1 | //===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the LiveDebugVariables analysis. |
10 | // |
11 | // Remove all DBG_VALUE instructions referencing virtual registers and replace |
12 | // them with a data structure tracking where live user variables are kept - in a |
13 | // virtual register or in a stack slot. |
14 | // |
15 | // Allow the data structure to be updated during register allocation when values |
16 | // are moved between registers and stack slots. Finally emit new DBG_VALUE |
17 | // instructions after register allocation is complete. |
18 | // |
19 | //===----------------------------------------------------------------------===// |
20 | |
21 | #include "llvm/CodeGen/LiveDebugVariables.h" |
22 | #include "llvm/ADT/ArrayRef.h" |
23 | #include "llvm/ADT/DenseMap.h" |
24 | #include "llvm/ADT/IntervalMap.h" |
25 | #include "llvm/ADT/MapVector.h" |
26 | #include "llvm/ADT/STLExtras.h" |
27 | #include "llvm/ADT/SmallSet.h" |
28 | #include "llvm/ADT/SmallVector.h" |
29 | #include "llvm/ADT/Statistic.h" |
30 | #include "llvm/ADT/StringRef.h" |
31 | #include "llvm/BinaryFormat/Dwarf.h" |
32 | #include "llvm/CodeGen/LexicalScopes.h" |
33 | #include "llvm/CodeGen/LiveInterval.h" |
34 | #include "llvm/CodeGen/LiveIntervals.h" |
35 | #include "llvm/CodeGen/MachineBasicBlock.h" |
36 | #include "llvm/CodeGen/MachineDominators.h" |
37 | #include "llvm/CodeGen/MachineFunction.h" |
38 | #include "llvm/CodeGen/MachineInstr.h" |
39 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
40 | #include "llvm/CodeGen/MachineOperand.h" |
41 | #include "llvm/CodeGen/MachinePassManager.h" |
42 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
43 | #include "llvm/CodeGen/SlotIndexes.h" |
44 | #include "llvm/CodeGen/TargetInstrInfo.h" |
45 | #include "llvm/CodeGen/TargetOpcodes.h" |
46 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
47 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
48 | #include "llvm/CodeGen/VirtRegMap.h" |
49 | #include "llvm/Config/llvm-config.h" |
50 | #include "llvm/IR/DebugInfoMetadata.h" |
51 | #include "llvm/IR/DebugLoc.h" |
52 | #include "llvm/IR/Function.h" |
53 | #include "llvm/InitializePasses.h" |
54 | #include "llvm/Pass.h" |
55 | #include "llvm/Support/Casting.h" |
56 | #include "llvm/Support/CommandLine.h" |
57 | #include "llvm/Support/Debug.h" |
58 | #include "llvm/Support/raw_ostream.h" |
59 | #include <algorithm> |
60 | #include <cassert> |
61 | #include <iterator> |
62 | #include <map> |
63 | #include <memory> |
64 | #include <optional> |
65 | #include <utility> |
66 | |
67 | using namespace llvm; |
68 | |
69 | #define DEBUG_TYPE "livedebugvars" |
70 | |
71 | static cl::opt<bool> |
72 | EnableLDV("live-debug-variables" , cl::init(Val: true), |
73 | cl::desc("Enable the live debug variables pass" ), cl::Hidden); |
74 | |
75 | STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted" ); |
76 | STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted" ); |
77 | |
78 | char LiveDebugVariablesWrapperLegacy::ID = 0; |
79 | |
80 | INITIALIZE_PASS_BEGIN(LiveDebugVariablesWrapperLegacy, DEBUG_TYPE, |
81 | "Debug Variable Analysis" , false, false) |
82 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
83 | INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) |
84 | INITIALIZE_PASS_END(LiveDebugVariablesWrapperLegacy, DEBUG_TYPE, |
85 | "Debug Variable Analysis" , false, true) |
86 | |
87 | void LiveDebugVariablesWrapperLegacy::getAnalysisUsage( |
88 | AnalysisUsage &AU) const { |
89 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
90 | AU.addRequiredTransitive<LiveIntervalsWrapperPass>(); |
91 | AU.setPreservesAll(); |
92 | MachineFunctionPass::getAnalysisUsage(AU); |
93 | } |
94 | |
95 | LiveDebugVariablesWrapperLegacy::LiveDebugVariablesWrapperLegacy() |
96 | : MachineFunctionPass(ID) { |
97 | initializeLiveDebugVariablesWrapperLegacyPass( |
98 | Registry&: *PassRegistry::getPassRegistry()); |
99 | } |
100 | |
101 | enum : unsigned { UndefLocNo = ~0U }; |
102 | |
103 | namespace { |
104 | /// Describes a debug variable value by location number and expression along |
105 | /// with some flags about the original usage of the location. |
106 | class DbgVariableValue { |
107 | public: |
108 | DbgVariableValue(ArrayRef<unsigned> NewLocs, bool WasIndirect, bool WasList, |
109 | const DIExpression &Expr) |
110 | : WasIndirect(WasIndirect), WasList(WasList), Expression(&Expr) { |
111 | assert(!(WasIndirect && WasList) && |
112 | "DBG_VALUE_LISTs should not be indirect." ); |
113 | SmallVector<unsigned> LocNoVec; |
114 | for (unsigned LocNo : NewLocs) { |
115 | auto It = find(Range&: LocNoVec, Val: LocNo); |
116 | if (It == LocNoVec.end()) |
117 | LocNoVec.push_back(Elt: LocNo); |
118 | else { |
119 | // Loc duplicates an element in LocNos; replace references to Op |
120 | // with references to the duplicating element. |
121 | unsigned OpIdx = LocNoVec.size(); |
122 | unsigned DuplicatingIdx = std::distance(first: LocNoVec.begin(), last: It); |
123 | Expression = |
124 | DIExpression::replaceArg(Expr: Expression, OldArg: OpIdx, NewArg: DuplicatingIdx); |
125 | } |
126 | } |
127 | // FIXME: Debug values referencing 64+ unique machine locations are rare and |
128 | // currently unsupported for performance reasons. If we can verify that |
129 | // performance is acceptable for such debug values, we can increase the |
130 | // bit-width of LocNoCount to 14 to enable up to 16384 unique machine |
131 | // locations. We will also need to verify that this does not cause issues |
132 | // with LiveDebugVariables' use of IntervalMap. |
133 | if (LocNoVec.size() < 64) { |
134 | LocNoCount = LocNoVec.size(); |
135 | if (LocNoCount > 0) { |
136 | LocNos = std::make_unique<unsigned[]>(num: LocNoCount); |
137 | llvm::copy(Range&: LocNoVec, Out: loc_nos_begin()); |
138 | } |
139 | } else { |
140 | LLVM_DEBUG(dbgs() << "Found debug value with 64+ unique machine " |
141 | "locations, dropping...\n" ); |
142 | LocNoCount = 1; |
143 | // Turn this into an undef debug value list; right now, the simplest form |
144 | // of this is an expression with one arg, and an undef debug operand. |
145 | Expression = |
146 | DIExpression::get(Context&: Expr.getContext(), Elements: {dwarf::DW_OP_LLVM_arg, 0}); |
147 | if (auto FragmentInfoOpt = Expr.getFragmentInfo()) |
148 | Expression = *DIExpression::createFragmentExpression( |
149 | Expr: Expression, OffsetInBits: FragmentInfoOpt->OffsetInBits, |
150 | SizeInBits: FragmentInfoOpt->SizeInBits); |
151 | LocNos = std::make_unique<unsigned[]>(num: LocNoCount); |
152 | LocNos[0] = UndefLocNo; |
153 | } |
154 | } |
155 | |
156 | DbgVariableValue() : LocNoCount(0), WasIndirect(false), WasList(false) {} |
157 | DbgVariableValue(const DbgVariableValue &Other) |
158 | : LocNoCount(Other.LocNoCount), WasIndirect(Other.getWasIndirect()), |
159 | WasList(Other.getWasList()), Expression(Other.getExpression()) { |
160 | if (Other.getLocNoCount()) { |
161 | LocNos.reset(p: new unsigned[Other.getLocNoCount()]); |
162 | std::copy(first: Other.loc_nos_begin(), last: Other.loc_nos_end(), result: loc_nos_begin()); |
163 | } |
164 | } |
165 | |
166 | DbgVariableValue &operator=(const DbgVariableValue &Other) { |
167 | if (this == &Other) |
168 | return *this; |
169 | if (Other.getLocNoCount()) { |
170 | LocNos.reset(p: new unsigned[Other.getLocNoCount()]); |
171 | std::copy(first: Other.loc_nos_begin(), last: Other.loc_nos_end(), result: loc_nos_begin()); |
172 | } else { |
173 | LocNos.release(); |
174 | } |
175 | LocNoCount = Other.getLocNoCount(); |
176 | WasIndirect = Other.getWasIndirect(); |
177 | WasList = Other.getWasList(); |
178 | Expression = Other.getExpression(); |
179 | return *this; |
180 | } |
181 | |
182 | const DIExpression *getExpression() const { return Expression; } |
183 | uint8_t getLocNoCount() const { return LocNoCount; } |
184 | bool containsLocNo(unsigned LocNo) const { |
185 | return is_contained(Range: loc_nos(), Element: LocNo); |
186 | } |
187 | bool getWasIndirect() const { return WasIndirect; } |
188 | bool getWasList() const { return WasList; } |
189 | bool isUndef() const { return LocNoCount == 0 || containsLocNo(LocNo: UndefLocNo); } |
190 | |
191 | DbgVariableValue decrementLocNosAfterPivot(unsigned Pivot) const { |
192 | SmallVector<unsigned, 4> NewLocNos; |
193 | for (unsigned LocNo : loc_nos()) |
194 | NewLocNos.push_back(Elt: LocNo != UndefLocNo && LocNo > Pivot ? LocNo - 1 |
195 | : LocNo); |
196 | return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); |
197 | } |
198 | |
199 | DbgVariableValue remapLocNos(ArrayRef<unsigned> LocNoMap) const { |
200 | SmallVector<unsigned> NewLocNos; |
201 | for (unsigned LocNo : loc_nos()) |
202 | // Undef values don't exist in locations (and thus not in LocNoMap |
203 | // either) so skip over them. See getLocationNo(). |
204 | NewLocNos.push_back(Elt: LocNo == UndefLocNo ? UndefLocNo : LocNoMap[LocNo]); |
205 | return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); |
206 | } |
207 | |
208 | DbgVariableValue changeLocNo(unsigned OldLocNo, unsigned NewLocNo) const { |
209 | SmallVector<unsigned> NewLocNos; |
210 | NewLocNos.assign(in_start: loc_nos_begin(), in_end: loc_nos_end()); |
211 | auto OldLocIt = find(Range&: NewLocNos, Val: OldLocNo); |
212 | assert(OldLocIt != NewLocNos.end() && "Old location must be present." ); |
213 | *OldLocIt = NewLocNo; |
214 | return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); |
215 | } |
216 | |
217 | bool hasLocNoGreaterThan(unsigned LocNo) const { |
218 | return any_of(Range: loc_nos(), |
219 | P: [LocNo](unsigned ThisLocNo) { return ThisLocNo > LocNo; }); |
220 | } |
221 | |
222 | void printLocNos(llvm::raw_ostream &OS) const { |
223 | for (const unsigned &Loc : loc_nos()) |
224 | OS << (&Loc == loc_nos_begin() ? " " : ", " ) << Loc; |
225 | } |
226 | |
227 | friend inline bool operator==(const DbgVariableValue &LHS, |
228 | const DbgVariableValue &RHS) { |
229 | if (std::tie(args: LHS.LocNoCount, args: LHS.WasIndirect, args: LHS.WasList, |
230 | args: LHS.Expression) != |
231 | std::tie(args: RHS.LocNoCount, args: RHS.WasIndirect, args: RHS.WasList, args: RHS.Expression)) |
232 | return false; |
233 | return std::equal(first1: LHS.loc_nos_begin(), last1: LHS.loc_nos_end(), |
234 | first2: RHS.loc_nos_begin()); |
235 | } |
236 | |
237 | friend inline bool operator!=(const DbgVariableValue &LHS, |
238 | const DbgVariableValue &RHS) { |
239 | return !(LHS == RHS); |
240 | } |
241 | |
242 | unsigned *loc_nos_begin() { return LocNos.get(); } |
243 | const unsigned *loc_nos_begin() const { return LocNos.get(); } |
244 | unsigned *loc_nos_end() { return LocNos.get() + LocNoCount; } |
245 | const unsigned *loc_nos_end() const { return LocNos.get() + LocNoCount; } |
246 | ArrayRef<unsigned> loc_nos() const { |
