| 1 | //===- LiveInterval.cpp - Live Interval Representation --------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements the LiveRange and LiveInterval classes. Given some |
| 10 | // numbering of each the machine instructions an interval [i, j) is said to be a |
| 11 | // live range for register v if there is no instruction with number j' >= j |
| 12 | // such that v is live at j' and there is no instruction with number i' < i such |
| 13 | // that v is live at i'. In this implementation ranges can have holes, |
| 14 | // i.e. a range might look like [1,20), [50,65), [1000,1001). Each |
| 15 | // individual segment is represented as an instance of LiveRange::Segment, |
| 16 | // and the whole range is represented as an instance of LiveRange. |
| 17 | // |
| 18 | //===----------------------------------------------------------------------===// |
| 19 | |
| 20 | #include "llvm/CodeGen/LiveInterval.h" |
| 21 | #include "LiveRangeUtils.h" |
| 22 | #include "RegisterCoalescer.h" |
| 23 | #include "llvm/ADT/ArrayRef.h" |
| 24 | #include "llvm/ADT/STLExtras.h" |
| 25 | #include "llvm/ADT/SmallPtrSet.h" |
| 26 | #include "llvm/ADT/SmallVector.h" |
| 27 | #include "llvm/ADT/iterator_range.h" |
| 28 | #include "llvm/CodeGen/LiveIntervals.h" |
| 29 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 30 | #include "llvm/CodeGen/MachineInstr.h" |
| 31 | #include "llvm/CodeGen/MachineOperand.h" |
| 32 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 33 | #include "llvm/CodeGen/SlotIndexes.h" |
| 34 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 35 | #include "llvm/Config/llvm-config.h" |
| 36 | #include "llvm/MC/LaneBitmask.h" |
| 37 | #include "llvm/Support/Compiler.h" |
| 38 | #include "llvm/Support/Debug.h" |
| 39 | #include "llvm/Support/raw_ostream.h" |
| 40 | #include <algorithm> |
| 41 | #include <cassert> |
| 42 | #include <cstddef> |
| 43 | #include <iterator> |
| 44 | #include <utility> |
| 45 | |
| 46 | using namespace llvm; |
| 47 | |
| 48 | namespace { |
| 49 | |
| 50 | //===----------------------------------------------------------------------===// |
| 51 | // Implementation of various methods necessary for calculation of live ranges. |
| 52 | // The implementation of the methods abstracts from the concrete type of the |
| 53 | // segment collection. |
| 54 | // |
| 55 | // Implementation of the class follows the Template design pattern. The base |
| 56 | // class contains generic algorithms that call collection-specific methods, |
| 57 | // which are provided in concrete subclasses. In order to avoid virtual calls |
| 58 | // these methods are provided by means of C++ template instantiation. |
| 59 | // The base class calls the methods of the subclass through method impl(), |
| 60 | // which casts 'this' pointer to the type of the subclass. |
| 61 | // |
| 62 | //===----------------------------------------------------------------------===// |
| 63 | |
| 64 | template <typename ImplT, typename IteratorT, typename CollectionT> |
| 65 | class CalcLiveRangeUtilBase { |
| 66 | protected: |
| 67 | LiveRange *LR; |
| 68 | |
| 69 | protected: |
| 70 | CalcLiveRangeUtilBase(LiveRange *LR) : LR(LR) {} |
| 71 | |
| 72 | public: |
| 73 | using Segment = LiveRange::Segment; |
| 74 | using iterator = IteratorT; |
| 75 | |
| 76 | /// A counterpart of LiveRange::createDeadDef: Make sure the range has a |
| 77 | /// value defined at @p Def. |
| 78 | /// If @p ForVNI is null, and there is no value defined at @p Def, a new |
| 79 | /// value will be allocated using @p VNInfoAllocator. |
| 80 | /// If @p ForVNI is null, the return value is the value defined at @p Def, |
| 81 | /// either a pre-existing one, or the one newly created. |
| 82 | /// If @p ForVNI is not null, then @p Def should be the location where |
| 83 | /// @p ForVNI is defined. If the range does not have a value defined at |
| 84 | /// @p Def, the value @p ForVNI will be used instead of allocating a new |
| 85 | /// one. If the range already has a value defined at @p Def, it must be |
| 86 | /// same as @p ForVNI. In either case, @p ForVNI will be the return value. |
| 87 | VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator *VNInfoAllocator, |
| 88 | VNInfo *ForVNI) { |
| 89 | assert(!Def.isDead() && "Cannot define a value at the dead slot" ); |
| 90 | assert((!ForVNI || ForVNI->def == Def) && |
| 91 | "If ForVNI is specified, it must match Def" ); |
| 92 | iterator I = impl().find(Def); |
| 93 | if (I == segments().end()) { |
| 94 | VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, VNInfoAllocator&: *VNInfoAllocator); |
| 95 | impl().insertAtEnd(Segment(Def, Def.getDeadSlot(), VNI)); |
| 96 | return VNI; |
| 97 | } |
| 98 | |
| 99 | Segment *S = segmentAt(I); |
| 100 | if (SlotIndex::isSameInstr(A: Def, B: S->start)) { |
| 101 | assert((!ForVNI || ForVNI == S->valno) && "Value number mismatch" ); |
| 102 | assert(S->valno->def == S->start && "Inconsistent existing value def" ); |
| 103 | |
| 104 | // It is possible to have both normal and early-clobber defs of the same |
| 105 | // register on an instruction. It doesn't make a lot of sense, but it is |
| 106 | // possible to specify in inline assembly. |
| 107 | // |
| 108 | // Just convert everything to early-clobber. |
| 109 | Def = std::min(a: Def, b: S->start); |
| 110 | if (Def != S->start) |
| 111 | S->start = S->valno->def = Def; |
| 112 | return S->valno; |
| 113 | } |
| 114 | assert(SlotIndex::isEarlierInstr(Def, S->start) && "Already live at def" ); |
| 115 | VNInfo *VNI = ForVNI ? ForVNI : LR->getNextValue(Def, VNInfoAllocator&: *VNInfoAllocator); |
| 116 | segments().insert(I, Segment(Def, Def.getDeadSlot(), VNI)); |
| 117 | return VNI; |
| 118 | } |
| 119 | |
| 120 | VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Use) { |
| 121 | if (segments().empty()) |
| 122 | return nullptr; |
| 123 | iterator I = |
| 124 | impl().findInsertPos(Segment(Use.getPrevSlot(), Use, nullptr)); |
| 125 | if (I == segments().begin()) |
| 126 | return nullptr; |
| 127 | --I; |
| 128 | if (I->end <= StartIdx) |
| 129 | return nullptr; |
| 130 | if (I->end < Use) |
| 131 | extendSegmentEndTo(I, NewEnd: Use); |
| 132 | return I->valno; |
| 133 | } |
| 134 | |
| 135 | std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs, |
| 136 | SlotIndex StartIdx, SlotIndex Use) { |
| 137 | if (segments().empty()) |
| 138 | return std::make_pair(x: nullptr, y: false); |
| 139 | SlotIndex BeforeUse = Use.getPrevSlot(); |
| 140 | iterator I = impl().findInsertPos(Segment(BeforeUse, Use, nullptr)); |
| 141 | if (I == segments().begin()) |
| 142 | return std::make_pair(x: nullptr, y: LR->isUndefIn(Undefs, Begin: StartIdx, End: BeforeUse)); |
| 143 | --I; |
| 144 | if (I->end <= StartIdx) |
| 145 | return std::make_pair(x: nullptr, y: LR->isUndefIn(Undefs, Begin: StartIdx, End: BeforeUse)); |
| 146 | if (I->end < Use) { |
| 147 | if (LR->isUndefIn(Undefs, Begin: I->end, End: BeforeUse)) |
| 148 | return std::make_pair(x: nullptr, y: true); |
| 149 | extendSegmentEndTo(I, NewEnd: Use); |
| 150 | } |
| 151 | return std::make_pair(I->valno, false); |
| 152 | } |
| 153 | |
| 154 | /// This method is used when we want to extend the segment specified |
| 155 | /// by I to end at the specified endpoint. To do this, we should |
