| 1 | //===-- AssignmentTrackingAnalysis.cpp ------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" |
| 10 | #include "LiveDebugValues/LiveDebugValues.h" |
| 11 | #include "llvm/ADT/BitVector.h" |
| 12 | #include "llvm/ADT/DenseMapInfo.h" |
| 13 | #include "llvm/ADT/IntervalMap.h" |
| 14 | #include "llvm/ADT/PostOrderIterator.h" |
| 15 | #include "llvm/ADT/STLExtras.h" |
| 16 | #include "llvm/ADT/Statistic.h" |
| 17 | #include "llvm/ADT/UniqueVector.h" |
| 18 | #include "llvm/BinaryFormat/Dwarf.h" |
| 19 | #include "llvm/IR/BasicBlock.h" |
| 20 | #include "llvm/IR/DataLayout.h" |
| 21 | #include "llvm/IR/DebugInfo.h" |
| 22 | #include "llvm/IR/DebugProgramInstruction.h" |
| 23 | #include "llvm/IR/Function.h" |
| 24 | #include "llvm/IR/Instruction.h" |
| 25 | #include "llvm/IR/IntrinsicInst.h" |
| 26 | #include "llvm/IR/Intrinsics.h" |
| 27 | #include "llvm/IR/Module.h" |
| 28 | #include "llvm/IR/PassManager.h" |
| 29 | #include "llvm/IR/PrintPasses.h" |
| 30 | #include "llvm/InitializePasses.h" |
| 31 | #include "llvm/Support/CommandLine.h" |
| 32 | #include "llvm/Support/ErrorHandling.h" |
| 33 | #include "llvm/Support/raw_ostream.h" |
| 34 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| 35 | #include <assert.h> |
| 36 | #include <cstdint> |
| 37 | #include <optional> |
| 38 | #include <queue> |
| 39 | #include <sstream> |
| 40 | #include <unordered_map> |
| 41 | |
| 42 | using namespace llvm; |
| 43 | #define DEBUG_TYPE "debug-ata" |
| 44 | |
| 45 | STATISTIC(NumDefsScanned, "Number of dbg locs that get scanned for removal" ); |
| 46 | STATISTIC(NumDefsRemoved, "Number of dbg locs removed" ); |
| 47 | STATISTIC(NumWedgesScanned, "Number of dbg wedges scanned" ); |
| 48 | STATISTIC(NumWedgesChanged, "Number of dbg wedges changed" ); |
| 49 | |
| 50 | static cl::opt<unsigned> |
| 51 | MaxNumBlocks("debug-ata-max-blocks" , cl::init(Val: 10000), |
| 52 | cl::desc("Maximum num basic blocks before debug info dropped" ), |
| 53 | cl::Hidden); |
| 54 | /// Option for debugging the pass, determines if the memory location fragment |
| 55 | /// filling happens after generating the variable locations. |
| 56 | static cl::opt<bool> EnableMemLocFragFill("mem-loc-frag-fill" , cl::init(Val: true), |
| 57 | cl::Hidden); |
| 58 | /// Print the results of the analysis. Respects -filter-print-funcs. |
| 59 | static cl::opt<bool> PrintResults("print-debug-ata" , cl::init(Val: false), |
| 60 | cl::Hidden); |
| 61 | |
| 62 | /// Coalesce adjacent dbg locs describing memory locations that have contiguous |
| 63 | /// fragments. This reduces the cost of LiveDebugValues which does SSA |
| 64 | /// construction for each explicitly stated variable fragment. |
| 65 | static cl::opt<cl::boolOrDefault> |
| 66 | CoalesceAdjacentFragmentsOpt("debug-ata-coalesce-frags" , cl::Hidden); |
| 67 | |
| 68 | // Implicit conversions are disabled for enum class types, so unfortunately we |
| 69 | // need to create a DenseMapInfo wrapper around the specified underlying type. |
| 70 | template <> struct llvm::DenseMapInfo<VariableID> { |
| 71 | using Wrapped = DenseMapInfo<unsigned>; |
| 72 | static inline VariableID getEmptyKey() { |
| 73 | return static_cast<VariableID>(Wrapped::getEmptyKey()); |
| 74 | } |
| 75 | static inline VariableID getTombstoneKey() { |
| 76 | return static_cast<VariableID>(Wrapped::getTombstoneKey()); |
| 77 | } |
| 78 | static unsigned getHashValue(const VariableID &Val) { |
| 79 | return Wrapped::getHashValue(Val: static_cast<unsigned>(Val)); |
| 80 | } |
| 81 | static bool isEqual(const VariableID &LHS, const VariableID &RHS) { |
| 82 | return LHS == RHS; |
| 83 | } |
| 84 | }; |
| 85 | |
| 86 | using VarLocInsertPt = PointerUnion<const Instruction *, const DbgRecord *>; |
| 87 | |
| 88 | namespace std { |
| 89 | template <> struct hash<VarLocInsertPt> { |
| 90 | using argument_type = VarLocInsertPt; |
| 91 | using result_type = std::size_t; |
| 92 | |
| 93 | result_type operator()(const argument_type &Arg) const { |
| 94 | return std::hash<void *>()(Arg.getOpaqueValue()); |
| 95 | } |
| 96 | }; |
| 97 | } // namespace std |
| 98 | |
| 99 | /// Helper class to build FunctionVarLocs, since that class isn't easy to |
| 100 | /// modify. TODO: There's not a great deal of value in the split, it could be |
| 101 | /// worth merging the two classes. |
| 102 | class FunctionVarLocsBuilder { |
| 103 | friend FunctionVarLocs; |
| 104 | UniqueVector<DebugVariable> Variables; |
| 105 | // Use an unordered_map so we don't invalidate iterators after |
| 106 | // insert/modifications. |
| 107 | std::unordered_map<VarLocInsertPt, SmallVector<VarLocInfo>> VarLocsBeforeInst; |
| 108 | |
| 109 | SmallVector<VarLocInfo> SingleLocVars; |
| 110 | |
| 111 | public: |
| 112 | unsigned getNumVariables() const { return Variables.size(); } |
| 113 | |
| 114 | /// Find or insert \p V and return the ID. |
| 115 | VariableID insertVariable(DebugVariable V) { |
| 116 | return static_cast<VariableID>(Variables.insert(Entry: V)); |
| 117 | } |
| 118 | |
| 119 | /// Get a variable from its \p ID. |
| 120 | const DebugVariable &getVariable(VariableID ID) const { |
| 121 | return Variables[static_cast<unsigned>(ID)]; |
| 122 | } |
| 123 | |
| 124 | /// Return ptr to wedge of defs or nullptr if no defs come just before /p |
| 125 | /// Before. |
| 126 | const SmallVectorImpl<VarLocInfo> *getWedge(VarLocInsertPt Before) const { |
| 127 | auto R = VarLocsBeforeInst.find(x: Before); |
| 128 | if (R == VarLocsBeforeInst.end()) |
| 129 | return nullptr; |
| 130 | return &R->second; |
| 131 | } |
| 132 | |
| 133 | /// Replace the defs that come just before /p Before with /p Wedge. |
| 134 | void setWedge(VarLocInsertPt Before, SmallVector<VarLocInfo> &&Wedge) { |
| 135 | VarLocsBeforeInst[Before] = std::move(Wedge); |
| 136 | } |
| 137 | |
| 138 | /// Add a def for a variable that is valid for its lifetime. |
| 139 | void addSingleLocVar(DebugVariable Var, DIExpression *Expr, DebugLoc DL, |
| 140 | RawLocationWrapper R) { |
| 141 | VarLocInfo VarLoc; |
| 142 | VarLoc.VariableID = insertVariable(V: Var); |
| 143 | VarLoc.Expr = Expr; |
| 144 | VarLoc.DL = DL; |
| 145 | VarLoc.Values = R; |
| 146 | SingleLocVars.emplace_back(Args&: VarLoc); |
| 147 | } |
| 148 | |
| 149 | /// Add a def to the wedge of defs just before /p Before. |
| 150 | void addVarLoc(VarLocInsertPt Before, DebugVariable Var, DIExpression *Expr, |
| 151 | DebugLoc DL, RawLocationWrapper R) { |
| 152 | VarLocInfo VarLoc; |
| 153 | VarLoc.VariableID = insertVariable(V: Var); |
| 154 | VarLoc.Expr = Expr; |
| 155 | VarLoc.DL = DL; |
| 156 | VarLoc.Values = R; |
| 157 | VarLocsBeforeInst[Before].emplace_back(Args&: VarLoc); |
| 158 | } |
| 159 | }; |
| 160 | |
| 161 | void FunctionVarLocs::print(raw_ostream &OS, const Function &Fn) const { |
| 162 | // Print the variable table first. TODO: Sorting by variable could make the |
| 163 | // output more stable? |
| 164 | unsigned Counter = -1; |
| 165 | OS << "=== Variables ===\n" ; |
| 166 | for (const DebugVariable &V : Variables) { |
| 167 | ++Counter; |
| 168 | // Skip first entry because it is a dummy entry. |
| 169 | if (Counter == 0) { |
| 170 | continue; |
| 171 | } |
| 172 | OS << "[" << Counter << "] " << V.getVariable()->getName(); |
| 173 | if (auto F = V.getFragment()) |
| 174 | OS << " bits [" << F->OffsetInBits << ", " |
| 175 | << F->OffsetInBits + F->SizeInBits << ")" ; |
| 176 | if (const auto *IA = V.getInlinedAt()) |
| 177 | OS << " inlined-at " << *IA; |
| 178 | OS << "\n" ; |
| 179 | } |
| 180 | |
| 181 | auto PrintLoc = [&OS](const VarLocInfo &Loc) { |
| 182 | OS << "DEF Var=[" << (unsigned)Loc.VariableID << "]" |
| 183 | << " Expr=" << *Loc.Expr << " Values=(" ; |
| 184 | for (auto *Op : Loc.Values.location_ops()) { |
| 185 | errs() << Op->getName() << " " ; |
| 186 | } |
| 187 | errs() << ")\n" ; |
| 188 | }; |
| 189 | |
| 190 | // Print the single location variables. |
| 191 | OS << "=== Single location vars ===\n" ; |
| 192 | for (auto It = single_locs_begin(), End = single_locs_end(); It != End; |
| 193 | ++It) { |
| 194 | PrintLoc(*It); |
| 195 | } |
| 196 | |
| 197 | // Print the non-single-location defs in line with IR. |
| 198 | OS << "=== In-line variable defs ===" ; |
| 199 | for (const BasicBlock &BB : Fn) { |
| 200 | OS << "\n" << BB.getName() << ":\n" ; |
| 201 | for (const Instruction &I : BB) { |
| 202 | for (auto It = locs_begin(Before: &I), End = locs_end(Before: &I); It != End; ++It) { |
| 203 | PrintLoc(*It); |
| 204 | } |
| 205 | OS << I << "\n" ; |
| 206 | } |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | void FunctionVarLocs::init(FunctionVarLocsBuilder &Builder) { |
| 211 | // Add the single-location variables first. |
| 212 | for (const auto &VarLoc : Builder.SingleLocVars) |
| 213 | VarLocRecords.emplace_back(Args: VarLoc); |
| 214 | // Mark the end of the section. |
| 215 | SingleVarLocEnd = VarLocRecords.size(); |
| 216 | |
| 217 | // Insert a contiguous block of VarLocInfos for each instruction, mapping it |
| 218 | // to the start and end position in the vector with VarLocsBeforeInst. This |
| 219 | // block includes VarLocs for any DbgVariableRecords attached to that |
| 220 | // instruction. |
| 221 | for (auto &P : Builder.VarLocsBeforeInst) { |
| 222 | // Process VarLocs attached to a DbgRecord alongside their marker |
| 223 | // Instruction. |
| 224 | if (isa<const DbgRecord *>(Val: P.first)) |
| 225 | continue; |
| 226 | const Instruction *I = cast<const Instruction *>(Val: P.first); |
| 227 | unsigned BlockStart = VarLocRecords.size(); |
| 228 | // Any VarLocInfos attached to a DbgRecord should now be remapped to their |
| 229 | // marker Instruction, in order of DbgRecord appearance and prior to any |
| 230 | // VarLocInfos attached directly to that instruction. |
| 231 | for (const DbgVariableRecord &DVR : filterDbgVars(R: I->getDbgRecordRange())) { |
| 232 | // Even though DVR defines a variable location, VarLocsBeforeInst can |
| 233 | // still be empty if that VarLoc was redundant. |
| 234 | auto It = Builder.VarLocsBeforeInst.find(x: &DVR); |
| 235 | if (It == Builder.VarLocsBeforeInst.end()) |
| 236 | continue; |
| 237 | for (const VarLocInfo &VarLoc : It->second) |
| 238 | VarLocRecords.emplace_back(Args: VarLoc); |
| 239 | } |
| 240 | for (const VarLocInfo &VarLoc : P.second) |
| 241 | VarLocRecords.emplace_back(Args: VarLoc); |
| 242 | unsigned BlockEnd = VarLocRecords.size(); |
| 243 | // Record the start and end indices. |
| 244 | if (BlockEnd != BlockStart) |
| 245 | VarLocsBeforeInst[I] = {BlockStart, BlockEnd}; |
| 246 | } |
| 247 | |
| 248 | // Copy the Variables vector from the builder's UniqueVector. |
| 249 | assert(Variables.empty() && "Expect clear before init" ); |
| 250 | // UniqueVectors IDs are one-based (which means the VarLocInfo VarID values |
| 251 | // are one-based) so reserve an extra and insert a dummy. |
| 252 | Variables.reserve(N: Builder.Variables.size() + 1); |
| 253 | Variables.push_back(Elt: DebugVariable(nullptr, std::nullopt, nullptr)); |
| 254 | Variables.append(in_start: Builder.Variables.begin(), in_end: Builder.Variables.end()); |
| 255 | } |
| 256 | |
| 257 | void FunctionVarLocs::clear() { |
| 258 | Variables.clear(); |
| 259 | VarLocRecords.clear(); |
| 260 | VarLocsBeforeInst.clear(); |
| 261 | SingleVarLocEnd = 0; |
| 262 | } |
| 263 | |
| 264 | /// Walk backwards along constant GEPs and bitcasts to the base storage from \p |
| 265 | /// Start as far as possible. Prepend \Expression with the offset and append it |
| 266 | /// with a DW_OP_deref that haes been implicit until now. Returns the walked-to |
| 267 | /// value and modified expression. |
| 268 | static std::pair<Value *, DIExpression *> |
| 269 | walkToAllocaAndPrependOffsetDeref(const DataLayout &DL, Value *Start, |
| 270 | DIExpression *Expression) { |
| 271 | APInt OffsetInBytes(DL.getTypeSizeInBits(Ty: Start->getType()), false); |
| 272 | Value *End = |
| 273 | Start->stripAndAccumulateInBoundsConstantOffsets(DL, Offset&: OffsetInBytes); |
| 274 | SmallVector<uint64_t, 3> Ops; |
| 275 | if (OffsetInBytes.getBoolValue()) { |
| 276 | Ops = {dwarf::DW_OP_plus_uconst, OffsetInBytes.getZExtValue()}; |
| 277 | Expression = DIExpression::prependOpcodes( |
| 278 | Expr: Expression, Ops, /*StackValue=*/false, /*EntryValue=*/false); |
| 279 | } |
| 280 | Expression = DIExpression::append(Expr: Expression, Ops: {dwarf::DW_OP_deref}); |
| 281 | return {End, Expression}; |
| 282 | } |
| 283 | |
| 284 | /// Extract the offset used in \p DIExpr. Returns std::nullopt if the expression |
| 285 | /// doesn't explicitly describe a memory location with DW_OP_deref or if the |
| 286 | /// expression is too complex to interpret. |
| 287 | static std::optional<int64_t> |
| 288 | getDerefOffsetInBytes(const DIExpression *DIExpr) { |
| 289 | int64_t Offset = 0; |
| 290 | const unsigned NumElements = DIExpr->getNumElements(); |
| 291 | const auto Elements = DIExpr->getElements(); |
| 292 | unsigned ExpectedDerefIdx = 0; |
| 293 | // Extract the offset. |
| 294 | if (NumElements > 2 && Elements[0] == dwarf::DW_OP_plus_uconst) { |
| 295 | Offset = Elements[1]; |
| 296 | ExpectedDerefIdx = 2; |
| 297 | } else if (NumElements > 3 && Elements[0] == dwarf::DW_OP_constu) { |
| 298 | ExpectedDerefIdx = 3; |
| 299 | if (Elements[2] == dwarf::DW_OP_plus) |
| 300 | Offset = Elements[1]; |
| 301 | else if (Elements[2] == dwarf::DW_OP_minus) |
| 302 | Offset = -Elements[1]; |
| 303 | else |
| 304 | return std::nullopt; |
| 305 | } |
| 306 | |
| 307 | // If that's all there is it means there's no deref. |
| 308 | if (ExpectedDerefIdx >= NumElements) |
| 309 | return std::nullopt; |
| 310 | |
| 311 | // Check the next element is DW_OP_deref - otherwise this is too complex or |
| 312 | // isn't a deref expression. |
| 313 | if (Elements[ExpectedDerefIdx] != dwarf::DW_OP_deref) |
| 314 | return std::nullopt; |
| 315 | |
| 316 | // Check the final operation is either the DW_OP_deref or is a fragment. |
| 317 | if (NumElements == ExpectedDerefIdx + 1) |
| 318 | return Offset; // Ends with deref. |
| 319 | unsigned ExpectedFragFirstIdx = ExpectedDerefIdx + 1; |
| 320 | unsigned ExpectedFragFinalIdx = ExpectedFragFirstIdx + 2; |
| 321 | if (NumElements == ExpectedFragFinalIdx + 1 && |
| 322 | Elements[ExpectedFragFirstIdx] == dwarf::DW_OP_LLVM_fragment) |
| 323 | return Offset; // Ends with deref + fragment. |
| 324 | |
| 325 | // Don't bother trying to interpret anything more complex. |
| 326 | return std::nullopt; |
| 327 | } |
| 328 | |
| 329 | /// A whole (unfragmented) source variable. |
| 330 | using DebugAggregate = std::pair<const DILocalVariable *, const DILocation *>; |
| 331 | static DebugAggregate getAggregate(const DebugVariable &Var) { |
| 332 | return DebugAggregate(Var.getVariable(), Var.getInlinedAt()); |
| 333 | } |
| 334 | |
| 335 | static bool shouldCoalesceFragments(Function &F) { |
| 336 | // Enabling fragment coalescing reduces compiler run time when instruction |
| 337 | // referencing is enabled. However, it may cause LiveDebugVariables to create |
| 338 | // incorrect locations. Since instruction-referencing mode effectively |
| 339 | // bypasses LiveDebugVariables we only enable coalescing if the cl::opt flag |
| 340 | // has not been explicitly set and instruction-referencing is turned on. |
| 341 | switch (CoalesceAdjacentFragmentsOpt) { |
| 342 | case cl::boolOrDefault::BOU_UNSET: |
| 343 | return debuginfoShouldUseDebugInstrRef(T: F.getParent()->getTargetTriple()); |
| 344 | case cl::boolOrDefault::BOU_TRUE: |
| 345 | return true; |
| 346 | case cl::boolOrDefault::BOU_FALSE: |
| 347 | return false; |
| 348 | } |
| 349 | llvm_unreachable("Unknown boolOrDefault value" ); |
| 350 | } |
| 351 | |
| 352 | namespace { |
| 353 | /// In dwarf emission, the following sequence |
| 354 | /// 1. dbg.value ... Fragment(0, 64) |
| 355 | /// 2. dbg.value ... Fragment(0, 32) |
| 356 | /// effectively sets Fragment(32, 32) to undef (each def sets all bits not in |
| 357 | /// the intersection of the fragments to having "no location"). This makes |
| 358 | /// sense for implicit location values because splitting the computed values |
| 359 | /// could be troublesome, and is probably quite uncommon. When we convert |
| 360 | /// dbg.assigns to dbg.value+deref this kind of thing is common, and describing |
| 361 | /// a location (memory) rather than a value means we don't need to worry about |
| 362 | /// splitting any values, so we try to recover the rest of the fragment |
| 363 | /// location here. |
| 364 | /// This class performs a(nother) dataflow analysis over the function, adding |
| 365 | /// variable locations so that any bits of a variable with a memory location |
