1 | //===- ComplexDeinterleavingPass.cpp --------------------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Identification: |
10 | // This step is responsible for finding the patterns that can be lowered to |
11 | // complex instructions, and building a graph to represent the complex |
12 | // structures. Starting from the "Converging Shuffle" (a shuffle that |
13 | // reinterleaves the complex components, with a mask of <0, 2, 1, 3>), the |
14 | // operands are evaluated and identified as "Composite Nodes" (collections of |
15 | // instructions that can potentially be lowered to a single complex |
16 | // instruction). This is performed by checking the real and imaginary components |
17 | // and tracking the data flow for each component while following the operand |
18 | // pairs. Validity of each node is expected to be done upon creation, and any |
19 | // validation errors should halt traversal and prevent further graph |
20 | // construction. |
21 | // Instead of relying on Shuffle operations, vector interleaving and |
22 | // deinterleaving can be represented by vector.interleave2 and |
23 | // vector.deinterleave2 intrinsics. Scalable vectors can be represented only by |
24 | // these intrinsics, whereas, fixed-width vectors are recognized for both |
25 | // shufflevector instruction and intrinsics. |
26 | // |
27 | // Replacement: |
28 | // This step traverses the graph built up by identification, delegating to the |
29 | // target to validate and generate the correct intrinsics, and plumbs them |
30 | // together connecting each end of the new intrinsics graph to the existing |
31 | // use-def chain. This step is assumed to finish successfully, as all |
32 | // information is expected to be correct by this point. |
33 | // |
34 | // |
35 | // Internal data structure: |
36 | // ComplexDeinterleavingGraph: |
37 | // Keeps references to all the valid CompositeNodes formed as part of the |
38 | // transformation, and every Instruction contained within said nodes. It also |
39 | // holds onto a reference to the root Instruction, and the root node that should |
40 | // replace it. |
41 | // |
42 | // ComplexDeinterleavingCompositeNode: |
43 | // A CompositeNode represents a single transformation point; each node should |
44 | // transform into a single complex instruction (ignoring vector splitting, which |
45 | // would generate more instructions per node). They are identified in a |
46 | // depth-first manner, traversing and identifying the operands of each |
47 | // instruction in the order they appear in the IR. |
48 | // Each node maintains a reference to its Real and Imaginary instructions, |
49 | // as well as any additional instructions that make up the identified operation |
50 | // (Internal instructions should only have uses within their containing node). |
51 | // A Node also contains the rotation and operation type that it represents. |
52 | // Operands contains pointers to other CompositeNodes, acting as the edges in |
53 | // the graph. ReplacementValue is the transformed Value* that has been emitted |
54 | // to the IR. |
55 | // |
56 | // Note: If the operation of a Node is Shuffle, only the Real, Imaginary, and |
57 | // ReplacementValue fields of that Node are relevant, where the ReplacementValue |
58 | // should be pre-populated. |
59 | // |
60 | //===----------------------------------------------------------------------===// |
61 | |
62 | #include "llvm/CodeGen/ComplexDeinterleavingPass.h" |
63 | #include "llvm/ADT/MapVector.h" |
64 | #include "llvm/ADT/Statistic.h" |
65 | #include "llvm/Analysis/TargetLibraryInfo.h" |
66 | #include "llvm/Analysis/TargetTransformInfo.h" |
67 | #include "llvm/CodeGen/TargetLowering.h" |
68 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
69 | #include "llvm/IR/IRBuilder.h" |
70 | #include "llvm/IR/PatternMatch.h" |
71 | #include "llvm/InitializePasses.h" |
72 | #include "llvm/Target/TargetMachine.h" |
73 | #include "llvm/Transforms/Utils/Local.h" |
74 | #include <algorithm> |
75 | |
76 | using namespace llvm; |
77 | using namespace PatternMatch; |
78 | |
79 | #define DEBUG_TYPE "complex-deinterleaving" |
80 | |
81 | STATISTIC(, "Amount of complex patterns transformed" ); |
82 | |
83 | static cl::opt<bool> ComplexDeinterleavingEnabled( |
84 | "enable-complex-deinterleaving" , |
85 | cl::desc("Enable generation of complex instructions" ), cl::init(Val: true), |
86 | cl::Hidden); |
87 | |
88 | /// Checks the given mask, and determines whether said mask is interleaving. |
89 | /// |
90 | /// To be interleaving, a mask must alternate between `i` and `i + (Length / |
91 | /// 2)`, and must contain all numbers within the range of `[0..Length)` (e.g. a |
92 | /// 4x vector interleaving mask would be <0, 2, 1, 3>). |
93 | static bool isInterleavingMask(ArrayRef<int> Mask); |
94 | |
95 | /// Checks the given mask, and determines whether said mask is deinterleaving. |
96 | /// |
97 | /// To be deinterleaving, a mask must increment in steps of 2, and either start |
98 | /// with 0 or 1. |
99 | /// (e.g. an 8x vector deinterleaving mask would be either <0, 2, 4, 6> or |
100 | /// <1, 3, 5, 7>). |
101 | static bool isDeinterleavingMask(ArrayRef<int> Mask); |
102 | |
103 | /// Returns true if the operation is a negation of V, and it works for both |
104 | /// integers and floats. |
105 | static bool isNeg(Value *V); |
106 | |
107 | /// Returns the operand for negation operation. |
108 | static Value *getNegOperand(Value *V); |
109 | |
110 | namespace { |
111 | template <typename T, typename IterT> |
112 | std::optional<T> findCommonBetweenCollections(IterT A, IterT B) { |
113 | auto Common = llvm::find_if(A, [B](T I) { return llvm::is_contained(B, I); }); |
114 | if (Common != A.end()) |
115 | return std::make_optional(*Common); |
116 | return std::nullopt; |
117 | } |
118 | |
119 | class ComplexDeinterleavingLegacyPass : public FunctionPass { |
120 | public: |
121 | static char ID; |
122 | |
123 | ComplexDeinterleavingLegacyPass(const TargetMachine *TM = nullptr) |
124 | : FunctionPass(ID), TM(TM) { |
125 | initializeComplexDeinterleavingLegacyPassPass( |
126 | *PassRegistry::getPassRegistry()); |
127 | } |
128 | |
129 | StringRef getPassName() const override { |
130 | return "Complex Deinterleaving Pass" ; |
131 | } |
132 | |
133 | bool runOnFunction(Function &F) override; |
134 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
135 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
136 | AU.setPreservesCFG(); |
137 | } |
138 | |
139 | private: |
140 | const TargetMachine *TM; |
141 | }; |
142 | |
143 | class ComplexDeinterleavingGraph; |
144 | struct ComplexDeinterleavingCompositeNode { |
145 | |
146 | ComplexDeinterleavingCompositeNode(ComplexDeinterleavingOperation Op, |
147 | Value *R, Value *I) |
148 | : Operation(Op), Real(R), Imag(I) {} |
149 | |
150 | private: |
151 | friend class ComplexDeinterleavingGraph; |
152 | using NodePtr = std::shared_ptr<ComplexDeinterleavingCompositeNode>; |
153 | using RawNodePtr = ComplexDeinterleavingCompositeNode *; |
154 | bool OperandsValid = true; |
155 | |
156 | public: |
157 | ComplexDeinterleavingOperation Operation; |
158 | Value *Real; |
159 | Value *Imag; |
160 | |
161 | // This two members are required exclusively for generating |
162 | // ComplexDeinterleavingOperation::Symmetric operations. |
163 | unsigned Opcode; |
164 | std::optional<FastMathFlags> Flags; |
165 | |
166 | ComplexDeinterleavingRotation Rotation = |
167 | ComplexDeinterleavingRotation::Rotation_0; |
168 | SmallVector<RawNodePtr> Operands; |
169 | Value *ReplacementNode = nullptr; |
170 | |
171 | void addOperand(NodePtr Node) { |
172 | if (!Node || !Node.get()) |
173 | OperandsValid = false; |
174 | Operands.push_back(Elt: Node.get()); |
175 | } |
176 | |
177 | void dump() { dump(OS&: dbgs()); } |
178 | void dump(raw_ostream &OS) { |
179 | auto PrintValue = [&](Value *V) { |
180 | if (V) { |
181 | OS << "\"" ; |
182 | V->print(O&: OS, IsForDebug: true); |
183 | OS << "\"\n" ; |
184 | } else |
185 | OS << "nullptr\n" ; |
186 | }; |
187 | auto PrintNodeRef = [&](RawNodePtr Ptr) { |
188 | if (Ptr) |
189 | OS << Ptr << "\n" ; |
190 | else |
191 | OS << "nullptr\n" ; |
192 | }; |
193 | |
194 | OS << "- CompositeNode: " << this << "\n" ; |
195 | OS << " Real: " ; |
196 | PrintValue(Real); |
197 | OS << " Imag: " ; |
198 | PrintValue(Imag); |
199 | OS << " ReplacementNode: " ; |
200 | PrintValue(ReplacementNode); |
201 | OS << " Operation: " << (int)Operation << "\n" ; |
202 | OS << " Rotation: " << ((int)Rotation * 90) << "\n" ; |
203 | OS << " Operands: \n" ; |
204 | for (const auto &Op : Operands) { |
205 | OS << " - " ; |
206 | PrintNodeRef(Op); |
207 | } |
208 | } |
209 | |
210 | bool areOperandsValid() { return OperandsValid; } |
211 | }; |
212 | |
213 | class ComplexDeinterleavingGraph { |
214 | public: |
215 | struct Product { |
216 | Value *Multiplier; |
217 | Value *Multiplicand; |
218 | bool IsPositive; |
219 | }; |
220 | |
221 | using Addend = std::pair<Value *, bool>; |
222 | using NodePtr = ComplexDeinterleavingCompositeNode::NodePtr; |
223 | using RawNodePtr = ComplexDeinterleavingCompositeNode::RawNodePtr; |
224 | |
225 | // Helper struct for holding info about potential partial multiplication |
226 | // candidates |
227 | struct PartialMulCandidate { |
228 | Value *Common; |
229 | NodePtr Node; |
230 | unsigned RealIdx; |
231 | unsigned ImagIdx; |
232 | bool IsNodeInverted; |
233 | }; |
234 | |
235 | explicit ComplexDeinterleavingGraph(const TargetLowering *TL, |
236 | const TargetLibraryInfo *TLI) |
237 | : TL(TL), TLI(TLI) {} |
238 | |
239 | private: |
240 | const TargetLowering *TL = nullptr; |
241 | const TargetLibraryInfo *TLI = nullptr; |
242 | SmallVector<NodePtr> CompositeNodes; |
243 | DenseMap<std::pair<Value *, Value *>, NodePtr> CachedResult; |
244 | |
245 | SmallPtrSet<Instruction *, 16> FinalInstructions; |
246 | |
247 | /// Root instructions are instructions from which complex computation starts |
248 | std::map<Instruction *, NodePtr> RootToNode; |
249 | |
250 | /// Topologically sorted root instructions |
251 | SmallVector<Instruction *, 1> OrderedRoots; |
252 | |
253 | /// When examining a basic block for complex deinterleaving, if it is a simple |
254 | /// one-block loop, then the only incoming block is 'Incoming' and the |
255 | /// 'BackEdge' block is the block itself." |
256 | BasicBlock *BackEdge = nullptr; |
257 | BasicBlock *Incoming = nullptr; |
258 | |
259 | /// ReductionInfo maps from %ReductionOp to %PHInode and Instruction |
260 | /// %OutsideUser as it is shown in the IR: |
261 | /// |
262 | /// vector.body: |
263 | /// %PHInode = phi <vector type> [ zeroinitializer, %entry ], |
264 | /// [ %ReductionOp, %vector.body ] |
265 | /// ... |
266 | /// %ReductionOp = fadd i64 ... |
267 | /// ... |
268 | /// br i1 %condition, label %vector.body, %middle.block |
269 | /// |
270 | /// middle.block: |
271 | /// %OutsideUser = llvm.vector.reduce.fadd(..., %ReductionOp) |
272 | /// |
273 | /// %OutsideUser can be `llvm.vector.reduce.fadd` or `fadd` preceding |
274 | /// `llvm.vector.reduce.fadd` when unroll factor isn't one. |
275 | MapVector<Instruction *, std::pair<PHINode *, Instruction *>> ReductionInfo; |
276 | |
277 | /// In the process of detecting a reduction, we consider a pair of |
278 | /// %ReductionOP, which we refer to as real and imag (or vice versa), and |
279 | /// traverse the use-tree to detect complex operations. As this is a reduction |
280 | /// operation, it will eventually reach RealPHI and ImagPHI, which corresponds |
281 | /// to the %ReductionOPs that we suspect to be complex. |
282 | /// RealPHI and ImagPHI are used by the identifyPHINode method. |
283 | PHINode *RealPHI = nullptr; |
284 | PHINode *ImagPHI = nullptr; |
285 | |
286 | /// Set this flag to true if RealPHI and ImagPHI were reached during reduction |
287 | /// detection. |