| 156 | /// merge and eliminate all segments that this will overlap |
| 157 | /// with. The iterator is not invalidated. |
| 158 | void extendSegmentEndTo(iterator I, SlotIndex NewEnd) { |
| 159 | assert(I != segments().end() && "Not a valid segment!" ); |
| 160 | Segment *S = segmentAt(I); |
| 161 | VNInfo *ValNo = I->valno; |
| 162 | |
| 163 | // Search for the first segment that we can't merge with. |
| 164 | iterator MergeTo = std::next(I); |
| 165 | for (; MergeTo != segments().end() && NewEnd >= MergeTo->end; ++MergeTo) |
| 166 | assert(MergeTo->valno == ValNo && "Cannot merge with differing values!" ); |
| 167 | |
| 168 | // If NewEnd was in the middle of a segment, make sure to get its endpoint. |
| 169 | S->end = std::max(NewEnd, std::prev(MergeTo)->end); |
| 170 | |
| 171 | // If the newly formed segment now touches the segment after it and if they |
| 172 | // have the same value number, merge the two segments into one segment. |
| 173 | if (MergeTo != segments().end() && MergeTo->start <= I->end && |
| 174 | MergeTo->valno == ValNo) { |
| 175 | S->end = MergeTo->end; |
| 176 | ++MergeTo; |
| 177 | } |
| 178 | |
| 179 | // Erase any dead segments. |
| 180 | segments().erase(std::next(I), MergeTo); |
| 181 | } |
| 182 | |
| 183 | /// This method is used when we want to extend the segment specified |
| 184 | /// by I to start at the specified endpoint. To do this, we should |
| 185 | /// merge and eliminate all segments that this will overlap with. |
| 186 | iterator extendSegmentStartTo(iterator I, SlotIndex NewStart) { |
| 187 | assert(I != segments().end() && "Not a valid segment!" ); |
| 188 | Segment *S = segmentAt(I); |
| 189 | VNInfo *ValNo = I->valno; |
| 190 | |
| 191 | // Search for the first segment that we can't merge with. |
| 192 | iterator MergeTo = I; |
| 193 | do { |
| 194 | if (MergeTo == segments().begin()) { |
| 195 | S->start = NewStart; |
| 196 | segments().erase(MergeTo, I); |
| 197 | return I; |
| 198 | } |
| 199 | assert(MergeTo->valno == ValNo && "Cannot merge with differing values!" ); |
| 200 | --MergeTo; |
| 201 | } while (NewStart <= MergeTo->start); |
| 202 | |
| 203 | // If we start in the middle of another segment, just delete a range and |
| 204 | // extend that segment. |
| 205 | if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) { |
| 206 | segmentAt(I: MergeTo)->end = S->end; |
| 207 | } else { |
| 208 | // Otherwise, extend the segment right after. |
| 209 | ++MergeTo; |
| 210 | Segment *MergeToSeg = segmentAt(I: MergeTo); |
| 211 | MergeToSeg->start = NewStart; |
| 212 | MergeToSeg->end = S->end; |
| 213 | } |
| 214 | |
| 215 | segments().erase(std::next(MergeTo), std::next(I)); |
| 216 | return MergeTo; |
| 217 | } |
| 218 | |
| 219 | iterator addSegment(Segment S) { |
| 220 | SlotIndex Start = S.start, End = S.end; |
| 221 | iterator I = impl().findInsertPos(S); |
| 222 | |
| 223 | // If the inserted segment starts in the middle or right at the end of |
| 224 | // another segment, just extend that segment to contain the segment of S. |
| 225 | if (I != segments().begin()) { |
| 226 | iterator B = std::prev(I); |
| 227 | if (S.valno == B->valno) { |
| 228 | if (B->start <= Start && B->end >= Start) { |
| 229 | extendSegmentEndTo(I: B, NewEnd: End); |
| 230 | return B; |
| 231 | } |
| 232 | } else { |
| 233 | // Check to make sure that we are not overlapping two live segments with |
| 234 | // different valno's. |
| 235 | assert(B->end <= Start && |
| 236 | "Cannot overlap two segments with differing ValID's" |
| 237 | " (did you def the same reg twice in a MachineInstr?)" ); |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | // Otherwise, if this segment ends in the middle of, or right next |
| 242 | // to, another segment, merge it into that segment. |
| 243 | if (I != segments().end()) { |
| 244 | if (S.valno == I->valno) { |
| 245 | if (I->start <= End) { |
| 246 | I = extendSegmentStartTo(I, NewStart: Start); |
| 247 | |
| 248 | // If S is a complete superset of a segment, we may need to grow its |
| 249 | // endpoint as well. |
| 250 | if (End > I->end) |
| 251 | extendSegmentEndTo(I, NewEnd: End); |
| 252 | return I; |
| 253 | } |
| 254 | } else { |
| 255 | // Check to make sure that we are not overlapping two live segments with |
| 256 | // different valno's. |
| 257 | assert(I->start >= End && |
| 258 | "Cannot overlap two segments with differing ValID's" ); |
| 259 | } |
| 260 | } |
| 261 | |
| 262 | // Otherwise, this is just a new segment that doesn't interact with |
| 263 | // anything. |
| 264 | // Insert it. |
| 265 | return segments().insert(I, S); |
| 266 | } |
| 267 | |
| 268 | private: |
| 269 | ImplT &impl() { return *static_cast<ImplT *>(this); } |
| 270 | |
| 271 | CollectionT &segments() { return impl().segmentsColl(); } |
| 272 | |
| 273 | Segment *segmentAt(iterator I) { return const_cast<Segment *>(&(*I)); } |
| 274 | }; |
| 275 | |
| 276 | //===----------------------------------------------------------------------===// |
| 277 | // Instantiation of the methods for calculation of live ranges |
| 278 | // based on a segment vector. |
| 279 | //===----------------------------------------------------------------------===// |
| 280 | |
| 281 | class CalcLiveRangeUtilVector; |
| 282 | using CalcLiveRangeUtilVectorBase = |
| 283 | CalcLiveRangeUtilBase<CalcLiveRangeUtilVector, LiveRange::iterator, |
| 284 | LiveRange::Segments>; |
| 285 | |
| 286 | class CalcLiveRangeUtilVector : public CalcLiveRangeUtilVectorBase { |
| 287 | public: |
| 288 | CalcLiveRangeUtilVector(LiveRange *LR) : CalcLiveRangeUtilVectorBase(LR) {} |
| 289 | |
| 290 | private: |
| 291 | friend CalcLiveRangeUtilVectorBase; |
| 292 | |
| 293 | LiveRange::Segments &segmentsColl() { return LR->segments; } |
| 294 | |
| 295 | void insertAtEnd(const Segment &S) { LR->segments.push_back(Elt: S); } |
| 296 | |
| 297 | iterator find(SlotIndex Pos) { return LR->find(Pos); } |
| 298 | |
| 299 | iterator findInsertPos(Segment S) { return llvm::upper_bound(Range&: *LR, Value&: S.start); } |
| 300 | }; |
| 301 | |
| 302 | //===----------------------------------------------------------------------===// |
| 303 | // Instantiation of the methods for calculation of live ranges |
| 304 | // based on a segment set. |
| 305 | //===----------------------------------------------------------------------===// |
| 306 | |
| 307 | class CalcLiveRangeUtilSet; |
| 308 | using CalcLiveRangeUtilSetBase = |
| 309 | CalcLiveRangeUtilBase<CalcLiveRangeUtilSet, LiveRange::SegmentSet::iterator, |
| 310 | LiveRange::SegmentSet>; |
| 311 | |
| 312 | class CalcLiveRangeUtilSet : public CalcLiveRangeUtilSetBase { |
| 313 | public: |
| 314 | CalcLiveRangeUtilSet(LiveRange *LR) : CalcLiveRangeUtilSetBase(LR) {} |
| 315 | |
| 316 | private: |
| 317 | friend CalcLiveRangeUtilSetBase; |
| 318 | |
| 319 | LiveRange::SegmentSet &segmentsColl() { return *LR->segmentSet; } |
| 320 | |
| 321 | void insertAtEnd(const Segment &S) { |
| 322 | LR->segmentSet->insert(position: LR->segmentSet->end(), x: S); |
| 323 | } |
| 324 | |
| 325 | iterator find(SlotIndex Pos) { |
| 326 | iterator I = |
| 327 | LR->segmentSet->upper_bound(x: Segment(Pos, Pos.getNextSlot(), nullptr)); |
