| 1 | //===- CriticalAntiDepBreaker.cpp - Anti-dep breaker ----------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the CriticalAntiDepBreaker class, which |
| 10 | // implements register anti-dependence breaking along a blocks |
| 11 | // critical path during post-RA scheduler. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "CriticalAntiDepBreaker.h" |
| 16 | #include "llvm/ADT/ArrayRef.h" |
| 17 | #include "llvm/ADT/DenseMap.h" |
| 18 | #include "llvm/ADT/SmallVector.h" |
| 19 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 20 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 21 | #include "llvm/CodeGen/MachineFunction.h" |
| 22 | #include "llvm/CodeGen/MachineInstr.h" |
| 23 | #include "llvm/CodeGen/MachineOperand.h" |
| 24 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 25 | #include "llvm/CodeGen/RegisterClassInfo.h" |
| 26 | #include "llvm/CodeGen/ScheduleDAG.h" |
| 27 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 28 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 29 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 30 | #include "llvm/MC/MCInstrDesc.h" |
| 31 | #include "llvm/MC/MCRegisterInfo.h" |
| 32 | #include "llvm/Support/Debug.h" |
| 33 | #include "llvm/Support/raw_ostream.h" |
| 34 | #include <cassert> |
| 35 | #include <utility> |
| 36 | |
| 37 | using namespace llvm; |
| 38 | |
| 39 | #define DEBUG_TYPE "post-RA-sched" |
| 40 | |
| 41 | CriticalAntiDepBreaker::CriticalAntiDepBreaker(MachineFunction &MFi, |
| 42 | const RegisterClassInfo &RCI) |
| 43 | : MF(MFi), MRI(MF.getRegInfo()), TII(MF.getSubtarget().getInstrInfo()), |
| 44 | TRI(MF.getSubtarget().getRegisterInfo()), RegClassInfo(RCI), |
| 45 | Classes(TRI->getNumRegs(), nullptr), KillIndices(TRI->getNumRegs(), 0), |
| 46 | DefIndices(TRI->getNumRegs(), 0), KeepRegs(TRI->getNumRegs(), false) {} |
| 47 | |
| 48 | CriticalAntiDepBreaker::~CriticalAntiDepBreaker() = default; |
| 49 | |
| 50 | void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { |
| 51 | const unsigned BBSize = BB->size(); |
| 52 | for (unsigned i = 1, e = TRI->getNumRegs(); i != e; ++i) { |
| 53 | // Clear out the register class data. |
| 54 | Classes[i] = nullptr; |
| 55 | |
| 56 | // Initialize the indices to indicate that no registers are live. |
| 57 | KillIndices[i] = ~0u; |
| 58 | DefIndices[i] = BBSize; |
| 59 | } |
| 60 | |
| 61 | // Clear "do not change" set. |
| 62 | KeepRegs.reset(); |
| 63 | |
| 64 | bool IsReturnBlock = BB->isReturnBlock(); |
| 65 | |
| 66 | // Examine the live-in regs of all successors. |
| 67 | for (const MachineBasicBlock *Succ : BB->successors()) |
| 68 | for (const auto &LI : Succ->liveins()) { |
| 69 | for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI) { |
| 70 | MCRegister Reg = *AI; |
| 71 | Classes[Reg.id()] = reinterpret_cast<TargetRegisterClass *>(-1); |
| 72 | KillIndices[Reg.id()] = BBSize; |
| 73 | DefIndices[Reg] = ~0u; |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | // Mark live-out callee-saved registers. In a return block this is |
| 78 | // all callee-saved registers. In non-return this is any |
| 79 | // callee-saved register that is not saved in the prolog. |
| 80 | const MachineFrameInfo &MFI = MF.getFrameInfo(); |
| 81 | BitVector Pristine = MFI.getPristineRegs(MF); |
| 82 | for (const MCPhysReg *I = MF.getRegInfo().getCalleeSavedRegs(); *I; |
| 83 | ++I) { |
| 84 | unsigned Reg = *I; |
| 85 | if (!IsReturnBlock && !Pristine.test(Idx: Reg)) |
| 86 | continue; |
| 87 | for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { |
| 88 | MCRegister Reg = *AI; |
| 89 | Classes[Reg.id()] = reinterpret_cast<TargetRegisterClass *>(-1); |
| 90 | KillIndices[Reg.id()] = BBSize; |
| 91 | DefIndices[Reg.id()] = ~0u; |
| 92 | } |
| 93 | } |
| 94 | } |
| 95 | |
| 96 | void CriticalAntiDepBreaker::FinishBlock() { |
| 97 | RegRefs.clear(); |
| 98 | KeepRegs.reset(); |
| 99 | } |
| 100 | |
