| 1 | //===- lib/CodeGen/GlobalISel/GISelValueTracking.cpp --------------*- C++ |
| 2 | //*-===// |
| 3 | // |
| 4 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 5 | // See https://llvm.org/LICENSE.txt for license information. |
| 6 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | /// Provides analysis for querying information about KnownBits during GISel |
| 11 | /// passes. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | #include "llvm/CodeGen/GlobalISel/GISelValueTracking.h" |
| 15 | #include "llvm/ADT/APFloat.h" |
| 16 | #include "llvm/ADT/FloatingPointMode.h" |
| 17 | #include "llvm/ADT/ScopeExit.h" |
| 18 | #include "llvm/ADT/StringExtras.h" |
| 19 | #include "llvm/Analysis/ValueTracking.h" |
| 20 | #include "llvm/Analysis/VectorUtils.h" |
| 21 | #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
| 22 | #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" |
| 23 | #include "llvm/CodeGen/GlobalISel/MachineFloatingPointPredicateUtils.h" |
| 24 | #include "llvm/CodeGen/GlobalISel/Utils.h" |
| 25 | #include "llvm/CodeGen/LowLevelTypeUtils.h" |
| 26 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 27 | #include "llvm/CodeGen/MachineInstr.h" |
| 28 | #include "llvm/CodeGen/MachineOperand.h" |
| 29 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 30 | #include "llvm/CodeGen/Register.h" |
| 31 | #include "llvm/CodeGen/TargetLowering.h" |
| 32 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 33 | #include "llvm/IR/ConstantRange.h" |
| 34 | #include "llvm/IR/DerivedTypes.h" |
| 35 | #include "llvm/IR/FMF.h" |
| 36 | #include "llvm/MC/TargetRegistry.h" |
| 37 | #include "llvm/Support/KnownBits.h" |
| 38 | #include "llvm/Support/KnownFPClass.h" |
| 39 | #include "llvm/Target/TargetMachine.h" |
| 40 | |
| 41 | #define DEBUG_TYPE "gisel-known-bits" |
| 42 | |
| 43 | using namespace llvm; |
| 44 | using namespace MIPatternMatch; |
| 45 | |
| 46 | char llvm::GISelValueTrackingAnalysisLegacy::ID = 0; |
| 47 | |
| 48 | INITIALIZE_PASS(GISelValueTrackingAnalysisLegacy, DEBUG_TYPE, |
| 49 | "Analysis for ComputingKnownBits" , false, true) |
| 50 | |
| 51 | GISelValueTracking::GISelValueTracking(MachineFunction &MF, unsigned MaxDepth) |
| 52 | : MF(MF), MRI(MF.getRegInfo()), TL(*MF.getSubtarget().getTargetLowering()), |
| 53 | DL(MF.getFunction().getDataLayout()), MaxDepth(MaxDepth) {} |
| 54 | |
| 55 | Align GISelValueTracking::computeKnownAlignment(Register R, unsigned Depth) { |
| 56 | const MachineInstr *MI = MRI.getVRegDef(Reg: R); |
| 57 | switch (MI->getOpcode()) { |
| 58 | case TargetOpcode::COPY: |
| 59 | return computeKnownAlignment(R: MI->getOperand(i: 1).getReg(), Depth); |
| 60 | case TargetOpcode::G_ASSERT_ALIGN: { |
| 61 | // TODO: Min with source |
| 62 | return Align(MI->getOperand(i: 2).getImm()); |
| 63 | } |
| 64 | case TargetOpcode::G_FRAME_INDEX: { |
| 65 | int FrameIdx = MI->getOperand(i: 1).getIndex(); |
| 66 | return MF.getFrameInfo().getObjectAlign(ObjectIdx: FrameIdx); |
| 67 | } |
| 68 | case TargetOpcode::G_INTRINSIC: |
| 69 | case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: |
| 70 | case TargetOpcode::G_INTRINSIC_CONVERGENT: |
| 71 | case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: |
| 72 | default: |
| 73 | return TL.computeKnownAlignForTargetInstr(Analysis&: *this, R, MRI, Depth: Depth + 1); |
| 74 | } |
| 75 | } |
| 76 | |
| 77 | KnownBits GISelValueTracking::getKnownBits(MachineInstr &MI) { |
| 78 | assert(MI.getNumExplicitDefs() == 1 && |
| 79 | "expected single return generic instruction" ); |
| 80 | return getKnownBits(R: MI.getOperand(i: 0).getReg()); |
| 81 | } |
| 82 | |
| 83 | KnownBits GISelValueTracking::getKnownBits(Register R) { |
| 84 | const LLT Ty = MRI.getType(Reg: R); |
| 85 | // Since the number of lanes in a scalable vector is unknown at compile time, |
| 86 | // we track one bit which is implicitly broadcast to all lanes. This means |
| 87 | // that all lanes in a scalable vector are considered demanded. |
| 88 | APInt DemandedElts = |
| 89 | Ty.isFixedVector() ? APInt::getAllOnes(numBits: Ty.getNumElements()) : APInt(1, 1); |
| 90 | return getKnownBits(R, DemandedElts); |
| 91 | } |
| 92 | |
| 93 | KnownBits GISelValueTracking::getKnownBits(Register R, |
| 94 | const APInt &DemandedElts, |
| 95 | unsigned Depth) { |
| 96 | // For now, we only maintain the cache during one request. |
| 97 | assert(ComputeKnownBitsCache.empty() && "Cache should have been cleared" ); |
| 98 | |
| 99 | KnownBits Known; |
| 100 | computeKnownBitsImpl(R, Known, DemandedElts, Depth); |
| 101 | ComputeKnownBitsCache.clear(); |
| 102 | return Known; |
| 103 | } |
| 104 | |
| 105 | bool GISelValueTracking::signBitIsZero(Register R) { |
| 106 | LLT Ty = MRI.getType(Reg: R); |
| 107 | unsigned BitWidth = Ty.getScalarSizeInBits(); |
| 108 | return maskedValueIsZero(Val: R, Mask: APInt::getSignMask(BitWidth)); |
| 109 | } |
| 110 | |
| 111 | APInt GISelValueTracking::getKnownZeroes(Register R) { |
| 112 | return getKnownBits(R).Zero; |
| 113 | } |
| 114 | |
| 115 | APInt GISelValueTracking::getKnownOnes(Register R) { |
| 116 | return getKnownBits(R).One; |
| 117 | } |
| 118 | |
| 119 | LLVM_ATTRIBUTE_UNUSED static void |
| 120 | dumpResult(const MachineInstr &MI, const KnownBits &Known, unsigned Depth) { |
| 121 | dbgs() << "[" << Depth << "] Compute known bits: " << MI << "[" << Depth |
| 122 | << "] Computed for: " << MI << "[" << Depth << "] Known: 0x" |
| 123 | << toString(I: Known.Zero | Known.One, Radix: 16, Signed: false) << "\n" |
| 124 | << "[" << Depth << "] Zero: 0x" << toString(I: Known.Zero, Radix: 16, Signed: false) |
| 125 | << "\n" |
| 126 | << "[" << Depth << "] One: 0x" << toString(I: Known.One, Radix: 16, Signed: false) |
| 127 | << "\n" ; |
| 128 | } |
| 129 | |
| 130 | /// Compute known bits for the intersection of \p Src0 and \p Src1 |
| 131 | void GISelValueTracking::computeKnownBitsMin(Register Src0, Register Src1, |
| 132 | KnownBits &Known, |
| 133 | const APInt &DemandedElts, |
| 134 | unsigned Depth) { |
| 135 | // Test src1 first, since we canonicalize simpler expressions to the RHS. |
| 136 | computeKnownBitsImpl(R: Src1, Known, DemandedElts, Depth); |
| 137 | |
| 138 | // If we don't know any bits, early out. |
| 139 | if (Known.isUnknown()) |
| 140 | return; |
| 141 | |
| 142 | KnownBits Known2; |
| 143 | computeKnownBitsImpl(R: Src0, Known&: Known2, DemandedElts, Depth); |
| 144 | |
| 145 | // Only known if known in both the LHS and RHS. |
| 146 | Known = Known.intersectWith(RHS: Known2); |
| 147 | } |
| 148 | |
| 149 | // Bitfield extract is computed as (Src >> Offset) & Mask, where Mask is |
| 150 | // created using Width. Use this function when the inputs are KnownBits |
| 151 | // objects. TODO: Move this KnownBits.h if this is usable in more cases. |
| 152 | static KnownBits (unsigned BitWidth, const KnownBits &SrcOpKnown, |
| 153 | const KnownBits &OffsetKnown, |
| 154 | const KnownBits &WidthKnown) { |
| 155 | KnownBits Mask(BitWidth); |
| 156 | Mask.Zero = APInt::getBitsSetFrom( |
| 157 | numBits: BitWidth, loBit: WidthKnown.getMaxValue().getLimitedValue(Limit: BitWidth)); |
| 158 | Mask.One = APInt::getLowBitsSet( |
| 159 | numBits: BitWidth, loBitsSet: WidthKnown.getMinValue().getLimitedValue(Limit: BitWidth)); |
| 160 | return KnownBits::lshr(LHS: SrcOpKnown, RHS: OffsetKnown) & Mask; |
| 161 | } |
| 162 | |
| 163 | void GISelValueTracking::computeKnownBitsImpl(Register R, KnownBits &Known, |
| 164 | const APInt &DemandedElts, |
| 165 | unsigned Depth) { |
| 166 | MachineInstr &MI = *MRI.getVRegDef(Reg: R); |
| 167 | unsigned Opcode = MI.getOpcode(); |
| 168 | LLT DstTy = MRI.getType(Reg: R); |
| 169 | |
| 170 | // Handle the case where this is called on a register that does not have a |
| 171 | // type constraint. For example, it may be post-ISel or this target might not |
| 172 | // preserve the type when early-selecting instructions. |
| 173 | if (!DstTy.isValid()) { |
| 174 | Known = KnownBits(); |
| 175 | return; |
| 176 | } |
| 177 | |
| 178 | #ifndef NDEBUG |
| 179 | if (DstTy.isFixedVector()) { |
| 180 | assert( |
| 181 | DstTy.getNumElements() == DemandedElts.getBitWidth() && |
| 182 | "DemandedElt width should equal the fixed vector number of elements" ); |
| 183 | } else { |
| 184 | assert(DemandedElts.getBitWidth() == 1 && DemandedElts == APInt(1, 1) && |
| 185 | "DemandedElt width should be 1 for scalars or scalable vectors" ); |
| 186 | } |
| 187 | #endif |
| 188 | |
| 189 | unsigned BitWidth = DstTy.getScalarSizeInBits(); |
| 190 | auto CacheEntry = ComputeKnownBitsCache.find(Val: R); |
| 191 | if (CacheEntry != ComputeKnownBitsCache.end()) { |
| 192 | Known = CacheEntry->second; |
| 193 | LLVM_DEBUG(dbgs() << "Cache hit at " ); |
| 194 | LLVM_DEBUG(dumpResult(MI, Known, Depth)); |
| 195 | assert(Known.getBitWidth() == BitWidth && "Cache entry size doesn't match" ); |
| 196 | return; |
| 197 | } |
| 198 | Known = KnownBits(BitWidth); // Don't know anything |
| 199 | |
| 200 | // Depth may get bigger than max depth if it gets passed to a different |
| 201 | // GISelValueTracking object. |
| 202 | // This may happen when say a generic part uses a GISelValueTracking object |
| 203 | // with some max depth, but then we hit TL.computeKnownBitsForTargetInstr |
| 204 | // which creates a new GISelValueTracking object with a different and smaller |
| 205 | // depth. If we just check for equality, we would never exit if the depth |
| 206 | // that is passed down to the target specific GISelValueTracking object is |
| 207 | // already bigger than its max depth. |
| 208 | if (Depth >= getMaxDepth()) |
| 209 | return; |
| 210 | |
| 211 | if (!DemandedElts) |
| 212 | return; // No demanded elts, better to assume we don't know anything. |
| 213 | |
| 214 | KnownBits Known2; |
| 215 | |
| 216 | switch (Opcode) { |
| 217 | default: |
| 218 | TL.computeKnownBitsForTargetInstr(Analysis&: *this, R, Known, DemandedElts, MRI, |
| 219 | Depth); |
| 220 | break; |
| 221 | case TargetOpcode::G_BUILD_VECTOR: { |
| 222 | // Collect the known bits that are shared by every demanded vector element. |
| 223 | Known.Zero.setAllBits(); |
| 224 | Known.One.setAllBits(); |
| 225 | for (const auto &[I, MO] : enumerate(First: drop_begin(RangeOrContainer: MI.operands()))) { |
| 226 | if (!DemandedElts[I]) |
| 227 | continue; |
| 228 | |
| 229 | computeKnownBitsImpl(R: MO.getReg(), Known&: Known2, DemandedElts: APInt(1, 1), Depth: Depth + 1); |
| 230 | |
| 231 | // Known bits are the values that are shared by every demanded element. |
| 232 | Known = Known.intersectWith(RHS: Known2); |
| 233 | |
| 234 | // If we don't know any bits, early out. |
| 235 | if (Known.isUnknown()) |
| 236 | break; |
| 237 | } |
| 238 | break; |
| 239 | } |
| 240 | case TargetOpcode::G_SPLAT_VECTOR: { |
| 241 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known, DemandedElts: APInt(1, 1), |
| 242 | Depth: Depth + 1); |
| 243 | // Implicitly truncate the bits to match the official semantics of |
| 244 | // G_SPLAT_VECTOR. |
| 245 | Known = Known.trunc(BitWidth); |
| 246 | break; |
| 247 | } |
| 248 | case TargetOpcode::COPY: |
| 249 | case TargetOpcode::G_PHI: |
| 250 | case TargetOpcode::PHI: { |
| 251 | Known.One = APInt::getAllOnes(numBits: BitWidth); |
| 252 | Known.Zero = APInt::getAllOnes(numBits: BitWidth); |
| 253 | // Destination registers should not have subregisters at this |
| 254 | // point of the pipeline, otherwise the main live-range will be |