247 | return ArrayRef<unsigned>(LocNos.get(), LocNoCount); |
248 | } |
249 | |
250 | private: |
251 | // IntervalMap requires the value object to be very small, to the extent |
252 | // that we do not have enough room for an std::vector. Using a C-style array |
253 | // (with a unique_ptr wrapper for convenience) allows us to optimize for this |
254 | // specific case by packing the array size into only 6 bits (it is highly |
255 | // unlikely that any debug value will need 64+ locations). |
256 | std::unique_ptr<unsigned[]> LocNos; |
257 | uint8_t LocNoCount : 6; |
258 | bool WasIndirect : 1; |
259 | bool WasList : 1; |
260 | const DIExpression *Expression = nullptr; |
261 | }; |
262 | } // namespace |
263 | |
264 | /// Map of where a user value is live to that value. |
265 | using LocMap = IntervalMap<SlotIndex, DbgVariableValue, 4>; |
266 | |
267 | /// Map of stack slot offsets for spilled locations. |
268 | /// Non-spilled locations are not added to the map. |
269 | using SpillOffsetMap = DenseMap<unsigned, unsigned>; |
270 | |
271 | /// Cache to save the location where it can be used as the starting |
272 | /// position as input for calling MachineBasicBlock::SkipPHIsLabelsAndDebug. |
273 | /// This is to prevent MachineBasicBlock::SkipPHIsLabelsAndDebug from |
274 | /// repeatedly searching the same set of PHIs/Labels/Debug instructions |
275 | /// if it is called many times for the same block. |
276 | using BlockSkipInstsMap = |
277 | DenseMap<MachineBasicBlock *, MachineBasicBlock::iterator>; |
278 | |
279 | namespace { |
280 | |
281 | /// A user value is a part of a debug info user variable. |
282 | /// |
283 | /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register |
284 | /// holds part of a user variable. The part is identified by a byte offset. |
285 | /// |
286 | /// UserValues are grouped into equivalence classes for easier searching. Two |
287 | /// user values are related if they are held by the same virtual register. The |
288 | /// equivalence class is the transitive closure of that relation. |
289 | class UserValue { |
290 | using LDVImpl = LiveDebugVariables::LDVImpl; |
291 | |
292 | const DILocalVariable *Variable; ///< The debug info variable we are part of. |
293 | /// The part of the variable we describe. |
294 | const std::optional<DIExpression::FragmentInfo> Fragment; |
295 | DebugLoc dl; ///< The debug location for the variable. This is |
296 | ///< used by dwarf writer to find lexical scope. |
297 | UserValue *leader; ///< Equivalence class leader. |
298 | UserValue *next = nullptr; ///< Next value in equivalence class, or null. |
299 | |
300 | /// Numbered locations referenced by locmap. |
301 | SmallVector<MachineOperand, 4> locations; |
302 | |
303 | /// Map of slot indices where this value is live. |
304 | LocMap locInts; |
305 | |
306 | /// Set of interval start indexes that have been trimmed to the |
307 | /// lexical scope. |
308 | SmallSet<SlotIndex, 2> trimmedDefs; |
309 | |
310 | /// Insert a DBG_VALUE into MBB at Idx for DbgValue. |
311 | void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, |
312 | SlotIndex StopIdx, DbgVariableValue DbgValue, |
313 | ArrayRef<bool> LocSpills, |
314 | ArrayRef<unsigned> SpillOffsets, LiveIntervals &LIS, |
315 | const TargetInstrInfo &TII, |
316 | const TargetRegisterInfo &TRI, |
317 | BlockSkipInstsMap &BBSkipInstsMap); |
318 | |
319 | /// Replace OldLocNo ranges with NewRegs ranges where NewRegs |
320 | /// is live. Returns true if any changes were made. |
321 | bool splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, |
322 | LiveIntervals &LIS); |
323 | |
324 | public: |
325 | /// Create a new UserValue. |
326 | UserValue(const DILocalVariable *var, |
327 | std::optional<DIExpression::FragmentInfo> Fragment, DebugLoc L, |
328 | LocMap::Allocator &alloc) |
329 | : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this), |
330 | locInts(alloc) {} |
331 | |
332 | /// Get the leader of this value's equivalence class. |
333 | UserValue *getLeader() { |
334 | UserValue *l = leader; |
335 | while (l != l->leader) |
336 | l = l->leader; |
337 | return leader = l; |
338 | } |
339 | |
340 | /// Return the next UserValue in the equivalence class. |
341 | UserValue *getNext() const { return next; } |
342 | |
343 | /// Merge equivalence classes. |
344 | static UserValue *merge(UserValue *L1, UserValue *L2) { |
345 | L2 = L2->getLeader(); |
346 | if (!L1) |
347 | return L2; |
348 | L1 = L1->getLeader(); |
349 | if (L1 == L2) |
350 | return L1; |
351 | // Splice L2 before L1's members. |
352 | UserValue *End = L2; |
353 | while (End->next) { |
354 | End->leader = L1; |
355 | End = End->next; |
356 | } |
357 | End->leader = L1; |
358 | End->next = L1->next; |
359 | L1->next = L2; |
360 | return L1; |
361 | } |
362 | |
363 | /// Return the location number that matches Loc. |
364 | /// |
365 | /// For undef values we always return location number UndefLocNo without |
366 | /// inserting anything in locations. Since locations is a vector and the |
367 | /// location number is the position in the vector and UndefLocNo is ~0, |
368 | /// we would need a very big vector to put the value at the right position. |
369 | unsigned getLocationNo(const MachineOperand &LocMO) { |
370 | if (LocMO.isReg()) { |
371 | if (LocMO.getReg() == 0) |
372 | return UndefLocNo; |
373 | // For register locations we dont care about use/def and other flags. |
374 | for (unsigned i = 0, e = locations.size(); i != e; ++i) |
375 | if (locations[i].isReg() && |
376 | locations[i].getReg() == LocMO.getReg() && |
377 | locations[i].getSubReg() == LocMO.getSubReg()) |
378 | return i; |
379 | } else |
380 | for (unsigned i = 0, e = locations.size(); i != e; ++i) |
381 | if (LocMO.isIdenticalTo(Other: locations[i])) |
382 | return i; |
383 | locations.push_back(Elt: LocMO); |
384 | // We are storing a MachineOperand outside a MachineInstr. |
385 | locations.back().clearParent(); |
386 | // Don't store def operands. |
387 | if (locations.back().isReg()) { |
388 | if (locations.back().isDef()) |
389 | locations.back().setIsDead(false); |
390 | locations.back().setIsUse(); |
391 | } |
392 | return locations.size() - 1; |
393 | } |
394 | |
395 | /// Remove (recycle) a location number. If \p LocNo still is used by the |
396 | /// locInts nothing is done. |
397 | void removeLocationIfUnused(unsigned LocNo) { |
398 | // Bail out if LocNo still is used. |
399 | for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { |
400 | const DbgVariableValue &DbgValue = I.value(); |
401 | if (DbgValue.containsLocNo(LocNo)) |
402 | return; |
403 | } |
404 | // Remove the entry in the locations vector, and adjust all references to |
405 | // location numbers above the removed entry. |
406 | locations.erase(CI: locations.begin() + LocNo); |
407 | for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { |
408 | const DbgVariableValue &DbgValue = I.value(); |
409 | if (DbgValue.hasLocNoGreaterThan(LocNo)) |
410 | I.setValueUnchecked(DbgValue.decrementLocNosAfterPivot(Pivot: LocNo)); |
411 | } |
412 | } |
413 | |
414 | /// Ensure that all virtual register locations are mapped. |
415 | void mapVirtRegs(LDVImpl *LDV); |
416 | |
417 | /// Add a definition point to this user value. |
418 | void addDef(SlotIndex Idx, ArrayRef<MachineOperand> LocMOs, bool IsIndirect, |
419 | bool IsList, const DIExpression &Expr) { |
420 | SmallVector<unsigned> Locs; |
421 | for (const MachineOperand &Op : LocMOs) |
422 | Locs.push_back(Elt: getLocationNo(LocMO: Op)); |
423 | DbgVariableValue DbgValue(Locs, IsIndirect, IsList, Expr); |
424 | // Add a singular (Idx,Idx) -> value mapping. |
425 | LocMap::iterator I = locInts.find(x: Idx); |
426 | if (!I.valid() || I.start() != Idx) |
427 | I.insert(a: Idx, b: Idx.getNextSlot(), y: std::move(DbgValue)); |
428 | else |
429 | // A later DBG_VALUE at the same SlotIndex overrides the old location. |
430 | I.setValue(std::move(DbgValue)); |
431 | } |
432 | |
433 | /// Extend the current definition as far as possible down. |
434 | /// |
435 | /// Stop when meeting an existing def or when leaving the live |
436 | /// range of VNI. End points where VNI is no longer live are added to Kills. |
437 | /// |
438 | /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a |
439 | /// data-flow analysis to propagate them beyond basic block boundaries. |
440 | /// |
441 | /// \param Idx Starting point for the definition. |
442 | /// \param DbgValue value to propagate. |
443 | /// \param LiveIntervalInfo For each location number key in this map, |
444 | /// restricts liveness to where the LiveRange has the value equal to the\ |
445 | /// VNInfo. |
446 | /// \param [out] Kills Append end points of VNI's live range to Kills. |
447 | /// \param LIS Live intervals analysis. |
448 | void |
449 | extendDef(SlotIndex Idx, DbgVariableValue DbgValue, |
450 | SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> |
451 | &LiveIntervalInfo, |
452 | std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, |
453 | LiveIntervals &LIS); |
454 | |
455 | /// The value in LI may be copies to other registers. Determine if |
456 | /// any of the copies are available at the kill points, and add defs if |
457 | /// possible. |
458 | /// |
459 | /// \param DbgValue Location number of LI->reg, and DIExpression. |
460 | /// \param LocIntervals Scan for copies of the value for each location in the |
461 | /// corresponding LiveInterval->reg. |
462 | /// \param KilledAt The point where the range of DbgValue could be extended. |
463 | /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here. |
464 | void addDefsFromCopies( |
465 | DbgVariableValue DbgValue, |
466 | SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, |
467 | SlotIndex KilledAt, |
468 | SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, |
469 | MachineRegisterInfo &MRI, LiveIntervals &LIS); |
470 | |
471 | /// Compute the live intervals of all locations after collecting all their |
472 | /// def points. |
473 | void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, |
474 | LiveIntervals &LIS, LexicalScopes &LS); |
475 | |
476 | /// Replace OldReg ranges with NewRegs ranges where NewRegs is |
477 | /// live. Returns true if any changes were made. |
478 | bool splitRegister(Register OldReg, ArrayRef<Register> NewRegs, |
479 | LiveIntervals &LIS); |
480 | |
481 | /// Rewrite virtual register locations according to the provided virtual |
482 | /// register map. Record the stack slot offsets for the locations that |
483 | /// were spilled. |
484 | void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, |
485 | const TargetInstrInfo &TII, |
486 | const TargetRegisterInfo &TRI, |
487 | SpillOffsetMap &SpillOffsets); |
488 | |
489 | /// Recreate DBG_VALUE instruction from data structures. |
