAuth *CPA = dyn_cast<ConstantPtrAuth>(Val: CV)) |
| 3456 | return lowerConstantPtrAuth(CPA: *CPA); |
| 3457 | |
| 3458 | if (const GlobalValue *GV = dyn_cast<GlobalValue>(Val: CV)) |
| 3459 | return MCSymbolRefExpr::create(Symbol: getSymbol(GV), Ctx); |
| 3460 | |
| 3461 | if (const BlockAddress *BA = dyn_cast<BlockAddress>(Val: CV)) |
| 3462 | return lowerBlockAddressConstant(BA: *BA); |
| 3463 | |
| 3464 | if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(Val: CV)) |
| 3465 | return getObjFileLowering().lowerDSOLocalEquivalent( |
| 3466 | LHS: getSymbol(GV: Equiv->getGlobalValue()), RHS: nullptr, Addend: 0, PCRelativeOffset: std::nullopt, TM); |
| 3467 | |
| 3468 | if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(Val: CV)) |
| 3469 | return MCSymbolRefExpr::create(Symbol: getSymbol(GV: NC->getGlobalValue()), Ctx); |
| 3470 | |
| 3471 | const ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: CV); |
| 3472 | if (!CE) { |
| 3473 | llvm_unreachable("Unknown constant value to lower!" ); |
| 3474 | } |
| 3475 | |
| 3476 | // The constant expression opcodes are limited to those that are necessary |
| 3477 | // to represent relocations on supported targets. Expressions involving only |
| 3478 | // constant addresses are constant folded instead. |
| 3479 | switch (CE->getOpcode()) { |
| 3480 | default: |
| 3481 | break; // Error |
| 3482 | case Instruction::AddrSpaceCast: { |
| 3483 | const Constant *Op = CE->getOperand(i_nocapture: 0); |
| 3484 | unsigned DstAS = CE->getType()->getPointerAddressSpace(); |
| 3485 | unsigned SrcAS = Op->getType()->getPointerAddressSpace(); |
| 3486 | if (TM.isNoopAddrSpaceCast(SrcAS, DestAS: DstAS)) |
| 3487 | return lowerConstant(CV: Op); |
| 3488 | |
| 3489 | break; // Error |
| 3490 | } |
| 3491 | case Instruction::GetElementPtr: { |
| 3492 | // Generate a symbolic expression for the byte address |
| 3493 | APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); |
| 3494 | cast<GEPOperator>(Val: CE)->accumulateConstantOffset(DL: getDataLayout(), Offset&: OffsetAI); |
| 3495 | |
| 3496 | const MCExpr *Base = lowerConstant(CV: CE->getOperand(i_nocapture: 0)); |
| 3497 | if (!OffsetAI) |
| 3498 | return Base; |
| 3499 | |
| 3500 | int64_t Offset = OffsetAI.getSExtValue(); |
| 3501 | return MCBinaryExpr::createAdd(LHS: Base, RHS: MCConstantExpr::create(Value: Offset, Ctx), |
| 3502 | Ctx); |
| 3503 | } |
| 3504 | |
| 3505 | case Instruction::Trunc: |
| 3506 | // We emit the value and depend on the assembler to truncate the generated |
| 3507 | // expression properly. This is important for differences between |
| 3508 | // blockaddress labels. Since the two labels are in the same function, it |
| 3509 | // is reasonable to treat their delta as a 32-bit value. |
| 3510 | [[fallthrough]]; |
| 3511 | case Instruction::BitCast: |
| 3512 | return lowerConstant(CV: CE->getOperand(i_nocapture: 0), BaseCV, Offset); |
| 3513 | |
| 3514 | case Instruction::IntToPtr: { |
| 3515 | const DataLayout &DL = getDataLayout(); |
| 3516 | |
| 3517 | // Handle casts to pointers by changing them into casts to the appropriate |
| 3518 | // integer type. This promotes constant folding and simplifies this code. |
| 3519 | Constant *Op = CE->getOperand(i_nocapture: 0); |
| 3520 | Op = ConstantFoldIntegerCast(C: Op, DestTy: DL.getIntPtrType(CV->getType()), |
| 3521 | /*IsSigned*/ false, DL); |
| 3522 | if (Op) |
| 3523 | return lowerConstant(CV: Op); |
| 3524 | |
| 3525 | break; // Error |
| 3526 | } |
| 3527 | |
| 3528 | case Instruction::PtrToInt: { |
| 3529 | const DataLayout &DL = getDataLayout(); |
| 3530 | |
| 3531 | // Support only foldable casts to/from pointers that can be eliminated by |
| 3532 | // changing the pointer to the appropriately sized integer type. |
| 3533 | Constant *Op = CE->getOperand(i_nocapture: 0); |
| 3534 | Type *Ty = CE->getType(); |
| 3535 | |
| 3536 | const MCExpr *OpExpr = lowerConstant(CV: Op); |
| 3537 | |
| 3538 | // We can emit the pointer value into this slot if the slot is an |
| 3539 | // integer slot equal to the size of the pointer. |
| 3540 | // |
| 3541 | // If the pointer is larger than the resultant integer, then |
| 3542 | // as with Trunc just depend on the assembler to truncate it. |
| 3543 | if (DL.getTypeAllocSize(Ty).getFixedValue() <= |
| 3544 | DL.getTypeAllocSize(Ty: Op->getType()).getFixedValue()) |
| 3545 | return OpExpr; |
| 3546 | |
| 3547 | break; // Error |
| 3548 | } |
| 3549 | |
| 3550 | case Instruction::Sub: { |
| 3551 | GlobalValue *LHSGV, *RHSGV; |
| 3552 | APInt LHSOffset, RHSOffset; |
| 3553 | DSOLocalEquivalent *DSOEquiv; |
| 3554 | if (IsConstantOffsetFromGlobal(C: CE->getOperand(i_nocapture: 0), GV&: LHSGV, Offset&: LHSOffset, |
| 3555 | DL: getDataLayout(), DSOEquiv: &DSOEquiv) && |
| 3556 | IsConstantOffsetFromGlobal(C: CE->getOperand(i_nocapture: 1), GV&: RHSGV, Offset&: RHSOffset, |
| 3557 | DL: getDataLayout())) { |
| 3558 | auto *LHSSym = getSymbol(GV: LHSGV); |
| 3559 | auto *RHSSym = getSymbol(GV: RHSGV); |
| 3560 | int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); |
| 3561 | std::optional<int64_t> PCRelativeOffset; |
| 3562 | if (getObjFileLowering().hasPLTPCRelative() && RHSGV == BaseCV) |
| 3563 | PCRelativeOffset = Offset; |
| 3564 | |
| 3565 | // Try the generic symbol difference first. |
| 3566 | const MCExpr *Res = getObjFileLowering().lowerRelativeReference( |
| 3567 | LHS: LHSGV, RHS: RHSGV, Addend, PCRelativeOffset, TM); |
| 3568 | |
| 3569 | // (ELF-specific) If the generic symbol difference does not apply, and |
| 3570 | // LHS is a dso_local_equivalent of a function, reference the PLT entry |
| 3571 | // instead. Note: A default visibility symbol is by default preemptible |
| 3572 | // during linking, and should not be referenced with PC-relative |
| 3573 | // relocations. Therefore, use a PLT relocation even if the function is |
| 3574 | // dso_local. |
| 3575 | if (DSOEquiv && TM.getTargetTriple().isOSBinFormatELF()) |
| 3576 | Res = getObjFileLowering().lowerDSOLocalEquivalent( |
| 3577 | LHS: LHSSym, RHS: RHSSym, Addend, PCRelativeOffset, TM); |
| 3578 | |
| 3579 | // Otherwise, return LHS-RHS+Addend. |
| 3580 | if (!Res) { |
| 3581 | Res = |
| 3582 | MCBinaryExpr::createSub(LHS: MCSymbolRefExpr::create(Symbol: LHSSym, Ctx), |
| 3583 | RHS: MCSymbolRefExpr::create(Symbol: RHSSym, Ctx), Ctx); |
| 3584 | if (Addend != 0) |
| 3585 | Res = MCBinaryExpr::createAdd( |
| 3586 | LHS: Res, RHS: MCConstantExpr::create(Value: Addend, Ctx), Ctx); |
| 3587 | } |
| 3588 | return Res; |
| 3589 | } |
| 3590 | |
| 3591 | const MCExpr *LHS = lowerConstant(CV: CE->getOperand(i_nocapture: 0)); |
| 3592 | const MCExpr *RHS = lowerConstant(CV: CE->getOperand(i_nocapture: 1)); |
| 3593 | return MCBinaryExpr::createSub(LHS, RHS, Ctx); |
| 3594 | break; |
| 3595 | } |
| 3596 | |
| 3597 | case Instruction::Add: { |
| 3598 | const MCExpr *LHS = lowerConstant(CV: CE->getOperand(i_nocapture: 0)); |
| 3599 | const MCExpr *RHS = lowerConstant(CV: CE->getOperand(i_nocapture: 1)); |
| 3600 | return MCBinaryExpr::createAdd(LHS, RHS, Ctx); |
| 3601 | } |
| 3602 | } |
| 3603 | |
| 3604 | // If the code isn't optimized, there may be outstanding folding |
| 3605 | // opportunities. Attempt to fold the expression using DataLayout as a |
| 3606 | // last resort before giving up. |
| 3607 | Constant *C = ConstantFoldConstant(C: CE, DL: getDataLayout()); |
| 3608 | if (C != CE) |
| 3609 | return lowerConstant(CV: C); |
| 3610 | |
| 3611 | // Otherwise report the problem to the user. |
| 3612 | std::string S; |
| 3613 | raw_string_ostream OS(S); |
| 3614 | OS << "unsupported expression in static initializer: " ; |
| 3615 | CE->printAsOperand(O&: OS, /*PrintType=*/false, |
| 3616 | M: !MF ? nullptr : MF->getFunction().getParent()); |
| 3617 | CE->getContext().emitError(ErrorStr: S); |
| 3618 | return MCConstantExpr::create(Value: 0, Ctx); |
| 3619 | } |
| 3620 | |
| 3621 | static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, |
| 3622 | AsmPrinter &AP, |
| 3623 | const Constant *BaseCV = nullptr, |
| 3624 | uint64_t Offset = 0, |
| 3625 | AsmPrinter::AliasMapTy *AliasList = nullptr); |
| 3626 | |
| 3627 | static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); |