| 328 | if (I == LR->segmentSet->begin()) |
| 329 | return I; |
| 330 | iterator PrevI = std::prev(x: I); |
| 331 | if (Pos < (*PrevI).end) |
| 332 | return PrevI; |
| 333 | return I; |
| 334 | } |
| 335 | |
| 336 | iterator findInsertPos(Segment S) { |
| 337 | iterator I = LR->segmentSet->upper_bound(x: S); |
| 338 | if (I != LR->segmentSet->end() && !(S.start < *I)) |
| 339 | ++I; |
| 340 | return I; |
| 341 | } |
| 342 | }; |
| 343 | |
| 344 | } // end anonymous namespace |
| 345 | |
| 346 | //===----------------------------------------------------------------------===// |
| 347 | // LiveRange methods |
| 348 | //===----------------------------------------------------------------------===// |
| 349 | |
| 350 | LiveRange::iterator LiveRange::find(SlotIndex Pos) { |
| 351 | return llvm::partition_point(Range&: *this, |
| 352 | P: [&](const Segment &X) { return X.end <= Pos; }); |
| 353 | } |
| 354 | |
| 355 | VNInfo *LiveRange::createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc) { |
| 356 | // Use the segment set, if it is available. |
| 357 | if (segmentSet != nullptr) |
| 358 | return CalcLiveRangeUtilSet(this).createDeadDef(Def, VNInfoAllocator: &VNIAlloc, ForVNI: nullptr); |
| 359 | // Otherwise use the segment vector. |
| 360 | return CalcLiveRangeUtilVector(this).createDeadDef(Def, VNInfoAllocator: &VNIAlloc, ForVNI: nullptr); |
| 361 | } |
| 362 | |
| 363 | VNInfo *LiveRange::createDeadDef(VNInfo *VNI) { |
| 364 | // Use the segment set, if it is available. |
| 365 | if (segmentSet != nullptr) |
| 366 | return CalcLiveRangeUtilSet(this).createDeadDef(Def: VNI->def, VNInfoAllocator: nullptr, ForVNI: VNI); |
| 367 | // Otherwise use the segment vector. |
| 368 | return CalcLiveRangeUtilVector(this).createDeadDef(Def: VNI->def, VNInfoAllocator: nullptr, ForVNI: VNI); |
| 369 | } |
| 370 | |
| 371 | // overlaps - Return true if the intersection of the two live ranges is |
| 372 | // not empty. |
| 373 | // |
| 374 | // An example for overlaps(): |
| 375 | // |
| 376 | // 0: A = ... |
| 377 | // 4: B = ... |
| 378 | // 8: C = A + B ;; last use of A |
| 379 | // |
| 380 | // The live ranges should look like: |
| 381 | // |
| 382 | // A = [3, 11) |
| 383 | // B = [7, x) |
| 384 | // C = [11, y) |
| 385 | // |
| 386 | // A->overlaps(C) should return false since we want to be able to join |
| 387 | // A and C. |
| 388 | // |
| 389 | bool LiveRange::overlapsFrom(const LiveRange& other, |
| 390 | const_iterator StartPos) const { |
| 391 | assert(!empty() && "empty range" ); |
| 392 | const_iterator i = begin(); |
| 393 | const_iterator ie = end(); |
| 394 | const_iterator j = StartPos; |
| 395 | const_iterator je = other.end(); |
| 396 | |
| 397 | assert((StartPos->start <= i->start || StartPos == other.begin()) && |
| 398 | StartPos != other.end() && "Bogus start position hint!" ); |
| 399 | |
| 400 | if (i->start < j->start) { |
| 401 | i = std::upper_bound(first: i, last: ie, val: j->start); |
| 402 | if (i != begin()) --i; |
| 403 | } else if (j->start < i->start) { |
| 404 | ++StartPos; |
| 405 | if (StartPos != other.end() && StartPos->start <= i->start) { |
| 406 | assert(StartPos < other.end() && i < end()); |
| 407 | j = std::upper_bound(first: j, last: je, val: i->start); |
| 408 | if (j != other.begin()) --j; |
| 409 | } |
| 410 | } else { |
| 411 | return true; |
| 412 | } |
| 413 | |
| 414 | if (j == je) return false; |
| 415 | |
| 416 | while (i != ie) { |
| 417 | if (i->start > j->start) { |
| 418 | std::swap(a&: i, b&: j); |
| 419 | std::swap(a&: ie, b&: je); |
| 420 | } |
| 421 | |
| 422 | if (i->end > j->start) |
| 423 | return true; |
| 424 | ++i; |
| 425 | } |
| 426 | |
| 427 | return false; |
| 428 | } |
| 429 | |
| 430 | bool LiveRange::overlaps(const LiveRange &Other, const CoalescerPair &CP, |
| 431 | const SlotIndexes &Indexes) const { |
| 432 | assert(!empty() && "empty range" ); |
| 433 | if (Other.empty()) |
| 434 | return false; |
| 435 | |
| 436 | // Use binary searches to find initial positions. |
| 437 | const_iterator I = find(Pos: Other.beginIndex()); |
| 438 | const_iterator IE = end(); |
| 439 | if (I == IE) |
| 440 | return false; |
| 441 | const_iterator J = Other.find(Pos: I->start); |
| 442 | const_iterator JE = Other.end(); |
| 443 | if (J == JE) |
| 444 | return false; |
| 445 | |
| 446 | while (true) { |
| 447 | // J has just been advanced to satisfy: |
| 448 | assert(J->end > I->start); |
| 449 | // Check for an overlap. |
| 450 | if (J->start < I->end) { |
| 451 | // I and J are overlapping. Find the later start. |
| 452 | SlotIndex Def = std::max(a: I->start, b: J->start); |
| 453 | // Allow the overlap if Def is a coalescable copy. |
| 454 | if (Def.isBlock() || |
| 455 | !CP.isCoalescable(Indexes.getInstructionFromIndex(index: Def))) |
| 456 | return true; |
| 457 | } |
| 458 | // Advance the iterator that ends first to check for more overlaps. |
| 459 | if (J->end > I->end) { |
| 460 | std::swap(a&: I, b&: J); |
| 461 | std::swap(a&: IE, b&: JE); |
| 462 | } |
| 463 | // Advance J until J->end > I->start. |
| 464 | do |
| 465 | if (++J == JE) |
| 466 | return false; |
| 467 | while (J->end <= I->start); |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | /// overlaps - Return true if the live range overlaps an interval specified |
| 472 | /// by [Start, End). |
| 473 | bool LiveRange::overlaps(SlotIndex Start, SlotIndex End) const { |
| 474 | assert(Start < End && "Invalid range" ); |
| 475 | const_iterator I = lower_bound(Range: *this, Value&: End); |
| 476 | return I != begin() && (--I)->end > Start; |
| 477 | } |
| 478 | |
| 479 | bool LiveRange::covers(const LiveRange &Other) const { |
| 480 | if (empty()) |
| 481 | return Other.empty(); |
| 482 | |
| 483 | const_iterator I = begin(); |
| 484 | for (const Segment &O : Other.segments) { |
| 485 | I = advanceTo(I, Pos: O.start); |
| 486 | if (I == end() || I->start > O.start) |
| 487 | return false; |
| 488 | |
| 489 | // Check adjacent live segments and see if we can get behind O.end. |
| 490 | while (I->end < O.end) { |
| 491 | const_iterator Last = I; |
| 492 | // Get next segment and abort if it was not adjacent. |
| 493 | ++I; |
| 494 | if (I == end() || Last->end != I->start) |
| 495 | return false; |
| 496 | } |
| 497 | } |
| 498 | return true; |
| 499 | } |
| 500 | |
| 501 | /// ValNo is dead, remove it. If it is the largest value number, just nuke it |
| 502 | /// (and any other deleted values neighboring it), otherwise mark it as ~1U so |
| 503 | /// it can be nuked later. |
| 504 | void LiveRange::markValNoForDeletion(VNInfo *ValNo) { |
| 505 | if (ValNo->id == getNumValNums()-1) { |
| 506 | do { |
| 507 | valnos.pop_back(); |
| 508 | } while (!valnos.empty() && valnos.back()->isUnused()); |
| 509 | } else { |
| 510 | ValNo->markUnused(); |
| 511 | } |
| 512 | } |
| 513 | |
| 514 | /// RenumberValues - Renumber all values in order of appearance and delete the |
| 515 | /// remaining unused values. |
| 516 | void LiveRange::RenumberValues() { |
| 517 | SmallPtrSet<VNInfo*, 8> Seen; |
| 518 | valnos.clear(); |
| 519 | for (const Segment &S : segments) { |
| 520 | VNInfo *VNI = S.valno; |
| 521 | if (!Seen.insert(Ptr: VNI).second) |
| 522 | continue; |
| 523 | assert(!VNI->isUnused() && "Unused valno used by live segment" ); |