490 | void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, |
491 | const TargetInstrInfo &TII, |
492 | const TargetRegisterInfo &TRI, |
493 | const SpillOffsetMap &SpillOffsets, |
494 | BlockSkipInstsMap &BBSkipInstsMap); |
495 | |
496 | /// Return DebugLoc of this UserValue. |
497 | const DebugLoc &getDebugLoc() { return dl; } |
498 | |
499 | void print(raw_ostream &, const TargetRegisterInfo *); |
500 | }; |
501 | |
502 | /// A user label is a part of a debug info user label. |
503 | class UserLabel { |
504 | const DILabel *Label; ///< The debug info label we are part of. |
505 | DebugLoc dl; ///< The debug location for the label. This is |
506 | ///< used by dwarf writer to find lexical scope. |
507 | SlotIndex loc; ///< Slot used by the debug label. |
508 | |
509 | /// Insert a DBG_LABEL into MBB at Idx. |
510 | void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, |
511 | LiveIntervals &LIS, const TargetInstrInfo &TII, |
512 | BlockSkipInstsMap &BBSkipInstsMap); |
513 | |
514 | public: |
515 | /// Create a new UserLabel. |
516 | UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) |
517 | : Label(label), dl(std::move(L)), loc(Idx) {} |
518 | |
519 | /// Does this UserLabel match the parameters? |
520 | bool matches(const DILabel *L, const DILocation *IA, |
521 | const SlotIndex Index) const { |
522 | return Label == L && dl->getInlinedAt() == IA && loc == Index; |
523 | } |
524 | |
525 | /// Recreate DBG_LABEL instruction from data structures. |
526 | void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, |
527 | BlockSkipInstsMap &BBSkipInstsMap); |
528 | |
529 | /// Return DebugLoc of this UserLabel. |
530 | const DebugLoc &getDebugLoc() { return dl; } |
531 | |
532 | void print(raw_ostream &, const TargetRegisterInfo *); |
533 | }; |
534 | |
535 | } // end anonymous namespace |
536 | |
537 | namespace llvm { |
538 | |
539 | /// Implementation of the LiveDebugVariables pass. |
540 | |
541 | LiveDebugVariables::LiveDebugVariables() = default; |
542 | LiveDebugVariables::~LiveDebugVariables() = default; |
543 | LiveDebugVariables::LiveDebugVariables(LiveDebugVariables &&) = default; |
544 | |
545 | class LiveDebugVariables::LDVImpl { |
546 | LocMap::Allocator allocator; |
547 | MachineFunction *MF = nullptr; |
548 | LiveIntervals *LIS; |
549 | const TargetRegisterInfo *TRI; |
550 | |
551 | /// Position and VReg of a PHI instruction during register allocation. |
552 | struct PHIValPos { |
553 | SlotIndex SI; /// Slot where this PHI occurs. |
554 | Register Reg; /// VReg this PHI occurs in. |
555 | unsigned SubReg; /// Qualifiying subregister for Reg. |
556 | }; |
557 | |
558 | /// Map from debug instruction number to PHI position during allocation. |
559 | std::map<unsigned, PHIValPos> PHIValToPos; |
560 | /// Index of, for each VReg, which debug instruction numbers and corresponding |
561 | /// PHIs are sensitive to splitting. Each VReg may have multiple PHI defs, |
562 | /// at different positions. |
563 | DenseMap<Register, std::vector<unsigned>> RegToPHIIdx; |
564 | |
565 | /// Record for any debug instructions unlinked from their blocks during |
566 | /// regalloc. Stores the instr and it's location, so that they can be |
567 | /// re-inserted after regalloc is over. |
568 | struct InstrPos { |
569 | MachineInstr *MI; ///< Debug instruction, unlinked from it's block. |
570 | SlotIndex Idx; ///< Slot position where MI should be re-inserted. |
571 | MachineBasicBlock *MBB; ///< Block that MI was in. |
572 | }; |
573 | |
574 | /// Collection of stored debug instructions, preserved until after regalloc. |
575 | SmallVector<InstrPos, 32> StashedDebugInstrs; |
576 | |
577 | /// Whether emitDebugValues is called. |
578 | bool EmitDone = false; |
579 | |
580 | /// Whether the machine function is modified during the pass. |
581 | bool ModifiedMF = false; |
582 | |
583 | /// All allocated UserValue instances. |
584 | SmallVector<std::unique_ptr<UserValue>, 8> userValues; |
585 | |
586 | /// All allocated UserLabel instances. |
587 | SmallVector<std::unique_ptr<UserLabel>, 2> userLabels; |
588 | |
589 | /// Map virtual register to eq class leader. |
590 | using VRMap = DenseMap<Register, UserValue *>; |
591 | VRMap virtRegToEqClass; |
592 | |
593 | /// Map to find existing UserValue instances. |
594 | using UVMap = DenseMap<DebugVariable, UserValue *>; |
595 | UVMap userVarMap; |
596 | |
597 | /// Find or create a UserValue. |
598 | UserValue *getUserValue(const DILocalVariable *Var, |
599 | std::optional<DIExpression::FragmentInfo> Fragment, |
600 | const DebugLoc &DL); |
601 | |
602 | /// Find the EC leader for VirtReg or null. |
603 | UserValue *lookupVirtReg(Register VirtReg); |
604 | |
605 | /// Add DBG_VALUE instruction to our maps. |
606 | /// |
607 | /// \param MI DBG_VALUE instruction |
608 | /// \param Idx Last valid SLotIndex before instruction. |
609 | /// |
610 | /// \returns True if the DBG_VALUE instruction should be deleted. |
611 | bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); |
612 | |
613 | /// Track variable location debug instructions while using the instruction |
614 | /// referencing implementation. Such debug instructions do not need to be |
615 | /// updated during regalloc because they identify instructions rather than |
616 | /// register locations. However, they needs to be removed from the |
617 | /// MachineFunction during regalloc, then re-inserted later, to avoid |
618 | /// disrupting the allocator. |
619 | /// |
620 | /// \param MI Any DBG_VALUE / DBG_INSTR_REF / DBG_PHI instruction |
621 | /// \param Idx Last valid SlotIndex before instruction |
622 | /// |
623 | /// \returns Iterator to continue processing from after unlinking. |
624 | MachineBasicBlock::iterator handleDebugInstr(MachineInstr &MI, SlotIndex Idx); |
625 | |
626 | /// Add DBG_LABEL instruction to UserLabel. |
627 | /// |
628 | /// \param MI DBG_LABEL instruction |
629 | /// \param Idx Last valid SlotIndex before instruction. |
630 | /// |
631 | /// \returns True if the DBG_LABEL instruction should be deleted. |
632 | bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); |
633 | |
634 | /// Collect and erase all DBG_VALUE instructions, adding a UserValue def |
635 | /// for each instruction. |
636 | /// |
637 | /// \param mf MachineFunction to be scanned. |
638 | /// \param InstrRef Whether to operate in instruction referencing mode. If |
639 | /// true, most of LiveDebugVariables doesn't run. |
640 | /// |
641 | /// \returns True if any debug values were found. |
642 | bool collectDebugValues(MachineFunction &mf, bool InstrRef); |
643 | |
644 | /// Compute the live intervals of all user values after collecting all |
645 | /// their def points. |
646 | void computeIntervals(); |
647 | |
648 | public: |
649 | LDVImpl(LiveIntervals *LIS) : LIS(LIS) {} |
650 | |
651 | bool runOnMachineFunction(MachineFunction &mf, bool InstrRef); |
652 | |
653 | /// Release all memory. |
654 | void clear() { |
655 | MF = nullptr; |
656 | PHIValToPos.clear(); |
657 | RegToPHIIdx.clear(); |
658 | StashedDebugInstrs.clear(); |
659 | userValues.clear(); |
660 | userLabels.clear(); |
661 | virtRegToEqClass.clear(); |
662 | userVarMap.clear(); |
663 | // Make sure we call emitDebugValues if the machine function was modified. |
664 | assert((!ModifiedMF || EmitDone) && |
665 | "Dbg values are not emitted in LDV" ); |
666 | EmitDone = false; |
667 | ModifiedMF = false; |
668 | } |
669 | |
670 | /// Map virtual register to an equivalence class. |
671 | void mapVirtReg(Register VirtReg, UserValue *EC); |
672 | |
673 | /// Replace any PHI referring to OldReg with its corresponding NewReg, if |
674 | /// present. |
675 | void splitPHIRegister(Register OldReg, ArrayRef<Register> NewRegs); |
676 | |
677 | /// Replace all references to OldReg with NewRegs. |
678 | void splitRegister(Register OldReg, ArrayRef<Register> NewRegs); |
679 | |
680 | /// Recreate DBG_VALUE instruction from data structures. |
681 | void emitDebugValues(VirtRegMap *VRM); |
682 | |
683 | void print(raw_ostream&); |
684 | }; |
685 | |
686 | } // namespace llvm |
687 | |
688 | static void printDebugLoc(const DebugLoc &DL, raw_ostream &, |
689 | const LLVMContext &Ctx) { |
690 | if (!DL) |
691 | return; |
692 | |
693 | auto *Scope = cast<DIScope>(Val: DL.getScope()); |
694 | // Omit the directory, because it's likely to be long and uninteresting. |
695 | CommentOS << Scope->getFilename(); |
696 | CommentOS << ':' << DL.getLine(); |
697 | if (DL.getCol() != 0) |
698 | CommentOS << ':' << DL.getCol(); |
699 | |
700 | DebugLoc InlinedAtDL = DL.getInlinedAt(); |
701 | if (!InlinedAtDL) |
702 | return; |
703 | |
704 | CommentOS << " @[ " ; |
705 | printDebugLoc(DL: InlinedAtDL, CommentOS, Ctx); |
706 | CommentOS << " ]" ; |
707 | } |
708 | |
709 | static void printExtendedName(raw_ostream &OS, const DINode *Node, |
710 | const DILocation *DL) { |
711 | const LLVMContext &Ctx = Node->getContext(); |
712 | StringRef Res; |
713 | unsigned Line = 0; |
714 | if (const auto *V = dyn_cast<const DILocalVariable>(Val: Node)) { |
715 | Res = V->getName(); |
716 | Line = V->getLine(); |
717 | } else if (const auto *L = dyn_cast<const DILabel>(Val: Node)) { |
718 | Res = L->getName(); |
719 | Line = L->getLine(); |
720 | } |
721 | |
722 | if (!Res.empty()) |
723 | OS << Res << "," << Line; |
724 | auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; |
725 | if (InlinedAt) { |
726 | if (DebugLoc InlinedAtDL = InlinedAt) { |
727 | OS << " @[" ; |
728 | printDebugLoc(DL: InlinedAtDL, CommentOS&: OS, Ctx); |
729 | OS << "]" ; |
730 | } |
731 | } |
732 | } |
733 | |
734 | void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { |
735 | OS << "!\"" ; |
736 | printExtendedName(OS, Node: Variable, DL: dl); |
737 | |
738 | OS << "\"\t" ; |
739 | for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { |
740 | OS << " [" << I.start() << ';' << I.stop() << "):" ; |
741 | if (I.value().isUndef()) |
742 | OS << " undef" ; |
743 | else { |
744 | I.value().printLocNos(OS); |
745 | if (I.value().getWasIndirect()) |
746 | OS << " ind" ; |
747 | else if (I.value().getWasList()) |
748 | OS << " list" ; |
749 | } |
750 | } |
751 | for (unsigned i = 0, e = locations.size(); i != e; ++i) { |
752 | OS << " Loc" << i << '='; |
753 | locations[i].print(os&: OS, TRI); |
754 | } |
755 | OS << '\n'; |
756 | } |
757 | |
758 | void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { |
759 | OS << "!\"" ; |
760 | printExtendedName(OS, Node: Label, DL: dl); |
761 | |
762 | OS << "\"\t" ; |
763 | OS << loc; |
764 | OS << '\n'; |
765 | } |
766 | |
767 | void LiveDebugVariables::LDVImpl::print(raw_ostream &OS) { |
768 | OS << "********** DEBUG VARIABLES **********\n" ; |
769 | for (auto &userValue : userValues) |
770 | userValue->print(OS, TRI); |