| 3628 | static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); |
| 3629 | |
| 3630 | /// isRepeatedByteSequence - Determine whether the given value is |
| 3631 | /// composed of a repeated sequence of identical bytes and return the |
| 3632 | /// byte value. If it is not a repeated sequence, return -1. |
| 3633 | static int isRepeatedByteSequence(const ConstantDataSequential *V) { |
| 3634 | StringRef Data = V->getRawDataValues(); |
| 3635 | assert(!Data.empty() && "Empty aggregates should be CAZ node" ); |
| 3636 | char C = Data[0]; |
| 3637 | for (unsigned i = 1, e = Data.size(); i != e; ++i) |
| 3638 | if (Data[i] != C) return -1; |
| 3639 | return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. |
| 3640 | } |
| 3641 | |
| 3642 | /// isRepeatedByteSequence - Determine whether the given value is |
| 3643 | /// composed of a repeated sequence of identical bytes and return the |
| 3644 | /// byte value. If it is not a repeated sequence, return -1. |
| 3645 | static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { |
| 3646 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: V)) { |
| 3647 | uint64_t Size = DL.getTypeAllocSizeInBits(Ty: V->getType()); |
| 3648 | assert(Size % 8 == 0); |
| 3649 | |
| 3650 | // Extend the element to take zero padding into account. |
| 3651 | APInt Value = CI->getValue().zext(width: Size); |
| 3652 | if (!Value.isSplat(SplatSizeInBits: 8)) |
| 3653 | return -1; |
| 3654 | |
| 3655 | return Value.zextOrTrunc(width: 8).getZExtValue(); |
| 3656 | } |
| 3657 | if (const ConstantArray *CA = dyn_cast<ConstantArray>(Val: V)) { |
| 3658 | // Make sure all array elements are sequences of the same repeated |
| 3659 | // byte. |
| 3660 | assert(CA->getNumOperands() != 0 && "Should be a CAZ" ); |
| 3661 | Constant *Op0 = CA->getOperand(i_nocapture: 0); |
| 3662 | int Byte = isRepeatedByteSequence(V: Op0, DL); |
| 3663 | if (Byte == -1) |
| 3664 | return -1; |
| 3665 | |
| 3666 | // All array elements must be equal. |
| 3667 | for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) |
| 3668 | if (CA->getOperand(i_nocapture: i) != Op0) |
| 3669 | return -1; |
| 3670 | return Byte; |
| 3671 | } |
| 3672 | |
| 3673 | if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(Val: V)) |
| 3674 | return isRepeatedByteSequence(V: CDS); |
| 3675 | |
| 3676 | return -1; |
| 3677 | } |
| 3678 | |
| 3679 | static void emitGlobalAliasInline(AsmPrinter &AP, uint64_t Offset, |
| 3680 | AsmPrinter::AliasMapTy *AliasList) { |
| 3681 | if (AliasList) { |
| 3682 | auto AliasIt = AliasList->find(Val: Offset); |
| 3683 | if (AliasIt != AliasList->end()) { |
| 3684 | for (const GlobalAlias *GA : AliasIt->second) |
| 3685 | AP.OutStreamer->emitLabel(Symbol: AP.getSymbol(GV: GA)); |
| 3686 | AliasList->erase(Val: Offset); |
| 3687 | } |
| 3688 | } |
| 3689 | } |
| 3690 | |
| 3691 | static void emitGlobalConstantDataSequential( |
| 3692 | const DataLayout &DL, const ConstantDataSequential *CDS, AsmPrinter &AP, |
| 3693 | AsmPrinter::AliasMapTy *AliasList) { |
| 3694 | // See if we can aggregate this into a .fill, if so, emit it as such. |
| 3695 | int Value = isRepeatedByteSequence(V: CDS, DL); |
| 3696 | if (Value != -1) { |
| 3697 | uint64_t Bytes = DL.getTypeAllocSize(Ty: CDS->getType()); |
| 3698 | // Don't emit a 1-byte object as a .fill. |
| 3699 | if (Bytes > 1) |
| 3700 | return AP.OutStreamer->emitFill(NumBytes: Bytes, FillValue: Value); |
| 3701 | } |
| 3702 | |
| 3703 | // If this can be emitted with .ascii/.asciz, emit it as such. |
| 3704 | if (CDS->isString()) |
| 3705 | return AP.OutStreamer->emitBytes(Data: CDS->getAsString()); |
| 3706 | |
| 3707 | // Otherwise, emit the values in successive locations. |
| 3708 | uint64_t ElementByteSize = CDS->getElementByteSize(); |
| 3709 | if (isa<IntegerType>(Val: CDS->getElementType())) { |
| 3710 | for (uint64_t I = 0, E = CDS->getNumElements(); I != E; ++I) { |
| 3711 | emitGlobalAliasInline(AP, Offset: ElementByteSize * I, AliasList); |
| 3712 | if (AP.isVerbose()) |
| 3713 | AP.OutStreamer->getCommentOS() |
| 3714 | << format(Fmt: "0x%" PRIx64 "\n" , Vals: CDS->getElementAsInteger(i: I)); |
| 3715 | AP.OutStreamer->emitIntValue(Value: CDS->getElementAsInteger(i: I), |
| 3716 | Size: ElementByteSize); |
| 3717 | } |
| 3718 | } else { |
| 3719 | Type *ET = CDS->getElementType(); |
| 3720 | for (uint64_t I = 0, E = CDS->getNumElements(); I != E; ++I) { |
| 3721 | emitGlobalAliasInline(AP, Offset: ElementByteSize * I, AliasList); |
| 3722 | emitGlobalConstantFP(APF: CDS->getElementAsAPFloat(i: I), ET, AP); |
| 3723 | } |
| 3724 | } |
| 3725 | |
| 3726 | unsigned Size = DL.getTypeAllocSize(Ty: CDS->getType()); |
| 3727 | unsigned EmittedSize = |
| 3728 | DL.getTypeAllocSize(Ty: CDS->getElementType()) * CDS->getNumElements(); |
| 3729 | assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!" ); |
| 3730 | if (unsigned Padding = Size - EmittedSize) |
| 3731 | AP.OutStreamer->emitZeros(NumBytes: Padding); |
| 3732 | } |
| 3733 | |
| 3734 | static void emitGlobalConstantArray(const DataLayout &DL, |
| 3735 | const ConstantArray *CA, AsmPrinter &AP, |
| 3736 | const Constant *BaseCV, uint64_t Offset, |
| 3737 | AsmPrinter::AliasMapTy *AliasList) { |
| 3738 | // See if we can aggregate some values. Make sure it can be |
| 3739 | // represented as a series of bytes of the constant value. |
| 3740 | int Value = isRepeatedByteSequence(V: CA, DL); |
| 3741 | |
| 3742 | if (Value != -1) { |
| 3743 | uint64_t Bytes = DL.getTypeAllocSize(Ty: CA->getType()); |
| 3744 | AP.OutStreamer->emitFill(NumBytes: Bytes, FillValue: Value); |
| 3745 | } else { |
| 3746 | for (unsigned I = 0, E = CA->getNumOperands(); I != E; ++I) { |
| 3747 | emitGlobalConstantImpl(DL, C: CA->getOperand(i_nocapture: I), AP, BaseCV, Offset, |
| 3748 | AliasList); |
| 3749 | Offset += DL.getTypeAllocSize(Ty: CA->getOperand(i_nocapture: I)->getType()); |
| 3750 | } |
| 3751 | } |
| 3752 | } |
| 3753 | |
| 3754 | static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP); |
| 3755 | |
| 3756 | static void emitGlobalConstantVector(const DataLayout &DL, const Constant *CV, |
| 3757 | AsmPrinter &AP, |
| 3758 | AsmPrinter::AliasMapTy *AliasList) { |
| 3759 | auto *VTy = cast<FixedVectorType>(Val: CV->getType()); |
| 3760 | Type *ElementType = VTy->getElementType(); |
| 3761 | uint64_t ElementSizeInBits = DL.getTypeSizeInBits(Ty: ElementType); |
| 3762 | uint64_t ElementAllocSizeInBits = DL.getTypeAllocSizeInBits(Ty: ElementType); |
| 3763 | uint64_t EmittedSize; |
| 3764 | if (ElementSizeInBits != ElementAllocSizeInBits) { |
| 3765 | // If the allocation size of an element is different from the size in bits, |
| 3766 | // printing each element separately will insert incorrect padding. |
| 3767 | // |
| 3768 | // The general algorithm here is complicated; instead of writing it out |
| 3769 | // here, just use the existing code in ConstantFolding. |
| 3770 | Type *IntT = |
| 3771 | IntegerType::get(C&: CV->getContext(), NumBits: DL.getTypeSizeInBits(Ty: CV->getType())); |
| 3772 | ConstantInt *CI = dyn_cast_or_null<ConstantInt>(Val: ConstantFoldConstant( |
| 3773 | C: ConstantExpr::getBitCast(C: const_cast<Constant *>(CV), Ty: IntT), DL)); |
| 3774 | if (!CI) { |
| 3775 | report_fatal_error( |
| 3776 | reason: "Cannot lower vector global with unusual element type" ); |
| 3777 | } |
| 3778 | emitGlobalAliasInline(AP, Offset: 0, AliasList); |
| 3779 | emitGlobalConstantLargeInt(CI, AP); |
| 3780 | EmittedSize = DL.getTypeStoreSize(Ty: CV->getType()); |
| 3781 | } else { |
| 3782 | for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) { |
| 3783 | emitGlobalAliasInline(AP, Offset: DL.getTypeAllocSize(Ty: CV->getType()) * I, AliasList); |
| 3784 | emitGlobalConstantImpl(DL, C: CV->getAggregateElement(Elt: I), AP); |
| 3785 | } |
| 3786 | EmittedSize = DL.getTypeAllocSize(Ty: ElementType) * VTy->getNumElements(); |
| 3787 | } |
| 3788 | |
| 3789 | unsigned Size = DL.getTypeAllocSize(Ty: CV->getType()); |
| 3790 | if (unsigned Padding = Size - EmittedSize) |
| 3791 | AP.OutStreamer->emitZeros(NumBytes: Padding); |
| 3792 | } |
| 3793 | |
| 3794 | static void emitGlobalConstantStruct(const DataLayout &DL, |
