| 1 | //===- InterleavedAccessPass.cpp ------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the Interleaved Access pass, which identifies |
| 10 | // interleaved memory accesses and transforms them into target specific |
| 11 | // intrinsics. |
| 12 | // |
| 13 | // An interleaved load reads data from memory into several vectors, with |
| 14 | // DE-interleaving the data on a factor. An interleaved store writes several |
| 15 | // vectors to memory with RE-interleaving the data on a factor. |
| 16 | // |
| 17 | // As interleaved accesses are difficult to identified in CodeGen (mainly |
| 18 | // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector |
| 19 | // IR), we identify and transform them to intrinsics in this pass so the |
| 20 | // intrinsics can be easily matched into target specific instructions later in |
| 21 | // CodeGen. |
| 22 | // |
| 23 | // E.g. An interleaved load (Factor = 2): |
| 24 | // %wide.vec = load <8 x i32>, <8 x i32>* %ptr |
| 25 | // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6> |
| 26 | // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7> |
| 27 | // |
| 28 | // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2 |
| 29 | // intrinsic in ARM backend. |
| 30 | // |
| 31 | // In X86, this can be further optimized into a set of target |
| 32 | // specific loads followed by an optimized sequence of shuffles. |
| 33 | // |
| 34 | // E.g. An interleaved store (Factor = 3): |
| 35 | // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, |
| 36 | // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> |
| 37 | // store <12 x i32> %i.vec, <12 x i32>* %ptr |
| 38 | // |
| 39 | // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3 |
| 40 | // intrinsic in ARM backend. |
| 41 | // |
| 42 | // Similarly, a set of interleaved stores can be transformed into an optimized |
| 43 | // sequence of shuffles followed by a set of target specific stores for X86. |
| 44 | // |
| 45 | //===----------------------------------------------------------------------===// |
| 46 | |
| 47 | #include "llvm/ADT/ArrayRef.h" |
| 48 | #include "llvm/ADT/DenseMap.h" |
| 49 | #include "llvm/ADT/SetVector.h" |
| 50 | #include "llvm/ADT/SmallVector.h" |
| 51 | #include "llvm/CodeGen/InterleavedAccess.h" |
| 52 | #include "llvm/CodeGen/TargetLowering.h" |
| 53 | #include "llvm/CodeGen/TargetPassConfig.h" |
| 54 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 55 | #include "llvm/IR/Constants.h" |
| 56 | #include "llvm/IR/Dominators.h" |
| 57 | #include "llvm/IR/Function.h" |
| 58 | #include "llvm/IR/IRBuilder.h" |
| 59 | #include "llvm/IR/InstIterator.h" |
| 60 | #include "llvm/IR/Instruction.h" |
| 61 | #include "llvm/IR/Instructions.h" |
| 62 | #include "llvm/IR/IntrinsicInst.h" |
| 63 | #include "llvm/IR/PatternMatch.h" |
| 64 | #include "llvm/InitializePasses.h" |
| 65 | #include "llvm/Pass.h" |
| 66 | #include "llvm/Support/Casting.h" |
| 67 | #include "llvm/Support/CommandLine.h" |
| 68 | #include "llvm/Support/Debug.h" |
| 69 | #include "llvm/Support/raw_ostream.h" |
| 70 | #include "llvm/Target/TargetMachine.h" |
| 71 | #include "llvm/Transforms/Utils/Local.h" |
| 72 | #include <cassert> |
| 73 | #include <utility> |
| 74 | |
| 75 | using namespace llvm; |
| 76 | |
| 77 | #define DEBUG_TYPE "interleaved-access" |
| 78 | |
| 79 | static cl::opt<bool> LowerInterleavedAccesses( |
| 80 | "lower-interleaved-accesses" , |
| 81 | cl::desc("Enable lowering interleaved accesses to intrinsics" ), |
| 82 | cl::init(Val: true), cl::Hidden); |
| 83 | |
| 84 | namespace { |
| 85 | |
| 86 | class InterleavedAccessImpl { |
| 87 | friend class InterleavedAccess; |
| 88 | |
| 89 | public: |
| 90 | InterleavedAccessImpl() = default; |
| 91 | InterleavedAccessImpl(DominatorTree *DT, const TargetLowering *TLI) |
| 92 | : DT(DT), TLI(TLI), MaxFactor(TLI->getMaxSupportedInterleaveFactor()) {} |
| 93 | bool runOnFunction(Function &F); |
| 94 | |
| 95 | private: |
| 96 | DominatorTree *DT = nullptr; |
| 97 | const TargetLowering *TLI = nullptr; |
| 98 | |
| 99 | /// The maximum supported interleave factor. |
| 100 | unsigned MaxFactor = 0u; |
| 101 | |
| 102 | /// Transform an interleaved load into target specific intrinsics. |
| 103 | bool lowerInterleavedLoad(Instruction *Load, |
| 104 | SmallSetVector<Instruction *, 32> &DeadInsts); |