288 | bool PHIsFound = false; |
289 | |
290 | /// OldToNewPHI maps the original real PHINode to a new, double-sized PHINode. |
291 | /// The new PHINode corresponds to a vector of deinterleaved complex numbers. |
292 | /// This mapping is populated during |
293 | /// ComplexDeinterleavingOperation::ReductionPHI node replacement. It is then |
294 | /// used in the ComplexDeinterleavingOperation::ReductionOperation node |
295 | /// replacement process. |
296 | std::map<PHINode *, PHINode *> OldToNewPHI; |
297 | |
298 | NodePtr prepareCompositeNode(ComplexDeinterleavingOperation Operation, |
299 | Value *R, Value *I) { |
300 | assert(((Operation != ComplexDeinterleavingOperation::ReductionPHI && |
301 | Operation != ComplexDeinterleavingOperation::ReductionOperation) || |
302 | (R && I)) && |
303 | "Reduction related nodes must have Real and Imaginary parts" ); |
304 | return std::make_shared<ComplexDeinterleavingCompositeNode>(args&: Operation, args&: R, |
305 | args&: I); |
306 | } |
307 | |
308 | NodePtr submitCompositeNode(NodePtr Node) { |
309 | CompositeNodes.push_back(Elt: Node); |
310 | if (Node->Real) |
311 | CachedResult[{Node->Real, Node->Imag}] = Node; |
312 | return Node; |
313 | } |
314 | |
315 | /// Identifies a complex partial multiply pattern and its rotation, based on |
316 | /// the following patterns |
317 | /// |
318 | /// 0: r: cr + ar * br |
319 | /// i: ci + ar * bi |
320 | /// 90: r: cr - ai * bi |
321 | /// i: ci + ai * br |
322 | /// 180: r: cr - ar * br |
323 | /// i: ci - ar * bi |
324 | /// 270: r: cr + ai * bi |
325 | /// i: ci - ai * br |
326 | NodePtr identifyPartialMul(Instruction *Real, Instruction *Imag); |
327 | |
328 | /// Identify the other branch of a Partial Mul, taking the CommonOperandI that |
329 | /// is partially known from identifyPartialMul, filling in the other half of |
330 | /// the complex pair. |
331 | NodePtr |
332 | identifyNodeWithImplicitAdd(Instruction *I, Instruction *J, |
333 | std::pair<Value *, Value *> &CommonOperandI); |
334 | |
335 | /// Identifies a complex add pattern and its rotation, based on the following |
336 | /// patterns. |
337 | /// |
338 | /// 90: r: ar - bi |
339 | /// i: ai + br |
340 | /// 270: r: ar + bi |
341 | /// i: ai - br |
342 | NodePtr identifyAdd(Instruction *Real, Instruction *Imag); |
343 | NodePtr identifySymmetricOperation(Instruction *Real, Instruction *Imag); |
344 | NodePtr identifyPartialReduction(Value *R, Value *I); |
345 | NodePtr identifyDotProduct(Value *Inst); |
346 | |
347 | NodePtr identifyNode(Value *R, Value *I); |
348 | |
349 | /// Determine if a sum of complex numbers can be formed from \p RealAddends |
350 | /// and \p ImagAddens. If \p Accumulator is not null, add the result to it. |
351 | /// Return nullptr if it is not possible to construct a complex number. |
352 | /// \p Flags are needed to generate symmetric Add and Sub operations. |
353 | NodePtr identifyAdditions(std::list<Addend> &RealAddends, |
354 | std::list<Addend> &ImagAddends, |
355 | std::optional<FastMathFlags> Flags, |
356 | NodePtr Accumulator); |
357 | |
358 | /// Extract one addend that have both real and imaginary parts positive. |
359 | NodePtr extractPositiveAddend(std::list<Addend> &RealAddends, |
360 | std::list<Addend> &ImagAddends); |
361 | |
362 | /// Determine if sum of multiplications of complex numbers can be formed from |
363 | /// \p RealMuls and \p ImagMuls. If \p Accumulator is not null, add the result |
364 | /// to it. Return nullptr if it is not possible to construct a complex number. |
365 | NodePtr identifyMultiplications(std::vector<Product> &RealMuls, |
366 | std::vector<Product> &ImagMuls, |
367 | NodePtr Accumulator); |
368 | |
369 | /// Go through pairs of multiplication (one Real and one Imag) and find all |
370 | /// possible candidates for partial multiplication and put them into \p |
371 | /// Candidates. Returns true if all Product has pair with common operand |
372 | bool collectPartialMuls(const std::vector<Product> &RealMuls, |
373 | const std::vector<Product> &ImagMuls, |
374 | std::vector<PartialMulCandidate> &Candidates); |
375 | |
376 | /// If the code is compiled with -Ofast or expressions have `reassoc` flag, |
377 | /// the order of complex computation operations may be significantly altered, |
378 | /// and the real and imaginary parts may not be executed in parallel. This |
379 | /// function takes this into consideration and employs a more general approach |
380 | /// to identify complex computations. Initially, it gathers all the addends |
381 | /// and multiplicands and then constructs a complex expression from them. |
382 | NodePtr identifyReassocNodes(Instruction *I, Instruction *J); |
383 | |
384 | NodePtr identifyRoot(Instruction *I); |
385 | |
386 | /// Identifies the Deinterleave operation applied to a vector containing |
387 | /// complex numbers. There are two ways to represent the Deinterleave |
388 | /// operation: |
389 | /// * Using two shufflevectors with even indices for /pReal instruction and |
390 | /// odd indices for /pImag instructions (only for fixed-width vectors) |
391 | /// * Using two extractvalue instructions applied to `vector.deinterleave2` |
392 | /// intrinsic (for both fixed and scalable vectors) |
393 | NodePtr identifyDeinterleave(Instruction *Real, Instruction *Imag); |
394 | |
395 | /// identifying the operation that represents a complex number repeated in a |
396 | /// Splat vector. There are two possible types of splats: ConstantExpr with |
397 | /// the opcode ShuffleVector and ShuffleVectorInstr. Both should have an |
398 | /// initialization mask with all values set to zero. |
399 | NodePtr identifySplat(Value *Real, Value *Imag); |
400 | |
401 | NodePtr identifyPHINode(Instruction *Real, Instruction *Imag); |
402 | |
403 | /// Identifies SelectInsts in a loop that has reduction with predication masks |
404 | /// and/or predicated tail folding |
405 | NodePtr identifySelectNode(Instruction *Real, Instruction *Imag); |
406 | |
407 | Value *replaceNode(IRBuilderBase &Builder, RawNodePtr Node); |
408 | |
409 | /// Complete IR modifications after producing new reduction operation: |
410 | /// * Populate the PHINode generated for |
411 | /// ComplexDeinterleavingOperation::ReductionPHI |
412 | /// * Deinterleave the final value outside of the loop and repurpose original |
413 | /// reduction users |
414 | void processReductionOperation(Value *OperationReplacement, RawNodePtr Node); |
415 | void processReductionSingle(Value *OperationReplacement, RawNodePtr Node); |
416 | |
417 | public: |
418 | void dump() { dump(OS&: dbgs()); } |
419 | void dump(raw_ostream &OS) { |
420 | for (const auto &Node : CompositeNodes) |
421 | Node->dump(OS); |
422 | } |
423 | |
424 | /// Returns false if the deinterleaving operation should be cancelled for the |
425 | /// current graph. |
426 | bool identifyNodes(Instruction *RootI); |
427 | |
428 | /// In case \pB is one-block loop, this function seeks potential reductions |
429 | /// and populates ReductionInfo. Returns true if any reductions were |
430 | /// identified. |
431 | bool collectPotentialReductions(BasicBlock *B); |
432 | |
433 | void identifyReductionNodes(); |
434 | |
435 | /// Check that every instruction, from the roots to the leaves, has internal |
436 | /// uses. |
437 | bool checkNodes(); |
438 | |
439 | /// Perform the actual replacement of the underlying instruction graph. |
440 | void replaceNodes(); |
441 | }; |
442 | |
443 | class ComplexDeinterleaving { |
444 | public: |
445 | ComplexDeinterleaving(const TargetLowering *tl, const TargetLibraryInfo *tli) |
446 | : TL(tl), TLI(tli) {} |
447 | bool runOnFunction(Function &F); |
448 | |
449 | private: |
450 | bool evaluateBasicBlock(BasicBlock *B); |
451 | |
452 | const TargetLowering *TL = nullptr; |
453 | const TargetLibraryInfo *TLI = nullptr; |
454 | }; |
455 | |
456 | } // namespace |
457 | |
458 | char ComplexDeinterleavingLegacyPass::ID = 0; |
459 | |
460 | INITIALIZE_PASS_BEGIN(ComplexDeinterleavingLegacyPass, DEBUG_TYPE, |
461 | "Complex Deinterleaving" , false, false) |
462 | INITIALIZE_PASS_END(ComplexDeinterleavingLegacyPass, DEBUG_TYPE, |
463 | "Complex Deinterleaving" , false, false) |
464 | |
465 | PreservedAnalyses ComplexDeinterleavingPass::run(Function &F, |
466 | FunctionAnalysisManager &AM) { |
467 | const TargetLowering *TL = TM->getSubtargetImpl(F)->getTargetLowering(); |
468 | auto &TLI = AM.getResult<llvm::TargetLibraryAnalysis>(IR&: F); |
469 | if (!ComplexDeinterleaving(TL, &TLI).runOnFunction(F)) |
470 | return PreservedAnalyses::all(); |
471 | |
472 | PreservedAnalyses PA; |
473 | PA.preserve<FunctionAnalysisManagerModuleProxy>(); |
474 | return PA; |
475 | } |
476 | |
477 | FunctionPass *llvm::createComplexDeinterleavingPass(const TargetMachine *TM) { |
478 | return new ComplexDeinterleavingLegacyPass(TM); |
479 | } |
480 | |
481 | bool ComplexDeinterleavingLegacyPass::runOnFunction(Function &F) { |
482 | const auto *TL = TM->getSubtargetImpl(F)->getTargetLowering(); |
483 | auto TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); |
484 | return ComplexDeinterleaving(TL, &TLI).runOnFunction(F); |
485 | } |
486 | |
487 | bool ComplexDeinterleaving::runOnFunction(Function &F) { |
488 | if (!ComplexDeinterleavingEnabled) { |
489 | LLVM_DEBUG( |
490 | dbgs() << "Complex deinterleaving has been explicitly disabled.\n" ); |
491 | return false; |
492 | } |
493 | |
494 | if (!TL->isComplexDeinterleavingSupported()) { |
495 | LLVM_DEBUG( |
496 | dbgs() << "Complex deinterleaving has been disabled, target does " |
497 | "not support lowering of complex number operations.\n" ); |
498 | return false; |
499 | } |
500 | |
501 | bool Changed = false; |
502 | for (auto &B : F) |
503 | Changed |= evaluateBasicBlock(B: &B); |
504 | |
505 | return Changed; |
506 | } |
507 | |
508 | static bool isInterleavingMask(ArrayRef<int> Mask) { |
509 | // If the size is not even, it's not an interleaving mask |
510 | if ((Mask.size() & 1)) |
511 | return false; |
512 | |
513 | int HalfNumElements = Mask.size() / 2; |
514 | for (int Idx = 0; Idx < HalfNumElements; ++Idx) { |
515 | int MaskIdx = Idx * 2; |
516 | if (Mask[MaskIdx] != Idx || Mask[MaskIdx + 1] != (Idx + HalfNumElements)) |
517 | return false; |
518 | } |
519 | |
520 | return true; |
521 | } |
522 | |
523 | static bool isDeinterleavingMask(ArrayRef<int> Mask) { |
524 | int Offset = Mask[0]; |
525 | int HalfNumElements = Mask.size() / 2; |
526 | |
527 | for (int Idx = 1; Idx < HalfNumElements; ++Idx) { |
528 | if (Mask[Idx] != (Idx * 2) + Offset) |
529 | return false; |
530 | } |
531 | |
532 | return true; |
533 | } |
534 | |
535 | bool isNeg(Value *V) { |
536 | return match(V, P: m_FNeg(X: m_Value())) || match(V, P: m_Neg(V: m_Value())); |
537 | } |
538 | |
539 | Value *getNegOperand(Value *V) { |
540 | assert(isNeg(V)); |
541 | auto *I = cast<Instruction>(Val: V); |
542 | if (I->getOpcode() == Instruction::FNeg) |
543 | return I->getOperand(i: 0); |
544 | |
545 | return I->getOperand(i: 1); |
546 | } |
547 | |
548 | bool ComplexDeinterleaving::evaluateBasicBlock(BasicBlock *B) { |
549 | ComplexDeinterleavingGraph Graph(TL, TLI); |
550 | if (Graph.collectPotentialReductions(B)) |
551 | Graph.identifyReductionNodes(); |
552 | |
553 | for (auto &I : *B) |
554 | Graph.identifyNodes(RootI: &I); |
555 | |
556 | if (Graph.checkNodes()) { |
557 | Graph.replaceNodes(); |
558 | return true; |
559 | } |
560 | |
561 | return false; |
562 | } |
563 | |
564 | ComplexDeinterleavingGraph::NodePtr |
565 | ComplexDeinterleavingGraph::identifyNodeWithImplicitAdd( |
566 | Instruction *Real, Instruction *Imag, |
567 | std::pair<Value *, Value *> &PartialMatch) { |
568 | LLVM_DEBUG(dbgs() << "identifyNodeWithImplicitAdd " << *Real << " / " << *Imag |
569 | << "\n" ); |
570 | |
571 | if (!Real->hasOneUse() || !Imag->hasOneUse()) { |
572 | LLVM_DEBUG(dbgs() << " - Mul operand has multiple uses.\n" ); |