| 3795 | const ConstantStruct *CS, AsmPrinter &AP, |
| 3796 | const Constant *BaseCV, uint64_t Offset, |
| 3797 | AsmPrinter::AliasMapTy *AliasList) { |
| 3798 | // Print the fields in successive locations. Pad to align if needed! |
| 3799 | uint64_t Size = DL.getTypeAllocSize(Ty: CS->getType()); |
| 3800 | const StructLayout *Layout = DL.getStructLayout(Ty: CS->getType()); |
| 3801 | uint64_t SizeSoFar = 0; |
| 3802 | for (unsigned I = 0, E = CS->getNumOperands(); I != E; ++I) { |
| 3803 | const Constant *Field = CS->getOperand(i_nocapture: I); |
| 3804 | |
| 3805 | // Print the actual field value. |
| 3806 | emitGlobalConstantImpl(DL, C: Field, AP, BaseCV, Offset: Offset + SizeSoFar, |
| 3807 | AliasList); |
| 3808 | |
| 3809 | // Check if padding is needed and insert one or more 0s. |
| 3810 | uint64_t FieldSize = DL.getTypeAllocSize(Ty: Field->getType()); |
| 3811 | uint64_t PadSize = ((I == E - 1 ? Size : Layout->getElementOffset(Idx: I + 1)) - |
| 3812 | Layout->getElementOffset(Idx: I)) - |
| 3813 | FieldSize; |
| 3814 | SizeSoFar += FieldSize + PadSize; |
| 3815 | |
| 3816 | // Insert padding - this may include padding to increase the size of the |
| 3817 | // current field up to the ABI size (if the struct is not packed) as well |
| 3818 | // as padding to ensure that the next field starts at the right offset. |
| 3819 | AP.OutStreamer->emitZeros(NumBytes: PadSize); |
| 3820 | } |
| 3821 | assert(SizeSoFar == Layout->getSizeInBytes() && |
| 3822 | "Layout of constant struct may be incorrect!" ); |
| 3823 | } |
| 3824 | |
| 3825 | static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { |
| 3826 | assert(ET && "Unknown float type" ); |
| 3827 | APInt API = APF.bitcastToAPInt(); |
| 3828 | |
| 3829 | // First print a comment with what we think the original floating-point value |
| 3830 | // should have been. |
| 3831 | if (AP.isVerbose()) { |
| 3832 | SmallString<8> StrVal; |
| 3833 | APF.toString(Str&: StrVal); |
| 3834 | ET->print(O&: AP.OutStreamer->getCommentOS()); |
| 3835 | AP.OutStreamer->getCommentOS() << ' ' << StrVal << '\n'; |
| 3836 | } |
| 3837 | |
| 3838 | // Now iterate through the APInt chunks, emitting them in endian-correct |
| 3839 | // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit |
| 3840 | // floats). |
| 3841 | unsigned NumBytes = API.getBitWidth() / 8; |
| 3842 | unsigned TrailingBytes = NumBytes % sizeof(uint64_t); |
| 3843 | const uint64_t *p = API.getRawData(); |
| 3844 | |
| 3845 | // PPC's long double has odd notions of endianness compared to how LLVM |
| 3846 | // handles it: p[0] goes first for *big* endian on PPC. |
| 3847 | if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { |
| 3848 | int Chunk = API.getNumWords() - 1; |
| 3849 | |
| 3850 | if (TrailingBytes) |
| 3851 | AP.OutStreamer->emitIntValueInHexWithPadding(Value: p[Chunk--], Size: TrailingBytes); |
| 3852 | |
| 3853 | for (; Chunk >= 0; --Chunk) |
| 3854 | AP.OutStreamer->emitIntValueInHexWithPadding(Value: p[Chunk], Size: sizeof(uint64_t)); |
| 3855 | } else { |
| 3856 | unsigned Chunk; |
| 3857 | for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) |
| 3858 | AP.OutStreamer->emitIntValueInHexWithPadding(Value: p[Chunk], Size: sizeof(uint64_t)); |
| 3859 | |
| 3860 | if (TrailingBytes) |
| 3861 | AP.OutStreamer->emitIntValueInHexWithPadding(Value: p[Chunk], Size: TrailingBytes); |
| 3862 | } |
| 3863 | |
| 3864 | // Emit the tail padding for the long double. |
| 3865 | const DataLayout &DL = AP.getDataLayout(); |
| 3866 | AP.OutStreamer->emitZeros(NumBytes: DL.getTypeAllocSize(Ty: ET) - DL.getTypeStoreSize(Ty: ET)); |
| 3867 | } |
| 3868 | |
| 3869 | static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { |
| 3870 | emitGlobalConstantFP(APF: CFP->getValueAPF(), ET: CFP->getType(), AP); |
| 3871 | } |
| 3872 | |
| 3873 | static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { |
| 3874 | const DataLayout &DL = AP.getDataLayout(); |
| 3875 | unsigned BitWidth = CI->getBitWidth(); |
| 3876 | |
| 3877 | // Copy the value as we may massage the layout for constants whose bit width |
| 3878 | // is not a multiple of 64-bits. |
| 3879 | APInt Realigned(CI->getValue()); |
| 3880 | uint64_t = 0; |
| 3881 | unsigned = BitWidth & 63; |
| 3882 | |
| 3883 | if (ExtraBitsSize) { |
| 3884 | // The bit width of the data is not a multiple of 64-bits. |
| 3885 | // The extra bits are expected to be at the end of the chunk of the memory. |
| 3886 | // Little endian: |
| 3887 | // * Nothing to be done, just record the extra bits to emit. |
| 3888 | // Big endian: |
| 3889 | // * Record the extra bits to emit. |
| 3890 | // * Realign the raw data to emit the chunks of 64-bits. |
| 3891 | if (DL.isBigEndian()) { |
| 3892 | // Basically the structure of the raw data is a chunk of 64-bits cells: |
| 3893 | // 0 1 BitWidth / 64 |
| 3894 | // [chunk1][chunk2] ... [chunkN]. |
| 3895 | // The most significant chunk is chunkN and it should be emitted first. |
| 3896 | // However, due to the alignment issue chunkN contains useless bits. |
| 3897 | // Realign the chunks so that they contain only useful information: |
| 3898 | // ExtraBits 0 1 (BitWidth / 64) - 1 |
| 3899 | // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] |
| 3900 | ExtraBitsSize = alignTo(Value: ExtraBitsSize, Align: 8); |
| 3901 | ExtraBits = Realigned.getRawData()[0] & |
| 3902 | (((uint64_t)-1) >> (64 - ExtraBitsSize)); |
| 3903 | if (BitWidth >= 64) |
| 3904 | Realigned.lshrInPlace(ShiftAmt: ExtraBitsSize); |
| 3905 | } else |
| 3906 | ExtraBits = Realigned.getRawData()[BitWidth / 64]; |
| 3907 | } |
| 3908 | |
| 3909 | // We don't expect assemblers to support integer data directives |
| 3910 | // for more than 64 bits, so we emit the data in at most 64-bit |
| 3911 | // quantities at a time. |
| 3912 | const uint64_t *RawData = Realigned.getRawData(); |
| 3913 | for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { |
| 3914 | uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; |
| 3915 | AP.OutStreamer->emitIntValue(Value: Val, Size: 8); |
| 3916 | } |
| 3917 | |
| 3918 | if (ExtraBitsSize) { |
| 3919 | // Emit the extra bits after the 64-bits chunks. |
| 3920 | |
| 3921 | // Emit a directive that fills the expected size. |
| 3922 | uint64_t Size = AP.getDataLayout().getTypeStoreSize(Ty: CI->getType()); |
| 3923 | Size -= (BitWidth / 64) * 8; |
| 3924 | assert(Size && Size * 8 >= ExtraBitsSize && |
| 3925 | (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) |
| 3926 | == ExtraBits && "Directive too small for extra bits." ); |
| 3927 | AP.OutStreamer->emitIntValue(Value: ExtraBits, Size); |
| 3928 | } |
| 3929 | } |
| 3930 | |
| 3931 | /// Transform a not absolute MCExpr containing a reference to a GOT |
| 3932 | /// equivalent global, by a target specific GOT pc relative access to the |
| 3933 | /// final symbol. |
| 3934 | static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, |
| 3935 | const Constant *BaseCst, |
| 3936 | uint64_t Offset) { |
| 3937 | // The global @foo below illustrates a global that uses a got equivalent. |
| 3938 | // |
| 3939 | // @bar = global i32 42 |
| 3940 | // @gotequiv = private unnamed_addr constant i32* @bar |
| 3941 | // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), |
| 3942 | // i64 ptrtoint (i32* @foo to i64)) |
| 3943 | // to i32) |
| 3944 | // |
| 3945 | // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually |
| 3946 | // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the |
| 3947 | // form: |
| 3948 | // |
| 3949 | // foo = cstexpr, where |
| 3950 | // cstexpr := <gotequiv> - "." + <cst> |
| 3951 | // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> |
| 3952 | // |
| 3953 | // After canonicalization by evaluateAsRelocatable `ME` turns into: |
| 3954 | // |
| 3955 | // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where |
| 3956 | // gotpcrelcst := <offset from @foo base> + <cst> |
| 3957 | MCValue MV; |
| 3958 | if (!(*ME)->evaluateAsRelocatable(Res&: MV, Asm: nullptr) || MV.isAbsolute()) |
| 3959 | return; |
| 3960 | const MCSymbol *GOTEquivSym = MV.getAddSym(); |
| 3961 | if (!GOTEquivSym) |
| 3962 | return; |
| 3963 | |
| 3964 | // Check that GOT equivalent symbol is cached. |