| 105 | |
| 106 | /// Transform an interleaved store into target specific intrinsics. |
| 107 | bool lowerInterleavedStore(Instruction *Store, |
| 108 | SmallSetVector<Instruction *, 32> &DeadInsts); |
| 109 | |
| 110 | /// Transform a load and a deinterleave intrinsic into target specific |
| 111 | /// instructions. |
| 112 | bool lowerDeinterleaveIntrinsic(IntrinsicInst *II, |
| 113 | SmallSetVector<Instruction *, 32> &DeadInsts); |
| 114 | |
| 115 | /// Transform an interleave intrinsic and a store into target specific |
| 116 | /// instructions. |
| 117 | bool lowerInterleaveIntrinsic(IntrinsicInst *II, |
| 118 | SmallSetVector<Instruction *, 32> &DeadInsts); |
| 119 | |
| 120 | /// Returns true if the uses of an interleaved load by the |
| 121 | /// extractelement instructions in \p Extracts can be replaced by uses of the |
| 122 | /// shufflevector instructions in \p Shuffles instead. If so, the necessary |
| 123 | /// replacements are also performed. |
| 124 | bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> , |
| 125 | ArrayRef<ShuffleVectorInst *> Shuffles); |
| 126 | |
| 127 | /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them |
| 128 | /// to binop(shuffle(x), shuffle(y)) to allow the formation of an |
| 129 | /// interleaving load. Any newly created shuffles that operate on \p LI will |
| 130 | /// be added to \p Shuffles. Returns true, if any changes to the IR have been |
| 131 | /// made. |
| 132 | bool replaceBinOpShuffles(ArrayRef<ShuffleVectorInst *> BinOpShuffles, |
| 133 | SmallVectorImpl<ShuffleVectorInst *> &Shuffles, |
| 134 | Instruction *LI); |
| 135 | }; |
| 136 | |
| 137 | class InterleavedAccess : public FunctionPass { |
| 138 | InterleavedAccessImpl Impl; |
| 139 | |
| 140 | public: |
| 141 | static char ID; |
| 142 | |
| 143 | InterleavedAccess() : FunctionPass(ID) { |
| 144 | initializeInterleavedAccessPass(*PassRegistry::getPassRegistry()); |
| 145 | } |
| 146 | |
| 147 | StringRef getPassName() const override { return "Interleaved Access Pass" ; } |
| 148 | |
| 149 | bool runOnFunction(Function &F) override; |
| 150 | |
| 151 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 152 | AU.addRequired<DominatorTreeWrapperPass>(); |
| 153 | AU.setPreservesCFG(); |
| 154 | } |
| 155 | }; |
| 156 | |
| 157 | } // end anonymous namespace. |
| 158 | |
| 159 | PreservedAnalyses InterleavedAccessPass::run(Function &F, |
| 160 | FunctionAnalysisManager &FAM) { |
| 161 | auto *DT = &FAM.getResult<DominatorTreeAnalysis>(IR&: F); |
| 162 | auto *TLI = TM->getSubtargetImpl(F)->getTargetLowering(); |
| 163 | InterleavedAccessImpl Impl(DT, TLI); |
| 164 | bool Changed = Impl.runOnFunction(F); |
| 165 | |
| 166 | if (!Changed) |
| 167 | return PreservedAnalyses::all(); |
| 168 | |
| 169 | PreservedAnalyses PA; |
| 170 | PA.preserveSet<CFGAnalyses>(); |
| 171 | return PA; |
| 172 | } |
| 173 | |
| 174 | char InterleavedAccess::ID = 0; |
| 175 | |
| 176 | bool InterleavedAccess::runOnFunction(Function &F) { |
| 177 | auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); |
| 178 | if (!TPC || !LowerInterleavedAccesses) |
| 179 | return false; |
| 180 | |
| 181 | LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n" ); |
| 182 | |
| 183 | Impl.DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
| 184 | auto &TM = TPC->getTM<TargetMachine>(); |
| 185 | Impl.TLI = TM.getSubtargetImpl(F)->getTargetLowering(); |
| 186 | Impl.MaxFactor = Impl.TLI->getMaxSupportedInterleaveFactor(); |
| 187 | |
| 188 | return Impl.runOnFunction(F); |
| 189 | } |
| 190 | |
| 191 | INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE, |
| 192 | "Lower interleaved memory accesses to target specific intrinsics" , false, |
| 193 | false) |
| 194 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| 195 | INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE, |
| 196 | "Lower interleaved memory accesses to target specific intrinsics" , false, |
| 197 | false) |
| 198 | |
| 199 | FunctionPass *llvm::createInterleavedAccessPass() { |
| 200 | return new InterleavedAccess(); |
| 201 | } |
| 202 | |
| 203 | /// Check if the mask is a DE-interleave mask for an interleaved load. |
| 204 | /// |
| 205 | /// E.g. DE-interleave masks (Factor = 2) could be: |
| 206 | /// <0, 2, 4, 6> (mask of index 0 to extract even elements) |