573 | return nullptr; |
574 | } |
575 | |
576 | if ((Real->getOpcode() != Instruction::FMul && |
577 | Real->getOpcode() != Instruction::Mul) || |
578 | (Imag->getOpcode() != Instruction::FMul && |
579 | Imag->getOpcode() != Instruction::Mul)) { |
580 | LLVM_DEBUG( |
581 | dbgs() << " - Real or imaginary instruction is not fmul or mul\n" ); |
582 | return nullptr; |
583 | } |
584 | |
585 | Value *R0 = Real->getOperand(i: 0); |
586 | Value *R1 = Real->getOperand(i: 1); |
587 | Value *I0 = Imag->getOperand(i: 0); |
588 | Value *I1 = Imag->getOperand(i: 1); |
589 | |
590 | // A +/+ has a rotation of 0. If any of the operands are fneg, we flip the |
591 | // rotations and use the operand. |
592 | unsigned Negs = 0; |
593 | Value *Op; |
594 | if (match(V: R0, P: m_Neg(V: m_Value(V&: Op)))) { |
595 | Negs |= 1; |
596 | R0 = Op; |
597 | } else if (match(V: R1, P: m_Neg(V: m_Value(V&: Op)))) { |
598 | Negs |= 1; |
599 | R1 = Op; |
600 | } |
601 | |
602 | if (isNeg(V: I0)) { |
603 | Negs |= 2; |
604 | Negs ^= 1; |
605 | I0 = Op; |
606 | } else if (match(V: I1, P: m_Neg(V: m_Value(V&: Op)))) { |
607 | Negs |= 2; |
608 | Negs ^= 1; |
609 | I1 = Op; |
610 | } |
611 | |
612 | ComplexDeinterleavingRotation Rotation = (ComplexDeinterleavingRotation)Negs; |
613 | |
614 | Value *CommonOperand; |
615 | Value *UncommonRealOp; |
616 | Value *UncommonImagOp; |
617 | |
618 | if (R0 == I0 || R0 == I1) { |
619 | CommonOperand = R0; |
620 | UncommonRealOp = R1; |
621 | } else if (R1 == I0 || R1 == I1) { |
622 | CommonOperand = R1; |
623 | UncommonRealOp = R0; |
624 | } else { |
625 | LLVM_DEBUG(dbgs() << " - No equal operand\n" ); |
626 | return nullptr; |
627 | } |
628 | |
629 | UncommonImagOp = (CommonOperand == I0) ? I1 : I0; |
630 | if (Rotation == ComplexDeinterleavingRotation::Rotation_90 || |
631 | Rotation == ComplexDeinterleavingRotation::Rotation_270) |
632 | std::swap(a&: UncommonRealOp, b&: UncommonImagOp); |
633 | |
634 | // Between identifyPartialMul and here we need to have found a complete valid |
635 | // pair from the CommonOperand of each part. |
636 | if (Rotation == ComplexDeinterleavingRotation::Rotation_0 || |
637 | Rotation == ComplexDeinterleavingRotation::Rotation_180) |
638 | PartialMatch.first = CommonOperand; |
639 | else |
640 | PartialMatch.second = CommonOperand; |
641 | |
642 | if (!PartialMatch.first || !PartialMatch.second) { |
643 | LLVM_DEBUG(dbgs() << " - Incomplete partial match\n" ); |
644 | return nullptr; |
645 | } |
646 | |
647 | NodePtr CommonNode = identifyNode(R: PartialMatch.first, I: PartialMatch.second); |
648 | if (!CommonNode) { |
649 | LLVM_DEBUG(dbgs() << " - No CommonNode identified\n" ); |
650 | return nullptr; |
651 | } |
652 | |
653 | NodePtr UncommonNode = identifyNode(R: UncommonRealOp, I: UncommonImagOp); |
654 | if (!UncommonNode) { |
655 | LLVM_DEBUG(dbgs() << " - No UncommonNode identified\n" ); |
656 | return nullptr; |
657 | } |
658 | |
659 | NodePtr Node = prepareCompositeNode( |
660 | Operation: ComplexDeinterleavingOperation::CMulPartial, R: Real, I: Imag); |
661 | Node->Rotation = Rotation; |
662 | Node->addOperand(Node: CommonNode); |
663 | Node->addOperand(Node: UncommonNode); |
664 | return submitCompositeNode(Node); |
665 | } |
666 | |
667 | ComplexDeinterleavingGraph::NodePtr |
668 | ComplexDeinterleavingGraph::identifyPartialMul(Instruction *Real, |
669 | Instruction *Imag) { |
670 | LLVM_DEBUG(dbgs() << "identifyPartialMul " << *Real << " / " << *Imag |
671 | << "\n" ); |
672 | // Determine rotation |
673 | auto IsAdd = [](unsigned Op) { |
674 | return Op == Instruction::FAdd || Op == Instruction::Add; |
675 | }; |
676 | auto IsSub = [](unsigned Op) { |
677 | return Op == Instruction::FSub || Op == Instruction::Sub; |
678 | }; |
679 | ComplexDeinterleavingRotation Rotation; |
680 | if (IsAdd(Real->getOpcode()) && IsAdd(Imag->getOpcode())) |
681 | Rotation = ComplexDeinterleavingRotation::Rotation_0; |
682 | else if (IsSub(Real->getOpcode()) && IsAdd(Imag->getOpcode())) |
683 | Rotation = ComplexDeinterleavingRotation::Rotation_90; |
684 | else if (IsSub(Real->getOpcode()) && IsSub(Imag->getOpcode())) |
685 | Rotation = ComplexDeinterleavingRotation::Rotation_180; |
686 | else if (IsAdd(Real->getOpcode()) && IsSub(Imag->getOpcode())) |
687 | Rotation = ComplexDeinterleavingRotation::Rotation_270; |
688 | else { |
689 | LLVM_DEBUG(dbgs() << " - Unhandled rotation.\n" ); |
690 | return nullptr; |
691 | } |
692 | |
693 | if (isa<FPMathOperator>(Val: Real) && |
694 | (!Real->getFastMathFlags().allowContract() || |
695 | !Imag->getFastMathFlags().allowContract())) { |
696 | LLVM_DEBUG(dbgs() << " - Contract is missing from the FastMath flags.\n" ); |
697 | return nullptr; |
698 | } |
699 | |
700 | Value *CR = Real->getOperand(i: 0); |
701 | Instruction *RealMulI = dyn_cast<Instruction>(Val: Real->getOperand(i: 1)); |
702 | if (!RealMulI) |
703 | return nullptr; |
704 | Value *CI = Imag->getOperand(i: 0); |
705 | Instruction *ImagMulI = dyn_cast<Instruction>(Val: Imag->getOperand(i: 1)); |
706 | if (!ImagMulI) |
707 | return nullptr; |
708 | |
709 | if (!RealMulI->hasOneUse() || !ImagMulI->hasOneUse()) { |
710 | LLVM_DEBUG(dbgs() << " - Mul instruction has multiple uses\n" ); |
711 | return nullptr; |
712 | } |
713 | |
714 | Value *R0 = RealMulI->getOperand(i: 0); |
715 | Value *R1 = RealMulI->getOperand(i: 1); |
716 | Value *I0 = ImagMulI->getOperand(i: 0); |
717 | Value *I1 = ImagMulI->getOperand(i: 1); |
718 | |
719 | Value *CommonOperand; |
720 | Value *UncommonRealOp; |
721 | Value *UncommonImagOp; |
722 | |
723 | if (R0 == I0 || R0 == I1) { |
724 | CommonOperand = R0; |
725 | UncommonRealOp = R1; |
726 | } else if (R1 == I0 || R1 == I1) { |
727 | CommonOperand = R1; |
728 | UncommonRealOp = R0; |
729 | } else { |
730 | LLVM_DEBUG(dbgs() << " - No equal operand\n" ); |
731 | return nullptr; |
732 | } |
733 | |
734 | UncommonImagOp = (CommonOperand == I0) ? I1 : I0; |
735 | if (Rotation == ComplexDeinterleavingRotation::Rotation_90 || |
736 | Rotation == ComplexDeinterleavingRotation::Rotation_270) |
737 | std::swap(a&: UncommonRealOp, b&: UncommonImagOp); |
738 | |
739 | std::pair<Value *, Value *> PartialMatch( |
740 | (Rotation == ComplexDeinterleavingRotation::Rotation_0 || |
741 | Rotation == ComplexDeinterleavingRotation::Rotation_180) |
742 | ? CommonOperand |
743 | : nullptr, |
744 | (Rotation == ComplexDeinterleavingRotation::Rotation_90 || |
745 | Rotation == ComplexDeinterleavingRotation::Rotation_270) |
746 | ? CommonOperand |
747 | : nullptr); |
748 | |
749 | auto *CRInst = dyn_cast<Instruction>(Val: CR); |
750 | auto *CIInst = dyn_cast<Instruction>(Val: CI); |
751 | |
752 | if (!CRInst || !CIInst) { |
753 | LLVM_DEBUG(dbgs() << " - Common operands are not instructions.\n" ); |
754 | return nullptr; |
755 | } |
756 | |
757 | NodePtr CNode = identifyNodeWithImplicitAdd(Real: CRInst, Imag: CIInst, PartialMatch); |
758 | if (!CNode) { |
759 | LLVM_DEBUG(dbgs() << " - No cnode identified\n" ); |
760 | return nullptr; |
761 | } |
762 | |
763 | NodePtr UncommonRes = identifyNode(R: UncommonRealOp, I: UncommonImagOp); |
764 | if (!UncommonRes) { |
765 | LLVM_DEBUG(dbgs() << " - No UncommonRes identified\n" ); |
766 | return nullptr; |
767 | } |
768 | |
769 | assert(PartialMatch.first && PartialMatch.second); |
770 | NodePtr CommonRes = identifyNode(R: PartialMatch.first, I: PartialMatch.second); |
771 | if (!CommonRes) { |
772 | LLVM_DEBUG(dbgs() << " - No CommonRes identified\n" ); |
773 | return nullptr; |
774 | } |
775 | |
776 | NodePtr Node = prepareCompositeNode( |
777 | Operation: ComplexDeinterleavingOperation::CMulPartial, R: Real, I: Imag); |
778 | Node->Rotation = Rotation; |
779 | Node->addOperand(Node: CommonRes); |
780 | Node->addOperand(Node: UncommonRes); |
781 | Node->addOperand(Node: CNode); |
782 | return submitCompositeNode(Node); |
783 | } |
784 | |
785 | ComplexDeinterleavingGraph::NodePtr |
786 | ComplexDeinterleavingGraph::identifyAdd(Instruction *Real, Instruction *Imag) { |
787 | LLVM_DEBUG(dbgs() << "identifyAdd " << *Real << " / " << *Imag << "\n" ); |
788 | |
789 | // Determine rotation |
790 | ComplexDeinterleavingRotation Rotation; |
791 | if ((Real->getOpcode() == Instruction::FSub && |
792 | Imag->getOpcode() == Instruction::FAdd) || |
793 | (Real->getOpcode() == Instruction::Sub && |
794 | Imag->getOpcode() == Instruction::Add)) |
795 | Rotation = ComplexDeinterleavingRotation::Rotation_90; |
796 | else if ((Real->getOpcode() == Instruction::FAdd && |
797 | Imag->getOpcode() == Instruction::FSub) || |
798 | (Real->getOpcode() == Instruction::Add && |
799 | Imag->getOpcode() == Instruction::Sub)) |
800 | Rotation = ComplexDeinterleavingRotation::Rotation_270; |
801 | else { |
802 | LLVM_DEBUG(dbgs() << " - Unhandled case, rotation is not assigned.\n" ); |
803 | return nullptr; |
804 | } |
805 | |
806 | auto *AR = dyn_cast<Instruction>(Val: Real->getOperand(i: 0)); |
807 | auto *BI = dyn_cast<Instruction>(Val: Real->getOperand(i: 1)); |
808 | auto *AI = dyn_cast<Instruction>(Val: Imag->getOperand(i: 0)); |
809 | auto *BR = dyn_cast<Instruction>(Val: Imag->getOperand(i: 1)); |
810 | |
811 | if (!AR || !AI || !BR || !BI) { |
812 | LLVM_DEBUG(dbgs() << " - Not all operands are instructions.\n" ); |
813 | return nullptr; |
814 | } |
815 | |
816 | NodePtr ResA = identifyNode(R: AR, I: AI); |
817 | if (!ResA) { |
818 | LLVM_DEBUG(dbgs() << " - AR/AI is not identified as a composite node.\n" ); |
819 | return nullptr; |
820 | } |
821 | NodePtr ResB = identifyNode(R: BR, I: BI); |
822 | if (!ResB) { |
823 | LLVM_DEBUG(dbgs() << " - BR/BI is not identified as a composite node.\n" ); |
824 | return nullptr; |
825 | } |
826 | |
827 | NodePtr Node = |
828 | prepareCompositeNode(Operation: ComplexDeinterleavingOperation::CAdd, R: Real, I: Imag); |
829 | Node->Rotation = Rotation; |
830 | Node->addOperand(Node: ResA); |
831 | Node->addOperand(Node: ResB); |
832 | return submitCompositeNode(Node); |
833 | } |
834 | |
835 | static bool isInstructionPairAdd(Instruction *A, Instruction *B) { |
836 | unsigned OpcA = A->getOpcode(); |
837 | unsigned OpcB = B->getOpcode(); |
838 | |
839 | return (OpcA == Instruction::FSub && OpcB == Instruction::FAdd) || |
840 | (OpcA == Instruction::FAdd && OpcB == Instruction::FSub) || |
841 | (OpcA == Instruction::Sub && OpcB == Instruction::Add) || |
842 | (OpcA == Instruction::Add && OpcB == Instruction::Sub); |
843 | } |
844 | |
845 | static bool isInstructionPairMul(Instruction *A, Instruction *B) { |
846 | auto Pattern = |
847 | m_BinOp(L: m_FMul(L: m_Value(), R: m_Value()), R: m_FMul(L: m_Value(), R: m_Value())); |
848 | |
849 | return match(V: A, P: Pattern) && match(V: B, P: Pattern); |
850 | } |
851 | |
852 | static bool isInstructionPotentiallySymmetric(Instruction *I) { |
853 | switch (I->getOpcode()) { |
854 | case Instruction::FAdd: |
855 | case Instruction::FSub: |
856 | case Instruction::FMul: |
857 | case Instruction::FNeg: |
858 | case Instruction::Add: |
859 | case Instruction::Sub: |
860 | case Instruction::Mul: |
861 | return true; |
862 | default: |
863 | return false; |
864 | } |
865 | } |
866 | |
867 | ComplexDeinterleavingGraph::NodePtr |
868 | ComplexDeinterleavingGraph::identifySymmetricOperation(Instruction *Real, |
869 | Instruction *Imag) { |
870 | if (Real->getOpcode() != Imag->getOpcode()) |
871 | return nullptr; |
872 | |
873 | if (!isInstructionPotentiallySymmetric(I: Real) || |
874 | !isInstructionPotentiallySymmetric(I: Imag)) |
875 | return nullptr; |
876 | |
877 | auto *R0 = Real->getOperand(i: 0); |
878 | auto *I0 = Imag->getOperand(i: 0); |
879 | |
880 | NodePtr Op0 = identifyNode(R: R0, I: I0); |
881 | NodePtr Op1 = nullptr; |
882 | if (Op0 == nullptr) |
883 | return nullptr; |
884 | |
885 | if (Real->isBinaryOp()) { |
886 | auto *R1 = Real->getOperand(i: 1); |
887 | auto *I1 = Imag->getOperand(i: 1); |
888 | Op1 = identifyNode(R: R1, I: I1); |