771 | OS << "********** DEBUG LABELS **********\n" ; |
772 | for (auto &userLabel : userLabels) |
773 | userLabel->print(OS, TRI); |
774 | } |
775 | |
776 | void UserValue::mapVirtRegs(LiveDebugVariables::LDVImpl *LDV) { |
777 | for (const MachineOperand &MO : locations) |
778 | if (MO.isReg() && MO.getReg().isVirtual()) |
779 | LDV->mapVirtReg(VirtReg: MO.getReg(), EC: this); |
780 | } |
781 | |
782 | UserValue *LiveDebugVariables::LDVImpl::getUserValue( |
783 | const DILocalVariable *Var, |
784 | std::optional<DIExpression::FragmentInfo> Fragment, const DebugLoc &DL) { |
785 | // FIXME: Handle partially overlapping fragments. See |
786 | // https://reviews.llvm.org/D70121#1849741. |
787 | DebugVariable ID(Var, Fragment, DL->getInlinedAt()); |
788 | UserValue *&UV = userVarMap[ID]; |
789 | if (!UV) { |
790 | userValues.push_back( |
791 | Elt: std::make_unique<UserValue>(args&: Var, args&: Fragment, args: DL, args&: allocator)); |
792 | UV = userValues.back().get(); |
793 | } |
794 | return UV; |
795 | } |
796 | |
797 | void LiveDebugVariables::LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) { |
798 | assert(VirtReg.isVirtual() && "Only map VirtRegs" ); |
799 | UserValue *&Leader = virtRegToEqClass[VirtReg]; |
800 | Leader = UserValue::merge(L1: Leader, L2: EC); |
801 | } |
802 | |
803 | UserValue *LiveDebugVariables::LDVImpl::lookupVirtReg(Register VirtReg) { |
804 | if (UserValue *UV = virtRegToEqClass.lookup(Val: VirtReg)) |
805 | return UV->getLeader(); |
806 | return nullptr; |
807 | } |
808 | |
809 | bool LiveDebugVariables::LDVImpl::handleDebugValue(MachineInstr &MI, |
810 | SlotIndex Idx) { |
811 | // DBG_VALUE loc, offset, variable, expr |
812 | // DBG_VALUE_LIST variable, expr, locs... |
813 | if (!MI.isDebugValue()) { |
814 | LLVM_DEBUG(dbgs() << "Can't handle non-DBG_VALUE*: " << MI); |
815 | return false; |
816 | } |
817 | if (!MI.getDebugVariableOp().isMetadata()) { |
818 | LLVM_DEBUG(dbgs() << "Can't handle DBG_VALUE* with invalid variable: " |
819 | << MI); |
820 | return false; |
821 | } |
822 | if (MI.isNonListDebugValue() && |
823 | (MI.getNumOperands() != 4 || |
824 | !(MI.getDebugOffset().isImm() || MI.getDebugOffset().isReg()))) { |
825 | LLVM_DEBUG(dbgs() << "Can't handle malformed DBG_VALUE: " << MI); |
826 | return false; |
827 | } |
828 | |
829 | // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual |
830 | // register that hasn't been defined yet. If we do not remove those here, then |
831 | // the re-insertion of the DBG_VALUE instruction after register allocation |
832 | // will be incorrect. |
833 | bool Discard = false; |
834 | for (const MachineOperand &Op : MI.debug_operands()) { |
835 | if (Op.isReg() && Op.getReg().isVirtual()) { |
836 | const Register Reg = Op.getReg(); |
837 | if (!LIS->hasInterval(Reg)) { |
838 | // The DBG_VALUE is described by a virtual register that does not have a |
839 | // live interval. Discard the DBG_VALUE. |
840 | Discard = true; |
841 | LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx |
842 | << " " << MI); |
843 | } else { |
844 | // The DBG_VALUE is only valid if either Reg is live out from Idx, or |
845 | // Reg is defined dead at Idx (where Idx is the slot index for the |
846 | // instruction preceding the DBG_VALUE). |
847 | const LiveInterval &LI = LIS->getInterval(Reg); |
848 | LiveQueryResult LRQ = LI.Query(Idx); |
849 | if (!LRQ.valueOutOrDead()) { |
850 | // We have found a DBG_VALUE with the value in a virtual register that |
851 | // is not live. Discard the DBG_VALUE. |
852 | Discard = true; |
853 | LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx |
854 | << " " << MI); |
855 | } |
856 | } |
857 | } |
858 | } |
859 | |
860 | // Get or create the UserValue for (variable,offset) here. |
861 | bool IsIndirect = MI.isDebugOffsetImm(); |
862 | if (IsIndirect) |
863 | assert(MI.getDebugOffset().getImm() == 0 && |
864 | "DBG_VALUE with nonzero offset" ); |
865 | bool IsList = MI.isDebugValueList(); |
866 | const DILocalVariable *Var = MI.getDebugVariable(); |
867 | const DIExpression *Expr = MI.getDebugExpression(); |
868 | UserValue *UV = getUserValue(Var, Fragment: Expr->getFragmentInfo(), DL: MI.getDebugLoc()); |
869 | if (!Discard) |
870 | UV->addDef(Idx, |
871 | LocMOs: ArrayRef<MachineOperand>(MI.debug_operands().begin(), |
872 | MI.debug_operands().end()), |
873 | IsIndirect, IsList, Expr: *Expr); |
874 | else { |
875 | MachineOperand MO = MachineOperand::CreateReg(Reg: 0U, isDef: false); |
876 | MO.setIsDebug(); |
877 | // We should still pass a list the same size as MI.debug_operands() even if |
878 | // all MOs are undef, so that DbgVariableValue can correctly adjust the |
879 | // expression while removing the duplicated undefs. |
880 | SmallVector<MachineOperand, 4> UndefMOs(MI.getNumDebugOperands(), MO); |
881 | UV->addDef(Idx, LocMOs: UndefMOs, IsIndirect: false, IsList, Expr: *Expr); |
882 | } |
883 | return true; |
884 | } |
885 | |
886 | MachineBasicBlock::iterator |
887 | LiveDebugVariables::LDVImpl::handleDebugInstr(MachineInstr &MI, SlotIndex Idx) { |
888 | assert(MI.isDebugValueLike() || MI.isDebugPHI()); |
889 | |
890 | // In instruction referencing mode, there should be no DBG_VALUE instructions |
891 | // that refer to virtual registers. They might still refer to constants. |
892 | if (MI.isDebugValueLike()) |
893 | assert(none_of(MI.debug_operands(), |
894 | [](const MachineOperand &MO) { |
895 | return MO.isReg() && MO.getReg().isVirtual(); |
896 | }) && |
897 | "MIs should not refer to Virtual Registers in InstrRef mode." ); |
898 | |
899 | // Unlink the instruction, store it in the debug instructions collection. |
900 | auto NextInst = std::next(x: MI.getIterator()); |
901 | auto *MBB = MI.getParent(); |
902 | MI.removeFromParent(); |
903 | StashedDebugInstrs.push_back(Elt: {.MI: &MI, .Idx: Idx, .MBB: MBB}); |
904 | return NextInst; |
905 | } |
906 | |
907 | bool LiveDebugVariables::LDVImpl::handleDebugLabel(MachineInstr &MI, |
908 | SlotIndex Idx) { |
909 | // DBG_LABEL label |
910 | if (MI.getNumOperands() != 1 || !MI.getOperand(i: 0).isMetadata()) { |
911 | LLVM_DEBUG(dbgs() << "Can't handle " << MI); |
912 | return false; |
913 | } |
914 | |
915 | // Get or create the UserLabel for label here. |
916 | const DILabel *Label = MI.getDebugLabel(); |
917 | const DebugLoc &DL = MI.getDebugLoc(); |
918 | bool Found = false; |
919 | for (auto const &L : userLabels) { |
920 | if (L->matches(L: Label, IA: DL->getInlinedAt(), Index: Idx)) { |
921 | Found = true; |
922 | break; |
923 | } |
924 | } |
925 | if (!Found) |
926 | userLabels.push_back(Elt: std::make_unique<UserLabel>(args&: Label, args: DL, args&: Idx)); |
927 | |
928 | return true; |
929 | } |
930 | |
931 | bool LiveDebugVariables::LDVImpl::collectDebugValues(MachineFunction &mf, |
932 | bool InstrRef) { |
933 | bool Changed = false; |
934 | for (MachineBasicBlock &MBB : mf) { |
935 | for (MachineBasicBlock::iterator MBBI = MBB.begin(), MBBE = MBB.end(); |
936 | MBBI != MBBE;) { |
937 | // Use the first debug instruction in the sequence to get a SlotIndex |
938 | // for following consecutive debug instructions. |
939 | if (!MBBI->isDebugOrPseudoInstr()) { |
940 | ++MBBI; |
941 | continue; |
942 | } |
943 | // Debug instructions has no slot index. Use the previous |
944 | // non-debug instruction's SlotIndex as its SlotIndex. |
945 | SlotIndex Idx = |
946 | MBBI == MBB.begin() |
947 | ? LIS->getMBBStartIdx(mbb: &MBB) |
948 | : LIS->getInstructionIndex(Instr: *std::prev(x: MBBI)).getRegSlot(); |
949 | // Handle consecutive debug instructions with the same slot index. |
950 | do { |
951 | // In instruction referencing mode, pass each instr to handleDebugInstr |
952 | // to be unlinked. Ignore DBG_VALUE_LISTs -- they refer to vregs, and |
953 | // need to go through the normal live interval splitting process. |
954 | if (InstrRef && (MBBI->isNonListDebugValue() || MBBI->isDebugPHI() || |
955 | MBBI->isDebugRef())) { |
956 | MBBI = handleDebugInstr(MI&: *MBBI, Idx); |
957 | Changed = true; |
958 | // In normal debug mode, use the dedicated DBG_VALUE / DBG_LABEL handler |
959 | // to track things through register allocation, and erase the instr. |
960 | } else if ((MBBI->isDebugValue() && handleDebugValue(MI&: *MBBI, Idx)) || |
961 | (MBBI->isDebugLabel() && handleDebugLabel(MI&: *MBBI, Idx))) { |
962 | MBBI = MBB.erase(I: MBBI); |
963 | Changed = true; |
964 | } else |
965 | ++MBBI; |
966 | } while (MBBI != MBBE && MBBI->isDebugOrPseudoInstr()); |
967 | } |
968 | } |
969 | return Changed; |
970 | } |
971 | |
972 | void UserValue::extendDef( |
973 | SlotIndex Idx, DbgVariableValue DbgValue, |
974 | SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> |
975 | &LiveIntervalInfo, |
976 | std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> &Kills, |
977 | LiveIntervals &LIS) { |
978 | SlotIndex Start = Idx; |
979 | MachineBasicBlock *MBB = LIS.getMBBFromIndex(index: Start); |
980 | SlotIndex Stop = LIS.getMBBEndIdx(mbb: MBB); |
981 | LocMap::iterator I = locInts.find(x: Start); |
982 | |
983 | // Limit to the intersection of the VNIs' live ranges. |
984 | for (auto &LII : LiveIntervalInfo) { |
985 | LiveRange *LR = LII.second.first; |
986 | assert(LR && LII.second.second && "Missing range info for Idx." ); |
987 | LiveInterval::Segment *Segment = LR->getSegmentContaining(Idx: Start); |
988 | assert(Segment && Segment->valno == LII.second.second && |
989 | "Invalid VNInfo for Idx given?" ); |
990 | if (Segment->end < Stop) { |
991 | Stop = Segment->end; |
992 | Kills = {Stop, {LII.first}}; |
993 | } else if (Segment->end == Stop && Kills) { |
994 | // If multiple locations end at the same place, track all of them in |
995 | // Kills. |
996 | Kills->second.push_back(Elt: LII.first); |
997 | } |
998 | } |
999 | |
1000 | // There could already be a short def at Start. |
1001 | if (I.valid() && I.start() <= Start) { |
1002 | // Stop when meeting a different location or an already extended interval. |
1003 | Start = Start.getNextSlot(); |
1004 | if (I.value() != DbgValue || I.stop() != Start) { |
1005 | // Clear `Kills`, as we have a new def available. |
1006 | Kills = std::nullopt; |
1007 | return; |
1008 | } |
1009 | // This is a one-slot placeholder. Just skip it. |
1010 | ++I; |
1011 | } |
1012 | |
1013 | // Limited by the next def. |
1014 | if (I.valid() && I.start() < Stop) { |
1015 | Stop = I.start(); |
1016 | // Clear `Kills`, as we have a new def available. |
1017 | Kills = std::nullopt; |
1018 | } |
1019 | |
1020 | if (Start < Stop) { |
1021 | DbgVariableValue ExtDbgValue(DbgValue); |
1022 | I.insert(a: Start, b: Stop, y: std::move(ExtDbgValue)); |
1023 | } |
1024 | } |
1025 | |
1026 | void UserValue::addDefsFromCopies( |
1027 | DbgVariableValue DbgValue, |