| 207 | /// <1, 3, 5, 7> (mask of index 1 to extract odd elements) |
| 208 | static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, |
| 209 | unsigned &Index, unsigned MaxFactor, |
| 210 | unsigned NumLoadElements) { |
| 211 | if (Mask.size() < 2) |
| 212 | return false; |
| 213 | |
| 214 | // Check potential Factors. |
| 215 | for (Factor = 2; Factor <= MaxFactor; Factor++) { |
| 216 | // Make sure we don't produce a load wider than the input load. |
| 217 | if (Mask.size() * Factor > NumLoadElements) |
| 218 | return false; |
| 219 | if (ShuffleVectorInst::isDeInterleaveMaskOfFactor(Mask, Factor, Index)) |
| 220 | return true; |
| 221 | } |
| 222 | |
| 223 | return false; |
| 224 | } |
| 225 | |
| 226 | /// Check if the mask can be used in an interleaved store. |
| 227 | // |
| 228 | /// It checks for a more general pattern than the RE-interleave mask. |
| 229 | /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...> |
| 230 | /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35> |
| 231 | /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> |
| 232 | /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5> |
| 233 | /// |
| 234 | /// The particular case of an RE-interleave mask is: |
| 235 | /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...> |
| 236 | /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7> |
| 237 | static bool isReInterleaveMask(ShuffleVectorInst *SVI, unsigned &Factor, |
| 238 | unsigned MaxFactor) { |
| 239 | unsigned NumElts = SVI->getShuffleMask().size(); |
| 240 | if (NumElts < 4) |
| 241 | return false; |
| 242 | |
| 243 | // Check potential Factors. |
| 244 | for (Factor = 2; Factor <= MaxFactor; Factor++) { |
| 245 | if (SVI->isInterleave(Factor)) |
| 246 | return true; |
| 247 | } |
| 248 | |
| 249 | return false; |
| 250 | } |
| 251 | |
| 252 | // Return the corresponded deinterleaved mask, or nullptr if there is no valid |
| 253 | // mask. |
| 254 | static Value *getMask(Value *WideMask, unsigned Factor, |
| 255 | ElementCount LeafValueEC); |
| 256 | |
| 257 | static Value *getMask(Value *WideMask, unsigned Factor, |
| 258 | VectorType *LeafValueTy) { |
| 259 | return getMask(WideMask, Factor, LeafValueEC: LeafValueTy->getElementCount()); |
| 260 | } |
| 261 | |
| 262 | bool InterleavedAccessImpl::lowerInterleavedLoad( |
| 263 | Instruction *Load, SmallSetVector<Instruction *, 32> &DeadInsts) { |
| 264 | if (isa<ScalableVectorType>(Val: Load->getType())) |
| 265 | return false; |
| 266 | |
| 267 | if (auto *LI = dyn_cast<LoadInst>(Val: Load)) { |
| 268 | if (!LI->isSimple()) |
| 269 | return false; |
| 270 | } else if (auto *VPLoad = dyn_cast<VPIntrinsic>(Val: Load)) { |
| 271 | assert(VPLoad->getIntrinsicID() == Intrinsic::vp_load); |
| 272 | // Require a constant mask. |
| 273 | if (!isa<ConstantVector>(Val: VPLoad->getMaskParam())) |
| 274 | return false; |
| 275 | } else { |
| 276 | llvm_unreachable("unsupported load operation" ); |
| 277 | } |
| 278 | |
| 279 | // Check if all users of this load are shufflevectors. If we encounter any |
| 280 | // users that are extractelement instructions or binary operators, we save |
| 281 | // them to later check if they can be modified to extract from one of the |
| 282 | // shufflevectors instead of the load. |
| 283 | |
| 284 | SmallVector<ShuffleVectorInst *, 4> Shuffles; |
| 285 | SmallVector<ExtractElementInst *, 4> ; |
| 286 | // BinOpShuffles need to be handled a single time in case both operands of the |
| 287 | // binop are the same load. |
| 288 | SmallSetVector<ShuffleVectorInst *, 4> BinOpShuffles; |
| 289 | |
| 290 | for (auto *User : Load->users()) { |
| 291 | auto * = dyn_cast<ExtractElementInst>(Val: User); |
| 292 | if (Extract && isa<ConstantInt>(Val: Extract->getIndexOperand())) { |
| 293 | Extracts.push_back(Elt: Extract); |
| 294 | continue; |
| 295 | } |
| 296 | if (auto *BI = dyn_cast<BinaryOperator>(Val: User)) { |
| 297 | if (!BI->user_empty() && all_of(Range: BI->users(), P: [](auto *U) { |
| 298 | auto *SVI = dyn_cast<ShuffleVectorInst>(U); |
| 299 | return SVI && isa<UndefValue>(SVI->getOperand(1)); |
| 300 | })) { |
| 301 | for (auto *SVI : BI->users()) |
| 302 | BinOpShuffles.insert(X: cast<ShuffleVectorInst>(Val: SVI)); |
| 303 | continue; |
| 304 | } |
| 305 | } |