889 | if (Op1 == nullptr) |
890 | return nullptr; |
891 | } |
892 | |
893 | if (isa<FPMathOperator>(Val: Real) && |
894 | Real->getFastMathFlags() != Imag->getFastMathFlags()) |
895 | return nullptr; |
896 | |
897 | auto Node = prepareCompositeNode(Operation: ComplexDeinterleavingOperation::Symmetric, |
898 | R: Real, I: Imag); |
899 | Node->Opcode = Real->getOpcode(); |
900 | if (isa<FPMathOperator>(Val: Real)) |
901 | Node->Flags = Real->getFastMathFlags(); |
902 | |
903 | Node->addOperand(Node: Op0); |
904 | if (Real->isBinaryOp()) |
905 | Node->addOperand(Node: Op1); |
906 | |
907 | return submitCompositeNode(Node); |
908 | } |
909 | |
910 | ComplexDeinterleavingGraph::NodePtr |
911 | ComplexDeinterleavingGraph::identifyDotProduct(Value *V) { |
912 | |
913 | if (!TL->isComplexDeinterleavingOperationSupported( |
914 | Operation: ComplexDeinterleavingOperation::CDot, Ty: V->getType())) { |
915 | LLVM_DEBUG(dbgs() << "Target doesn't support complex deinterleaving " |
916 | "operation CDot with the type " |
917 | << *V->getType() << "\n" ); |
918 | return nullptr; |
919 | } |
920 | |
921 | auto *Inst = cast<Instruction>(Val: V); |
922 | auto *RealUser = cast<Instruction>(Val: *Inst->user_begin()); |
923 | |
924 | NodePtr CN = |
925 | prepareCompositeNode(Operation: ComplexDeinterleavingOperation::CDot, R: Inst, I: nullptr); |
926 | |
927 | NodePtr ANode; |
928 | |
929 | const Intrinsic::ID PartialReduceInt = |
930 | Intrinsic::experimental_vector_partial_reduce_add; |
931 | |
932 | Value *AReal = nullptr; |
933 | Value *AImag = nullptr; |
934 | Value *BReal = nullptr; |
935 | Value *BImag = nullptr; |
936 | Value *Phi = nullptr; |
937 | |
938 | auto UnwrapCast = [](Value *V) -> Value * { |
939 | if (auto *CI = dyn_cast<CastInst>(Val: V)) |
940 | return CI->getOperand(i_nocapture: 0); |
941 | return V; |
942 | }; |
943 | |
944 | auto PatternRot0 = m_Intrinsic<PartialReduceInt>( |
945 | Op0: m_Intrinsic<PartialReduceInt>(Op0: m_Value(V&: Phi), |
946 | Op1: m_Mul(L: m_Value(V&: BReal), R: m_Value(V&: AReal))), |
947 | Op1: m_Neg(V: m_Mul(L: m_Value(V&: BImag), R: m_Value(V&: AImag)))); |
948 | |
949 | auto PatternRot270 = m_Intrinsic<PartialReduceInt>( |
950 | Op0: m_Intrinsic<PartialReduceInt>( |
951 | Op0: m_Value(V&: Phi), Op1: m_Neg(V: m_Mul(L: m_Value(V&: BReal), R: m_Value(V&: AImag)))), |
952 | Op1: m_Mul(L: m_Value(V&: BImag), R: m_Value(V&: AReal))); |
953 | |
954 | if (match(V: Inst, P: PatternRot0)) { |
955 | CN->Rotation = ComplexDeinterleavingRotation::Rotation_0; |
956 | } else if (match(V: Inst, P: PatternRot270)) { |
957 | CN->Rotation = ComplexDeinterleavingRotation::Rotation_270; |
958 | } else { |
959 | Value *A0, *A1; |
960 | // The rotations 90 and 180 share the same operation pattern, so inspect the |
961 | // order of the operands, identifying where the real and imaginary |
962 | // components of A go, to discern between the aforementioned rotations. |
963 | auto PatternRot90Rot180 = m_Intrinsic<PartialReduceInt>( |
964 | Op0: m_Intrinsic<PartialReduceInt>(Op0: m_Value(V&: Phi), |
965 | Op1: m_Mul(L: m_Value(V&: BReal), R: m_Value(V&: A0))), |
966 | Op1: m_Mul(L: m_Value(V&: BImag), R: m_Value(V&: A1))); |
967 | |
968 | if (!match(V: Inst, P: PatternRot90Rot180)) |
969 | return nullptr; |
970 | |
971 | A0 = UnwrapCast(A0); |
972 | A1 = UnwrapCast(A1); |
973 | |
974 | // Test if A0 is real/A1 is imag |
975 | ANode = identifyNode(R: A0, I: A1); |
976 | if (!ANode) { |
977 | // Test if A0 is imag/A1 is real |
978 | ANode = identifyNode(R: A1, I: A0); |
979 | // Unable to identify operand components, thus unable to identify rotation |
980 | if (!ANode) |
981 | return nullptr; |
982 | CN->Rotation = ComplexDeinterleavingRotation::Rotation_90; |
983 | AReal = A1; |
984 | AImag = A0; |
985 | } else { |
986 | AReal = A0; |
987 | AImag = A1; |
988 | CN->Rotation = ComplexDeinterleavingRotation::Rotation_180; |
989 | } |
990 | } |
991 | |
992 | AReal = UnwrapCast(AReal); |
993 | AImag = UnwrapCast(AImag); |
994 | BReal = UnwrapCast(BReal); |
995 | BImag = UnwrapCast(BImag); |
996 | |
997 | VectorType *VTy = cast<VectorType>(Val: V->getType()); |
998 | Type *ExpectedOperandTy = VectorType::getSubdividedVectorType(VTy, NumSubdivs: 2); |
999 | if (AReal->getType() != ExpectedOperandTy) |
1000 | return nullptr; |
1001 | if (AImag->getType() != ExpectedOperandTy) |
1002 | return nullptr; |
1003 | if (BReal->getType() != ExpectedOperandTy) |
1004 | return nullptr; |
1005 | if (BImag->getType() != ExpectedOperandTy) |
1006 | return nullptr; |
1007 | |
1008 | if (Phi->getType() != VTy && RealUser->getType() != VTy) |
1009 | return nullptr; |
1010 | |
1011 | NodePtr Node = identifyNode(R: AReal, I: AImag); |
1012 | |
1013 | // In the case that a node was identified to figure out the rotation, ensure |
1014 | // that trying to identify a node with AReal and AImag post-unwrap results in |
1015 | // the same node |
1016 | if (ANode && Node != ANode) { |
1017 | LLVM_DEBUG( |
1018 | dbgs() |
1019 | << "Identified node is different from previously identified node. " |
1020 | "Unable to confidently generate a complex operation node\n" ); |
1021 | return nullptr; |
1022 | } |
1023 | |
1024 | CN->addOperand(Node); |
1025 | CN->addOperand(Node: identifyNode(R: BReal, I: BImag)); |
1026 | CN->addOperand(Node: identifyNode(R: Phi, I: RealUser)); |
1027 | |
1028 | return submitCompositeNode(Node: CN); |
1029 | } |
1030 | |
1031 | ComplexDeinterleavingGraph::NodePtr |
1032 | ComplexDeinterleavingGraph::identifyPartialReduction(Value *R, Value *I) { |
1033 | // Partial reductions don't support non-vector types, so check these first |
1034 | if (!isa<VectorType>(Val: R->getType()) || !isa<VectorType>(Val: I->getType())) |
1035 | return nullptr; |
1036 | |
1037 | if (!R->hasUseList() || !I->hasUseList()) |
1038 | return nullptr; |
1039 | |
1040 | auto CommonUser = |
1041 | findCommonBetweenCollections<Value *>(A: R->users(), B: I->users()); |
1042 | if (!CommonUser) |
1043 | return nullptr; |
1044 | |
1045 | auto *IInst = dyn_cast<IntrinsicInst>(Val: *CommonUser); |
1046 | if (!IInst || IInst->getIntrinsicID() != |
1047 | Intrinsic::experimental_vector_partial_reduce_add) |
1048 | return nullptr; |
1049 | |
1050 | if (NodePtr CN = identifyDotProduct(V: IInst)) |
1051 | return CN; |
1052 | |
1053 | return nullptr; |
1054 | } |
1055 | |
1056 | ComplexDeinterleavingGraph::NodePtr |
1057 | ComplexDeinterleavingGraph::identifyNode(Value *R, Value *I) { |
1058 | auto It = CachedResult.find(Val: {R, I}); |
1059 | if (It != CachedResult.end()) { |
1060 | LLVM_DEBUG(dbgs() << " - Folding to existing node\n" ); |
1061 | return It->second; |
1062 | } |
1063 | |
1064 | if (NodePtr CN = identifyPartialReduction(R, I)) |
1065 | return CN; |
1066 | |
1067 | bool IsReduction = RealPHI == R && (!ImagPHI || ImagPHI == I); |
1068 | if (!IsReduction && R->getType() != I->getType()) |
1069 | return nullptr; |
1070 | |
1071 | if (NodePtr CN = identifySplat(Real: R, Imag: I)) |
1072 | return CN; |
1073 | |
1074 | auto *Real = dyn_cast<Instruction>(Val: R); |
1075 | auto *Imag = dyn_cast<Instruction>(Val: I); |
1076 | if (!Real || !Imag) |
1077 | return nullptr; |
1078 | |
1079 | if (NodePtr CN = identifyDeinterleave(Real, Imag)) |
1080 | return CN; |
1081 | |
1082 | if (NodePtr CN = identifyPHINode(Real, Imag)) |
1083 | return CN; |
1084 | |
1085 | if (NodePtr CN = identifySelectNode(Real, Imag)) |
1086 | return CN; |
1087 | |
1088 | auto *VTy = cast<VectorType>(Val: Real->getType()); |
1089 | auto *NewVTy = VectorType::getDoubleElementsVectorType(VTy); |
1090 | |
1091 | bool HasCMulSupport = TL->isComplexDeinterleavingOperationSupported( |
1092 | Operation: ComplexDeinterleavingOperation::CMulPartial, Ty: NewVTy); |
1093 | bool HasCAddSupport = TL->isComplexDeinterleavingOperationSupported( |
1094 | Operation: ComplexDeinterleavingOperation::CAdd, Ty: NewVTy); |
1095 | |
1096 | if (HasCMulSupport && isInstructionPairMul(A: Real, B: Imag)) { |
1097 | if (NodePtr CN = identifyPartialMul(Real, Imag)) |
1098 | return CN; |
1099 | } |
1100 | |
1101 | if (HasCAddSupport && isInstructionPairAdd(A: Real, B: Imag)) { |
1102 | if (NodePtr CN = identifyAdd(Real, Imag)) |
1103 | return CN; |
1104 | } |
1105 | |
1106 | if (HasCMulSupport && HasCAddSupport) { |
1107 | if (NodePtr CN = identifyReassocNodes(I: Real, J: Imag)) |
1108 | return CN; |
1109 | } |
1110 | |
1111 | if (NodePtr CN = identifySymmetricOperation(Real, Imag)) |
1112 | return CN; |
1113 | |
1114 | LLVM_DEBUG(dbgs() << " - Not recognised as a valid pattern.\n" ); |
1115 | CachedResult[{R, I}] = nullptr; |
1116 | return nullptr; |
1117 | } |
1118 | |
1119 | ComplexDeinterleavingGraph::NodePtr |
1120 | ComplexDeinterleavingGraph::identifyReassocNodes(Instruction *Real, |
1121 | Instruction *Imag) { |
1122 | auto IsOperationSupported = [](unsigned Opcode) -> bool { |
1123 | return Opcode == Instruction::FAdd || Opcode == Instruction::FSub || |
1124 | Opcode == Instruction::FNeg || Opcode == Instruction::Add || |
1125 | Opcode == Instruction::Sub; |
1126 | }; |
1127 | |
1128 | if (!IsOperationSupported(Real->getOpcode()) || |
1129 | !IsOperationSupported(Imag->getOpcode())) |
1130 | return nullptr; |
1131 | |
1132 | std::optional<FastMathFlags> Flags; |
1133 | if (isa<FPMathOperator>(Val: Real)) { |
1134 | if (Real->getFastMathFlags() != Imag->getFastMathFlags()) { |
1135 | LLVM_DEBUG(dbgs() << "The flags in Real and Imaginary instructions are " |
1136 | "not identical\n" ); |
1137 | return nullptr; |
1138 | } |
1139 | |
1140 | Flags = Real->getFastMathFlags(); |
1141 | if (!Flags->allowReassoc()) { |
1142 | LLVM_DEBUG( |
1143 | dbgs() |
1144 | << "the 'Reassoc' attribute is missing in the FastMath flags\n" ); |
1145 | return nullptr; |
1146 | } |
1147 | } |
1148 | |
1149 | // Collect multiplications and addend instructions from the given instruction |
1150 | // while traversing it operands. Additionally, verify that all instructions |
1151 | // have the same fast math flags. |
1152 | auto Collect = [&Flags](Instruction *Insn, std::vector<Product> &Muls, |
1153 | std::list<Addend> &Addends) -> bool { |
1154 | SmallVector<PointerIntPair<Value *, 1, bool>> Worklist = {{Insn, true}}; |
1155 | SmallPtrSet<Value *, 8> Visited; |
1156 | while (!Worklist.empty()) { |
1157 | auto [V, IsPositive] = Worklist.pop_back_val(); |
1158 | if (!Visited.insert(Ptr: V).second) |
1159 | continue; |
1160 | |
1161 | Instruction *I = dyn_cast<Instruction>(Val: V); |
1162 | if (!I) { |
1163 | Addends.emplace_back(args&: V, args&: IsPositive); |
1164 | continue; |
1165 | } |
1166 | |
1167 | // If an instruction has more than one user, it indicates that it either |
1168 | // has an external user, which will be later checked by the checkNodes |
1169 | // function, or it is a subexpression utilized by multiple expressions. In |
1170 | // the latter case, we will attempt to separately identify the complex |
1171 | // operation from here in order to create a shared |
1172 | // ComplexDeinterleavingCompositeNode. |
1173 | if (I != Insn && I->hasNUsesOrMore(N: 2)) { |
1174 | LLVM_DEBUG(dbgs() << "Found potential sub-expression: " << *I << "\n" ); |
1175 | Addends.emplace_back(args&: I, args&: IsPositive); |
1176 | continue; |
1177 | } |
1178 | switch (I->getOpcode()) { |
1179 | case Instruction::FAdd: |
1180 | case Instruction::Add: |
1181 | Worklist.emplace_back(Args: I->getOperand(i: 1), Args&: IsPositive); |
1182 | Worklist.emplace_back(Args: I->getOperand(i: 0), Args&: IsPositive); |
1183 | break; |
1184 | case Instruction::FSub: |
1185 | Worklist.emplace_back(Args: I->getOperand(i: 1), Args: !IsPositive); |
1186 | Worklist.emplace_back(Args: I->getOperand(i: 0), Args&: IsPositive); |
1187 | break; |
1188 | case Instruction::Sub: |
1189 | if (isNeg(V: I)) { |
1190 | Worklist.emplace_back(Args: getNegOperand(V: I), Args: !IsPositive); |
1191 | } else { |