| 3965 | if (!AP.GlobalGOTEquivs.count(Key: GOTEquivSym)) |
| 3966 | return; |
| 3967 | |
| 3968 | const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(Val: BaseCst); |
| 3969 | if (!BaseGV) |
| 3970 | return; |
| 3971 | |
| 3972 | // Check for a valid base symbol |
| 3973 | const MCSymbol *BaseSym = AP.getSymbol(GV: BaseGV); |
| 3974 | const MCSymbol *SymB = MV.getSubSym(); |
| 3975 | |
| 3976 | if (!SymB || BaseSym != SymB) |
| 3977 | return; |
| 3978 | |
| 3979 | // Make sure to match: |
| 3980 | // |
| 3981 | // gotpcrelcst := <offset from @foo base> + <cst> |
| 3982 | // |
| 3983 | int64_t GOTPCRelCst = Offset + MV.getConstant(); |
| 3984 | if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) |
| 3985 | return; |
| 3986 | |
| 3987 | // Emit the GOT PC relative to replace the got equivalent global, i.e.: |
| 3988 | // |
| 3989 | // bar: |
| 3990 | // .long 42 |
| 3991 | // gotequiv: |
| 3992 | // .quad bar |
| 3993 | // foo: |
| 3994 | // .long gotequiv - "." + <cst> |
| 3995 | // |
| 3996 | // is replaced by the target specific equivalent to: |
| 3997 | // |
| 3998 | // bar: |
| 3999 | // .long 42 |
| 4000 | // foo: |
| 4001 | // .long bar@GOTPCREL+<gotpcrelcst> |
| 4002 | AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; |
| 4003 | const GlobalVariable *GV = Result.first; |
| 4004 | int NumUses = (int)Result.second; |
| 4005 | const GlobalValue *FinalGV = dyn_cast<GlobalValue>(Val: GV->getOperand(i_nocapture: 0)); |
| 4006 | const MCSymbol *FinalSym = AP.getSymbol(GV: FinalGV); |
| 4007 | *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( |
| 4008 | GV: FinalGV, Sym: FinalSym, MV, Offset, MMI: AP.MMI, Streamer&: *AP.OutStreamer); |
| 4009 | |
| 4010 | // Update GOT equivalent usage information |
| 4011 | --NumUses; |
| 4012 | if (NumUses >= 0) |
| 4013 | AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(x&: GV, y&: NumUses); |
| 4014 | } |
| 4015 | |
| 4016 | static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, |
| 4017 | AsmPrinter &AP, const Constant *BaseCV, |
| 4018 | uint64_t Offset, |
| 4019 | AsmPrinter::AliasMapTy *AliasList) { |
| 4020 | assert((!AliasList || AP.TM.getTargetTriple().isOSBinFormatXCOFF()) && |
| 4021 | "AliasList only expected for XCOFF" ); |
| 4022 | emitGlobalAliasInline(AP, Offset, AliasList); |
| 4023 | uint64_t Size = DL.getTypeAllocSize(Ty: CV->getType()); |
| 4024 | |
| 4025 | // Globals with sub-elements such as combinations of arrays and structs |
| 4026 | // are handled recursively by emitGlobalConstantImpl. Keep track of the |
| 4027 | // constant symbol base and the current position with BaseCV and Offset. |
| 4028 | if (!BaseCV && CV->hasOneUse()) |
| 4029 | BaseCV = dyn_cast<Constant>(Val: CV->user_back()); |
| 4030 | |
| 4031 | if (isa<ConstantAggregateZero>(Val: CV)) { |
| 4032 | StructType *structType; |
| 4033 | if (AliasList && (structType = llvm::dyn_cast<StructType>(Val: CV->getType()))) { |
| 4034 | unsigned numElements = {structType->getNumElements()}; |
| 4035 | if (numElements != 0) { |
| 4036 | // Handle cases of aliases to direct struct elements |
| 4037 | const StructLayout *Layout = DL.getStructLayout(Ty: structType); |
| 4038 | uint64_t SizeSoFar = 0; |
| 4039 | for (unsigned int i = 0; i < numElements - 1; ++i) { |
| 4040 | uint64_t GapToNext = Layout->getElementOffset(Idx: i + 1) - SizeSoFar; |
| 4041 | AP.OutStreamer->emitZeros(NumBytes: GapToNext); |
| 4042 | SizeSoFar += GapToNext; |
| 4043 | emitGlobalAliasInline(AP, Offset: Offset + SizeSoFar, AliasList); |
| 4044 | } |
| 4045 | AP.OutStreamer->emitZeros(NumBytes: Size - SizeSoFar); |
| 4046 | return; |
| 4047 | } |
| 4048 | } |
| 4049 | return AP.OutStreamer->emitZeros(NumBytes: Size); |
| 4050 | } |
| 4051 | |
| 4052 | if (isa<UndefValue>(Val: CV)) |
| 4053 | return AP.OutStreamer->emitZeros(NumBytes: Size); |
| 4054 | |
| 4055 | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val: CV)) { |
| 4056 | if (isa<VectorType>(Val: CV->getType())) |
| 4057 | return emitGlobalConstantVector(DL, CV, AP, AliasList); |
| 4058 | |
| 4059 | const uint64_t StoreSize = DL.getTypeStoreSize(Ty: CV->getType()); |
| 4060 | if (StoreSize <= 8) { |
| 4061 | if (AP.isVerbose()) |
| 4062 | AP.OutStreamer->getCommentOS() |
| 4063 | << format(Fmt: "0x%" PRIx64 "\n" , Vals: CI->getZExtValue()); |
| 4064 | AP.OutStreamer->emitIntValue(Value: CI->getZExtValue(), Size: StoreSize); |
| 4065 | } else { |
| 4066 | emitGlobalConstantLargeInt(CI, AP); |
| 4067 | } |
| 4068 | |
| 4069 | // Emit tail padding if needed |
| 4070 | if (Size != StoreSize) |
| 4071 | AP.OutStreamer->emitZeros(NumBytes: Size - StoreSize); |
| 4072 | |
| 4073 | return; |
| 4074 | } |
| 4075 | |
| 4076 | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Val: CV)) { |
| 4077 | if (isa<VectorType>(Val: CV->getType())) |
| 4078 | return emitGlobalConstantVector(DL, CV, AP, AliasList); |
| 4079 | else |
| 4080 | return emitGlobalConstantFP(CFP, AP); |
| 4081 | } |
| 4082 | |
| 4083 | if (isa<ConstantPointerNull>(Val: CV)) { |
| 4084 | AP.OutStreamer->emitIntValue(Value: 0, Size); |
| 4085 | return; |
| 4086 | } |
| 4087 | |
| 4088 | if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(Val: CV)) |
| 4089 | return emitGlobalConstantDataSequential(DL, CDS, AP, AliasList); |
| 4090 | |
| 4091 | if (const ConstantArray *CVA = dyn_cast<ConstantArray>(Val: CV)) |
| 4092 | return emitGlobalConstantArray(DL, CA: CVA, AP, BaseCV, Offset, AliasList); |
| 4093 | |
| 4094 | if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(Val: CV)) |
| 4095 | return emitGlobalConstantStruct(DL, CS: CVS, AP, BaseCV, Offset, AliasList); |
| 4096 | |
| 4097 | if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: CV)) { |
| 4098 | // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of |
| 4099 | // vectors). |
| 4100 | if (CE->getOpcode() == Instruction::BitCast) |
| 4101 | return emitGlobalConstantImpl(DL, CV: CE->getOperand(i_nocapture: 0), AP); |
| 4102 | |
| 4103 | if (Size > 8) { |
| 4104 | // If the constant expression's size is greater than 64-bits, then we have |
| 4105 | // to emit the value in chunks. Try to constant fold the value and emit it |
| 4106 | // that way. |
| 4107 | Constant *New = ConstantFoldConstant(C: CE, DL); |
| 4108 | if (New != CE) |
| 4109 | return emitGlobalConstantImpl(DL, CV: New, AP); |
| 4110 | } |
| 4111 | } |
| 4112 | |
| 4113 | if (isa<ConstantVector>(Val: CV)) |
| 4114 | return emitGlobalConstantVector(DL, CV, AP, AliasList); |
| 4115 | |
| 4116 | // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it |
| 4117 | // thread the streamer with EmitValue. |
| 4118 | const MCExpr *ME = AP.lowerConstant(CV, BaseCV, Offset); |
| 4119 | |
| 4120 | // Since lowerConstant already folded and got rid of all IR pointer and |
| 4121 | // integer casts, detect GOT equivalent accesses by looking into the MCExpr |
| 4122 | // directly. |
| 4123 | if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) |
| 4124 | handleIndirectSymViaGOTPCRel(AP, ME: &ME, BaseCst: BaseCV, Offset); |
| 4125 | |
| 4126 | AP.OutStreamer->emitValue(Value: ME, Size); |
| 4127 | } |
| 4128 | |
| 4129 | /// EmitGlobalConstant - Print a general LLVM constant to the .s file. |
| 4130 | void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV, |
| 4131 | AliasMapTy *AliasList) { |
| 4132 | uint64_t Size = DL.getTypeAllocSize(Ty: CV->getType()); |
| 4133 | if (Size) |
| 4134 | emitGlobalConstantImpl(DL, CV, AP&: *this, BaseCV: nullptr, Offset: 0, AliasList); |
| 4135 | else if (MAI->hasSubsectionsViaSymbols()) { |
| 4136 | // If the global has zero size, emit a single byte so that two labels don't |
| 4137 | // look like they are at the same location. |
| 4138 | OutStreamer->emitIntValue(Value: 0, Size: 1); |
| 4139 | } |
| 4140 | if (!AliasList) |
| 4141 | return; |
| 4142 | // TODO: These remaining aliases are not emitted in the correct location. Need |
| 4143 | // to handle the case where the alias offset doesn't refer to any sub-element. |
| 4144 | for (auto &AliasPair : *AliasList) { |
| 4145 | for (const GlobalAlias *GA : AliasPair.second) |
| 4146 | OutStreamer->emitLabel(Symbol: getSymbol(GV: GA)); |
| 4147 | } |
| 4148 | } |
| 4149 | |
| 4150 | void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { |
| 4151 | // Target doesn't support this yet! |
| 4152 | llvm_unreachable("Target does not support EmitMachineConstantPoolValue" ); |
| 4153 | } |
| 4154 | |
| 4155 | void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { |
| 4156 | if (Offset > 0) |
| 4157 | OS << '+' << Offset; |
| 4158 | else if (Offset < 0) |
| 4159 | OS << Offset; |
| 4160 | } |
| 4161 | |
| 4162 | void AsmPrinter::emitNops(unsigned N) { |
| 4163 | MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop(); |
| 4164 | for (; N; --N) |
| 4165 | EmitToStreamer(S&: *OutStreamer, Inst: Nop); |
| 4166 | } |
| 4167 | |
| 4168 | //===----------------------------------------------------------------------===// |
| 4169 | // Symbol Lowering Routines. |
| 4170 | //===----------------------------------------------------------------------===// |
| 4171 | |
| 4172 | MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { |
| 4173 | return OutContext.createTempSymbol(Name, AlwaysAddSuffix: true); |
| 4174 | } |
| 4175 | |
| 4176 | MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { |
| 4177 | return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol( |
| 4178 | BB: BA->getBasicBlock()); |
| 4179 | } |
| 4180 | |
| 4181 | MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { |
| 4182 | return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB); |
| 4183 | } |
| 4184 | |
| 4185 | const MCExpr *AsmPrinter::lowerBlockAddressConstant(const BlockAddress &BA) { |
| 4186 | return MCSymbolRefExpr::create(Symbol: GetBlockAddressSymbol(BA: &BA), Ctx&: OutContext); |
| 4187 | } |
| 4188 | |
| 4189 | /// GetCPISymbol - Return the symbol for the specified constant pool entry. |
| 4190 | MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { |
| 4191 | if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment() || |
| 4192 | getSubtargetInfo().getTargetTriple().isUEFI()) { |
| 4193 | const MachineConstantPoolEntry &CPE = |
| 4194 | MF->getConstantPool()->getConstants()[CPID]; |
| 4195 | if (!CPE.isMachineConstantPoolEntry()) { |
| 4196 | const DataLayout &DL = MF->getDataLayout(); |
| 4197 | SectionKind Kind = CPE.getSectionKind(DL: &DL); |
| 4198 | const Constant *C = CPE.Val.ConstVal; |
| 4199 | Align Alignment = CPE.Alignment; |
| 4200 | if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( |
| 4201 | Val: getObjFileLowering().getSectionForConstant(DL, Kind, C, |
| 4202 | Alignment))) { |
| 4203 | if (MCSymbol *Sym = S->getCOMDATSymbol()) { |
| 4204 | if (Sym->isUndefined()) |
| 4205 | OutStreamer->emitSymbolAttribute(Symbol: Sym, Attribute: MCSA_Global); |
| 4206 | return Sym; |
| 4207 | } |
| 4208 | } |
| 4209 | } |
| 4210 | } |
| 4211 | |
| 4212 | const DataLayout &DL = getDataLayout(); |
| 4213 | return OutContext.getOrCreateSymbol(Name: Twine(DL.getPrivateGlobalPrefix()) + |
| 4214 | "CPI" + Twine(getFunctionNumber()) + "_" + |
| 4215 | Twine(CPID)); |
| 4216 | } |
| 4217 | |
| 4218 | /// GetJTISymbol - Return the symbol for the specified jump table entry. |
| 4219 | MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { |
| 4220 | return MF->getJTISymbol(JTI: JTID, Ctx&: OutContext, isLinkerPrivate); |
| 4221 | } |
| 4222 | |
| 4223 | /// GetJTSetSymbol - Return the symbol for the specified jump table .set |
| 4224 | /// FIXME: privatize to AsmPrinter. |
| 4225 | MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { |
| 4226 | const DataLayout &DL = getDataLayout(); |
| 4227 | return OutContext.getOrCreateSymbol(Name: Twine(DL.getPrivateGlobalPrefix()) + |
| 4228 | Twine(getFunctionNumber()) + "_" + |
| 4229 | Twine(UID) + "_set_" + Twine(MBBID)); |
| 4230 | } |
| 4231 | |
| 4232 | MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, |
| 4233 | StringRef Suffix) const { |
| 4234 | return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); |
| 4235 | } |
| 4236 | |
| 4237 | /// Return the MCSymbol for the specified ExternalSymbol. |
| 4238 | MCSymbol *AsmPrinter::GetExternalSymbolSymbol(const Twine &Sym) const { |
| 4239 | SmallString<60> NameStr; |
| 4240 | Mangler::getNameWithPrefix(OutName&: NameStr, GVName: Sym, DL: getDataLayout()); |
| 4241 | return OutContext.getOrCreateSymbol(Name: NameStr); |
| 4242 | } |
| 4243 | |
| 4244 | /// PrintParentLoopComment - Print comments about parent loops of this one. |
| 4245 | static void (raw_ostream &OS, const MachineLoop *Loop, |
| 4246 | unsigned FunctionNumber) { |
| 4247 | if (!Loop) return; |
| 4248 | PrintParentLoopComment(OS, Loop: Loop->getParentLoop(), FunctionNumber); |
| 4249 | OS.indent(NumSpaces: Loop->getLoopDepth()*2) |
| 4250 | << "Parent Loop BB" << FunctionNumber << "_" |
| 4251 | << Loop->getHeader()->getNumber() |
| 4252 | << " Depth=" << Loop->getLoopDepth() << '\n'; |
| 4253 | } |
| 4254 | |
| 4255 | /// PrintChildLoopComment - Print comments about child loops within |
| 4256 | /// the loop for this basic block, with nesting. |
| 4257 | static void (raw_ostream &OS, const MachineLoop *Loop, |
| 4258 | unsigned FunctionNumber) { |
| 4259 | // Add child loop information |
| 4260 | for (const MachineLoop *CL : *Loop) { |
| 4261 | OS.indent(NumSpaces: CL->getLoopDepth()*2) |
| 4262 | << "Child Loop BB" << FunctionNumber << "_" |
| 4263 | << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() |
| 4264 | << '\n'; |
| 4265 | PrintChildLoopComment(OS, Loop: CL, FunctionNumber); |
| 4266 | } |
| 4267 | } |
| 4268 | |
| 4269 | /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. |
| 4270 | static void (const MachineBasicBlock &MBB, |
| 4271 | const MachineLoopInfo *LI, |
| 4272 | const AsmPrinter &AP) { |
| 4273 | // Add loop depth information |
| 4274 | const MachineLoop *Loop = LI->getLoopFor(BB: &MBB); |
| 4275 | if (!Loop) return; |
| 4276 | |
| 4277 | MachineBasicBlock * = Loop->getHeader(); |
| 4278 | assert(Header && "No header for loop" ); |
| 4279 | |
| 4280 | // If this block is not a loop header, just print out what is the loop header |
| 4281 | // and return. |
| 4282 | if (Header != &MBB) { |
| 4283 | AP.OutStreamer->AddComment(T: " in Loop: Header=BB" + |
| 4284 | Twine(AP.getFunctionNumber())+"_" + |
| 4285 | Twine(Loop->getHeader()->getNumber())+ |
| 4286 | " Depth=" +Twine(Loop->getLoopDepth())); |
| 4287 | return; |
| 4288 | } |
| 4289 | |
| 4290 | // Otherwise, it is a loop header. Print out information about child and |
| 4291 | // parent loops. |
| 4292 | raw_ostream &OS = AP.OutStreamer->getCommentOS(); |
| 4293 | |
| 4294 | PrintParentLoopComment(OS, Loop: Loop->getParentLoop(), FunctionNumber: AP.getFunctionNumber()); |
| 4295 | |
| 4296 | OS << "=>" ; |
| 4297 | OS.indent(NumSpaces: Loop->getLoopDepth()*2-2); |
| 4298 | |
| 4299 | OS << "This " ; |
| 4300 | if (Loop->isInnermost()) |
| 4301 | OS << "Inner " ; |
| 4302 | OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; |
| 4303 | |
| 4304 | PrintChildLoopComment(OS, Loop, FunctionNumber: AP.getFunctionNumber()); |
| 4305 | } |
| 4306 | |
| 4307 | /// emitBasicBlockStart - This method prints the label for the specified |
| 4308 | /// MachineBasicBlock, an alignment (if present) and a comment describing |
| 4309 | /// it if appropriate. |
| 4310 | void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) { |
| 4311 | // End the previous funclet and start a new one. |
| 4312 | if (MBB.isEHFuncletEntry()) { |
| 4313 | for (auto &Handler : Handlers) { |
| 4314 | Handler->endFunclet(); |
| 4315 | Handler->beginFunclet(MBB); |
| 4316 | } |
| 4317 | for (auto &Handler : EHHandlers) { |
| 4318 | Handler->endFunclet(); |
| 4319 | Handler->beginFunclet(MBB); |
| 4320 | } |
| 4321 | } |
| 4322 | |
| 4323 | // Switch to a new section if this basic block must begin a section. The |
| 4324 | // entry block is always placed in the function section and is handled |
| 4325 | // separately. |
| 4326 | if (MBB.isBeginSection() && !MBB.isEntryBlock()) { |
| 4327 | OutStreamer->switchSection( |
| 4328 | Section: getObjFileLowering().getSectionForMachineBasicBlock(F: MF->getFunction(), |
| 4329 | MBB, TM)); |
| 4330 | CurrentSectionBeginSym = MBB.getSymbol(); |
| 4331 | } |
| 4332 | |
| 4333 | for (auto &Handler : Handlers) |
| 4334 | Handler->beginCodeAlignment(MBB); |
| 4335 | |
| 4336 | // Emit an alignment directive for this block, if needed. |