| 524 | VNI->id = (unsigned)valnos.size(); |
| 525 | valnos.push_back(Elt: VNI); |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | void LiveRange::addSegmentToSet(Segment S) { |
| 530 | CalcLiveRangeUtilSet(this).addSegment(S); |
| 531 | } |
| 532 | |
| 533 | LiveRange::iterator LiveRange::addSegment(Segment S) { |
| 534 | // Use the segment set, if it is available. |
| 535 | if (segmentSet != nullptr) { |
| 536 | addSegmentToSet(S); |
| 537 | return end(); |
| 538 | } |
| 539 | // Otherwise use the segment vector. |
| 540 | return CalcLiveRangeUtilVector(this).addSegment(S); |
| 541 | } |
| 542 | |
| 543 | void LiveRange::append(const Segment S) { |
| 544 | // Check that the segment belongs to the back of the list. |
| 545 | assert(segments.empty() || segments.back().end <= S.start); |
| 546 | segments.push_back(Elt: S); |
| 547 | } |
| 548 | |
| 549 | std::pair<VNInfo*,bool> LiveRange::extendInBlock(ArrayRef<SlotIndex> Undefs, |
| 550 | SlotIndex StartIdx, SlotIndex Kill) { |
| 551 | // Use the segment set, if it is available. |
| 552 | if (segmentSet != nullptr) |
| 553 | return CalcLiveRangeUtilSet(this).extendInBlock(Undefs, StartIdx, Use: Kill); |
| 554 | // Otherwise use the segment vector. |
| 555 | return CalcLiveRangeUtilVector(this).extendInBlock(Undefs, StartIdx, Use: Kill); |
| 556 | } |
| 557 | |
| 558 | VNInfo *LiveRange::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) { |
| 559 | // Use the segment set, if it is available. |
| 560 | if (segmentSet != nullptr) |
| 561 | return CalcLiveRangeUtilSet(this).extendInBlock(StartIdx, Use: Kill); |
| 562 | // Otherwise use the segment vector. |
| 563 | return CalcLiveRangeUtilVector(this).extendInBlock(StartIdx, Use: Kill); |
| 564 | } |
| 565 | |
| 566 | void LiveRange::removeSegment(SlotIndex Start, SlotIndex End, |
| 567 | bool RemoveDeadValNo) { |
| 568 | // Find the Segment containing this span. |
| 569 | iterator I = find(Pos: Start); |
| 570 | |
| 571 | // No Segment found, so nothing to do. |
| 572 | if (I == end()) |
| 573 | return; |
| 574 | |
| 575 | assert(I->containsInterval(Start, End) |
| 576 | && "Segment is not entirely in range!" ); |
| 577 | |
| 578 | // If the span we are removing is at the start of the Segment, adjust it. |
| 579 | VNInfo *ValNo = I->valno; |
| 580 | if (I->start == Start) { |
| 581 | if (I->end == End) { |
| 582 | segments.erase(CI: I); // Removed the whole Segment. |
| 583 | |
| 584 | if (RemoveDeadValNo) |
| 585 | removeValNoIfDead(ValNo); |
| 586 | } else |
| 587 | I->start = End; |
| 588 | return; |
| 589 | } |
| 590 | |
| 591 | // Otherwise if the span we are removing is at the end of the Segment, |
| 592 | // adjust the other way. |
| 593 | if (I->end == End) { |
| 594 | I->end = Start; |
| 595 | return; |
| 596 | } |
| 597 | |
| 598 | // Otherwise, we are splitting the Segment into two pieces. |
| 599 | SlotIndex OldEnd = I->end; |
| 600 | I->end = Start; // Trim the old segment. |
| 601 | |
| 602 | // Insert the new one. |
| 603 | segments.insert(I: std::next(x: I), Elt: Segment(End, OldEnd, ValNo)); |
| 604 | } |
| 605 | |
| 606 | LiveRange::iterator LiveRange::removeSegment(iterator I, bool RemoveDeadValNo) { |
| 607 | VNInfo *ValNo = I->valno; |
| 608 | I = segments.erase(CI: I); |
| 609 | if (RemoveDeadValNo) |
| 610 | removeValNoIfDead(ValNo); |
| 611 | return I; |
| 612 | } |
| 613 | |
| 614 | void LiveRange::removeValNoIfDead(VNInfo *ValNo) { |
| 615 | if (none_of(Range&: *this, P: [=](const Segment &S) { return S.valno == ValNo; })) |
| 616 | markValNoForDeletion(ValNo); |
| 617 | } |
| 618 | |
| 619 | /// removeValNo - Remove all the segments defined by the specified value#. |
| 620 | /// Also remove the value# from value# list. |
| 621 | void LiveRange::removeValNo(VNInfo *ValNo) { |
| 622 | if (empty()) return; |
| 623 | llvm::erase_if(C&: segments, |
| 624 | P: [ValNo](const Segment &S) { return S.valno == ValNo; }); |
| 625 | // Now that ValNo is dead, remove it. |
| 626 | markValNoForDeletion(ValNo); |
| 627 | } |
| 628 | |
| 629 | void LiveRange::join(LiveRange &Other, |
| 630 | const int *LHSValNoAssignments, |
| 631 | const int *RHSValNoAssignments, |
| 632 | SmallVectorImpl<VNInfo *> &NewVNInfo) { |
| 633 | assert(verify()); |
| 634 | assert(Other.verify()); |
| 635 | |
| 636 | // Determine if any of our values are mapped. This is uncommon, so we want |
| 637 | // to avoid the range scan if not. |
| 638 | bool MustMapCurValNos = false; |
| 639 | unsigned NumVals = getNumValNums(); |
| 640 | unsigned NumNewVals = NewVNInfo.size(); |
| 641 | for (unsigned i = 0; i != NumVals; ++i) { |
| 642 | unsigned LHSValID = LHSValNoAssignments[i]; |
| 643 | if (i != LHSValID || |
| 644 | (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(ValNo: i))) { |
| 645 | MustMapCurValNos = true; |
| 646 | break; |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | // If we have to apply a mapping to our base range assignment, rewrite it now. |
| 651 | if (MustMapCurValNos && !empty()) { |
| 652 | // Map the first live range. |
| 653 | |
| 654 | iterator OutIt = begin(); |
| 655 | OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]]; |
| 656 | for (iterator I = std::next(x: OutIt), E = end(); I != E; ++I) { |
| 657 | VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]]; |
| 658 | assert(nextValNo && "Huh?" ); |
| 659 | |
| 660 | // If this live range has the same value # as its immediate predecessor, |
| 661 | // and if they are neighbors, remove one Segment. This happens when we |
| 662 | // have [0,4:0)[4,7:1) and map 0/1 onto the same value #. |
| 663 | if (OutIt->valno == nextValNo && OutIt->end == I->start) { |
| 664 | OutIt->end = I->end; |
| 665 | } else { |
| 666 | // Didn't merge. Move OutIt to the next segment, |
| 667 | ++OutIt; |
| 668 | OutIt->valno = nextValNo; |
| 669 | if (OutIt != I) { |
| 670 | OutIt->start = I->start; |
| 671 | OutIt->end = I->end; |
| 672 | } |
| 673 | } |
| 674 | } |
| 675 | // If we merge some segments, chop off the end. |
| 676 | ++OutIt; |
| 677 | segments.erase(CS: OutIt, CE: end()); |
| 678 | } |
| 679 | |
| 680 | // Rewrite Other values before changing the VNInfo ids. |
| 681 | // This can leave Other in an invalid state because we're not coalescing |
| 682 | // touching segments that now have identical values. That's OK since Other is |
| 683 | // not supposed to be valid after calling join(); |
| 684 | for (Segment &S : Other.segments) |
| 685 | S.valno = NewVNInfo[RHSValNoAssignments[S.valno->id]]; |
| 686 | |
| 687 | // Update val# info. Renumber them and make sure they all belong to this |
| 688 | // LiveRange now. Also remove dead val#'s. |
| 689 | unsigned NumValNos = 0; |
| 690 | for (unsigned i = 0; i < NumNewVals; ++i) { |
| 691 | VNInfo *VNI = NewVNInfo[i]; |
| 692 | if (VNI) { |
| 693 | if (NumValNos >= NumVals) |
| 694 | valnos.push_back(Elt: VNI); |
| 695 | else |
| 696 | valnos[NumValNos] = VNI; |
| 697 | VNI->id = NumValNos++; // Renumber val#. |
| 698 | } |
| 699 | } |
| 700 | if (NumNewVals < NumVals) |
| 701 | valnos.resize(N: NumNewVals); // shrinkify |
| 702 | |
| 703 | // Okay, now insert the RHS live segments into the LHS. |
| 704 | LiveRangeUpdater Updater(this); |
| 705 | for (Segment &S : Other.segments) |