| 255 | // defined more than once, which is against SSA. |
| 256 | assert(MI.getOperand(0).getSubReg() == 0 && "Is this code in SSA?" ); |
| 257 | // Record in the cache that we know nothing for MI. |
| 258 | // This will get updated later and in the meantime, if we reach that |
| 259 | // phi again, because of a loop, we will cut the search thanks to this |
| 260 | // cache entry. |
| 261 | // We could actually build up more information on the phi by not cutting |
| 262 | // the search, but that additional information is more a side effect |
| 263 | // than an intended choice. |
| 264 | // Therefore, for now, save on compile time until we derive a proper way |
| 265 | // to derive known bits for PHIs within loops. |
| 266 | ComputeKnownBitsCache[R] = KnownBits(BitWidth); |
| 267 | // PHI's operand are a mix of registers and basic blocks interleaved. |
| 268 | // We only care about the register ones. |
| 269 | for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) { |
| 270 | const MachineOperand &Src = MI.getOperand(i: Idx); |
| 271 | Register SrcReg = Src.getReg(); |
| 272 | // Look through trivial copies and phis but don't look through trivial |
| 273 | // copies or phis of the form `%1:(s32) = OP %0:gpr32`, known-bits |
| 274 | // analysis is currently unable to determine the bit width of a |
| 275 | // register class. |
| 276 | // |
| 277 | // We can't use NoSubRegister by name as it's defined by each target but |
| 278 | // it's always defined to be 0 by tablegen. |
| 279 | if (SrcReg.isVirtual() && Src.getSubReg() == 0 /*NoSubRegister*/ && |
| 280 | MRI.getType(Reg: SrcReg).isValid()) { |
| 281 | // For COPYs we don't do anything, don't increase the depth. |
| 282 | computeKnownBitsImpl(R: SrcReg, Known&: Known2, DemandedElts, |
| 283 | Depth: Depth + (Opcode != TargetOpcode::COPY)); |
| 284 | Known2 = Known2.anyextOrTrunc(BitWidth); |
| 285 | Known = Known.intersectWith(RHS: Known2); |
| 286 | // If we reach a point where we don't know anything |
| 287 | // just stop looking through the operands. |
| 288 | if (Known.isUnknown()) |
| 289 | break; |
| 290 | } else { |
| 291 | // We know nothing. |
| 292 | Known = KnownBits(BitWidth); |
| 293 | break; |
| 294 | } |
| 295 | } |
| 296 | break; |
| 297 | } |
| 298 | case TargetOpcode::G_CONSTANT: { |
| 299 | Known = KnownBits::makeConstant(C: MI.getOperand(i: 1).getCImm()->getValue()); |
| 300 | break; |
| 301 | } |
| 302 | case TargetOpcode::G_FRAME_INDEX: { |
| 303 | int FrameIdx = MI.getOperand(i: 1).getIndex(); |
| 304 | TL.computeKnownBitsForFrameIndex(FIOp: FrameIdx, Known, MF); |
| 305 | break; |
| 306 | } |
| 307 | case TargetOpcode::G_SUB: { |
| 308 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known, DemandedElts, |
| 309 | Depth: Depth + 1); |
| 310 | computeKnownBitsImpl(R: MI.getOperand(i: 2).getReg(), Known&: Known2, DemandedElts, |
| 311 | Depth: Depth + 1); |
| 312 | Known = KnownBits::sub(LHS: Known, RHS: Known2); |
| 313 | break; |
| 314 | } |
| 315 | case TargetOpcode::G_XOR: { |
| 316 | computeKnownBitsImpl(R: MI.getOperand(i: 2).getReg(), Known, DemandedElts, |
| 317 | Depth: Depth + 1); |
| 318 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known&: Known2, DemandedElts, |
| 319 | Depth: Depth + 1); |
| 320 | |
| 321 | Known ^= Known2; |
| 322 | break; |
| 323 | } |
| 324 | case TargetOpcode::G_PTR_ADD: { |
| 325 | if (DstTy.isVector()) |
| 326 | break; |
| 327 | // G_PTR_ADD is like G_ADD. FIXME: Is this true for all targets? |
| 328 | LLT Ty = MRI.getType(Reg: MI.getOperand(i: 1).getReg()); |
| 329 | if (DL.isNonIntegralAddressSpace(AddrSpace: Ty.getAddressSpace())) |
| 330 | break; |
| 331 | [[fallthrough]]; |
| 332 | } |
| 333 | case TargetOpcode::G_ADD: { |
| 334 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known, DemandedElts, |
| 335 | Depth: Depth + 1); |
| 336 | computeKnownBitsImpl(R: MI.getOperand(i: 2).getReg(), Known&: Known2, DemandedElts, |
| 337 | Depth: Depth + 1); |
| 338 | Known = KnownBits::add(LHS: Known, RHS: Known2); |
| 339 | break; |
| 340 | } |
| 341 | case TargetOpcode::G_AND: { |
| 342 | // If either the LHS or the RHS are Zero, the result is zero. |
| 343 | computeKnownBitsImpl(R: MI.getOperand(i: 2).getReg(), Known, DemandedElts, |
| 344 | Depth: Depth + 1); |
| 345 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known&: Known2, DemandedElts, |
| 346 | Depth: Depth + 1); |
| 347 | |
| 348 | Known &= Known2; |
| 349 | break; |
| 350 | } |
| 351 | case TargetOpcode::G_OR: { |
| 352 | // If either the LHS or the RHS are Zero, the result is zero. |
| 353 | computeKnownBitsImpl(R: MI.getOperand(i: 2).getReg(), Known, DemandedElts, |
| 354 | Depth: Depth + 1); |
| 355 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known&: Known2, DemandedElts, |
| 356 | Depth: Depth + 1); |
| 357 | |
| 358 | Known |= Known2; |
| 359 | break; |
| 360 | } |
| 361 | case TargetOpcode::G_MUL: { |
| 362 | computeKnownBitsImpl(R: MI.getOperand(i: 2).getReg(), Known, DemandedElts, |
| 363 | Depth: Depth + 1); |
| 364 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known&: Known2, DemandedElts, |
| 365 | Depth: Depth + 1); |
| 366 | Known = KnownBits::mul(LHS: Known, RHS: Known2); |
| 367 | break; |
| 368 | } |
| 369 | case TargetOpcode::G_SELECT: { |
| 370 | computeKnownBitsMin(Src0: MI.getOperand(i: 2).getReg(), Src1: MI.getOperand(i: 3).getReg(), |
| 371 | Known, DemandedElts, Depth: Depth + 1); |
| 372 | break; |
| 373 | } |
| 374 | case TargetOpcode::G_SMIN: { |
| 375 | // TODO: Handle clamp pattern with number of sign bits |
| 376 | KnownBits KnownRHS; |
| 377 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known, DemandedElts, |
| 378 | Depth: Depth + 1); |
| 379 | computeKnownBitsImpl(R: MI.getOperand(i: 2).getReg(), Known&: KnownRHS, DemandedElts, |
| 380 | Depth: Depth + 1); |
| 381 | Known = KnownBits::smin(LHS: Known, RHS: KnownRHS); |
| 382 | break; |
| 383 | } |
| 384 | case TargetOpcode::G_SMAX: { |
| 385 | // TODO: Handle clamp pattern with number of sign bits |
| 386 | KnownBits KnownRHS; |
| 387 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known, DemandedElts, |
| 388 | Depth: Depth + 1); |
| 389 | computeKnownBitsImpl(R: MI.getOperand(i: 2).getReg(), Known&: KnownRHS, DemandedElts, |
| 390 | Depth: Depth + 1); |
| 391 | Known = KnownBits::smax(LHS: Known, RHS: KnownRHS); |
| 392 | break; |
| 393 | } |
| 394 | case TargetOpcode::G_UMIN: { |
| 395 | KnownBits KnownRHS; |
| 396 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known, DemandedElts, |
| 397 | Depth: Depth + 1); |
| 398 | computeKnownBitsImpl(R: MI.getOperand(i: 2).getReg(), Known&: KnownRHS, DemandedElts, |
| 399 | Depth: Depth + 1); |
| 400 | Known = KnownBits::umin(LHS: Known, RHS: KnownRHS); |
| 401 | break; |
| 402 | } |
| 403 | case TargetOpcode::G_UMAX: { |
| 404 | KnownBits KnownRHS; |
| 405 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known, DemandedElts, |
| 406 | Depth: Depth + 1); |
| 407 | computeKnownBitsImpl(R: MI.getOperand(i: 2).getReg(), Known&: KnownRHS, DemandedElts, |
| 408 | Depth: Depth + 1); |
| 409 | Known = KnownBits::umax(LHS: Known, RHS: KnownRHS); |
| 410 | break; |
| 411 | } |
| 412 | case TargetOpcode::G_FCMP: |
| 413 | case TargetOpcode::G_ICMP: { |
| 414 | if (DstTy.isVector()) |
| 415 | break; |
| 416 | if (TL.getBooleanContents(isVec: DstTy.isVector(), |
| 417 | isFloat: Opcode == TargetOpcode::G_FCMP) == |
| 418 | TargetLowering::ZeroOrOneBooleanContent && |
| 419 | BitWidth > 1) |
| 420 | Known.Zero.setBitsFrom(1); |
| 421 | break; |
| 422 | } |
| 423 | case TargetOpcode::G_SEXT: { |
| 424 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known, DemandedElts, |
| 425 | Depth: Depth + 1); |
| 426 | // If the sign bit is known to be zero or one, then sext will extend |
| 427 | // it to the top bits, else it will just zext. |
| 428 | Known = Known.sext(BitWidth); |
| 429 | break; |
| 430 | } |
| 431 | case TargetOpcode::G_ASSERT_SEXT: |
| 432 | case TargetOpcode::G_SEXT_INREG: { |
| 433 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known, DemandedElts, |
| 434 | Depth: Depth + 1); |
| 435 | Known = Known.sextInReg(SrcBitWidth: MI.getOperand(i: 2).getImm()); |
| 436 | break; |
| 437 | } |
| 438 | case TargetOpcode::G_ANYEXT: { |
| 439 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known, DemandedElts, |
| 440 | Depth: Depth + 1); |
| 441 | Known = Known.anyext(BitWidth); |
| 442 | break; |
| 443 | } |
| 444 | case TargetOpcode::G_LOAD: { |
| 445 | const MachineMemOperand *MMO = *MI.memoperands_begin(); |
| 446 | KnownBits KnownRange(MMO->getMemoryType().getScalarSizeInBits()); |
| 447 | if (const MDNode *Ranges = MMO->getRanges()) |
| 448 | computeKnownBitsFromRangeMetadata(Ranges: *Ranges, Known&: KnownRange); |
| 449 | Known = KnownRange.anyext(BitWidth: Known.getBitWidth()); |
| 450 | break; |
| 451 | } |
| 452 | case TargetOpcode::G_SEXTLOAD: |
| 453 | case TargetOpcode::G_ZEXTLOAD: { |
| 454 | if (DstTy.isVector()) |
| 455 | break; |
| 456 | const MachineMemOperand *MMO = *MI.memoperands_begin(); |
| 457 | KnownBits KnownRange(MMO->getMemoryType().getScalarSizeInBits()); |
| 458 | if (const MDNode *Ranges = MMO->getRanges()) |
| 459 | computeKnownBitsFromRangeMetadata(Ranges: *Ranges, Known&: KnownRange); |
| 460 | Known = Opcode == TargetOpcode::G_SEXTLOAD |
| 461 | ? KnownRange.sext(BitWidth: Known.getBitWidth()) |
| 462 | : KnownRange.zext(BitWidth: Known.getBitWidth()); |
| 463 | break; |
| 464 | } |
| 465 | case TargetOpcode::G_ASHR: { |
| 466 | KnownBits LHSKnown, RHSKnown; |
| 467 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known&: LHSKnown, DemandedElts, |
| 468 | Depth: Depth + 1); |
| 469 | computeKnownBitsImpl(R: MI.getOperand(i: 2).getReg(), Known&: RHSKnown, DemandedElts, |
| 470 | Depth: Depth + 1); |
| 471 | Known = KnownBits::ashr(LHS: LHSKnown, RHS: RHSKnown); |
| 472 | break; |
| 473 | } |
| 474 | case TargetOpcode::G_LSHR: { |
| 475 | KnownBits LHSKnown, RHSKnown; |
| 476 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known&: LHSKnown, DemandedElts, |
| 477 | Depth: Depth + 1); |
| 478 | computeKnownBitsImpl(R: MI.getOperand(i: 2).getReg(), Known&: RHSKnown, DemandedElts, |
| 479 | Depth: Depth + 1); |
| 480 | Known = KnownBits::lshr(LHS: LHSKnown, RHS: RHSKnown); |
| 481 | break; |
| 482 | } |
| 483 | case TargetOpcode::G_SHL: { |
| 484 | KnownBits LHSKnown, RHSKnown; |
| 485 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known&: LHSKnown, DemandedElts, |
| 486 | Depth: Depth + 1); |
| 487 | computeKnownBitsImpl(R: MI.getOperand(i: 2).getReg(), Known&: RHSKnown, DemandedElts, |
| 488 | Depth: Depth + 1); |
| 489 | Known = KnownBits::shl(LHS: LHSKnown, RHS: RHSKnown); |
| 490 | break; |
| 491 | } |
| 492 | case TargetOpcode::G_INTTOPTR: |
| 493 | case TargetOpcode::G_PTRTOINT: |
| 494 | if (DstTy.isVector()) |
| 495 | break; |
| 496 | // Fall through and handle them the same as zext/trunc. |
| 497 | [[fallthrough]]; |
| 498 | case TargetOpcode::G_ZEXT: |
| 499 | case TargetOpcode::G_TRUNC: { |
| 500 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
| 501 | computeKnownBitsImpl(R: SrcReg, Known, DemandedElts, Depth: Depth + 1); |
| 502 | Known = Known.zextOrTrunc(BitWidth); |
| 503 | break; |
| 504 | } |
| 505 | case TargetOpcode::G_ASSERT_ZEXT: { |
| 506 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
| 507 | computeKnownBitsImpl(R: SrcReg, Known, DemandedElts, Depth: Depth + 1); |
| 508 | |
| 509 | unsigned SrcBitWidth = MI.getOperand(i: 2).getImm(); |