1192 | Worklist.emplace_back(Args: I->getOperand(i: 1), Args: !IsPositive); |
1193 | Worklist.emplace_back(Args: I->getOperand(i: 0), Args&: IsPositive); |
1194 | } |
1195 | break; |
1196 | case Instruction::FMul: |
1197 | case Instruction::Mul: { |
1198 | Value *A, *B; |
1199 | if (isNeg(V: I->getOperand(i: 0))) { |
1200 | A = getNegOperand(V: I->getOperand(i: 0)); |
1201 | IsPositive = !IsPositive; |
1202 | } else { |
1203 | A = I->getOperand(i: 0); |
1204 | } |
1205 | |
1206 | if (isNeg(V: I->getOperand(i: 1))) { |
1207 | B = getNegOperand(V: I->getOperand(i: 1)); |
1208 | IsPositive = !IsPositive; |
1209 | } else { |
1210 | B = I->getOperand(i: 1); |
1211 | } |
1212 | Muls.push_back(x: Product{.Multiplier: A, .Multiplicand: B, .IsPositive: IsPositive}); |
1213 | break; |
1214 | } |
1215 | case Instruction::FNeg: |
1216 | Worklist.emplace_back(Args: I->getOperand(i: 0), Args: !IsPositive); |
1217 | break; |
1218 | default: |
1219 | Addends.emplace_back(args&: I, args&: IsPositive); |
1220 | continue; |
1221 | } |
1222 | |
1223 | if (Flags && I->getFastMathFlags() != *Flags) { |
1224 | LLVM_DEBUG(dbgs() << "The instruction's fast math flags are " |
1225 | "inconsistent with the root instructions' flags: " |
1226 | << *I << "\n" ); |
1227 | return false; |
1228 | } |
1229 | } |
1230 | return true; |
1231 | }; |
1232 | |
1233 | std::vector<Product> RealMuls, ImagMuls; |
1234 | std::list<Addend> RealAddends, ImagAddends; |
1235 | if (!Collect(Real, RealMuls, RealAddends) || |
1236 | !Collect(Imag, ImagMuls, ImagAddends)) |
1237 | return nullptr; |
1238 | |
1239 | if (RealAddends.size() != ImagAddends.size()) |
1240 | return nullptr; |
1241 | |
1242 | NodePtr FinalNode; |
1243 | if (!RealMuls.empty() || !ImagMuls.empty()) { |
1244 | // If there are multiplicands, extract positive addend and use it as an |
1245 | // accumulator |
1246 | FinalNode = extractPositiveAddend(RealAddends, ImagAddends); |
1247 | FinalNode = identifyMultiplications(RealMuls, ImagMuls, Accumulator: FinalNode); |
1248 | if (!FinalNode) |
1249 | return nullptr; |
1250 | } |
1251 | |
1252 | // Identify and process remaining additions |
1253 | if (!RealAddends.empty() || !ImagAddends.empty()) { |
1254 | FinalNode = identifyAdditions(RealAddends, ImagAddends, Flags, Accumulator: FinalNode); |
1255 | if (!FinalNode) |
1256 | return nullptr; |
1257 | } |
1258 | assert(FinalNode && "FinalNode can not be nullptr here" ); |
1259 | // Set the Real and Imag fields of the final node and submit it |
1260 | FinalNode->Real = Real; |
1261 | FinalNode->Imag = Imag; |
1262 | submitCompositeNode(Node: FinalNode); |
1263 | return FinalNode; |
1264 | } |
1265 | |
1266 | bool ComplexDeinterleavingGraph::collectPartialMuls( |
1267 | const std::vector<Product> &RealMuls, const std::vector<Product> &ImagMuls, |
1268 | std::vector<PartialMulCandidate> &PartialMulCandidates) { |
1269 | // Helper function to extract a common operand from two products |
1270 | auto FindCommonInstruction = [](const Product &Real, |
1271 | const Product &Imag) -> Value * { |
1272 | if (Real.Multiplicand == Imag.Multiplicand || |
1273 | Real.Multiplicand == Imag.Multiplier) |
1274 | return Real.Multiplicand; |
1275 | |
1276 | if (Real.Multiplier == Imag.Multiplicand || |
1277 | Real.Multiplier == Imag.Multiplier) |
1278 | return Real.Multiplier; |
1279 | |
1280 | return nullptr; |
1281 | }; |
1282 | |
1283 | // Iterating over real and imaginary multiplications to find common operands |
1284 | // If a common operand is found, a partial multiplication candidate is created |
1285 | // and added to the candidates vector The function returns false if no common |
1286 | // operands are found for any product |
1287 | for (unsigned i = 0; i < RealMuls.size(); ++i) { |
1288 | bool FoundCommon = false; |
1289 | for (unsigned j = 0; j < ImagMuls.size(); ++j) { |
1290 | auto *Common = FindCommonInstruction(RealMuls[i], ImagMuls[j]); |
1291 | if (!Common) |
1292 | continue; |
1293 | |
1294 | auto *A = RealMuls[i].Multiplicand == Common ? RealMuls[i].Multiplier |
1295 | : RealMuls[i].Multiplicand; |
1296 | auto *B = ImagMuls[j].Multiplicand == Common ? ImagMuls[j].Multiplier |
1297 | : ImagMuls[j].Multiplicand; |
1298 | |
1299 | auto Node = identifyNode(R: A, I: B); |
1300 | if (Node) { |
1301 | FoundCommon = true; |
1302 | PartialMulCandidates.push_back(x: {.Common: Common, .Node: Node, .RealIdx: i, .ImagIdx: j, .IsNodeInverted: false}); |
1303 | } |
1304 | |
1305 | Node = identifyNode(R: B, I: A); |
1306 | if (Node) { |
1307 | FoundCommon = true; |
1308 | PartialMulCandidates.push_back(x: {.Common: Common, .Node: Node, .RealIdx: i, .ImagIdx: j, .IsNodeInverted: true}); |
1309 | } |
1310 | } |
1311 | if (!FoundCommon) |
1312 | return false; |
1313 | } |
1314 | return true; |
1315 | } |
1316 | |
1317 | ComplexDeinterleavingGraph::NodePtr |
1318 | ComplexDeinterleavingGraph::identifyMultiplications( |
1319 | std::vector<Product> &RealMuls, std::vector<Product> &ImagMuls, |
1320 | NodePtr Accumulator = nullptr) { |
1321 | if (RealMuls.size() != ImagMuls.size()) |
1322 | return nullptr; |
1323 | |
1324 | std::vector<PartialMulCandidate> Info; |
1325 | if (!collectPartialMuls(RealMuls, ImagMuls, PartialMulCandidates&: Info)) |
1326 | return nullptr; |
1327 | |
1328 | // Map to store common instruction to node pointers |
1329 | std::map<Value *, NodePtr> CommonToNode; |
1330 | std::vector<bool> Processed(Info.size(), false); |
1331 | for (unsigned I = 0; I < Info.size(); ++I) { |
1332 | if (Processed[I]) |
1333 | continue; |
1334 | |
1335 | PartialMulCandidate &InfoA = Info[I]; |
1336 | for (unsigned J = I + 1; J < Info.size(); ++J) { |
1337 | if (Processed[J]) |
1338 | continue; |
1339 | |
1340 | PartialMulCandidate &InfoB = Info[J]; |
1341 | auto *InfoReal = &InfoA; |
1342 | auto *InfoImag = &InfoB; |
1343 | |
1344 | auto NodeFromCommon = identifyNode(R: InfoReal->Common, I: InfoImag->Common); |
1345 | if (!NodeFromCommon) { |
1346 | std::swap(a&: InfoReal, b&: InfoImag); |
1347 | NodeFromCommon = identifyNode(R: InfoReal->Common, I: InfoImag->Common); |
1348 | } |
1349 | if (!NodeFromCommon) |
1350 | continue; |
1351 | |
1352 | CommonToNode[InfoReal->Common] = NodeFromCommon; |
1353 | CommonToNode[InfoImag->Common] = NodeFromCommon; |
1354 | Processed[I] = true; |
1355 | Processed[J] = true; |
1356 | } |
1357 | } |
1358 | |
1359 | std::vector<bool> ProcessedReal(RealMuls.size(), false); |
1360 | std::vector<bool> ProcessedImag(ImagMuls.size(), false); |
1361 | NodePtr Result = Accumulator; |
1362 | for (auto &PMI : Info) { |
1363 | if (ProcessedReal[PMI.RealIdx] || ProcessedImag[PMI.ImagIdx]) |
1364 | continue; |
1365 | |
1366 | auto It = CommonToNode.find(x: PMI.Common); |
1367 | // TODO: Process independent complex multiplications. Cases like this: |
1368 | // A.real() * B where both A and B are complex numbers. |
1369 | if (It == CommonToNode.end()) { |
1370 | LLVM_DEBUG({ |
1371 | dbgs() << "Unprocessed independent partial multiplication:\n" ; |
1372 | for (auto *Mul : {&RealMuls[PMI.RealIdx], &RealMuls[PMI.RealIdx]}) |
1373 | dbgs().indent(4) << (Mul->IsPositive ? "+" : "-" ) << *Mul->Multiplier |
1374 | << " multiplied by " << *Mul->Multiplicand << "\n" ; |
1375 | }); |
1376 | return nullptr; |
1377 | } |
1378 | |
1379 | auto &RealMul = RealMuls[PMI.RealIdx]; |
1380 | auto &ImagMul = ImagMuls[PMI.ImagIdx]; |
1381 | |
1382 | auto NodeA = It->second; |
1383 | auto NodeB = PMI.Node; |
1384 | auto IsMultiplicandReal = PMI.Common == NodeA->Real; |
1385 | // The following table illustrates the relationship between multiplications |
1386 | // and rotations. If we consider the multiplication (X + iY) * (U + iV), we |
1387 | // can see: |
1388 | // |
1389 | // Rotation | Real | Imag | |
1390 | // ---------+--------+--------+ |
1391 | // 0 | x * u | x * v | |
1392 | // 90 | -y * v | y * u | |
1393 | // 180 | -x * u | -x * v | |
1394 | // 270 | y * v | -y * u | |
1395 | // |
1396 | // Check if the candidate can indeed be represented by partial |
1397 | // multiplication |
1398 | // TODO: Add support for multiplication by complex one |
1399 | if ((IsMultiplicandReal && PMI.IsNodeInverted) || |
1400 | (!IsMultiplicandReal && !PMI.IsNodeInverted)) |
1401 | continue; |
1402 | |
1403 | // Determine the rotation based on the multiplications |
1404 | ComplexDeinterleavingRotation Rotation; |
1405 | if (IsMultiplicandReal) { |
1406 | // Detect 0 and 180 degrees rotation |
1407 | if (RealMul.IsPositive && ImagMul.IsPositive) |
1408 | Rotation = llvm::ComplexDeinterleavingRotation::Rotation_0; |
1409 | else if (!RealMul.IsPositive && !ImagMul.IsPositive) |
1410 | Rotation = llvm::ComplexDeinterleavingRotation::Rotation_180; |
1411 | else |
1412 | continue; |
1413 | |
1414 | } else { |
1415 | // Detect 90 and 270 degrees rotation |
1416 | if (!RealMul.IsPositive && ImagMul.IsPositive) |
1417 | Rotation = llvm::ComplexDeinterleavingRotation::Rotation_90; |
1418 | else if (RealMul.IsPositive && !ImagMul.IsPositive) |
1419 | Rotation = llvm::ComplexDeinterleavingRotation::Rotation_270; |
1420 | else |
1421 | continue; |
1422 | } |
1423 | |
1424 | LLVM_DEBUG({ |
1425 | dbgs() << "Identified partial multiplication (X, Y) * (U, V):\n" ; |
1426 | dbgs().indent(4) << "X: " << *NodeA->Real << "\n" ; |
1427 | dbgs().indent(4) << "Y: " << *NodeA->Imag << "\n" ; |
1428 | dbgs().indent(4) << "U: " << *NodeB->Real << "\n" ; |
1429 | dbgs().indent(4) << "V: " << *NodeB->Imag << "\n" ; |
1430 | dbgs().indent(4) << "Rotation - " << (int)Rotation * 90 << "\n" ; |
1431 | }); |
1432 | |
1433 | NodePtr NodeMul = prepareCompositeNode( |
1434 | Operation: ComplexDeinterleavingOperation::CMulPartial, R: nullptr, I: nullptr); |
1435 | NodeMul->Rotation = Rotation; |
1436 | NodeMul->addOperand(Node: NodeA); |
1437 | NodeMul->addOperand(Node: NodeB); |
1438 | if (Result) |
1439 | NodeMul->addOperand(Node: Result); |
1440 | submitCompositeNode(Node: NodeMul); |
1441 | Result = NodeMul; |
1442 | ProcessedReal[PMI.RealIdx] = true; |
1443 | ProcessedImag[PMI.ImagIdx] = true; |
1444 | } |
1445 | |
1446 | // Ensure all products have been processed, if not return nullptr. |
1447 | if (!all_of(Range&: ProcessedReal, P: [](bool V) { return V; }) || |
1448 | !all_of(Range&: ProcessedImag, P: [](bool V) { return V; })) { |
1449 | |
1450 | // Dump debug information about which partial multiplications are not |
1451 | // processed. |
1452 | LLVM_DEBUG({ |
1453 | dbgs() << "Unprocessed products (Real):\n" ; |
1454 | for (size_t i = 0; i < ProcessedReal.size(); ++i) { |
1455 | if (!ProcessedReal[i]) |
1456 | dbgs().indent(4) << (RealMuls[i].IsPositive ? "+" : "-" ) |
1457 | << *RealMuls[i].Multiplier << " multiplied by " |
1458 | << *RealMuls[i].Multiplicand << "\n" ; |
1459 | } |
1460 | dbgs() << "Unprocessed products (Imag):\n" ; |
1461 | for (size_t i = 0; i < ProcessedImag.size(); ++i) { |
1462 | if (!ProcessedImag[i]) |
1463 | dbgs().indent(4) << (ImagMuls[i].IsPositive ? "+" : "-" ) |
1464 | << *ImagMuls[i].Multiplier << " multiplied by " |
1465 | << *ImagMuls[i].Multiplicand << "\n" ; |
1466 | } |
1467 | }); |
1468 | return nullptr; |
1469 | } |
1470 | |
1471 | return Result; |
1472 | } |
1473 | |
1474 | ComplexDeinterleavingGraph::NodePtr |
1475 | ComplexDeinterleavingGraph::identifyAdditions( |
1476 | std::list<Addend> &RealAddends, std::list<Addend> &ImagAddends, |
1477 | std::optional<FastMathFlags> Flags, NodePtr Accumulator = nullptr) { |
1478 | if (RealAddends.size() != ImagAddends.size()) |
1479 | return nullptr; |
1480 | |
1481 | NodePtr Result; |
1482 | // If we have accumulator use it as first addend |
1483 | if (Accumulator) |
1484 | Result = Accumulator; |
1485 | // Otherwise find an element with both positive real and imaginary parts. |
1486 | else |
1487 | Result = extractPositiveAddend(RealAddends, ImagAddends); |
1488 | |
1489 | if (!Result) |
1490 | return nullptr; |
1491 | |
1492 | while (!RealAddends.empty()) { |
1493 | auto ItR = RealAddends.begin(); |