| 101 | void CriticalAntiDepBreaker::Observe(MachineInstr &MI, unsigned Count, |
| 102 | unsigned InsertPosIndex) { |
| 103 | // Kill instructions can define registers but are really nops, and there might |
| 104 | // be a real definition earlier that needs to be paired with uses dominated by |
| 105 | // this kill. |
| 106 | |
| 107 | // FIXME: It may be possible to remove the isKill() restriction once PR18663 |
| 108 | // has been properly fixed. There can be value in processing kills as seen in |
| 109 | // the AggressiveAntiDepBreaker class. |
| 110 | if (MI.isDebugInstr() || MI.isKill()) |
| 111 | return; |
| 112 | assert(Count < InsertPosIndex && "Instruction index out of expected range!" ); |
| 113 | |
| 114 | for (unsigned Reg = 1; Reg != TRI->getNumRegs(); ++Reg) { |
| 115 | if (KillIndices[Reg] != ~0u) { |
| 116 | // If Reg is currently live, then mark that it can't be renamed as |
| 117 | // we don't know the extent of its live-range anymore (now that it |
| 118 | // has been scheduled). |
| 119 | Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); |
| 120 | KillIndices[Reg] = Count; |
| 121 | } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { |
| 122 | // Any register which was defined within the previous scheduling region |
| 123 | // may have been rescheduled and its lifetime may overlap with registers |
| 124 | // in ways not reflected in our current liveness state. For each such |
| 125 | // register, adjust the liveness state to be conservatively correct. |
| 126 | Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); |
| 127 | |
| 128 | // Move the def index to the end of the previous region, to reflect |
| 129 | // that the def could theoretically have been scheduled at the end. |
| 130 | DefIndices[Reg] = InsertPosIndex; |
| 131 | } |
| 132 | } |
| 133 | |
| 134 | PrescanInstruction(MI); |
| 135 | ScanInstruction(MI, Count); |
| 136 | } |
| 137 | |
| 138 | /// CriticalPathStep - Return the next SUnit after SU on the bottom-up |
| 139 | /// critical path. |
| 140 | static const SDep *CriticalPathStep(const SUnit *SU) { |
| 141 | const SDep *Next = nullptr; |
| 142 | unsigned NextDepth = 0; |
| 143 | // Find the predecessor edge with the greatest depth. |
| 144 | for (const SDep &P : SU->Preds) { |
| 145 | const SUnit *PredSU = P.getSUnit(); |
| 146 | unsigned PredLatency = P.getLatency(); |
| 147 | unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; |
| 148 | // In the case of a latency tie, prefer an anti-dependency edge over |
| 149 | // other types of edges. |
| 150 | if (NextDepth < PredTotalLatency || |
| 151 | (NextDepth == PredTotalLatency && P.getKind() == SDep::Anti)) { |
| 152 | NextDepth = PredTotalLatency; |
| 153 | Next = &P; |
| 154 | } |
| 155 | } |
| 156 | return Next; |
| 157 | } |
| 158 | |
| 159 | void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr &MI) { |
| 160 | // It's not safe to change register allocation for source operands of |
| 161 | // instructions that have special allocation requirements. Also assume all |
| 162 | // registers used in a call must not be changed (ABI). |
| 163 | // FIXME: The issue with predicated instruction is more complex. We are being |
| 164 | // conservative here because the kill markers cannot be trusted after |
| 165 | // if-conversion: |
| 166 | // %r6 = LDR %sp, %reg0, 92, 14, %reg0; mem:LD4[FixedStack14] |
| 167 | // ... |
| 168 | // STR %r0, killed %r6, %reg0, 0, 0, %cpsr; mem:ST4[%395] |
| 169 | // %r6 = LDR %sp, %reg0, 100, 0, %cpsr; mem:LD4[FixedStack12] |
| 170 | // STR %r0, killed %r6, %reg0, 0, 14, %reg0; mem:ST4[%396](align=8) |
| 171 | // |
| 172 | // The first R6 kill is not really a kill since it's killed by a predicated |
| 173 | // instruction which may not be executed. The second R6 def may or may not |
| 174 | // re-define R6 so it's not safe to change it since the last R6 use cannot be |
| 175 | // changed. |
| 176 | bool Special = |