| 510 | assert(SrcBitWidth && "SrcBitWidth can't be zero" ); |
| 511 | APInt InMask = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: SrcBitWidth); |
| 512 | Known.Zero |= (~InMask); |
| 513 | Known.One &= (~Known.Zero); |
| 514 | break; |
| 515 | } |
| 516 | case TargetOpcode::G_ASSERT_ALIGN: { |
| 517 | int64_t LogOfAlign = Log2_64(Value: MI.getOperand(i: 2).getImm()); |
| 518 | |
| 519 | // TODO: Should use maximum with source |
| 520 | // If a node is guaranteed to be aligned, set low zero bits accordingly as |
| 521 | // well as clearing one bits. |
| 522 | Known.Zero.setLowBits(LogOfAlign); |
| 523 | Known.One.clearLowBits(loBits: LogOfAlign); |
| 524 | break; |
| 525 | } |
| 526 | case TargetOpcode::G_MERGE_VALUES: { |
| 527 | unsigned NumOps = MI.getNumOperands(); |
| 528 | unsigned OpSize = MRI.getType(Reg: MI.getOperand(i: 1).getReg()).getSizeInBits(); |
| 529 | |
| 530 | for (unsigned I = 0; I != NumOps - 1; ++I) { |
| 531 | KnownBits SrcOpKnown; |
| 532 | computeKnownBitsImpl(R: MI.getOperand(i: I + 1).getReg(), Known&: SrcOpKnown, |
| 533 | DemandedElts, Depth: Depth + 1); |
| 534 | Known.insertBits(SubBits: SrcOpKnown, BitPosition: I * OpSize); |
| 535 | } |
| 536 | break; |
| 537 | } |
| 538 | case TargetOpcode::G_UNMERGE_VALUES: { |
| 539 | unsigned NumOps = MI.getNumOperands(); |
| 540 | Register SrcReg = MI.getOperand(i: NumOps - 1).getReg(); |
| 541 | LLT SrcTy = MRI.getType(Reg: SrcReg); |
| 542 | |
| 543 | if (SrcTy.isVector() && SrcTy.getScalarType() != DstTy.getScalarType()) |
| 544 | return; // TODO: Handle vector->subelement unmerges |
| 545 | |
| 546 | // Figure out the result operand index |
| 547 | unsigned DstIdx = 0; |
| 548 | for (; DstIdx != NumOps - 1 && MI.getOperand(i: DstIdx).getReg() != R; |
| 549 | ++DstIdx) |
| 550 | ; |
| 551 | |
| 552 | APInt SubDemandedElts = DemandedElts; |
| 553 | if (SrcTy.isVector()) { |
| 554 | unsigned DstLanes = DstTy.isVector() ? DstTy.getNumElements() : 1; |
| 555 | SubDemandedElts = |
| 556 | DemandedElts.zext(width: SrcTy.getNumElements()).shl(shiftAmt: DstIdx * DstLanes); |
| 557 | } |
| 558 | |
| 559 | KnownBits SrcOpKnown; |
| 560 | computeKnownBitsImpl(R: SrcReg, Known&: SrcOpKnown, DemandedElts: SubDemandedElts, Depth: Depth + 1); |
| 561 | |
| 562 | if (SrcTy.isVector()) |
| 563 | Known = std::move(SrcOpKnown); |
| 564 | else |
| 565 | Known = SrcOpKnown.extractBits(NumBits: BitWidth, BitPosition: BitWidth * DstIdx); |
| 566 | break; |
| 567 | } |
| 568 | case TargetOpcode::G_BSWAP: { |
| 569 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
| 570 | computeKnownBitsImpl(R: SrcReg, Known, DemandedElts, Depth: Depth + 1); |
| 571 | Known = Known.byteSwap(); |
| 572 | break; |
| 573 | } |
| 574 | case TargetOpcode::G_BITREVERSE: { |
| 575 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
| 576 | computeKnownBitsImpl(R: SrcReg, Known, DemandedElts, Depth: Depth + 1); |
| 577 | Known = Known.reverseBits(); |
| 578 | break; |
| 579 | } |
| 580 | case TargetOpcode::G_CTPOP: { |
| 581 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known&: Known2, DemandedElts, |
| 582 | Depth: Depth + 1); |
| 583 | // We can bound the space the count needs. Also, bits known to be zero |
| 584 | // can't contribute to the population. |
| 585 | unsigned BitsPossiblySet = Known2.countMaxPopulation(); |
| 586 | unsigned LowBits = llvm::bit_width(Value: BitsPossiblySet); |
| 587 | Known.Zero.setBitsFrom(LowBits); |
| 588 | // TODO: we could bound Known.One using the lower bound on the number of |
| 589 | // bits which might be set provided by popcnt KnownOne2. |
| 590 | break; |
| 591 | } |
| 592 | case TargetOpcode::G_UBFX: { |
| 593 | KnownBits SrcOpKnown, OffsetKnown, WidthKnown; |
| 594 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known&: SrcOpKnown, DemandedElts, |
| 595 | Depth: Depth + 1); |
| 596 | computeKnownBitsImpl(R: MI.getOperand(i: 2).getReg(), Known&: OffsetKnown, DemandedElts, |
| 597 | Depth: Depth + 1); |
| 598 | computeKnownBitsImpl(R: MI.getOperand(i: 3).getReg(), Known&: WidthKnown, DemandedElts, |
| 599 | Depth: Depth + 1); |
| 600 | Known = extractBits(BitWidth, SrcOpKnown, OffsetKnown, WidthKnown); |
| 601 | break; |
| 602 | } |
| 603 | case TargetOpcode::G_SBFX: { |
| 604 | KnownBits SrcOpKnown, OffsetKnown, WidthKnown; |
| 605 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known&: SrcOpKnown, DemandedElts, |
| 606 | Depth: Depth + 1); |
| 607 | computeKnownBitsImpl(R: MI.getOperand(i: 2).getReg(), Known&: OffsetKnown, DemandedElts, |
| 608 | Depth: Depth + 1); |
| 609 | computeKnownBitsImpl(R: MI.getOperand(i: 3).getReg(), Known&: WidthKnown, DemandedElts, |
| 610 | Depth: Depth + 1); |
| 611 | Known = extractBits(BitWidth, SrcOpKnown, OffsetKnown, WidthKnown); |
| 612 | // Sign extend the extracted value using shift left and arithmetic shift |
| 613 | // right. |
| 614 | KnownBits ExtKnown = KnownBits::makeConstant(C: APInt(BitWidth, BitWidth)); |
| 615 | KnownBits ShiftKnown = KnownBits::sub(LHS: ExtKnown, RHS: WidthKnown); |
| 616 | Known = KnownBits::ashr(LHS: KnownBits::shl(LHS: Known, RHS: ShiftKnown), RHS: ShiftKnown); |
| 617 | break; |
| 618 | } |
| 619 | case TargetOpcode::G_UADDO: |
| 620 | case TargetOpcode::G_UADDE: |
| 621 | case TargetOpcode::G_SADDO: |
| 622 | case TargetOpcode::G_SADDE: |
| 623 | case TargetOpcode::G_USUBO: |
| 624 | case TargetOpcode::G_USUBE: |
| 625 | case TargetOpcode::G_SSUBO: |
| 626 | case TargetOpcode::G_SSUBE: |
| 627 | case TargetOpcode::G_UMULO: |
| 628 | case TargetOpcode::G_SMULO: { |
| 629 | if (MI.getOperand(i: 1).getReg() == R) { |
| 630 | // If we know the result of a compare has the top bits zero, use this |
| 631 | // info. |
| 632 | if (TL.getBooleanContents(isVec: DstTy.isVector(), isFloat: false) == |
| 633 | TargetLowering::ZeroOrOneBooleanContent && |
| 634 | BitWidth > 1) |
| 635 | Known.Zero.setBitsFrom(1); |
| 636 | } |
| 637 | break; |
| 638 | } |
| 639 | case TargetOpcode::G_CTLZ: |
| 640 | case TargetOpcode::G_CTLZ_ZERO_UNDEF: { |
| 641 | KnownBits SrcOpKnown; |
| 642 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known&: SrcOpKnown, DemandedElts, |
| 643 | Depth: Depth + 1); |
| 644 | // If we have a known 1, its position is our upper bound. |
| 645 | unsigned PossibleLZ = SrcOpKnown.countMaxLeadingZeros(); |
| 646 | unsigned LowBits = llvm::bit_width(Value: PossibleLZ); |
| 647 | Known.Zero.setBitsFrom(LowBits); |
| 648 | break; |
| 649 | } |
| 650 | case TargetOpcode::G_SHUFFLE_VECTOR: { |
| 651 | APInt DemandedLHS, DemandedRHS; |
| 652 | // Collect the known bits that are shared by every vector element referenced |
| 653 | // by the shuffle. |
| 654 | unsigned NumElts = MRI.getType(Reg: MI.getOperand(i: 1).getReg()).getNumElements(); |
| 655 | if (!getShuffleDemandedElts(SrcWidth: NumElts, Mask: MI.getOperand(i: 3).getShuffleMask(), |
| 656 | DemandedElts, DemandedLHS, DemandedRHS)) |
| 657 | break; |
| 658 | |
| 659 | // Known bits are the values that are shared by every demanded element. |
| 660 | Known.Zero.setAllBits(); |
| 661 | Known.One.setAllBits(); |
| 662 | if (!!DemandedLHS) { |
| 663 | computeKnownBitsImpl(R: MI.getOperand(i: 1).getReg(), Known&: Known2, DemandedElts: DemandedLHS, |
| 664 | Depth: Depth + 1); |
| 665 | Known = Known.intersectWith(RHS: Known2); |
| 666 | } |
| 667 | // If we don't know any bits, early out. |
| 668 | if (Known.isUnknown()) |
| 669 | break; |
| 670 | if (!!DemandedRHS) { |
| 671 | computeKnownBitsImpl(R: MI.getOperand(i: 2).getReg(), Known&: Known2, DemandedElts: DemandedRHS, |
| 672 | Depth: Depth + 1); |
| 673 | Known = Known.intersectWith(RHS: Known2); |
| 674 | } |
| 675 | break; |
| 676 | } |
| 677 | case TargetOpcode::G_CONCAT_VECTORS: { |
| 678 | if (MRI.getType(Reg: MI.getOperand(i: 0).getReg()).isScalableVector()) |
| 679 | break; |
| 680 | // Split DemandedElts and test each of the demanded subvectors. |
| 681 | Known.Zero.setAllBits(); |
| 682 | Known.One.setAllBits(); |
| 683 | unsigned NumSubVectorElts = |
| 684 | MRI.getType(Reg: MI.getOperand(i: 1).getReg()).getNumElements(); |
| 685 | |
| 686 | for (const auto &[I, MO] : enumerate(First: drop_begin(RangeOrContainer: MI.operands()))) { |
| 687 | APInt DemandedSub = |
| 688 | DemandedElts.extractBits(numBits: NumSubVectorElts, bitPosition: I * NumSubVectorElts); |
| 689 | if (!!DemandedSub) { |
| 690 | computeKnownBitsImpl(R: MO.getReg(), Known&: Known2, DemandedElts: DemandedSub, Depth: Depth + 1); |
| 691 | |
| 692 | Known = Known.intersectWith(RHS: Known2); |
| 693 | } |
| 694 | // If we don't know any bits, early out. |
| 695 | if (Known.isUnknown()) |
| 696 | break; |
| 697 | } |
| 698 | break; |
| 699 | } |
| 700 | } |
| 701 | |
| 702 | LLVM_DEBUG(dumpResult(MI, Known, Depth)); |
| 703 | |
| 704 | // Update the cache. |
| 705 | ComputeKnownBitsCache[R] = Known; |
| 706 | } |
| 707 | |
| 708 | static bool outputDenormalIsIEEEOrPosZero(const MachineFunction &MF, LLT Ty) { |
| 709 | Ty = Ty.getScalarType(); |
| 710 | DenormalMode Mode = MF.getDenormalMode(FPType: getFltSemanticForLLT(Ty)); |
| 711 | return Mode.Output == DenormalMode::IEEE || |
| 712 | Mode.Output == DenormalMode::PositiveZero; |
| 713 | } |
| 714 | |
| 715 | void GISelValueTracking::computeKnownFPClass(Register R, KnownFPClass &Known, |
| 716 | FPClassTest InterestedClasses, |
| 717 | unsigned Depth) { |
| 718 | LLT Ty = MRI.getType(Reg: R); |
| 719 | APInt DemandedElts = |
| 720 | Ty.isFixedVector() ? APInt::getAllOnes(numBits: Ty.getNumElements()) : APInt(1, 1); |
| 721 | computeKnownFPClass(R, DemandedElts, InterestedClasses, Known, Depth); |
| 722 | } |
| 723 | |
| 724 | void GISelValueTracking::computeKnownFPClassForFPTrunc( |
| 725 | const MachineInstr &MI, const APInt &DemandedElts, |
| 726 | FPClassTest InterestedClasses, KnownFPClass &Known, unsigned Depth) { |
| 727 | if ((InterestedClasses & (KnownFPClass::OrderedLessThanZeroMask | fcNan)) == |
| 728 | fcNone) |
| 729 | return; |
| 730 | |
| 731 | Register Val = MI.getOperand(i: 1).getReg(); |
| 732 | KnownFPClass KnownSrc; |
| 733 | computeKnownFPClass(R: Val, DemandedElts, InterestedClasses, Known&: KnownSrc, |
| 734 | Depth: Depth + 1); |
| 735 | |
| 736 | // Sign should be preserved |
| 737 | // TODO: Handle cannot be ordered greater than zero |
| 738 | if (KnownSrc.cannotBeOrderedLessThanZero()) |
| 739 | Known.knownNot(RuleOut: KnownFPClass::OrderedLessThanZeroMask); |
| 740 | |
| 741 | Known.propagateNaN(Src: KnownSrc, PreserveSign: true); |
| 742 | |
| 743 | // Infinity needs a range check. |
| 744 | } |
| 745 | |
| 746 | void GISelValueTracking::computeKnownFPClass(Register R, |
| 747 | const APInt &DemandedElts, |
| 748 | FPClassTest InterestedClasses, |
| 749 | KnownFPClass &Known, |
| 750 | unsigned Depth) { |
| 751 | assert(Known.isUnknown() && "should not be called with known information" ); |
| 752 | |
| 753 | if (!DemandedElts) { |
| 754 | // No demanded elts, better to assume we don't know anything. |
| 755 | Known.resetAll(); |
| 756 | return; |
| 757 | } |
| 758 | |
| 759 | assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth" ); |
| 760 | |
| 761 | MachineInstr &MI = *MRI.getVRegDef(Reg: R); |
| 762 | unsigned Opcode = MI.getOpcode(); |
| 763 | LLT DstTy = MRI.getType(Reg: R); |
| 764 | |
| 765 | if (!DstTy.isValid()) { |
| 766 | Known.resetAll(); |
| 767 | return; |
| 768 | } |
| 769 | |
| 770 | if (auto Cst = GFConstant::getConstant(Const: R, MRI)) { |