| 4337 | const Align Alignment = MBB.getAlignment(); |
| 4338 | if (Alignment != Align(1)) |
| 4339 | emitAlignment(Alignment, GV: nullptr, MaxBytesToEmit: MBB.getMaxBytesForAlignment()); |
| 4340 | |
| 4341 | // If the block has its address taken, emit any labels that were used to |
| 4342 | // reference the block. It is possible that there is more than one label |
| 4343 | // here, because multiple LLVM BB's may have been RAUW'd to this block after |
| 4344 | // the references were generated. |
| 4345 | if (MBB.isIRBlockAddressTaken()) { |
| 4346 | if (isVerbose()) |
| 4347 | OutStreamer->AddComment(T: "Block address taken" ); |
| 4348 | |
| 4349 | BasicBlock *BB = MBB.getAddressTakenIRBlock(); |
| 4350 | assert(BB && BB->hasAddressTaken() && "Missing BB" ); |
| 4351 | for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB)) |
| 4352 | OutStreamer->emitLabel(Symbol: Sym); |
| 4353 | } else if (isVerbose() && MBB.isMachineBlockAddressTaken()) { |
| 4354 | OutStreamer->AddComment(T: "Block address taken" ); |
| 4355 | } else if (isVerbose() && MBB.isInlineAsmBrIndirectTarget()) { |
| 4356 | OutStreamer->AddComment(T: "Inline asm indirect target" ); |
| 4357 | } |
| 4358 | |
| 4359 | // Print some verbose block comments. |
| 4360 | if (isVerbose()) { |
| 4361 | if (const BasicBlock *BB = MBB.getBasicBlock()) { |
| 4362 | if (BB->hasName()) { |
| 4363 | BB->printAsOperand(O&: OutStreamer->getCommentOS(), |
| 4364 | /*PrintType=*/false, M: BB->getModule()); |
| 4365 | OutStreamer->getCommentOS() << '\n'; |
| 4366 | } |
| 4367 | } |
| 4368 | |
| 4369 | assert(MLI != nullptr && "MachineLoopInfo should has been computed" ); |
| 4370 | emitBasicBlockLoopComments(MBB, LI: MLI, AP: *this); |
| 4371 | } |
| 4372 | |
| 4373 | // Print the main label for the block. |
| 4374 | if (shouldEmitLabelForBasicBlock(MBB)) { |
| 4375 | if (isVerbose() && MBB.hasLabelMustBeEmitted()) |
| 4376 | OutStreamer->AddComment(T: "Label of block must be emitted" ); |
| 4377 | OutStreamer->emitLabel(Symbol: MBB.getSymbol()); |
| 4378 | } else { |
| 4379 | if (isVerbose()) { |
| 4380 | // NOTE: Want this comment at start of line, don't emit with AddComment. |
| 4381 | OutStreamer->emitRawComment(T: " %bb." + Twine(MBB.getNumber()) + ":" , |
| 4382 | TabPrefix: false); |
| 4383 | } |
| 4384 | } |
| 4385 | |
| 4386 | if (MBB.isEHContTarget() && |
| 4387 | MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) { |
| 4388 | OutStreamer->emitLabel(Symbol: MBB.getEHContSymbol()); |
| 4389 | } |
| 4390 | |
| 4391 | // With BB sections, each basic block must handle CFI information on its own |
| 4392 | // if it begins a section (Entry block call is handled separately, next to |
| 4393 | // beginFunction). |
| 4394 | if (MBB.isBeginSection() && !MBB.isEntryBlock()) { |
| 4395 | for (auto &Handler : Handlers) |
| 4396 | Handler->beginBasicBlockSection(MBB); |
| 4397 | for (auto &Handler : EHHandlers) |
| 4398 | Handler->beginBasicBlockSection(MBB); |
| 4399 | } |
| 4400 | } |
| 4401 | |
| 4402 | void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) { |
| 4403 | // Check if CFI information needs to be updated for this MBB with basic block |
| 4404 | // sections. |
| 4405 | if (MBB.isEndSection()) { |
| 4406 | for (auto &Handler : Handlers) |
| 4407 | Handler->endBasicBlockSection(MBB); |
| 4408 | for (auto &Handler : EHHandlers) |
| 4409 | Handler->endBasicBlockSection(MBB); |
| 4410 | } |
| 4411 | } |
| 4412 | |
| 4413 | void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility, |
| 4414 | bool IsDefinition) const { |
| 4415 | MCSymbolAttr Attr = MCSA_Invalid; |
| 4416 | |
| 4417 | switch (Visibility) { |
| 4418 | default: break; |
| 4419 | case GlobalValue::HiddenVisibility: |
| 4420 | if (IsDefinition) |
| 4421 | Attr = MAI->getHiddenVisibilityAttr(); |
| 4422 | else |
| 4423 | Attr = MAI->getHiddenDeclarationVisibilityAttr(); |
| 4424 | break; |
| 4425 | case GlobalValue::ProtectedVisibility: |
| 4426 | Attr = MAI->getProtectedVisibilityAttr(); |
| 4427 | break; |
| 4428 | } |
| 4429 | |
| 4430 | if (Attr != MCSA_Invalid) |
| 4431 | OutStreamer->emitSymbolAttribute(Symbol: Sym, Attribute: Attr); |
| 4432 | } |
| 4433 | |
| 4434 | bool AsmPrinter::shouldEmitLabelForBasicBlock( |
| 4435 | const MachineBasicBlock &MBB) const { |
| 4436 | // With `-fbasic-block-sections=`, a label is needed for every non-entry block |
| 4437 | // in the labels mode (option `=labels`) and every section beginning in the |
| 4438 | // sections mode (`=all` and `=list=`). |
| 4439 | if ((MF->getTarget().Options.BBAddrMap || MBB.isBeginSection()) && |
| 4440 | !MBB.isEntryBlock()) |
| 4441 | return true; |
| 4442 | // A label is needed for any block with at least one predecessor (when that |
| 4443 | // predecessor is not the fallthrough predecessor, or if it is an EH funclet |
| 4444 | // entry, or if a label is forced). |
| 4445 | return !MBB.pred_empty() && |
| 4446 | (!isBlockOnlyReachableByFallthrough(MBB: &MBB) || MBB.isEHFuncletEntry() || |
| 4447 | MBB.hasLabelMustBeEmitted()); |
| 4448 | } |
| 4449 | |
| 4450 | /// isBlockOnlyReachableByFallthough - Return true if the basic block has |
| 4451 | /// exactly one predecessor and the control transfer mechanism between |
| 4452 | /// the predecessor and this block is a fall-through. |
| 4453 | bool AsmPrinter:: |
| 4454 | isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { |
| 4455 | // If this is a landing pad, it isn't a fall through. If it has no preds, |
| 4456 | // then nothing falls through to it. |
| 4457 | if (MBB->isEHPad() || MBB->pred_empty()) |
| 4458 | return false; |
| 4459 | |
| 4460 | // If there isn't exactly one predecessor, it can't be a fall through. |
| 4461 | if (MBB->pred_size() > 1) |
| 4462 | return false; |
| 4463 | |
| 4464 | // The predecessor has to be immediately before this block. |
| 4465 | MachineBasicBlock *Pred = *MBB->pred_begin(); |
| 4466 | if (!Pred->isLayoutSuccessor(MBB)) |
| 4467 | return false; |
| 4468 | |
| 4469 | // If the block is completely empty, then it definitely does fall through. |
| 4470 | if (Pred->empty()) |
| 4471 | return true; |
| 4472 | |
| 4473 | // Check the terminators in the previous blocks |
| 4474 | for (const auto &MI : Pred->terminators()) { |
| 4475 | // If it is not a simple branch, we are in a table somewhere. |
| 4476 | if (!MI.isBranch() || MI.isIndirectBranch()) |
| 4477 | return false; |
| 4478 | |
| 4479 | // If we are the operands of one of the branches, this is not a fall |
| 4480 | // through. Note that targets with delay slots will usually bundle |
| 4481 | // terminators with the delay slot instruction. |
| 4482 | for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { |
| 4483 | if (OP->isJTI()) |
| 4484 | return false; |
| 4485 | if (OP->isMBB() && OP->getMBB() == MBB) |
| 4486 | return false; |
| 4487 | } |
| 4488 | } |
| 4489 | |
| 4490 | return true; |
| 4491 | } |
| 4492 | |
| 4493 | GCMetadataPrinter *AsmPrinter::getOrCreateGCPrinter(GCStrategy &S) { |
| 4494 | if (!S.usesMetadata()) |
| 4495 | return nullptr; |
| 4496 | |
| 4497 | auto [GCPI, Inserted] = GCMetadataPrinters.try_emplace(Key: &S); |
| 4498 | if (!Inserted) |
| 4499 | return GCPI->second.get(); |
| 4500 | |
| 4501 | auto Name = S.getName(); |
| 4502 | |
| 4503 | for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter : |
| 4504 | GCMetadataPrinterRegistry::entries()) |
| 4505 | if (Name == GCMetaPrinter.getName()) { |
| 4506 | std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate(); |
| 4507 | GMP->S = &S; |
| 4508 | GCPI->second = std::move(GMP); |
| 4509 | return GCPI->second.get(); |
| 4510 | } |
| 4511 | |
| 4512 | report_fatal_error(reason: "no GCMetadataPrinter registered for GC: " + Twine(Name)); |
| 4513 | } |
| 4514 | |
| 4515 | void AsmPrinter::emitStackMaps() { |
| 4516 | GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); |
| 4517 | assert(MI && "AsmPrinter didn't require GCModuleInfo?" ); |
| 4518 | bool NeedsDefault = false; |
| 4519 | if (MI->begin() == MI->end()) |
| 4520 | // No GC strategy, use the default format. |
| 4521 | NeedsDefault = true; |
| 4522 | else |
| 4523 | for (const auto &I : *MI) { |
| 4524 | if (GCMetadataPrinter *MP = getOrCreateGCPrinter(S&: *I)) |