1494 | auto [R, IsPositiveR] = *ItR; |
1495 | |
1496 | bool FoundImag = false; |
1497 | for (auto ItI = ImagAddends.begin(); ItI != ImagAddends.end(); ++ItI) { |
1498 | auto [I, IsPositiveI] = *ItI; |
1499 | ComplexDeinterleavingRotation Rotation; |
1500 | if (IsPositiveR && IsPositiveI) |
1501 | Rotation = ComplexDeinterleavingRotation::Rotation_0; |
1502 | else if (!IsPositiveR && IsPositiveI) |
1503 | Rotation = ComplexDeinterleavingRotation::Rotation_90; |
1504 | else if (!IsPositiveR && !IsPositiveI) |
1505 | Rotation = ComplexDeinterleavingRotation::Rotation_180; |
1506 | else |
1507 | Rotation = ComplexDeinterleavingRotation::Rotation_270; |
1508 | |
1509 | NodePtr AddNode; |
1510 | if (Rotation == ComplexDeinterleavingRotation::Rotation_0 || |
1511 | Rotation == ComplexDeinterleavingRotation::Rotation_180) { |
1512 | AddNode = identifyNode(R, I); |
1513 | } else { |
1514 | AddNode = identifyNode(R: I, I: R); |
1515 | } |
1516 | if (AddNode) { |
1517 | LLVM_DEBUG({ |
1518 | dbgs() << "Identified addition:\n" ; |
1519 | dbgs().indent(4) << "X: " << *R << "\n" ; |
1520 | dbgs().indent(4) << "Y: " << *I << "\n" ; |
1521 | dbgs().indent(4) << "Rotation - " << (int)Rotation * 90 << "\n" ; |
1522 | }); |
1523 | |
1524 | NodePtr TmpNode; |
1525 | if (Rotation == llvm::ComplexDeinterleavingRotation::Rotation_0) { |
1526 | TmpNode = prepareCompositeNode( |
1527 | Operation: ComplexDeinterleavingOperation::Symmetric, R: nullptr, I: nullptr); |
1528 | if (Flags) { |
1529 | TmpNode->Opcode = Instruction::FAdd; |
1530 | TmpNode->Flags = *Flags; |
1531 | } else { |
1532 | TmpNode->Opcode = Instruction::Add; |
1533 | } |
1534 | } else if (Rotation == |
1535 | llvm::ComplexDeinterleavingRotation::Rotation_180) { |
1536 | TmpNode = prepareCompositeNode( |
1537 | Operation: ComplexDeinterleavingOperation::Symmetric, R: nullptr, I: nullptr); |
1538 | if (Flags) { |
1539 | TmpNode->Opcode = Instruction::FSub; |
1540 | TmpNode->Flags = *Flags; |
1541 | } else { |
1542 | TmpNode->Opcode = Instruction::Sub; |
1543 | } |
1544 | } else { |
1545 | TmpNode = prepareCompositeNode(Operation: ComplexDeinterleavingOperation::CAdd, |
1546 | R: nullptr, I: nullptr); |
1547 | TmpNode->Rotation = Rotation; |
1548 | } |
1549 | |
1550 | TmpNode->addOperand(Node: Result); |
1551 | TmpNode->addOperand(Node: AddNode); |
1552 | submitCompositeNode(Node: TmpNode); |
1553 | Result = TmpNode; |
1554 | RealAddends.erase(position: ItR); |
1555 | ImagAddends.erase(position: ItI); |
1556 | FoundImag = true; |
1557 | break; |
1558 | } |
1559 | } |
1560 | if (!FoundImag) |
1561 | return nullptr; |
1562 | } |
1563 | return Result; |
1564 | } |
1565 | |
1566 | ComplexDeinterleavingGraph::NodePtr |
1567 | ComplexDeinterleavingGraph::( |
1568 | std::list<Addend> &RealAddends, std::list<Addend> &ImagAddends) { |
1569 | for (auto ItR = RealAddends.begin(); ItR != RealAddends.end(); ++ItR) { |
1570 | for (auto ItI = ImagAddends.begin(); ItI != ImagAddends.end(); ++ItI) { |
1571 | auto [R, IsPositiveR] = *ItR; |
1572 | auto [I, IsPositiveI] = *ItI; |
1573 | if (IsPositiveR && IsPositiveI) { |
1574 | auto Result = identifyNode(R, I); |
1575 | if (Result) { |
1576 | RealAddends.erase(position: ItR); |
1577 | ImagAddends.erase(position: ItI); |
1578 | return Result; |
1579 | } |
1580 | } |
1581 | } |
1582 | } |
1583 | return nullptr; |
1584 | } |
1585 | |
1586 | bool ComplexDeinterleavingGraph::identifyNodes(Instruction *RootI) { |
1587 | // This potential root instruction might already have been recognized as |
1588 | // reduction. Because RootToNode maps both Real and Imaginary parts to |
1589 | // CompositeNode we should choose only one either Real or Imag instruction to |
1590 | // use as an anchor for generating complex instruction. |
1591 | auto It = RootToNode.find(x: RootI); |
1592 | if (It != RootToNode.end()) { |
1593 | auto RootNode = It->second; |
1594 | assert(RootNode->Operation == |
1595 | ComplexDeinterleavingOperation::ReductionOperation || |
1596 | RootNode->Operation == |
1597 | ComplexDeinterleavingOperation::ReductionSingle); |
1598 | // Find out which part, Real or Imag, comes later, and only if we come to |
1599 | // the latest part, add it to OrderedRoots. |
1600 | auto *R = cast<Instruction>(Val: RootNode->Real); |
1601 | auto *I = RootNode->Imag ? cast<Instruction>(Val: RootNode->Imag) : nullptr; |
1602 | |
1603 | Instruction *ReplacementAnchor; |
1604 | if (I) |
1605 | ReplacementAnchor = R->comesBefore(Other: I) ? I : R; |
1606 | else |
1607 | ReplacementAnchor = R; |
1608 | |
1609 | if (ReplacementAnchor != RootI) |
1610 | return false; |
1611 | OrderedRoots.push_back(Elt: RootI); |
1612 | return true; |
1613 | } |
1614 | |
1615 | auto RootNode = identifyRoot(I: RootI); |
1616 | if (!RootNode) |
1617 | return false; |
1618 | |
1619 | LLVM_DEBUG({ |
1620 | Function *F = RootI->getFunction(); |
1621 | BasicBlock *B = RootI->getParent(); |
1622 | dbgs() << "Complex deinterleaving graph for " << F->getName() |
1623 | << "::" << B->getName() << ".\n" ; |
1624 | dump(dbgs()); |
1625 | dbgs() << "\n" ; |
1626 | }); |
1627 | RootToNode[RootI] = RootNode; |
1628 | OrderedRoots.push_back(Elt: RootI); |
1629 | return true; |
1630 | } |
1631 | |
1632 | bool ComplexDeinterleavingGraph::collectPotentialReductions(BasicBlock *B) { |
1633 | bool FoundPotentialReduction = false; |
1634 | |
1635 | auto *Br = dyn_cast<BranchInst>(Val: B->getTerminator()); |
1636 | if (!Br || Br->getNumSuccessors() != 2) |
1637 | return false; |
1638 | |
1639 | // Identify simple one-block loop |
1640 | if (Br->getSuccessor(i: 0) != B && Br->getSuccessor(i: 1) != B) |
1641 | return false; |
1642 | |
1643 | for (auto &PHI : B->phis()) { |
1644 | if (PHI.getNumIncomingValues() != 2) |
1645 | continue; |
1646 | |
1647 | if (!PHI.getType()->isVectorTy()) |
1648 | continue; |
1649 | |
1650 | auto *ReductionOp = dyn_cast<Instruction>(Val: PHI.getIncomingValueForBlock(BB: B)); |
1651 | if (!ReductionOp) |
1652 | continue; |
1653 | |
1654 | // Check if final instruction is reduced outside of current block |
1655 | Instruction *FinalReduction = nullptr; |
1656 | auto NumUsers = 0u; |
1657 | for (auto *U : ReductionOp->users()) { |
1658 | ++NumUsers; |
1659 | if (U == &PHI) |
1660 | continue; |
1661 | FinalReduction = dyn_cast<Instruction>(Val: U); |
1662 | } |
1663 | |
1664 | if (NumUsers != 2 || !FinalReduction || FinalReduction->getParent() == B || |
1665 | isa<PHINode>(Val: FinalReduction)) |
1666 | continue; |
1667 | |
1668 | ReductionInfo[ReductionOp] = {&PHI, FinalReduction}; |
1669 | BackEdge = B; |
1670 | auto BackEdgeIdx = PHI.getBasicBlockIndex(BB: B); |
1671 | auto IncomingIdx = BackEdgeIdx == 0 ? 1 : 0; |
1672 | Incoming = PHI.getIncomingBlock(i: IncomingIdx); |
1673 | FoundPotentialReduction = true; |
1674 | |
1675 | // If the initial value of PHINode is an Instruction, consider it a leaf |
1676 | // value of a complex deinterleaving graph. |
1677 | if (auto *InitPHI = |
1678 | dyn_cast<Instruction>(Val: PHI.getIncomingValueForBlock(BB: Incoming))) |
1679 | FinalInstructions.insert(Ptr: InitPHI); |
1680 | } |
1681 | return FoundPotentialReduction; |
1682 | } |
1683 | |
1684 | void ComplexDeinterleavingGraph::identifyReductionNodes() { |
1685 | SmallVector<bool> Processed(ReductionInfo.size(), false); |
1686 | SmallVector<Instruction *> OperationInstruction; |
1687 | for (auto &P : ReductionInfo) |
1688 | OperationInstruction.push_back(Elt: P.first); |
1689 | |
1690 | // Identify a complex computation by evaluating two reduction operations that |
1691 | // potentially could be involved |
1692 | for (size_t i = 0; i < OperationInstruction.size(); ++i) { |
1693 | if (Processed[i]) |
1694 | continue; |
1695 | for (size_t j = i + 1; j < OperationInstruction.size(); ++j) { |
1696 | if (Processed[j]) |
1697 | continue; |
1698 | auto *Real = OperationInstruction[i]; |
1699 | auto *Imag = OperationInstruction[j]; |
1700 | if (Real->getType() != Imag->getType()) |
1701 | continue; |
1702 | |
1703 | RealPHI = ReductionInfo[Real].first; |
1704 | ImagPHI = ReductionInfo[Imag].first; |
1705 | PHIsFound = false; |
1706 | auto Node = identifyNode(R: Real, I: Imag); |
1707 | if (!Node) { |
1708 | std::swap(a&: Real, b&: Imag); |
1709 | std::swap(a&: RealPHI, b&: ImagPHI); |
1710 | Node = identifyNode(R: Real, I: Imag); |
1711 | } |
1712 | |
1713 | // If a node is identified and reduction PHINode is used in the chain of |
1714 | // operations, mark its operation instructions as used to prevent |
1715 | // re-identification and attach the node to the real part |
1716 | if (Node && PHIsFound) { |
1717 | LLVM_DEBUG(dbgs() << "Identified reduction starting from instructions: " |
1718 | << *Real << " / " << *Imag << "\n" ); |
1719 | Processed[i] = true; |
1720 | Processed[j] = true; |
1721 | auto RootNode = prepareCompositeNode( |
1722 | Operation: ComplexDeinterleavingOperation::ReductionOperation, R: Real, I: Imag); |
1723 | RootNode->addOperand(Node); |
1724 | RootToNode[Real] = RootNode; |
1725 | RootToNode[Imag] = RootNode; |
1726 | submitCompositeNode(Node: RootNode); |
1727 | break; |
1728 | } |
1729 | } |
1730 | |
1731 | auto *Real = OperationInstruction[i]; |
1732 | // We want to check that we have 2 operands, but the function attributes |
1733 | // being counted as operands bloats this value. |
1734 | if (Processed[i] || Real->getNumOperands() < 2) |
1735 | continue; |
1736 | |
1737 | // Can only combined integer reductions at the moment. |
1738 | if (!ReductionInfo[Real].second->getType()->isIntegerTy()) |
1739 | continue; |
1740 | |
1741 | RealPHI = ReductionInfo[Real].first; |
1742 | ImagPHI = nullptr; |
1743 | PHIsFound = false; |
1744 | auto Node = identifyNode(R: Real->getOperand(i: 0), I: Real->getOperand(i: 1)); |
1745 | if (Node && PHIsFound) { |
1746 | LLVM_DEBUG( |
1747 | dbgs() << "Identified single reduction starting from instruction: " |
1748 | << *Real << "/" << *ReductionInfo[Real].second << "\n" ); |
1749 | |
1750 | // Reducing to a single vector is not supported, only permit reducing down |
1751 | // to scalar values. |
1752 | // Doing this here will leave the prior node in the graph, |
1753 | // however with no uses the node will be unreachable by the replacement |
1754 | // process. That along with the usage outside the graph should prevent the |
1755 | // replacement process from kicking off at all for this graph. |
1756 | // TODO Add support for reducing to a single vector value |
1757 | if (ReductionInfo[Real].second->getType()->isVectorTy()) |
1758 | continue; |
1759 | |
1760 | Processed[i] = true; |
1761 | auto RootNode = prepareCompositeNode( |
1762 | Operation: ComplexDeinterleavingOperation::ReductionSingle, R: Real, I: nullptr); |
1763 | RootNode->addOperand(Node); |
1764 | RootToNode[Real] = RootNode; |
1765 | submitCompositeNode(Node: RootNode); |
1766 | } |
1767 | } |
1768 | |
1769 | RealPHI = nullptr; |
1770 | ImagPHI = nullptr; |
1771 | } |
1772 | |
1773 | bool ComplexDeinterleavingGraph::checkNodes() { |
1774 | |
1775 | bool FoundDeinterleaveNode = false; |
1776 | for (NodePtr N : CompositeNodes) { |
1777 | if (!N->areOperandsValid()) |
1778 | return false; |
1779 | if (N->Operation == ComplexDeinterleavingOperation::Deinterleave) |
1780 | FoundDeinterleaveNode = true; |
1781 | } |
1782 | |
1783 | // We need a deinterleave node in order to guarantee that we're working with |
1784 | // complex numbers. |
1785 | if (!FoundDeinterleaveNode) { |
1786 | LLVM_DEBUG( |
1787 | dbgs() << "Couldn't find a deinterleave node within the graph, cannot " |
1788 | "guarantee safety during graph transformation.\n" ); |
1789 | return false; |
1790 | } |
1791 | |
1792 | // Collect all instructions from roots to leaves |
1793 | SmallPtrSet<Instruction *, 16> AllInstructions; |
1794 | SmallVector<Instruction *, 8> Worklist; |
1795 | for (auto &Pair : RootToNode) |
1796 | Worklist.push_back(Elt: Pair.first); |
1797 | |