| 771 | switch (Cst->getKind()) { |
| 772 | case GFConstant::GFConstantKind::Scalar: { |
| 773 | auto APF = Cst->getScalarValue(); |
| 774 | Known.KnownFPClasses = APF.classify(); |
| 775 | Known.SignBit = APF.isNegative(); |
| 776 | break; |
| 777 | } |
| 778 | case GFConstant::GFConstantKind::FixedVector: { |
| 779 | Known.KnownFPClasses = fcNone; |
| 780 | bool SignBitAllZero = true; |
| 781 | bool SignBitAllOne = true; |
| 782 | |
| 783 | for (auto C : *Cst) { |
| 784 | Known.KnownFPClasses |= C.classify(); |
| 785 | if (C.isNegative()) |
| 786 | SignBitAllZero = false; |
| 787 | else |
| 788 | SignBitAllOne = false; |
| 789 | } |
| 790 | |
| 791 | if (SignBitAllOne != SignBitAllZero) |
| 792 | Known.SignBit = SignBitAllOne; |
| 793 | |
| 794 | break; |
| 795 | } |
| 796 | case GFConstant::GFConstantKind::ScalableVector: { |
| 797 | Known.resetAll(); |
| 798 | break; |
| 799 | } |
| 800 | } |
| 801 | |
| 802 | return; |
| 803 | } |
| 804 | |
| 805 | FPClassTest KnownNotFromFlags = fcNone; |
| 806 | if (MI.getFlag(Flag: MachineInstr::MIFlag::FmNoNans)) |
| 807 | KnownNotFromFlags |= fcNan; |
| 808 | if (MI.getFlag(Flag: MachineInstr::MIFlag::FmNoInfs)) |
| 809 | KnownNotFromFlags |= fcInf; |
| 810 | |
| 811 | // We no longer need to find out about these bits from inputs if we can |
| 812 | // assume this from flags/attributes. |
| 813 | InterestedClasses &= ~KnownNotFromFlags; |
| 814 | |
| 815 | auto ClearClassesFromFlags = |
| 816 | make_scope_exit(F: [=, &Known] { Known.knownNot(RuleOut: KnownNotFromFlags); }); |
| 817 | |
| 818 | // All recursive calls that increase depth must come after this. |
| 819 | if (Depth == MaxAnalysisRecursionDepth) |
| 820 | return; |
| 821 | |
| 822 | const MachineFunction *MF = MI.getMF(); |
| 823 | |
| 824 | switch (Opcode) { |
| 825 | default: |
| 826 | TL.computeKnownFPClassForTargetInstr(Analysis&: *this, R, Known, DemandedElts, MRI, |
| 827 | Depth); |
| 828 | break; |
| 829 | case TargetOpcode::G_FNEG: { |
| 830 | Register Val = MI.getOperand(i: 1).getReg(); |
| 831 | computeKnownFPClass(R: Val, DemandedElts, InterestedClasses, Known, Depth: Depth + 1); |
| 832 | Known.fneg(); |
| 833 | break; |
| 834 | } |
| 835 | case TargetOpcode::G_SELECT: { |
| 836 | GSelect &SelMI = cast<GSelect>(Val&: MI); |
| 837 | Register Cond = SelMI.getCondReg(); |
| 838 | Register LHS = SelMI.getTrueReg(); |
| 839 | Register RHS = SelMI.getFalseReg(); |
| 840 | |
| 841 | FPClassTest FilterLHS = fcAllFlags; |
| 842 | FPClassTest FilterRHS = fcAllFlags; |
| 843 | |
| 844 | Register TestedValue; |
| 845 | FPClassTest MaskIfTrue = fcAllFlags; |
| 846 | FPClassTest MaskIfFalse = fcAllFlags; |
| 847 | FPClassTest ClassVal = fcNone; |
| 848 | |
| 849 | CmpInst::Predicate Pred; |
| 850 | Register CmpLHS, CmpRHS; |
| 851 | if (mi_match(R: Cond, MRI, |
| 852 | P: m_GFCmp(P: m_Pred(P&: Pred), L: m_Reg(R&: CmpLHS), R: m_Reg(R&: CmpRHS)))) { |
| 853 | // If the select filters out a value based on the class, it no longer |
| 854 | // participates in the class of the result |
| 855 | |
| 856 | // TODO: In some degenerate cases we can infer something if we try again |
| 857 | // without looking through sign operations. |
| 858 | bool LookThroughFAbsFNeg = CmpLHS != LHS && CmpLHS != RHS; |
| 859 | std::tie(args&: TestedValue, args&: MaskIfTrue, args&: MaskIfFalse) = |
| 860 | fcmpImpliesClass(Pred, MF: *MF, LHS: CmpLHS, RHS: CmpRHS, LookThroughSrc: LookThroughFAbsFNeg); |
| 861 | } else if (mi_match( |
| 862 | R: Cond, MRI, |
| 863 | P: m_GIsFPClass(L: m_Reg(R&: TestedValue), T: m_FPClassTest(T&: ClassVal)))) { |
| 864 | FPClassTest TestedMask = ClassVal; |
| 865 | MaskIfTrue = TestedMask; |
| 866 | MaskIfFalse = ~TestedMask; |
| 867 | } |
| 868 | |
| 869 | if (TestedValue == LHS) { |
| 870 | // match !isnan(x) ? x : y |
| 871 | FilterLHS = MaskIfTrue; |
| 872 | } else if (TestedValue == RHS) { // && IsExactClass |
| 873 | // match !isnan(x) ? y : x |
| 874 | FilterRHS = MaskIfFalse; |
| 875 | } |
| 876 | |
| 877 | KnownFPClass Known2; |
| 878 | computeKnownFPClass(R: LHS, DemandedElts, InterestedClasses: InterestedClasses & FilterLHS, Known, |
| 879 | Depth: Depth + 1); |
| 880 | Known.KnownFPClasses &= FilterLHS; |
| 881 | |
| 882 | computeKnownFPClass(R: RHS, DemandedElts, InterestedClasses: InterestedClasses & FilterRHS, |
| 883 | Known&: Known2, Depth: Depth + 1); |
| 884 | Known2.KnownFPClasses &= FilterRHS; |
| 885 | |
| 886 | Known |= Known2; |
| 887 | break; |
| 888 | } |
| 889 | case TargetOpcode::G_FCOPYSIGN: { |
| 890 | Register Magnitude = MI.getOperand(i: 1).getReg(); |
| 891 | Register Sign = MI.getOperand(i: 2).getReg(); |
| 892 | |
| 893 | KnownFPClass KnownSign; |
| 894 | |
| 895 | computeKnownFPClass(R: Magnitude, DemandedElts, InterestedClasses, Known, |
| 896 | Depth: Depth + 1); |
| 897 | computeKnownFPClass(R: Sign, DemandedElts, InterestedClasses, Known&: KnownSign, |
| 898 | Depth: Depth + 1); |
| 899 | Known.copysign(Sign: KnownSign); |
| 900 | break; |
| 901 | } |
| 902 | case TargetOpcode::G_FMA: |
| 903 | case TargetOpcode::G_STRICT_FMA: |
| 904 | case TargetOpcode::G_FMAD: { |
| 905 | if ((InterestedClasses & fcNegative) == fcNone) |
| 906 | break; |
| 907 | |
| 908 | Register A = MI.getOperand(i: 1).getReg(); |
| 909 | Register B = MI.getOperand(i: 2).getReg(); |
| 910 | Register C = MI.getOperand(i: 3).getReg(); |
| 911 | |
| 912 | if (A != B) |
| 913 | break; |
| 914 | |
| 915 | // The multiply cannot be -0 and therefore the add can't be -0 |
| 916 | Known.knownNot(RuleOut: fcNegZero); |
| 917 | |
| 918 | // x * x + y is non-negative if y is non-negative. |
| 919 | KnownFPClass KnownAddend; |
| 920 | computeKnownFPClass(R: C, DemandedElts, InterestedClasses, Known&: KnownAddend, |
| 921 | Depth: Depth + 1); |
| 922 | |
| 923 | if (KnownAddend.cannotBeOrderedLessThanZero()) |
| 924 | Known.knownNot(RuleOut: fcNegative); |
| 925 | break; |
| 926 | } |
| 927 | case TargetOpcode::G_FSQRT: |
| 928 | case TargetOpcode::G_STRICT_FSQRT: { |
| 929 | KnownFPClass KnownSrc; |
| 930 | FPClassTest InterestedSrcs = InterestedClasses; |
| 931 | if (InterestedClasses & fcNan) |
| 932 | InterestedSrcs |= KnownFPClass::OrderedLessThanZeroMask; |
| 933 | |
| 934 | Register Val = MI.getOperand(i: 1).getReg(); |
| 935 | |
| 936 | computeKnownFPClass(R: Val, DemandedElts, InterestedClasses: InterestedSrcs, Known&: KnownSrc, Depth: Depth + 1); |
| 937 | |
| 938 | if (KnownSrc.isKnownNeverPosInfinity()) |
| 939 | Known.knownNot(RuleOut: fcPosInf); |
| 940 | if (KnownSrc.isKnownNever(Mask: fcSNan)) |
| 941 | Known.knownNot(RuleOut: fcSNan); |
| 942 | |
| 943 | // Any negative value besides -0 returns a nan. |
| 944 | if (KnownSrc.isKnownNeverNaN() && KnownSrc.cannotBeOrderedLessThanZero()) |
| 945 | Known.knownNot(RuleOut: fcNan); |
| 946 | |
| 947 | // The only negative value that can be returned is -0 for -0 inputs. |
| 948 | Known.knownNot(RuleOut: fcNegInf | fcNegSubnormal | fcNegNormal); |
| 949 | break; |
| 950 | } |
| 951 | case TargetOpcode::G_FABS: { |
| 952 | if ((InterestedClasses & (fcNan | fcPositive)) != fcNone) { |
| 953 | Register Val = MI.getOperand(i: 1).getReg(); |
| 954 | // If we only care about the sign bit we don't need to inspect the |
| 955 | // operand. |
| 956 | computeKnownFPClass(R: Val, DemandedElts, InterestedClasses, Known, |
| 957 | Depth: Depth + 1); |
| 958 | } |
| 959 | Known.fabs(); |
| 960 | break; |
| 961 | } |
| 962 | case TargetOpcode::G_FSIN: |
| 963 | case TargetOpcode::G_FCOS: |
| 964 | case TargetOpcode::G_FSINCOS: { |
| 965 | // Return NaN on infinite inputs. |
| 966 | Register Val = MI.getOperand(i: 1).getReg(); |
| 967 | KnownFPClass KnownSrc; |
| 968 | |
| 969 | computeKnownFPClass(R: Val, DemandedElts, InterestedClasses, Known&: KnownSrc, |
| 970 | Depth: Depth + 1); |
| 971 | Known.knownNot(RuleOut: fcInf); |
| 972 | |
| 973 | if (KnownSrc.isKnownNeverNaN() && KnownSrc.isKnownNeverInfinity()) |
| 974 | Known.knownNot(RuleOut: fcNan); |
| 975 | break; |
| 976 | } |
| 977 | case TargetOpcode::G_FMAXNUM: |
| 978 | case TargetOpcode::G_FMINNUM: |
| 979 | case TargetOpcode::G_FMINNUM_IEEE: |
| 980 | case TargetOpcode::G_FMAXIMUM: |
| 981 | case TargetOpcode::G_FMINIMUM: |
| 982 | case TargetOpcode::G_FMAXNUM_IEEE: |
| 983 | case TargetOpcode::G_FMAXIMUMNUM: |
| 984 | case TargetOpcode::G_FMINIMUMNUM: { |
| 985 | Register LHS = MI.getOperand(i: 1).getReg(); |
| 986 | Register RHS = MI.getOperand(i: 2).getReg(); |
| 987 | KnownFPClass KnownLHS, KnownRHS; |
| 988 | |
| 989 | computeKnownFPClass(R: LHS, DemandedElts, InterestedClasses, Known&: KnownLHS, |
| 990 | Depth: Depth + 1); |
| 991 | computeKnownFPClass(R: RHS, DemandedElts, InterestedClasses, Known&: KnownRHS, |
| 992 | Depth: Depth + 1); |
| 993 | |
| 994 | bool NeverNaN = KnownLHS.isKnownNeverNaN() || KnownRHS.isKnownNeverNaN(); |
| 995 | Known = KnownLHS | KnownRHS; |
| 996 | |
| 997 | // If either operand is not NaN, the result is not NaN. |
| 998 | if (NeverNaN && (Opcode == TargetOpcode::G_FMINNUM || |
| 999 | Opcode == TargetOpcode::G_FMAXNUM || |
| 1000 | Opcode == TargetOpcode::G_FMINIMUMNUM || |
| 1001 | Opcode == TargetOpcode::G_FMAXIMUMNUM)) |
| 1002 | Known.knownNot(RuleOut: fcNan); |
| 1003 | |
| 1004 | if (Opcode == TargetOpcode::G_FMAXNUM || |
| 1005 | Opcode == TargetOpcode::G_FMAXIMUMNUM || |
| 1006 | Opcode == TargetOpcode::G_FMAXNUM_IEEE) { |
| 1007 | // If at least one operand is known to be positive, the result must be |
| 1008 | // positive. |
| 1009 | if ((KnownLHS.cannotBeOrderedLessThanZero() && |
| 1010 | KnownLHS.isKnownNeverNaN()) || |
| 1011 | (KnownRHS.cannotBeOrderedLessThanZero() && |
| 1012 | KnownRHS.isKnownNeverNaN())) |
| 1013 | Known.knownNot(RuleOut: KnownFPClass::OrderedLessThanZeroMask); |
| 1014 | } else if (Opcode == TargetOpcode::G_FMAXIMUM) { |
| 1015 | // If at least one operand is known to be positive, the result must be |
| 1016 | // positive. |
| 1017 | if (KnownLHS.cannotBeOrderedLessThanZero() || |
| 1018 | KnownRHS.cannotBeOrderedLessThanZero()) |
| 1019 | Known.knownNot(RuleOut: KnownFPClass::OrderedLessThanZeroMask); |
| 1020 | } else if (Opcode == TargetOpcode::G_FMINNUM || |
| 1021 | Opcode == TargetOpcode::G_FMINIMUMNUM || |
| 1022 | Opcode == TargetOpcode::G_FMINNUM_IEEE) { |
| 1023 | // If at least one operand is known to be negative, the result must be |
| 1024 | // negative. |
| 1025 | if ((KnownLHS.cannotBeOrderedGreaterThanZero() && |
| 1026 | KnownLHS.isKnownNeverNaN()) || |
| 1027 | (KnownRHS.cannotBeOrderedGreaterThanZero() && |
| 1028 | KnownRHS.isKnownNeverNaN())) |
| 1029 | Known.knownNot(RuleOut: KnownFPClass::OrderedGreaterThanZeroMask); |
| 1030 | } else if (Opcode == TargetOpcode::G_FMINIMUM) { |
| 1031 | // If at least one operand is known to be negative, the result must be |
| 1032 | // negative. |
| 1033 | if (KnownLHS.cannotBeOrderedGreaterThanZero() || |
| 1034 | KnownRHS.cannotBeOrderedGreaterThanZero()) |
| 1035 | Known.knownNot(RuleOut: KnownFPClass::OrderedGreaterThanZeroMask); |
| 1036 | } else { |
| 1037 | llvm_unreachable("unhandled intrinsic" ); |
| 1038 | } |
| 1039 | |
| 1040 | // Fixup zero handling if denormals could be returned as a zero. |
| 1041 | // |
| 1042 | // As there's no spec for denormal flushing, be conservative with the |
| 1043 | // treatment of denormals that could be flushed to zero. For older |
| 1044 | // subtargets on AMDGPU the min/max instructions would not flush the |
| 1045 | // output and return the original value. |