1028 | SmallVectorImpl<std::pair<unsigned, LiveInterval *>> &LocIntervals, |
1029 | SlotIndex KilledAt, |
1030 | SmallVectorImpl<std::pair<SlotIndex, DbgVariableValue>> &NewDefs, |
1031 | MachineRegisterInfo &MRI, LiveIntervals &LIS) { |
1032 | // Don't track copies from physregs, there are too many uses. |
1033 | if (any_of(Range&: LocIntervals, |
1034 | P: [](auto LocI) { return !LocI.second->reg().isVirtual(); })) |
1035 | return; |
1036 | |
1037 | // Collect all the (vreg, valno) pairs that are copies of LI. |
1038 | SmallDenseMap<unsigned, |
1039 | SmallVector<std::pair<LiveInterval *, const VNInfo *>, 4>> |
1040 | CopyValues; |
1041 | for (auto &LocInterval : LocIntervals) { |
1042 | unsigned LocNo = LocInterval.first; |
1043 | LiveInterval *LI = LocInterval.second; |
1044 | for (MachineOperand &MO : MRI.use_nodbg_operands(Reg: LI->reg())) { |
1045 | MachineInstr *MI = MO.getParent(); |
1046 | // Copies of the full value. |
1047 | if (MO.getSubReg() || !MI->isCopy()) |
1048 | continue; |
1049 | Register DstReg = MI->getOperand(i: 0).getReg(); |
1050 | |
1051 | // Don't follow copies to physregs. These are usually setting up call |
1052 | // arguments, and the argument registers are always call clobbered. We are |
1053 | // better off in the source register which could be a callee-saved |
1054 | // register, or it could be spilled. |
1055 | if (!DstReg.isVirtual()) |
1056 | continue; |
1057 | |
1058 | // Is the value extended to reach this copy? If not, another def may be |
1059 | // blocking it, or we are looking at a wrong value of LI. |
1060 | SlotIndex Idx = LIS.getInstructionIndex(Instr: *MI); |
1061 | LocMap::iterator I = locInts.find(x: Idx.getRegSlot(EC: true)); |
1062 | if (!I.valid() || I.value() != DbgValue) |
1063 | continue; |
1064 | |
1065 | if (!LIS.hasInterval(Reg: DstReg)) |
1066 | continue; |
1067 | LiveInterval *DstLI = &LIS.getInterval(Reg: DstReg); |
1068 | const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx: Idx.getRegSlot()); |
1069 | assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value" ); |
1070 | CopyValues[LocNo].push_back(Elt: std::make_pair(x&: DstLI, y&: DstVNI)); |
1071 | } |
1072 | } |
1073 | |
1074 | if (CopyValues.empty()) |
1075 | return; |
1076 | |
1077 | #if !defined(NDEBUG) |
1078 | for (auto &LocInterval : LocIntervals) |
1079 | LLVM_DEBUG(dbgs() << "Got " << CopyValues[LocInterval.first].size() |
1080 | << " copies of " << *LocInterval.second << '\n'); |
1081 | #endif |
1082 | |
1083 | // Try to add defs of the copied values for the kill point. Check that there |
1084 | // isn't already a def at Idx. |
1085 | LocMap::iterator I = locInts.find(x: KilledAt); |
1086 | if (I.valid() && I.start() <= KilledAt) |
1087 | return; |
1088 | DbgVariableValue NewValue(DbgValue); |
1089 | for (auto &LocInterval : LocIntervals) { |
1090 | unsigned LocNo = LocInterval.first; |
1091 | bool FoundCopy = false; |
1092 | for (auto &LIAndVNI : CopyValues[LocNo]) { |
1093 | LiveInterval *DstLI = LIAndVNI.first; |
1094 | const VNInfo *DstVNI = LIAndVNI.second; |
1095 | if (DstLI->getVNInfoAt(Idx: KilledAt) != DstVNI) |
1096 | continue; |
1097 | LLVM_DEBUG(dbgs() << "Kill at " << KilledAt << " covered by valno #" |
1098 | << DstVNI->id << " in " << *DstLI << '\n'); |
1099 | MachineInstr *CopyMI = LIS.getInstructionFromIndex(index: DstVNI->def); |
1100 | assert(CopyMI && CopyMI->isCopy() && "Bad copy value" ); |
1101 | unsigned NewLocNo = getLocationNo(LocMO: CopyMI->getOperand(i: 0)); |
1102 | NewValue = NewValue.changeLocNo(OldLocNo: LocNo, NewLocNo); |
1103 | FoundCopy = true; |
1104 | break; |
1105 | } |
1106 | // If there are any killed locations we can't find a copy for, we can't |
1107 | // extend the variable value. |
1108 | if (!FoundCopy) |
1109 | return; |
1110 | } |
1111 | I.insert(a: KilledAt, b: KilledAt.getNextSlot(), y: NewValue); |
1112 | NewDefs.push_back(Elt: std::make_pair(x&: KilledAt, y&: NewValue)); |
1113 | } |
1114 | |
1115 | void UserValue::computeIntervals(MachineRegisterInfo &MRI, |
1116 | const TargetRegisterInfo &TRI, |
1117 | LiveIntervals &LIS, LexicalScopes &LS) { |
1118 | SmallVector<std::pair<SlotIndex, DbgVariableValue>, 16> Defs; |
1119 | |
1120 | // Collect all defs to be extended (Skipping undefs). |
1121 | for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) |
1122 | if (!I.value().isUndef()) |
1123 | Defs.push_back(Elt: std::make_pair(x: I.start(), y: I.value())); |
1124 | |
1125 | // Extend all defs, and possibly add new ones along the way. |
1126 | for (unsigned i = 0; i != Defs.size(); ++i) { |
1127 | SlotIndex Idx = Defs[i].first; |
1128 | DbgVariableValue DbgValue = Defs[i].second; |
1129 | SmallDenseMap<unsigned, std::pair<LiveRange *, const VNInfo *>> LIs; |
1130 | bool ShouldExtendDef = false; |
1131 | for (unsigned LocNo : DbgValue.loc_nos()) { |
1132 | const MachineOperand &LocMO = locations[LocNo]; |
1133 | if (!LocMO.isReg() || !LocMO.getReg().isVirtual()) { |
1134 | ShouldExtendDef |= !LocMO.isReg(); |
1135 | continue; |
1136 | } |
1137 | ShouldExtendDef = true; |
1138 | LiveInterval *LI = nullptr; |
1139 | const VNInfo *VNI = nullptr; |
1140 | if (LIS.hasInterval(Reg: LocMO.getReg())) { |
1141 | LI = &LIS.getInterval(Reg: LocMO.getReg()); |
1142 | VNI = LI->getVNInfoAt(Idx); |
1143 | } |
1144 | if (LI && VNI) |
1145 | LIs[LocNo] = {LI, VNI}; |
1146 | } |
1147 | if (ShouldExtendDef) { |
1148 | std::optional<std::pair<SlotIndex, SmallVector<unsigned>>> Kills; |
1149 | extendDef(Idx, DbgValue, LiveIntervalInfo&: LIs, Kills, LIS); |
1150 | |
1151 | if (Kills) { |
1152 | SmallVector<std::pair<unsigned, LiveInterval *>, 2> KilledLocIntervals; |
1153 | bool AnySubreg = false; |
1154 | for (unsigned LocNo : Kills->second) { |
1155 | const MachineOperand &LocMO = this->locations[LocNo]; |
1156 | if (LocMO.getSubReg()) { |
1157 | AnySubreg = true; |
1158 | break; |
1159 | } |
1160 | LiveInterval *LI = &LIS.getInterval(Reg: LocMO.getReg()); |
1161 | KilledLocIntervals.push_back(Elt: {LocNo, LI}); |
1162 | } |
1163 | |
1164 | // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that |
1165 | // if the original location for example is %vreg0:sub_hi, and we find a |
1166 | // full register copy in addDefsFromCopies (at the moment it only |
1167 | // handles full register copies), then we must add the sub1 sub-register |
1168 | // index to the new location. However, that is only possible if the new |
1169 | // virtual register is of the same regclass (or if there is an |
1170 | // equivalent sub-register in that regclass). For now, simply skip |
1171 | // handling copies if a sub-register is involved. |
1172 | if (!AnySubreg) |
1173 | addDefsFromCopies(DbgValue, LocIntervals&: KilledLocIntervals, KilledAt: Kills->first, NewDefs&: Defs, |
1174 | MRI, LIS); |
1175 | } |
1176 | } |
1177 | |
1178 | // For physregs, we only mark the start slot idx. DwarfDebug will see it |
1179 | // as if the DBG_VALUE is valid up until the end of the basic block, or |
1180 | // the next def of the physical register. So we do not need to extend the |
1181 | // range. It might actually happen that the DBG_VALUE is the last use of |
1182 | // the physical register (e.g. if this is an unused input argument to a |
1183 | // function). |
1184 | } |
1185 | |
1186 | // The computed intervals may extend beyond the range of the debug |
1187 | // location's lexical scope. In this case, splitting of an interval |
1188 | // can result in an interval outside of the scope being created, |
1189 | // causing extra unnecessary DBG_VALUEs to be emitted. To prevent |
1190 | // this, trim the intervals to the lexical scope in the case of inlined |
1191 | // variables, since heavy inlining may cause production of dramatically big |
1192 | // number of DBG_VALUEs to be generated. |
1193 | if (!dl.getInlinedAt()) |
1194 | return; |
1195 | |
1196 | LexicalScope *Scope = LS.findLexicalScope(DL: dl); |
1197 | if (!Scope) |
1198 | return; |
1199 | |
1200 | SlotIndex PrevEnd; |
1201 | LocMap::iterator I = locInts.begin(); |
1202 | |
1203 | // Iterate over the lexical scope ranges. Each time round the loop |
1204 | // we check the intervals for overlap with the end of the previous |
1205 | // range and the start of the next. The first range is handled as |
1206 | // a special case where there is no PrevEnd. |
1207 | for (const InsnRange &Range : Scope->getRanges()) { |
1208 | SlotIndex RStart = LIS.getInstructionIndex(Instr: *Range.first); |
1209 | SlotIndex REnd = LIS.getInstructionIndex(Instr: *Range.second); |
1210 | |
1211 | // Variable locations at the first instruction of a block should be |
1212 | // based on the block's SlotIndex, not the first instruction's index. |
1213 | if (Range.first == Range.first->getParent()->begin()) |
1214 | RStart = LIS.getSlotIndexes()->getIndexBefore(MI: *Range.first); |
1215 | |
1216 | // At the start of each iteration I has been advanced so that |
1217 | // I.stop() >= PrevEnd. Check for overlap. |
1218 | if (PrevEnd && I.start() < PrevEnd) { |
1219 | SlotIndex IStop = I.stop(); |
1220 | DbgVariableValue DbgValue = I.value(); |
1221 | |
1222 | // Stop overlaps previous end - trim the end of the interval to |
1223 | // the scope range. |
1224 | I.setStopUnchecked(PrevEnd); |
1225 | ++I; |
1226 | |
1227 | // If the interval also overlaps the start of the "next" (i.e. |
1228 | // current) range create a new interval for the remainder (which |
1229 | // may be further trimmed). |
1230 | if (RStart < IStop) |
1231 | I.insert(a: RStart, b: IStop, y: DbgValue); |
1232 | } |
1233 | |
1234 | // Advance I so that I.stop() >= RStart, and check for overlap. |
1235 | I.advanceTo(x: RStart); |
1236 | if (!I.valid()) |
1237 | return; |
1238 | |
1239 | if (I.start() < RStart) { |
1240 | // Interval start overlaps range - trim to the scope range. |
1241 | I.setStartUnchecked(RStart); |
1242 | // Remember that this interval was trimmed. |
1243 | trimmedDefs.insert(V: RStart); |
1244 | } |
1245 | |
1246 | // The end of a lexical scope range is the last instruction in the |
1247 | // range. To convert to an interval we need the index of the |
1248 | // instruction after it. |
1249 | REnd = REnd.getNextIndex(); |
1250 | |
1251 | // Advance I to first interval outside current range. |
1252 | I.advanceTo(x: REnd); |
1253 | if (!I.valid()) |
1254 | return; |
1255 | |
1256 | PrevEnd = REnd; |
1257 | } |
1258 | |
1259 | // Check for overlap with end of final range. |
1260 | if (PrevEnd && I.start() < PrevEnd) |
1261 | I.setStopUnchecked(PrevEnd); |
1262 | } |
1263 | |
1264 | void LiveDebugVariables::LDVImpl::computeIntervals() { |
1265 | LexicalScopes LS; |
1266 | LS.initialize(*MF); |
1267 | |
1268 | for (const auto &UV : userValues) { |
1269 | UV->computeIntervals(MRI&: MF->getRegInfo(), TRI: *TRI, LIS&: *LIS, LS); |
1270 | UV->mapVirtRegs(LDV: this); |