| 4525 | if (MP->emitStackMaps(SM, AP&: *this)) |
| 4526 | continue; |
| 4527 | // The strategy doesn't have printer or doesn't emit custom stack maps. |
| 4528 | // Use the default format. |
| 4529 | NeedsDefault = true; |
| 4530 | } |
| 4531 | |
| 4532 | if (NeedsDefault) |
| 4533 | SM.serializeToStackMapSection(); |
| 4534 | } |
| 4535 | |
| 4536 | void AsmPrinter::addAsmPrinterHandler( |
| 4537 | std::unique_ptr<AsmPrinterHandler> Handler) { |
| 4538 | Handlers.insert(I: Handlers.begin(), Elt: std::move(Handler)); |
| 4539 | NumUserHandlers++; |
| 4540 | } |
| 4541 | |
| 4542 | /// Pin vtables to this file. |
| 4543 | AsmPrinterHandler::~AsmPrinterHandler() = default; |
| 4544 | |
| 4545 | void AsmPrinterHandler::markFunctionEnd() {} |
| 4546 | |
| 4547 | // In the binary's "xray_instr_map" section, an array of these function entries |
| 4548 | // describes each instrumentation point. When XRay patches your code, the index |
| 4549 | // into this table will be given to your handler as a patch point identifier. |
| 4550 | void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const { |
| 4551 | auto Kind8 = static_cast<uint8_t>(Kind); |
| 4552 | Out->emitBinaryData(Data: StringRef(reinterpret_cast<const char *>(&Kind8), 1)); |
| 4553 | Out->emitBinaryData( |
| 4554 | Data: StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); |
| 4555 | Out->emitBinaryData(Data: StringRef(reinterpret_cast<const char *>(&Version), 1)); |
| 4556 | auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); |
| 4557 | assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size" ); |
| 4558 | Out->emitZeros(NumBytes: Padding); |
| 4559 | } |
| 4560 | |
| 4561 | void AsmPrinter::emitXRayTable() { |
| 4562 | if (Sleds.empty()) |
| 4563 | return; |
| 4564 | |
| 4565 | auto PrevSection = OutStreamer->getCurrentSectionOnly(); |
| 4566 | const Function &F = MF->getFunction(); |
| 4567 | MCSection *InstMap = nullptr; |
| 4568 | MCSection *FnSledIndex = nullptr; |
| 4569 | const Triple &TT = TM.getTargetTriple(); |
| 4570 | // Use PC-relative addresses on all targets. |
| 4571 | if (TT.isOSBinFormatELF()) { |
| 4572 | auto LinkedToSym = cast<MCSymbolELF>(Val: CurrentFnSym); |
| 4573 | auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; |
| 4574 | StringRef GroupName; |
| 4575 | if (F.hasComdat()) { |
| 4576 | Flags |= ELF::SHF_GROUP; |
| 4577 | GroupName = F.getComdat()->getName(); |
| 4578 | } |
| 4579 | InstMap = OutContext.getELFSection(Section: "xray_instr_map" , Type: ELF::SHT_PROGBITS, |
| 4580 | Flags, EntrySize: 0, Group: GroupName, IsComdat: F.hasComdat(), |
| 4581 | UniqueID: MCSection::NonUniqueID, LinkedToSym); |
| 4582 | |
| 4583 | if (TM.Options.XRayFunctionIndex) |
| 4584 | FnSledIndex = OutContext.getELFSection( |
| 4585 | Section: "xray_fn_idx" , Type: ELF::SHT_PROGBITS, Flags, EntrySize: 0, Group: GroupName, IsComdat: F.hasComdat(), |
| 4586 | UniqueID: MCSection::NonUniqueID, LinkedToSym); |
| 4587 | } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { |
| 4588 | InstMap = OutContext.getMachOSection(Segment: "__DATA" , Section: "xray_instr_map" , |
| 4589 | TypeAndAttributes: MachO::S_ATTR_LIVE_SUPPORT, |
| 4590 | K: SectionKind::getReadOnlyWithRel()); |
| 4591 | if (TM.Options.XRayFunctionIndex) |
| 4592 | FnSledIndex = OutContext.getMachOSection(Segment: "__DATA" , Section: "xray_fn_idx" , |
| 4593 | TypeAndAttributes: MachO::S_ATTR_LIVE_SUPPORT, |
| 4594 | K: SectionKind::getReadOnly()); |
| 4595 | } else { |
| 4596 | llvm_unreachable("Unsupported target" ); |
| 4597 | } |
| 4598 | |
| 4599 | auto WordSizeBytes = MAI->getCodePointerSize(); |
| 4600 | |
| 4601 | // Now we switch to the instrumentation map section. Because this is done |
| 4602 | // per-function, we are able to create an index entry that will represent the |
| 4603 | // range of sleds associated with a function. |
| 4604 | auto &Ctx = OutContext; |
| 4605 | MCSymbol *SledsStart = |
| 4606 | OutContext.createLinkerPrivateSymbol(Name: "xray_sleds_start" ); |
| 4607 | OutStreamer->switchSection(Section: InstMap); |
| 4608 | OutStreamer->emitLabel(Symbol: SledsStart); |
| 4609 | for (const auto &Sled : Sleds) { |
| 4610 | MCSymbol *Dot = Ctx.createTempSymbol(); |
| 4611 | OutStreamer->emitLabel(Symbol: Dot); |
| 4612 | OutStreamer->emitValueImpl( |
| 4613 | Value: MCBinaryExpr::createSub(LHS: MCSymbolRefExpr::create(Symbol: Sled.Sled, Ctx), |
| 4614 | RHS: MCSymbolRefExpr::create(Symbol: Dot, Ctx), Ctx), |
| 4615 | Size: WordSizeBytes); |
| 4616 | OutStreamer->emitValueImpl( |
| 4617 | Value: MCBinaryExpr::createSub( |
| 4618 | LHS: MCSymbolRefExpr::create(Symbol: CurrentFnBegin, Ctx), |
| 4619 | RHS: MCBinaryExpr::createAdd(LHS: MCSymbolRefExpr::create(Symbol: Dot, Ctx), |
| 4620 | RHS: MCConstantExpr::create(Value: WordSizeBytes, Ctx), |
| 4621 | Ctx), |
| 4622 | Ctx), |
| 4623 | Size: WordSizeBytes); |
| 4624 | Sled.emit(Bytes: WordSizeBytes, Out: OutStreamer.get()); |
| 4625 | } |
| 4626 | MCSymbol *SledsEnd = OutContext.createTempSymbol(Name: "xray_sleds_end" , AlwaysAddSuffix: true); |
| 4627 | OutStreamer->emitLabel(Symbol: SledsEnd); |
| 4628 | |
| 4629 | // We then emit a single entry in the index per function. We use the symbols |
| 4630 | // that bound the instrumentation map as the range for a specific function. |
| 4631 | // Each entry here will be 2 * word size aligned, as we're writing down two |
| 4632 | // pointers. This should work for both 32-bit and 64-bit platforms. |
| 4633 | if (FnSledIndex) { |
| 4634 | OutStreamer->switchSection(Section: FnSledIndex); |
| 4635 | OutStreamer->emitCodeAlignment(Alignment: Align(2 * WordSizeBytes), |
| 4636 | STI: &getSubtargetInfo()); |
| 4637 | // For Mach-O, use an "l" symbol as the atom of this subsection. The label |
| 4638 | // difference uses a SUBTRACTOR external relocation which references the |
| 4639 | // symbol. |
| 4640 | MCSymbol *Dot = Ctx.createLinkerPrivateSymbol(Name: "xray_fn_idx" ); |
| 4641 | OutStreamer->emitLabel(Symbol: Dot); |
| 4642 | OutStreamer->emitValueImpl( |
| 4643 | Value: MCBinaryExpr::createSub(LHS: MCSymbolRefExpr::create(Symbol: SledsStart, Ctx), |
| 4644 | RHS: MCSymbolRefExpr::create(Symbol: Dot, Ctx), Ctx), |
| 4645 | Size: WordSizeBytes); |
| 4646 | OutStreamer->emitValueImpl(Value: MCConstantExpr::create(Value: Sleds.size(), Ctx), |
| 4647 | Size: WordSizeBytes); |
| 4648 | OutStreamer->switchSection(Section: PrevSection); |
| 4649 | } |
| 4650 | Sleds.clear(); |
| 4651 | } |
| 4652 | |
| 4653 | void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, |
| 4654 | SledKind Kind, uint8_t Version) { |
| 4655 | const Function &F = MI.getMF()->getFunction(); |
| 4656 | auto Attr = F.getFnAttribute(Kind: "function-instrument" ); |
| 4657 | bool LogArgs = F.hasFnAttribute(Kind: "xray-log-args" ); |
| 4658 | bool AlwaysInstrument = |
| 4659 | Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always" ; |
| 4660 | if (Kind == SledKind::FUNCTION_ENTER && LogArgs) |
| 4661 | Kind = SledKind::LOG_ARGS_ENTER; |
| 4662 | Sleds.emplace_back(Args: XRayFunctionEntry{.Sled: Sled, .Function: CurrentFnSym, .Kind: Kind, |
| 4663 | .AlwaysInstrument: AlwaysInstrument, .Fn: &F, .Version: Version}); |
| 4664 | } |
| 4665 | |
| 4666 | void AsmPrinter::emitPatchableFunctionEntries() { |
| 4667 | const Function &F = MF->getFunction(); |
| 4668 | unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0; |
| 4669 | (void)F.getFnAttribute(Kind: "patchable-function-prefix" ) |
| 4670 | .getValueAsString() |
| 4671 | .getAsInteger(Radix: 10, Result&: PatchableFunctionPrefix); |
| 4672 | (void)F.getFnAttribute(Kind: "patchable-function-entry" ) |
| 4673 | .getValueAsString() |
| 4674 | .getAsInteger(Radix: 10, Result&: PatchableFunctionEntry); |
| 4675 | if (!PatchableFunctionPrefix && !PatchableFunctionEntry) |
| 4676 | return; |
| 4677 | const unsigned PointerSize = getPointerSize(); |
| 4678 | if (TM.getTargetTriple().isOSBinFormatELF()) { |
| 4679 | auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC; |
| 4680 | const MCSymbolELF *LinkedToSym = nullptr; |
| 4681 | StringRef GroupName, SectionName; |
| 4682 | |
| 4683 | if (F.hasFnAttribute(Kind: "patchable-function-entry-section" )) |