| 306 | auto *SVI = dyn_cast<ShuffleVectorInst>(Val: User); |
| 307 | if (!SVI || !isa<UndefValue>(Val: SVI->getOperand(i_nocapture: 1))) |
| 308 | return false; |
| 309 | |
| 310 | Shuffles.push_back(Elt: SVI); |
| 311 | } |
| 312 | |
| 313 | if (Shuffles.empty() && BinOpShuffles.empty()) |
| 314 | return false; |
| 315 | |
| 316 | unsigned Factor, Index; |
| 317 | |
| 318 | unsigned NumLoadElements = |
| 319 | cast<FixedVectorType>(Val: Load->getType())->getNumElements(); |
| 320 | auto *FirstSVI = Shuffles.size() > 0 ? Shuffles[0] : BinOpShuffles[0]; |
| 321 | // Check if the first shufflevector is DE-interleave shuffle. |
| 322 | if (!isDeInterleaveMask(Mask: FirstSVI->getShuffleMask(), Factor, Index, MaxFactor, |
| 323 | NumLoadElements)) |
| 324 | return false; |
| 325 | |
| 326 | // Holds the corresponding index for each DE-interleave shuffle. |
| 327 | SmallVector<unsigned, 4> Indices; |
| 328 | |
| 329 | Type *VecTy = FirstSVI->getType(); |
| 330 | |
| 331 | // Check if other shufflevectors are also DE-interleaved of the same type |
| 332 | // and factor as the first shufflevector. |
| 333 | for (auto *Shuffle : Shuffles) { |
| 334 | if (Shuffle->getType() != VecTy) |
| 335 | return false; |
| 336 | if (!ShuffleVectorInst::isDeInterleaveMaskOfFactor( |
| 337 | Mask: Shuffle->getShuffleMask(), Factor, Index)) |
| 338 | return false; |
| 339 | |
| 340 | assert(Shuffle->getShuffleMask().size() <= NumLoadElements); |
| 341 | Indices.push_back(Elt: Index); |
| 342 | } |
| 343 | for (auto *Shuffle : BinOpShuffles) { |
| 344 | if (Shuffle->getType() != VecTy) |
| 345 | return false; |
| 346 | if (!ShuffleVectorInst::isDeInterleaveMaskOfFactor( |
| 347 | Mask: Shuffle->getShuffleMask(), Factor, Index)) |
| 348 | return false; |
| 349 | |
| 350 | assert(Shuffle->getShuffleMask().size() <= NumLoadElements); |
| 351 | |
| 352 | if (cast<Instruction>(Val: Shuffle->getOperand(i_nocapture: 0))->getOperand(i: 0) == Load) |
| 353 | Indices.push_back(Elt: Index); |
| 354 | if (cast<Instruction>(Val: Shuffle->getOperand(i_nocapture: 0))->getOperand(i: 1) == Load) |
| 355 | Indices.push_back(Elt: Index); |
| 356 | } |
| 357 | |
| 358 | // Try and modify users of the load that are extractelement instructions to |
| 359 | // use the shufflevector instructions instead of the load. |
| 360 | if (!tryReplaceExtracts(Extracts, Shuffles)) |
| 361 | return false; |
| 362 | |
| 363 | bool BinOpShuffleChanged = |
| 364 | replaceBinOpShuffles(BinOpShuffles: BinOpShuffles.getArrayRef(), Shuffles, LI: Load); |
| 365 | |
| 366 | if (auto *VPLoad = dyn_cast<VPIntrinsic>(Val: Load)) { |
| 367 | Value *LaneMask = |
| 368 | getMask(WideMask: VPLoad->getMaskParam(), Factor, LeafValueTy: cast<VectorType>(Val: VecTy)); |
| 369 | if (!LaneMask) |
| 370 | return false; |
| 371 | |
| 372 | LLVM_DEBUG(dbgs() << "IA: Found an interleaved vp.load: " << *Load << "\n" ); |
| 373 | |
| 374 | // Sometimes the number of Shuffles might be less than Factor, we have to |
| 375 | // fill the gaps with null. Also, lowerInterleavedVPLoad |
| 376 | // expects them to be sorted. |
| 377 | SmallVector<Value *, 4> ShuffleValues(Factor, nullptr); |
| 378 | for (auto [Idx, ShuffleMaskIdx] : enumerate(First&: Indices)) |
| 379 | ShuffleValues[ShuffleMaskIdx] = Shuffles[Idx]; |
| 380 | if (!TLI->lowerInterleavedVPLoad(Load: VPLoad, Mask: LaneMask, DeinterleaveRes: ShuffleValues)) |
| 381 | // If Extracts is not empty, tryReplaceExtracts made changes earlier. |
| 382 | return !Extracts.empty() || BinOpShuffleChanged; |
| 383 | } else { |
| 384 | LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *Load << "\n" ); |
| 385 | |
| 386 | // Try to create target specific intrinsics to replace the load and |
| 387 | // shuffles. |
| 388 | if (!TLI->lowerInterleavedLoad(LI: cast<LoadInst>(Val: Load), Shuffles, Indices, |
| 389 | Factor)) |
| 390 | // If Extracts is not empty, tryReplaceExtracts made changes earlier. |
| 391 | return !Extracts.empty() || BinOpShuffleChanged; |
| 392 | } |
| 393 | |
| 394 | DeadInsts.insert_range(R&: Shuffles); |
| 395 | |
| 396 | DeadInsts.insert(X: Load); |
| 397 | return true; |
| 398 | } |
| 399 | |
| 400 | bool InterleavedAccessImpl::replaceBinOpShuffles( |
| 401 | ArrayRef<ShuffleVectorInst *> BinOpShuffles, |
| 402 | SmallVectorImpl<ShuffleVectorInst *> &Shuffles, Instruction *Load) { |