| 366 | /// have that location explicitly reinstated at each subsequent variable |
| 367 | /// location definition that that doesn't overwrite those bits. i.e. after a |
| 368 | /// variable location def, insert new defs for the memory location with |
| 369 | /// fragments for the difference of "all bits currently in memory" and "the |
| 370 | /// fragment of the second def". |
| 371 | class MemLocFragmentFill { |
| 372 | Function &Fn; |
| 373 | FunctionVarLocsBuilder *FnVarLocs; |
| 374 | const DenseSet<DebugAggregate> *VarsWithStackSlot; |
| 375 | bool CoalesceAdjacentFragments; |
| 376 | |
| 377 | // 0 = no memory location. |
| 378 | using BaseAddress = unsigned; |
| 379 | using OffsetInBitsTy = unsigned; |
| 380 | using FragTraits = IntervalMapHalfOpenInfo<OffsetInBitsTy>; |
| 381 | using FragsInMemMap = IntervalMap< |
| 382 | OffsetInBitsTy, BaseAddress, |
| 383 | IntervalMapImpl::NodeSizer<OffsetInBitsTy, BaseAddress>::LeafSize, |
| 384 | FragTraits>; |
| 385 | FragsInMemMap::Allocator IntervalMapAlloc; |
| 386 | using VarFragMap = DenseMap<unsigned, FragsInMemMap>; |
| 387 | |
| 388 | /// IDs for memory location base addresses in maps. Use 0 to indicate that |
| 389 | /// there's no memory location. |
| 390 | UniqueVector<RawLocationWrapper> Bases; |
| 391 | UniqueVector<DebugAggregate> Aggregates; |
| 392 | DenseMap<const BasicBlock *, VarFragMap> LiveIn; |
| 393 | DenseMap<const BasicBlock *, VarFragMap> LiveOut; |
| 394 | |
| 395 | struct FragMemLoc { |
| 396 | unsigned Var; |
| 397 | unsigned Base; |
| 398 | unsigned OffsetInBits; |
| 399 | unsigned SizeInBits; |
| 400 | DebugLoc DL; |
| 401 | }; |
| 402 | using InsertMap = MapVector<VarLocInsertPt, SmallVector<FragMemLoc>>; |
| 403 | |
| 404 | /// BBInsertBeforeMap holds a description for the set of location defs to be |
| 405 | /// inserted after the analysis is complete. It is updated during the dataflow |
| 406 | /// and the entry for a block is CLEARED each time it is (re-)visited. After |
| 407 | /// the dataflow is complete, each block entry will contain the set of defs |
| 408 | /// calculated during the final (fixed-point) iteration. |
| 409 | DenseMap<const BasicBlock *, InsertMap> BBInsertBeforeMap; |
| 410 | |
| 411 | static bool intervalMapsAreEqual(const FragsInMemMap &A, |
| 412 | const FragsInMemMap &B) { |
| 413 | auto AIt = A.begin(), AEnd = A.end(); |
| 414 | auto BIt = B.begin(), BEnd = B.end(); |
| 415 | for (; AIt != AEnd; ++AIt, ++BIt) { |
| 416 | if (BIt == BEnd) |
| 417 | return false; // B has fewer elements than A. |
| 418 | if (AIt.start() != BIt.start() || AIt.stop() != BIt.stop()) |
| 419 | return false; // Interval is different. |
| 420 | if (*AIt != *BIt) |
| 421 | return false; // Value at interval is different. |
| 422 | } |
| 423 | // AIt == AEnd. Check BIt is also now at end. |
| 424 | return BIt == BEnd; |
| 425 | } |
| 426 | |
| 427 | static bool varFragMapsAreEqual(const VarFragMap &A, const VarFragMap &B) { |
| 428 | if (A.size() != B.size()) |
| 429 | return false; |
| 430 | for (const auto &APair : A) { |
| 431 | auto BIt = B.find(Val: APair.first); |
| 432 | if (BIt == B.end()) |
| 433 | return false; |
| 434 | if (!intervalMapsAreEqual(A: APair.second, B: BIt->second)) |
| 435 | return false; |
| 436 | } |
| 437 | return true; |
| 438 | } |
| 439 | |
| 440 | /// Return a string for the value that \p BaseID represents. |
| 441 | std::string toString(unsigned BaseID) { |
| 442 | if (BaseID) |
| 443 | return Bases[BaseID].getVariableLocationOp(OpIdx: 0)->getName().str(); |
| 444 | else |
| 445 | return "None" ; |
| 446 | } |
| 447 | |
| 448 | /// Format string describing an FragsInMemMap (IntervalMap) interval. |
| 449 | std::string toString(FragsInMemMap::const_iterator It, bool Newline = true) { |
| 450 | std::string String; |
| 451 | std::stringstream S(String); |
| 452 | if (It.valid()) { |
| 453 | S << "[" << It.start() << ", " << It.stop() |
| 454 | << "): " << toString(BaseID: It.value()); |
| 455 | } else { |
| 456 | S << "invalid iterator (end)" ; |
| 457 | } |
| 458 | if (Newline) |
| 459 | S << "\n" ; |
| 460 | return S.str(); |
| 461 | }; |
| 462 | |
| 463 | FragsInMemMap meetFragments(const FragsInMemMap &A, const FragsInMemMap &B) { |
| 464 | FragsInMemMap Result(IntervalMapAlloc); |
| 465 | for (auto AIt = A.begin(), AEnd = A.end(); AIt != AEnd; ++AIt) { |
| 466 | LLVM_DEBUG(dbgs() << "a " << toString(AIt)); |
| 467 | // This is basically copied from process() and inverted (process is |
| 468 | // performing something like a union whereas this is more of an |
| 469 | // intersect). |
| 470 | |
| 471 | // There's no work to do if interval `a` overlaps no fragments in map `B`. |
| 472 | if (!B.overlaps(a: AIt.start(), b: AIt.stop())) |
| 473 | continue; |
| 474 | |
| 475 | // Does StartBit intersect an existing fragment? |
| 476 | auto FirstOverlap = B.find(x: AIt.start()); |
| 477 | assert(FirstOverlap != B.end()); |
| 478 | bool IntersectStart = FirstOverlap.start() < AIt.start(); |
| 479 | LLVM_DEBUG(dbgs() << "- FirstOverlap " << toString(FirstOverlap, false) |
| 480 | << ", IntersectStart: " << IntersectStart << "\n" ); |
| 481 | |
| 482 | // Does EndBit intersect an existing fragment? |
| 483 | auto LastOverlap = B.find(x: AIt.stop()); |
| 484 | bool IntersectEnd = |
| 485 | LastOverlap != B.end() && LastOverlap.start() < AIt.stop(); |
| 486 | LLVM_DEBUG(dbgs() << "- LastOverlap " << toString(LastOverlap, false) |
| 487 | << ", IntersectEnd: " << IntersectEnd << "\n" ); |
| 488 | |
| 489 | // Check if both ends of `a` intersect the same interval `b`. |
| 490 | if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) { |
| 491 | // Insert `a` (`a` is contained in `b`) if the values match. |
| 492 | // [ a ] |
| 493 | // [ - b - ] |
| 494 | // - |
| 495 | // [ r ] |
| 496 | LLVM_DEBUG(dbgs() << "- a is contained within " |
| 497 | << toString(FirstOverlap)); |
| 498 | if (*AIt && *AIt == *FirstOverlap) |
| 499 | Result.insert(a: AIt.start(), b: AIt.stop(), y: *AIt); |
| 500 | } else { |
| 501 | // There's an overlap but `a` is not fully contained within |
| 502 | // `b`. Shorten any end-point intersections. |
| 503 | // [ - a - ] |
| 504 | // [ - b - ] |
| 505 | // - |
| 506 | // [ r ] |
| 507 | auto Next = FirstOverlap; |
| 508 | if (IntersectStart) { |
| 509 | LLVM_DEBUG(dbgs() << "- insert intersection of a and " |
| 510 | << toString(FirstOverlap)); |
| 511 | if (*AIt && *AIt == *FirstOverlap) |
| 512 | Result.insert(a: AIt.start(), b: FirstOverlap.stop(), y: *AIt); |
| 513 | ++Next; |
| 514 | } |
| 515 | // [ - a - ] |
| 516 | // [ - b - ] |
| 517 | // - |
| 518 | // [ r ] |
| 519 | if (IntersectEnd) { |
| 520 | LLVM_DEBUG(dbgs() << "- insert intersection of a and " |
| 521 | << toString(LastOverlap)); |
| 522 | if (*AIt && *AIt == *LastOverlap) |
| 523 | Result.insert(a: LastOverlap.start(), b: AIt.stop(), y: *AIt); |
| 524 | } |
| 525 | |
| 526 | // Insert all intervals in map `B` that are contained within interval |
| 527 | // `a` where the values match. |
| 528 | // [ - - a - - ] |
| 529 | // [ b1 ] [ b2 ] |
| 530 | // - |
| 531 | // [ r1 ] [ r2 ] |
| 532 | while (Next != B.end() && Next.start() < AIt.stop() && |
| 533 | Next.stop() <= AIt.stop()) { |
| 534 | LLVM_DEBUG(dbgs() |
| 535 | << "- insert intersection of a and " << toString(Next)); |
| 536 | if (*AIt && *AIt == *Next) |
| 537 | Result.insert(a: Next.start(), b: Next.stop(), y: *Next); |
| 538 | ++Next; |
| 539 | } |
| 540 | } |
| 541 | } |
| 542 | return Result; |
| 543 | } |
| 544 | |
| 545 | /// Meet \p A and \p B, storing the result in \p A. |
| 546 | void meetVars(VarFragMap &A, const VarFragMap &B) { |
| 547 | // Meet A and B. |
| 548 | // |
| 549 | // Result = meet(a, b) for a in A, b in B where Var(a) == Var(b) |
| 550 | for (auto It = A.begin(), End = A.end(); It != End; ++It) { |
| 551 | unsigned AVar = It->first; |
| 552 | FragsInMemMap &AFrags = It->second; |
| 553 | auto BIt = B.find(Val: AVar); |
| 554 | if (BIt == B.end()) { |
| 555 | A.erase(I: It); |
| 556 | continue; // Var has no bits defined in B. |
| 557 | } |
| 558 | LLVM_DEBUG(dbgs() << "meet fragment maps for " |
| 559 | << Aggregates[AVar].first->getName() << "\n" ); |
| 560 | AFrags = meetFragments(A: AFrags, B: BIt->second); |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | bool meet(const BasicBlock &BB, |
| 565 | const SmallPtrSet<BasicBlock *, 16> &Visited) { |
| 566 | LLVM_DEBUG(dbgs() << "meet block info from preds of " << BB.getName() |
| 567 | << "\n" ); |
| 568 | |
| 569 | VarFragMap BBLiveIn; |
| 570 | bool FirstMeet = true; |
| 571 | // LiveIn locs for BB is the meet of the already-processed preds' LiveOut |
| 572 | // locs. |
| 573 | for (const BasicBlock *Pred : predecessors(BB: &BB)) { |
| 574 | // Ignore preds that haven't been processed yet. This is essentially the |
| 575 | // same as initialising all variables to implicit top value (⊤) which is |
| 576 | // the identity value for the meet operation. |
| 577 | if (!Visited.count(Ptr: Pred)) |
| 578 | continue; |
| 579 | |
| 580 | auto PredLiveOut = LiveOut.find(Val: Pred); |
| 581 | assert(PredLiveOut != LiveOut.end()); |
| 582 | |
| 583 | if (FirstMeet) { |
| 584 | LLVM_DEBUG(dbgs() << "BBLiveIn = " << Pred->getName() << "\n" ); |
| 585 | BBLiveIn = PredLiveOut->second; |
| 586 | FirstMeet = false; |
| 587 | } else { |
| 588 | LLVM_DEBUG(dbgs() << "BBLiveIn = meet BBLiveIn, " << Pred->getName() |
| 589 | << "\n" ); |
| 590 | meetVars(A&: BBLiveIn, B: PredLiveOut->second); |
| 591 | } |
| 592 | |
| 593 | // An empty set is ⊥ for the intersect-like meet operation. If we've |
| 594 | // already got ⊥ there's no need to run the code - we know the result is |
| 595 | // ⊥ since `meet(a, ⊥) = ⊥`. |
| 596 | if (BBLiveIn.size() == 0) |
| 597 | break; |
| 598 | } |
| 599 | |
| 600 | // If there's no LiveIn entry for the block yet, add it. |
| 601 | auto [CurrentLiveInEntry, Inserted] = LiveIn.try_emplace(Key: &BB); |
| 602 | if (Inserted) { |
| 603 | LLVM_DEBUG(dbgs() << "change=true (first) on meet on " << BB.getName() |
| 604 | << "\n" ); |
| 605 | CurrentLiveInEntry->second = std::move(BBLiveIn); |
| 606 | return /*Changed=*/true; |
| 607 | } |
| 608 | |
| 609 | // If the LiveIn set has changed (expensive check) update it and return |
| 610 | // true. |
| 611 | if (!varFragMapsAreEqual(A: BBLiveIn, B: CurrentLiveInEntry->second)) { |
| 612 | LLVM_DEBUG(dbgs() << "change=true on meet on " << BB.getName() << "\n" ); |
| 613 | CurrentLiveInEntry->second = std::move(BBLiveIn); |
| 614 | return /*Changed=*/true; |
| 615 | } |
| 616 | |
| 617 | LLVM_DEBUG(dbgs() << "change=false on meet on " << BB.getName() << "\n" ); |
| 618 | return /*Changed=*/false; |
| 619 | } |
| 620 | |
| 621 | void insertMemLoc(BasicBlock &BB, VarLocInsertPt Before, unsigned Var, |
| 622 | unsigned StartBit, unsigned EndBit, unsigned Base, |
| 623 | DebugLoc DL) { |
| 624 | assert(StartBit < EndBit && "Cannot create fragment of size <= 0" ); |
| 625 | if (!Base) |
| 626 | return; |
| 627 | FragMemLoc Loc; |
| 628 | Loc.Var = Var; |
| 629 | Loc.OffsetInBits = StartBit; |
| 630 | Loc.SizeInBits = EndBit - StartBit; |
| 631 | assert(Base && "Expected a non-zero ID for Base address" ); |
| 632 | Loc.Base = Base; |
| 633 | Loc.DL = DL; |
| 634 | BBInsertBeforeMap[&BB][Before].push_back(Elt: Loc); |
| 635 | LLVM_DEBUG(dbgs() << "Add mem def for " << Aggregates[Var].first->getName() |
| 636 | << " bits [" << StartBit << ", " << EndBit << ")\n" ); |
| 637 | } |
| 638 | |
| 639 | /// Inserts a new dbg def if the interval found when looking up \p StartBit |
| 640 | /// in \p FragMap starts before \p StartBit or ends after \p EndBit (which |
| 641 | /// indicates - assuming StartBit->EndBit has just been inserted - that the |
| 642 | /// slice has been coalesced in the map). |
| 643 | void coalesceFragments(BasicBlock &BB, VarLocInsertPt Before, unsigned Var, |
| 644 | unsigned StartBit, unsigned EndBit, unsigned Base, |
| 645 | DebugLoc DL, const FragsInMemMap &FragMap) { |
| 646 | if (!CoalesceAdjacentFragments) |
| 647 | return; |
| 648 | // We've inserted the location into the map. The map will have coalesced |
| 649 | // adjacent intervals (variable fragments) that describe the same memory |
| 650 | // location. Use this knowledge to insert a debug location that describes |
| 651 | // that coalesced fragment. This may eclipse other locs we've just |
| 652 | // inserted. This is okay as redundant locs will be cleaned up later. |
| 653 | auto CoalescedFrag = FragMap.find(x: StartBit); |
| 654 | // Bail if no coalescing has taken place. |
| 655 | if (CoalescedFrag.start() == StartBit && CoalescedFrag.stop() == EndBit) |
| 656 | return; |
| 657 | |
| 658 | LLVM_DEBUG(dbgs() << "- Insert loc for bits " << CoalescedFrag.start() |
| 659 | << " to " << CoalescedFrag.stop() << "\n" ); |
| 660 | insertMemLoc(BB, Before, Var, StartBit: CoalescedFrag.start(), EndBit: CoalescedFrag.stop(), |
| 661 | Base, DL); |
| 662 | } |
| 663 | |
| 664 | void addDef(const VarLocInfo &VarLoc, VarLocInsertPt Before, BasicBlock &BB, |
| 665 | VarFragMap &LiveSet) { |
| 666 | DebugVariable DbgVar = FnVarLocs->getVariable(ID: VarLoc.VariableID); |
| 667 | if (skipVariable(V: DbgVar.getVariable())) |
| 668 | return; |
| 669 | // Don't bother doing anything for this variables if we know it's fully |
| 670 | // promoted. We're only interested in variables that (sometimes) live on |
| 671 | // the stack here. |
| 672 | if (!VarsWithStackSlot->count(V: getAggregate(Var: DbgVar))) |
| 673 | return; |
| 674 | unsigned Var = Aggregates.insert( |
| 675 | Entry: DebugAggregate(DbgVar.getVariable(), VarLoc.DL.getInlinedAt())); |
| 676 | |
| 677 | // [StartBit: EndBit) are the bits affected by this def. |
| 678 | const DIExpression *DIExpr = VarLoc.Expr; |
| 679 | unsigned StartBit; |
| 680 | unsigned EndBit; |
| 681 | if (auto Frag = DIExpr->getFragmentInfo()) { |
| 682 | StartBit = Frag->OffsetInBits; |
| 683 | EndBit = StartBit + Frag->SizeInBits; |
| 684 | } else { |
| 685 | assert(static_cast<bool>(DbgVar.getVariable()->getSizeInBits())); |
| 686 | StartBit = 0; |
| 687 | EndBit = *DbgVar.getVariable()->getSizeInBits(); |
| 688 | } |
| 689 | |
| 690 | // We will only fill fragments for simple memory-describing dbg.value |
| 691 | // intrinsics. If the fragment offset is the same as the offset from the |
| 692 | // base pointer, do The Thing, otherwise fall back to normal dbg.value |
| 693 | // behaviour. AssignmentTrackingLowering has generated DIExpressions |
| 694 | // written in terms of the base pointer. |
| 695 | // TODO: Remove this condition since the fragment offset doesn't always |
| 696 | // equal the offset from base pointer (e.g. for a SROA-split variable). |
| 697 | const auto DerefOffsetInBytes = getDerefOffsetInBytes(DIExpr); |
| 698 | const unsigned Base = |
| 699 | DerefOffsetInBytes && *DerefOffsetInBytes * 8 == StartBit |
| 700 | ? Bases.insert(Entry: VarLoc.Values) |
| 701 | : 0; |
| 702 | LLVM_DEBUG(dbgs() << "DEF " << DbgVar.getVariable()->getName() << " [" |
| 703 | << StartBit << ", " << EndBit << "): " << toString(Base) |
| 704 | << "\n" ); |
| 705 | |
| 706 | // First of all, any locs that use mem that are disrupted need reinstating. |
| 707 | // Unfortunately, IntervalMap doesn't let us insert intervals that overlap |
| 708 | // with existing intervals so this code involves a lot of fiddling around |
| 709 | // with intervals to do that manually. |
| 710 | auto FragIt = LiveSet.find(Val: Var); |
| 711 | |
| 712 | // Check if the variable does not exist in the map. |
| 713 | if (FragIt == LiveSet.end()) { |
| 714 | // Add this variable to the BB map. |
| 715 | auto P = LiveSet.try_emplace(Key: Var, Args: FragsInMemMap(IntervalMapAlloc)); |
| 716 | assert(P.second && "Var already in map?" ); |
| 717 | // Add the interval to the fragment map. |
| 718 | P.first->second.insert(a: StartBit, b: EndBit, y: Base); |
| 719 | return; |
| 720 | } |
| 721 | // The variable has an entry in the map. |
| 722 | |
| 723 | FragsInMemMap &FragMap = FragIt->second; |
| 724 | // First check the easy case: the new fragment `f` doesn't overlap with any |
| 725 | // intervals. |
| 726 | if (!FragMap.overlaps(a: StartBit, b: EndBit)) { |
| 727 | LLVM_DEBUG(dbgs() << "- No overlaps\n" ); |
| 728 | FragMap.insert(a: StartBit, b: EndBit, y: Base); |
| 729 | coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, DL: VarLoc.DL, |
| 730 | FragMap); |
| 731 | return; |
| 732 | } |
| 733 | // There is at least one overlap. |
| 734 | |
| 735 | // Does StartBit intersect an existing fragment? |
| 736 | auto FirstOverlap = FragMap.find(x: StartBit); |
| 737 | assert(FirstOverlap != FragMap.end()); |
| 738 | bool IntersectStart = FirstOverlap.start() < StartBit; |
| 739 | |
| 740 | // Does EndBit intersect an existing fragment? |