| 706 | Updater.add(S); |
| 707 | } |
| 708 | |
| 709 | /// Merge all of the segments in RHS into this live range as the specified |
| 710 | /// value number. The segments in RHS are allowed to overlap with segments in |
| 711 | /// the current range, but only if the overlapping segments have the |
| 712 | /// specified value number. |
| 713 | void LiveRange::MergeSegmentsInAsValue(const LiveRange &RHS, |
| 714 | VNInfo *LHSValNo) { |
| 715 | LiveRangeUpdater Updater(this); |
| 716 | for (const Segment &S : RHS.segments) |
| 717 | Updater.add(Start: S.start, End: S.end, VNI: LHSValNo); |
| 718 | } |
| 719 | |
| 720 | /// MergeValueInAsValue - Merge all of the live segments of a specific val# |
| 721 | /// in RHS into this live range as the specified value number. |
| 722 | /// The segments in RHS are allowed to overlap with segments in the |
| 723 | /// current range, it will replace the value numbers of the overlaped |
| 724 | /// segments with the specified value number. |
| 725 | void LiveRange::MergeValueInAsValue(const LiveRange &RHS, |
| 726 | const VNInfo *RHSValNo, |
| 727 | VNInfo *LHSValNo) { |
| 728 | LiveRangeUpdater Updater(this); |
| 729 | for (const Segment &S : RHS.segments) |
| 730 | if (S.valno == RHSValNo) |
| 731 | Updater.add(Start: S.start, End: S.end, VNI: LHSValNo); |
| 732 | } |
| 733 | |
| 734 | /// MergeValueNumberInto - This method is called when two value nubmers |
| 735 | /// are found to be equivalent. This eliminates V1, replacing all |
| 736 | /// segments with the V1 value number with the V2 value number. This can |
| 737 | /// cause merging of V1/V2 values numbers and compaction of the value space. |
| 738 | VNInfo *LiveRange::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) { |
| 739 | assert(V1 != V2 && "Identical value#'s are always equivalent!" ); |
| 740 | |
| 741 | // This code actually merges the (numerically) larger value number into the |
| 742 | // smaller value number, which is likely to allow us to compactify the value |
| 743 | // space. The only thing we have to be careful of is to preserve the |
| 744 | // instruction that defines the result value. |
| 745 | |
| 746 | // Make sure V2 is smaller than V1. |
| 747 | if (V1->id < V2->id) { |
| 748 | V1->copyFrom(src&: *V2); |
| 749 | std::swap(a&: V1, b&: V2); |
| 750 | } |
| 751 | |
| 752 | // Merge V1 segments into V2. |
| 753 | for (iterator I = begin(); I != end(); ) { |
| 754 | iterator S = I++; |
| 755 | if (S->valno != V1) continue; // Not a V1 Segment. |
| 756 | |
| 757 | // Okay, we found a V1 live range. If it had a previous, touching, V2 live |
| 758 | // range, extend it. |
| 759 | if (S != begin()) { |
| 760 | iterator Prev = S-1; |
| 761 | if (Prev->valno == V2 && Prev->end == S->start) { |
| 762 | Prev->end = S->end; |
| 763 | |
| 764 | // Erase this live-range. |
| 765 | segments.erase(CI: S); |
| 766 | I = Prev+1; |
| 767 | S = Prev; |
| 768 | } |
| 769 | } |
| 770 | |
| 771 | // Okay, now we have a V1 or V2 live range that is maximally merged forward. |
| 772 | // Ensure that it is a V2 live-range. |
| 773 | S->valno = V2; |
| 774 | |
| 775 | // If we can merge it into later V2 segments, do so now. We ignore any |
| 776 | // following V1 segments, as they will be merged in subsequent iterations |
| 777 | // of the loop. |
| 778 | if (I != end()) { |
| 779 | if (I->start == S->end && I->valno == V2) { |
| 780 | S->end = I->end; |
| 781 | segments.erase(CI: I); |
| 782 | I = S+1; |
| 783 | } |
| 784 | } |
| 785 | } |
| 786 | |
| 787 | // Now that V1 is dead, remove it. |
| 788 | markValNoForDeletion(ValNo: V1); |
| 789 | |
| 790 | return V2; |
| 791 | } |
| 792 | |
| 793 | void LiveRange::flushSegmentSet() { |
| 794 | assert(segmentSet != nullptr && "segment set must have been created" ); |
| 795 | assert( |
| 796 | segments.empty() && |
| 797 | "segment set can be used only initially before switching to the array" ); |
| 798 | segments.append(in_start: segmentSet->begin(), in_end: segmentSet->end()); |
| 799 | segmentSet = nullptr; |
| 800 | assert(verify()); |
| 801 | } |
| 802 | |
| 803 | bool LiveRange::isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const { |
| 804 | ArrayRef<SlotIndex>::iterator SlotI = Slots.begin(); |
| 805 | ArrayRef<SlotIndex>::iterator SlotE = Slots.end(); |
| 806 | |
| 807 | // If there are no regmask slots, we have nothing to search. |
| 808 | if (SlotI == SlotE) |
| 809 | return false; |
| 810 | |
| 811 | // Start our search at the first segment that ends after the first slot. |
| 812 | const_iterator SegmentI = find(Pos: *SlotI); |
| 813 | const_iterator SegmentE = end(); |
| 814 | |
| 815 | // If there are no segments that end after the first slot, we're done. |
| 816 | if (SegmentI == SegmentE) |
| 817 | return false; |
| 818 | |
| 819 | // Look for each slot in the live range. |
| 820 | for ( ; SlotI != SlotE; ++SlotI) { |
| 821 | // Go to the next segment that ends after the current slot. |
| 822 | // The slot may be within a hole in the range. |
| 823 | SegmentI = advanceTo(I: SegmentI, Pos: *SlotI); |
| 824 | if (SegmentI == SegmentE) |
| 825 | return false; |
| 826 | |
| 827 | // If this segment contains the slot, we're done. |
| 828 | if (SegmentI->contains(I: *SlotI)) |
| 829 | return true; |
| 830 | // Otherwise, look for the next slot. |
| 831 | } |
| 832 | |
| 833 | // We didn't find a segment containing any of the slots. |
| 834 | return false; |
| 835 | } |
| 836 | |
| 837 | void LiveInterval::freeSubRange(SubRange *S) { |
| 838 | S->~SubRange(); |
| 839 | // Memory was allocated with BumpPtr allocator and is not freed here. |
| 840 | } |
| 841 | |
| 842 | void LiveInterval::removeEmptySubRanges() { |
| 843 | SubRange **NextPtr = &SubRanges; |
| 844 | SubRange *I = *NextPtr; |
| 845 | while (I != nullptr) { |
| 846 | if (!I->empty()) { |
| 847 | NextPtr = &I->Next; |
| 848 | I = *NextPtr; |
| 849 | continue; |
| 850 | } |
| 851 | // Skip empty subranges until we find the first nonempty one. |
| 852 | do { |
| 853 | SubRange *Next = I->Next; |
| 854 | freeSubRange(S: I); |
| 855 | I = Next; |
| 856 | } while (I != nullptr && I->empty()); |
| 857 | *NextPtr = I; |
| 858 | } |
| 859 | } |
| 860 | |
| 861 | void LiveInterval::clearSubRanges() { |
| 862 | for (SubRange *I = SubRanges, *Next; I != nullptr; I = Next) { |
| 863 | Next = I->Next; |
| 864 | freeSubRange(S: I); |
| 865 | } |
| 866 | SubRanges = nullptr; |
| 867 | } |
| 868 | |
| 869 | /// For each VNI in \p SR, check whether or not that value defines part |
| 870 | /// of the mask describe by \p LaneMask and if not, remove that value |
| 871 | /// from \p SR. |
| 872 | static void stripValuesNotDefiningMask(Register Reg, LiveInterval::SubRange &SR, |
| 873 | LaneBitmask LaneMask, |
| 874 | const SlotIndexes &Indexes, |
| 875 | const TargetRegisterInfo &TRI, |
| 876 | unsigned ComposeSubRegIdx) { |
| 877 | // Phys reg should not be tracked at subreg level. |
| 878 | // Same for noreg (Reg == 0). |
| 879 | if (!Reg || !Reg.isVirtual()) |
| 880 | return; |
| 881 | // Remove the values that don't define those lanes. |
| 882 | SmallVector<VNInfo *, 8> ToBeRemoved; |
| 883 | for (VNInfo *VNI : SR.valnos) { |
| 884 | if (VNI->isUnused()) |
| 885 | continue; |