| 177 | MI.isCall() || MI.hasExtraSrcRegAllocReq() || TII->isPredicated(MI); |
| 178 | |
| 179 | // Scan the register operands for this instruction and update |
| 180 | // Classes and RegRefs. |
| 181 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 182 | MachineOperand &MO = MI.getOperand(i); |
| 183 | if (!MO.isReg()) continue; |
| 184 | Register Reg = MO.getReg(); |
| 185 | if (!Reg) |
| 186 | continue; |
| 187 | const TargetRegisterClass *NewRC = nullptr; |
| 188 | |
| 189 | if (i < MI.getDesc().getNumOperands()) |
| 190 | NewRC = TII->getRegClass(MCID: MI.getDesc(), OpNum: i, TRI, MF); |
| 191 | |
| 192 | // For now, only allow the register to be changed if its register |
| 193 | // class is consistent across all uses. |
| 194 | if (!Classes[Reg.id()] && NewRC) |
| 195 | Classes[Reg.id()] = NewRC; |
| 196 | else if (!NewRC || Classes[Reg.id()] != NewRC) |
| 197 | Classes[Reg.id()] = reinterpret_cast<TargetRegisterClass *>(-1); |
| 198 | |
| 199 | // Now check for aliases. |
| 200 | for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { |
| 201 | // If an alias of the reg is used during the live range, give up. |
| 202 | // Note that this allows us to skip checking if AntiDepReg |
| 203 | // overlaps with any of the aliases, among other things. |
| 204 | unsigned AliasReg = (*AI).id(); |
| 205 | if (Classes[AliasReg]) { |
| 206 | Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); |
| 207 | Classes[Reg.id()] = reinterpret_cast<TargetRegisterClass *>(-1); |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | // If we're still willing to consider this register, note the reference. |
| 212 | if (Classes[Reg.id()] != reinterpret_cast<TargetRegisterClass *>(-1)) |
| 213 | RegRefs.emplace(args&: Reg, args: &MO); |
| 214 | |
| 215 | if (MO.isUse() && Special) { |
| 216 | if (!KeepRegs.test(Idx: Reg.id())) { |
| 217 | for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg)) |
| 218 | KeepRegs.set(SubReg); |
| 219 | } |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { |
| 224 | const MachineOperand &MO = MI.getOperand(i: I); |
| 225 | if (!MO.isReg()) continue; |
| 226 | Register Reg = MO.getReg(); |
| 227 | if (!Reg.isValid()) |
| 228 | continue; |
| 229 | // If this reg is tied and live (Classes[Reg] is set to -1), we can't change |
| 230 | // it or any of its sub or super regs. We need to use KeepRegs to mark the |
| 231 | // reg because not all uses of the same reg within an instruction are |
| 232 | // necessarily tagged as tied. |
| 233 | // Example: an x86 "xor %eax, %eax" will have one source operand tied to the |
| 234 | // def register but not the second (see PR20020 for details). |
| 235 | // FIXME: can this check be relaxed to account for undef uses |
| 236 | // of a register? In the above 'xor' example, the uses of %eax are undef, so |
| 237 | // earlier instructions could still replace %eax even though the 'xor' |
| 238 | // itself can't be changed. |
| 239 | if (MI.isRegTiedToUseOperand(DefOpIdx: I) && |
| 240 | Classes[Reg.id()] == reinterpret_cast<TargetRegisterClass *>(-1)) { |
| 241 | for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg)) { |
| 242 | KeepRegs.set(SubReg); |
| 243 | } |
| 244 | for (MCPhysReg SuperReg : TRI->superregs(Reg)) { |
| 245 | KeepRegs.set(SuperReg); |
| 246 | } |
| 247 | } |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | void CriticalAntiDepBreaker::ScanInstruction(MachineInstr &MI, unsigned Count) { |
| 252 | // Update liveness. |
| 253 | // Proceeding upwards, registers that are defed but not used in this |
| 254 | // instruction are now dead. |
| 255 | assert(!MI.isKill() && "Attempting to scan a kill instruction" ); |
| 256 | |
| 257 | if (!TII->isPredicated(MI)) { |
| 258 | // Predicated defs are modeled as read + write, i.e. similar to two |
| 259 | // address updates. |
| 260 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 261 | MachineOperand &MO = MI.getOperand(i); |