| 403 | for (auto *SVI : BinOpShuffles) { |
| 404 | BinaryOperator *BI = cast<BinaryOperator>(Val: SVI->getOperand(i_nocapture: 0)); |
| 405 | Type *BIOp0Ty = BI->getOperand(i_nocapture: 0)->getType(); |
| 406 | ArrayRef<int> Mask = SVI->getShuffleMask(); |
| 407 | assert(all_of(Mask, [&](int Idx) { |
| 408 | return Idx < (int)cast<FixedVectorType>(BIOp0Ty)->getNumElements(); |
| 409 | })); |
| 410 | |
| 411 | BasicBlock::iterator insertPos = SVI->getIterator(); |
| 412 | auto *NewSVI1 = |
| 413 | new ShuffleVectorInst(BI->getOperand(i_nocapture: 0), PoisonValue::get(T: BIOp0Ty), |
| 414 | Mask, SVI->getName(), insertPos); |
| 415 | auto *NewSVI2 = new ShuffleVectorInst( |
| 416 | BI->getOperand(i_nocapture: 1), PoisonValue::get(T: BI->getOperand(i_nocapture: 1)->getType()), Mask, |
| 417 | SVI->getName(), insertPos); |
| 418 | BinaryOperator *NewBI = BinaryOperator::CreateWithCopiedFlags( |
| 419 | Opc: BI->getOpcode(), V1: NewSVI1, V2: NewSVI2, CopyO: BI, Name: BI->getName(), InsertBefore: insertPos); |
| 420 | SVI->replaceAllUsesWith(V: NewBI); |
| 421 | LLVM_DEBUG(dbgs() << " Replaced: " << *BI << "\n And : " << *SVI |
| 422 | << "\n With : " << *NewSVI1 << "\n And : " |
| 423 | << *NewSVI2 << "\n And : " << *NewBI << "\n" ); |
| 424 | RecursivelyDeleteTriviallyDeadInstructions(V: SVI); |
| 425 | if (NewSVI1->getOperand(i_nocapture: 0) == Load) |
| 426 | Shuffles.push_back(Elt: NewSVI1); |
| 427 | if (NewSVI2->getOperand(i_nocapture: 0) == Load) |
| 428 | Shuffles.push_back(Elt: NewSVI2); |
| 429 | } |
| 430 | |
| 431 | return !BinOpShuffles.empty(); |
| 432 | } |
| 433 | |
| 434 | bool InterleavedAccessImpl::( |
| 435 | ArrayRef<ExtractElementInst *> , |
| 436 | ArrayRef<ShuffleVectorInst *> Shuffles) { |
| 437 | // If there aren't any extractelement instructions to modify, there's nothing |
| 438 | // to do. |
| 439 | if (Extracts.empty()) |
| 440 | return true; |
| 441 | |
| 442 | // Maps extractelement instructions to vector-index pairs. The extractlement |
| 443 | // instructions will be modified to use the new vector and index operands. |
| 444 | DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap; |
| 445 | |
| 446 | for (auto * : Extracts) { |
| 447 | // The vector index that is extracted. |
| 448 | auto *IndexOperand = cast<ConstantInt>(Val: Extract->getIndexOperand()); |
| 449 | auto Index = IndexOperand->getSExtValue(); |
| 450 | |
| 451 | // Look for a suitable shufflevector instruction. The goal is to modify the |
| 452 | // extractelement instruction (which uses an interleaved load) to use one |
| 453 | // of the shufflevector instructions instead of the load. |
| 454 | for (auto *Shuffle : Shuffles) { |
| 455 | // If the shufflevector instruction doesn't dominate the extract, we |
| 456 | // can't create a use of it. |
| 457 | if (!DT->dominates(Def: Shuffle, User: Extract)) |
| 458 | continue; |
| 459 | |
| 460 | // Inspect the indices of the shufflevector instruction. If the shuffle |
| 461 | // selects the same index that is extracted, we can modify the |
| 462 | // extractelement instruction. |
| 463 | SmallVector<int, 4> Indices; |
| 464 | Shuffle->getShuffleMask(Result&: Indices); |
| 465 | for (unsigned I = 0; I < Indices.size(); ++I) |
| 466 | if (Indices[I] == Index) { |
| 467 | assert(Extract->getOperand(0) == Shuffle->getOperand(0) && |
| 468 | "Vector operations do not match" ); |
| 469 | ReplacementMap[Extract] = std::make_pair(x&: Shuffle, y&: I); |
| 470 | break; |
| 471 | } |
| 472 | |
| 473 | // If we found a suitable shufflevector instruction, stop looking. |
| 474 | if (ReplacementMap.count(Val: Extract)) |
| 475 | break; |
| 476 | } |
| 477 | |
| 478 | // If we did not find a suitable shufflevector instruction, the |
| 479 | // extractelement instruction cannot be modified, so we must give up. |
| 480 | if (!ReplacementMap.count(Val: Extract)) |
| 481 | return false; |
| 482 | } |
| 483 | |
| 484 | // Finally, perform the replacements. |
| 485 | IRBuilder<> Builder(Extracts[0]->getContext()); |
| 486 | for (auto &Replacement : ReplacementMap) { |
| 487 | auto * = Replacement.first; |
| 488 | auto *Vector = Replacement.second.first; |
| 489 | auto Index = Replacement.second.second; |
| 490 | Builder.SetInsertPoint(Extract); |
| 491 | Extract->replaceAllUsesWith(V: Builder.CreateExtractElement(Vec: Vector, Idx: Index)); |