| 741 | auto LastOverlap = FragMap.find(x: EndBit); |
| 742 | bool IntersectEnd = LastOverlap.valid() && LastOverlap.start() < EndBit; |
| 743 | |
| 744 | // Check if both ends of `f` intersect the same interval `i`. |
| 745 | if (IntersectStart && IntersectEnd && FirstOverlap == LastOverlap) { |
| 746 | LLVM_DEBUG(dbgs() << "- Intersect single interval @ both ends\n" ); |
| 747 | // Shorten `i` so that there's space to insert `f`. |
| 748 | // [ f ] |
| 749 | // [ - i - ] |
| 750 | // + |
| 751 | // [ i ][ f ][ i ] |
| 752 | |
| 753 | // Save values for use after inserting a new interval. |
| 754 | auto EndBitOfOverlap = FirstOverlap.stop(); |
| 755 | unsigned OverlapValue = FirstOverlap.value(); |
| 756 | |
| 757 | // Shorten the overlapping interval. |
| 758 | FirstOverlap.setStop(StartBit); |
| 759 | insertMemLoc(BB, Before, Var, StartBit: FirstOverlap.start(), EndBit: StartBit, |
| 760 | Base: OverlapValue, DL: VarLoc.DL); |
| 761 | |
| 762 | // Insert a new interval to represent the end part. |
| 763 | FragMap.insert(a: EndBit, b: EndBitOfOverlap, y: OverlapValue); |
| 764 | insertMemLoc(BB, Before, Var, StartBit: EndBit, EndBit: EndBitOfOverlap, Base: OverlapValue, |
| 765 | DL: VarLoc.DL); |
| 766 | |
| 767 | // Insert the new (middle) fragment now there is space. |
| 768 | FragMap.insert(a: StartBit, b: EndBit, y: Base); |
| 769 | } else { |
| 770 | // There's an overlap but `f` may not be fully contained within |
| 771 | // `i`. Shorten any end-point intersections so that we can then |
| 772 | // insert `f`. |
| 773 | // [ - f - ] |
| 774 | // [ - i - ] |
| 775 | // | | |
| 776 | // [ i ] |
| 777 | // Shorten any end-point intersections. |
| 778 | if (IntersectStart) { |
| 779 | LLVM_DEBUG(dbgs() << "- Intersect interval at start\n" ); |
| 780 | // Split off at the intersection. |
| 781 | FirstOverlap.setStop(StartBit); |
| 782 | insertMemLoc(BB, Before, Var, StartBit: FirstOverlap.start(), EndBit: StartBit, |
| 783 | Base: *FirstOverlap, DL: VarLoc.DL); |
| 784 | } |
| 785 | // [ - f - ] |
| 786 | // [ - i - ] |
| 787 | // | | |
| 788 | // [ i ] |
| 789 | if (IntersectEnd) { |
| 790 | LLVM_DEBUG(dbgs() << "- Intersect interval at end\n" ); |
| 791 | // Split off at the intersection. |
| 792 | LastOverlap.setStart(EndBit); |
| 793 | insertMemLoc(BB, Before, Var, StartBit: EndBit, EndBit: LastOverlap.stop(), Base: *LastOverlap, |
| 794 | DL: VarLoc.DL); |
| 795 | } |
| 796 | |
| 797 | LLVM_DEBUG(dbgs() << "- Erase intervals contained within\n" ); |
| 798 | // FirstOverlap and LastOverlap have been shortened such that they're |
| 799 | // no longer overlapping with [StartBit, EndBit). Delete any overlaps |
| 800 | // that remain (these will be fully contained within `f`). |
| 801 | // [ - f - ] } |
| 802 | // [ - i - ] } Intersection shortening that has happened above. |
| 803 | // | | } |
| 804 | // [ i ] } |
| 805 | // ----------------- |
| 806 | // [i2 ] } Intervals fully contained within `f` get erased. |
| 807 | // ----------------- |
| 808 | // [ - f - ][ i ] } Completed insertion. |
| 809 | auto It = FirstOverlap; |
| 810 | if (IntersectStart) |
| 811 | ++It; // IntersectStart: first overlap has been shortened. |
| 812 | while (It.valid() && It.start() >= StartBit && It.stop() <= EndBit) { |
| 813 | LLVM_DEBUG(dbgs() << "- Erase " << toString(It)); |
| 814 | It.erase(); // This increments It after removing the interval. |
| 815 | } |
| 816 | // We've dealt with all the overlaps now! |
| 817 | assert(!FragMap.overlaps(StartBit, EndBit)); |
| 818 | LLVM_DEBUG(dbgs() << "- Insert DEF into now-empty space\n" ); |
| 819 | FragMap.insert(a: StartBit, b: EndBit, y: Base); |
| 820 | } |
| 821 | |
| 822 | coalesceFragments(BB, Before, Var, StartBit, EndBit, Base, DL: VarLoc.DL, |
| 823 | FragMap); |
| 824 | } |
| 825 | |
| 826 | bool skipVariable(const DILocalVariable *V) { return !V->getSizeInBits(); } |
| 827 | |
| 828 | void process(BasicBlock &BB, VarFragMap &LiveSet) { |
| 829 | BBInsertBeforeMap[&BB].clear(); |
| 830 | for (auto &I : BB) { |
| 831 | for (DbgVariableRecord &DVR : filterDbgVars(R: I.getDbgRecordRange())) { |
| 832 | if (const auto *Locs = FnVarLocs->getWedge(Before: &DVR)) { |
| 833 | for (const VarLocInfo &Loc : *Locs) { |
| 834 | addDef(VarLoc: Loc, Before: &DVR, BB&: *I.getParent(), LiveSet); |
| 835 | } |
| 836 | } |
| 837 | } |
| 838 | if (const auto *Locs = FnVarLocs->getWedge(Before: &I)) { |
| 839 | for (const VarLocInfo &Loc : *Locs) { |
| 840 | addDef(VarLoc: Loc, Before: &I, BB&: *I.getParent(), LiveSet); |
| 841 | } |
| 842 | } |
| 843 | } |
| 844 | } |
| 845 | |
| 846 | public: |
| 847 | MemLocFragmentFill(Function &Fn, |
| 848 | const DenseSet<DebugAggregate> *VarsWithStackSlot, |
| 849 | bool CoalesceAdjacentFragments) |
| 850 | : Fn(Fn), VarsWithStackSlot(VarsWithStackSlot), |
| 851 | CoalesceAdjacentFragments(CoalesceAdjacentFragments) {} |
| 852 | |
| 853 | /// Add variable locations to \p FnVarLocs so that any bits of a variable |
| 854 | /// with a memory location have that location explicitly reinstated at each |
| 855 | /// subsequent variable location definition that that doesn't overwrite those |
| 856 | /// bits. i.e. after a variable location def, insert new defs for the memory |
| 857 | /// location with fragments for the difference of "all bits currently in |
| 858 | /// memory" and "the fragment of the second def". e.g. |
| 859 | /// |
| 860 | /// Before: |
| 861 | /// |
| 862 | /// var x bits 0 to 63: value in memory |
| 863 | /// more instructions |
| 864 | /// var x bits 0 to 31: value is %0 |
| 865 | /// |
| 866 | /// After: |
| 867 | /// |
| 868 | /// var x bits 0 to 63: value in memory |
| 869 | /// more instructions |
| 870 | /// var x bits 0 to 31: value is %0 |
| 871 | /// var x bits 32 to 61: value in memory ; <-- new loc def |
| 872 | /// |
| 873 | void run(FunctionVarLocsBuilder *FnVarLocs) { |
| 874 | if (!EnableMemLocFragFill) |
| 875 | return; |
| 876 | |
| 877 | this->FnVarLocs = FnVarLocs; |
| 878 | |
| 879 | // Prepare for traversal. |
| 880 | // |
| 881 | ReversePostOrderTraversal<Function *> RPOT(&Fn); |
| 882 | std::priority_queue<unsigned int, std::vector<unsigned int>, |
| 883 | std::greater<unsigned int>> |
| 884 | Worklist; |
| 885 | std::priority_queue<unsigned int, std::vector<unsigned int>, |
| 886 | std::greater<unsigned int>> |
| 887 | Pending; |
| 888 | DenseMap<unsigned int, BasicBlock *> OrderToBB; |
| 889 | DenseMap<BasicBlock *, unsigned int> BBToOrder; |
| 890 | { // Init OrderToBB and BBToOrder. |
| 891 | unsigned int RPONumber = 0; |
| 892 | for (BasicBlock *BB : RPOT) { |
| 893 | OrderToBB[RPONumber] = BB; |
| 894 | BBToOrder[BB] = RPONumber; |
| 895 | Worklist.push(x: RPONumber); |
| 896 | ++RPONumber; |
| 897 | } |
| 898 | LiveIn.reserve(NumEntries: RPONumber); |
| 899 | LiveOut.reserve(NumEntries: RPONumber); |
| 900 | } |
| 901 | |
| 902 | // Perform the traversal. |
| 903 | // |
| 904 | // This is a standard "intersect of predecessor outs" dataflow problem. To |
| 905 | // solve it, we perform meet() and process() using the two worklist method |
| 906 | // until the LiveIn data for each block becomes unchanging. |
| 907 | // |
| 908 | // This dataflow is essentially working on maps of sets and at each meet we |
| 909 | // intersect the maps and the mapped sets. So, initialized live-in maps |
| 910 | // monotonically decrease in value throughout the dataflow. |
| 911 | SmallPtrSet<BasicBlock *, 16> Visited; |
| 912 | while (!Worklist.empty() || !Pending.empty()) { |
| 913 | // We track what is on the pending worklist to avoid inserting the same |
| 914 | // thing twice. We could avoid this with a custom priority queue, but |
| 915 | // this is probably not worth it. |
| 916 | SmallPtrSet<BasicBlock *, 16> OnPending; |
| 917 | LLVM_DEBUG(dbgs() << "Processing Worklist\n" ); |
| 918 | while (!Worklist.empty()) { |
| 919 | BasicBlock *BB = OrderToBB[Worklist.top()]; |
| 920 | LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n" ); |
| 921 | Worklist.pop(); |
| 922 | bool InChanged = meet(BB: *BB, Visited); |
| 923 | // Always consider LiveIn changed on the first visit. |
| 924 | InChanged |= Visited.insert(Ptr: BB).second; |
| 925 | if (InChanged) { |
| 926 | LLVM_DEBUG(dbgs() |
| 927 | << BB->getName() << " has new InLocs, process it\n" ); |
| 928 | // Mutate a copy of LiveIn while processing BB. Once we've processed |
| 929 | // the terminator LiveSet is the LiveOut set for BB. |
| 930 | // This is an expensive copy! |
| 931 | VarFragMap LiveSet = LiveIn[BB]; |
| 932 | |
| 933 | // Process the instructions in the block. |
| 934 | process(BB&: *BB, LiveSet); |
| 935 | |
| 936 | // Relatively expensive check: has anything changed in LiveOut for BB? |
| 937 | if (!varFragMapsAreEqual(A: LiveOut[BB], B: LiveSet)) { |
| 938 | LLVM_DEBUG(dbgs() << BB->getName() |
| 939 | << " has new OutLocs, add succs to worklist: [ " ); |
| 940 | LiveOut[BB] = std::move(LiveSet); |
| 941 | for (BasicBlock *Succ : successors(BB)) { |
| 942 | if (OnPending.insert(Ptr: Succ).second) { |
| 943 | LLVM_DEBUG(dbgs() << Succ->getName() << " " ); |
| 944 | Pending.push(x: BBToOrder[Succ]); |
| 945 | } |
| 946 | } |
| 947 | LLVM_DEBUG(dbgs() << "]\n" ); |
| 948 | } |
| 949 | } |
| 950 | } |
| 951 | Worklist.swap(pq&: Pending); |
| 952 | // At this point, pending must be empty, since it was just the empty |
| 953 | // worklist |
| 954 | assert(Pending.empty() && "Pending should be empty" ); |
| 955 | } |
| 956 | |
| 957 | // Insert new location defs. |
| 958 | for (auto &Pair : BBInsertBeforeMap) { |
| 959 | InsertMap &Map = Pair.second; |
| 960 | for (auto &Pair : Map) { |
| 961 | auto InsertBefore = Pair.first; |
| 962 | assert(InsertBefore && "should never be null" ); |
| 963 | auto FragMemLocs = Pair.second; |
| 964 | auto &Ctx = Fn.getContext(); |
| 965 | |
| 966 | for (auto &FragMemLoc : FragMemLocs) { |
| 967 | DIExpression *Expr = DIExpression::get(Context&: Ctx, Elements: {}); |
| 968 | if (FragMemLoc.SizeInBits != |
| 969 | *Aggregates[FragMemLoc.Var].first->getSizeInBits()) |
| 970 | Expr = *DIExpression::createFragmentExpression( |
| 971 | Expr, OffsetInBits: FragMemLoc.OffsetInBits, SizeInBits: FragMemLoc.SizeInBits); |
| 972 | Expr = DIExpression::prepend(Expr, Flags: DIExpression::DerefAfter, |
| 973 | Offset: FragMemLoc.OffsetInBits / 8); |
| 974 | DebugVariable Var(Aggregates[FragMemLoc.Var].first, Expr, |
| 975 | FragMemLoc.DL.getInlinedAt()); |
| 976 | FnVarLocs->addVarLoc(Before: InsertBefore, Var, Expr, DL: FragMemLoc.DL, |
| 977 | R: Bases[FragMemLoc.Base]); |
| 978 | } |
| 979 | } |
| 980 | } |
| 981 | } |
| 982 | }; |
| 983 | |
| 984 | /// AssignmentTrackingLowering encapsulates a dataflow analysis over a function |
| 985 | /// that interprets assignment tracking debug info metadata and stores in IR to |
| 986 | /// create a map of variable locations. |
| 987 | class AssignmentTrackingLowering { |
| 988 | public: |
| 989 | /// The kind of location in use for a variable, where Mem is the stack home, |
| 990 | /// Val is an SSA value or const, and None means that there is not one single |
| 991 | /// kind (either because there are multiple or because there is none; it may |
| 992 | /// prove useful to split this into two values in the future). |
| 993 | /// |
| 994 | /// LocKind is a join-semilattice with the partial order: |
| 995 | /// None > Mem, Val |
| 996 | /// |
| 997 | /// i.e. |
| 998 | /// join(Mem, Mem) = Mem |
| 999 | /// join(Val, Val) = Val |
| 1000 | /// join(Mem, Val) = None |
| 1001 | /// join(None, Mem) = None |
| 1002 | /// join(None, Val) = None |
| 1003 | /// join(None, None) = None |
| 1004 | /// |
| 1005 | /// Note: the order is not `None > Val > Mem` because we're using DIAssignID |
| 1006 | /// to name assignments and are not tracking the actual stored values. |
| 1007 | /// Therefore currently there's no way to ensure that Mem values and Val |
| 1008 | /// values are the same. This could be a future extension, though it's not |
| 1009 | /// clear that many additional locations would be recovered that way in |
| 1010 | /// practice as the likelihood of this sitation arising naturally seems |
| 1011 | /// incredibly low. |
| 1012 | enum class LocKind { Mem, Val, None }; |
| 1013 | |
| 1014 | /// An abstraction of the assignment of a value to a variable or memory |
| 1015 | /// location. |
| 1016 | /// |
| 1017 | /// An Assignment is Known or NoneOrPhi. A Known Assignment means we have a |
| 1018 | /// DIAssignID ptr that represents it. NoneOrPhi means that we don't (or |
| 1019 | /// can't) know the ID of the last assignment that took place. |
| 1020 | /// |
| 1021 | /// The Status of the Assignment (Known or NoneOrPhi) is another |
| 1022 | /// join-semilattice. The partial order is: |
| 1023 | /// NoneOrPhi > Known {id_0, id_1, ...id_N} |
| 1024 | /// |
| 1025 | /// i.e. for all values x and y where x != y: |
| 1026 | /// join(x, x) = x |
| 1027 | /// join(x, y) = NoneOrPhi |
| 1028 | struct Assignment { |
| 1029 | enum S { Known, NoneOrPhi } Status; |
| 1030 | /// ID of the assignment. nullptr if Status is not Known. |
| 1031 | DIAssignID *ID; |
| 1032 | /// The dbg.assign that marks this dbg-def. Mem-defs don't use this field. |
| 1033 | /// May be nullptr. |
| 1034 | DbgVariableRecord *Source = nullptr; |
| 1035 | |
| 1036 | bool isSameSourceAssignment(const Assignment &Other) const { |
| 1037 | // Don't include Source in the equality check. Assignments are |
| 1038 | // defined by their ID, not debug intrinsic(s). |
| 1039 | return std::tie(args: Status, args: ID) == std::tie(args: Other.Status, args: Other.ID); |
| 1040 | } |
| 1041 | void dump(raw_ostream &OS) { |
| 1042 | static const char *LUT[] = {"Known" , "NoneOrPhi" }; |
| 1043 | OS << LUT[Status] << "(id=" ; |
| 1044 | if (ID) |
| 1045 | OS << ID; |
| 1046 | else |
| 1047 | OS << "null" ; |
| 1048 | OS << ", s=" ; |
| 1049 | if (!Source) |
| 1050 | OS << "null" ; |
| 1051 | else |
| 1052 | OS << Source; |
| 1053 | OS << ")" ; |
| 1054 | } |
| 1055 | |
| 1056 | static Assignment make(DIAssignID *ID, DbgVariableRecord *Source) { |
| 1057 | assert((!Source || Source->isDbgAssign()) && |
| 1058 | "Cannot make an assignment from a non-assign DbgVariableRecord" ); |
| 1059 | return Assignment(Known, ID, Source); |
| 1060 | } |
| 1061 | static Assignment makeFromMemDef(DIAssignID *ID) { |
| 1062 | return Assignment(Known, ID); |
| 1063 | } |
| 1064 | static Assignment makeNoneOrPhi() { return Assignment(NoneOrPhi, nullptr); } |
| 1065 | // Again, need a Top value? |
| 1066 | Assignment() : Status(NoneOrPhi), ID(nullptr) {} // Can we delete this? |
| 1067 | Assignment(S Status, DIAssignID *ID) : Status(Status), ID(ID) { |
| 1068 | // If the Status is Known then we expect there to be an assignment ID. |
| 1069 | assert(Status == NoneOrPhi || ID); |
| 1070 | } |
| 1071 | Assignment(S Status, DIAssignID *ID, DbgVariableRecord *Source) |
| 1072 | : Status(Status), ID(ID), Source(Source) { |
| 1073 | // If the Status is Known then we expect there to be an assignment ID. |
| 1074 | assert(Status == NoneOrPhi || ID); |
| 1075 | } |
| 1076 | }; |
| 1077 | |
| 1078 | using AssignmentMap = SmallVector<Assignment>; |
| 1079 | using LocMap = SmallVector<LocKind>; |
| 1080 | using OverlapMap = DenseMap<VariableID, SmallVector<VariableID>>; |
| 1081 | using UntaggedStoreAssignmentMap = |
| 1082 | DenseMap<const Instruction *, |
| 1083 | SmallVector<std::pair<VariableID, at::AssignmentInfo>>>; |
| 1084 | using UnknownStoreAssignmentMap = |
| 1085 | DenseMap<const Instruction *, SmallVector<VariableID>>; |
| 1086 | |
| 1087 | private: |
| 1088 | /// The highest numbered VariableID for partially promoted variables plus 1, |
| 1089 | /// the values for which start at 1. |
| 1090 | unsigned TrackedVariablesVectorSize = 0; |
| 1091 | /// Map a variable to the set of variables that it fully contains. |
| 1092 | OverlapMap VarContains; |
| 1093 | /// Map untagged stores to the variable fragments they assign to. Used by |
| 1094 | /// processUntaggedInstruction. |
| 1095 | UntaggedStoreAssignmentMap UntaggedStoreVars; |
| 1096 | /// Map untagged unknown stores (e.g. strided/masked store intrinsics) |
| 1097 | /// to the variables they may assign to. Used by processUntaggedInstruction. |
| 1098 | UnknownStoreAssignmentMap UnknownStoreVars; |
| 1099 | |
| 1100 | // Machinery to defer inserting dbg.values. |
| 1101 | using InstInsertMap = MapVector<VarLocInsertPt, SmallVector<VarLocInfo>>; |
| 1102 | InstInsertMap InsertBeforeMap; |
| 1103 | /// Clear the location definitions currently cached for insertion after /p |
| 1104 | /// After. |
| 1105 | void resetInsertionPoint(Instruction &After); |
| 1106 | void resetInsertionPoint(DbgVariableRecord &After); |