| 262 | |
| 263 | if (MO.isRegMask()) { |
| 264 | auto ClobbersPhysRegAndSubRegs = [&](unsigned PhysReg) { |
| 265 | return all_of(Range: TRI->subregs_inclusive(Reg: PhysReg), |
| 266 | P: [&](MCPhysReg SR) { return MO.clobbersPhysReg(PhysReg: SR); }); |
| 267 | }; |
| 268 | |
| 269 | for (unsigned i = 1, e = TRI->getNumRegs(); i != e; ++i) { |
| 270 | if (ClobbersPhysRegAndSubRegs(i)) { |
| 271 | DefIndices[i] = Count; |
| 272 | KillIndices[i] = ~0u; |
| 273 | KeepRegs.reset(Idx: i); |
| 274 | Classes[i] = nullptr; |
| 275 | RegRefs.erase(x: i); |
| 276 | } |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | if (!MO.isReg()) continue; |
| 281 | Register Reg = MO.getReg(); |
| 282 | if (!Reg) |
| 283 | continue; |
| 284 | if (!MO.isDef()) continue; |
| 285 | |
| 286 | // Ignore two-addr defs. |
| 287 | if (MI.isRegTiedToUseOperand(DefOpIdx: i)) |
| 288 | continue; |
| 289 | |
| 290 | // If we've already marked this reg as unchangeable, don't remove |
| 291 | // it or any of its subregs from KeepRegs. |
| 292 | bool Keep = KeepRegs.test(Idx: Reg.id()); |
| 293 | |
| 294 | // For the reg itself and all subregs: update the def to current; |
| 295 | // reset the kill state, any restrictions, and references. |
| 296 | for (MCPhysReg SubregReg : TRI->subregs_inclusive(Reg)) { |
| 297 | DefIndices[SubregReg] = Count; |
| 298 | KillIndices[SubregReg] = ~0u; |
| 299 | Classes[SubregReg] = nullptr; |
| 300 | RegRefs.erase(x: SubregReg); |
| 301 | if (!Keep) |
| 302 | KeepRegs.reset(Idx: SubregReg); |
| 303 | } |
| 304 | // Conservatively mark super-registers as unusable. |
| 305 | for (MCPhysReg SR : TRI->superregs(Reg)) |
| 306 | Classes[SR] = reinterpret_cast<TargetRegisterClass *>(-1); |
| 307 | } |
| 308 | } |
| 309 | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { |
| 310 | MachineOperand &MO = MI.getOperand(i); |
| 311 | if (!MO.isReg()) continue; |
| 312 | Register Reg = MO.getReg(); |
| 313 | if (!Reg) |
| 314 | continue; |
| 315 | if (!MO.isUse()) continue; |
| 316 | |
| 317 | const TargetRegisterClass *NewRC = nullptr; |
| 318 | if (i < MI.getDesc().getNumOperands()) |
| 319 | NewRC = TII->getRegClass(MCID: MI.getDesc(), OpNum: i, TRI, MF); |
| 320 | |
| 321 | // For now, only allow the register to be changed if its register |
| 322 | // class is consistent across all uses. |
| 323 | if (!Classes[Reg.id()] && NewRC) |
| 324 | Classes[Reg.id()] = NewRC; |
| 325 | else if (!NewRC || Classes[Reg.id()] != NewRC) |
| 326 | Classes[Reg.id()] = reinterpret_cast<TargetRegisterClass *>(-1); |
| 327 | |
| 328 | RegRefs.emplace(args&: Reg, args: &MO); |
| 329 | |
| 330 | // It wasn't previously live but now it is, this is a kill. |
| 331 | // Repeat for all aliases. |
| 332 | for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { |
| 333 | MCRegister AliasReg = *AI; |
| 334 | if (KillIndices[AliasReg.id()] == ~0u) { |
| 335 | KillIndices[AliasReg.id()] = Count; |
| 336 | DefIndices[AliasReg.id()] = ~0u; |
| 337 | } |
| 338 | } |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | // Check all machine operands that reference the antidependent register and must |
| 343 | // be replaced by NewReg. Return true if any of their parent instructions may |
| 344 | // clobber the new register. |
| 345 | // |
| 346 | // Note: AntiDepReg may be referenced by a two-address instruction such that |
| 347 | // it's use operand is tied to a def operand. We guard against the case in which |
| 348 | // the two-address instruction also defines NewReg, as may happen with |
| 349 | // pre/postincrement loads. In this case, both the use and def operands are in |
| 350 | // RegRefs because the def is inserted by PrescanInstruction and not erased |
| 351 | // during ScanInstruction. So checking for an instruction with definitions of |
| 352 | // both NewReg and AntiDepReg covers it. |
| 353 | bool CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, |