| 492 | Extract->eraseFromParent(); |
| 493 | } |
| 494 | |
| 495 | return true; |
| 496 | } |
| 497 | |
| 498 | bool InterleavedAccessImpl::lowerInterleavedStore( |
| 499 | Instruction *Store, SmallSetVector<Instruction *, 32> &DeadInsts) { |
| 500 | Value *StoredValue; |
| 501 | if (auto *SI = dyn_cast<StoreInst>(Val: Store)) { |
| 502 | if (!SI->isSimple()) |
| 503 | return false; |
| 504 | StoredValue = SI->getValueOperand(); |
| 505 | } else if (auto *VPStore = dyn_cast<VPIntrinsic>(Val: Store)) { |
| 506 | assert(VPStore->getIntrinsicID() == Intrinsic::vp_store); |
| 507 | // Require a constant mask. |
| 508 | if (!isa<ConstantVector>(Val: VPStore->getMaskParam())) |
| 509 | return false; |
| 510 | StoredValue = VPStore->getArgOperand(i: 0); |
| 511 | } else { |
| 512 | llvm_unreachable("unsupported store operation" ); |
| 513 | } |
| 514 | |
| 515 | auto *SVI = dyn_cast<ShuffleVectorInst>(Val: StoredValue); |
| 516 | if (!SVI || !SVI->hasOneUse() || isa<ScalableVectorType>(Val: SVI->getType())) |
| 517 | return false; |
| 518 | |
| 519 | unsigned NumStoredElements = |
| 520 | cast<FixedVectorType>(Val: SVI->getType())->getNumElements(); |
| 521 | // Check if the shufflevector is RE-interleave shuffle. |
| 522 | unsigned Factor; |
| 523 | if (!isReInterleaveMask(SVI, Factor, MaxFactor)) |
| 524 | return false; |
| 525 | assert(NumStoredElements % Factor == 0 && |
| 526 | "number of stored element should be a multiple of Factor" ); |
| 527 | |
| 528 | if (auto *VPStore = dyn_cast<VPIntrinsic>(Val: Store)) { |
| 529 | unsigned LaneMaskLen = NumStoredElements / Factor; |
| 530 | Value *LaneMask = getMask(WideMask: VPStore->getMaskParam(), Factor, |
| 531 | LeafValueEC: ElementCount::getFixed(MinVal: LaneMaskLen)); |
| 532 | if (!LaneMask) |
| 533 | return false; |
| 534 | |
| 535 | LLVM_DEBUG(dbgs() << "IA: Found an interleaved vp.store: " << *Store |
| 536 | << "\n" ); |
| 537 | |
| 538 | IRBuilder<> Builder(VPStore); |
| 539 | // We need to effectively de-interleave the shufflemask |
| 540 | // because lowerInterleavedVPStore expects individual de-interleaved |
| 541 | // values. |
| 542 | SmallVector<Value *, 10> NewShuffles; |
| 543 | SmallVector<int, 16> NewShuffleMask(LaneMaskLen); |
| 544 | auto ShuffleMask = SVI->getShuffleMask(); |
| 545 | |
| 546 | for (unsigned i = 0; i < Factor; i++) { |
| 547 | for (unsigned j = 0; j < LaneMaskLen; j++) |
| 548 | NewShuffleMask[j] = ShuffleMask[i + Factor * j]; |
| 549 | |
| 550 | NewShuffles.push_back(Elt: Builder.CreateShuffleVector( |
| 551 | V1: SVI->getOperand(i_nocapture: 0), V2: SVI->getOperand(i_nocapture: 1), Mask: NewShuffleMask)); |
| 552 | } |
| 553 | |
| 554 | // Try to create target specific intrinsics to replace the vp.store and |
| 555 | // shuffle. |
| 556 | if (!TLI->lowerInterleavedVPStore(Store: VPStore, Mask: LaneMask, InterleaveOps: NewShuffles)) |
| 557 | // We already created new shuffles. |
| 558 | return true; |
| 559 | } else { |
| 560 | LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *Store << "\n" ); |
| 561 | |
| 562 | // Try to create target specific intrinsics to replace the store and |
| 563 | // shuffle. |
| 564 | if (!TLI->lowerInterleavedStore(SI: cast<StoreInst>(Val: Store), SVI, Factor)) |
| 565 | return false; |
| 566 | } |
| 567 | |
| 568 | // Already have a new target specific interleaved store. Erase the old store. |
| 569 | DeadInsts.insert(X: Store); |
| 570 | DeadInsts.insert(X: SVI); |
| 571 | return true; |
| 572 | } |
| 573 | |
| 574 | static bool isInterleaveIntrinsic(Intrinsic::ID IID) { |
| 575 | switch (IID) { |
| 576 | case Intrinsic::vector_interleave2: |
| 577 | case Intrinsic::vector_interleave3: |
| 578 | case Intrinsic::vector_interleave4: |
| 579 | case Intrinsic::vector_interleave5: |
| 580 | case Intrinsic::vector_interleave6: |
| 581 | case Intrinsic::vector_interleave7: |
| 582 | case Intrinsic::vector_interleave8: |
| 583 | return true; |
| 584 | default: |
| 585 | return false; |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | static bool isDeinterleaveIntrinsic(Intrinsic::ID IID) { |
| 590 | switch (IID) { |
| 591 | case Intrinsic::vector_deinterleave2: |
| 592 | case Intrinsic::vector_deinterleave3: |
| 593 | case Intrinsic::vector_deinterleave4: |