| 1107 | |
| 1108 | void emitDbgValue(LocKind Kind, DbgVariableRecord *, VarLocInsertPt After); |
| 1109 | |
| 1110 | static bool mapsAreEqual(const BitVector &Mask, const AssignmentMap &A, |
| 1111 | const AssignmentMap &B) { |
| 1112 | return llvm::all_of(Range: Mask.set_bits(), P: [&](unsigned VarID) { |
| 1113 | return A[VarID].isSameSourceAssignment(Other: B[VarID]); |
| 1114 | }); |
| 1115 | } |
| 1116 | |
| 1117 | /// Represents the stack and debug assignments in a block. Used to describe |
| 1118 | /// the live-in and live-out values for blocks, as well as the "current" |
| 1119 | /// value as we process each instruction in a block. |
| 1120 | struct BlockInfo { |
| 1121 | /// The set of variables (VariableID) being tracked in this block. |
| 1122 | BitVector VariableIDsInBlock; |
| 1123 | /// Dominating assignment to memory for each variable, indexed by |
| 1124 | /// VariableID. |
| 1125 | AssignmentMap StackHomeValue; |
| 1126 | /// Dominating assignemnt to each variable, indexed by VariableID. |
| 1127 | AssignmentMap DebugValue; |
| 1128 | /// Location kind for each variable. LiveLoc indicates whether the |
| 1129 | /// dominating assignment in StackHomeValue (LocKind::Mem), DebugValue |
| 1130 | /// (LocKind::Val), or neither (LocKind::None) is valid, in that order of |
| 1131 | /// preference. This cannot be derived by inspecting DebugValue and |
| 1132 | /// StackHomeValue due to the fact that there's no distinction in |
| 1133 | /// Assignment (the class) between whether an assignment is unknown or a |
| 1134 | /// merge of multiple assignments (both are Status::NoneOrPhi). In other |
| 1135 | /// words, the memory location may well be valid while both DebugValue and |
| 1136 | /// StackHomeValue contain Assignments that have a Status of NoneOrPhi. |
| 1137 | /// Indexed by VariableID. |
| 1138 | LocMap LiveLoc; |
| 1139 | |
| 1140 | public: |
| 1141 | enum AssignmentKind { Stack, Debug }; |
| 1142 | const AssignmentMap &getAssignmentMap(AssignmentKind Kind) const { |
| 1143 | switch (Kind) { |
| 1144 | case Stack: |
| 1145 | return StackHomeValue; |
| 1146 | case Debug: |
| 1147 | return DebugValue; |
| 1148 | } |
| 1149 | llvm_unreachable("Unknown AssignmentKind" ); |
| 1150 | } |
| 1151 | AssignmentMap &getAssignmentMap(AssignmentKind Kind) { |
| 1152 | return const_cast<AssignmentMap &>( |
| 1153 | const_cast<const BlockInfo *>(this)->getAssignmentMap(Kind)); |
| 1154 | } |
| 1155 | |
| 1156 | bool isVariableTracked(VariableID Var) const { |
| 1157 | return VariableIDsInBlock[static_cast<unsigned>(Var)]; |
| 1158 | } |
| 1159 | |
| 1160 | const Assignment &getAssignment(AssignmentKind Kind, VariableID Var) const { |
| 1161 | assert(isVariableTracked(Var) && "Var not tracked in block" ); |
| 1162 | return getAssignmentMap(Kind)[static_cast<unsigned>(Var)]; |
| 1163 | } |
| 1164 | |
| 1165 | LocKind getLocKind(VariableID Var) const { |
| 1166 | assert(isVariableTracked(Var) && "Var not tracked in block" ); |
| 1167 | return LiveLoc[static_cast<unsigned>(Var)]; |
| 1168 | } |
| 1169 | |
| 1170 | /// Set LocKind for \p Var only: does not set LocKind for VariableIDs of |
| 1171 | /// fragments contained win \p Var. |
| 1172 | void setLocKind(VariableID Var, LocKind K) { |
| 1173 | VariableIDsInBlock.set(static_cast<unsigned>(Var)); |
| 1174 | LiveLoc[static_cast<unsigned>(Var)] = K; |
| 1175 | } |
| 1176 | |
| 1177 | /// Set the assignment in the \p Kind assignment map for \p Var only: does |
| 1178 | /// not set the assignment for VariableIDs of fragments contained win \p |
| 1179 | /// Var. |
| 1180 | void setAssignment(AssignmentKind Kind, VariableID Var, |
| 1181 | const Assignment &AV) { |
| 1182 | VariableIDsInBlock.set(static_cast<unsigned>(Var)); |
| 1183 | getAssignmentMap(Kind)[static_cast<unsigned>(Var)] = AV; |
| 1184 | } |
| 1185 | |
| 1186 | /// Return true if there is an assignment matching \p AV in the \p Kind |
| 1187 | /// assignment map. Does consider assignments for VariableIDs of fragments |
| 1188 | /// contained win \p Var. |
| 1189 | bool hasAssignment(AssignmentKind Kind, VariableID Var, |
| 1190 | const Assignment &AV) const { |
| 1191 | if (!isVariableTracked(Var)) |
| 1192 | return false; |
| 1193 | return AV.isSameSourceAssignment(Other: getAssignment(Kind, Var)); |
| 1194 | } |
| 1195 | |
| 1196 | /// Compare every element in each map to determine structural equality |
| 1197 | /// (slow). |
| 1198 | bool operator==(const BlockInfo &Other) const { |
| 1199 | return VariableIDsInBlock == Other.VariableIDsInBlock && |
| 1200 | LiveLoc == Other.LiveLoc && |
| 1201 | mapsAreEqual(Mask: VariableIDsInBlock, A: StackHomeValue, |
| 1202 | B: Other.StackHomeValue) && |
| 1203 | mapsAreEqual(Mask: VariableIDsInBlock, A: DebugValue, B: Other.DebugValue); |
| 1204 | } |
| 1205 | bool operator!=(const BlockInfo &Other) const { return !(*this == Other); } |
| 1206 | bool isValid() { |
| 1207 | return LiveLoc.size() == DebugValue.size() && |
| 1208 | LiveLoc.size() == StackHomeValue.size(); |
| 1209 | } |
| 1210 | |
| 1211 | /// Clear everything and initialise with ⊤-values for all variables. |
| 1212 | void init(int NumVars) { |
| 1213 | StackHomeValue.clear(); |
| 1214 | DebugValue.clear(); |
| 1215 | LiveLoc.clear(); |
| 1216 | VariableIDsInBlock = BitVector(NumVars); |
| 1217 | StackHomeValue.insert(I: StackHomeValue.begin(), NumToInsert: NumVars, |
| 1218 | Elt: Assignment::makeNoneOrPhi()); |
| 1219 | DebugValue.insert(I: DebugValue.begin(), NumToInsert: NumVars, |
| 1220 | Elt: Assignment::makeNoneOrPhi()); |
| 1221 | LiveLoc.insert(I: LiveLoc.begin(), NumToInsert: NumVars, Elt: LocKind::None); |
| 1222 | } |
| 1223 | |
| 1224 | /// Helper for join. |
| 1225 | template <typename ElmtType, typename FnInputType> |
| 1226 | static void joinElmt(int Index, SmallVector<ElmtType> &Target, |
| 1227 | const SmallVector<ElmtType> &A, |
| 1228 | const SmallVector<ElmtType> &B, |
| 1229 | ElmtType (*Fn)(FnInputType, FnInputType)) { |
| 1230 | Target[Index] = Fn(A[Index], B[Index]); |
| 1231 | } |
| 1232 | |
| 1233 | /// See comment for AssignmentTrackingLowering::joinBlockInfo. |
| 1234 | static BlockInfo join(const BlockInfo &A, const BlockInfo &B, int NumVars) { |
| 1235 | // Join A and B. |
| 1236 | // |
| 1237 | // Intersect = join(a, b) for a in A, b in B where Var(a) == Var(b) |
| 1238 | // Difference = join(x, ⊤) for x where Var(x) is in A xor B |
| 1239 | // Join = Intersect ∪ Difference |
| 1240 | // |
| 1241 | // This is achieved by performing a join on elements from A and B with |
| 1242 | // variables common to both A and B (join elements indexed by var |
| 1243 | // intersect), then adding ⊤-value elements for vars in A xor B. The |
| 1244 | // latter part is equivalent to performing join on elements with variables |
| 1245 | // in A xor B with the ⊤-value for the map element since join(x, ⊤) = ⊤. |
| 1246 | // BlockInfo::init initializes all variable entries to the ⊤ value so we |
| 1247 | // don't need to explicitly perform that step as Join.VariableIDsInBlock |
| 1248 | // is set to the union of the variables in A and B at the end of this |
| 1249 | // function. |
| 1250 | BlockInfo Join; |
| 1251 | Join.init(NumVars); |
| 1252 | |
| 1253 | BitVector Intersect = A.VariableIDsInBlock; |
| 1254 | Intersect &= B.VariableIDsInBlock; |
| 1255 | |
| 1256 | for (auto VarID : Intersect.set_bits()) { |
| 1257 | joinElmt(Index: VarID, Target&: Join.LiveLoc, A: A.LiveLoc, B: B.LiveLoc, Fn: joinKind); |
| 1258 | joinElmt(Index: VarID, Target&: Join.DebugValue, A: A.DebugValue, B: B.DebugValue, |
| 1259 | Fn: joinAssignment); |
| 1260 | joinElmt(Index: VarID, Target&: Join.StackHomeValue, A: A.StackHomeValue, B: B.StackHomeValue, |
| 1261 | Fn: joinAssignment); |
| 1262 | } |
| 1263 | |
| 1264 | Join.VariableIDsInBlock = A.VariableIDsInBlock; |
| 1265 | Join.VariableIDsInBlock |= B.VariableIDsInBlock; |
| 1266 | assert(Join.isValid()); |
| 1267 | return Join; |
| 1268 | } |
| 1269 | }; |
| 1270 | |
| 1271 | Function &Fn; |
| 1272 | const DataLayout &Layout; |
| 1273 | const DenseSet<DebugAggregate> *VarsWithStackSlot; |
| 1274 | FunctionVarLocsBuilder *FnVarLocs; |
| 1275 | DenseMap<const BasicBlock *, BlockInfo> LiveIn; |
| 1276 | DenseMap<const BasicBlock *, BlockInfo> LiveOut; |
| 1277 | |
| 1278 | /// Helper for process methods to track variables touched each frame. |
| 1279 | DenseSet<VariableID> VarsTouchedThisFrame; |
| 1280 | |
| 1281 | /// The set of variables that sometimes are not located in their stack home. |
| 1282 | DenseSet<DebugAggregate> NotAlwaysStackHomed; |
| 1283 | |
| 1284 | VariableID getVariableID(const DebugVariable &Var) { |
| 1285 | return FnVarLocs->insertVariable(V: Var); |
| 1286 | } |
| 1287 | |
| 1288 | /// Join the LiveOut values of preds that are contained in \p Visited into |
| 1289 | /// LiveIn[BB]. Return True if LiveIn[BB] has changed as a result. LiveIn[BB] |
| 1290 | /// values monotonically increase. See the @link joinMethods join methods |
| 1291 | /// @endlink documentation for more info. |
| 1292 | bool join(const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited); |
| 1293 | ///@name joinMethods |
| 1294 | /// Functions that implement `join` (the least upper bound) for the |
| 1295 | /// join-semilattice types used in the dataflow. There is an explicit bottom |
| 1296 | /// value (⊥) for some types and and explicit top value (⊤) for all types. |
| 1297 | /// By definition: |
| 1298 | /// |
| 1299 | /// Join(A, B) >= A && Join(A, B) >= B |
| 1300 | /// Join(A, ⊥) = A |
| 1301 | /// Join(A, ⊤) = ⊤ |
| 1302 | /// |
| 1303 | /// These invariants are important for monotonicity. |
| 1304 | /// |
| 1305 | /// For the map-type functions, all unmapped keys in an empty map are |
| 1306 | /// associated with a bottom value (⊥). This represents their values being |
| 1307 | /// unknown. Unmapped keys in non-empty maps (joining two maps with a key |
| 1308 | /// only present in one) represents either a variable going out of scope or |
| 1309 | /// dropped debug info. It is assumed the key is associated with a top value |
| 1310 | /// (⊤) in this case (unknown location / assignment). |
| 1311 | ///@{ |
| 1312 | static LocKind joinKind(LocKind A, LocKind B); |
| 1313 | static Assignment joinAssignment(const Assignment &A, const Assignment &B); |
| 1314 | BlockInfo joinBlockInfo(const BlockInfo &A, const BlockInfo &B); |
| 1315 | ///@} |
| 1316 | |
| 1317 | /// Process the instructions in \p BB updating \p LiveSet along the way. \p |
| 1318 | /// LiveSet must be initialized with the current live-in locations before |
| 1319 | /// calling this. |
| 1320 | void process(BasicBlock &BB, BlockInfo *LiveSet); |
| 1321 | ///@name processMethods |
| 1322 | /// Methods to process instructions in order to update the LiveSet (current |
| 1323 | /// location information). |
| 1324 | ///@{ |
| 1325 | void processNonDbgInstruction(Instruction &I, BlockInfo *LiveSet); |
| 1326 | /// Update \p LiveSet after encountering an instruction with a DIAssignID |
| 1327 | /// attachment, \p I. |
| 1328 | void processTaggedInstruction(Instruction &I, BlockInfo *LiveSet); |
| 1329 | /// Update \p LiveSet after encountering an instruciton without a DIAssignID |
| 1330 | /// attachment, \p I. |
| 1331 | void processUntaggedInstruction(Instruction &I, BlockInfo *LiveSet); |
| 1332 | void processUnknownStoreToVariable(Instruction &I, VariableID &Var, |
| 1333 | BlockInfo *LiveSet); |
| 1334 | void processDbgAssign(DbgVariableRecord *Assign, BlockInfo *LiveSet); |
| 1335 | void processDbgVariableRecord(DbgVariableRecord &DVR, BlockInfo *LiveSet); |
| 1336 | void processDbgValue(DbgVariableRecord *DbgValue, BlockInfo *LiveSet); |
| 1337 | /// Add an assignment to memory for the variable /p Var. |
| 1338 | void addMemDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV); |
| 1339 | /// Add an assignment to the variable /p Var. |
| 1340 | void addDbgDef(BlockInfo *LiveSet, VariableID Var, const Assignment &AV); |
| 1341 | ///@} |
| 1342 | |
| 1343 | /// Set the LocKind for \p Var. |
| 1344 | void setLocKind(BlockInfo *LiveSet, VariableID Var, LocKind K); |
| 1345 | /// Get the live LocKind for a \p Var. Requires addMemDef or addDbgDef to |
| 1346 | /// have been called for \p Var first. |
| 1347 | LocKind getLocKind(BlockInfo *LiveSet, VariableID Var); |
| 1348 | /// Return true if \p Var has an assignment in \p M matching \p AV. |
| 1349 | bool hasVarWithAssignment(BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind, |
| 1350 | VariableID Var, const Assignment &AV); |
| 1351 | /// Return the set of VariableIDs corresponding the fragments contained fully |
| 1352 | /// within the variable/fragment \p Var. |
| 1353 | ArrayRef<VariableID> getContainedFragments(VariableID Var) const; |
| 1354 | |
| 1355 | /// Mark \p Var as having been touched this frame. Note, this applies only |
| 1356 | /// to the exact fragment \p Var and not to any fragments contained within. |
| 1357 | void touchFragment(VariableID Var); |
| 1358 | |
| 1359 | /// Emit info for variables that are fully promoted. |
| 1360 | bool emitPromotedVarLocs(FunctionVarLocsBuilder *FnVarLocs); |
| 1361 | |
| 1362 | public: |
| 1363 | AssignmentTrackingLowering(Function &Fn, const DataLayout &Layout, |
| 1364 | const DenseSet<DebugAggregate> *VarsWithStackSlot) |
| 1365 | : Fn(Fn), Layout(Layout), VarsWithStackSlot(VarsWithStackSlot) {} |
| 1366 | /// Run the analysis, adding variable location info to \p FnVarLocs. Returns |
| 1367 | /// true if any variable locations have been added to FnVarLocs. |
| 1368 | bool run(FunctionVarLocsBuilder *FnVarLocs); |
| 1369 | }; |
| 1370 | } // namespace |
| 1371 | |
| 1372 | ArrayRef<VariableID> |
| 1373 | AssignmentTrackingLowering::getContainedFragments(VariableID Var) const { |
| 1374 | auto R = VarContains.find(Val: Var); |
| 1375 | if (R == VarContains.end()) |
| 1376 | return {}; |
| 1377 | return R->second; |
| 1378 | } |
| 1379 | |
| 1380 | void AssignmentTrackingLowering::touchFragment(VariableID Var) { |
| 1381 | VarsTouchedThisFrame.insert(V: Var); |
| 1382 | } |
| 1383 | |
| 1384 | void AssignmentTrackingLowering::setLocKind(BlockInfo *LiveSet, VariableID Var, |
| 1385 | LocKind K) { |
| 1386 | auto SetKind = [this](BlockInfo *LiveSet, VariableID Var, LocKind K) { |
| 1387 | LiveSet->setLocKind(Var, K); |
| 1388 | touchFragment(Var); |
| 1389 | }; |
| 1390 | SetKind(LiveSet, Var, K); |
| 1391 | |
| 1392 | // Update the LocKind for all fragments contained within Var. |
| 1393 | for (VariableID Frag : getContainedFragments(Var)) |
| 1394 | SetKind(LiveSet, Frag, K); |
| 1395 | } |
| 1396 | |
| 1397 | AssignmentTrackingLowering::LocKind |
| 1398 | AssignmentTrackingLowering::getLocKind(BlockInfo *LiveSet, VariableID Var) { |
| 1399 | return LiveSet->getLocKind(Var); |
| 1400 | } |
| 1401 | |
| 1402 | void AssignmentTrackingLowering::addMemDef(BlockInfo *LiveSet, VariableID Var, |
| 1403 | const Assignment &AV) { |
| 1404 | LiveSet->setAssignment(Kind: BlockInfo::Stack, Var, AV); |
| 1405 | |
| 1406 | // Use this assigment for all fragments contained within Var, but do not |
| 1407 | // provide a Source because we cannot convert Var's value to a value for the |
| 1408 | // fragment. |
| 1409 | Assignment FragAV = AV; |
| 1410 | FragAV.Source = nullptr; |
| 1411 | for (VariableID Frag : getContainedFragments(Var)) |
| 1412 | LiveSet->setAssignment(Kind: BlockInfo::Stack, Var: Frag, AV: FragAV); |
| 1413 | } |
| 1414 | |
| 1415 | void AssignmentTrackingLowering::addDbgDef(BlockInfo *LiveSet, VariableID Var, |
| 1416 | const Assignment &AV) { |
| 1417 | LiveSet->setAssignment(Kind: BlockInfo::Debug, Var, AV); |
| 1418 | |
| 1419 | // Use this assigment for all fragments contained within Var, but do not |
| 1420 | // provide a Source because we cannot convert Var's value to a value for the |
| 1421 | // fragment. |
| 1422 | Assignment FragAV = AV; |
| 1423 | FragAV.Source = nullptr; |
| 1424 | for (VariableID Frag : getContainedFragments(Var)) |
| 1425 | LiveSet->setAssignment(Kind: BlockInfo::Debug, Var: Frag, AV: FragAV); |
| 1426 | } |
| 1427 | |
| 1428 | static DIAssignID *getIDFromInst(const Instruction &I) { |
| 1429 | return cast<DIAssignID>(Val: I.getMetadata(KindID: LLVMContext::MD_DIAssignID)); |
| 1430 | } |
| 1431 | |
| 1432 | static DIAssignID *getIDFromMarker(const DbgVariableRecord &DVR) { |
| 1433 | assert(DVR.isDbgAssign() && |
| 1434 | "Cannot get a DIAssignID from a non-assign DbgVariableRecord!" ); |
| 1435 | return DVR.getAssignID(); |
| 1436 | } |
| 1437 | |
| 1438 | /// Return true if \p Var has an assignment in \p M matching \p AV. |
| 1439 | bool AssignmentTrackingLowering::hasVarWithAssignment( |
| 1440 | BlockInfo *LiveSet, BlockInfo::AssignmentKind Kind, VariableID Var, |