| 354 | RegRefIter RegRefEnd, |
| 355 | MCRegister NewReg) { |
| 356 | for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { |
| 357 | MachineOperand *RefOper = I->second; |
| 358 | |
| 359 | // Don't allow the instruction defining AntiDepReg to earlyclobber its |
| 360 | // operands, in case they may be assigned to NewReg. In this case antidep |
| 361 | // breaking must fail, but it's too rare to bother optimizing. |
| 362 | if (RefOper->isDef() && RefOper->isEarlyClobber()) |
| 363 | return true; |
| 364 | |
| 365 | // Handle cases in which this instruction defines NewReg. |
| 366 | MachineInstr *MI = RefOper->getParent(); |
| 367 | for (const MachineOperand &CheckOper : MI->operands()) { |
| 368 | if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(PhysReg: NewReg)) |
| 369 | return true; |
| 370 | |
| 371 | if (!CheckOper.isReg() || !CheckOper.isDef() || |
| 372 | CheckOper.getReg() != NewReg) |
| 373 | continue; |
| 374 | |
| 375 | // Don't allow the instruction to define NewReg and AntiDepReg. |
| 376 | // When AntiDepReg is renamed it will be an illegal op. |
| 377 | if (RefOper->isDef()) |
| 378 | return true; |
| 379 | |
| 380 | // Don't allow an instruction using AntiDepReg to be earlyclobbered by |
| 381 | // NewReg. |
| 382 | if (CheckOper.isEarlyClobber()) |
| 383 | return true; |
| 384 | |
| 385 | // Don't allow inline asm to define NewReg at all. Who knows what it's |
| 386 | // doing with it. |
| 387 | if (MI->isInlineAsm()) |
| 388 | return true; |
| 389 | } |
| 390 | } |
| 391 | return false; |
| 392 | } |
| 393 | |
| 394 | MCRegister CriticalAntiDepBreaker::findSuitableFreeRegister( |
| 395 | RegRefIter RegRefBegin, RegRefIter RegRefEnd, MCRegister AntiDepReg, |
| 396 | MCRegister LastNewReg, const TargetRegisterClass *RC, |
| 397 | const SmallVectorImpl<Register> &Forbid) { |
| 398 | ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC); |
| 399 | for (MCRegister NewReg : Order) { |
| 400 | // Don't replace a register with itself. |
| 401 | if (NewReg == AntiDepReg) continue; |
| 402 | // Don't replace a register with one that was recently used to repair |
| 403 | // an anti-dependence with this AntiDepReg, because that would |
| 404 | // re-introduce that anti-dependence. |
| 405 | if (NewReg == LastNewReg) continue; |
| 406 | // If any instructions that define AntiDepReg also define the NewReg, it's |
| 407 | // not suitable. For example, Instruction with multiple definitions can |
| 408 | // result in this condition. |
| 409 | if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; |
| 410 | // If NewReg is dead and NewReg's most recent def is not before |
| 411 | // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. |
| 412 | assert(((KillIndices[AntiDepReg.id()] == ~0u) != |
| 413 | (DefIndices[AntiDepReg.id()] == ~0u)) && |
| 414 | "Kill and Def maps aren't consistent for AntiDepReg!" ); |
| 415 | assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) |
| 416 | && "Kill and Def maps aren't consistent for NewReg!" ); |
| 417 | if (KillIndices[NewReg] != ~0u || |
| 418 | Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || |
| 419 | KillIndices[AntiDepReg.id()] > DefIndices[NewReg]) |
| 420 | continue; |
| 421 | // If NewReg overlaps any of the forbidden registers, we can't use it. |
| 422 | bool Forbidden = false; |
| 423 | for (Register R : Forbid) |
| 424 | if (TRI->regsOverlap(RegA: NewReg, RegB: R)) { |
| 425 | Forbidden = true; |
| 426 | break; |
| 427 | } |
| 428 | if (Forbidden) continue; |
| 429 | return NewReg; |
| 430 | } |
| 431 | |
| 432 | // No registers are free and available! |
| 433 | return MCRegister(); |
| 434 | } |
| 435 | |
| 436 | unsigned CriticalAntiDepBreaker:: |
| 437 | BreakAntiDependencies(const std::vector<SUnit> &SUnits, |
| 438 | MachineBasicBlock::iterator Begin, |
| 439 | MachineBasicBlock::iterator End, |