| 594 | case Intrinsic::vector_deinterleave5: |
| 595 | case Intrinsic::vector_deinterleave6: |
| 596 | case Intrinsic::vector_deinterleave7: |
| 597 | case Intrinsic::vector_deinterleave8: |
| 598 | return true; |
| 599 | default: |
| 600 | return false; |
| 601 | } |
| 602 | } |
| 603 | |
| 604 | static unsigned getIntrinsicFactor(const IntrinsicInst *II) { |
| 605 | switch (II->getIntrinsicID()) { |
| 606 | case Intrinsic::vector_deinterleave2: |
| 607 | case Intrinsic::vector_interleave2: |
| 608 | return 2; |
| 609 | case Intrinsic::vector_deinterleave3: |
| 610 | case Intrinsic::vector_interleave3: |
| 611 | return 3; |
| 612 | case Intrinsic::vector_deinterleave4: |
| 613 | case Intrinsic::vector_interleave4: |
| 614 | return 4; |
| 615 | case Intrinsic::vector_deinterleave5: |
| 616 | case Intrinsic::vector_interleave5: |
| 617 | return 5; |
| 618 | case Intrinsic::vector_deinterleave6: |
| 619 | case Intrinsic::vector_interleave6: |
| 620 | return 6; |
| 621 | case Intrinsic::vector_deinterleave7: |
| 622 | case Intrinsic::vector_interleave7: |
| 623 | return 7; |
| 624 | case Intrinsic::vector_deinterleave8: |
| 625 | case Intrinsic::vector_interleave8: |
| 626 | return 8; |
| 627 | default: |
| 628 | llvm_unreachable("Unexpected intrinsic" ); |
| 629 | } |
| 630 | } |
| 631 | |
| 632 | static Value *getMask(Value *WideMask, unsigned Factor, |
| 633 | ElementCount LeafValueEC) { |
| 634 | if (auto *IMI = dyn_cast<IntrinsicInst>(Val: WideMask)) { |
| 635 | if (isInterleaveIntrinsic(IID: IMI->getIntrinsicID()) && |
| 636 | getIntrinsicFactor(II: IMI) == Factor && llvm::all_equal(Range: IMI->args())) { |
| 637 | return IMI->getArgOperand(i: 0); |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | if (auto *ConstMask = dyn_cast<Constant>(Val: WideMask)) { |
| 642 | if (auto *Splat = ConstMask->getSplatValue()) |
| 643 | // All-ones or all-zeros mask. |
| 644 | return ConstantVector::getSplat(EC: LeafValueEC, Elt: Splat); |
| 645 | |
| 646 | if (LeafValueEC.isFixed()) { |
| 647 | unsigned LeafMaskLen = LeafValueEC.getFixedValue(); |
| 648 | SmallVector<Constant *, 8> LeafMask(LeafMaskLen, nullptr); |
| 649 | // If this is a fixed-length constant mask, each lane / leaf has to |
| 650 | // use the same mask. This is done by checking if every group with Factor |
| 651 | // number of elements in the interleaved mask has homogeneous values. |
| 652 | for (unsigned Idx = 0U; Idx < LeafMaskLen * Factor; ++Idx) { |
| 653 | Constant *C = ConstMask->getAggregateElement(Elt: Idx); |
| 654 | if (LeafMask[Idx / Factor] && LeafMask[Idx / Factor] != C) |
| 655 | return nullptr; |
| 656 | LeafMask[Idx / Factor] = C; |
| 657 | } |
| 658 | |
| 659 | return ConstantVector::get(V: LeafMask); |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | return nullptr; |
| 664 | } |
| 665 | |
| 666 | bool InterleavedAccessImpl::lowerDeinterleaveIntrinsic( |
| 667 | IntrinsicInst *DI, SmallSetVector<Instruction *, 32> &DeadInsts) { |
| 668 | Value *LoadedVal = DI->getOperand(i_nocapture: 0); |
| 669 | if (!LoadedVal->hasOneUse() || !isa<LoadInst, VPIntrinsic>(Val: LoadedVal)) |
| 670 | return false; |
| 671 | |
| 672 | const unsigned Factor = getIntrinsicFactor(II: DI); |
| 673 | if (!DI->hasNUses(N: Factor)) |
| 674 | return false; |
| 675 | SmallVector<Value *, 8> DeinterleaveValues(Factor); |
| 676 | for (auto *User : DI->users()) { |
| 677 | auto * = dyn_cast<ExtractValueInst>(Val: User); |
| 678 | if (!Extract || Extract->getNumIndices() != 1) |
| 679 | return false; |
| 680 | unsigned Idx = Extract->getIndices()[0]; |
| 681 | if (DeinterleaveValues[Idx]) |
| 682 | return false; |
| 683 | DeinterleaveValues[Idx] = Extract; |
| 684 | } |
| 685 | |
| 686 | if (auto *VPLoad = dyn_cast<VPIntrinsic>(Val: LoadedVal)) { |
| 687 | if (VPLoad->getIntrinsicID() != Intrinsic::vp_load) |
| 688 | return false; |
| 689 | // Check mask operand. Handle both all-true/false and interleaved mask. |
| 690 | Value *WideMask = VPLoad->getOperand(i_nocapture: 1); |
| 691 | Value *Mask = getMask(WideMask, Factor, |
| 692 | LeafValueTy: cast<VectorType>(Val: DeinterleaveValues[0]->getType())); |
| 693 | if (!Mask) |
| 694 | return false; |
| 695 | |
| 696 | LLVM_DEBUG(dbgs() << "IA: Found a vp.load with deinterleave intrinsic " |
| 697 | << *DI << " and factor = " << Factor << "\n" ); |