| 886 | // PHI definitions don't have MI attached, so there is nothing |
| 887 | // we can use to strip the VNI. |
| 888 | if (VNI->isPHIDef()) |
| 889 | continue; |
| 890 | const MachineInstr *MI = Indexes.getInstructionFromIndex(index: VNI->def); |
| 891 | assert(MI && "Cannot find the definition of a value" ); |
| 892 | bool hasDef = false; |
| 893 | for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { |
| 894 | if (!MOI->isReg() || !MOI->isDef()) |
| 895 | continue; |
| 896 | if (MOI->getReg() != Reg) |
| 897 | continue; |
| 898 | LaneBitmask OrigMask = TRI.getSubRegIndexLaneMask(SubIdx: MOI->getSubReg()); |
| 899 | LaneBitmask ExpectedDefMask = |
| 900 | ComposeSubRegIdx |
| 901 | ? TRI.composeSubRegIndexLaneMask(IdxA: ComposeSubRegIdx, Mask: OrigMask) |
| 902 | : OrigMask; |
| 903 | if ((ExpectedDefMask & LaneMask).none()) |
| 904 | continue; |
| 905 | hasDef = true; |
| 906 | break; |
| 907 | } |
| 908 | |
| 909 | if (!hasDef) |
| 910 | ToBeRemoved.push_back(Elt: VNI); |
| 911 | } |
| 912 | for (VNInfo *VNI : ToBeRemoved) |
| 913 | SR.removeValNo(ValNo: VNI); |
| 914 | |
| 915 | // If the subrange is empty at this point, the MIR is invalid. Do not assert |
| 916 | // and let the verifier catch this case. |
| 917 | } |
| 918 | |
| 919 | void LiveInterval::refineSubRanges( |
| 920 | BumpPtrAllocator &Allocator, LaneBitmask LaneMask, |
| 921 | std::function<void(LiveInterval::SubRange &)> Apply, |
| 922 | const SlotIndexes &Indexes, const TargetRegisterInfo &TRI, |
| 923 | unsigned ComposeSubRegIdx) { |
| 924 | LaneBitmask ToApply = LaneMask; |
| 925 | for (SubRange &SR : subranges()) { |
| 926 | LaneBitmask SRMask = SR.LaneMask; |
| 927 | LaneBitmask Matching = SRMask & LaneMask; |
| 928 | if (Matching.none()) |
| 929 | continue; |
| 930 | |
| 931 | SubRange *MatchingRange; |
| 932 | if (SRMask == Matching) { |
| 933 | // The subrange fits (it does not cover bits outside \p LaneMask). |
| 934 | MatchingRange = &SR; |
| 935 | } else { |
| 936 | // We have to split the subrange into a matching and non-matching part. |
| 937 | // Reduce lanemask of existing lane to non-matching part. |
| 938 | SR.LaneMask = SRMask & ~Matching; |
| 939 | // Create a new subrange for the matching part |
| 940 | MatchingRange = createSubRangeFrom(Allocator, LaneMask: Matching, CopyFrom: SR); |
| 941 | // Now that the subrange is split in half, make sure we |
| 942 | // only keep in the subranges the VNIs that touch the related half. |
| 943 | stripValuesNotDefiningMask(Reg: reg(), SR&: *MatchingRange, LaneMask: Matching, Indexes, TRI, |
| 944 | ComposeSubRegIdx); |
| 945 | stripValuesNotDefiningMask(Reg: reg(), SR, LaneMask: SR.LaneMask, Indexes, TRI, |
| 946 | ComposeSubRegIdx); |
| 947 | } |
| 948 | Apply(*MatchingRange); |
| 949 | ToApply &= ~Matching; |
| 950 | } |
| 951 | // Create a new subrange if there are uncovered bits left. |
| 952 | if (ToApply.any()) { |
| 953 | SubRange *NewRange = createSubRange(Allocator, LaneMask: ToApply); |
| 954 | Apply(*NewRange); |
| 955 | } |
| 956 | } |
| 957 | |
| 958 | unsigned LiveInterval::getSize() const { |
| 959 | unsigned Sum = 0; |
| 960 | for (const Segment &S : segments) |
| 961 | Sum += S.start.distance(other: S.end); |
| 962 | return Sum; |
| 963 | } |
| 964 | |
| 965 | void LiveInterval::computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs, |
| 966 | LaneBitmask LaneMask, |
| 967 | const MachineRegisterInfo &MRI, |
| 968 | const SlotIndexes &Indexes) const { |
| 969 | assert(reg().isVirtual()); |
| 970 | LaneBitmask VRegMask = MRI.getMaxLaneMaskForVReg(Reg: reg()); |
| 971 | assert((VRegMask & LaneMask).any()); |
| 972 | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); |
| 973 | for (const MachineOperand &MO : MRI.def_operands(Reg: reg())) { |
| 974 | if (!MO.isUndef()) |
| 975 | continue; |
| 976 | unsigned SubReg = MO.getSubReg(); |
| 977 | assert(SubReg != 0 && "Undef should only be set on subreg defs" ); |
| 978 | LaneBitmask DefMask = TRI.getSubRegIndexLaneMask(SubIdx: SubReg); |
| 979 | LaneBitmask UndefMask = VRegMask & ~DefMask; |
| 980 | if ((UndefMask & LaneMask).any()) { |
| 981 | const MachineInstr &MI = *MO.getParent(); |
| 982 | bool EarlyClobber = MO.isEarlyClobber(); |
| 983 | SlotIndex Pos = Indexes.getInstructionIndex(MI).getRegSlot(EC: EarlyClobber); |
| 984 | Undefs.push_back(Elt: Pos); |
| 985 | } |
| 986 | } |
| 987 | } |
| 988 | |
| 989 | raw_ostream& llvm::operator<<(raw_ostream& OS, const LiveRange::Segment &S) { |
| 990 | return OS << '[' << S.start << ',' << S.end << ':' << S.valno->id << ')'; |
| 991 | } |
| 992 | |
| 993 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 994 | LLVM_DUMP_METHOD void LiveRange::Segment::dump() const { |
| 995 | dbgs() << *this << '\n'; |
| 996 | } |
| 997 | #endif |
| 998 | |
| 999 | void LiveRange::print(raw_ostream &OS) const { |
| 1000 | if (empty()) |
| 1001 | OS << "EMPTY" ; |
| 1002 | else { |
| 1003 | for (const Segment &S : segments) { |
| 1004 | OS << S; |
| 1005 | assert(S.valno == getValNumInfo(S.valno->id) && "Bad VNInfo" ); |
| 1006 | } |
| 1007 | } |
| 1008 | |
| 1009 | // Print value number info. |
| 1010 | if (getNumValNums()) { |
| 1011 | OS << ' '; |
| 1012 | unsigned vnum = 0; |
| 1013 | for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e; |
| 1014 | ++i, ++vnum) { |
| 1015 | const VNInfo *vni = *i; |
| 1016 | if (vnum) OS << ' '; |
| 1017 | OS << vnum << '@'; |
| 1018 | if (vni->isUnused()) { |
| 1019 | OS << 'x'; |
| 1020 | } else { |
| 1021 | OS << vni->def; |
| 1022 | if (vni->isPHIDef()) |
| 1023 | OS << "-phi" ; |
| 1024 | } |
| 1025 | } |
| 1026 | } |
| 1027 | } |
| 1028 | |
| 1029 | void LiveInterval::SubRange::print(raw_ostream &OS) const { |
| 1030 | OS << " L" << PrintLaneMask(LaneMask) << ' ' |
| 1031 | << static_cast<const LiveRange &>(*this); |
| 1032 | } |
| 1033 | |
| 1034 | void LiveInterval::print(raw_ostream &OS) const { |
| 1035 | OS << printReg(Reg: reg()) << ' '; |
| 1036 | super::print(OS); |
| 1037 | // Print subranges |
| 1038 | for (const SubRange &SR : subranges()) |
| 1039 | OS << SR; |
| 1040 | OS << " weight:" << Weight; |
| 1041 | } |
| 1042 | |
| 1043 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1044 | LLVM_DUMP_METHOD void LiveRange::dump() const { |
| 1045 | dbgs() << *this << '\n'; |
| 1046 | } |
| 1047 | |
| 1048 | LLVM_DUMP_METHOD void LiveInterval::SubRange::dump() const { |
| 1049 | dbgs() << *this << '\n'; |
| 1050 | } |
| 1051 | |
| 1052 | LLVM_DUMP_METHOD void LiveInterval::dump() const { |
| 1053 | dbgs() << *this << '\n'; |
| 1054 | } |
| 1055 | #endif |
| 1056 | |
| 1057 | #ifndef NDEBUG |
| 1058 | bool LiveRange::verify() const { |
| 1059 | for (const_iterator I = begin(), E = end(); I != E; ++I) { |
| 1060 | if (!I->start.isValid()) |
| 1061 | return false; |
| 1062 | if (!I->end.isValid()) |
| 1063 | return false; |
| 1064 | if (I->start >= I->end) |
| 1065 | return false; |
| 1066 | if (I->valno == nullptr) |
| 1067 | return false; |
| 1068 | if (I->valno->id >= valnos.size()) |
| 1069 | return false; |
| 1070 | if (I->valno != valnos[I->valno->id]) |
| 1071 | return false; |
| 1072 | if (std::next(I) != E) { |
| 1073 | if (I->end > std::next(I)->start) |
| 1074 | return false; |
| 1075 | if (I->end == std::next(I)->start) { |