| 440 | unsigned InsertPosIndex, |
| 441 | DbgValueVector &DbgValues) { |
| 442 | // The code below assumes that there is at least one instruction, |
| 443 | // so just duck out immediately if the block is empty. |
| 444 | if (SUnits.empty()) return 0; |
| 445 | |
| 446 | // Keep a map of the MachineInstr*'s back to the SUnit representing them. |
| 447 | // This is used for updating debug information. |
| 448 | // |
| 449 | // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap |
| 450 | DenseMap<MachineInstr *, const SUnit *> MISUnitMap; |
| 451 | |
| 452 | // Find the node at the bottom of the critical path. |
| 453 | const SUnit *Max = nullptr; |
| 454 | for (const SUnit &SU : SUnits) { |
| 455 | MISUnitMap[SU.getInstr()] = &SU; |
| 456 | if (!Max || SU.getDepth() + SU.Latency > Max->getDepth() + Max->Latency) |
| 457 | Max = &SU; |
| 458 | } |
| 459 | assert(Max && "Failed to find bottom of the critical path" ); |
| 460 | |
| 461 | #ifndef NDEBUG |
| 462 | { |
| 463 | LLVM_DEBUG(dbgs() << "Critical path has total latency " |
| 464 | << (Max->getDepth() + Max->Latency) << "\n" ); |
| 465 | LLVM_DEBUG(dbgs() << "Available regs:" ); |
| 466 | for (unsigned Reg = 1; Reg < TRI->getNumRegs(); ++Reg) { |
| 467 | if (KillIndices[Reg] == ~0u) |
| 468 | LLVM_DEBUG(dbgs() << " " << printReg(Reg, TRI)); |
| 469 | } |
| 470 | LLVM_DEBUG(dbgs() << '\n'); |
| 471 | } |
| 472 | #endif |
| 473 | |
| 474 | // Track progress along the critical path through the SUnit graph as we walk |
| 475 | // the instructions. |
| 476 | const SUnit *CriticalPathSU = Max; |
| 477 | MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); |
| 478 | |
| 479 | // Consider this pattern: |
| 480 | // A = ... |
| 481 | // ... = A |
| 482 | // A = ... |
| 483 | // ... = A |
| 484 | // A = ... |
| 485 | // ... = A |
| 486 | // A = ... |
| 487 | // ... = A |
| 488 | // There are three anti-dependencies here, and without special care, |
| 489 | // we'd break all of them using the same register: |
| 490 | // A = ... |
| 491 | // ... = A |
| 492 | // B = ... |
| 493 | // ... = B |
| 494 | // B = ... |
| 495 | // ... = B |
| 496 | // B = ... |
| 497 | // ... = B |
| 498 | // because at each anti-dependence, B is the first register that |
| 499 | // isn't A which is free. This re-introduces anti-dependencies |
| 500 | // at all but one of the original anti-dependencies that we were |
| 501 | // trying to break. To avoid this, keep track of the most recent |
| 502 | // register that each register was replaced with, avoid |
| 503 | // using it to repair an anti-dependence on the same register. |
| 504 | // This lets us produce this: |
| 505 | // A = ... |
| 506 | // ... = A |
| 507 | // B = ... |
| 508 | // ... = B |
| 509 | // C = ... |
| 510 | // ... = C |
| 511 | // B = ... |
| 512 | // ... = B |
| 513 | // This still has an anti-dependence on B, but at least it isn't on the |
| 514 | // original critical path. |
| 515 | // |
| 516 | // TODO: If we tracked more than one register here, we could potentially |
| 517 | // fix that remaining critical edge too. This is a little more involved, |
| 518 | // because unlike the most recent register, less recent registers should |
| 519 | // still be considered, though only if no other registers are available. |
| 520 | std::vector<MCRegister> LastNewReg(TRI->getNumRegs(), MCRegister()); |
| 521 | |
| 522 | // Attempt to break anti-dependence edges on the critical path. Walk the |
| 523 | // instructions from the bottom up, tracking information about liveness |
| 524 | // as we go to help determine which registers are available. |
| 525 | unsigned Broken = 0; |
| 526 | unsigned Count = InsertPosIndex - 1; |
| 527 | for (MachineBasicBlock::iterator I = End, E = Begin; I != E; --Count) { |
| 528 | MachineInstr &MI = *--I; |
| 529 | // Kill instructions can define registers but are really nops, and there |
| 530 | // might be a real definition earlier that needs to be paired with uses |