1271 | } |
1272 | } |
1273 | |
1274 | bool LiveDebugVariables::LDVImpl::runOnMachineFunction(MachineFunction &mf, |
1275 | bool InstrRef) { |
1276 | clear(); |
1277 | MF = &mf; |
1278 | TRI = mf.getSubtarget().getRegisterInfo(); |
1279 | LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " |
1280 | << mf.getName() << " **********\n" ); |
1281 | |
1282 | bool Changed = collectDebugValues(mf, InstrRef); |
1283 | computeIntervals(); |
1284 | LLVM_DEBUG(print(dbgs())); |
1285 | |
1286 | // Collect the set of VReg / SlotIndexs where PHIs occur; index the sensitive |
1287 | // VRegs too, for when we're notified of a range split. |
1288 | SlotIndexes *Slots = LIS->getSlotIndexes(); |
1289 | for (const auto &PHIIt : MF->DebugPHIPositions) { |
1290 | const MachineFunction::DebugPHIRegallocPos &Position = PHIIt.second; |
1291 | MachineBasicBlock *MBB = Position.MBB; |
1292 | Register Reg = Position.Reg; |
1293 | unsigned SubReg = Position.SubReg; |
1294 | SlotIndex SI = Slots->getMBBStartIdx(mbb: MBB); |
1295 | PHIValPos VP = {.SI: SI, .Reg: Reg, .SubReg: SubReg}; |
1296 | PHIValToPos.insert(x: std::make_pair(x: PHIIt.first, y&: VP)); |
1297 | RegToPHIIdx[Reg].push_back(x: PHIIt.first); |
1298 | } |
1299 | |
1300 | ModifiedMF = Changed; |
1301 | return Changed; |
1302 | } |
1303 | |
1304 | static void removeDebugInstrs(MachineFunction &mf) { |
1305 | for (MachineBasicBlock &MBB : mf) { |
1306 | for (MachineInstr &MI : llvm::make_early_inc_range(Range&: MBB)) |
1307 | if (MI.isDebugInstr()) |
1308 | MBB.erase(I: &MI); |
1309 | } |
1310 | } |
1311 | |
1312 | bool LiveDebugVariablesWrapperLegacy::runOnMachineFunction( |
1313 | MachineFunction &mf) { |
1314 | auto *LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); |
1315 | |
1316 | Impl = std::make_unique<LiveDebugVariables>(); |
1317 | Impl->analyze(MF&: mf, LIS); |
1318 | return false; |
1319 | } |
1320 | |
1321 | AnalysisKey LiveDebugVariablesAnalysis::Key; |
1322 | |
1323 | LiveDebugVariables |
1324 | LiveDebugVariablesAnalysis::run(MachineFunction &MF, |
1325 | MachineFunctionAnalysisManager &MFAM) { |
1326 | MFPropsModifier _(*this, MF); |
1327 | |
1328 | auto *LIS = &MFAM.getResult<LiveIntervalsAnalysis>(IR&: MF); |
1329 | LiveDebugVariables LDV; |
1330 | LDV.analyze(MF, LIS); |
1331 | return LDV; |
1332 | } |
1333 | |
1334 | PreservedAnalyses |
1335 | LiveDebugVariablesPrinterPass::run(MachineFunction &MF, |
1336 | MachineFunctionAnalysisManager &MFAM) { |
1337 | auto &LDV = MFAM.getResult<LiveDebugVariablesAnalysis>(IR&: MF); |
1338 | LDV.print(OS); |
1339 | return PreservedAnalyses::all(); |
1340 | } |
1341 | |
1342 | void LiveDebugVariables::releaseMemory() { |
1343 | if (PImpl) |
1344 | PImpl->clear(); |
1345 | } |
1346 | |
1347 | bool LiveDebugVariables::invalidate( |
1348 | MachineFunction &, const PreservedAnalyses &PA, |
1349 | MachineFunctionAnalysisManager::Invalidator &) { |
1350 | auto PAC = PA.getChecker<LiveDebugVariablesAnalysis>(); |
1351 | // Some architectures split the register allocation into multiple phases based |
1352 | // on register classes. This requires preserving analyses between the phases |
1353 | // by default. |
1354 | return !PAC.preservedWhenStateless(); |
1355 | } |
1356 | |
1357 | void LiveDebugVariables::analyze(MachineFunction &MF, LiveIntervals *LIS) { |
1358 | if (!EnableLDV) |
1359 | return; |
1360 | if (!MF.getFunction().getSubprogram()) { |
1361 | removeDebugInstrs(mf&: MF); |
1362 | return; |
1363 | } |
1364 | |
1365 | PImpl.reset(p: new LDVImpl(LIS)); |
1366 | |
1367 | // Have we been asked to track variable locations using instruction |
1368 | // referencing? |
1369 | bool InstrRef = MF.useDebugInstrRef(); |
1370 | PImpl->runOnMachineFunction(mf&: MF, InstrRef); |
1371 | } |
1372 | |
1373 | //===----------------------------------------------------------------------===// |
1374 | // Live Range Splitting |
1375 | //===----------------------------------------------------------------------===// |
1376 | |
1377 | bool |
1378 | UserValue::splitLocation(unsigned OldLocNo, ArrayRef<Register> NewRegs, |
1379 | LiveIntervals& LIS) { |
1380 | LLVM_DEBUG({ |
1381 | dbgs() << "Splitting Loc" << OldLocNo << '\t'; |
1382 | print(dbgs(), nullptr); |
1383 | }); |
1384 | bool DidChange = false; |
1385 | LocMap::iterator LocMapI; |
1386 | LocMapI.setMap(locInts); |
1387 | for (Register NewReg : NewRegs) { |
1388 | LiveInterval *LI = &LIS.getInterval(Reg: NewReg); |
1389 | if (LI->empty()) |
1390 | continue; |
1391 | |
1392 | // Don't allocate the new LocNo until it is needed. |
1393 | unsigned NewLocNo = UndefLocNo; |
1394 | |
1395 | // Iterate over the overlaps between locInts and LI. |
1396 | LocMapI.find(x: LI->beginIndex()); |
1397 | if (!LocMapI.valid()) |
1398 | continue; |
1399 | LiveInterval::iterator LII = LI->advanceTo(I: LI->begin(), Pos: LocMapI.start()); |
1400 | LiveInterval::iterator LIE = LI->end(); |
1401 | while (LocMapI.valid() && LII != LIE) { |
1402 | // At this point, we know that LocMapI.stop() > LII->start. |
1403 | LII = LI->advanceTo(I: LII, Pos: LocMapI.start()); |
1404 | if (LII == LIE) |
1405 | break; |
1406 | |
1407 | // Now LII->end > LocMapI.start(). Do we have an overlap? |
1408 | if (LocMapI.value().containsLocNo(LocNo: OldLocNo) && |
1409 | LII->start < LocMapI.stop()) { |
1410 | // Overlapping correct location. Allocate NewLocNo now. |
1411 | if (NewLocNo == UndefLocNo) { |
1412 | MachineOperand MO = MachineOperand::CreateReg(Reg: LI->reg(), isDef: false); |
1413 | MO.setSubReg(locations[OldLocNo].getSubReg()); |
1414 | NewLocNo = getLocationNo(LocMO: MO); |
1415 | DidChange = true; |
1416 | } |
1417 | |
1418 | SlotIndex LStart = LocMapI.start(); |
1419 | SlotIndex LStop = LocMapI.stop(); |
1420 | DbgVariableValue OldDbgValue = LocMapI.value(); |
1421 | |
1422 | // Trim LocMapI down to the LII overlap. |
1423 | if (LStart < LII->start) |
1424 | LocMapI.setStartUnchecked(LII->start); |
1425 | if (LStop > LII->end) |
1426 | LocMapI.setStopUnchecked(LII->end); |
1427 | |
1428 | // Change the value in the overlap. This may trigger coalescing. |
1429 | LocMapI.setValue(OldDbgValue.changeLocNo(OldLocNo, NewLocNo)); |
1430 | |
1431 | // Re-insert any removed OldDbgValue ranges. |
1432 | if (LStart < LocMapI.start()) { |
1433 | LocMapI.insert(a: LStart, b: LocMapI.start(), y: OldDbgValue); |
1434 | ++LocMapI; |
1435 | assert(LocMapI.valid() && "Unexpected coalescing" ); |
1436 | } |
1437 | if (LStop > LocMapI.stop()) { |
1438 | ++LocMapI; |
1439 | LocMapI.insert(a: LII->end, b: LStop, y: OldDbgValue); |
1440 | --LocMapI; |
1441 | } |
1442 | } |
1443 | |
1444 | // Advance to the next overlap. |
1445 | if (LII->end < LocMapI.stop()) { |
1446 | if (++LII == LIE) |
1447 | break; |
1448 | LocMapI.advanceTo(x: LII->start); |
1449 | } else { |
1450 | ++LocMapI; |
1451 | if (!LocMapI.valid()) |
1452 | break; |
1453 | LII = LI->advanceTo(I: LII, Pos: LocMapI.start()); |
1454 | } |
1455 | } |
1456 | } |
1457 | |
1458 | // Finally, remove OldLocNo unless it is still used by some interval in the |
1459 | // locInts map. One case when OldLocNo still is in use is when the register |
1460 | // has been spilled. In such situations the spilled register is kept as a |
1461 | // location until rewriteLocations is called (VirtRegMap is mapping the old |
1462 | // register to the spill slot). So for a while we can have locations that map |
1463 | // to virtual registers that have been removed from both the MachineFunction |
1464 | // and from LiveIntervals. |
1465 | // |
1466 | // We may also just be using the location for a value with a different |
1467 | // expression. |
1468 | removeLocationIfUnused(LocNo: OldLocNo); |
1469 | |
1470 | LLVM_DEBUG({ |
1471 | dbgs() << "Split result: \t" ; |
1472 | print(dbgs(), nullptr); |
1473 | }); |
1474 | return DidChange; |
1475 | } |
1476 | |
1477 | bool |
1478 | UserValue::splitRegister(Register OldReg, ArrayRef<Register> NewRegs, |
1479 | LiveIntervals &LIS) { |
1480 | bool DidChange = false; |
1481 | // Split locations referring to OldReg. Iterate backwards so splitLocation can |
1482 | // safely erase unused locations. |
1483 | for (unsigned i = locations.size(); i ; --i) { |
1484 | unsigned LocNo = i-1; |
1485 | const MachineOperand *Loc = &locations[LocNo]; |
1486 | if (!Loc->isReg() || Loc->getReg() != OldReg) |
1487 | continue; |
1488 | DidChange |= splitLocation(OldLocNo: LocNo, NewRegs, LIS); |
1489 | } |
1490 | return DidChange; |
1491 | } |
1492 | |
1493 | void LiveDebugVariables::LDVImpl::splitPHIRegister(Register OldReg, |
1494 | ArrayRef<Register> NewRegs) { |
1495 | auto RegIt = RegToPHIIdx.find(Val: OldReg); |
1496 | if (RegIt == RegToPHIIdx.end()) |
1497 | return; |
1498 | |
1499 | std::vector<std::pair<Register, unsigned>> NewRegIdxes; |
1500 | // Iterate over all the debug instruction numbers affected by this split. |
1501 | for (unsigned InstrID : RegIt->second) { |
1502 | auto PHIIt = PHIValToPos.find(x: InstrID); |
1503 | assert(PHIIt != PHIValToPos.end()); |
1504 | const SlotIndex &Slot = PHIIt->second.SI; |
1505 | assert(OldReg == PHIIt->second.Reg); |
1506 | |
1507 | // Find the new register that covers this position. |
1508 | for (auto NewReg : NewRegs) { |
1509 | const LiveInterval &LI = LIS->getInterval(Reg: NewReg); |
1510 | auto LII = LI.find(Pos: Slot); |
1511 | if (LII != LI.end() && LII->start <= Slot) { |
1512 | // This new register covers this PHI position, record this for indexing. |
1513 | NewRegIdxes.push_back(x: std::make_pair(x&: NewReg, y&: InstrID)); |
1514 | // Record that this value lives in a different VReg now. |
1515 | PHIIt->second.Reg = NewReg; |
1516 | break; |
1517 | } |
1518 | } |
1519 | |
1520 | // If we do not find a new register covering this PHI, then register |
1521 | // allocation has dropped its location, for example because it's not live. |
1522 | // The old VReg will not be mapped to a physreg, and the instruction |
1523 | // number will have been optimized out. |
1524 | } |
1525 | |
1526 | // Re-create register index using the new register numbers. |
1527 | RegToPHIIdx.erase(I: RegIt); |
1528 | for (auto &RegAndInstr : NewRegIdxes) |
1529 | RegToPHIIdx[RegAndInstr.first].push_back(x: RegAndInstr.second); |
1530 | } |
1531 | |
1532 | void LiveDebugVariables::LDVImpl::splitRegister(Register OldReg, |
1533 | ArrayRef<Register> NewRegs) { |
1534 | // Consider whether this split range affects any PHI locations. |
1535 | splitPHIRegister(OldReg, NewRegs); |
1536 | |
1537 | // Check whether any intervals mapped by a DBG_VALUE were split and need |
1538 | // updating. |
1539 | bool DidChange = false; |
1540 | for (UserValue *UV = lookupVirtReg(VirtReg: OldReg); UV; UV = UV->getNext()) |
1541 | DidChange |= UV->splitRegister(OldReg, NewRegs, LIS&: *LIS); |
1542 | |
1543 | if (!DidChange) |