| 1441 | const Assignment &AV) { |
| 1442 | if (!LiveSet->hasAssignment(Kind, Var, AV)) |
| 1443 | return false; |
| 1444 | |
| 1445 | // Check all the frags contained within Var as these will have all been |
| 1446 | // mapped to AV at the last store to Var. |
| 1447 | for (VariableID Frag : getContainedFragments(Var)) |
| 1448 | if (!LiveSet->hasAssignment(Kind, Var: Frag, AV)) |
| 1449 | return false; |
| 1450 | return true; |
| 1451 | } |
| 1452 | |
| 1453 | #ifndef NDEBUG |
| 1454 | const char *locStr(AssignmentTrackingLowering::LocKind Loc) { |
| 1455 | using LocKind = AssignmentTrackingLowering::LocKind; |
| 1456 | switch (Loc) { |
| 1457 | case LocKind::Val: |
| 1458 | return "Val" ; |
| 1459 | case LocKind::Mem: |
| 1460 | return "Mem" ; |
| 1461 | case LocKind::None: |
| 1462 | return "None" ; |
| 1463 | }; |
| 1464 | llvm_unreachable("unknown LocKind" ); |
| 1465 | } |
| 1466 | #endif |
| 1467 | |
| 1468 | VarLocInsertPt getNextNode(const DbgRecord *DVR) { |
| 1469 | auto NextIt = ++(DVR->getIterator()); |
| 1470 | if (NextIt == DVR->getMarker()->getDbgRecordRange().end()) |
| 1471 | return DVR->getMarker()->MarkedInstr; |
| 1472 | return &*NextIt; |
| 1473 | } |
| 1474 | VarLocInsertPt getNextNode(const Instruction *Inst) { |
| 1475 | const Instruction *Next = Inst->getNextNode(); |
| 1476 | if (!Next->hasDbgRecords()) |
| 1477 | return Next; |
| 1478 | return &*Next->getDbgRecordRange().begin(); |
| 1479 | } |
| 1480 | VarLocInsertPt getNextNode(VarLocInsertPt InsertPt) { |
| 1481 | if (isa<const Instruction *>(Val: InsertPt)) |
| 1482 | return getNextNode(Inst: cast<const Instruction *>(Val&: InsertPt)); |
| 1483 | return getNextNode(DVR: cast<const DbgRecord *>(Val&: InsertPt)); |
| 1484 | } |
| 1485 | |
| 1486 | void AssignmentTrackingLowering::emitDbgValue( |
| 1487 | AssignmentTrackingLowering::LocKind Kind, DbgVariableRecord *Source, |
| 1488 | VarLocInsertPt After) { |
| 1489 | |
| 1490 | DILocation *DL = Source->getDebugLoc(); |
| 1491 | auto Emit = [this, Source, After, DL](Metadata *Val, DIExpression *Expr) { |
| 1492 | assert(Expr); |
| 1493 | if (!Val) |
| 1494 | Val = ValueAsMetadata::get( |
| 1495 | V: PoisonValue::get(T: Type::getInt1Ty(C&: Source->getContext()))); |
| 1496 | |
| 1497 | // Find a suitable insert point. |
| 1498 | auto InsertBefore = getNextNode(InsertPt: After); |
| 1499 | assert(InsertBefore && "Shouldn't be inserting after a terminator" ); |
| 1500 | |
| 1501 | VariableID Var = getVariableID(Var: DebugVariable(Source)); |
| 1502 | VarLocInfo VarLoc; |
| 1503 | VarLoc.VariableID = Var; |
| 1504 | VarLoc.Expr = Expr; |
| 1505 | VarLoc.Values = RawLocationWrapper(Val); |
| 1506 | VarLoc.DL = DL; |
| 1507 | // Insert it into the map for later. |
| 1508 | InsertBeforeMap[InsertBefore].push_back(Elt: VarLoc); |
| 1509 | }; |
| 1510 | |
| 1511 | // NOTE: This block can mutate Kind. |
| 1512 | if (Kind == LocKind::Mem) { |
| 1513 | assert(Source->isDbgAssign()); |
| 1514 | const DbgVariableRecord *Assign = Source; |
| 1515 | // Check the address hasn't been dropped (e.g. the debug uses may not have |
| 1516 | // been replaced before deleting a Value). |
| 1517 | if (Assign->isKillAddress()) { |
| 1518 | // The address isn't valid so treat this as a non-memory def. |
| 1519 | Kind = LocKind::Val; |
| 1520 | } else { |
| 1521 | Value *Val = Assign->getAddress(); |
| 1522 | DIExpression *Expr = Assign->getAddressExpression(); |
| 1523 | assert(!Expr->getFragmentInfo() && |
| 1524 | "fragment info should be stored in value-expression only" ); |
| 1525 | // Copy the fragment info over from the value-expression to the new |
| 1526 | // DIExpression. |
| 1527 | if (auto OptFragInfo = Source->getExpression()->getFragmentInfo()) { |
| 1528 | auto FragInfo = *OptFragInfo; |
| 1529 | Expr = *DIExpression::createFragmentExpression( |
| 1530 | Expr, OffsetInBits: FragInfo.OffsetInBits, SizeInBits: FragInfo.SizeInBits); |
| 1531 | } |
| 1532 | // The address-expression has an implicit deref, add it now. |
| 1533 | std::tie(args&: Val, args&: Expr) = |
| 1534 | walkToAllocaAndPrependOffsetDeref(DL: Layout, Start: Val, Expression: Expr); |
| 1535 | Emit(ValueAsMetadata::get(V: Val), Expr); |
| 1536 | return; |
| 1537 | } |
| 1538 | } |
| 1539 | |
| 1540 | if (Kind == LocKind::Val) { |
| 1541 | Emit(Source->getRawLocation(), Source->getExpression()); |
| 1542 | return; |
| 1543 | } |
| 1544 | |
| 1545 | if (Kind == LocKind::None) { |
| 1546 | Emit(nullptr, Source->getExpression()); |
| 1547 | return; |
| 1548 | } |
| 1549 | } |
| 1550 | |
| 1551 | void AssignmentTrackingLowering::processNonDbgInstruction( |
| 1552 | Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { |
| 1553 | if (I.hasMetadata(KindID: LLVMContext::MD_DIAssignID)) |
| 1554 | processTaggedInstruction(I, LiveSet); |
| 1555 | else |
| 1556 | processUntaggedInstruction(I, LiveSet); |
| 1557 | } |
| 1558 | |
| 1559 | void AssignmentTrackingLowering::processUnknownStoreToVariable( |
| 1560 | Instruction &I, VariableID &Var, BlockInfo *LiveSet) { |
| 1561 | // We may have assigned to some unknown fragment of the variable, so |
| 1562 | // treat the memory assignment as unknown for now. |
| 1563 | addMemDef(LiveSet, Var, AV: Assignment::makeNoneOrPhi()); |
| 1564 | // If we weren't already using a memory location, we don't need to do |
| 1565 | // anything more. |
| 1566 | if (getLocKind(LiveSet, Var) != LocKind::Mem) |
| 1567 | return; |
| 1568 | // If there is a live debug value for this variable, fall back to using |
| 1569 | // that. |
| 1570 | Assignment DbgAV = LiveSet->getAssignment(Kind: BlockInfo::Debug, Var); |
| 1571 | if (DbgAV.Status != Assignment::NoneOrPhi && DbgAV.Source) { |
| 1572 | LLVM_DEBUG(dbgs() << "Switching to fallback debug value: " ; |
| 1573 | DbgAV.dump(dbgs()); dbgs() << "\n" ); |
| 1574 | setLocKind(LiveSet, Var, K: LocKind::Val); |
| 1575 | emitDbgValue(Kind: LocKind::Val, Source: DbgAV.Source, After: &I); |
| 1576 | return; |
| 1577 | } |
| 1578 | // Otherwise, find a suitable insert point, before the next instruction or |
| 1579 | // DbgRecord after I. |
| 1580 | auto InsertBefore = getNextNode(Inst: &I); |
| 1581 | assert(InsertBefore && "Shouldn't be inserting after a terminator" ); |
| 1582 | |
| 1583 | // Get DILocation for this assignment. |
| 1584 | DebugVariable V = FnVarLocs->getVariable(ID: Var); |
| 1585 | DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt()); |
| 1586 | const DILocation *DILoc = DILocation::get( |
| 1587 | Context&: Fn.getContext(), Line: 0, Column: 0, Scope: V.getVariable()->getScope(), InlinedAt); |
| 1588 | |
| 1589 | VarLocInfo VarLoc; |
| 1590 | VarLoc.VariableID = Var; |
| 1591 | VarLoc.Expr = DIExpression::get(Context&: I.getContext(), Elements: {}); |
| 1592 | VarLoc.Values = RawLocationWrapper( |
| 1593 | ValueAsMetadata::get(V: PoisonValue::get(T: Type::getInt1Ty(C&: I.getContext())))); |
| 1594 | VarLoc.DL = DILoc; |
| 1595 | InsertBeforeMap[InsertBefore].push_back(Elt: VarLoc); |
| 1596 | } |
| 1597 | |
| 1598 | void AssignmentTrackingLowering::processUntaggedInstruction( |
| 1599 | Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { |
| 1600 | // Interpret stack stores that are not tagged as an assignment in memory for |
| 1601 | // the variables associated with that address. These stores may not be tagged |
| 1602 | // because a) the store cannot be represented using dbg.assigns (non-const |
| 1603 | // length or offset) or b) the tag was accidentally dropped during |
| 1604 | // optimisations. For these stores we fall back to assuming that the stack |
| 1605 | // home is a valid location for the variables. The benefit is that this |
| 1606 | // prevents us missing an assignment and therefore incorrectly maintaining |
| 1607 | // earlier location definitions, and in many cases it should be a reasonable |
| 1608 | // assumption. However, this will occasionally lead to slight |
| 1609 | // inaccuracies. The value of a hoisted untagged store will be visible |
| 1610 | // "early", for example. |
| 1611 | assert(!I.hasMetadata(LLVMContext::MD_DIAssignID)); |
| 1612 | auto It = UntaggedStoreVars.find(Val: &I); |
| 1613 | if (It == UntaggedStoreVars.end()) { |
| 1614 | // It is possible that we have an untagged unknown store, i.e. one that |
| 1615 | // cannot be represented as a simple (base, offset, size) - in this case we |
| 1616 | // should undef the memory location of the variable, as if we had a tagged |
| 1617 | // store that did not match the current assignment. |
| 1618 | // FIXME: It should be possible to support these stores, but it would |
| 1619 | // require more extensive changes to our representation of assignments. |
| 1620 | if (auto UnhandledStoreIt = UnknownStoreVars.find(Val: &I); |
| 1621 | UnhandledStoreIt != UnknownStoreVars.end()) { |
| 1622 | LLVM_DEBUG(dbgs() << "Processing untagged unknown store " << I << "\n" ); |
| 1623 | for (auto &Var : UnhandledStoreIt->second) |
| 1624 | processUnknownStoreToVariable(I, Var, LiveSet); |
| 1625 | } |
| 1626 | return; // No variables associated with the store destination. |
| 1627 | } |
| 1628 | |
| 1629 | LLVM_DEBUG(dbgs() << "processUntaggedInstruction on UNTAGGED INST " << I |
| 1630 | << "\n" ); |
| 1631 | // Iterate over the variables that this store affects, add a NoneOrPhi dbg |
| 1632 | // and mem def, set lockind to Mem, and emit a location def for each. |
| 1633 | for (auto [Var, Info] : It->second) { |
| 1634 | // This instruction is treated as both a debug and memory assignment, |
| 1635 | // meaning the memory location should be used. We don't have an assignment |
| 1636 | // ID though so use Assignment::makeNoneOrPhi() to create an imaginary one. |
| 1637 | addMemDef(LiveSet, Var, AV: Assignment::makeNoneOrPhi()); |
| 1638 | addDbgDef(LiveSet, Var, AV: Assignment::makeNoneOrPhi()); |
| 1639 | setLocKind(LiveSet, Var, K: LocKind::Mem); |
| 1640 | LLVM_DEBUG(dbgs() << " setting Stack LocKind to: " << locStr(LocKind::Mem) |
| 1641 | << "\n" ); |
| 1642 | // Build the dbg location def to insert. |
| 1643 | // |
| 1644 | // DIExpression: Add fragment and offset. |
| 1645 | DebugVariable V = FnVarLocs->getVariable(ID: Var); |
| 1646 | DIExpression *DIE = DIExpression::get(Context&: I.getContext(), Elements: {}); |
| 1647 | if (auto Frag = V.getFragment()) { |
| 1648 | auto R = DIExpression::createFragmentExpression(Expr: DIE, OffsetInBits: Frag->OffsetInBits, |
| 1649 | SizeInBits: Frag->SizeInBits); |
| 1650 | assert(R && "unexpected createFragmentExpression failure" ); |
| 1651 | DIE = *R; |
| 1652 | } |
| 1653 | SmallVector<uint64_t, 3> Ops; |
| 1654 | if (Info.OffsetInBits) |
| 1655 | Ops = {dwarf::DW_OP_plus_uconst, Info.OffsetInBits / 8}; |
| 1656 | Ops.push_back(Elt: dwarf::DW_OP_deref); |
| 1657 | DIE = DIExpression::prependOpcodes(Expr: DIE, Ops, /*StackValue=*/false, |
| 1658 | /*EntryValue=*/false); |
| 1659 | // Find a suitable insert point, before the next instruction or DbgRecord |
| 1660 | // after I. |
| 1661 | auto InsertBefore = getNextNode(Inst: &I); |
| 1662 | assert(InsertBefore && "Shouldn't be inserting after a terminator" ); |
| 1663 | |
| 1664 | // Get DILocation for this unrecorded assignment. |
| 1665 | DILocation *InlinedAt = const_cast<DILocation *>(V.getInlinedAt()); |
| 1666 | const DILocation *DILoc = DILocation::get( |
| 1667 | Context&: Fn.getContext(), Line: 0, Column: 0, Scope: V.getVariable()->getScope(), InlinedAt); |
| 1668 | |
| 1669 | VarLocInfo VarLoc; |
| 1670 | VarLoc.VariableID = static_cast<VariableID>(Var); |
| 1671 | VarLoc.Expr = DIE; |
| 1672 | VarLoc.Values = RawLocationWrapper( |
| 1673 | ValueAsMetadata::get(V: const_cast<AllocaInst *>(Info.Base))); |
| 1674 | VarLoc.DL = DILoc; |
| 1675 | // 3. Insert it into the map for later. |
| 1676 | InsertBeforeMap[InsertBefore].push_back(Elt: VarLoc); |
| 1677 | } |
| 1678 | } |
| 1679 | |
| 1680 | void AssignmentTrackingLowering::processTaggedInstruction( |
| 1681 | Instruction &I, AssignmentTrackingLowering::BlockInfo *LiveSet) { |
| 1682 | auto LinkedDPAssigns = at::getDVRAssignmentMarkers(Inst: &I); |
| 1683 | // No dbg.assign intrinsics linked. |
| 1684 | // FIXME: All vars that have a stack slot this store modifies that don't have |
| 1685 | // a dbg.assign linked to it should probably treat this like an untagged |
| 1686 | // store. |
| 1687 | if (LinkedDPAssigns.empty()) |
| 1688 | return; |
| 1689 | |
| 1690 | LLVM_DEBUG(dbgs() << "processTaggedInstruction on " << I << "\n" ); |
| 1691 | for (DbgVariableRecord *Assign : LinkedDPAssigns) { |
| 1692 | VariableID Var = getVariableID(Var: DebugVariable(Assign)); |
| 1693 | // Something has gone wrong if VarsWithStackSlot doesn't contain a variable |
| 1694 | // that is linked to a store. |
| 1695 | assert(VarsWithStackSlot->count(getAggregate(Assign)) && |
| 1696 | "expected Assign's variable to have stack slot" ); |
| 1697 | |
| 1698 | Assignment AV = Assignment::makeFromMemDef(ID: getIDFromInst(I)); |
| 1699 | addMemDef(LiveSet, Var, AV); |
| 1700 | |
| 1701 | LLVM_DEBUG(dbgs() << " linked to " << *Assign << "\n" ); |
| 1702 | LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) |
| 1703 | << " -> " ); |
| 1704 | |
| 1705 | // The last assignment to the stack is now AV. Check if the last debug |
| 1706 | // assignment has a matching Assignment. |
| 1707 | if (hasVarWithAssignment(LiveSet, Kind: BlockInfo::Debug, Var, AV)) { |
| 1708 | // The StackHomeValue and DebugValue for this variable match so we can |
| 1709 | // emit a stack home location here. |
| 1710 | LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n" ;); |
| 1711 | LLVM_DEBUG(dbgs() << " Stack val: " ; AV.dump(dbgs()); dbgs() << "\n" ); |
| 1712 | LLVM_DEBUG(dbgs() << " Debug val: " ; |
| 1713 | LiveSet->DebugValue[static_cast<unsigned>(Var)].dump(dbgs()); |
| 1714 | dbgs() << "\n" ); |
| 1715 | setLocKind(LiveSet, Var, K: LocKind::Mem); |
| 1716 | emitDbgValue(Kind: LocKind::Mem, Source: Assign, After: &I); |
| 1717 | return; |
| 1718 | } |
| 1719 | |
| 1720 | // The StackHomeValue and DebugValue for this variable do not match. I.e. |
| 1721 | // The value currently stored in the stack is not what we'd expect to |
| 1722 | // see, so we cannot use emit a stack home location here. Now we will |
| 1723 | // look at the live LocKind for the variable and determine an appropriate |
| 1724 | // dbg.value to emit. |
| 1725 | LocKind PrevLoc = getLocKind(LiveSet, Var); |
| 1726 | switch (PrevLoc) { |
| 1727 | case LocKind::Val: { |
| 1728 | // The value in memory in memory has changed but we're not currently |
| 1729 | // using the memory location. Do nothing. |
| 1730 | LLVM_DEBUG(dbgs() << "Val, (unchanged)\n" ;); |
| 1731 | setLocKind(LiveSet, Var, K: LocKind::Val); |
| 1732 | } break; |
| 1733 | case LocKind::Mem: { |
| 1734 | // There's been an assignment to memory that we were using as a |
| 1735 | // location for this variable, and the Assignment doesn't match what |
| 1736 | // we'd expect to see in memory. |
| 1737 | Assignment DbgAV = LiveSet->getAssignment(Kind: BlockInfo::Debug, Var); |
| 1738 | if (DbgAV.Status == Assignment::NoneOrPhi) { |
| 1739 | // We need to terminate any previously open location now. |
| 1740 | LLVM_DEBUG(dbgs() << "None, No Debug value available\n" ;); |
| 1741 | setLocKind(LiveSet, Var, K: LocKind::None); |
| 1742 | emitDbgValue(Kind: LocKind::None, Source: Assign, After: &I); |
| 1743 | } else { |
| 1744 | // The previous DebugValue Value can be used here. |
| 1745 | LLVM_DEBUG(dbgs() << "Val, Debug value is Known\n" ;); |
| 1746 | setLocKind(LiveSet, Var, K: LocKind::Val); |
| 1747 | if (DbgAV.Source) { |
| 1748 | emitDbgValue(Kind: LocKind::Val, Source: DbgAV.Source, After: &I); |
| 1749 | } else { |
| 1750 | // PrevAV.Source is nullptr so we must emit undef here. |
| 1751 | emitDbgValue(Kind: LocKind::None, Source: Assign, After: &I); |
| 1752 | } |
| 1753 | } |
| 1754 | } break; |
| 1755 | case LocKind::None: { |
| 1756 | // There's been an assignment to memory and we currently are |
| 1757 | // not tracking a location for the variable. Do not emit anything. |
| 1758 | LLVM_DEBUG(dbgs() << "None, (unchanged)\n" ;); |
| 1759 | setLocKind(LiveSet, Var, K: LocKind::None); |
| 1760 | } break; |
| 1761 | } |
| 1762 | } |
| 1763 | } |
| 1764 | |
| 1765 | void AssignmentTrackingLowering::processDbgAssign(DbgVariableRecord *DbgAssign, |
| 1766 | BlockInfo *LiveSet) { |
| 1767 | // Only bother tracking variables that are at some point stack homed. Other |
| 1768 | // variables can be dealt with trivially later. |
| 1769 | if (!VarsWithStackSlot->count(V: getAggregate(Var: DbgAssign))) |
| 1770 | return; |
| 1771 | |
| 1772 | VariableID Var = getVariableID(Var: DebugVariable(DbgAssign)); |