| 1046 | // |
| 1047 | if ((Known.KnownFPClasses & fcZero) != fcNone && |
| 1048 | !Known.isKnownNeverSubnormal()) { |
| 1049 | DenormalMode Mode = |
| 1050 | MF->getDenormalMode(FPType: getFltSemanticForLLT(Ty: DstTy.getScalarType())); |
| 1051 | if (Mode != DenormalMode::getIEEE()) |
| 1052 | Known.KnownFPClasses |= fcZero; |
| 1053 | } |
| 1054 | |
| 1055 | if (Known.isKnownNeverNaN()) { |
| 1056 | if (KnownLHS.SignBit && KnownRHS.SignBit && |
| 1057 | *KnownLHS.SignBit == *KnownRHS.SignBit) { |
| 1058 | if (*KnownLHS.SignBit) |
| 1059 | Known.signBitMustBeOne(); |
| 1060 | else |
| 1061 | Known.signBitMustBeZero(); |
| 1062 | } else if ((Opcode == TargetOpcode::G_FMAXIMUM || |
| 1063 | Opcode == TargetOpcode::G_FMINIMUM) || |
| 1064 | Opcode == TargetOpcode::G_FMAXIMUMNUM || |
| 1065 | Opcode == TargetOpcode::G_FMINIMUMNUM || |
| 1066 | Opcode == TargetOpcode::G_FMAXNUM_IEEE || |
| 1067 | Opcode == TargetOpcode::G_FMINNUM_IEEE || |
| 1068 | // FIXME: Should be using logical zero versions |
| 1069 | ((KnownLHS.isKnownNeverNegZero() || |
| 1070 | KnownRHS.isKnownNeverPosZero()) && |
| 1071 | (KnownLHS.isKnownNeverPosZero() || |
| 1072 | KnownRHS.isKnownNeverNegZero()))) { |
| 1073 | if ((Opcode == TargetOpcode::G_FMAXIMUM || |
| 1074 | Opcode == TargetOpcode::G_FMAXNUM || |
| 1075 | Opcode == TargetOpcode::G_FMAXIMUMNUM || |
| 1076 | Opcode == TargetOpcode::G_FMAXNUM_IEEE) && |
| 1077 | (KnownLHS.SignBit == false || KnownRHS.SignBit == false)) |
| 1078 | Known.signBitMustBeZero(); |
| 1079 | else if ((Opcode == TargetOpcode::G_FMINIMUM || |
| 1080 | Opcode == TargetOpcode::G_FMINNUM || |
| 1081 | Opcode == TargetOpcode::G_FMINIMUMNUM || |
| 1082 | Opcode == TargetOpcode::G_FMINNUM_IEEE) && |
| 1083 | (KnownLHS.SignBit == true || KnownRHS.SignBit == true)) |
| 1084 | Known.signBitMustBeOne(); |
| 1085 | } |
| 1086 | } |
| 1087 | break; |
| 1088 | } |
| 1089 | case TargetOpcode::G_FCANONICALIZE: { |
| 1090 | Register Val = MI.getOperand(i: 1).getReg(); |
| 1091 | KnownFPClass KnownSrc; |
| 1092 | computeKnownFPClass(R: Val, DemandedElts, InterestedClasses, Known&: KnownSrc, |
| 1093 | Depth: Depth + 1); |
| 1094 | |
| 1095 | // This is essentially a stronger form of |
| 1096 | // propagateCanonicalizingSrc. Other "canonicalizing" operations don't |
| 1097 | // actually have an IR canonicalization guarantee. |
| 1098 | |
| 1099 | // Canonicalize may flush denormals to zero, so we have to consider the |
| 1100 | // denormal mode to preserve known-not-0 knowledge. |
| 1101 | Known.KnownFPClasses = KnownSrc.KnownFPClasses | fcZero | fcQNan; |
| 1102 | |
| 1103 | // Stronger version of propagateNaN |
| 1104 | // Canonicalize is guaranteed to quiet signaling nans. |
| 1105 | if (KnownSrc.isKnownNeverNaN()) |
| 1106 | Known.knownNot(RuleOut: fcNan); |
| 1107 | else |
| 1108 | Known.knownNot(RuleOut: fcSNan); |
| 1109 | |
| 1110 | // If the parent function flushes denormals, the canonical output cannot |
| 1111 | // be a denormal. |
| 1112 | LLT Ty = MRI.getType(Reg: Val).getScalarType(); |
| 1113 | const fltSemantics &FPType = getFltSemanticForLLT(Ty); |
| 1114 | DenormalMode DenormMode = MF->getDenormalMode(FPType); |
| 1115 | if (DenormMode == DenormalMode::getIEEE()) { |
| 1116 | if (KnownSrc.isKnownNever(Mask: fcPosZero)) |
| 1117 | Known.knownNot(RuleOut: fcPosZero); |
| 1118 | if (KnownSrc.isKnownNever(Mask: fcNegZero)) |
| 1119 | Known.knownNot(RuleOut: fcNegZero); |
| 1120 | break; |
| 1121 | } |
| 1122 | |
| 1123 | if (DenormMode.inputsAreZero() || DenormMode.outputsAreZero()) |
| 1124 | Known.knownNot(RuleOut: fcSubnormal); |
| 1125 | |
| 1126 | if (DenormMode.Input == DenormalMode::PositiveZero || |
| 1127 | (DenormMode.Output == DenormalMode::PositiveZero && |
| 1128 | DenormMode.Input == DenormalMode::IEEE)) |
| 1129 | Known.knownNot(RuleOut: fcNegZero); |
| 1130 | |
| 1131 | break; |
| 1132 | } |
| 1133 | case TargetOpcode::G_VECREDUCE_FMAX: |
| 1134 | case TargetOpcode::G_VECREDUCE_FMIN: |
| 1135 | case TargetOpcode::G_VECREDUCE_FMAXIMUM: |
| 1136 | case TargetOpcode::G_VECREDUCE_FMINIMUM: { |
| 1137 | Register Val = MI.getOperand(i: 1).getReg(); |
| 1138 | // reduce min/max will choose an element from one of the vector elements, |
| 1139 | // so we can infer and class information that is common to all elements. |
| 1140 | |
| 1141 | Known = |
| 1142 | computeKnownFPClass(R: Val, Flags: MI.getFlags(), InterestedClasses, Depth: Depth + 1); |
| 1143 | // Can only propagate sign if output is never NaN. |
| 1144 | if (!Known.isKnownNeverNaN()) |
| 1145 | Known.SignBit.reset(); |
| 1146 | break; |
| 1147 | } |
| 1148 | case TargetOpcode::G_TRUNC: |
| 1149 | case TargetOpcode::G_FFLOOR: |
| 1150 | case TargetOpcode::G_FCEIL: |
| 1151 | case TargetOpcode::G_FRINT: |
| 1152 | case TargetOpcode::G_FNEARBYINT: |
| 1153 | case TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND: |
| 1154 | case TargetOpcode::G_INTRINSIC_ROUND: { |
| 1155 | Register Val = MI.getOperand(i: 1).getReg(); |
| 1156 | KnownFPClass KnownSrc; |
| 1157 | FPClassTest InterestedSrcs = InterestedClasses; |
| 1158 | if (InterestedSrcs & fcPosFinite) |
| 1159 | InterestedSrcs |= fcPosFinite; |
| 1160 | if (InterestedSrcs & fcNegFinite) |
| 1161 | InterestedSrcs |= fcNegFinite; |
| 1162 | computeKnownFPClass(R: Val, DemandedElts, InterestedClasses: InterestedSrcs, Known&: KnownSrc, Depth: Depth + 1); |
| 1163 | |
| 1164 | // Integer results cannot be subnormal. |
| 1165 | Known.knownNot(RuleOut: fcSubnormal); |
| 1166 | |
| 1167 | Known.propagateNaN(Src: KnownSrc, PreserveSign: true); |
| 1168 | |
| 1169 | // TODO: handle multi unit FPTypes once LLT FPInfo lands |
| 1170 | |
| 1171 | // Negative round ups to 0 produce -0 |
| 1172 | if (KnownSrc.isKnownNever(Mask: fcPosFinite)) |
| 1173 | Known.knownNot(RuleOut: fcPosFinite); |
| 1174 | if (KnownSrc.isKnownNever(Mask: fcNegFinite)) |
| 1175 | Known.knownNot(RuleOut: fcNegFinite); |
| 1176 | |
| 1177 | break; |
| 1178 | } |
| 1179 | case TargetOpcode::G_FEXP: |
| 1180 | case TargetOpcode::G_FEXP2: |
| 1181 | case TargetOpcode::G_FEXP10: { |
| 1182 | Known.knownNot(RuleOut: fcNegative); |
| 1183 | if ((InterestedClasses & fcNan) == fcNone) |
| 1184 | break; |
| 1185 | |
| 1186 | Register Val = MI.getOperand(i: 1).getReg(); |
| 1187 | KnownFPClass KnownSrc; |
| 1188 | computeKnownFPClass(R: Val, DemandedElts, InterestedClasses, Known&: KnownSrc, |
| 1189 | Depth: Depth + 1); |
| 1190 | if (KnownSrc.isKnownNeverNaN()) { |
| 1191 | Known.knownNot(RuleOut: fcNan); |
| 1192 | Known.signBitMustBeZero(); |
| 1193 | } |
| 1194 | |
| 1195 | break; |
| 1196 | } |
| 1197 | case TargetOpcode::G_FLOG: |
| 1198 | case TargetOpcode::G_FLOG2: |
| 1199 | case TargetOpcode::G_FLOG10: { |
| 1200 | // log(+inf) -> +inf |
| 1201 | // log([+-]0.0) -> -inf |
| 1202 | // log(-inf) -> nan |
| 1203 | // log(-x) -> nan |
| 1204 | if ((InterestedClasses & (fcNan | fcInf)) == fcNone) |
| 1205 | break; |
| 1206 | |
| 1207 | FPClassTest InterestedSrcs = InterestedClasses; |
| 1208 | if ((InterestedClasses & fcNegInf) != fcNone) |
| 1209 | InterestedSrcs |= fcZero | fcSubnormal; |
| 1210 | if ((InterestedClasses & fcNan) != fcNone) |
| 1211 | InterestedSrcs |= fcNan | (fcNegative & ~fcNan); |
| 1212 | |
| 1213 | Register Val = MI.getOperand(i: 1).getReg(); |
| 1214 | KnownFPClass KnownSrc; |
| 1215 | computeKnownFPClass(R: Val, DemandedElts, InterestedClasses: InterestedSrcs, Known&: KnownSrc, Depth: Depth + 1); |
| 1216 | |
| 1217 | if (KnownSrc.isKnownNeverPosInfinity()) |
| 1218 | Known.knownNot(RuleOut: fcPosInf); |
| 1219 | |
| 1220 | if (KnownSrc.isKnownNeverNaN() && KnownSrc.cannotBeOrderedLessThanZero()) |
| 1221 | Known.knownNot(RuleOut: fcNan); |
| 1222 | |
| 1223 | LLT Ty = MRI.getType(Reg: Val).getScalarType(); |
| 1224 | const fltSemantics &FltSem = getFltSemanticForLLT(Ty); |
| 1225 | DenormalMode Mode = MF->getDenormalMode(FPType: FltSem); |
| 1226 | |
| 1227 | if (KnownSrc.isKnownNeverLogicalZero(Mode)) |
| 1228 | Known.knownNot(RuleOut: fcNegInf); |
| 1229 | |
| 1230 | break; |
| 1231 | } |
| 1232 | case TargetOpcode::G_FPOWI: { |
| 1233 | if ((InterestedClasses & fcNegative) == fcNone) |
| 1234 | break; |
| 1235 | |
| 1236 | Register Exp = MI.getOperand(i: 2).getReg(); |
| 1237 | LLT ExpTy = MRI.getType(Reg: Exp); |
| 1238 | KnownBits ExponentKnownBits = getKnownBits( |
| 1239 | R: Exp, DemandedElts: ExpTy.isVector() ? DemandedElts : APInt(1, 1), Depth: Depth + 1); |
| 1240 | |
| 1241 | if (ExponentKnownBits.Zero[0]) { // Is even |
| 1242 | Known.knownNot(RuleOut: fcNegative); |
| 1243 | break; |
| 1244 | } |
| 1245 | |
| 1246 | // Given that exp is an integer, here are the |
| 1247 | // ways that pow can return a negative value: |
| 1248 | // |
| 1249 | // pow(-x, exp) --> negative if exp is odd and x is negative. |
| 1250 | // pow(-0, exp) --> -inf if exp is negative odd. |
| 1251 | // pow(-0, exp) --> -0 if exp is positive odd. |
| 1252 | // pow(-inf, exp) --> -0 if exp is negative odd. |
| 1253 | // pow(-inf, exp) --> -inf if exp is positive odd. |
| 1254 | Register Val = MI.getOperand(i: 1).getReg(); |
| 1255 | KnownFPClass KnownSrc; |
| 1256 | computeKnownFPClass(R: Val, DemandedElts, InterestedClasses: fcNegative, Known&: KnownSrc, Depth: Depth + 1); |
| 1257 | if (KnownSrc.isKnownNever(Mask: fcNegative)) |
| 1258 | Known.knownNot(RuleOut: fcNegative); |
| 1259 | break; |
| 1260 | } |
| 1261 | case TargetOpcode::G_FLDEXP: |
| 1262 | case TargetOpcode::G_STRICT_FLDEXP: { |
| 1263 | Register Val = MI.getOperand(i: 1).getReg(); |
| 1264 | KnownFPClass KnownSrc; |
| 1265 | computeKnownFPClass(R: Val, DemandedElts, InterestedClasses, Known&: KnownSrc, |
| 1266 | Depth: Depth + 1); |
| 1267 | Known.propagateNaN(Src: KnownSrc, /*PropagateSign=*/PreserveSign: true); |
| 1268 | |
| 1269 | // Sign is preserved, but underflows may produce zeroes. |
| 1270 | if (KnownSrc.isKnownNever(Mask: fcNegative)) |
| 1271 | Known.knownNot(RuleOut: fcNegative); |
| 1272 | else if (KnownSrc.cannotBeOrderedLessThanZero()) |
| 1273 | Known.knownNot(RuleOut: KnownFPClass::OrderedLessThanZeroMask); |
| 1274 | |
| 1275 | if (KnownSrc.isKnownNever(Mask: fcPositive)) |
| 1276 | Known.knownNot(RuleOut: fcPositive); |
| 1277 | else if (KnownSrc.cannotBeOrderedGreaterThanZero()) |
| 1278 | Known.knownNot(RuleOut: KnownFPClass::OrderedGreaterThanZeroMask); |
| 1279 | |
| 1280 | // Can refine inf/zero handling based on the exponent operand. |
| 1281 | const FPClassTest ExpInfoMask = fcZero | fcSubnormal | fcInf; |
| 1282 | if ((InterestedClasses & ExpInfoMask) == fcNone) |
| 1283 | break; |
| 1284 | if ((KnownSrc.KnownFPClasses & ExpInfoMask) == fcNone) |
| 1285 | break; |
| 1286 | |
| 1287 | // TODO: Handle constant range of Exp |
| 1288 | |
| 1289 | break; |
| 1290 | } |
| 1291 | case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { |
| 1292 | computeKnownFPClassForFPTrunc(MI, DemandedElts, InterestedClasses, Known, |
| 1293 | Depth); |
| 1294 | break; |
| 1295 | } |
| 1296 | case TargetOpcode::G_FADD: |
| 1297 | case TargetOpcode::G_STRICT_FADD: |
| 1298 | case TargetOpcode::G_FSUB: |
| 1299 | case TargetOpcode::G_STRICT_FSUB: { |
| 1300 | Register LHS = MI.getOperand(i: 1).getReg(); |
| 1301 | Register RHS = MI.getOperand(i: 2).getReg(); |
| 1302 | KnownFPClass KnownLHS, KnownRHS; |
| 1303 | bool WantNegative = |
| 1304 | (Opcode == TargetOpcode::G_FADD || |
| 1305 | Opcode == TargetOpcode::G_STRICT_FADD) && |
| 1306 | (InterestedClasses & KnownFPClass::OrderedLessThanZeroMask) != fcNone; |