1544 | return; |
1545 | |
1546 | // Map all of the new virtual registers. |
1547 | UserValue *UV = lookupVirtReg(VirtReg: OldReg); |
1548 | for (Register NewReg : NewRegs) |
1549 | mapVirtReg(VirtReg: NewReg, EC: UV); |
1550 | } |
1551 | |
1552 | void LiveDebugVariables:: |
1553 | splitRegister(Register OldReg, ArrayRef<Register> NewRegs, LiveIntervals &LIS) { |
1554 | if (PImpl) |
1555 | PImpl->splitRegister(OldReg, NewRegs); |
1556 | } |
1557 | |
1558 | void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, |
1559 | const TargetInstrInfo &TII, |
1560 | const TargetRegisterInfo &TRI, |
1561 | SpillOffsetMap &SpillOffsets) { |
1562 | // Build a set of new locations with new numbers so we can coalesce our |
1563 | // IntervalMap if two vreg intervals collapse to the same physical location. |
1564 | // Use MapVector instead of SetVector because MapVector::insert returns the |
1565 | // position of the previously or newly inserted element. The boolean value |
1566 | // tracks if the location was produced by a spill. |
1567 | // FIXME: This will be problematic if we ever support direct and indirect |
1568 | // frame index locations, i.e. expressing both variables in memory and |
1569 | // 'int x, *px = &x'. The "spilled" bit must become part of the location. |
1570 | MapVector<MachineOperand, std::pair<bool, unsigned>> NewLocations; |
1571 | SmallVector<unsigned, 4> LocNoMap(locations.size()); |
1572 | for (unsigned I = 0, E = locations.size(); I != E; ++I) { |
1573 | bool Spilled = false; |
1574 | unsigned SpillOffset = 0; |
1575 | MachineOperand Loc = locations[I]; |
1576 | // Only virtual registers are rewritten. |
1577 | if (Loc.isReg() && Loc.getReg() && Loc.getReg().isVirtual()) { |
1578 | Register VirtReg = Loc.getReg(); |
1579 | if (VRM.isAssignedReg(virtReg: VirtReg) && VRM.hasPhys(virtReg: VirtReg)) { |
1580 | // This can create a %noreg operand in rare cases when the sub-register |
1581 | // index is no longer available. That means the user value is in a |
1582 | // non-existent sub-register, and %noreg is exactly what we want. |
1583 | Loc.substPhysReg(Reg: VRM.getPhys(virtReg: VirtReg), TRI); |
1584 | } else if (VRM.getStackSlot(virtReg: VirtReg) != VirtRegMap::NO_STACK_SLOT) { |
1585 | // Retrieve the stack slot offset. |
1586 | unsigned SpillSize; |
1587 | const MachineRegisterInfo &MRI = MF.getRegInfo(); |
1588 | const TargetRegisterClass *TRC = MRI.getRegClass(Reg: VirtReg); |
1589 | bool Success = TII.getStackSlotRange(RC: TRC, SubIdx: Loc.getSubReg(), Size&: SpillSize, |
1590 | Offset&: SpillOffset, MF); |
1591 | |
1592 | // FIXME: Invalidate the location if the offset couldn't be calculated. |
1593 | (void)Success; |
1594 | |
1595 | Loc = MachineOperand::CreateFI(Idx: VRM.getStackSlot(virtReg: VirtReg)); |
1596 | Spilled = true; |
1597 | } else { |
1598 | Loc.setReg(0); |
1599 | Loc.setSubReg(0); |
1600 | } |
1601 | } |
1602 | |
1603 | // Insert this location if it doesn't already exist and record a mapping |
1604 | // from the old number to the new number. |
1605 | auto InsertResult = NewLocations.insert(KV: {Loc, {Spilled, SpillOffset}}); |
1606 | unsigned NewLocNo = std::distance(first: NewLocations.begin(), last: InsertResult.first); |
1607 | LocNoMap[I] = NewLocNo; |
1608 | } |
1609 | |
1610 | // Rewrite the locations and record the stack slot offsets for spills. |
1611 | locations.clear(); |
1612 | SpillOffsets.clear(); |
1613 | for (auto &Pair : NewLocations) { |
1614 | bool Spilled; |
1615 | unsigned SpillOffset; |
1616 | std::tie(args&: Spilled, args&: SpillOffset) = Pair.second; |
1617 | locations.push_back(Elt: Pair.first); |
1618 | if (Spilled) { |
1619 | unsigned NewLocNo = std::distance(first: &*NewLocations.begin(), last: &Pair); |
1620 | SpillOffsets[NewLocNo] = SpillOffset; |
1621 | } |
1622 | } |
1623 | |
1624 | // Update the interval map, but only coalesce left, since intervals to the |
1625 | // right use the old location numbers. This should merge two contiguous |
1626 | // DBG_VALUE intervals with different vregs that were allocated to the same |
1627 | // physical register. |
1628 | for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { |
1629 | I.setValueUnchecked(I.value().remapLocNos(LocNoMap)); |
1630 | I.setStart(I.start()); |
1631 | } |
1632 | } |
1633 | |
1634 | /// Find an iterator for inserting a DBG_VALUE instruction. |
1635 | static MachineBasicBlock::iterator |
1636 | findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS, |
1637 | BlockSkipInstsMap &BBSkipInstsMap) { |
1638 | SlotIndex Start = LIS.getMBBStartIdx(mbb: MBB); |
1639 | Idx = Idx.getBaseIndex(); |
1640 | |
1641 | // Try to find an insert location by going backwards from Idx. |
1642 | MachineInstr *MI; |
1643 | while (!(MI = LIS.getInstructionFromIndex(index: Idx))) { |
1644 | // We've reached the beginning of MBB. |
1645 | if (Idx == Start) { |
1646 | // Retrieve the last PHI/Label/Debug location found when calling |
1647 | // SkipPHIsLabelsAndDebug last time. Start searching from there. |
1648 | // |
1649 | // Note the iterator kept in BBSkipInstsMap is one step back based |
1650 | // on the iterator returned by SkipPHIsLabelsAndDebug last time. |
1651 | // One exception is when SkipPHIsLabelsAndDebug returns MBB->begin(), |
1652 | // BBSkipInstsMap won't save it. This is to consider the case that |
1653 | // new instructions may be inserted at the beginning of MBB after |
1654 | // last call of SkipPHIsLabelsAndDebug. If we save MBB->begin() in |
1655 | // BBSkipInstsMap, after new non-phi/non-label/non-debug instructions |
1656 | // are inserted at the beginning of the MBB, the iterator in |
1657 | // BBSkipInstsMap won't point to the beginning of the MBB anymore. |
1658 | // Therefore The next search in SkipPHIsLabelsAndDebug will skip those |
1659 | // newly added instructions and that is unwanted. |
1660 | MachineBasicBlock::iterator BeginIt; |
1661 | auto MapIt = BBSkipInstsMap.find(Val: MBB); |
1662 | if (MapIt == BBSkipInstsMap.end()) |
1663 | BeginIt = MBB->begin(); |
1664 | else |
1665 | BeginIt = std::next(x: MapIt->second); |
1666 | auto I = MBB->SkipPHIsLabelsAndDebug(I: BeginIt); |
1667 | if (I != BeginIt) |
1668 | BBSkipInstsMap[MBB] = std::prev(x: I); |
1669 | return I; |
1670 | } |
1671 | Idx = Idx.getPrevIndex(); |
1672 | } |
1673 | |
1674 | // Don't insert anything after the first terminator, though. |
1675 | auto It = MI->isTerminator() ? MBB->getFirstTerminator() |
1676 | : std::next(x: MachineBasicBlock::iterator(MI)); |
1677 | return skipDebugInstructionsForward(It, End: MBB->end()); |
1678 | } |
1679 | |
1680 | /// Find an iterator for inserting the next DBG_VALUE instruction |
1681 | /// (or end if no more insert locations found). |
1682 | static MachineBasicBlock::iterator |
1683 | findNextInsertLocation(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, |
1684 | SlotIndex StopIdx, ArrayRef<MachineOperand> LocMOs, |
1685 | LiveIntervals &LIS, const TargetRegisterInfo &TRI) { |
1686 | SmallVector<Register, 4> Regs; |
1687 | for (const MachineOperand &LocMO : LocMOs) |
1688 | if (LocMO.isReg()) |
1689 | Regs.push_back(Elt: LocMO.getReg()); |
1690 | if (Regs.empty()) |
1691 | return MBB->instr_end(); |
1692 | |
1693 | // Find the next instruction in the MBB that define the register Reg. |
1694 | while (I != MBB->end() && !I->isTerminator()) { |
1695 | if (!LIS.isNotInMIMap(Instr: *I) && |
1696 | SlotIndex::isEarlierEqualInstr(A: StopIdx, B: LIS.getInstructionIndex(Instr: *I))) |
1697 | break; |
1698 | if (any_of(Range&: Regs, P: [&I, &TRI](Register &Reg) { |
1699 | return I->definesRegister(Reg, TRI: &TRI); |
1700 | })) |
1701 | // The insert location is directly after the instruction/bundle. |
1702 | return std::next(x: I); |
1703 | ++I; |
1704 | } |
1705 | return MBB->end(); |
1706 | } |
1707 | |
1708 | void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, |
1709 | SlotIndex StopIdx, DbgVariableValue DbgValue, |
1710 | ArrayRef<bool> LocSpills, |
1711 | ArrayRef<unsigned> SpillOffsets, |
1712 | LiveIntervals &LIS, const TargetInstrInfo &TII, |
1713 | const TargetRegisterInfo &TRI, |
1714 | BlockSkipInstsMap &BBSkipInstsMap) { |
1715 | SlotIndex MBBEndIdx = LIS.getMBBEndIdx(mbb: &*MBB); |
1716 | // Only search within the current MBB. |
1717 | StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; |
1718 | MachineBasicBlock::iterator I = |
1719 | findInsertLocation(MBB, Idx: StartIdx, LIS, BBSkipInstsMap); |
1720 | // Undef values don't exist in locations so create new "noreg" register MOs |
1721 | // for them. See getLocationNo(). |
1722 | SmallVector<MachineOperand, 8> MOs; |
1723 | if (DbgValue.isUndef()) { |
1724 | MOs.assign(NumElts: DbgValue.loc_nos().size(), |
1725 | Elt: MachineOperand::CreateReg( |
1726 | /* Reg */ 0, /* isDef */ false, /* isImp */ false, |
1727 | /* isKill */ false, /* isDead */ false, |
1728 | /* isUndef */ false, /* isEarlyClobber */ false, |
1729 | /* SubReg */ 0, /* isDebug */ true)); |
1730 | } else { |
1731 | for (unsigned LocNo : DbgValue.loc_nos()) |
1732 | MOs.push_back(Elt: locations[LocNo]); |
1733 | } |
1734 | |
1735 | ++NumInsertedDebugValues; |
1736 | |
1737 | assert(cast<DILocalVariable>(Variable) |
1738 | ->isValidLocationForIntrinsic(getDebugLoc()) && |
1739 | "Expected inlined-at fields to agree" ); |
1740 | |
1741 | // If the location was spilled, the new DBG_VALUE will be indirect. If the |
1742 | // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate |
1743 | // that the original virtual register was a pointer. Also, add the stack slot |
1744 | // offset for the spilled register to the expression. |
1745 | const DIExpression *Expr = DbgValue.getExpression(); |
1746 | bool IsIndirect = DbgValue.getWasIndirect(); |
1747 | bool IsList = DbgValue.getWasList(); |
1748 | for (unsigned I = 0, E = LocSpills.size(); I != E; ++I) { |
1749 | if (LocSpills[I]) { |
1750 | if (!IsList) { |
1751 | uint8_t DIExprFlags = DIExpression::ApplyOffset; |
1752 | if (IsIndirect) |
1753 | DIExprFlags |= DIExpression::DerefAfter; |
1754 | Expr = DIExpression::prepend(Expr, Flags: DIExprFlags, Offset: SpillOffsets[I]); |
1755 | IsIndirect = true; |
1756 | } else { |
1757 | SmallVector<uint64_t, 4> Ops; |
1758 | DIExpression::appendOffset(Ops, Offset: SpillOffsets[I]); |
1759 | Ops.push_back(Elt: dwarf::DW_OP_deref); |
1760 | Expr = DIExpression::appendOpsToArg(Expr, Ops, ArgNo: I); |
1761 | } |
1762 | } |
1763 | |
1764 | assert((!LocSpills[I] || MOs[I].isFI()) && |
1765 | "a spilled location must be a frame index" ); |
1766 | } |
1767 | |
1768 | unsigned DbgValueOpcode = |
1769 | IsList ? TargetOpcode::DBG_VALUE_LIST : TargetOpcode::DBG_VALUE; |
1770 | do { |
1771 | BuildMI(BB&: *MBB, I, DL: getDebugLoc(), MCID: TII.get(Opcode: DbgValueOpcode), IsIndirect, MOs, |
1772 | Variable, Expr); |