| 531 | // dominated by this kill. |
| 532 | |
| 533 | // FIXME: It may be possible to remove the isKill() restriction once PR18663 |
| 534 | // has been properly fixed. There can be value in processing kills as seen |
| 535 | // in the AggressiveAntiDepBreaker class. |
| 536 | if (MI.isDebugInstr() || MI.isKill()) |
| 537 | continue; |
| 538 | |
| 539 | // Check if this instruction has a dependence on the critical path that |
| 540 | // is an anti-dependence that we may be able to break. If it is, set |
| 541 | // AntiDepReg to the non-zero register associated with the anti-dependence. |
| 542 | // |
| 543 | // We limit our attention to the critical path as a heuristic to avoid |
| 544 | // breaking anti-dependence edges that aren't going to significantly |
| 545 | // impact the overall schedule. There are a limited number of registers |
| 546 | // and we want to save them for the important edges. |
| 547 | // |
| 548 | // TODO: Instructions with multiple defs could have multiple |
| 549 | // anti-dependencies. The current code here only knows how to break one |
| 550 | // edge per instruction. Note that we'd have to be able to break all of |
| 551 | // the anti-dependencies in an instruction in order to be effective. |
| 552 | MCRegister AntiDepReg; |
| 553 | if (&MI == CriticalPathMI) { |
| 554 | if (const SDep *Edge = CriticalPathStep(SU: CriticalPathSU)) { |
| 555 | const SUnit *NextSU = Edge->getSUnit(); |
| 556 | |
| 557 | // Only consider anti-dependence edges. |
| 558 | if (Edge->getKind() == SDep::Anti) { |
| 559 | AntiDepReg = Edge->getReg().asMCReg(); |
| 560 | assert(AntiDepReg && "Anti-dependence on reg0?" ); |
| 561 | if (!MRI.isAllocatable(PhysReg: AntiDepReg)) |
| 562 | // Don't break anti-dependencies on non-allocatable registers. |
| 563 | AntiDepReg = MCRegister(); |
| 564 | else if (KeepRegs.test(Idx: AntiDepReg.id())) |
| 565 | // Don't break anti-dependencies if a use down below requires |
| 566 | // this exact register. |
| 567 | AntiDepReg = MCRegister(); |
| 568 | else { |
| 569 | // If the SUnit has other dependencies on the SUnit that it |
| 570 | // anti-depends on, don't bother breaking the anti-dependency |
| 571 | // since those edges would prevent such units from being |
| 572 | // scheduled past each other regardless. |
| 573 | // |
| 574 | // Also, if there are dependencies on other SUnits with the |
| 575 | // same register as the anti-dependency, don't attempt to |
| 576 | // break it. |
| 577 | for (const SDep &P : CriticalPathSU->Preds) |
| 578 | if (P.getSUnit() == NextSU |
| 579 | ? (P.getKind() != SDep::Anti || P.getReg() != AntiDepReg) |
| 580 | : (P.getKind() == SDep::Data && |
| 581 | P.getReg() == AntiDepReg)) { |
| 582 | AntiDepReg = MCRegister(); |
| 583 | break; |
| 584 | } |
| 585 | } |
| 586 | } |
| 587 | CriticalPathSU = NextSU; |
| 588 | CriticalPathMI = CriticalPathSU->getInstr(); |
| 589 | } else { |
| 590 | // We've reached the end of the critical path. |
| 591 | CriticalPathSU = nullptr; |
| 592 | CriticalPathMI = nullptr; |
| 593 | } |
| 594 | } |
| 595 | |
| 596 | PrescanInstruction(MI); |
| 597 | |
| 598 | SmallVector<Register, 2> ForbidRegs; |
| 599 | |
| 600 | // If MI's defs have a special allocation requirement, don't allow |
| 601 | // any def registers to be changed. Also assume all registers |
| 602 | // defined in a call must not be changed (ABI). |
| 603 | if (MI.isCall() || MI.hasExtraDefRegAllocReq() || TII->isPredicated(MI)) |
| 604 | // If this instruction's defs have special allocation requirement, don't |
| 605 | // break this anti-dependency. |
| 606 | AntiDepReg = MCRegister(); |
| 607 | else if (AntiDepReg) { |
| 608 | // If this instruction has a use of AntiDepReg, breaking it |
| 609 | // is invalid. If the instruction defines other registers, |
| 610 | // save a list of them so that we don't pick a new register |