| 4684 | SectionName = F.getFnAttribute(Kind: "patchable-function-entry-section" ) |
| 4685 | .getValueAsString(); |
| 4686 | if (SectionName.empty()) |
| 4687 | SectionName = "__patchable_function_entries" ; |
| 4688 | |
| 4689 | // GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not |
| 4690 | // support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections. |
| 4691 | if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(Major: 2, Minor: 36)) { |
| 4692 | Flags |= ELF::SHF_LINK_ORDER; |
| 4693 | if (F.hasComdat()) { |
| 4694 | Flags |= ELF::SHF_GROUP; |
| 4695 | GroupName = F.getComdat()->getName(); |
| 4696 | } |
| 4697 | LinkedToSym = cast<MCSymbolELF>(Val: CurrentFnSym); |
| 4698 | } |
| 4699 | OutStreamer->switchSection(Section: OutContext.getELFSection( |
| 4700 | Section: SectionName, Type: ELF::SHT_PROGBITS, Flags, EntrySize: 0, Group: GroupName, IsComdat: F.hasComdat(), |
| 4701 | UniqueID: MCSection::NonUniqueID, LinkedToSym)); |
| 4702 | emitAlignment(Alignment: Align(PointerSize)); |
| 4703 | OutStreamer->emitSymbolValue(Sym: CurrentPatchableFunctionEntrySym, Size: PointerSize); |
| 4704 | } |
| 4705 | } |
| 4706 | |
| 4707 | uint16_t AsmPrinter::getDwarfVersion() const { |
| 4708 | return OutStreamer->getContext().getDwarfVersion(); |
| 4709 | } |
| 4710 | |
| 4711 | void AsmPrinter::setDwarfVersion(uint16_t Version) { |
| 4712 | OutStreamer->getContext().setDwarfVersion(Version); |
| 4713 | } |
| 4714 | |
| 4715 | bool AsmPrinter::isDwarf64() const { |
| 4716 | return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64; |
| 4717 | } |
| 4718 | |
| 4719 | unsigned int AsmPrinter::getDwarfOffsetByteSize() const { |
| 4720 | return dwarf::getDwarfOffsetByteSize( |
| 4721 | Format: OutStreamer->getContext().getDwarfFormat()); |
| 4722 | } |
| 4723 | |
| 4724 | dwarf::FormParams AsmPrinter::getDwarfFormParams() const { |
| 4725 | return {.Version: getDwarfVersion(), .AddrSize: uint8_t(MAI->getCodePointerSize()), |
| 4726 | .Format: OutStreamer->getContext().getDwarfFormat(), |
| 4727 | .DwarfUsesRelocationsAcrossSections: doesDwarfUseRelocationsAcrossSections()}; |
| 4728 | } |
| 4729 | |
| 4730 | unsigned int AsmPrinter::getUnitLengthFieldByteSize() const { |
| 4731 | return dwarf::getUnitLengthFieldByteSize( |
| 4732 | Format: OutStreamer->getContext().getDwarfFormat()); |
| 4733 | } |
| 4734 | |
| 4735 | std::tuple<const MCSymbol *, uint64_t, const MCSymbol *, |
| 4736 | codeview::JumpTableEntrySize> |
| 4737 | AsmPrinter::getCodeViewJumpTableInfo(int JTI, const MachineInstr *BranchInstr, |
| 4738 | const MCSymbol *BranchLabel) const { |
| 4739 | const auto TLI = MF->getSubtarget().getTargetLowering(); |
| 4740 | const auto BaseExpr = |
| 4741 | TLI->getPICJumpTableRelocBaseExpr(MF, JTI, Ctx&: MMI->getContext()); |
| 4742 | const auto Base = &cast<MCSymbolRefExpr>(Val: BaseExpr)->getSymbol(); |
| 4743 | |
| 4744 | // By default, for the architectures that support CodeView, |
| 4745 | // EK_LabelDifference32 is implemented as an Int32 from the base address. |
| 4746 | return std::make_tuple(args: Base, args: 0, args&: BranchLabel, |
| 4747 | args: codeview::JumpTableEntrySize::Int32); |
| 4748 | } |
| 4749 | |
| 4750 | void AsmPrinter::emitCOFFReplaceableFunctionData(Module &M) { |
| 4751 | const Triple &TT = TM.getTargetTriple(); |
| 4752 | assert(TT.isOSBinFormatCOFF()); |
| 4753 | |
| 4754 | bool IsTargetArm64EC = TT.isWindowsArm64EC(); |
| 4755 | SmallVector<char> Buf; |
| 4756 | SmallVector<MCSymbol *> FuncOverrideDefaultSymbols; |
| 4757 | bool SwitchedToDirectiveSection = false; |
| 4758 | for (const Function &F : M.functions()) { |
| 4759 | if (F.hasFnAttribute(Kind: "loader-replaceable" )) { |
| 4760 | if (!SwitchedToDirectiveSection) { |
| 4761 | OutStreamer->switchSection( |
| 4762 | Section: OutContext.getObjectFileInfo()->getDrectveSection()); |
| 4763 | SwitchedToDirectiveSection = true; |
| 4764 | } |
| 4765 | |
| 4766 | StringRef Name = F.getName(); |
| 4767 | |
| 4768 | // For hybrid-patchable targets, strip the prefix so that we can mark |
| 4769 | // the real function as replaceable. |
| 4770 | if (IsTargetArm64EC && Name.ends_with(Suffix: HybridPatchableTargetSuffix)) { |
| 4771 | Name = Name.drop_back(N: HybridPatchableTargetSuffix.size()); |
| 4772 | } |
| 4773 | |
| 4774 | MCSymbol *FuncOverrideSymbol = |
| 4775 | MMI->getContext().getOrCreateSymbol(Name: Name + "_$fo$" ); |
| 4776 | OutStreamer->beginCOFFSymbolDef(Symbol: FuncOverrideSymbol); |
| 4777 | OutStreamer->emitCOFFSymbolStorageClass(StorageClass: COFF::IMAGE_SYM_CLASS_EXTERNAL); |
| 4778 | OutStreamer->emitCOFFSymbolType(Type: COFF::IMAGE_SYM_DTYPE_NULL); |
| 4779 | OutStreamer->endCOFFSymbolDef(); |
| 4780 | |
| 4781 | MCSymbol *FuncOverrideDefaultSymbol = |
| 4782 | MMI->getContext().getOrCreateSymbol(Name: Name + "_$fo_default$" ); |
| 4783 | OutStreamer->beginCOFFSymbolDef(Symbol: FuncOverrideDefaultSymbol); |
| 4784 | OutStreamer->emitCOFFSymbolStorageClass(StorageClass: COFF::IMAGE_SYM_CLASS_EXTERNAL); |
| 4785 | OutStreamer->emitCOFFSymbolType(Type: COFF::IMAGE_SYM_DTYPE_NULL); |
| 4786 | OutStreamer->endCOFFSymbolDef(); |
| 4787 | FuncOverrideDefaultSymbols.push_back(Elt: FuncOverrideDefaultSymbol); |
| 4788 | |
| 4789 | OutStreamer->emitBytes(Data: (Twine(" /ALTERNATENAME:" ) + |
| 4790 | FuncOverrideSymbol->getName() + "=" + |
| 4791 | FuncOverrideDefaultSymbol->getName()) |
| 4792 | .toStringRef(Out&: Buf)); |
| 4793 | Buf.clear(); |
| 4794 | } |
| 4795 | } |
| 4796 | |
| 4797 | if (SwitchedToDirectiveSection) |
| 4798 | OutStreamer->popSection(); |
| 4799 | |
| 4800 | if (FuncOverrideDefaultSymbols.empty()) |
| 4801 | return; |
| 4802 | |
| 4803 | // MSVC emits the symbols for the default variables pointing at the start of |
| 4804 | // the .data section, but doesn't actually allocate any space for them. LLVM |
| 4805 | // can't do this, so have all of the variables pointing at a single byte |
| 4806 | // instead. |
| 4807 | OutStreamer->switchSection(Section: OutContext.getObjectFileInfo()->getDataSection()); |
| 4808 | for (MCSymbol *Symbol : FuncOverrideDefaultSymbols) { |
| 4809 | OutStreamer->emitLabel(Symbol); |
| 4810 | } |
| 4811 | OutStreamer->emitZeros(NumBytes: 1); |
| 4812 | OutStreamer->popSection(); |
| 4813 | } |
| 4814 | |
| 4815 | void AsmPrinter::emitCOFFFeatureSymbol(Module &M) { |
| 4816 | const Triple &TT = TM.getTargetTriple(); |
| 4817 | assert(TT.isOSBinFormatCOFF()); |
| 4818 | |
| 4819 | // Emit an absolute @feat.00 symbol. |
| 4820 | MCSymbol *S = MMI->getContext().getOrCreateSymbol(Name: StringRef("@feat.00" )); |
| 4821 | OutStreamer->beginCOFFSymbolDef(Symbol: S); |
| 4822 | OutStreamer->emitCOFFSymbolStorageClass(StorageClass: COFF::IMAGE_SYM_CLASS_STATIC); |
| 4823 | OutStreamer->emitCOFFSymbolType(Type: COFF::IMAGE_SYM_DTYPE_NULL); |
| 4824 | OutStreamer->endCOFFSymbolDef(); |
| 4825 | int64_t Feat00Value = 0; |
| 4826 | |
| 4827 | if (TT.getArch() == Triple::x86) { |
| 4828 | // According to the PE-COFF spec, the LSB of this value marks the object |
| 4829 | // for "registered SEH". This means that all SEH handler entry points |
| 4830 | // must be registered in .sxdata. Use of any unregistered handlers will |
| 4831 | // cause the process to terminate immediately. LLVM does not know how to |
| 4832 | // register any SEH handlers, so its object files should be safe. |
| 4833 | Feat00Value |= COFF::Feat00Flags::SafeSEH; |
| 4834 | } |
| 4835 | |
| 4836 | if (M.getModuleFlag(Key: "cfguard" )) { |
| 4837 | // Object is CFG-aware. |
| 4838 | Feat00Value |= COFF::Feat00Flags::GuardCF; |
| 4839 | } |
| 4840 | |
| 4841 | if (M.getModuleFlag(Key: "ehcontguard" )) { |
| 4842 | // Object also has EHCont. |
| 4843 | Feat00Value |= COFF::Feat00Flags::GuardEHCont; |
| 4844 | } |
| 4845 | |
| 4846 | if (M.getModuleFlag(Key: "ms-kernel" )) { |
| 4847 | // Object is compiled with /kernel. |
| 4848 | Feat00Value |= COFF::Feat00Flags::Kernel; |
| 4849 | } |
| 4850 | |
| 4851 | OutStreamer->emitSymbolAttribute(Symbol: S, Attribute: MCSA_Global); |
| 4852 | OutStreamer->emitAssignment( |
| 4853 | Symbol: S, Value: MCConstantExpr::create(Value: Feat00Value, Ctx&: MMI->getContext())); |
| 4854 | } |
| 4855 | |