| 1773 | Assignment AV = Assignment::make(ID: getIDFromMarker(DVR: *DbgAssign), Source: DbgAssign); |
| 1774 | addDbgDef(LiveSet, Var, AV); |
| 1775 | |
| 1776 | LLVM_DEBUG(dbgs() << "processDbgAssign on " << *DbgAssign << "\n" ;); |
| 1777 | LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) |
| 1778 | << " -> " ); |
| 1779 | |
| 1780 | // Check if the DebugValue and StackHomeValue both hold the same |
| 1781 | // Assignment. |
| 1782 | if (hasVarWithAssignment(LiveSet, Kind: BlockInfo::Stack, Var, AV)) { |
| 1783 | // They match. We can use the stack home because the debug intrinsics |
| 1784 | // state that an assignment happened here, and we know that specific |
| 1785 | // assignment was the last one to take place in memory for this variable. |
| 1786 | LocKind Kind; |
| 1787 | if (DbgAssign->isKillAddress()) { |
| 1788 | LLVM_DEBUG( |
| 1789 | dbgs() |
| 1790 | << "Val, Stack matches Debug program but address is killed\n" ;); |
| 1791 | Kind = LocKind::Val; |
| 1792 | } else { |
| 1793 | LLVM_DEBUG(dbgs() << "Mem, Stack matches Debug program\n" ;); |
| 1794 | Kind = LocKind::Mem; |
| 1795 | }; |
| 1796 | setLocKind(LiveSet, Var, K: Kind); |
| 1797 | emitDbgValue(Kind, Source: DbgAssign, After: DbgAssign); |
| 1798 | } else { |
| 1799 | // The last assignment to the memory location isn't the one that we want |
| 1800 | // to show to the user so emit a dbg.value(Value). Value may be undef. |
| 1801 | LLVM_DEBUG(dbgs() << "Val, Stack contents is unknown\n" ;); |
| 1802 | setLocKind(LiveSet, Var, K: LocKind::Val); |
| 1803 | emitDbgValue(Kind: LocKind::Val, Source: DbgAssign, After: DbgAssign); |
| 1804 | } |
| 1805 | } |
| 1806 | |
| 1807 | void AssignmentTrackingLowering::processDbgValue(DbgVariableRecord *DbgValue, |
| 1808 | BlockInfo *LiveSet) { |
| 1809 | // Only other tracking variables that are at some point stack homed. |
| 1810 | // Other variables can be dealt with trivally later. |
| 1811 | if (!VarsWithStackSlot->count(V: getAggregate(Var: DbgValue))) |
| 1812 | return; |
| 1813 | |
| 1814 | VariableID Var = getVariableID(Var: DebugVariable(DbgValue)); |
| 1815 | // We have no ID to create an Assignment with so we mark this assignment as |
| 1816 | // NoneOrPhi. Note that the dbg.value still exists, we just cannot determine |
| 1817 | // the assignment responsible for setting this value. |
| 1818 | // This is fine; dbg.values are essentially interchangable with unlinked |
| 1819 | // dbg.assigns, and some passes such as mem2reg and instcombine add them to |
| 1820 | // PHIs for promoted variables. |
| 1821 | Assignment AV = Assignment::makeNoneOrPhi(); |
| 1822 | addDbgDef(LiveSet, Var, AV); |
| 1823 | |
| 1824 | LLVM_DEBUG(dbgs() << "processDbgValue on " << *DbgValue << "\n" ;); |
| 1825 | LLVM_DEBUG(dbgs() << " LiveLoc " << locStr(getLocKind(LiveSet, Var)) |
| 1826 | << " -> Val, dbg.value override" ); |
| 1827 | |
| 1828 | setLocKind(LiveSet, Var, K: LocKind::Val); |
| 1829 | emitDbgValue(Kind: LocKind::Val, Source: DbgValue, After: DbgValue); |
| 1830 | } |
| 1831 | |
| 1832 | static bool hasZeroSizedFragment(DbgVariableRecord &DbgValue) { |
| 1833 | if (auto F = DbgValue.getExpression()->getFragmentInfo()) |
| 1834 | return F->SizeInBits == 0; |
| 1835 | return false; |
| 1836 | } |
| 1837 | |
| 1838 | void AssignmentTrackingLowering::processDbgVariableRecord( |
| 1839 | DbgVariableRecord &DVR, AssignmentTrackingLowering::BlockInfo *LiveSet) { |
| 1840 | // Ignore assignments to zero bits of the variable. |
| 1841 | if (hasZeroSizedFragment(DbgValue&: DVR)) |
| 1842 | return; |
| 1843 | |
| 1844 | if (DVR.isDbgAssign()) |
| 1845 | processDbgAssign(DbgAssign: &DVR, LiveSet); |
| 1846 | else if (DVR.isDbgValue()) |
| 1847 | processDbgValue(DbgValue: &DVR, LiveSet); |
| 1848 | } |
| 1849 | |
| 1850 | void AssignmentTrackingLowering::resetInsertionPoint(Instruction &After) { |
| 1851 | assert(!After.isTerminator() && "Can't insert after a terminator" ); |
| 1852 | auto *R = InsertBeforeMap.find(Key: getNextNode(Inst: &After)); |
| 1853 | if (R == InsertBeforeMap.end()) |
| 1854 | return; |
| 1855 | R->second.clear(); |
| 1856 | } |
| 1857 | void AssignmentTrackingLowering::resetInsertionPoint(DbgVariableRecord &After) { |
| 1858 | auto *R = InsertBeforeMap.find(Key: getNextNode(DVR: &After)); |
| 1859 | if (R == InsertBeforeMap.end()) |
| 1860 | return; |
| 1861 | R->second.clear(); |
| 1862 | } |
| 1863 | |
| 1864 | void AssignmentTrackingLowering::process(BasicBlock &BB, BlockInfo *LiveSet) { |
| 1865 | // If the block starts with DbgRecords, we need to process those DbgRecords as |
| 1866 | // their own frame without processing any instructions first. |
| 1867 | bool ProcessedLeadingDbgRecords = !BB.begin()->hasDbgRecords(); |
| 1868 | for (auto II = BB.begin(), EI = BB.end(); II != EI;) { |
| 1869 | assert(VarsTouchedThisFrame.empty()); |
| 1870 | // Process the instructions in "frames". A "frame" includes a single |
| 1871 | // non-debug instruction followed any debug instructions before the |
| 1872 | // next non-debug instruction. |
| 1873 | |
| 1874 | // Skip the current instruction if it has unprocessed DbgRecords attached |
| 1875 | // (see comment above `ProcessedLeadingDbgRecords`). |
| 1876 | if (ProcessedLeadingDbgRecords) { |
| 1877 | // II is now either a debug intrinsic, a non-debug instruction with no |
| 1878 | // attached DbgRecords, or a non-debug instruction with attached processed |
| 1879 | // DbgRecords. |
| 1880 | // II has not been processed. |
| 1881 | if (II->isTerminator()) |
| 1882 | break; |
| 1883 | resetInsertionPoint(After&: *II); |
| 1884 | processNonDbgInstruction(I&: *II, LiveSet); |
| 1885 | assert(LiveSet->isValid()); |
| 1886 | ++II; |
| 1887 | } |
| 1888 | // II is now either a debug intrinsic, a non-debug instruction with no |
| 1889 | // attached DbgRecords, or a non-debug instruction with attached unprocessed |
| 1890 | // DbgRecords. |
| 1891 | if (II != EI && II->hasDbgRecords()) { |
| 1892 | // Skip over non-variable debug records (i.e., labels). They're going to |
| 1893 | // be read from IR (possibly re-ordering them within the debug record |
| 1894 | // range) rather than from the analysis results. |
| 1895 | for (DbgVariableRecord &DVR : filterDbgVars(R: II->getDbgRecordRange())) { |
| 1896 | resetInsertionPoint(After&: DVR); |
| 1897 | processDbgVariableRecord(DVR, LiveSet); |
| 1898 | assert(LiveSet->isValid()); |
| 1899 | } |
| 1900 | } |
| 1901 | ProcessedLeadingDbgRecords = true; |
| 1902 | // II is now a non-debug instruction either with no attached DbgRecords, or |
| 1903 | // with attached processed DbgRecords. II has not been processed, and all |
| 1904 | // debug instructions or DbgRecords in the frame preceding II have been |
| 1905 | // processed. |
| 1906 | |
| 1907 | // We've processed everything in the "frame". Now determine which variables |
| 1908 | // cannot be represented by a dbg.declare. |
| 1909 | for (auto Var : VarsTouchedThisFrame) { |
| 1910 | LocKind Loc = getLocKind(LiveSet, Var); |
| 1911 | // If a variable's LocKind is anything other than LocKind::Mem then we |
| 1912 | // must note that it cannot be represented with a dbg.declare. |
| 1913 | // Note that this check is enough without having to check the result of |
| 1914 | // joins() because for join to produce anything other than Mem after |
| 1915 | // we've already seen a Mem we'd be joining None or Val with Mem. In that |
| 1916 | // case, we've already hit this codepath when we set the LocKind to Val |
| 1917 | // or None in that block. |
| 1918 | if (Loc != LocKind::Mem) { |
| 1919 | DebugVariable DbgVar = FnVarLocs->getVariable(ID: Var); |
| 1920 | DebugAggregate Aggr{DbgVar.getVariable(), DbgVar.getInlinedAt()}; |
| 1921 | NotAlwaysStackHomed.insert(V: Aggr); |
| 1922 | } |
| 1923 | } |
| 1924 | VarsTouchedThisFrame.clear(); |
| 1925 | } |
| 1926 | } |
| 1927 | |
| 1928 | AssignmentTrackingLowering::LocKind |
| 1929 | AssignmentTrackingLowering::joinKind(LocKind A, LocKind B) { |
| 1930 | // Partial order: |
| 1931 | // None > Mem, Val |
| 1932 | return A == B ? A : LocKind::None; |
| 1933 | } |
| 1934 | |
| 1935 | AssignmentTrackingLowering::Assignment |
| 1936 | AssignmentTrackingLowering::joinAssignment(const Assignment &A, |
| 1937 | const Assignment &B) { |
| 1938 | // Partial order: |
| 1939 | // NoneOrPhi(null, null) > Known(v, ?s) |
| 1940 | |
| 1941 | // If either are NoneOrPhi the join is NoneOrPhi. |
| 1942 | // If either value is different then the result is |
| 1943 | // NoneOrPhi (joining two values is a Phi). |
| 1944 | if (!A.isSameSourceAssignment(Other: B)) |
| 1945 | return Assignment::makeNoneOrPhi(); |
| 1946 | if (A.Status == Assignment::NoneOrPhi) |
| 1947 | return Assignment::makeNoneOrPhi(); |
| 1948 | |
| 1949 | // Source is used to lookup the value + expression in the debug program if |
| 1950 | // the stack slot gets assigned a value earlier than expected. Because |
| 1951 | // we're only tracking the one dbg.assign, we can't capture debug PHIs. |
| 1952 | // It's unlikely that we're losing out on much coverage by avoiding that |
| 1953 | // extra work. |
| 1954 | // The Source may differ in this situation: |
| 1955 | // Pred.1: |
| 1956 | // dbg.assign i32 0, ..., !1, ... |
| 1957 | // Pred.2: |
| 1958 | // dbg.assign i32 1, ..., !1, ... |
| 1959 | // Here the same assignment (!1) was performed in both preds in the source, |
| 1960 | // but we can't use either one unless they are identical (e.g. .we don't |
| 1961 | // want to arbitrarily pick between constant values). |
| 1962 | auto JoinSource = [&]() -> DbgVariableRecord * { |
| 1963 | if (A.Source == B.Source) |
| 1964 | return A.Source; |
| 1965 | if (!A.Source || !B.Source) |
| 1966 | return nullptr; |
| 1967 | if (A.Source->isEquivalentTo(Other: *B.Source)) |
| 1968 | return A.Source; |
| 1969 | return nullptr; |
| 1970 | }; |
| 1971 | DbgVariableRecord *Source = JoinSource(); |
| 1972 | assert(A.Status == B.Status && A.Status == Assignment::Known); |
| 1973 | assert(A.ID == B.ID); |
| 1974 | return Assignment::make(ID: A.ID, Source); |
| 1975 | } |
| 1976 | |
| 1977 | AssignmentTrackingLowering::BlockInfo |
| 1978 | AssignmentTrackingLowering::joinBlockInfo(const BlockInfo &A, |
| 1979 | const BlockInfo &B) { |
| 1980 | return BlockInfo::join(A, B, NumVars: TrackedVariablesVectorSize); |
| 1981 | } |
| 1982 | |
| 1983 | bool AssignmentTrackingLowering::join( |
| 1984 | const BasicBlock &BB, const SmallPtrSet<BasicBlock *, 16> &Visited) { |
| 1985 | |
| 1986 | SmallVector<const BasicBlock *> VisitedPreds; |
| 1987 | // Ignore backedges if we have not visited the predecessor yet. As the |
| 1988 | // predecessor hasn't yet had locations propagated into it, most locations |
| 1989 | // will not yet be valid, so treat them as all being uninitialized and |
| 1990 | // potentially valid. If a location guessed to be correct here is |
| 1991 | // invalidated later, we will remove it when we revisit this block. This |
| 1992 | // is essentially the same as initialising all LocKinds and Assignments to |
| 1993 | // an implicit ⊥ value which is the identity value for the join operation. |
| 1994 | for (const BasicBlock *Pred : predecessors(BB: &BB)) { |
| 1995 | if (Visited.count(Ptr: Pred)) |
| 1996 | VisitedPreds.push_back(Elt: Pred); |
| 1997 | } |
| 1998 | |
| 1999 | // No preds visited yet. |
| 2000 | if (VisitedPreds.empty()) { |
| 2001 | auto It = LiveIn.try_emplace(Key: &BB, Args: BlockInfo()); |
| 2002 | bool DidInsert = It.second; |
| 2003 | if (DidInsert) |
| 2004 | It.first->second.init(NumVars: TrackedVariablesVectorSize); |
| 2005 | return /*Changed*/ DidInsert; |
| 2006 | } |
| 2007 | |
| 2008 | // Exactly one visited pred. Copy the LiveOut from that pred into BB LiveIn. |
| 2009 | if (VisitedPreds.size() == 1) { |
| 2010 | const BlockInfo &PredLiveOut = LiveOut.find(Val: VisitedPreds[0])->second; |
| 2011 | |
| 2012 | // Check if there isn't an entry, or there is but the LiveIn set has |
| 2013 | // changed (expensive check). |
| 2014 | auto [CurrentLiveInEntry, Inserted] = LiveIn.try_emplace(Key: &BB, Args: PredLiveOut); |
| 2015 | if (Inserted) |
| 2016 | return /*Changed*/ true; |
| 2017 | if (PredLiveOut != CurrentLiveInEntry->second) { |
| 2018 | CurrentLiveInEntry->second = PredLiveOut; |
| 2019 | return /*Changed*/ true; |
| 2020 | } |
| 2021 | return /*Changed*/ false; |
| 2022 | } |
| 2023 | |
| 2024 | // More than one pred. Join LiveOuts of blocks 1 and 2. |
| 2025 | assert(VisitedPreds.size() > 1); |
| 2026 | const BlockInfo &PredLiveOut0 = LiveOut.find(Val: VisitedPreds[0])->second; |
| 2027 | const BlockInfo &PredLiveOut1 = LiveOut.find(Val: VisitedPreds[1])->second; |
| 2028 | BlockInfo BBLiveIn = joinBlockInfo(A: PredLiveOut0, B: PredLiveOut1); |
| 2029 | |
| 2030 | // Join the LiveOuts of subsequent blocks. |
| 2031 | ArrayRef Tail = ArrayRef(VisitedPreds).drop_front(N: 2); |
| 2032 | for (const BasicBlock *Pred : Tail) { |
| 2033 | const auto &PredLiveOut = LiveOut.find(Val: Pred); |
| 2034 | assert(PredLiveOut != LiveOut.end() && |
| 2035 | "block should have been processed already" ); |
| 2036 | BBLiveIn = joinBlockInfo(A: std::move(BBLiveIn), B: PredLiveOut->second); |
| 2037 | } |
| 2038 | |
| 2039 | // Save the joined result for BB. |
| 2040 | auto CurrentLiveInEntry = LiveIn.find(Val: &BB); |
| 2041 | // Check if there isn't an entry, or there is but the LiveIn set has changed |
| 2042 | // (expensive check). |
| 2043 | if (CurrentLiveInEntry == LiveIn.end()) |
| 2044 | LiveIn.try_emplace(Key: &BB, Args: std::move(BBLiveIn)); |
| 2045 | else if (BBLiveIn != CurrentLiveInEntry->second) |
| 2046 | CurrentLiveInEntry->second = std::move(BBLiveIn); |
| 2047 | else |
| 2048 | return /*Changed*/ false; |
| 2049 | return /*Changed*/ true; |
| 2050 | } |
| 2051 | |
| 2052 | /// Return true if A fully contains B. |
| 2053 | static bool fullyContains(DIExpression::FragmentInfo A, |
| 2054 | DIExpression::FragmentInfo B) { |
| 2055 | auto ALeft = A.OffsetInBits; |
| 2056 | auto BLeft = B.OffsetInBits; |
| 2057 | if (BLeft < ALeft) |
| 2058 | return false; |
| 2059 | |
| 2060 | auto ARight = ALeft + A.SizeInBits; |
| 2061 | auto BRight = BLeft + B.SizeInBits; |
| 2062 | if (BRight > ARight) |
| 2063 | return false; |
| 2064 | return true; |
| 2065 | } |
| 2066 | |
| 2067 | static std::optional<at::AssignmentInfo> |
| 2068 | getUntaggedStoreAssignmentInfo(const Instruction &I, const DataLayout &Layout) { |
| 2069 | // Don't bother checking if this is an AllocaInst. We know this |
| 2070 | // instruction has no tag which means there are no variables associated |
| 2071 | // with it. |
| 2072 | if (const auto *SI = dyn_cast<StoreInst>(Val: &I)) |
| 2073 | return at::getAssignmentInfo(DL: Layout, SI); |
| 2074 | if (const auto *MI = dyn_cast<MemIntrinsic>(Val: &I)) |
| 2075 | return at::getAssignmentInfo(DL: Layout, I: MI); |
| 2076 | // Alloca or non-store-like inst. |
| 2077 | return std::nullopt; |
| 2078 | } |
| 2079 | |
| 2080 | AllocaInst *getUnknownStore(const Instruction &I, const DataLayout &Layout) { |
| 2081 | auto *II = dyn_cast<IntrinsicInst>(Val: &I); |
| 2082 | if (!II) |
| 2083 | return nullptr; |
| 2084 | Intrinsic::ID ID = II->getIntrinsicID(); |
| 2085 | if (ID != Intrinsic::experimental_vp_strided_store && |
| 2086 | ID != Intrinsic::masked_store && ID != Intrinsic::vp_scatter && |
| 2087 | ID != Intrinsic::masked_scatter && ID != Intrinsic::vp_store && |
| 2088 | ID != Intrinsic::masked_compressstore) |
| 2089 | return nullptr; |
| 2090 | Value *MemOp = II->getArgOperand(i: 1); |
| 2091 | // We don't actually use the constant offset for now, but we may in future, |
| 2092 | // and the non-accumulating versions do not support a vector of pointers. |
| 2093 | APInt Offset(Layout.getIndexTypeSizeInBits(Ty: MemOp->getType()), 0); |
| 2094 | Value *Base = MemOp->stripAndAccumulateConstantOffsets(DL: Layout, Offset, AllowNonInbounds: true); |
| 2095 | // For Base pointers that are not an alloca instruction we don't need to do |
| 2096 | // anything, and simply return nullptr. |
| 2097 | return dyn_cast<AllocaInst>(Val: Base); |
| 2098 | } |
| 2099 | |
| 2100 | /// Build a map of {Variable x: Variables y} where all variable fragments |
| 2101 | /// contained within the variable fragment x are in set y. This means that |
| 2102 | /// y does not contain all overlaps because partial overlaps are excluded. |
| 2103 | /// |
| 2104 | /// While we're iterating over the function, add single location defs for |
| 2105 | /// dbg.declares to \p FnVarLocs. |
| 2106 | /// |
| 2107 | /// Variables that are interesting to this pass in are added to |
| 2108 | /// FnVarLocs->Variables first. TrackedVariablesVectorSize is set to the ID of |
| 2109 | /// the last interesting variable plus 1, meaning variables with ID 1 |