| 1307 | bool WantNaN = (InterestedClasses & fcNan) != fcNone; |
| 1308 | bool WantNegZero = (InterestedClasses & fcNegZero) != fcNone; |
| 1309 | |
| 1310 | if (!WantNaN && !WantNegative && !WantNegZero) |
| 1311 | break; |
| 1312 | |
| 1313 | FPClassTest InterestedSrcs = InterestedClasses; |
| 1314 | if (WantNegative) |
| 1315 | InterestedSrcs |= KnownFPClass::OrderedLessThanZeroMask; |
| 1316 | if (InterestedClasses & fcNan) |
| 1317 | InterestedSrcs |= fcInf; |
| 1318 | computeKnownFPClass(R: RHS, DemandedElts, InterestedClasses: InterestedSrcs, Known&: KnownRHS, Depth: Depth + 1); |
| 1319 | |
| 1320 | if ((WantNaN && KnownRHS.isKnownNeverNaN()) || |
| 1321 | (WantNegative && KnownRHS.cannotBeOrderedLessThanZero()) || |
| 1322 | WantNegZero || |
| 1323 | (Opcode == TargetOpcode::G_FSUB || |
| 1324 | Opcode == TargetOpcode::G_STRICT_FSUB)) { |
| 1325 | |
| 1326 | // RHS is canonically cheaper to compute. Skip inspecting the LHS if |
| 1327 | // there's no point. |
| 1328 | computeKnownFPClass(R: LHS, DemandedElts, InterestedClasses: InterestedSrcs, Known&: KnownLHS, |
| 1329 | Depth: Depth + 1); |
| 1330 | // Adding positive and negative infinity produces NaN. |
| 1331 | // TODO: Check sign of infinities. |
| 1332 | if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() && |
| 1333 | (KnownLHS.isKnownNeverInfinity() || KnownRHS.isKnownNeverInfinity())) |
| 1334 | Known.knownNot(RuleOut: fcNan); |
| 1335 | |
| 1336 | if (Opcode == Instruction::FAdd) { |
| 1337 | if (KnownLHS.cannotBeOrderedLessThanZero() && |
| 1338 | KnownRHS.cannotBeOrderedLessThanZero()) |
| 1339 | Known.knownNot(RuleOut: KnownFPClass::OrderedLessThanZeroMask); |
| 1340 | |
| 1341 | // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. |
| 1342 | if ((KnownLHS.isKnownNeverLogicalNegZero(Mode: MF->getDenormalMode( |
| 1343 | FPType: getFltSemanticForLLT(Ty: DstTy.getScalarType()))) || |
| 1344 | KnownRHS.isKnownNeverLogicalNegZero(Mode: MF->getDenormalMode( |
| 1345 | FPType: getFltSemanticForLLT(Ty: DstTy.getScalarType())))) && |
| 1346 | // Make sure output negative denormal can't flush to -0 |
| 1347 | outputDenormalIsIEEEOrPosZero(MF: *MF, Ty: DstTy)) |
| 1348 | Known.knownNot(RuleOut: fcNegZero); |
| 1349 | } else { |
| 1350 | // Only fsub -0, +0 can return -0 |
| 1351 | if ((KnownLHS.isKnownNeverLogicalNegZero(Mode: MF->getDenormalMode( |
| 1352 | FPType: getFltSemanticForLLT(Ty: DstTy.getScalarType()))) || |
| 1353 | KnownRHS.isKnownNeverLogicalPosZero(Mode: MF->getDenormalMode( |
| 1354 | FPType: getFltSemanticForLLT(Ty: DstTy.getScalarType())))) && |
| 1355 | // Make sure output negative denormal can't flush to -0 |
| 1356 | outputDenormalIsIEEEOrPosZero(MF: *MF, Ty: DstTy)) |
| 1357 | Known.knownNot(RuleOut: fcNegZero); |
| 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | break; |
| 1362 | } |
| 1363 | case TargetOpcode::G_FMUL: |
| 1364 | case TargetOpcode::G_STRICT_FMUL: { |
| 1365 | Register LHS = MI.getOperand(i: 1).getReg(); |
| 1366 | Register RHS = MI.getOperand(i: 2).getReg(); |
| 1367 | // X * X is always non-negative or a NaN. |
| 1368 | if (LHS == RHS) |
| 1369 | Known.knownNot(RuleOut: fcNegative); |
| 1370 | |
| 1371 | if ((InterestedClasses & fcNan) != fcNan) |
| 1372 | break; |
| 1373 | |
| 1374 | // fcSubnormal is only needed in case of DAZ. |
| 1375 | const FPClassTest NeedForNan = fcNan | fcInf | fcZero | fcSubnormal; |
| 1376 | |
| 1377 | KnownFPClass KnownLHS, KnownRHS; |
| 1378 | computeKnownFPClass(R: RHS, DemandedElts, InterestedClasses: NeedForNan, Known&: KnownRHS, Depth: Depth + 1); |
| 1379 | if (!KnownRHS.isKnownNeverNaN()) |
| 1380 | break; |
| 1381 | |
| 1382 | computeKnownFPClass(R: LHS, DemandedElts, InterestedClasses: NeedForNan, Known&: KnownLHS, Depth: Depth + 1); |
| 1383 | if (!KnownLHS.isKnownNeverNaN()) |
| 1384 | break; |
| 1385 | |
| 1386 | if (KnownLHS.SignBit && KnownRHS.SignBit) { |
| 1387 | if (*KnownLHS.SignBit == *KnownRHS.SignBit) |
| 1388 | Known.signBitMustBeZero(); |
| 1389 | else |
| 1390 | Known.signBitMustBeOne(); |
| 1391 | } |
| 1392 | |
| 1393 | // If 0 * +/-inf produces NaN. |
| 1394 | if (KnownLHS.isKnownNeverInfinity() && KnownRHS.isKnownNeverInfinity()) { |
| 1395 | Known.knownNot(RuleOut: fcNan); |
| 1396 | break; |
| 1397 | } |
| 1398 | |
| 1399 | if ((KnownRHS.isKnownNeverInfinity() || |
| 1400 | KnownLHS.isKnownNeverLogicalZero(Mode: MF->getDenormalMode( |
| 1401 | FPType: getFltSemanticForLLT(Ty: DstTy.getScalarType())))) && |
| 1402 | (KnownLHS.isKnownNeverInfinity() || |
| 1403 | KnownRHS.isKnownNeverLogicalZero( |
| 1404 | Mode: MF->getDenormalMode(FPType: getFltSemanticForLLT(Ty: DstTy.getScalarType()))))) |
| 1405 | Known.knownNot(RuleOut: fcNan); |
| 1406 | |
| 1407 | break; |
| 1408 | } |
| 1409 | case TargetOpcode::G_FDIV: |
| 1410 | case TargetOpcode::G_FREM: { |
| 1411 | Register LHS = MI.getOperand(i: 1).getReg(); |
| 1412 | Register RHS = MI.getOperand(i: 2).getReg(); |
| 1413 | |
| 1414 | if (LHS == RHS) { |
| 1415 | // TODO: Could filter out snan if we inspect the operand |
| 1416 | if (Opcode == TargetOpcode::G_FDIV) { |
| 1417 | // X / X is always exactly 1.0 or a NaN. |
| 1418 | Known.KnownFPClasses = fcNan | fcPosNormal; |
| 1419 | } else { |
| 1420 | // X % X is always exactly [+-]0.0 or a NaN. |
| 1421 | Known.KnownFPClasses = fcNan | fcZero; |
| 1422 | } |
| 1423 | |
| 1424 | break; |
| 1425 | } |
| 1426 | |
| 1427 | const bool WantNan = (InterestedClasses & fcNan) != fcNone; |
| 1428 | const bool WantNegative = (InterestedClasses & fcNegative) != fcNone; |
| 1429 | const bool WantPositive = Opcode == TargetOpcode::G_FREM && |
| 1430 | (InterestedClasses & fcPositive) != fcNone; |
| 1431 | if (!WantNan && !WantNegative && !WantPositive) |
| 1432 | break; |
| 1433 | |
| 1434 | KnownFPClass KnownLHS, KnownRHS; |
| 1435 | |
| 1436 | computeKnownFPClass(R: RHS, DemandedElts, InterestedClasses: fcNan | fcInf | fcZero | fcNegative, |
| 1437 | Known&: KnownRHS, Depth: Depth + 1); |
| 1438 | |
| 1439 | bool KnowSomethingUseful = |
| 1440 | KnownRHS.isKnownNeverNaN() || KnownRHS.isKnownNever(Mask: fcNegative); |
| 1441 | |
| 1442 | if (KnowSomethingUseful || WantPositive) { |
| 1443 | const FPClassTest InterestedLHS = |
| 1444 | WantPositive ? fcAllFlags |
| 1445 | : fcNan | fcInf | fcZero | fcSubnormal | fcNegative; |
| 1446 | |
| 1447 | computeKnownFPClass(R: LHS, DemandedElts, InterestedClasses: InterestedClasses & InterestedLHS, |
| 1448 | Known&: KnownLHS, Depth: Depth + 1); |
| 1449 | } |
| 1450 | |
| 1451 | if (Opcode == Instruction::FDiv) { |
| 1452 | // Only 0/0, Inf/Inf produce NaN. |
| 1453 | if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() && |
| 1454 | (KnownLHS.isKnownNeverInfinity() || |
| 1455 | KnownRHS.isKnownNeverInfinity()) && |
| 1456 | ((KnownLHS.isKnownNeverLogicalZero(Mode: MF->getDenormalMode( |
| 1457 | FPType: getFltSemanticForLLT(Ty: DstTy.getScalarType())))) || |
| 1458 | (KnownRHS.isKnownNeverLogicalZero(Mode: MF->getDenormalMode( |
| 1459 | FPType: getFltSemanticForLLT(Ty: DstTy.getScalarType())))))) { |
| 1460 | Known.knownNot(RuleOut: fcNan); |
| 1461 | } |
| 1462 | |
| 1463 | // X / -0.0 is -Inf (or NaN). |
| 1464 | // +X / +X is +X |
| 1465 | if (KnownLHS.isKnownNever(Mask: fcNegative) && |
| 1466 | KnownRHS.isKnownNever(Mask: fcNegative)) |
| 1467 | Known.knownNot(RuleOut: fcNegative); |
| 1468 | } else { |
| 1469 | // Inf REM x and x REM 0 produce NaN. |
| 1470 | if (KnownLHS.isKnownNeverNaN() && KnownRHS.isKnownNeverNaN() && |
| 1471 | KnownLHS.isKnownNeverInfinity() && |
| 1472 | KnownRHS.isKnownNeverLogicalZero(Mode: MF->getDenormalMode( |
| 1473 | FPType: getFltSemanticForLLT(Ty: DstTy.getScalarType())))) { |
| 1474 | Known.knownNot(RuleOut: fcNan); |
| 1475 | } |
| 1476 | |
| 1477 | // The sign for frem is the same as the first operand. |
| 1478 | if (KnownLHS.cannotBeOrderedLessThanZero()) |
| 1479 | Known.knownNot(RuleOut: KnownFPClass::OrderedLessThanZeroMask); |
| 1480 | if (KnownLHS.cannotBeOrderedGreaterThanZero()) |
| 1481 | Known.knownNot(RuleOut: KnownFPClass::OrderedGreaterThanZeroMask); |
| 1482 | |
| 1483 | // See if we can be more aggressive about the sign of 0. |
| 1484 | if (KnownLHS.isKnownNever(Mask: fcNegative)) |
| 1485 | Known.knownNot(RuleOut: fcNegative); |
| 1486 | if (KnownLHS.isKnownNever(Mask: fcPositive)) |
| 1487 | Known.knownNot(RuleOut: fcPositive); |
| 1488 | } |
| 1489 | |
| 1490 | break; |
| 1491 | } |
| 1492 | case TargetOpcode::G_FPEXT: { |
| 1493 | Register Dst = MI.getOperand(i: 0).getReg(); |
| 1494 | Register Src = MI.getOperand(i: 1).getReg(); |
| 1495 | // Infinity, nan and zero propagate from source. |
| 1496 | computeKnownFPClass(R, DemandedElts, InterestedClasses, Known, Depth: Depth + 1); |
| 1497 | |
| 1498 | LLT DstTy = MRI.getType(Reg: Dst).getScalarType(); |
| 1499 | const fltSemantics &DstSem = getFltSemanticForLLT(Ty: DstTy); |
| 1500 | LLT SrcTy = MRI.getType(Reg: Src).getScalarType(); |
| 1501 | const fltSemantics &SrcSem = getFltSemanticForLLT(Ty: SrcTy); |
| 1502 | |
| 1503 | // All subnormal inputs should be in the normal range in the result type. |
| 1504 | if (APFloat::isRepresentableAsNormalIn(Src: SrcSem, Dst: DstSem)) { |
| 1505 | if (Known.KnownFPClasses & fcPosSubnormal) |
| 1506 | Known.KnownFPClasses |= fcPosNormal; |
| 1507 | if (Known.KnownFPClasses & fcNegSubnormal) |
| 1508 | Known.KnownFPClasses |= fcNegNormal; |
| 1509 | Known.knownNot(RuleOut: fcSubnormal); |
| 1510 | } |
| 1511 | |
| 1512 | // Sign bit of a nan isn't guaranteed. |
| 1513 | if (!Known.isKnownNeverNaN()) |
| 1514 | Known.SignBit = std::nullopt; |
| 1515 | break; |
| 1516 | } |
| 1517 | case TargetOpcode::G_FPTRUNC: { |
| 1518 | computeKnownFPClassForFPTrunc(MI, DemandedElts, InterestedClasses, Known, |
| 1519 | Depth); |
| 1520 | break; |
| 1521 | } |
| 1522 | case TargetOpcode::G_SITOFP: |
| 1523 | case TargetOpcode::G_UITOFP: { |
| 1524 | // Cannot produce nan |
| 1525 | Known.knownNot(RuleOut: fcNan); |
| 1526 | |
| 1527 | // Integers cannot be subnormal |
| 1528 | Known.knownNot(RuleOut: fcSubnormal); |
| 1529 | |
| 1530 | // sitofp and uitofp turn into +0.0 for zero. |
| 1531 | Known.knownNot(RuleOut: fcNegZero); |
| 1532 | if (Opcode == TargetOpcode::G_UITOFP) |
| 1533 | Known.signBitMustBeZero(); |
| 1534 | |
| 1535 | Register Val = MI.getOperand(i: 1).getReg(); |
| 1536 | LLT Ty = MRI.getType(Reg: Val); |
| 1537 | |
| 1538 | if (InterestedClasses & fcInf) { |
| 1539 | // Get width of largest magnitude integer (remove a bit if signed). |
| 1540 | // This still works for a signed minimum value because the largest FP |
| 1541 | // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).; |
| 1542 | int IntSize = Ty.getScalarSizeInBits(); |
| 1543 | if (Opcode == TargetOpcode::G_SITOFP) |
| 1544 | --IntSize; |
| 1545 | |
| 1546 | // If the exponent of the largest finite FP value can hold the largest |
| 1547 | // integer, the result of the cast must be finite. |
| 1548 | LLT FPTy = DstTy.getScalarType(); |
| 1549 | const fltSemantics &FltSem = getFltSemanticForLLT(Ty: FPTy); |
| 1550 | if (ilogb(Arg: APFloat::getLargest(Sem: FltSem)) >= IntSize) |
| 1551 | Known.knownNot(RuleOut: fcInf); |
| 1552 | } |
| 1553 | |
| 1554 | break; |
| 1555 | } |
| 1556 | // case TargetOpcode::G_MERGE_VALUES: |
| 1557 | case TargetOpcode::G_BUILD_VECTOR: |
| 1558 | case TargetOpcode::G_CONCAT_VECTORS: { |
| 1559 | GMergeLikeInstr &Merge = cast<GMergeLikeInstr>(Val&: MI); |