1798 | // Extract all instructions that are used by all XCMLA/XCADD/ADD/SUB/NEG |
1799 | // chains |
1800 | while (!Worklist.empty()) { |
1801 | auto *I = Worklist.pop_back_val(); |
1802 | |
1803 | if (!AllInstructions.insert(Ptr: I).second) |
1804 | continue; |
1805 | |
1806 | for (Value *Op : I->operands()) { |
1807 | if (auto *OpI = dyn_cast<Instruction>(Val: Op)) { |
1808 | if (!FinalInstructions.count(Ptr: I)) |
1809 | Worklist.emplace_back(Args&: OpI); |
1810 | } |
1811 | } |
1812 | } |
1813 | |
1814 | // Find instructions that have users outside of chain |
1815 | for (auto *I : AllInstructions) { |
1816 | // Skip root nodes |
1817 | if (RootToNode.count(x: I)) |
1818 | continue; |
1819 | |
1820 | for (User *U : I->users()) { |
1821 | if (AllInstructions.count(Ptr: cast<Instruction>(Val: U))) |
1822 | continue; |
1823 | |
1824 | // Found an instruction that is not used by XCMLA/XCADD chain |
1825 | Worklist.emplace_back(Args&: I); |
1826 | break; |
1827 | } |
1828 | } |
1829 | |
1830 | // If any instructions are found to be used outside, find and remove roots |
1831 | // that somehow connect to those instructions. |
1832 | SmallPtrSet<Instruction *, 16> Visited; |
1833 | while (!Worklist.empty()) { |
1834 | auto *I = Worklist.pop_back_val(); |
1835 | if (!Visited.insert(Ptr: I).second) |
1836 | continue; |
1837 | |
1838 | // Found an impacted root node. Removing it from the nodes to be |
1839 | // deinterleaved |
1840 | if (RootToNode.count(x: I)) { |
1841 | LLVM_DEBUG(dbgs() << "Instruction " << *I |
1842 | << " could be deinterleaved but its chain of complex " |
1843 | "operations have an outside user\n" ); |
1844 | RootToNode.erase(x: I); |
1845 | } |
1846 | |
1847 | if (!AllInstructions.count(Ptr: I) || FinalInstructions.count(Ptr: I)) |
1848 | continue; |
1849 | |
1850 | for (User *U : I->users()) |
1851 | Worklist.emplace_back(Args: cast<Instruction>(Val: U)); |
1852 | |
1853 | for (Value *Op : I->operands()) { |
1854 | if (auto *OpI = dyn_cast<Instruction>(Val: Op)) |
1855 | Worklist.emplace_back(Args&: OpI); |
1856 | } |
1857 | } |
1858 | return !RootToNode.empty(); |
1859 | } |
1860 | |
1861 | ComplexDeinterleavingGraph::NodePtr |
1862 | ComplexDeinterleavingGraph::identifyRoot(Instruction *RootI) { |
1863 | if (auto *Intrinsic = dyn_cast<IntrinsicInst>(Val: RootI)) { |
1864 | if (Intrinsic->getIntrinsicID() != Intrinsic::vector_interleave2) |
1865 | return nullptr; |
1866 | |
1867 | auto *Real = dyn_cast<Instruction>(Val: Intrinsic->getOperand(i_nocapture: 0)); |
1868 | auto *Imag = dyn_cast<Instruction>(Val: Intrinsic->getOperand(i_nocapture: 1)); |
1869 | if (!Real || !Imag) |
1870 | return nullptr; |
1871 | |
1872 | return identifyNode(R: Real, I: Imag); |
1873 | } |
1874 | |
1875 | auto *SVI = dyn_cast<ShuffleVectorInst>(Val: RootI); |
1876 | if (!SVI) |
1877 | return nullptr; |
1878 | |
1879 | // Look for a shufflevector that takes separate vectors of the real and |
1880 | // imaginary components and recombines them into a single vector. |
1881 | if (!isInterleavingMask(Mask: SVI->getShuffleMask())) |
1882 | return nullptr; |
1883 | |
1884 | Instruction *Real; |
1885 | Instruction *Imag; |
1886 | if (!match(V: RootI, P: m_Shuffle(v1: m_Instruction(I&: Real), v2: m_Instruction(I&: Imag)))) |
1887 | return nullptr; |
1888 | |
1889 | return identifyNode(R: Real, I: Imag); |
1890 | } |
1891 | |
1892 | ComplexDeinterleavingGraph::NodePtr |
1893 | ComplexDeinterleavingGraph::identifyDeinterleave(Instruction *Real, |
1894 | Instruction *Imag) { |
1895 | Instruction *I = nullptr; |
1896 | Value *FinalValue = nullptr; |
1897 | if (match(V: Real, P: m_ExtractValue<0>(V: m_Instruction(I))) && |
1898 | match(V: Imag, P: m_ExtractValue<1>(V: m_Specific(V: I))) && |
1899 | match(V: I, P: m_Intrinsic<Intrinsic::vector_deinterleave2>( |
1900 | Op0: m_Value(V&: FinalValue)))) { |
1901 | NodePtr PlaceholderNode = prepareCompositeNode( |
1902 | Operation: llvm::ComplexDeinterleavingOperation::Deinterleave, R: Real, I: Imag); |
1903 | PlaceholderNode->ReplacementNode = FinalValue; |
1904 | FinalInstructions.insert(Ptr: Real); |
1905 | FinalInstructions.insert(Ptr: Imag); |
1906 | return submitCompositeNode(Node: PlaceholderNode); |
1907 | } |
1908 | |
1909 | auto *RealShuffle = dyn_cast<ShuffleVectorInst>(Val: Real); |
1910 | auto *ImagShuffle = dyn_cast<ShuffleVectorInst>(Val: Imag); |
1911 | if (!RealShuffle || !ImagShuffle) { |
1912 | if (RealShuffle || ImagShuffle) |
1913 | LLVM_DEBUG(dbgs() << " - There's a shuffle where there shouldn't be.\n" ); |
1914 | return nullptr; |
1915 | } |
1916 | |
1917 | Value *RealOp1 = RealShuffle->getOperand(i_nocapture: 1); |
1918 | if (!isa<UndefValue>(Val: RealOp1) && !isa<ConstantAggregateZero>(Val: RealOp1)) { |
1919 | LLVM_DEBUG(dbgs() << " - RealOp1 is not undef or zero.\n" ); |
1920 | return nullptr; |
1921 | } |
1922 | Value *ImagOp1 = ImagShuffle->getOperand(i_nocapture: 1); |
1923 | if (!isa<UndefValue>(Val: ImagOp1) && !isa<ConstantAggregateZero>(Val: ImagOp1)) { |
1924 | LLVM_DEBUG(dbgs() << " - ImagOp1 is not undef or zero.\n" ); |
1925 | return nullptr; |
1926 | } |
1927 | |
1928 | Value *RealOp0 = RealShuffle->getOperand(i_nocapture: 0); |
1929 | Value *ImagOp0 = ImagShuffle->getOperand(i_nocapture: 0); |
1930 | |
1931 | if (RealOp0 != ImagOp0) { |
1932 | LLVM_DEBUG(dbgs() << " - Shuffle operands are not equal.\n" ); |
1933 | return nullptr; |
1934 | } |
1935 | |
1936 | ArrayRef<int> RealMask = RealShuffle->getShuffleMask(); |
1937 | ArrayRef<int> ImagMask = ImagShuffle->getShuffleMask(); |
1938 | if (!isDeinterleavingMask(Mask: RealMask) || !isDeinterleavingMask(Mask: ImagMask)) { |
1939 | LLVM_DEBUG(dbgs() << " - Masks are not deinterleaving.\n" ); |
1940 | return nullptr; |
1941 | } |
1942 | |
1943 | if (RealMask[0] != 0 || ImagMask[0] != 1) { |
1944 | LLVM_DEBUG(dbgs() << " - Masks do not have the correct initial value.\n" ); |
1945 | return nullptr; |
1946 | } |
1947 | |
1948 | // Type checking, the shuffle type should be a vector type of the same |
1949 | // scalar type, but half the size |
1950 | auto CheckType = [&](ShuffleVectorInst *Shuffle) { |
1951 | Value *Op = Shuffle->getOperand(i_nocapture: 0); |
1952 | auto *ShuffleTy = cast<FixedVectorType>(Val: Shuffle->getType()); |
1953 | auto *OpTy = cast<FixedVectorType>(Val: Op->getType()); |
1954 | |
1955 | if (OpTy->getScalarType() != ShuffleTy->getScalarType()) |
1956 | return false; |
1957 | if ((ShuffleTy->getNumElements() * 2) != OpTy->getNumElements()) |
1958 | return false; |
1959 | |
1960 | return true; |
1961 | }; |
1962 | |
1963 | auto CheckDeinterleavingShuffle = [&](ShuffleVectorInst *Shuffle) -> bool { |
1964 | if (!CheckType(Shuffle)) |
1965 | return false; |
1966 | |
1967 | ArrayRef<int> Mask = Shuffle->getShuffleMask(); |
1968 | int Last = *Mask.rbegin(); |
1969 | |
1970 | Value *Op = Shuffle->getOperand(i_nocapture: 0); |
1971 | auto *OpTy = cast<FixedVectorType>(Val: Op->getType()); |
1972 | int NumElements = OpTy->getNumElements(); |
1973 | |
1974 | // Ensure that the deinterleaving shuffle only pulls from the first |
1975 | // shuffle operand. |
1976 | return Last < NumElements; |
1977 | }; |
1978 | |
1979 | if (RealShuffle->getType() != ImagShuffle->getType()) { |
1980 | LLVM_DEBUG(dbgs() << " - Shuffle types aren't equal.\n" ); |
1981 | return nullptr; |
1982 | } |
1983 | if (!CheckDeinterleavingShuffle(RealShuffle)) { |
1984 | LLVM_DEBUG(dbgs() << " - RealShuffle is invalid type.\n" ); |
1985 | return nullptr; |
1986 | } |
1987 | if (!CheckDeinterleavingShuffle(ImagShuffle)) { |
1988 | LLVM_DEBUG(dbgs() << " - ImagShuffle is invalid type.\n" ); |
1989 | return nullptr; |
1990 | } |
1991 | |
1992 | NodePtr PlaceholderNode = |
1993 | prepareCompositeNode(Operation: llvm::ComplexDeinterleavingOperation::Deinterleave, |
1994 | R: RealShuffle, I: ImagShuffle); |
1995 | PlaceholderNode->ReplacementNode = RealShuffle->getOperand(i_nocapture: 0); |
1996 | FinalInstructions.insert(Ptr: RealShuffle); |
1997 | FinalInstructions.insert(Ptr: ImagShuffle); |
1998 | return submitCompositeNode(Node: PlaceholderNode); |
1999 | } |
2000 | |
2001 | ComplexDeinterleavingGraph::NodePtr |
2002 | ComplexDeinterleavingGraph::identifySplat(Value *R, Value *I) { |
2003 | auto IsSplat = [](Value *V) -> bool { |
2004 | // Fixed-width vector with constants |
2005 | if (isa<ConstantDataVector>(Val: V)) |
2006 | return true; |
2007 | |
2008 | if (isa<ConstantInt>(Val: V) || isa<ConstantFP>(Val: V)) |
2009 | return isa<VectorType>(Val: V->getType()); |
2010 | |
2011 | VectorType *VTy; |
2012 | ArrayRef<int> Mask; |
2013 | // Splats are represented differently depending on whether the repeated |
2014 | // value is a constant or an Instruction |
2015 | if (auto *Const = dyn_cast<ConstantExpr>(Val: V)) { |
2016 | if (Const->getOpcode() != Instruction::ShuffleVector) |
2017 | return false; |
2018 | VTy = cast<VectorType>(Val: Const->getType()); |
2019 | Mask = Const->getShuffleMask(); |
2020 | } else if (auto *Shuf = dyn_cast<ShuffleVectorInst>(Val: V)) { |
2021 | VTy = Shuf->getType(); |
2022 | Mask = Shuf->getShuffleMask(); |
2023 | } else { |
2024 | return false; |
2025 | } |
2026 | |
2027 | // When the data type is <1 x Type>, it's not possible to differentiate |
2028 | // between the ComplexDeinterleaving::Deinterleave and |
2029 | // ComplexDeinterleaving::Splat operations. |
2030 | if (!VTy->isScalableTy() && VTy->getElementCount().getKnownMinValue() == 1) |
2031 | return false; |
2032 | |
2033 | return all_equal(Range&: Mask) && Mask[0] == 0; |
2034 | }; |
2035 | |
2036 | if (!IsSplat(R) || !IsSplat(I)) |
2037 | return nullptr; |
2038 | |
2039 | auto *Real = dyn_cast<Instruction>(Val: R); |
2040 | auto *Imag = dyn_cast<Instruction>(Val: I); |
2041 | if ((!Real && Imag) || (Real && !Imag)) |
2042 | return nullptr; |
2043 | |
2044 | if (Real && Imag) { |
2045 | // Non-constant splats should be in the same basic block |
2046 | if (Real->getParent() != Imag->getParent()) |
2047 | return nullptr; |
2048 | |
2049 | FinalInstructions.insert(Ptr: Real); |
2050 | FinalInstructions.insert(Ptr: Imag); |
2051 | } |
2052 | NodePtr PlaceholderNode = |
2053 | prepareCompositeNode(Operation: ComplexDeinterleavingOperation::Splat, R, I); |
2054 | return submitCompositeNode(Node: PlaceholderNode); |
2055 | } |
2056 | |
2057 | ComplexDeinterleavingGraph::NodePtr |
2058 | ComplexDeinterleavingGraph::identifyPHINode(Instruction *Real, |
2059 | Instruction *Imag) { |
2060 | if (Real != RealPHI || (ImagPHI && Imag != ImagPHI)) |
2061 | return nullptr; |
2062 | |
2063 | PHIsFound = true; |
2064 | NodePtr PlaceholderNode = prepareCompositeNode( |
2065 | Operation: ComplexDeinterleavingOperation::ReductionPHI, R: Real, I: Imag); |
2066 | return submitCompositeNode(Node: PlaceholderNode); |
2067 | } |
2068 | |
2069 | ComplexDeinterleavingGraph::NodePtr |
2070 | ComplexDeinterleavingGraph::identifySelectNode(Instruction *Real, |
2071 | Instruction *Imag) { |
2072 | auto *SelectReal = dyn_cast<SelectInst>(Val: Real); |
2073 | auto *SelectImag = dyn_cast<SelectInst>(Val: Imag); |
2074 | if (!SelectReal || !SelectImag) |
2075 | return nullptr; |
2076 | |
2077 | Instruction *MaskA, *MaskB; |
2078 | Instruction *AR, *AI, *RA, *BI; |
2079 | if (!match(V: Real, P: m_Select(C: m_Instruction(I&: MaskA), L: m_Instruction(I&: AR), |
2080 | R: m_Instruction(I&: RA))) || |
2081 | !match(V: Imag, P: m_Select(C: m_Instruction(I&: MaskB), L: m_Instruction(I&: AI), |
2082 | R: m_Instruction(I&: BI)))) |
2083 | return nullptr; |
2084 | |
2085 | if (MaskA != MaskB && !MaskA->isIdenticalTo(I: MaskB)) |
2086 | return nullptr; |
2087 | |
2088 | if (!MaskA->getType()->isVectorTy()) |
2089 | return nullptr; |
2090 | |
2091 | auto NodeA = identifyNode(R: AR, I: AI); |
2092 | if (!NodeA) |
2093 | return nullptr; |
2094 | |
2095 | auto NodeB = identifyNode(R: RA, I: BI); |
2096 | if (!NodeB) |
2097 | return nullptr; |
2098 | |