| 2110 | /// (inclusive) to TrackedVariablesVectorSize (exclusive) are interesting. The |
| 2111 | /// subsequent variables are either stack homed or fully promoted. |
| 2112 | /// |
| 2113 | /// Finally, populate UntaggedStoreVars with a mapping of untagged stores to |
| 2114 | /// the stored-to variable fragments, and UnknownStoreVars with a mapping |
| 2115 | /// of untagged unknown stores to the stored-to variable aggregates. |
| 2116 | /// |
| 2117 | /// These tasks are bundled together to reduce the number of times we need |
| 2118 | /// to iterate over the function as they can be achieved together in one pass. |
| 2119 | static AssignmentTrackingLowering::OverlapMap buildOverlapMapAndRecordDeclares( |
| 2120 | Function &Fn, FunctionVarLocsBuilder *FnVarLocs, |
| 2121 | const DenseSet<DebugAggregate> &VarsWithStackSlot, |
| 2122 | AssignmentTrackingLowering::UntaggedStoreAssignmentMap &UntaggedStoreVars, |
| 2123 | AssignmentTrackingLowering::UnknownStoreAssignmentMap &UnknownStoreVars, |
| 2124 | unsigned &TrackedVariablesVectorSize) { |
| 2125 | DenseSet<DebugVariable> Seen; |
| 2126 | // Map of Variable: [Fragments]. |
| 2127 | DenseMap<DebugAggregate, SmallVector<DebugVariable, 8>> FragmentMap; |
| 2128 | // Iterate over all instructions: |
| 2129 | // - dbg.declare -> add single location variable record |
| 2130 | // - dbg.* -> Add fragments to FragmentMap |
| 2131 | // - untagged store -> Add fragments to FragmentMap and update |
| 2132 | // UntaggedStoreVars, or add to UnknownStoreVars if |
| 2133 | // we can't determine the fragment overlap. |
| 2134 | // We need to add fragments for untagged stores too so that we can correctly |
| 2135 | // clobber overlapped fragment locations later. |
| 2136 | SmallVector<DbgVariableRecord *> DPDeclares; |
| 2137 | auto ProcessDbgRecord = [&](DbgVariableRecord *Record) { |
| 2138 | if (Record->isDbgDeclare()) { |
| 2139 | DPDeclares.push_back(Elt: Record); |
| 2140 | return; |
| 2141 | } |
| 2142 | DebugVariable DV = DebugVariable(Record); |
| 2143 | DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()}; |
| 2144 | if (!VarsWithStackSlot.contains(V: DA)) |
| 2145 | return; |
| 2146 | if (Seen.insert(V: DV).second) |
| 2147 | FragmentMap[DA].push_back(Elt: DV); |
| 2148 | }; |
| 2149 | for (auto &BB : Fn) { |
| 2150 | for (auto &I : BB) { |
| 2151 | for (DbgVariableRecord &DVR : filterDbgVars(R: I.getDbgRecordRange())) |
| 2152 | ProcessDbgRecord(&DVR); |
| 2153 | if (auto Info = getUntaggedStoreAssignmentInfo(I, Layout: Fn.getDataLayout())) { |
| 2154 | // Find markers linked to this alloca. |
| 2155 | auto HandleDbgAssignForStore = [&](DbgVariableRecord *Assign) { |
| 2156 | std::optional<DIExpression::FragmentInfo> FragInfo; |
| 2157 | |
| 2158 | // Skip this assignment if the affected bits are outside of the |
| 2159 | // variable fragment. |
| 2160 | if (!at::calculateFragmentIntersect( |
| 2161 | DL: I.getDataLayout(), Dest: Info->Base, |
| 2162 | SliceOffsetInBits: Info->OffsetInBits, SliceSizeInBits: Info->SizeInBits, DVRAssign: Assign, Result&: FragInfo) || |
| 2163 | (FragInfo && FragInfo->SizeInBits == 0)) |
| 2164 | return; |
| 2165 | |
| 2166 | // FragInfo from calculateFragmentIntersect is nullopt if the |
| 2167 | // resultant fragment matches DAI's fragment or entire variable - in |
| 2168 | // which case copy the fragment info from DAI. If FragInfo is still |
| 2169 | // nullopt after the copy it means "no fragment info" instead, which |
| 2170 | // is how it is usually interpreted. |
| 2171 | if (!FragInfo) |
| 2172 | FragInfo = Assign->getExpression()->getFragmentInfo(); |
| 2173 | |
| 2174 | DebugVariable DV = |
| 2175 | DebugVariable(Assign->getVariable(), FragInfo, |
| 2176 | Assign->getDebugLoc().getInlinedAt()); |
| 2177 | DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()}; |
| 2178 | if (!VarsWithStackSlot.contains(V: DA)) |
| 2179 | return; |
| 2180 | |
| 2181 | // Cache this info for later. |
| 2182 | UntaggedStoreVars[&I].push_back( |
| 2183 | Elt: {FnVarLocs->insertVariable(V: DV), *Info}); |
| 2184 | |
| 2185 | if (Seen.insert(V: DV).second) |
| 2186 | FragmentMap[DA].push_back(Elt: DV); |
| 2187 | }; |
| 2188 | for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(Inst: Info->Base)) |
| 2189 | HandleDbgAssignForStore(DVR); |
| 2190 | } else if (auto *AI = getUnknownStore(I, Layout: Fn.getDataLayout())) { |
| 2191 | // Find markers linked to this alloca. |
| 2192 | auto HandleDbgAssignForUnknownStore = [&](DbgVariableRecord *Assign) { |
| 2193 | // Because we can't currently represent the fragment info for this |
| 2194 | // store, we treat it as an unusable store to the whole variable. |
| 2195 | DebugVariable DV = |
| 2196 | DebugVariable(Assign->getVariable(), std::nullopt, |
| 2197 | Assign->getDebugLoc().getInlinedAt()); |
| 2198 | DebugAggregate DA = {DV.getVariable(), DV.getInlinedAt()}; |
| 2199 | if (!VarsWithStackSlot.contains(V: DA)) |
| 2200 | return; |
| 2201 | |
| 2202 | // Cache this info for later. |
| 2203 | UnknownStoreVars[&I].push_back(Elt: FnVarLocs->insertVariable(V: DV)); |
| 2204 | }; |
| 2205 | for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(Inst: AI)) |
| 2206 | HandleDbgAssignForUnknownStore(DVR); |
| 2207 | } |
| 2208 | } |
| 2209 | } |
| 2210 | |
| 2211 | // Sort the fragment map for each DebugAggregate in ascending |
| 2212 | // order of fragment size - there should be no duplicates. |
| 2213 | for (auto &Pair : FragmentMap) { |
| 2214 | SmallVector<DebugVariable, 8> &Frags = Pair.second; |
| 2215 | std::sort(first: Frags.begin(), last: Frags.end(), |
| 2216 | comp: [](const DebugVariable &Next, const DebugVariable &Elmt) { |
| 2217 | return Elmt.getFragmentOrDefault().SizeInBits > |
| 2218 | Next.getFragmentOrDefault().SizeInBits; |
| 2219 | }); |
| 2220 | // Check for duplicates. |
| 2221 | assert(std::adjacent_find(Frags.begin(), Frags.end()) == Frags.end()); |
| 2222 | } |
| 2223 | |
| 2224 | // Build the map. |
| 2225 | AssignmentTrackingLowering::OverlapMap Map; |
| 2226 | for (auto &Pair : FragmentMap) { |
| 2227 | auto &Frags = Pair.second; |
| 2228 | for (auto It = Frags.begin(), IEnd = Frags.end(); It != IEnd; ++It) { |
| 2229 | DIExpression::FragmentInfo Frag = It->getFragmentOrDefault(); |
| 2230 | // Find the frags that this is contained within. |
| 2231 | // |
| 2232 | // Because Frags is sorted by size and none have the same offset and |
| 2233 | // size, we know that this frag can only be contained by subsequent |
| 2234 | // elements. |
| 2235 | SmallVector<DebugVariable, 8>::iterator OtherIt = It; |
| 2236 | ++OtherIt; |
| 2237 | VariableID ThisVar = FnVarLocs->insertVariable(V: *It); |
| 2238 | for (; OtherIt != IEnd; ++OtherIt) { |
| 2239 | DIExpression::FragmentInfo OtherFrag = OtherIt->getFragmentOrDefault(); |
| 2240 | VariableID OtherVar = FnVarLocs->insertVariable(V: *OtherIt); |
| 2241 | if (fullyContains(A: OtherFrag, B: Frag)) |
| 2242 | Map[OtherVar].push_back(Elt: ThisVar); |
| 2243 | } |
| 2244 | } |
| 2245 | } |
| 2246 | |
| 2247 | // VariableIDs are 1-based so the variable-tracking bitvector needs |
| 2248 | // NumVariables plus 1 bits. |
| 2249 | TrackedVariablesVectorSize = FnVarLocs->getNumVariables() + 1; |
| 2250 | |
| 2251 | // Finally, insert the declares afterwards, so the first IDs are all |
| 2252 | // partially stack homed vars. |
| 2253 | for (auto *DVR : DPDeclares) |
| 2254 | FnVarLocs->addSingleLocVar(Var: DebugVariable(DVR), Expr: DVR->getExpression(), |
| 2255 | DL: DVR->getDebugLoc(), |
| 2256 | R: RawLocationWrapper(DVR->getRawLocation())); |
| 2257 | return Map; |
| 2258 | } |
| 2259 | |
| 2260 | bool AssignmentTrackingLowering::run(FunctionVarLocsBuilder *FnVarLocsBuilder) { |
| 2261 | if (Fn.size() > MaxNumBlocks) { |
| 2262 | LLVM_DEBUG(dbgs() << "[AT] Dropping var locs in: " << Fn.getName() |
| 2263 | << ": too many blocks (" << Fn.size() << ")\n" ); |
| 2264 | at::deleteAll(F: &Fn); |
| 2265 | return false; |
| 2266 | } |
| 2267 | |
| 2268 | FnVarLocs = FnVarLocsBuilder; |
| 2269 | |
| 2270 | // The general structure here is inspired by VarLocBasedImpl.cpp |
| 2271 | // (LiveDebugValues). |
| 2272 | |
| 2273 | // Build the variable fragment overlap map. |
| 2274 | // Note that this pass doesn't handle partial overlaps correctly (FWIW |
| 2275 | // neither does LiveDebugVariables) because that is difficult to do and |
| 2276 | // appears to be rare occurance. |
| 2277 | VarContains = buildOverlapMapAndRecordDeclares( |
| 2278 | Fn, FnVarLocs, VarsWithStackSlot: *VarsWithStackSlot, UntaggedStoreVars, UnknownStoreVars, |
| 2279 | TrackedVariablesVectorSize); |
| 2280 | |
| 2281 | // Prepare for traversal. |
| 2282 | ReversePostOrderTraversal<Function *> RPOT(&Fn); |
| 2283 | std::priority_queue<unsigned int, std::vector<unsigned int>, |
| 2284 | std::greater<unsigned int>> |
| 2285 | Worklist; |
| 2286 | std::priority_queue<unsigned int, std::vector<unsigned int>, |
| 2287 | std::greater<unsigned int>> |
| 2288 | Pending; |
| 2289 | DenseMap<unsigned int, BasicBlock *> OrderToBB; |
| 2290 | DenseMap<BasicBlock *, unsigned int> BBToOrder; |
| 2291 | { // Init OrderToBB and BBToOrder. |
| 2292 | unsigned int RPONumber = 0; |
| 2293 | for (BasicBlock *BB : RPOT) { |
| 2294 | OrderToBB[RPONumber] = BB; |
| 2295 | BBToOrder[BB] = RPONumber; |
| 2296 | Worklist.push(x: RPONumber); |
| 2297 | ++RPONumber; |
| 2298 | } |
| 2299 | LiveIn.reserve(NumEntries: RPONumber); |
| 2300 | LiveOut.reserve(NumEntries: RPONumber); |
| 2301 | } |
| 2302 | |
| 2303 | // Perform the traversal. |
| 2304 | // |
| 2305 | // This is a standard "union of predecessor outs" dataflow problem. To solve |
| 2306 | // it, we perform join() and process() using the two worklist method until |
| 2307 | // the LiveIn data for each block becomes unchanging. The "proof" that this |
| 2308 | // terminates can be put together by looking at the comments around LocKind, |
| 2309 | // Assignment, and the various join methods, which show that all the elements |
| 2310 | // involved are made up of join-semilattices; LiveIn(n) can only |
| 2311 | // monotonically increase in value throughout the dataflow. |
| 2312 | // |
| 2313 | SmallPtrSet<BasicBlock *, 16> Visited; |
| 2314 | while (!Worklist.empty()) { |
| 2315 | // We track what is on the pending worklist to avoid inserting the same |
| 2316 | // thing twice. |
| 2317 | SmallPtrSet<BasicBlock *, 16> OnPending; |
| 2318 | LLVM_DEBUG(dbgs() << "Processing Worklist\n" ); |
| 2319 | while (!Worklist.empty()) { |
| 2320 | BasicBlock *BB = OrderToBB[Worklist.top()]; |
| 2321 | LLVM_DEBUG(dbgs() << "\nPop BB " << BB->getName() << "\n" ); |
| 2322 | Worklist.pop(); |
| 2323 | bool InChanged = join(BB: *BB, Visited); |
| 2324 | // Always consider LiveIn changed on the first visit. |
| 2325 | InChanged |= Visited.insert(Ptr: BB).second; |
| 2326 | if (InChanged) { |
| 2327 | LLVM_DEBUG(dbgs() << BB->getName() << " has new InLocs, process it\n" ); |
| 2328 | // Mutate a copy of LiveIn while processing BB. After calling process |
| 2329 | // LiveSet is the LiveOut set for BB. |
| 2330 | BlockInfo LiveSet = LiveIn[BB]; |
| 2331 | |
| 2332 | // Process the instructions in the block. |
| 2333 | process(BB&: *BB, LiveSet: &LiveSet); |
| 2334 | |
| 2335 | // Relatively expensive check: has anything changed in LiveOut for BB? |
| 2336 | if (LiveOut[BB] != LiveSet) { |
| 2337 | LLVM_DEBUG(dbgs() << BB->getName() |
| 2338 | << " has new OutLocs, add succs to worklist: [ " ); |
| 2339 | LiveOut[BB] = std::move(LiveSet); |
| 2340 | for (BasicBlock *Succ : successors(BB)) { |
| 2341 | if (OnPending.insert(Ptr: Succ).second) { |
| 2342 | LLVM_DEBUG(dbgs() << Succ->getName() << " " ); |
| 2343 | Pending.push(x: BBToOrder[Succ]); |
| 2344 | } |
| 2345 | } |
| 2346 | LLVM_DEBUG(dbgs() << "]\n" ); |
| 2347 | } |
| 2348 | } |
| 2349 | } |
| 2350 | Worklist.swap(pq&: Pending); |
| 2351 | // At this point, pending must be empty, since it was just the empty |
| 2352 | // worklist |
| 2353 | assert(Pending.empty() && "Pending should be empty" ); |
| 2354 | } |
| 2355 | |
| 2356 | // That's the hard part over. Now we just have some admin to do. |
| 2357 | |
| 2358 | // Record whether we inserted any intrinsics. |
| 2359 | bool InsertedAnyIntrinsics = false; |
| 2360 | |
| 2361 | // Identify and add defs for single location variables. |
| 2362 | // |
| 2363 | // Go through all of the defs that we plan to add. If the aggregate variable |
| 2364 | // it's a part of is not in the NotAlwaysStackHomed set we can emit a single |
| 2365 | // location def and omit the rest. Add an entry to AlwaysStackHomed so that |
| 2366 | // we can identify those uneeded defs later. |
| 2367 | DenseSet<DebugAggregate> AlwaysStackHomed; |
| 2368 | for (const auto &Pair : InsertBeforeMap) { |
| 2369 | auto &Vec = Pair.second; |
| 2370 | for (VarLocInfo VarLoc : Vec) { |
| 2371 | DebugVariable Var = FnVarLocs->getVariable(ID: VarLoc.VariableID); |
| 2372 | DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()}; |
| 2373 | |
| 2374 | // Skip this Var if it's not always stack homed. |
| 2375 | if (NotAlwaysStackHomed.contains(V: Aggr)) |
| 2376 | continue; |
| 2377 | |
| 2378 | // Skip complex cases such as when different fragments of a variable have |
| 2379 | // been split into different allocas. Skipping in this case means falling |
| 2380 | // back to using a list of defs (which could reduce coverage, but is no |
| 2381 | // less correct). |
| 2382 | bool Simple = |
| 2383 | VarLoc.Expr->getNumElements() == 1 && VarLoc.Expr->startsWithDeref(); |
| 2384 | if (!Simple) { |
| 2385 | NotAlwaysStackHomed.insert(V: Aggr); |
| 2386 | continue; |
| 2387 | } |
| 2388 | |
| 2389 | // All source assignments to this variable remain and all stores to any |
| 2390 | // part of the variable store to the same address (with varying |
| 2391 | // offsets). We can just emit a single location for the whole variable. |
| 2392 | // |
| 2393 | // Unless we've already done so, create the single location def now. |
| 2394 | if (AlwaysStackHomed.insert(V: Aggr).second) { |
| 2395 | assert(!VarLoc.Values.hasArgList()); |
| 2396 | // TODO: When more complex cases are handled VarLoc.Expr should be |
| 2397 | // built appropriately rather than always using an empty DIExpression. |
| 2398 | // The assert below is a reminder. |
| 2399 | assert(Simple); |
| 2400 | VarLoc.Expr = DIExpression::get(Context&: Fn.getContext(), Elements: {}); |
| 2401 | DebugVariable Var = FnVarLocs->getVariable(ID: VarLoc.VariableID); |
| 2402 | FnVarLocs->addSingleLocVar(Var, Expr: VarLoc.Expr, DL: VarLoc.DL, R: VarLoc.Values); |
| 2403 | InsertedAnyIntrinsics = true; |
| 2404 | } |
| 2405 | } |
| 2406 | } |
| 2407 | |
| 2408 | // Insert the other DEFs. |
| 2409 | for (const auto &[InsertBefore, Vec] : InsertBeforeMap) { |
| 2410 | SmallVector<VarLocInfo> NewDefs; |
| 2411 | for (const VarLocInfo &VarLoc : Vec) { |
| 2412 | DebugVariable Var = FnVarLocs->getVariable(ID: VarLoc.VariableID); |
| 2413 | DebugAggregate Aggr{Var.getVariable(), Var.getInlinedAt()}; |
| 2414 | // If this variable is always stack homed then we have already inserted a |
| 2415 | // dbg.declare and deleted this dbg.value. |
| 2416 | if (AlwaysStackHomed.contains(V: Aggr)) |
| 2417 | continue; |
| 2418 | NewDefs.push_back(Elt: VarLoc); |
| 2419 | InsertedAnyIntrinsics = true; |
| 2420 | } |
| 2421 | |
| 2422 | FnVarLocs->setWedge(Before: InsertBefore, Wedge: std::move(NewDefs)); |
| 2423 | } |
| 2424 | |
| 2425 | InsertedAnyIntrinsics |= emitPromotedVarLocs(FnVarLocs); |
| 2426 | |
| 2427 | return InsertedAnyIntrinsics; |
| 2428 | } |
| 2429 | |
| 2430 | bool AssignmentTrackingLowering::emitPromotedVarLocs( |
| 2431 | FunctionVarLocsBuilder *FnVarLocs) { |
| 2432 | bool InsertedAnyIntrinsics = false; |
| 2433 | // Go through every block, translating debug intrinsics for fully promoted |
| 2434 | // variables into FnVarLocs location defs. No analysis required for these. |
| 2435 | auto TranslateDbgRecord = [&](DbgVariableRecord *Record) { |
| 2436 | // Skip variables that haven't been promoted - we've dealt with those |
| 2437 | // already. |
| 2438 | if (VarsWithStackSlot->contains(V: getAggregate(Var: Record))) |
| 2439 | return; |
| 2440 | auto InsertBefore = getNextNode(DVR: Record); |
| 2441 | assert(InsertBefore && "Unexpected: debug intrinsics after a terminator" ); |
| 2442 | FnVarLocs->addVarLoc(Before: InsertBefore, Var: DebugVariable(Record), |
| 2443 | Expr: Record->getExpression(), DL: Record->getDebugLoc(), |
| 2444 | R: RawLocationWrapper(Record->getRawLocation())); |
| 2445 | InsertedAnyIntrinsics = true; |
| 2446 | }; |
| 2447 | for (auto &BB : Fn) { |
| 2448 | for (auto &I : BB) { |