| 1560 | |
| 1561 | if (!DstTy.isFixedVector()) |
| 1562 | break; |
| 1563 | |
| 1564 | bool First = true; |
| 1565 | for (unsigned Idx = 0; Idx < Merge.getNumSources(); ++Idx) { |
| 1566 | // We know the index we are inserting to, so clear it from Vec check. |
| 1567 | bool NeedsElt = DemandedElts[Idx]; |
| 1568 | |
| 1569 | // Do we demand the inserted element? |
| 1570 | if (NeedsElt) { |
| 1571 | Register Src = Merge.getSourceReg(I: Idx); |
| 1572 | if (First) { |
| 1573 | computeKnownFPClass(R: Src, Known, InterestedClasses, Depth: Depth + 1); |
| 1574 | First = false; |
| 1575 | } else { |
| 1576 | KnownFPClass Known2; |
| 1577 | computeKnownFPClass(R: Src, Known&: Known2, InterestedClasses, Depth: Depth + 1); |
| 1578 | Known |= Known2; |
| 1579 | } |
| 1580 | |
| 1581 | // If we don't know any bits, early out. |
| 1582 | if (Known.isUnknown()) |
| 1583 | break; |
| 1584 | } |
| 1585 | } |
| 1586 | |
| 1587 | break; |
| 1588 | } |
| 1589 | case TargetOpcode::G_EXTRACT_VECTOR_ELT: { |
| 1590 | // Look through extract element. If the index is non-constant or |
| 1591 | // out-of-range demand all elements, otherwise just the extracted |
| 1592 | // element. |
| 1593 | GExtractVectorElement & = cast<GExtractVectorElement>(Val&: MI); |
| 1594 | Register Vec = Extract.getVectorReg(); |
| 1595 | Register Idx = Extract.getIndexReg(); |
| 1596 | |
| 1597 | auto CIdx = getIConstantVRegVal(VReg: Idx, MRI); |
| 1598 | |
| 1599 | LLT VecTy = MRI.getType(Reg: Vec); |
| 1600 | |
| 1601 | if (VecTy.isFixedVector()) { |
| 1602 | unsigned NumElts = VecTy.getNumElements(); |
| 1603 | APInt DemandedVecElts = APInt::getAllOnes(numBits: NumElts); |
| 1604 | if (CIdx && CIdx->ult(RHS: NumElts)) |
| 1605 | DemandedVecElts = APInt::getOneBitSet(numBits: NumElts, BitNo: CIdx->getZExtValue()); |
| 1606 | return computeKnownFPClass(R: Vec, DemandedElts: DemandedVecElts, InterestedClasses, Known, |
| 1607 | Depth: Depth + 1); |
| 1608 | } |
| 1609 | |
| 1610 | break; |
| 1611 | } |
| 1612 | case TargetOpcode::G_INSERT_VECTOR_ELT: { |
| 1613 | GInsertVectorElement &Insert = cast<GInsertVectorElement>(Val&: MI); |
| 1614 | Register Vec = Insert.getVectorReg(); |
| 1615 | Register Elt = Insert.getElementReg(); |
| 1616 | Register Idx = Insert.getIndexReg(); |
| 1617 | |
| 1618 | LLT VecTy = MRI.getType(Reg: Vec); |
| 1619 | |
| 1620 | if (VecTy.isScalableVector()) |
| 1621 | return; |
| 1622 | |
| 1623 | auto CIdx = getIConstantVRegVal(VReg: Idx, MRI); |
| 1624 | |
| 1625 | unsigned NumElts = DemandedElts.getBitWidth(); |
| 1626 | APInt DemandedVecElts = DemandedElts; |
| 1627 | bool NeedsElt = true; |
| 1628 | // If we know the index we are inserting to, clear it from Vec check. |
| 1629 | if (CIdx && CIdx->ult(RHS: NumElts)) { |
| 1630 | DemandedVecElts.clearBit(BitPosition: CIdx->getZExtValue()); |
| 1631 | NeedsElt = DemandedElts[CIdx->getZExtValue()]; |
| 1632 | } |
| 1633 | |
| 1634 | // Do we demand the inserted element? |
| 1635 | if (NeedsElt) { |
| 1636 | computeKnownFPClass(R: Elt, Known, InterestedClasses, Depth: Depth + 1); |
| 1637 | // If we don't know any bits, early out. |
| 1638 | if (Known.isUnknown()) |
| 1639 | break; |
| 1640 | } else { |
| 1641 | Known.KnownFPClasses = fcNone; |
| 1642 | } |
| 1643 | |
| 1644 | // Do we need anymore elements from Vec? |
| 1645 | if (!DemandedVecElts.isZero()) { |
| 1646 | KnownFPClass Known2; |
| 1647 | computeKnownFPClass(R: Vec, DemandedElts: DemandedVecElts, InterestedClasses, Known&: Known2, |
| 1648 | Depth: Depth + 1); |
| 1649 | Known |= Known2; |
| 1650 | } |
| 1651 | |
| 1652 | break; |
| 1653 | } |
| 1654 | case TargetOpcode::G_SHUFFLE_VECTOR: { |
| 1655 | // For undef elements, we don't know anything about the common state of |
| 1656 | // the shuffle result. |
| 1657 | GShuffleVector &Shuf = cast<GShuffleVector>(Val&: MI); |
| 1658 | APInt DemandedLHS, DemandedRHS; |
| 1659 | if (DstTy.isScalableVector()) { |
| 1660 | assert(DemandedElts == APInt(1, 1)); |
| 1661 | DemandedLHS = DemandedRHS = DemandedElts; |
| 1662 | } else { |
| 1663 | if (!llvm::getShuffleDemandedElts(SrcWidth: DstTy.getNumElements(), Mask: Shuf.getMask(), |
| 1664 | DemandedElts, DemandedLHS, |
| 1665 | DemandedRHS)) { |
| 1666 | Known.resetAll(); |
| 1667 | return; |
| 1668 | } |
| 1669 | } |
| 1670 | |
| 1671 | if (!!DemandedLHS) { |
| 1672 | Register LHS = Shuf.getSrc1Reg(); |
| 1673 | computeKnownFPClass(R: LHS, DemandedElts: DemandedLHS, InterestedClasses, Known, |
| 1674 | Depth: Depth + 1); |
| 1675 | |
| 1676 | // If we don't know any bits, early out. |
| 1677 | if (Known.isUnknown()) |
| 1678 | break; |
| 1679 | } else { |
| 1680 | Known.KnownFPClasses = fcNone; |
| 1681 | } |
| 1682 | |
| 1683 | if (!!DemandedRHS) { |
| 1684 | KnownFPClass Known2; |
| 1685 | Register RHS = Shuf.getSrc2Reg(); |
| 1686 | computeKnownFPClass(R: RHS, DemandedElts: DemandedRHS, InterestedClasses, Known&: Known2, |
| 1687 | Depth: Depth + 1); |
| 1688 | Known |= Known2; |
| 1689 | } |
| 1690 | break; |
| 1691 | } |
| 1692 | case TargetOpcode::COPY: { |
| 1693 | Register Src = MI.getOperand(i: 1).getReg(); |
| 1694 | |
| 1695 | if (!Src.isVirtual()) |
| 1696 | return; |
| 1697 | |
| 1698 | computeKnownFPClass(R: Src, DemandedElts, InterestedClasses, Known, Depth: Depth + 1); |
| 1699 | break; |
| 1700 | } |
| 1701 | } |
| 1702 | } |
| 1703 | |
| 1704 | KnownFPClass |
| 1705 | GISelValueTracking::computeKnownFPClass(Register R, const APInt &DemandedElts, |
| 1706 | FPClassTest InterestedClasses, |
| 1707 | unsigned Depth) { |
| 1708 | KnownFPClass KnownClasses; |
| 1709 | computeKnownFPClass(R, DemandedElts, InterestedClasses, Known&: KnownClasses, Depth); |
| 1710 | return KnownClasses; |
| 1711 | } |
| 1712 | |
| 1713 | KnownFPClass GISelValueTracking::computeKnownFPClass( |
| 1714 | Register R, FPClassTest InterestedClasses, unsigned Depth) { |
| 1715 | KnownFPClass Known; |
| 1716 | computeKnownFPClass(R, Known, InterestedClasses, Depth); |
| 1717 | return Known; |
| 1718 | } |
| 1719 | |
| 1720 | KnownFPClass GISelValueTracking::computeKnownFPClass( |
| 1721 | Register R, const APInt &DemandedElts, uint32_t Flags, |
| 1722 | FPClassTest InterestedClasses, unsigned Depth) { |
| 1723 | if (Flags & MachineInstr::MIFlag::FmNoNans) |
| 1724 | InterestedClasses &= ~fcNan; |
| 1725 | if (Flags & MachineInstr::MIFlag::FmNoInfs) |
| 1726 | InterestedClasses &= ~fcInf; |
| 1727 | |
| 1728 | KnownFPClass Result = |
| 1729 | computeKnownFPClass(R, DemandedElts, InterestedClasses, Depth); |
| 1730 | |
| 1731 | if (Flags & MachineInstr::MIFlag::FmNoNans) |
| 1732 | Result.KnownFPClasses &= ~fcNan; |
| 1733 | if (Flags & MachineInstr::MIFlag::FmNoInfs) |
| 1734 | Result.KnownFPClasses &= ~fcInf; |
| 1735 | return Result; |
| 1736 | } |
| 1737 | |
| 1738 | KnownFPClass GISelValueTracking::computeKnownFPClass( |
| 1739 | Register R, uint32_t Flags, FPClassTest InterestedClasses, unsigned Depth) { |
| 1740 | LLT Ty = MRI.getType(Reg: R); |
| 1741 | APInt DemandedElts = |
| 1742 | Ty.isFixedVector() ? APInt::getAllOnes(numBits: Ty.getNumElements()) : APInt(1, 1); |
| 1743 | return computeKnownFPClass(R, DemandedElts, Flags, InterestedClasses, Depth); |
| 1744 | } |
| 1745 | |
| 1746 | /// Compute number of sign bits for the intersection of \p Src0 and \p Src1 |
| 1747 | unsigned GISelValueTracking::computeNumSignBitsMin(Register Src0, Register Src1, |
| 1748 | const APInt &DemandedElts, |
| 1749 | unsigned Depth) { |
| 1750 | // Test src1 first, since we canonicalize simpler expressions to the RHS. |
| 1751 | unsigned Src1SignBits = computeNumSignBits(R: Src1, DemandedElts, Depth); |
| 1752 | if (Src1SignBits == 1) |
| 1753 | return 1; |
| 1754 | return std::min(a: computeNumSignBits(R: Src0, DemandedElts, Depth), b: Src1SignBits); |
| 1755 | } |
| 1756 | |
| 1757 | /// Compute the known number of sign bits with attached range metadata in the |
| 1758 | /// memory operand. If this is an extending load, accounts for the behavior of |
| 1759 | /// the high bits. |
| 1760 | static unsigned computeNumSignBitsFromRangeMetadata(const GAnyLoad *Ld, |
| 1761 | unsigned TyBits) { |
| 1762 | const MDNode *Ranges = Ld->getRanges(); |
| 1763 | if (!Ranges) |
| 1764 | return 1; |
| 1765 | |
| 1766 | ConstantRange CR = getConstantRangeFromMetadata(RangeMD: *Ranges); |
| 1767 | if (TyBits > CR.getBitWidth()) { |
| 1768 | switch (Ld->getOpcode()) { |
| 1769 | case TargetOpcode::G_SEXTLOAD: |
| 1770 | CR = CR.signExtend(BitWidth: TyBits); |
| 1771 | break; |
| 1772 | case TargetOpcode::G_ZEXTLOAD: |
| 1773 | CR = CR.zeroExtend(BitWidth: TyBits); |
| 1774 | break; |
| 1775 | default: |
| 1776 | break; |
| 1777 | } |
| 1778 | } |
| 1779 | |
| 1780 | return std::min(a: CR.getSignedMin().getNumSignBits(), |
| 1781 | b: CR.getSignedMax().getNumSignBits()); |
| 1782 | } |
| 1783 | |
| 1784 | unsigned GISelValueTracking::computeNumSignBits(Register R, |
| 1785 | const APInt &DemandedElts, |
| 1786 | unsigned Depth) { |
| 1787 | MachineInstr &MI = *MRI.getVRegDef(Reg: R); |
| 1788 | unsigned Opcode = MI.getOpcode(); |
| 1789 | |
| 1790 | if (Opcode == TargetOpcode::G_CONSTANT) |
| 1791 | return MI.getOperand(i: 1).getCImm()->getValue().getNumSignBits(); |
| 1792 | |
| 1793 | if (Depth == getMaxDepth()) |
| 1794 | return 1; |
| 1795 | |
| 1796 | if (!DemandedElts) |
| 1797 | return 1; // No demanded elts, better to assume we don't know anything. |
| 1798 | |
| 1799 | LLT DstTy = MRI.getType(Reg: R); |
| 1800 | const unsigned TyBits = DstTy.getScalarSizeInBits(); |
| 1801 | |
| 1802 | // Handle the case where this is called on a register that does not have a |
| 1803 | // type constraint. This is unlikely to occur except by looking through copies |
| 1804 | // but it is possible for the initial register being queried to be in this |
| 1805 | // state. |
| 1806 | if (!DstTy.isValid()) |
| 1807 | return 1; |
| 1808 | |
| 1809 | unsigned FirstAnswer = 1; |
| 1810 | switch (Opcode) { |
| 1811 | case TargetOpcode::COPY: { |
| 1812 | MachineOperand &Src = MI.getOperand(i: 1); |
| 1813 | if (Src.getReg().isVirtual() && Src.getSubReg() == 0 && |
| 1814 | MRI.getType(Reg: Src.getReg()).isValid()) { |
| 1815 | // Don't increment Depth for this one since we didn't do any work. |
| 1816 | return computeNumSignBits(R: Src.getReg(), DemandedElts, Depth); |
| 1817 | } |
| 1818 | |
| 1819 | return 1; |
| 1820 | } |
| 1821 | case TargetOpcode::G_SEXT: { |
| 1822 | Register Src = MI.getOperand(i: 1).getReg(); |
| 1823 | LLT SrcTy = MRI.getType(Reg: Src); |
| 1824 | unsigned Tmp = DstTy.getScalarSizeInBits() - SrcTy.getScalarSizeInBits(); |
| 1825 | return computeNumSignBits(R: Src, DemandedElts, Depth: Depth + 1) + Tmp; |
| 1826 | } |
| 1827 | case TargetOpcode::G_ASSERT_SEXT: |
| 1828 | case TargetOpcode::G_SEXT_INREG: { |
| 1829 | // Max of the input and what this extends. |
| 1830 | Register Src = MI.getOperand(i: 1).getReg(); |
| 1831 | unsigned SrcBits = MI.getOperand(i: 2).getImm(); |
| 1832 | unsigned InRegBits = TyBits - SrcBits + 1; |
| 1833 | return std::max(a: computeNumSignBits(R: Src, DemandedElts, Depth: Depth + 1), |
| 1834 | b: InRegBits); |
| 1835 | } |
| 1836 | case TargetOpcode::G_LOAD: { |
| 1837 | GLoad *Ld = cast<GLoad>(Val: &MI); |
| 1838 | if (DemandedElts != 1 || !getDataLayout().isLittleEndian()) |
| 1839 | break; |
| 1840 | |
| 1841 | return computeNumSignBitsFromRangeMetadata(Ld, TyBits); |
| 1842 | } |
| 1843 | case TargetOpcode::G_SEXTLOAD: { |