| 698 | |
| 699 | // Since lowerInterleaveLoad expects Shuffles and LoadInst, use special |
| 700 | // TLI function to emit target-specific interleaved instruction. |
| 701 | if (!TLI->lowerInterleavedVPLoad(Load: VPLoad, Mask, DeinterleaveRes: DeinterleaveValues)) |
| 702 | return false; |
| 703 | |
| 704 | } else { |
| 705 | auto *LI = cast<LoadInst>(Val: LoadedVal); |
| 706 | if (!LI->isSimple()) |
| 707 | return false; |
| 708 | |
| 709 | LLVM_DEBUG(dbgs() << "IA: Found a load with deinterleave intrinsic " << *DI |
| 710 | << " and factor = " << Factor << "\n" ); |
| 711 | |
| 712 | // Try and match this with target specific intrinsics. |
| 713 | if (!TLI->lowerDeinterleaveIntrinsicToLoad(LI, DeinterleaveValues)) |
| 714 | return false; |
| 715 | } |
| 716 | |
| 717 | for (Value *V : DeinterleaveValues) |
| 718 | DeadInsts.insert(X: cast<Instruction>(Val: V)); |
| 719 | DeadInsts.insert(X: DI); |
| 720 | // We now have a target-specific load, so delete the old one. |
| 721 | DeadInsts.insert(X: cast<Instruction>(Val: LoadedVal)); |
| 722 | return true; |
| 723 | } |
| 724 | |
| 725 | bool InterleavedAccessImpl::lowerInterleaveIntrinsic( |
| 726 | IntrinsicInst *II, SmallSetVector<Instruction *, 32> &DeadInsts) { |
| 727 | if (!II->hasOneUse()) |
| 728 | return false; |
| 729 | Value *StoredBy = II->user_back(); |
| 730 | if (!isa<StoreInst, VPIntrinsic>(Val: StoredBy)) |
| 731 | return false; |
| 732 | |
| 733 | SmallVector<Value *, 8> InterleaveValues(II->args()); |
| 734 | const unsigned Factor = getIntrinsicFactor(II); |
| 735 | |
| 736 | if (auto *VPStore = dyn_cast<VPIntrinsic>(Val: StoredBy)) { |
| 737 | if (VPStore->getIntrinsicID() != Intrinsic::vp_store) |
| 738 | return false; |
| 739 | |
| 740 | Value *WideMask = VPStore->getOperand(i_nocapture: 2); |
| 741 | Value *Mask = getMask(WideMask, Factor, |
| 742 | LeafValueTy: cast<VectorType>(Val: InterleaveValues[0]->getType())); |
| 743 | if (!Mask) |
| 744 | return false; |
| 745 | |
| 746 | LLVM_DEBUG(dbgs() << "IA: Found a vp.store with interleave intrinsic " |
| 747 | << *II << " and factor = " << Factor << "\n" ); |
| 748 | |
| 749 | // Since lowerInterleavedStore expects Shuffle and StoreInst, use special |
| 750 | // TLI function to emit target-specific interleaved instruction. |
| 751 | if (!TLI->lowerInterleavedVPStore(Store: VPStore, Mask, InterleaveOps: InterleaveValues)) |
| 752 | return false; |
| 753 | } else { |
| 754 | auto *SI = cast<StoreInst>(Val: StoredBy); |
| 755 | if (!SI->isSimple()) |
| 756 | return false; |
| 757 | |
| 758 | LLVM_DEBUG(dbgs() << "IA: Found a store with interleave intrinsic " << *II |
| 759 | << " and factor = " << Factor << "\n" ); |
| 760 | |
| 761 | // Try and match this with target specific intrinsics. |
| 762 | if (!TLI->lowerInterleaveIntrinsicToStore(SI, InterleaveValues)) |
| 763 | return false; |
| 764 | } |
| 765 | |
| 766 | // We now have a target-specific store, so delete the old one. |
| 767 | DeadInsts.insert(X: cast<Instruction>(Val: StoredBy)); |
| 768 | DeadInsts.insert(X: II); |
| 769 | return true; |
| 770 | } |
| 771 | |
| 772 | bool InterleavedAccessImpl::runOnFunction(Function &F) { |
| 773 | // Holds dead instructions that will be erased later. |
| 774 | SmallSetVector<Instruction *, 32> DeadInsts; |
| 775 | bool Changed = false; |
| 776 | |
| 777 | using namespace PatternMatch; |
| 778 | for (auto &I : instructions(F)) { |
| 779 | if (match(V: &I, P: m_CombineOr(L: m_Load(Op: m_Value()), |
| 780 | R: m_Intrinsic<Intrinsic::vp_load>()))) |
| 781 | Changed |= lowerInterleavedLoad(Load: &I, DeadInsts); |
| 782 | |
| 783 | if (match(V: &I, P: m_CombineOr(L: m_Store(ValueOp: m_Value(), PointerOp: m_Value()), |
| 784 | R: m_Intrinsic<Intrinsic::vp_store>()))) |
| 785 | Changed |= lowerInterleavedStore(Store: &I, DeadInsts); |
| 786 | |
| 787 | if (auto *II = dyn_cast<IntrinsicInst>(Val: &I)) { |
| 788 | if (isDeinterleaveIntrinsic(IID: II->getIntrinsicID())) |
| 789 | Changed |= lowerDeinterleaveIntrinsic(DI: II, DeadInsts); |
| 790 | else if (isInterleaveIntrinsic(IID: II->getIntrinsicID())) |
| 791 | Changed |= lowerInterleaveIntrinsic(II, DeadInsts); |
| 792 | } |
| 793 | } |
| 794 | |
| 795 | for (auto *I : DeadInsts) |
| 796 | I->eraseFromParent(); |
| 797 | |
| 798 | return Changed; |
| 799 | } |
| 800 | |