| 2449 | // Skip instructions other than dbg.values and dbg.assigns. |
| 2450 | for (DbgVariableRecord &DVR : filterDbgVars(R: I.getDbgRecordRange())) |
| 2451 | if (DVR.isDbgValue() || DVR.isDbgAssign()) |
| 2452 | TranslateDbgRecord(&DVR); |
| 2453 | } |
| 2454 | } |
| 2455 | return InsertedAnyIntrinsics; |
| 2456 | } |
| 2457 | |
| 2458 | /// Remove redundant definitions within sequences of consecutive location defs. |
| 2459 | /// This is done using a backward scan to keep the last def describing a |
| 2460 | /// specific variable/fragment. |
| 2461 | /// |
| 2462 | /// This implements removeRedundantDbgInstrsUsingBackwardScan from |
| 2463 | /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with |
| 2464 | /// FunctionVarLocsBuilder instead of with intrinsics. |
| 2465 | static bool |
| 2466 | removeRedundantDbgLocsUsingBackwardScan(const BasicBlock *BB, |
| 2467 | FunctionVarLocsBuilder &FnVarLocs) { |
| 2468 | bool Changed = false; |
| 2469 | SmallDenseMap<DebugAggregate, BitVector> VariableDefinedBytes; |
| 2470 | // Scan over the entire block, not just over the instructions mapped by |
| 2471 | // FnVarLocs, because wedges in FnVarLocs may only be separated by debug |
| 2472 | // instructions. |
| 2473 | for (const Instruction &I : reverse(C: *BB)) { |
| 2474 | // Sequence of consecutive defs ended. Clear map for the next one. |
| 2475 | VariableDefinedBytes.clear(); |
| 2476 | |
| 2477 | auto HandleLocsForWedge = [&](auto *WedgePosition) { |
| 2478 | // Get the location defs that start just before this instruction. |
| 2479 | const auto *Locs = FnVarLocs.getWedge(Before: WedgePosition); |
| 2480 | if (!Locs) |
| 2481 | return; |
| 2482 | |
| 2483 | NumWedgesScanned++; |
| 2484 | bool ChangedThisWedge = false; |
| 2485 | // The new pruned set of defs, reversed because we're scanning backwards. |
| 2486 | SmallVector<VarLocInfo> NewDefsReversed; |
| 2487 | |
| 2488 | // Iterate over the existing defs in reverse. |
| 2489 | for (auto RIt = Locs->rbegin(), REnd = Locs->rend(); RIt != REnd; ++RIt) { |
| 2490 | NumDefsScanned++; |
| 2491 | DebugAggregate Aggr = |
| 2492 | getAggregate(FnVarLocs.getVariable(ID: RIt->VariableID)); |
| 2493 | uint64_t SizeInBits = Aggr.first->getSizeInBits().value_or(u: 0); |
| 2494 | uint64_t SizeInBytes = divideCeil(Numerator: SizeInBits, Denominator: 8); |
| 2495 | |
| 2496 | // Cutoff for large variables to prevent expensive bitvector operations. |
| 2497 | const uint64_t MaxSizeBytes = 2048; |
| 2498 | |
| 2499 | if (SizeInBytes == 0 || SizeInBytes > MaxSizeBytes) { |
| 2500 | // If the size is unknown (0) then keep this location def to be safe. |
| 2501 | // Do the same for defs of large variables, which would be expensive |
| 2502 | // to represent with a BitVector. |
| 2503 | NewDefsReversed.push_back(*RIt); |
| 2504 | continue; |
| 2505 | } |
| 2506 | |
| 2507 | // Only keep this location definition if it is not fully eclipsed by |
| 2508 | // other definitions in this wedge that come after it |
| 2509 | |
| 2510 | // Inert the bytes the location definition defines. |
| 2511 | auto InsertResult = |
| 2512 | VariableDefinedBytes.try_emplace(Key: Aggr, Args: BitVector(SizeInBytes)); |
| 2513 | bool FirstDefinition = InsertResult.second; |
| 2514 | BitVector &DefinedBytes = InsertResult.first->second; |
| 2515 | |
| 2516 | DIExpression::FragmentInfo Fragment = |
| 2517 | RIt->Expr->getFragmentInfo().value_or( |
| 2518 | DIExpression::FragmentInfo(SizeInBits, 0)); |
| 2519 | bool InvalidFragment = Fragment.endInBits() > SizeInBits; |
| 2520 | uint64_t StartInBytes = Fragment.startInBits() / 8; |
| 2521 | uint64_t EndInBytes = divideCeil(Numerator: Fragment.endInBits(), Denominator: 8); |
| 2522 | |
| 2523 | // If this defines any previously undefined bytes, keep it. |
| 2524 | if (FirstDefinition || InvalidFragment || |
| 2525 | DefinedBytes.find_first_unset_in(Begin: StartInBytes, End: EndInBytes) != -1) { |
| 2526 | if (!InvalidFragment) |
| 2527 | DefinedBytes.set(I: StartInBytes, E: EndInBytes); |
| 2528 | NewDefsReversed.push_back(*RIt); |
| 2529 | continue; |
| 2530 | } |
| 2531 | |
| 2532 | // Redundant def found: throw it away. Since the wedge of defs is being |
| 2533 | // rebuilt, doing nothing is the same as deleting an entry. |
| 2534 | ChangedThisWedge = true; |
| 2535 | NumDefsRemoved++; |
| 2536 | } |
| 2537 | |
| 2538 | // Un-reverse the defs and replace the wedge with the pruned version. |
| 2539 | if (ChangedThisWedge) { |
| 2540 | std::reverse(first: NewDefsReversed.begin(), last: NewDefsReversed.end()); |
| 2541 | FnVarLocs.setWedge(Before: WedgePosition, Wedge: std::move(NewDefsReversed)); |
| 2542 | NumWedgesChanged++; |
| 2543 | Changed = true; |
| 2544 | } |
| 2545 | }; |
| 2546 | HandleLocsForWedge(&I); |
| 2547 | for (DbgVariableRecord &DVR : reverse(C: filterDbgVars(R: I.getDbgRecordRange()))) |
| 2548 | HandleLocsForWedge(&DVR); |
| 2549 | } |
| 2550 | |
| 2551 | return Changed; |
| 2552 | } |
| 2553 | |
| 2554 | /// Remove redundant location defs using a forward scan. This can remove a |
| 2555 | /// location definition that is redundant due to indicating that a variable has |
| 2556 | /// the same value as is already being indicated by an earlier def. |
| 2557 | /// |
| 2558 | /// This implements removeRedundantDbgInstrsUsingForwardScan from |
| 2559 | /// lib/Transforms/Utils/BasicBlockUtils.cpp for locations described with |
| 2560 | /// FunctionVarLocsBuilder instead of with intrinsics |
| 2561 | static bool |
| 2562 | removeRedundantDbgLocsUsingForwardScan(const BasicBlock *BB, |
| 2563 | FunctionVarLocsBuilder &FnVarLocs) { |
| 2564 | bool Changed = false; |
| 2565 | DenseMap<DebugVariable, std::pair<RawLocationWrapper, DIExpression *>> |
| 2566 | VariableMap; |
| 2567 | |
| 2568 | // Scan over the entire block, not just over the instructions mapped by |
| 2569 | // FnVarLocs, because wedges in FnVarLocs may only be separated by debug |
| 2570 | // instructions. |
| 2571 | for (const Instruction &I : *BB) { |
| 2572 | // Get the defs that come just before this instruction. |
| 2573 | auto HandleLocsForWedge = [&](auto *WedgePosition) { |
| 2574 | const auto *Locs = FnVarLocs.getWedge(Before: WedgePosition); |
| 2575 | if (!Locs) |
| 2576 | return; |
| 2577 | |
| 2578 | NumWedgesScanned++; |
| 2579 | bool ChangedThisWedge = false; |
| 2580 | // The new pruned set of defs. |
| 2581 | SmallVector<VarLocInfo> NewDefs; |
| 2582 | |
| 2583 | // Iterate over the existing defs. |
| 2584 | for (const VarLocInfo &Loc : *Locs) { |
| 2585 | NumDefsScanned++; |
| 2586 | DebugVariable Key(FnVarLocs.getVariable(ID: Loc.VariableID).getVariable(), |
| 2587 | std::nullopt, Loc.DL.getInlinedAt()); |
| 2588 | auto [VMI, Inserted] = VariableMap.try_emplace(Key); |
| 2589 | |
| 2590 | // Update the map if we found a new value/expression describing the |
| 2591 | // variable, or if the variable wasn't mapped already. |
| 2592 | if (Inserted || VMI->second.first != Loc.Values || |
| 2593 | VMI->second.second != Loc.Expr) { |
| 2594 | VMI->second = {Loc.Values, Loc.Expr}; |
| 2595 | NewDefs.push_back(Elt: Loc); |
| 2596 | continue; |
| 2597 | } |
| 2598 | |
| 2599 | // Did not insert this Loc, which is the same as removing it. |
| 2600 | ChangedThisWedge = true; |
| 2601 | NumDefsRemoved++; |
| 2602 | } |
| 2603 | |
| 2604 | // Replace the existing wedge with the pruned version. |
| 2605 | if (ChangedThisWedge) { |
| 2606 | FnVarLocs.setWedge(Before: WedgePosition, Wedge: std::move(NewDefs)); |
| 2607 | NumWedgesChanged++; |
| 2608 | Changed = true; |
| 2609 | } |
| 2610 | }; |
| 2611 | |
| 2612 | for (DbgVariableRecord &DVR : filterDbgVars(R: I.getDbgRecordRange())) |
| 2613 | HandleLocsForWedge(&DVR); |
| 2614 | HandleLocsForWedge(&I); |
| 2615 | } |
| 2616 | |
| 2617 | return Changed; |
| 2618 | } |
| 2619 | |
| 2620 | static bool |
| 2621 | removeUndefDbgLocsFromEntryBlock(const BasicBlock *BB, |
| 2622 | FunctionVarLocsBuilder &FnVarLocs) { |
| 2623 | assert(BB->isEntryBlock()); |
| 2624 | // Do extra work to ensure that we remove semantically unimportant undefs. |
| 2625 | // |
| 2626 | // This is to work around the fact that SelectionDAG will hoist dbg.values |
| 2627 | // using argument values to the top of the entry block. That can move arg |
| 2628 | // dbg.values before undef and constant dbg.values which they previously |
| 2629 | // followed. The easiest thing to do is to just try to feed SelectionDAG |
| 2630 | // input it's happy with. |
| 2631 | // |
| 2632 | // Map of {Variable x: Fragments y} where the fragments y of variable x have |
| 2633 | // have at least one non-undef location defined already. Don't use directly, |
| 2634 | // instead call DefineBits and HasDefinedBits. |
| 2635 | SmallDenseMap<DebugAggregate, SmallDenseSet<DIExpression::FragmentInfo>> |
| 2636 | VarsWithDef; |
| 2637 | // Specify that V (a fragment of A) has a non-undef location. |
| 2638 | auto DefineBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) { |
| 2639 | VarsWithDef[A].insert(V: V.getFragmentOrDefault()); |
| 2640 | }; |
| 2641 | // Return true if a non-undef location has been defined for V (a fragment of |
| 2642 | // A). Doesn't imply that the location is currently non-undef, just that a |
| 2643 | // non-undef location has been seen previously. |
| 2644 | auto HasDefinedBits = [&VarsWithDef](DebugAggregate A, DebugVariable V) { |
| 2645 | auto FragsIt = VarsWithDef.find(Val: A); |
| 2646 | if (FragsIt == VarsWithDef.end()) |
| 2647 | return false; |
| 2648 | return llvm::any_of(Range&: FragsIt->second, P: [V](auto Frag) { |
| 2649 | return DIExpression::fragmentsOverlap(Frag, V.getFragmentOrDefault()); |
| 2650 | }); |
| 2651 | }; |
| 2652 | |
| 2653 | bool Changed = false; |
| 2654 | |
| 2655 | // Scan over the entire block, not just over the instructions mapped by |
| 2656 | // FnVarLocs, because wedges in FnVarLocs may only be separated by debug |
| 2657 | // instructions. |
| 2658 | for (const Instruction &I : *BB) { |
| 2659 | // Get the defs that come just before this instruction. |
| 2660 | auto HandleLocsForWedge = [&](auto *WedgePosition) { |
| 2661 | const auto *Locs = FnVarLocs.getWedge(Before: WedgePosition); |
| 2662 | if (!Locs) |
| 2663 | return; |
| 2664 | |
| 2665 | NumWedgesScanned++; |
| 2666 | bool ChangedThisWedge = false; |
| 2667 | // The new pruned set of defs. |
| 2668 | SmallVector<VarLocInfo> NewDefs; |
| 2669 | |
| 2670 | // Iterate over the existing defs. |
| 2671 | for (const VarLocInfo &Loc : *Locs) { |
| 2672 | NumDefsScanned++; |
| 2673 | DebugAggregate Aggr{FnVarLocs.getVariable(ID: Loc.VariableID).getVariable(), |
| 2674 | Loc.DL.getInlinedAt()}; |
| 2675 | DebugVariable Var = FnVarLocs.getVariable(ID: Loc.VariableID); |
| 2676 | |
| 2677 | // Remove undef entries that are encountered before any non-undef |
| 2678 | // intrinsics from the entry block. |
| 2679 | if (Loc.Values.isKillLocation(Expression: Loc.Expr) && !HasDefinedBits(Aggr, Var)) { |
| 2680 | // Did not insert this Loc, which is the same as removing it. |
| 2681 | NumDefsRemoved++; |
| 2682 | ChangedThisWedge = true; |
| 2683 | continue; |
| 2684 | } |
| 2685 | |
| 2686 | DefineBits(Aggr, Var); |
| 2687 | NewDefs.push_back(Elt: Loc); |
| 2688 | } |
| 2689 | |
| 2690 | // Replace the existing wedge with the pruned version. |
| 2691 | if (ChangedThisWedge) { |
| 2692 | FnVarLocs.setWedge(Before: WedgePosition, Wedge: std::move(NewDefs)); |
| 2693 | NumWedgesChanged++; |
| 2694 | Changed = true; |
| 2695 | } |
| 2696 | }; |
| 2697 | for (DbgVariableRecord &DVR : filterDbgVars(R: I.getDbgRecordRange())) |
| 2698 | HandleLocsForWedge(&DVR); |
| 2699 | HandleLocsForWedge(&I); |
| 2700 | } |
| 2701 | |
| 2702 | return Changed; |
| 2703 | } |
| 2704 | |
| 2705 | static bool removeRedundantDbgLocs(const BasicBlock *BB, |
| 2706 | FunctionVarLocsBuilder &FnVarLocs) { |
| 2707 | bool MadeChanges = false; |
| 2708 | MadeChanges |= removeRedundantDbgLocsUsingBackwardScan(BB, FnVarLocs); |
| 2709 | if (BB->isEntryBlock()) |
| 2710 | MadeChanges |= removeUndefDbgLocsFromEntryBlock(BB, FnVarLocs); |
| 2711 | MadeChanges |= removeRedundantDbgLocsUsingForwardScan(BB, FnVarLocs); |
| 2712 | |
| 2713 | if (MadeChanges) |
| 2714 | LLVM_DEBUG(dbgs() << "Removed redundant dbg locs from: " << BB->getName() |
| 2715 | << "\n" ); |
| 2716 | return MadeChanges; |
| 2717 | } |
| 2718 | |
| 2719 | static DenseSet<DebugAggregate> findVarsWithStackSlot(Function &Fn) { |
| 2720 | DenseSet<DebugAggregate> Result; |
| 2721 | for (auto &BB : Fn) { |
| 2722 | for (auto &I : BB) { |
| 2723 | // Any variable linked to an instruction is considered |
| 2724 | // interesting. Ideally we only need to check Allocas, however, a |
| 2725 | // DIAssignID might get dropped from an alloca but not stores. In that |
| 2726 | // case, we need to consider the variable interesting for NFC behaviour |
| 2727 | // with this change. TODO: Consider only looking at allocas. |
| 2728 | for (DbgVariableRecord *DVR : at::getDVRAssignmentMarkers(Inst: &I)) { |
| 2729 | Result.insert(V: {DVR->getVariable(), DVR->getDebugLoc().getInlinedAt()}); |
| 2730 | } |
| 2731 | } |
| 2732 | } |
| 2733 | return Result; |
| 2734 | } |
| 2735 | |
| 2736 | static void analyzeFunction(Function &Fn, const DataLayout &Layout, |
| 2737 | FunctionVarLocsBuilder *FnVarLocs) { |
| 2738 | // The analysis will generate location definitions for all variables, but we |
| 2739 | // only need to perform a dataflow on the set of variables which have a stack |
| 2740 | // slot. Find those now. |
| 2741 | DenseSet<DebugAggregate> VarsWithStackSlot = findVarsWithStackSlot(Fn); |
| 2742 | |
| 2743 | bool Changed = false; |
| 2744 | |
| 2745 | // Use a scope block to clean up AssignmentTrackingLowering before running |
| 2746 | // MemLocFragmentFill to reduce peak memory consumption. |
| 2747 | { |
| 2748 | AssignmentTrackingLowering Pass(Fn, Layout, &VarsWithStackSlot); |
| 2749 | Changed = Pass.run(FnVarLocsBuilder: FnVarLocs); |
| 2750 | } |
| 2751 | |
| 2752 | if (Changed) { |
| 2753 | MemLocFragmentFill Pass(Fn, &VarsWithStackSlot, |
| 2754 | shouldCoalesceFragments(F&: Fn)); |
| 2755 | Pass.run(FnVarLocs); |
| 2756 | |
| 2757 | // Remove redundant entries. As well as reducing memory consumption and |
| 2758 | // avoiding waiting cycles later by burning some now, this has another |
| 2759 | // important job. That is to work around some SelectionDAG quirks. See |
| 2760 | // removeRedundantDbgLocsUsingForwardScan comments for more info on that. |
| 2761 | for (auto &BB : Fn) |
| 2762 | removeRedundantDbgLocs(BB: &BB, FnVarLocs&: *FnVarLocs); |
| 2763 | } |
| 2764 | } |
| 2765 | |
| 2766 | FunctionVarLocs |
| 2767 | DebugAssignmentTrackingAnalysis::run(Function &F, |
| 2768 | FunctionAnalysisManager &FAM) { |
| 2769 | if (!isAssignmentTrackingEnabled(M: *F.getParent())) |
| 2770 | return FunctionVarLocs(); |
| 2771 | |
| 2772 | auto &DL = F.getDataLayout(); |
| 2773 | |
| 2774 | FunctionVarLocsBuilder Builder; |
| 2775 | analyzeFunction(Fn&: F, Layout: DL, FnVarLocs: &Builder); |
| 2776 | |
| 2777 | // Save these results. |
| 2778 | FunctionVarLocs Results; |
| 2779 | Results.init(Builder); |
| 2780 | return Results; |
| 2781 | } |
| 2782 | |
| 2783 | AnalysisKey DebugAssignmentTrackingAnalysis::Key; |
| 2784 | |
| 2785 | PreservedAnalyses |
| 2786 | DebugAssignmentTrackingPrinterPass::run(Function &F, |
| 2787 | FunctionAnalysisManager &FAM) { |
| 2788 | FAM.getResult<DebugAssignmentTrackingAnalysis>(IR&: F).print(OS, Fn: F); |
| 2789 | return PreservedAnalyses::all(); |
| 2790 | } |
| 2791 | |
| 2792 | bool AssignmentTrackingAnalysis::runOnFunction(Function &F) { |
| 2793 | if (!isAssignmentTrackingEnabled(M: *F.getParent())) |
| 2794 | return false; |
| 2795 | |
| 2796 | LLVM_DEBUG(dbgs() << "AssignmentTrackingAnalysis run on " << F.getName() |
| 2797 | << "\n" ); |
| 2798 | |
| 2799 | // Clear previous results. |
| 2800 | Results->clear(); |
| 2801 | |
| 2802 | FunctionVarLocsBuilder Builder; |
| 2803 | analyzeFunction(Fn&: F, Layout: F.getDataLayout(), FnVarLocs: &Builder); |
| 2804 | |
| 2805 | // Save these results. |
| 2806 | Results->init(Builder); |
| 2807 | |
| 2808 | if (PrintResults && isFunctionInPrintList(FunctionName: F.getName())) |
| 2809 | Results->print(OS&: errs(), Fn: F); |
| 2810 | |
| 2811 | // Return false because this pass does not modify the function. |
| 2812 | return false; |
| 2813 | } |
| 2814 | |
| 2815 | AssignmentTrackingAnalysis::AssignmentTrackingAnalysis() |
| 2816 | : FunctionPass(ID), Results(std::make_unique<FunctionVarLocs>()) {} |
| 2817 | |
| 2818 | char AssignmentTrackingAnalysis::ID = 0; |
| 2819 | |
| 2820 | INITIALIZE_PASS(AssignmentTrackingAnalysis, DEBUG_TYPE, |
| 2821 | "Assignment Tracking Analysis" , false, true) |
| 2822 | |