| 611 | // that overlaps any of them. |
| 612 | for (const MachineOperand &MO : MI.operands()) { |
| 613 | if (!MO.isReg()) continue; |
| 614 | Register Reg = MO.getReg(); |
| 615 | if (!Reg) |
| 616 | continue; |
| 617 | if (MO.isUse() && TRI->regsOverlap(RegA: AntiDepReg, RegB: Reg)) { |
| 618 | AntiDepReg = MCRegister(); |
| 619 | break; |
| 620 | } |
| 621 | if (MO.isDef() && Reg != AntiDepReg) |
| 622 | ForbidRegs.push_back(Elt: Reg); |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | // Determine AntiDepReg's register class, if it is live and is |
| 627 | // consistently used within a single class. |
| 628 | const TargetRegisterClass *RC = |
| 629 | AntiDepReg ? Classes[AntiDepReg.id()] : nullptr; |
| 630 | assert((!AntiDepReg || RC != nullptr) && |
| 631 | "Register should be live if it's causing an anti-dependence!" ); |
| 632 | if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) |
| 633 | AntiDepReg = MCRegister(); |
| 634 | |
| 635 | // Look for a suitable register to use to break the anti-dependence. |
| 636 | // |
| 637 | // TODO: Instead of picking the first free register, consider which might |
| 638 | // be the best. |
| 639 | if (AntiDepReg) { |
| 640 | std::pair<std::multimap<MCRegister, MachineOperand *>::iterator, |
| 641 | std::multimap<MCRegister, MachineOperand *>::iterator> |
| 642 | Range = RegRefs.equal_range(x: AntiDepReg); |
| 643 | if (MCRegister NewReg = findSuitableFreeRegister( |
| 644 | RegRefBegin: Range.first, RegRefEnd: Range.second, AntiDepReg, LastNewReg: LastNewReg[AntiDepReg], RC, |
| 645 | Forbid: ForbidRegs)) { |
| 646 | LLVM_DEBUG(dbgs() << "Breaking anti-dependence edge on " |
| 647 | << printReg(AntiDepReg, TRI) << " with " |
| 648 | << RegRefs.count(AntiDepReg) << " references" |
| 649 | << " using " << printReg(NewReg, TRI) << "!\n" ); |
| 650 | |
| 651 | // Update the references to the old register to refer to the new |
| 652 | // register. |
| 653 | for (std::multimap<MCRegister, MachineOperand *>::iterator |
| 654 | Q = Range.first, |
| 655 | QE = Range.second; |
| 656 | Q != QE; ++Q) { |
| 657 | Q->second->setReg(NewReg); |
| 658 | // If the SU for the instruction being updated has debug information |
| 659 | // related to the anti-dependency register, make sure to update that |
| 660 | // as well. |
| 661 | const SUnit *SU = MISUnitMap[Q->second->getParent()]; |
| 662 | if (!SU) continue; |
| 663 | UpdateDbgValues(DbgValues, ParentMI: Q->second->getParent(), |
| 664 | OldReg: AntiDepReg, NewReg); |
| 665 | } |
| 666 | |
| 667 | // We just went back in time and modified history; the |
| 668 | // liveness information for the anti-dependence reg is now |
| 669 | // inconsistent. Set the state as if it were dead. |
| 670 | Classes[NewReg.id()] = Classes[AntiDepReg.id()]; |
| 671 | DefIndices[NewReg.id()] = DefIndices[AntiDepReg.id()]; |
| 672 | KillIndices[NewReg.id()] = KillIndices[AntiDepReg.id()]; |
| 673 | assert(((KillIndices[NewReg.id()] == ~0u) != |
| 674 | (DefIndices[NewReg.id()] == ~0u)) && |
| 675 | "Kill and Def maps aren't consistent for NewReg!" ); |
| 676 | |
| 677 | Classes[AntiDepReg.id()] = nullptr; |
| 678 | DefIndices[AntiDepReg.id()] = KillIndices[AntiDepReg.id()]; |
| 679 | KillIndices[AntiDepReg.id()] = ~0u; |
| 680 | assert(((KillIndices[AntiDepReg.id()] == ~0u) != |
| 681 | (DefIndices[AntiDepReg.id()] == ~0u)) && |
| 682 | "Kill and Def maps aren't consistent for AntiDepReg!" ); |
| 683 | |
| 684 | RegRefs.erase(x: AntiDepReg); |
| 685 | LastNewReg[AntiDepReg.id()] = NewReg; |
| 686 | ++Broken; |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | ScanInstruction(MI, Count); |
| 691 | } |
| 692 | |
| 693 | return Broken; |
| 694 | } |
| 695 | |
| 696 | AntiDepBreaker * |
| 697 | llvm::createCriticalAntiDepBreaker(MachineFunction &MFi, |
| 698 | const RegisterClassInfo &RCI) { |
| 699 | return new CriticalAntiDepBreaker(MFi, RCI); |
| 700 | } |
| 701 | |