2099 | NodePtr PlaceholderNode = prepareCompositeNode( |
2100 | Operation: ComplexDeinterleavingOperation::ReductionSelect, R: Real, I: Imag); |
2101 | PlaceholderNode->addOperand(Node: NodeA); |
2102 | PlaceholderNode->addOperand(Node: NodeB); |
2103 | FinalInstructions.insert(Ptr: MaskA); |
2104 | FinalInstructions.insert(Ptr: MaskB); |
2105 | return submitCompositeNode(Node: PlaceholderNode); |
2106 | } |
2107 | |
2108 | static Value *replaceSymmetricNode(IRBuilderBase &B, unsigned Opcode, |
2109 | std::optional<FastMathFlags> Flags, |
2110 | Value *InputA, Value *InputB) { |
2111 | Value *I; |
2112 | switch (Opcode) { |
2113 | case Instruction::FNeg: |
2114 | I = B.CreateFNeg(V: InputA); |
2115 | break; |
2116 | case Instruction::FAdd: |
2117 | I = B.CreateFAdd(L: InputA, R: InputB); |
2118 | break; |
2119 | case Instruction::Add: |
2120 | I = B.CreateAdd(LHS: InputA, RHS: InputB); |
2121 | break; |
2122 | case Instruction::FSub: |
2123 | I = B.CreateFSub(L: InputA, R: InputB); |
2124 | break; |
2125 | case Instruction::Sub: |
2126 | I = B.CreateSub(LHS: InputA, RHS: InputB); |
2127 | break; |
2128 | case Instruction::FMul: |
2129 | I = B.CreateFMul(L: InputA, R: InputB); |
2130 | break; |
2131 | case Instruction::Mul: |
2132 | I = B.CreateMul(LHS: InputA, RHS: InputB); |
2133 | break; |
2134 | default: |
2135 | llvm_unreachable("Incorrect symmetric opcode" ); |
2136 | } |
2137 | if (Flags) |
2138 | cast<Instruction>(Val: I)->setFastMathFlags(*Flags); |
2139 | return I; |
2140 | } |
2141 | |
2142 | Value *ComplexDeinterleavingGraph::replaceNode(IRBuilderBase &Builder, |
2143 | RawNodePtr Node) { |
2144 | if (Node->ReplacementNode) |
2145 | return Node->ReplacementNode; |
2146 | |
2147 | auto ReplaceOperandIfExist = [&](RawNodePtr &Node, unsigned Idx) -> Value * { |
2148 | return Node->Operands.size() > Idx |
2149 | ? replaceNode(Builder, Node: Node->Operands[Idx]) |
2150 | : nullptr; |
2151 | }; |
2152 | |
2153 | Value *ReplacementNode; |
2154 | switch (Node->Operation) { |
2155 | case ComplexDeinterleavingOperation::CDot: { |
2156 | Value *Input0 = ReplaceOperandIfExist(Node, 0); |
2157 | Value *Input1 = ReplaceOperandIfExist(Node, 1); |
2158 | Value *Accumulator = ReplaceOperandIfExist(Node, 2); |
2159 | assert(!Input1 || (Input0->getType() == Input1->getType() && |
2160 | "Node inputs need to be of the same type" )); |
2161 | ReplacementNode = TL->createComplexDeinterleavingIR( |
2162 | B&: Builder, OperationType: Node->Operation, Rotation: Node->Rotation, InputA: Input0, InputB: Input1, Accumulator); |
2163 | break; |
2164 | } |
2165 | case ComplexDeinterleavingOperation::CAdd: |
2166 | case ComplexDeinterleavingOperation::CMulPartial: |
2167 | case ComplexDeinterleavingOperation::Symmetric: { |
2168 | Value *Input0 = ReplaceOperandIfExist(Node, 0); |
2169 | Value *Input1 = ReplaceOperandIfExist(Node, 1); |
2170 | Value *Accumulator = ReplaceOperandIfExist(Node, 2); |
2171 | assert(!Input1 || (Input0->getType() == Input1->getType() && |
2172 | "Node inputs need to be of the same type" )); |
2173 | assert(!Accumulator || |
2174 | (Input0->getType() == Accumulator->getType() && |
2175 | "Accumulator and input need to be of the same type" )); |
2176 | if (Node->Operation == ComplexDeinterleavingOperation::Symmetric) |
2177 | ReplacementNode = replaceSymmetricNode(B&: Builder, Opcode: Node->Opcode, Flags: Node->Flags, |
2178 | InputA: Input0, InputB: Input1); |
2179 | else |
2180 | ReplacementNode = TL->createComplexDeinterleavingIR( |
2181 | B&: Builder, OperationType: Node->Operation, Rotation: Node->Rotation, InputA: Input0, InputB: Input1, |
2182 | Accumulator); |
2183 | break; |
2184 | } |
2185 | case ComplexDeinterleavingOperation::Deinterleave: |
2186 | llvm_unreachable("Deinterleave node should already have ReplacementNode" ); |
2187 | break; |
2188 | case ComplexDeinterleavingOperation::Splat: { |
2189 | auto *NewTy = VectorType::getDoubleElementsVectorType( |
2190 | VTy: cast<VectorType>(Val: Node->Real->getType())); |
2191 | auto *R = dyn_cast<Instruction>(Val: Node->Real); |
2192 | auto *I = dyn_cast<Instruction>(Val: Node->Imag); |
2193 | if (R && I) { |
2194 | // Splats that are not constant are interleaved where they are located |
2195 | Instruction *InsertPoint = (I->comesBefore(Other: R) ? R : I)->getNextNode(); |
2196 | IRBuilder<> IRB(InsertPoint); |
2197 | ReplacementNode = IRB.CreateIntrinsic(ID: Intrinsic::vector_interleave2, |
2198 | Types: NewTy, Args: {Node->Real, Node->Imag}); |
2199 | } else { |
2200 | ReplacementNode = Builder.CreateIntrinsic( |
2201 | ID: Intrinsic::vector_interleave2, Types: NewTy, Args: {Node->Real, Node->Imag}); |
2202 | } |
2203 | break; |
2204 | } |
2205 | case ComplexDeinterleavingOperation::ReductionPHI: { |
2206 | // If Operation is ReductionPHI, a new empty PHINode is created. |
2207 | // It is filled later when the ReductionOperation is processed. |
2208 | auto *OldPHI = cast<PHINode>(Val: Node->Real); |
2209 | auto *VTy = cast<VectorType>(Val: Node->Real->getType()); |
2210 | auto *NewVTy = VectorType::getDoubleElementsVectorType(VTy); |
2211 | auto *NewPHI = PHINode::Create(Ty: NewVTy, NumReservedValues: 0, NameStr: "" , InsertBefore: BackEdge->getFirstNonPHIIt()); |
2212 | OldToNewPHI[OldPHI] = NewPHI; |
2213 | ReplacementNode = NewPHI; |
2214 | break; |
2215 | } |
2216 | case ComplexDeinterleavingOperation::ReductionSingle: |
2217 | ReplacementNode = replaceNode(Builder, Node: Node->Operands[0]); |
2218 | processReductionSingle(OperationReplacement: ReplacementNode, Node); |
2219 | break; |
2220 | case ComplexDeinterleavingOperation::ReductionOperation: |
2221 | ReplacementNode = replaceNode(Builder, Node: Node->Operands[0]); |
2222 | processReductionOperation(OperationReplacement: ReplacementNode, Node); |
2223 | break; |
2224 | case ComplexDeinterleavingOperation::ReductionSelect: { |
2225 | auto *MaskReal = cast<Instruction>(Val: Node->Real)->getOperand(i: 0); |
2226 | auto *MaskImag = cast<Instruction>(Val: Node->Imag)->getOperand(i: 0); |
2227 | auto *A = replaceNode(Builder, Node: Node->Operands[0]); |
2228 | auto *B = replaceNode(Builder, Node: Node->Operands[1]); |
2229 | auto *NewMaskTy = VectorType::getDoubleElementsVectorType( |
2230 | VTy: cast<VectorType>(Val: MaskReal->getType())); |
2231 | auto *NewMask = Builder.CreateIntrinsic(ID: Intrinsic::vector_interleave2, |
2232 | Types: NewMaskTy, Args: {MaskReal, MaskImag}); |
2233 | ReplacementNode = Builder.CreateSelect(C: NewMask, True: A, False: B); |
2234 | break; |
2235 | } |
2236 | } |
2237 | |
2238 | assert(ReplacementNode && "Target failed to create Intrinsic call." ); |
2239 | NumComplexTransformations += 1; |
2240 | Node->ReplacementNode = ReplacementNode; |
2241 | return ReplacementNode; |
2242 | } |
2243 | |
2244 | void ComplexDeinterleavingGraph::processReductionSingle( |
2245 | Value *OperationReplacement, RawNodePtr Node) { |
2246 | auto *Real = cast<Instruction>(Val: Node->Real); |
2247 | auto *OldPHI = ReductionInfo[Real].first; |
2248 | auto *NewPHI = OldToNewPHI[OldPHI]; |
2249 | auto *VTy = cast<VectorType>(Val: Real->getType()); |
2250 | auto *NewVTy = VectorType::getDoubleElementsVectorType(VTy); |
2251 | |
2252 | Value *Init = OldPHI->getIncomingValueForBlock(BB: Incoming); |
2253 | |
2254 | IRBuilder<> Builder(Incoming->getTerminator()); |
2255 | |
2256 | Value *NewInit = nullptr; |
2257 | if (auto *C = dyn_cast<Constant>(Val: Init)) { |
2258 | if (C->isZeroValue()) |
2259 | NewInit = Constant::getNullValue(Ty: NewVTy); |
2260 | } |
2261 | |
2262 | if (!NewInit) |
2263 | NewInit = Builder.CreateIntrinsic(ID: Intrinsic::vector_interleave2, Types: NewVTy, |
2264 | Args: {Init, Constant::getNullValue(Ty: VTy)}); |
2265 | |
2266 | NewPHI->addIncoming(V: NewInit, BB: Incoming); |
2267 | NewPHI->addIncoming(V: OperationReplacement, BB: BackEdge); |
2268 | |
2269 | auto *FinalReduction = ReductionInfo[Real].second; |
2270 | Builder.SetInsertPoint(&*FinalReduction->getParent()->getFirstInsertionPt()); |
2271 | |
2272 | auto *AddReduce = Builder.CreateAddReduce(Src: OperationReplacement); |
2273 | FinalReduction->replaceAllUsesWith(V: AddReduce); |
2274 | } |
2275 | |
2276 | void ComplexDeinterleavingGraph::processReductionOperation( |
2277 | Value *OperationReplacement, RawNodePtr Node) { |
2278 | auto *Real = cast<Instruction>(Val: Node->Real); |
2279 | auto *Imag = cast<Instruction>(Val: Node->Imag); |
2280 | auto *OldPHIReal = ReductionInfo[Real].first; |
2281 | auto *OldPHIImag = ReductionInfo[Imag].first; |
2282 | auto *NewPHI = OldToNewPHI[OldPHIReal]; |
2283 | |
2284 | auto *VTy = cast<VectorType>(Val: Real->getType()); |
2285 | auto *NewVTy = VectorType::getDoubleElementsVectorType(VTy); |
2286 | |
2287 | // We have to interleave initial origin values coming from IncomingBlock |
2288 | Value *InitReal = OldPHIReal->getIncomingValueForBlock(BB: Incoming); |
2289 | Value *InitImag = OldPHIImag->getIncomingValueForBlock(BB: Incoming); |
2290 | |
2291 | IRBuilder<> Builder(Incoming->getTerminator()); |
2292 | auto *NewInit = Builder.CreateIntrinsic(ID: Intrinsic::vector_interleave2, Types: NewVTy, |
2293 | Args: {InitReal, InitImag}); |
2294 | |
2295 | NewPHI->addIncoming(V: NewInit, BB: Incoming); |
2296 | NewPHI->addIncoming(V: OperationReplacement, BB: BackEdge); |
2297 | |
2298 | // Deinterleave complex vector outside of loop so that it can be finally |
2299 | // reduced |
2300 | auto *FinalReductionReal = ReductionInfo[Real].second; |
2301 | auto *FinalReductionImag = ReductionInfo[Imag].second; |
2302 | |
2303 | Builder.SetInsertPoint( |
2304 | &*FinalReductionReal->getParent()->getFirstInsertionPt()); |
2305 | auto *Deinterleave = Builder.CreateIntrinsic(ID: Intrinsic::vector_deinterleave2, |
2306 | Types: OperationReplacement->getType(), |
2307 | Args: OperationReplacement); |
2308 | |
2309 | auto *NewReal = Builder.CreateExtractValue(Agg: Deinterleave, Idxs: (uint64_t)0); |
2310 | FinalReductionReal->replaceUsesOfWith(From: Real, To: NewReal); |
2311 | |
2312 | Builder.SetInsertPoint(FinalReductionImag); |
2313 | auto *NewImag = Builder.CreateExtractValue(Agg: Deinterleave, Idxs: 1); |
2314 | FinalReductionImag->replaceUsesOfWith(From: Imag, To: NewImag); |
2315 | } |
2316 | |
2317 | void ComplexDeinterleavingGraph::replaceNodes() { |
2318 | SmallVector<Instruction *, 16> DeadInstrRoots; |
2319 | for (auto *RootInstruction : OrderedRoots) { |
2320 | // Check if this potential root went through check process and we can |
2321 | // deinterleave it |
2322 | if (!RootToNode.count(x: RootInstruction)) |
2323 | continue; |
2324 | |
2325 | IRBuilder<> Builder(RootInstruction); |
2326 | auto RootNode = RootToNode[RootInstruction]; |
2327 | Value *R = replaceNode(Builder, Node: RootNode.get()); |
2328 | |
2329 | if (RootNode->Operation == |
2330 | ComplexDeinterleavingOperation::ReductionOperation) { |
2331 | auto *RootReal = cast<Instruction>(Val: RootNode->Real); |
2332 | auto *RootImag = cast<Instruction>(Val: RootNode->Imag); |
2333 | ReductionInfo[RootReal].first->removeIncomingValue(BB: BackEdge); |
2334 | ReductionInfo[RootImag].first->removeIncomingValue(BB: BackEdge); |
2335 | DeadInstrRoots.push_back(Elt: RootReal); |
2336 | DeadInstrRoots.push_back(Elt: RootImag); |
2337 | } else if (RootNode->Operation == |
2338 | ComplexDeinterleavingOperation::ReductionSingle) { |
2339 | auto *RootInst = cast<Instruction>(Val: RootNode->Real); |
2340 | auto &Info = ReductionInfo[RootInst]; |
2341 | Info.first->removeIncomingValue(BB: BackEdge); |
2342 | DeadInstrRoots.push_back(Elt: Info.second); |
2343 | } else { |
2344 | assert(R && "Unable to find replacement for RootInstruction" ); |
2345 | DeadInstrRoots.push_back(Elt: RootInstruction); |
2346 | RootInstruction->replaceAllUsesWith(V: R); |
2347 | } |
2348 | } |
2349 | |
2350 | for (auto *I : DeadInstrRoots) |
2351 | RecursivelyDeleteTriviallyDeadInstructions(V: I, TLI); |
2352 | } |
2353 | |