| 1076 | if (I->valno == std::next(I)->valno) |
| 1077 | return false; |
| 1078 | } |
| 1079 | } |
| 1080 | } |
| 1081 | |
| 1082 | return true; |
| 1083 | } |
| 1084 | |
| 1085 | bool LiveInterval::verify(const MachineRegisterInfo *MRI) const { |
| 1086 | if (!super::verify()) |
| 1087 | return false; |
| 1088 | |
| 1089 | // Make sure SubRanges are fine and LaneMasks are disjunct. |
| 1090 | LaneBitmask Mask; |
| 1091 | LaneBitmask MaxMask = MRI != nullptr ? MRI->getMaxLaneMaskForVReg(reg()) |
| 1092 | : LaneBitmask::getAll(); |
| 1093 | for (const SubRange &SR : subranges()) { |
| 1094 | // Subrange lanemask should be disjunct to any previous subrange masks. |
| 1095 | if ((Mask & SR.LaneMask).any()) |
| 1096 | return false; |
| 1097 | |
| 1098 | Mask |= SR.LaneMask; |
| 1099 | |
| 1100 | // subrange mask should not contained in maximum lane mask for the vreg. |
| 1101 | if ((Mask & ~MaxMask).any()) |
| 1102 | return false; |
| 1103 | |
| 1104 | // empty subranges must be removed. |
| 1105 | if (SR.empty()) |
| 1106 | return false; |
| 1107 | |
| 1108 | if (!SR.verify()) |
| 1109 | return false; |
| 1110 | |
| 1111 | // Main liverange should cover subrange. |
| 1112 | if (!covers(SR)) |
| 1113 | return false; |
| 1114 | } |
| 1115 | |
| 1116 | return true; |
| 1117 | } |
| 1118 | #endif |
| 1119 | |
| 1120 | //===----------------------------------------------------------------------===// |
| 1121 | // LiveRangeUpdater class |
| 1122 | //===----------------------------------------------------------------------===// |
| 1123 | // |
| 1124 | // The LiveRangeUpdater class always maintains these invariants: |
| 1125 | // |
| 1126 | // - When LastStart is invalid, Spills is empty and the iterators are invalid. |
| 1127 | // This is the initial state, and the state created by flush(). |
| 1128 | // In this state, isDirty() returns false. |
| 1129 | // |
| 1130 | // Otherwise, segments are kept in three separate areas: |
| 1131 | // |
| 1132 | // 1. [begin; WriteI) at the front of LR. |
| 1133 | // 2. [ReadI; end) at the back of LR. |
| 1134 | // 3. Spills. |
| 1135 | // |
| 1136 | // - LR.begin() <= WriteI <= ReadI <= LR.end(). |
| 1137 | // - Segments in all three areas are fully ordered and coalesced. |
| 1138 | // - Segments in area 1 precede and can't coalesce with segments in area 2. |
| 1139 | // - Segments in Spills precede and can't coalesce with segments in area 2. |
| 1140 | // - No coalescing is possible between segments in Spills and segments in area |
| 1141 | // 1, and there are no overlapping segments. |
| 1142 | // |
| 1143 | // The segments in Spills are not ordered with respect to the segments in area |
| 1144 | // 1. They need to be merged. |
| 1145 | // |
| 1146 | // When they exist, Spills.back().start <= LastStart, |
| 1147 | // and WriteI[-1].start <= LastStart. |
| 1148 | |
| 1149 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1150 | void LiveRangeUpdater::print(raw_ostream &OS) const { |
| 1151 | if (!isDirty()) { |
| 1152 | if (LR) |
| 1153 | OS << "Clean updater: " << *LR << '\n'; |
| 1154 | else |
| 1155 | OS << "Null updater.\n" ; |
| 1156 | return; |
| 1157 | } |
| 1158 | assert(LR && "Can't have null LR in dirty updater." ); |
| 1159 | OS << " updater with gap = " << (ReadI - WriteI) |
| 1160 | << ", last start = " << LastStart |
| 1161 | << ":\n Area 1:" ; |
| 1162 | for (const auto &S : make_range(LR->begin(), WriteI)) |
| 1163 | OS << ' ' << S; |
| 1164 | OS << "\n Spills:" ; |
| 1165 | for (const LiveRange::Segment &Spill : Spills) |
| 1166 | OS << ' ' << Spill; |
| 1167 | OS << "\n Area 2:" ; |
| 1168 | for (const auto &S : make_range(ReadI, LR->end())) |
| 1169 | OS << ' ' << S; |
| 1170 | OS << '\n'; |
| 1171 | } |
| 1172 | |
| 1173 | LLVM_DUMP_METHOD void LiveRangeUpdater::dump() const { |
| 1174 | print(errs()); |
| 1175 | } |
| 1176 | #endif |
| 1177 | |
| 1178 | // Determine if A and B should be coalesced. |
| 1179 | static inline bool coalescable(const LiveRange::Segment &A, |
| 1180 | const LiveRange::Segment &B) { |
| 1181 | assert(A.start <= B.start && "Unordered live segments." ); |
| 1182 | if (A.end == B.start) |
| 1183 | return A.valno == B.valno; |
| 1184 | if (A.end < B.start) |
| 1185 | return false; |
| 1186 | assert(A.valno == B.valno && "Cannot overlap different values" ); |
| 1187 | return true; |
| 1188 | } |
| 1189 | |
| 1190 | void LiveRangeUpdater::add(LiveRange::Segment Seg) { |
| 1191 | assert(LR && "Cannot add to a null destination" ); |
| 1192 | |
| 1193 | // Fall back to the regular add method if the live range |
| 1194 | // is using the segment set instead of the segment vector. |
| 1195 | if (LR->segmentSet != nullptr) { |
| 1196 | LR->addSegmentToSet(S: Seg); |
| 1197 | return; |
| 1198 | } |
| 1199 | |
| 1200 | // Flush the state if Start moves backwards. |
| 1201 | if (!LastStart.isValid() || LastStart > Seg.start) { |
| 1202 | if (isDirty()) |
| 1203 | flush(); |
| 1204 | // This brings us to an uninitialized state. Reinitialize. |
| 1205 | assert(Spills.empty() && "Leftover spilled segments" ); |
| 1206 | WriteI = ReadI = LR->begin(); |
| 1207 | } |
| 1208 | |
| 1209 | // Remember start for next time. |
| 1210 | LastStart = Seg.start; |
| 1211 | |
| 1212 | // Advance ReadI until it ends after Seg.start. |
| 1213 | LiveRange::iterator E = LR->end(); |
| 1214 | if (ReadI != E && ReadI->end <= Seg.start) { |
| 1215 | // First try to close the gap between WriteI and ReadI with spills. |
| 1216 | if (ReadI != WriteI) |
| 1217 | mergeSpills(); |
| 1218 | // Then advance ReadI. |
| 1219 | if (ReadI == WriteI) |
| 1220 | ReadI = WriteI = LR->find(Pos: Seg.start); |
| 1221 | else |
| 1222 | while (ReadI != E && ReadI->end <= Seg.start) |
| 1223 | *WriteI++ = *ReadI++; |
| 1224 | } |
| 1225 | |
| 1226 | assert(ReadI == E || ReadI->end > Seg.start); |
| 1227 | |
| 1228 | // Check if the ReadI segment begins early. |
| 1229 | if (ReadI != E && ReadI->start <= Seg.start) { |
| 1230 | assert(ReadI->valno == Seg.valno && "Cannot overlap different values" ); |
| 1231 | // Bail if Seg is completely contained in ReadI. |
| 1232 | if (ReadI->end >= Seg.end) |
| 1233 | return; |
| 1234 | // Coalesce into Seg. |
| 1235 | Seg.start = ReadI->start; |
| 1236 | ++ReadI; |
| 1237 | } |
| 1238 | |
| 1239 | // Coalesce as much as possible from ReadI into Seg. |
| 1240 | while (ReadI != E && coalescable(A: Seg, B: *ReadI)) { |
| 1241 | Seg.end = std::max(a: Seg.end, b: ReadI->end); |
| 1242 | ++ReadI; |
| 1243 | } |
| 1244 | |
| 1245 | // Try coalescing Spills.back() into Seg. |
| 1246 | if (!Spills.empty() && coalescable(A: Spills.back(), B: Seg)) { |
| 1247 | Seg.start = Spills.back().start; |
| 1248 | Seg.end = std::max(a: Spills.back().end, b: Seg.end); |
| 1249 | Spills.pop_back(); |
| 1250 | } |
| 1251 | |
| 1252 | // Try coalescing Seg into WriteI[-1]. |
| 1253 | if (WriteI != LR->begin() && coalescable(A: WriteI[-1], B: Seg)) { |
| 1254 | WriteI[-1].end = std::max(a: WriteI[-1].end, b: Seg.end); |
| 1255 | return; |
| 1256 | } |
| 1257 | |
| 1258 | // Seg doesn't coalesce with anything, and needs to be inserted somewhere. |
| 1259 | if (WriteI != ReadI) { |
| 1260 | *WriteI++ = Seg; |
| 1261 | return; |
| 1262 | } |
| 1263 | |
| 1264 | // Finally, append to LR or Spills. |