| 1844 | GSExtLoad *Ld = cast<GSExtLoad>(Val: &MI); |
| 1845 | |
| 1846 | // FIXME: We need an in-memory type representation. |
| 1847 | if (DstTy.isVector()) |
| 1848 | return 1; |
| 1849 | |
| 1850 | unsigned NumBits = computeNumSignBitsFromRangeMetadata(Ld, TyBits); |
| 1851 | if (NumBits != 1) |
| 1852 | return NumBits; |
| 1853 | |
| 1854 | // e.g. i16->i32 = '17' bits known. |
| 1855 | const MachineMemOperand *MMO = *MI.memoperands_begin(); |
| 1856 | return TyBits - MMO->getSizeInBits().getValue() + 1; |
| 1857 | } |
| 1858 | case TargetOpcode::G_ZEXTLOAD: { |
| 1859 | GZExtLoad *Ld = cast<GZExtLoad>(Val: &MI); |
| 1860 | |
| 1861 | // FIXME: We need an in-memory type representation. |
| 1862 | if (DstTy.isVector()) |
| 1863 | return 1; |
| 1864 | |
| 1865 | unsigned NumBits = computeNumSignBitsFromRangeMetadata(Ld, TyBits); |
| 1866 | if (NumBits != 1) |
| 1867 | return NumBits; |
| 1868 | |
| 1869 | // e.g. i16->i32 = '16' bits known. |
| 1870 | const MachineMemOperand *MMO = *MI.memoperands_begin(); |
| 1871 | return TyBits - MMO->getSizeInBits().getValue(); |
| 1872 | } |
| 1873 | case TargetOpcode::G_AND: |
| 1874 | case TargetOpcode::G_OR: |
| 1875 | case TargetOpcode::G_XOR: { |
| 1876 | Register Src1 = MI.getOperand(i: 1).getReg(); |
| 1877 | unsigned Src1NumSignBits = |
| 1878 | computeNumSignBits(R: Src1, DemandedElts, Depth: Depth + 1); |
| 1879 | if (Src1NumSignBits != 1) { |
| 1880 | Register Src2 = MI.getOperand(i: 2).getReg(); |
| 1881 | unsigned Src2NumSignBits = |
| 1882 | computeNumSignBits(R: Src2, DemandedElts, Depth: Depth + 1); |
| 1883 | FirstAnswer = std::min(a: Src1NumSignBits, b: Src2NumSignBits); |
| 1884 | } |
| 1885 | break; |
| 1886 | } |
| 1887 | case TargetOpcode::G_TRUNC: { |
| 1888 | Register Src = MI.getOperand(i: 1).getReg(); |
| 1889 | LLT SrcTy = MRI.getType(Reg: Src); |
| 1890 | |
| 1891 | // Check if the sign bits of source go down as far as the truncated value. |
| 1892 | unsigned DstTyBits = DstTy.getScalarSizeInBits(); |
| 1893 | unsigned NumSrcBits = SrcTy.getScalarSizeInBits(); |
| 1894 | unsigned NumSrcSignBits = computeNumSignBits(R: Src, DemandedElts, Depth: Depth + 1); |
| 1895 | if (NumSrcSignBits > (NumSrcBits - DstTyBits)) |
| 1896 | return NumSrcSignBits - (NumSrcBits - DstTyBits); |
| 1897 | break; |
| 1898 | } |
| 1899 | case TargetOpcode::G_SELECT: { |
| 1900 | return computeNumSignBitsMin(Src0: MI.getOperand(i: 2).getReg(), |
| 1901 | Src1: MI.getOperand(i: 3).getReg(), DemandedElts, |
| 1902 | Depth: Depth + 1); |
| 1903 | } |
| 1904 | case TargetOpcode::G_SMIN: |
| 1905 | case TargetOpcode::G_SMAX: |
| 1906 | case TargetOpcode::G_UMIN: |
| 1907 | case TargetOpcode::G_UMAX: |
| 1908 | // TODO: Handle clamp pattern with number of sign bits for SMIN/SMAX. |
| 1909 | return computeNumSignBitsMin(Src0: MI.getOperand(i: 1).getReg(), |
| 1910 | Src1: MI.getOperand(i: 2).getReg(), DemandedElts, |
| 1911 | Depth: Depth + 1); |
| 1912 | case TargetOpcode::G_SADDO: |
| 1913 | case TargetOpcode::G_SADDE: |
| 1914 | case TargetOpcode::G_UADDO: |
| 1915 | case TargetOpcode::G_UADDE: |
| 1916 | case TargetOpcode::G_SSUBO: |
| 1917 | case TargetOpcode::G_SSUBE: |
| 1918 | case TargetOpcode::G_USUBO: |
| 1919 | case TargetOpcode::G_USUBE: |
| 1920 | case TargetOpcode::G_SMULO: |
| 1921 | case TargetOpcode::G_UMULO: { |
| 1922 | // If compares returns 0/-1, all bits are sign bits. |
| 1923 | // We know that we have an integer-based boolean since these operations |
| 1924 | // are only available for integer. |
| 1925 | if (MI.getOperand(i: 1).getReg() == R) { |
| 1926 | if (TL.getBooleanContents(isVec: DstTy.isVector(), isFloat: false) == |
| 1927 | TargetLowering::ZeroOrNegativeOneBooleanContent) |
| 1928 | return TyBits; |
| 1929 | } |
| 1930 | |
| 1931 | break; |
| 1932 | } |
| 1933 | case TargetOpcode::G_FCMP: |
| 1934 | case TargetOpcode::G_ICMP: { |
| 1935 | bool IsFP = Opcode == TargetOpcode::G_FCMP; |
| 1936 | if (TyBits == 1) |
| 1937 | break; |
| 1938 | auto BC = TL.getBooleanContents(isVec: DstTy.isVector(), isFloat: IsFP); |
| 1939 | if (BC == TargetLoweringBase::ZeroOrNegativeOneBooleanContent) |
| 1940 | return TyBits; // All bits are sign bits. |
| 1941 | if (BC == TargetLowering::ZeroOrOneBooleanContent) |
| 1942 | return TyBits - 1; // Every always-zero bit is a sign bit. |
| 1943 | break; |
| 1944 | } |
| 1945 | case TargetOpcode::G_BUILD_VECTOR: { |
| 1946 | // Collect the known bits that are shared by every demanded vector element. |
| 1947 | FirstAnswer = TyBits; |
| 1948 | APInt SingleDemandedElt(1, 1); |
| 1949 | for (const auto &[I, MO] : enumerate(First: drop_begin(RangeOrContainer: MI.operands()))) { |
| 1950 | if (!DemandedElts[I]) |
| 1951 | continue; |
| 1952 | |
| 1953 | unsigned Tmp2 = |
| 1954 | computeNumSignBits(R: MO.getReg(), DemandedElts: SingleDemandedElt, Depth: Depth + 1); |
| 1955 | FirstAnswer = std::min(a: FirstAnswer, b: Tmp2); |
| 1956 | |
| 1957 | // If we don't know any bits, early out. |
| 1958 | if (FirstAnswer == 1) |
| 1959 | break; |
| 1960 | } |
| 1961 | break; |
| 1962 | } |
| 1963 | case TargetOpcode::G_CONCAT_VECTORS: { |
| 1964 | if (MRI.getType(Reg: MI.getOperand(i: 0).getReg()).isScalableVector()) |
| 1965 | break; |
| 1966 | FirstAnswer = TyBits; |
| 1967 | // Determine the minimum number of sign bits across all demanded |
| 1968 | // elts of the input vectors. Early out if the result is already 1. |
| 1969 | unsigned NumSubVectorElts = |
| 1970 | MRI.getType(Reg: MI.getOperand(i: 1).getReg()).getNumElements(); |
| 1971 | for (const auto &[I, MO] : enumerate(First: drop_begin(RangeOrContainer: MI.operands()))) { |
| 1972 | APInt DemandedSub = |
| 1973 | DemandedElts.extractBits(numBits: NumSubVectorElts, bitPosition: I * NumSubVectorElts); |
| 1974 | if (!DemandedSub) |
| 1975 | continue; |
| 1976 | unsigned Tmp2 = computeNumSignBits(R: MO.getReg(), DemandedElts: DemandedSub, Depth: Depth + 1); |
| 1977 | |
| 1978 | FirstAnswer = std::min(a: FirstAnswer, b: Tmp2); |
| 1979 | |
| 1980 | // If we don't know any bits, early out. |
| 1981 | if (FirstAnswer == 1) |
| 1982 | break; |
| 1983 | } |
| 1984 | break; |
| 1985 | } |
| 1986 | case TargetOpcode::G_SHUFFLE_VECTOR: { |
| 1987 | // Collect the minimum number of sign bits that are shared by every vector |
| 1988 | // element referenced by the shuffle. |
| 1989 | APInt DemandedLHS, DemandedRHS; |
| 1990 | Register Src1 = MI.getOperand(i: 1).getReg(); |
| 1991 | unsigned NumElts = MRI.getType(Reg: Src1).getNumElements(); |
| 1992 | if (!getShuffleDemandedElts(SrcWidth: NumElts, Mask: MI.getOperand(i: 3).getShuffleMask(), |
| 1993 | DemandedElts, DemandedLHS, DemandedRHS)) |
| 1994 | return 1; |
| 1995 | |
| 1996 | if (!!DemandedLHS) |
| 1997 | FirstAnswer = computeNumSignBits(R: Src1, DemandedElts: DemandedLHS, Depth: Depth + 1); |
| 1998 | // If we don't know anything, early out and try computeKnownBits fall-back. |
| 1999 | if (FirstAnswer == 1) |
| 2000 | break; |
| 2001 | if (!!DemandedRHS) { |
| 2002 | unsigned Tmp2 = |
| 2003 | computeNumSignBits(R: MI.getOperand(i: 2).getReg(), DemandedElts: DemandedRHS, Depth: Depth + 1); |
| 2004 | FirstAnswer = std::min(a: FirstAnswer, b: Tmp2); |
| 2005 | } |
| 2006 | break; |
| 2007 | } |
| 2008 | case TargetOpcode::G_SPLAT_VECTOR: { |
| 2009 | // Check if the sign bits of source go down as far as the truncated value. |
| 2010 | Register Src = MI.getOperand(i: 1).getReg(); |
| 2011 | unsigned NumSrcSignBits = computeNumSignBits(R: Src, DemandedElts: APInt(1, 1), Depth: Depth + 1); |
| 2012 | unsigned NumSrcBits = MRI.getType(Reg: Src).getSizeInBits(); |
| 2013 | if (NumSrcSignBits > (NumSrcBits - TyBits)) |
| 2014 | return NumSrcSignBits - (NumSrcBits - TyBits); |
| 2015 | break; |
| 2016 | } |
| 2017 | case TargetOpcode::G_INTRINSIC: |
| 2018 | case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: |
| 2019 | case TargetOpcode::G_INTRINSIC_CONVERGENT: |
| 2020 | case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: |
| 2021 | default: { |
| 2022 | unsigned NumBits = |
| 2023 | TL.computeNumSignBitsForTargetInstr(Analysis&: *this, R, DemandedElts, MRI, Depth); |
| 2024 | if (NumBits > 1) |
| 2025 | FirstAnswer = std::max(a: FirstAnswer, b: NumBits); |
| 2026 | break; |
| 2027 | } |
| 2028 | } |
| 2029 | |
| 2030 | // Finally, if we can prove that the top bits of the result are 0's or 1's, |
| 2031 | // use this information. |
| 2032 | KnownBits Known = getKnownBits(R, DemandedElts, Depth); |
| 2033 | APInt Mask; |
| 2034 | if (Known.isNonNegative()) { // sign bit is 0 |
| 2035 | Mask = Known.Zero; |
| 2036 | } else if (Known.isNegative()) { // sign bit is 1; |
| 2037 | Mask = Known.One; |
| 2038 | } else { |
| 2039 | // Nothing known. |
| 2040 | return FirstAnswer; |
| 2041 | } |
| 2042 | |
| 2043 | // Okay, we know that the sign bit in Mask is set. Use CLO to determine |
| 2044 | // the number of identical bits in the top of the input value. |
| 2045 | Mask <<= Mask.getBitWidth() - TyBits; |
| 2046 | return std::max(a: FirstAnswer, b: Mask.countl_one()); |
| 2047 | } |
| 2048 | |
| 2049 | unsigned GISelValueTracking::computeNumSignBits(Register R, unsigned Depth) { |
| 2050 | LLT Ty = MRI.getType(Reg: R); |
| 2051 | APInt DemandedElts = |
| 2052 | Ty.isFixedVector() ? APInt::getAllOnes(numBits: Ty.getNumElements()) : APInt(1, 1); |
| 2053 | return computeNumSignBits(R, DemandedElts, Depth); |
| 2054 | } |
| 2055 | |
| 2056 | void GISelValueTrackingAnalysisLegacy::getAnalysisUsage( |
| 2057 | AnalysisUsage &AU) const { |
| 2058 | AU.setPreservesAll(); |
| 2059 | MachineFunctionPass::getAnalysisUsage(AU); |
| 2060 | } |
| 2061 | |
| 2062 | bool GISelValueTrackingAnalysisLegacy::runOnMachineFunction( |
| 2063 | MachineFunction &MF) { |
| 2064 | return false; |
| 2065 | } |
| 2066 | |
| 2067 | GISelValueTracking &GISelValueTrackingAnalysisLegacy::get(MachineFunction &MF) { |
| 2068 | if (!Info) { |
| 2069 | unsigned MaxDepth = |
| 2070 | MF.getTarget().getOptLevel() == CodeGenOptLevel::None ? 2 : 6; |
| 2071 | Info = std::make_unique<GISelValueTracking>(args&: MF, args&: MaxDepth); |
| 2072 | } |
| 2073 | return *Info; |
| 2074 | } |
| 2075 | |
| 2076 | AnalysisKey GISelValueTrackingAnalysis::Key; |
| 2077 | |
| 2078 | GISelValueTracking |
| 2079 | GISelValueTrackingAnalysis::run(MachineFunction &MF, |
| 2080 | MachineFunctionAnalysisManager &MFAM) { |
| 2081 | return Result(MF); |
| 2082 | } |
| 2083 | |
| 2084 | PreservedAnalyses |
| 2085 | GISelValueTrackingPrinterPass::run(MachineFunction &MF, |
| 2086 | MachineFunctionAnalysisManager &MFAM) { |
| 2087 | auto &VTA = MFAM.getResult<GISelValueTrackingAnalysis>(IR&: MF); |
| 2088 | const auto &MRI = MF.getRegInfo(); |
| 2089 | OS << "name: " ; |
| 2090 | MF.getFunction().printAsOperand(O&: OS, /*PrintType=*/false); |
| 2091 | OS << '\n'; |
| 2092 | |
| 2093 | for (MachineBasicBlock &BB : MF) { |
| 2094 | for (MachineInstr &MI : BB) { |
| 2095 | for (MachineOperand &MO : MI.defs()) { |
| 2096 | if (!MO.isReg() || MO.getReg().isPhysical()) |
| 2097 | continue; |
| 2098 | Register Reg = MO.getReg(); |
| 2099 | if (!MRI.getType(Reg).isValid()) |
| 2100 | continue; |
| 2101 | KnownBits Known = VTA.getKnownBits(R: Reg); |
| 2102 | unsigned SignedBits = VTA.computeNumSignBits(R: Reg); |
| 2103 | OS << " " << MO << " KnownBits:" << Known << " SignBits:" << SignedBits |
| 2104 | << '\n'; |
| 2105 | }; |
| 2106 | } |
| 2107 | } |
| 2108 | return PreservedAnalyses::all(); |
| 2109 | } |
| 2110 | |