1773 | |
1774 | // Continue and insert DBG_VALUES after every redefinition of a register |
1775 | // associated with the debug value within the range |
1776 | I = findNextInsertLocation(MBB, I, StopIdx, LocMOs: MOs, LIS, TRI); |
1777 | } while (I != MBB->end()); |
1778 | } |
1779 | |
1780 | void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, |
1781 | LiveIntervals &LIS, const TargetInstrInfo &TII, |
1782 | BlockSkipInstsMap &BBSkipInstsMap) { |
1783 | MachineBasicBlock::iterator I = |
1784 | findInsertLocation(MBB, Idx, LIS, BBSkipInstsMap); |
1785 | ++NumInsertedDebugLabels; |
1786 | BuildMI(BB&: *MBB, I, MIMD: getDebugLoc(), MCID: TII.get(Opcode: TargetOpcode::DBG_LABEL)) |
1787 | .addMetadata(MD: Label); |
1788 | } |
1789 | |
1790 | void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, |
1791 | const TargetInstrInfo &TII, |
1792 | const TargetRegisterInfo &TRI, |
1793 | const SpillOffsetMap &SpillOffsets, |
1794 | BlockSkipInstsMap &BBSkipInstsMap) { |
1795 | MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); |
1796 | |
1797 | for (LocMap::const_iterator I = locInts.begin(); I.valid();) { |
1798 | SlotIndex Start = I.start(); |
1799 | SlotIndex Stop = I.stop(); |
1800 | DbgVariableValue DbgValue = I.value(); |
1801 | |
1802 | SmallVector<bool> SpilledLocs; |
1803 | SmallVector<unsigned> LocSpillOffsets; |
1804 | for (unsigned LocNo : DbgValue.loc_nos()) { |
1805 | auto SpillIt = |
1806 | !DbgValue.isUndef() ? SpillOffsets.find(Val: LocNo) : SpillOffsets.end(); |
1807 | bool Spilled = SpillIt != SpillOffsets.end(); |
1808 | SpilledLocs.push_back(Elt: Spilled); |
1809 | LocSpillOffsets.push_back(Elt: Spilled ? SpillIt->second : 0); |
1810 | } |
1811 | |
1812 | // If the interval start was trimmed to the lexical scope insert the |
1813 | // DBG_VALUE at the previous index (otherwise it appears after the |
1814 | // first instruction in the range). |
1815 | if (trimmedDefs.count(V: Start)) |
1816 | Start = Start.getPrevIndex(); |
1817 | |
1818 | LLVM_DEBUG(auto &dbg = dbgs(); dbg << "\t[" << Start << ';' << Stop << "):" ; |
1819 | DbgValue.printLocNos(dbg)); |
1820 | MachineFunction::iterator MBB = LIS.getMBBFromIndex(index: Start)->getIterator(); |
1821 | SlotIndex MBBEnd = LIS.getMBBEndIdx(mbb: &*MBB); |
1822 | |
1823 | LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); |
1824 | insertDebugValue(MBB: &*MBB, StartIdx: Start, StopIdx: Stop, DbgValue, LocSpills: SpilledLocs, SpillOffsets: LocSpillOffsets, |
1825 | LIS, TII, TRI, BBSkipInstsMap); |
1826 | // This interval may span multiple basic blocks. |
1827 | // Insert a DBG_VALUE into each one. |
1828 | while (Stop > MBBEnd) { |
1829 | // Move to the next block. |
1830 | Start = MBBEnd; |
1831 | if (++MBB == MFEnd) |
1832 | break; |
1833 | MBBEnd = LIS.getMBBEndIdx(mbb: &*MBB); |
1834 | LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); |
1835 | insertDebugValue(MBB: &*MBB, StartIdx: Start, StopIdx: Stop, DbgValue, LocSpills: SpilledLocs, |
1836 | SpillOffsets: LocSpillOffsets, LIS, TII, TRI, BBSkipInstsMap); |
1837 | } |
1838 | LLVM_DEBUG(dbgs() << '\n'); |
1839 | if (MBB == MFEnd) |
1840 | break; |
1841 | |
1842 | ++I; |
1843 | } |
1844 | } |
1845 | |
1846 | void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, |
1847 | BlockSkipInstsMap &BBSkipInstsMap) { |
1848 | LLVM_DEBUG(dbgs() << "\t" << loc); |
1849 | MachineFunction::iterator MBB = LIS.getMBBFromIndex(index: loc)->getIterator(); |
1850 | |
1851 | LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); |
1852 | insertDebugLabel(MBB: &*MBB, Idx: loc, LIS, TII, BBSkipInstsMap); |
1853 | |
1854 | LLVM_DEBUG(dbgs() << '\n'); |
1855 | } |
1856 | |
1857 | void LiveDebugVariables::LDVImpl::emitDebugValues(VirtRegMap *VRM) { |
1858 | LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n" ); |
1859 | if (!MF) |
1860 | return; |
1861 | |
1862 | BlockSkipInstsMap BBSkipInstsMap; |
1863 | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
1864 | SpillOffsetMap SpillOffsets; |
1865 | for (auto &userValue : userValues) { |
1866 | LLVM_DEBUG(userValue->print(dbgs(), TRI)); |
1867 | userValue->rewriteLocations(VRM&: *VRM, MF: *MF, TII: *TII, TRI: *TRI, SpillOffsets); |
1868 | userValue->emitDebugValues(VRM, LIS&: *LIS, TII: *TII, TRI: *TRI, SpillOffsets, |
1869 | BBSkipInstsMap); |
1870 | } |
1871 | LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n" ); |
1872 | for (auto &userLabel : userLabels) { |
1873 | LLVM_DEBUG(userLabel->print(dbgs(), TRI)); |
1874 | userLabel->emitDebugLabel(LIS&: *LIS, TII: *TII, BBSkipInstsMap); |
1875 | } |
1876 | |
1877 | LLVM_DEBUG(dbgs() << "********** EMITTING DEBUG PHIS **********\n" ); |
1878 | |
1879 | auto Slots = LIS->getSlotIndexes(); |
1880 | for (auto &It : PHIValToPos) { |
1881 | // For each ex-PHI, identify its physreg location or stack slot, and emit |
1882 | // a DBG_PHI for it. |
1883 | unsigned InstNum = It.first; |
1884 | auto Slot = It.second.SI; |
1885 | Register Reg = It.second.Reg; |
1886 | unsigned SubReg = It.second.SubReg; |
1887 | |
1888 | MachineBasicBlock *OrigMBB = Slots->getMBBFromIndex(index: Slot); |
1889 | if (VRM->isAssignedReg(virtReg: Reg) && VRM->hasPhys(virtReg: Reg)) { |
1890 | unsigned PhysReg = VRM->getPhys(virtReg: Reg); |
1891 | if (SubReg != 0) |
1892 | PhysReg = TRI->getSubReg(Reg: PhysReg, Idx: SubReg); |
1893 | |
1894 | auto Builder = BuildMI(BB&: *OrigMBB, I: OrigMBB->begin(), MIMD: DebugLoc(), |
1895 | MCID: TII->get(Opcode: TargetOpcode::DBG_PHI)); |
1896 | Builder.addReg(RegNo: PhysReg); |
1897 | Builder.addImm(Val: InstNum); |
1898 | } else if (VRM->getStackSlot(virtReg: Reg) != VirtRegMap::NO_STACK_SLOT) { |
1899 | const MachineRegisterInfo &MRI = MF->getRegInfo(); |
1900 | const TargetRegisterClass *TRC = MRI.getRegClass(Reg); |
1901 | unsigned SpillSize, SpillOffset; |
1902 | |
1903 | unsigned regSizeInBits = TRI->getRegSizeInBits(RC: *TRC); |
1904 | if (SubReg) |
1905 | regSizeInBits = TRI->getSubRegIdxSize(Idx: SubReg); |
1906 | |
1907 | // Test whether this location is legal with the given subreg. If the |
1908 | // subregister has a nonzero offset, drop this location, it's too complex |
1909 | // to describe. (TODO: future work). |
1910 | bool Success = |
1911 | TII->getStackSlotRange(RC: TRC, SubIdx: SubReg, Size&: SpillSize, Offset&: SpillOffset, MF: *MF); |
1912 | |
1913 | if (Success && SpillOffset == 0) { |
1914 | auto Builder = BuildMI(BB&: *OrigMBB, I: OrigMBB->begin(), MIMD: DebugLoc(), |
1915 | MCID: TII->get(Opcode: TargetOpcode::DBG_PHI)); |
1916 | Builder.addFrameIndex(Idx: VRM->getStackSlot(virtReg: Reg)); |
1917 | Builder.addImm(Val: InstNum); |
1918 | // Record how large the original value is. The stack slot might be |
1919 | // merged and altered during optimisation, but we will want to know how |
1920 | // large the value is, at this DBG_PHI. |
1921 | Builder.addImm(Val: regSizeInBits); |
1922 | } |
1923 | |
1924 | LLVM_DEBUG(if (SpillOffset != 0) { |
1925 | dbgs() << "DBG_PHI for " << printReg(Reg, TRI, SubReg) |
1926 | << " has nonzero offset\n" ; |
1927 | }); |
1928 | } |
1929 | // If there was no mapping for a value ID, it's optimized out. Create no |
1930 | // DBG_PHI, and any variables using this value will become optimized out. |
1931 | } |
1932 | MF->DebugPHIPositions.clear(); |
1933 | |
1934 | LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n" ); |
1935 | |
1936 | // Re-insert any debug instrs back in the position they were. We must |
1937 | // re-insert in the same order to ensure that debug instructions don't swap, |
1938 | // which could re-order assignments. Do so in a batch -- once we find the |
1939 | // insert position, insert all instructions at the same SlotIdx. They are |
1940 | // guaranteed to appear in-sequence in StashedDebugInstrs because we insert |
1941 | // them in order. |
1942 | for (auto *StashIt = StashedDebugInstrs.begin(); |
1943 | StashIt != StashedDebugInstrs.end(); ++StashIt) { |
1944 | SlotIndex Idx = StashIt->Idx; |
1945 | MachineBasicBlock *MBB = StashIt->MBB; |
1946 | MachineInstr *MI = StashIt->MI; |
1947 | |
1948 | auto EmitInstsHere = [this, &StashIt, MBB, Idx, |
1949 | MI](MachineBasicBlock::iterator InsertPos) { |
1950 | // Insert this debug instruction. |
1951 | MBB->insert(I: InsertPos, MI); |
1952 | |
1953 | // Look at subsequent stashed debug instructions: if they're at the same |
1954 | // index, insert those too. |
1955 | auto NextItem = std::next(x: StashIt); |
1956 | while (NextItem != StashedDebugInstrs.end() && NextItem->Idx == Idx) { |
1957 | assert(NextItem->MBB == MBB && "Instrs with same slot index should be" |
1958 | "in the same block" ); |
1959 | MBB->insert(I: InsertPos, MI: NextItem->MI); |
1960 | StashIt = NextItem; |
1961 | NextItem = std::next(x: StashIt); |
1962 | }; |
1963 | }; |
1964 | |
1965 | // Start block index: find the first non-debug instr in the block, and |
1966 | // insert before it. |
1967 | if (Idx == Slots->getMBBStartIdx(mbb: MBB)) { |
1968 | MachineBasicBlock::iterator InsertPos = |
1969 | findInsertLocation(MBB, Idx, LIS&: *LIS, BBSkipInstsMap); |
1970 | EmitInstsHere(InsertPos); |
1971 | continue; |
1972 | } |
1973 | |
1974 | if (MachineInstr *Pos = Slots->getInstructionFromIndex(index: Idx)) { |
1975 | // Insert at the end of any debug instructions. |
1976 | auto PostDebug = std::next(x: Pos->getIterator()); |
1977 | PostDebug = skipDebugInstructionsForward(It: PostDebug, End: MBB->instr_end()); |
1978 | EmitInstsHere(PostDebug); |
1979 | } else { |
1980 | // Insert position disappeared; walk forwards through slots until we |
1981 | // find a new one. |
1982 | SlotIndex End = Slots->getMBBEndIdx(mbb: MBB); |
1983 | for (; Idx < End; Idx = Slots->getNextNonNullIndex(Index: Idx)) { |
1984 | Pos = Slots->getInstructionFromIndex(index: Idx); |
1985 | if (Pos) { |
1986 | EmitInstsHere(Pos->getIterator()); |
1987 | break; |
1988 | } |
1989 | } |
1990 | |
1991 | // We have reached the end of the block and didn't find anywhere to |
1992 | // insert! It's not safe to discard any debug instructions; place them |
1993 | // in front of the first terminator, or in front of end(). |
1994 | if (Idx >= End) { |
1995 | auto TermIt = MBB->getFirstTerminator(); |
1996 | EmitInstsHere(TermIt); |
1997 | } |
1998 | } |
1999 | } |
2000 | |
2001 | EmitDone = true; |
2002 | BBSkipInstsMap.clear(); |
2003 | } |
2004 | |
2005 | void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { |
2006 | if (PImpl) |
2007 | PImpl->emitDebugValues(VRM); |
2008 | } |
2009 | |
2010 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
2011 | LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { print(dbgs()); } |
2012 | #endif |
2013 | |
2014 | void LiveDebugVariables::print(raw_ostream &OS) const { |
2015 | if (PImpl) |
2016 | PImpl->print(OS); |
2017 | } |
2018 | |