| 1265 | if (WriteI == E) { |
| 1266 | LR->segments.push_back(Elt: Seg); |
| 1267 | WriteI = ReadI = LR->end(); |
| 1268 | } else |
| 1269 | Spills.push_back(Elt: Seg); |
| 1270 | } |
| 1271 | |
| 1272 | // Merge as many spilled segments as possible into the gap between WriteI |
| 1273 | // and ReadI. Advance WriteI to reflect the inserted instructions. |
| 1274 | void LiveRangeUpdater::mergeSpills() { |
| 1275 | // Perform a backwards merge of Spills and [SpillI;WriteI). |
| 1276 | size_t GapSize = ReadI - WriteI; |
| 1277 | size_t NumMoved = std::min(a: Spills.size(), b: GapSize); |
| 1278 | LiveRange::iterator Src = WriteI; |
| 1279 | LiveRange::iterator Dst = Src + NumMoved; |
| 1280 | LiveRange::iterator SpillSrc = Spills.end(); |
| 1281 | LiveRange::iterator B = LR->begin(); |
| 1282 | |
| 1283 | // This is the new WriteI position after merging spills. |
| 1284 | WriteI = Dst; |
| 1285 | |
| 1286 | // Now merge Src and Spills backwards. |
| 1287 | while (Src != Dst) { |
| 1288 | if (Src != B && Src[-1].start > SpillSrc[-1].start) |
| 1289 | *--Dst = *--Src; |
| 1290 | else |
| 1291 | *--Dst = *--SpillSrc; |
| 1292 | } |
| 1293 | assert(NumMoved == size_t(Spills.end() - SpillSrc)); |
| 1294 | Spills.erase(CS: SpillSrc, CE: Spills.end()); |
| 1295 | } |
| 1296 | |
| 1297 | void LiveRangeUpdater::flush() { |
| 1298 | if (!isDirty()) |
| 1299 | return; |
| 1300 | // Clear the dirty state. |
| 1301 | LastStart = SlotIndex(); |
| 1302 | |
| 1303 | assert(LR && "Cannot add to a null destination" ); |
| 1304 | |
| 1305 | // Nothing to merge? |
| 1306 | if (Spills.empty()) { |
| 1307 | LR->segments.erase(CS: WriteI, CE: ReadI); |
| 1308 | assert(LR->verify()); |
| 1309 | return; |
| 1310 | } |
| 1311 | |
| 1312 | // Resize the WriteI - ReadI gap to match Spills. |
| 1313 | size_t GapSize = ReadI - WriteI; |
| 1314 | if (GapSize < Spills.size()) { |
| 1315 | // The gap is too small. Make some room. |
| 1316 | size_t WritePos = WriteI - LR->begin(); |
| 1317 | LR->segments.insert(I: ReadI, NumToInsert: Spills.size() - GapSize, Elt: LiveRange::Segment()); |
| 1318 | // This also invalidated ReadI, but it is recomputed below. |
| 1319 | WriteI = LR->begin() + WritePos; |
| 1320 | } else { |
| 1321 | // Shrink the gap if necessary. |
| 1322 | LR->segments.erase(CS: WriteI + Spills.size(), CE: ReadI); |
| 1323 | } |
| 1324 | ReadI = WriteI + Spills.size(); |
| 1325 | mergeSpills(); |
| 1326 | assert(LR->verify()); |
| 1327 | } |
| 1328 | |
| 1329 | unsigned ConnectedVNInfoEqClasses::Classify(const LiveRange &LR) { |
| 1330 | // Create initial equivalence classes. |
| 1331 | EqClass.clear(); |
| 1332 | EqClass.grow(N: LR.getNumValNums()); |
| 1333 | |
| 1334 | const VNInfo *used = nullptr, *unused = nullptr; |
| 1335 | |
| 1336 | // Determine connections. |
| 1337 | for (const VNInfo *VNI : LR.valnos) { |
| 1338 | // Group all unused values into one class. |
| 1339 | if (VNI->isUnused()) { |
| 1340 | if (unused) |
| 1341 | EqClass.join(a: unused->id, b: VNI->id); |
| 1342 | unused = VNI; |
| 1343 | continue; |
| 1344 | } |
| 1345 | used = VNI; |
| 1346 | if (VNI->isPHIDef()) { |
| 1347 | const MachineBasicBlock *MBB = LIS.getMBBFromIndex(index: VNI->def); |
| 1348 | assert(MBB && "Phi-def has no defining MBB" ); |
| 1349 | // Connect to values live out of predecessors. |
| 1350 | for (MachineBasicBlock *Pred : MBB->predecessors()) |
| 1351 | if (const VNInfo *PVNI = LR.getVNInfoBefore(Idx: LIS.getMBBEndIdx(mbb: Pred))) |
| 1352 | EqClass.join(a: VNI->id, b: PVNI->id); |
| 1353 | } else { |
| 1354 | // Normal value defined by an instruction. Check for two-addr redef. |
| 1355 | // FIXME: This could be coincidental. Should we really check for a tied |
| 1356 | // operand constraint? |
| 1357 | // Note that VNI->def may be a use slot for an early clobber def. |
| 1358 | if (const VNInfo *UVNI = LR.getVNInfoBefore(Idx: VNI->def)) |
| 1359 | EqClass.join(a: VNI->id, b: UVNI->id); |
| 1360 | } |
| 1361 | } |
| 1362 | |
| 1363 | // Lump all the unused values in with the last used value. |
| 1364 | if (used && unused) |
| 1365 | EqClass.join(a: used->id, b: unused->id); |
| 1366 | |
| 1367 | EqClass.compress(); |
| 1368 | return EqClass.getNumClasses(); |
| 1369 | } |
| 1370 | |
| 1371 | void ConnectedVNInfoEqClasses::Distribute(LiveInterval &LI, LiveInterval *LIV[], |
| 1372 | MachineRegisterInfo &MRI) { |
| 1373 | // Rewrite instructions. |
| 1374 | for (MachineOperand &MO : |
| 1375 | llvm::make_early_inc_range(Range: MRI.reg_operands(Reg: LI.reg()))) { |
| 1376 | MachineInstr *MI = MO.getParent(); |
| 1377 | const VNInfo *VNI; |
| 1378 | if (MI->isDebugValue()) { |
| 1379 | // DBG_VALUE instructions don't have slot indexes, so get the index of |
| 1380 | // the instruction before them. The value is defined there too. |
| 1381 | SlotIndex Idx = LIS.getSlotIndexes()->getIndexBefore(MI: *MI); |
| 1382 | VNI = LI.Query(Idx).valueOut(); |
| 1383 | } else { |
| 1384 | SlotIndex Idx = LIS.getInstructionIndex(Instr: *MI); |
| 1385 | LiveQueryResult LRQ = LI.Query(Idx); |
| 1386 | VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined(); |
| 1387 | } |
| 1388 | // In the case of an <undef> use that isn't tied to any def, VNI will be |
| 1389 | // NULL. If the use is tied to a def, VNI will be the defined value. |
| 1390 | if (!VNI) |
| 1391 | continue; |
| 1392 | if (unsigned EqClass = getEqClass(VNI)) |
| 1393 | MO.setReg(LIV[EqClass - 1]->reg()); |
| 1394 | } |
| 1395 | |
| 1396 | // Distribute subregister liveranges. |
| 1397 | if (LI.hasSubRanges()) { |
| 1398 | unsigned NumComponents = EqClass.getNumClasses(); |
| 1399 | SmallVector<unsigned, 8> VNIMapping; |
| 1400 | SmallVector<LiveInterval::SubRange*, 8> SubRanges; |
| 1401 | BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); |
| 1402 | for (LiveInterval::SubRange &SR : LI.subranges()) { |
| 1403 | // Create new subranges in the split intervals and construct a mapping |
| 1404 | // for the VNInfos in the subrange. |
| 1405 | unsigned NumValNos = SR.valnos.size(); |
| 1406 | VNIMapping.clear(); |
| 1407 | VNIMapping.reserve(N: NumValNos); |
| 1408 | SubRanges.clear(); |
| 1409 | SubRanges.resize(N: NumComponents-1, NV: nullptr); |
| 1410 | for (unsigned I = 0; I < NumValNos; ++I) { |
| 1411 | const VNInfo &VNI = *SR.valnos[I]; |
| 1412 | unsigned ComponentNum; |
| 1413 | if (VNI.isUnused()) { |
| 1414 | ComponentNum = 0; |
| 1415 | } else { |
| 1416 | const VNInfo *MainRangeVNI = LI.getVNInfoAt(Idx: VNI.def); |
| 1417 | assert(MainRangeVNI != nullptr |
| 1418 | && "SubRange def must have corresponding main range def" ); |
| 1419 | ComponentNum = getEqClass(VNI: MainRangeVNI); |
| 1420 | if (ComponentNum > 0 && SubRanges[ComponentNum-1] == nullptr) { |
| 1421 | SubRanges[ComponentNum-1] |
| 1422 | = LIV[ComponentNum-1]->createSubRange(Allocator, LaneMask: SR.LaneMask); |
| 1423 | } |
| 1424 | } |
| 1425 | VNIMapping.push_back(Elt: ComponentNum); |
| 1426 | } |
| 1427 | DistributeRange(LR&: SR, SplitLRs: SubRanges.data(), VNIClasses: VNIMapping); |
| 1428 | } |
| 1429 | LI.removeEmptySubRanges(); |
| 1430 | } |
| 1431 | |
| 1432 | // Distribute main liverange. |
| 1433 | DistributeRange(LR&: LI, SplitLRs: LIV, VNIClasses: EqClass); |
| 1434 | } |
| 1435 | |