1 | //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements the LiveVariable analysis pass. For each machine |
10 | // instruction in the function, this pass calculates the set of registers that |
11 | // are immediately dead after the instruction (i.e., the instruction calculates |
12 | // the value, but it is never used) and the set of registers that are used by |
13 | // the instruction, but are never used after the instruction (i.e., they are |
14 | // killed). |
15 | // |
16 | // This class computes live variables using a sparse implementation based on |
17 | // the machine code SSA form. This class computes live variable information for |
18 | // each virtual and _register allocatable_ physical register in a function. It |
19 | // uses the dominance properties of SSA form to efficiently compute live |
20 | // variables for virtual registers, and assumes that physical registers are only |
21 | // live within a single basic block (allowing it to do a single local analysis |
22 | // to resolve physical register lifetimes in each basic block). If a physical |
23 | // register is not register allocatable, it is not tracked. This is useful for |
24 | // things like the stack pointer and condition codes. |
25 | // |
26 | //===----------------------------------------------------------------------===// |
27 | |
28 | #include "llvm/CodeGen/LiveVariables.h" |
29 | #include "llvm/ADT/DenseSet.h" |
30 | #include "llvm/ADT/DepthFirstIterator.h" |
31 | #include "llvm/ADT/STLExtras.h" |
32 | #include "llvm/ADT/SmallPtrSet.h" |
33 | #include "llvm/ADT/SmallSet.h" |
34 | #include "llvm/CodeGen/MachineInstr.h" |
35 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
36 | #include "llvm/CodeGen/Passes.h" |
37 | #include "llvm/Config/llvm-config.h" |
38 | #include "llvm/Support/Debug.h" |
39 | #include "llvm/Support/ErrorHandling.h" |
40 | #include "llvm/Support/raw_ostream.h" |
41 | using namespace llvm; |
42 | |
43 | AnalysisKey LiveVariablesAnalysis::Key; |
44 | |
45 | LiveVariablesAnalysis::Result |
46 | LiveVariablesAnalysis::run(MachineFunction &MF, |
47 | MachineFunctionAnalysisManager &) { |
48 | return Result(MF); |
49 | } |
50 | |
51 | PreservedAnalyses |
52 | LiveVariablesPrinterPass::run(MachineFunction &MF, |
53 | MachineFunctionAnalysisManager &MFAM) { |
54 | OS << "Live variables in machine function: " << MF.getName() << '\n'; |
55 | MFAM.getResult<LiveVariablesAnalysis>(IR&: MF).print(OS); |
56 | return PreservedAnalyses::all(); |
57 | } |
58 | |
59 | char LiveVariablesWrapperPass::ID = 0; |
60 | char &llvm::LiveVariablesID = LiveVariablesWrapperPass::ID; |
61 | INITIALIZE_PASS_BEGIN(LiveVariablesWrapperPass, "livevars" , |
62 | "Live Variable Analysis" , false, false) |
63 | INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElimLegacy) |
64 | INITIALIZE_PASS_END(LiveVariablesWrapperPass, "livevars" , |
65 | "Live Variable Analysis" , false, false) |
66 | |
67 | void LiveVariablesWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
68 | AU.addRequiredID(ID&: UnreachableMachineBlockElimID); |
69 | AU.setPreservesAll(); |
70 | MachineFunctionPass::getAnalysisUsage(AU); |
71 | } |
72 | |
73 | LiveVariables::LiveVariables(MachineFunction &MF) |
74 | : MF(&MF), MRI(&MF.getRegInfo()), TRI(MF.getSubtarget().getRegisterInfo()) { |
75 | analyze(MF); |
76 | } |
77 | |
78 | void LiveVariables::print(raw_ostream &OS) const { |
79 | for (size_t I = 0, E = VirtRegInfo.size(); I != E; ++I) { |
80 | const Register Reg = Register::index2VirtReg(Index: I); |
81 | OS << "Virtual register '%" << I << "':\n" ; |
82 | VirtRegInfo[Reg].print(OS); |
83 | } |
84 | } |
85 | |
86 | MachineInstr * |
87 | LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const { |
88 | for (MachineInstr *MI : Kills) |
89 | if (MI->getParent() == MBB) |
90 | return MI; |
91 | return nullptr; |
92 | } |
93 | |
94 | void LiveVariables::VarInfo::print(raw_ostream &OS) const { |
95 | OS << " Alive in blocks: " ; |
96 | for (unsigned AB : AliveBlocks) |
97 | OS << AB << ", " ; |
98 | OS << "\n Killed by:" ; |
99 | if (Kills.empty()) |
100 | OS << " No instructions.\n\n" ; |
101 | else { |
102 | for (unsigned i = 0, e = Kills.size(); i != e; ++i) |
103 | OS << "\n #" << i << ": " << *Kills[i]; |
104 | OS << "\n" ; |
105 | } |
106 | } |
107 | |
108 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
109 | LLVM_DUMP_METHOD void LiveVariables::VarInfo::dump() const { print(dbgs()); } |
110 | #endif |
111 | |
112 | /// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg. |
113 | LiveVariables::VarInfo &LiveVariables::getVarInfo(Register Reg) { |
114 | assert(Reg.isVirtual() && "getVarInfo: not a virtual register!" ); |
115 | VirtRegInfo.grow(n: Reg); |
116 | return VirtRegInfo[Reg]; |
117 | } |
118 | |
119 | void LiveVariables::MarkVirtRegAliveInBlock( |
120 | VarInfo &VRInfo, MachineBasicBlock *DefBlock, MachineBasicBlock *MBB, |
121 | SmallVectorImpl<MachineBasicBlock *> &WorkList) { |
122 | unsigned BBNum = MBB->getNumber(); |
123 | |
124 | // Check to see if this basic block is one of the killing blocks. If so, |
125 | // remove it. |
126 | for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) |
127 | if (VRInfo.Kills[i]->getParent() == MBB) { |
128 | VRInfo.Kills.erase(position: VRInfo.Kills.begin()+i); // Erase entry |
129 | break; |
130 | } |
131 | |
132 | if (MBB == DefBlock) return; // Terminate recursion |
133 | |
134 | if (VRInfo.AliveBlocks.test(Idx: BBNum)) |
135 | return; // We already know the block is live |
136 | |
137 | // Mark the variable known alive in this bb |
138 | VRInfo.AliveBlocks.set(BBNum); |
139 | |
140 | assert(MBB != &MF->front() && "Can't find reaching def for virtreg" ); |
141 | WorkList.insert(I: WorkList.end(), From: MBB->pred_rbegin(), To: MBB->pred_rend()); |
142 | } |
143 | |
144 | void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, |
145 | MachineBasicBlock *DefBlock, |
146 | MachineBasicBlock *MBB) { |
147 | SmallVector<MachineBasicBlock *, 16> WorkList; |
148 | MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList); |
149 | |
150 | while (!WorkList.empty()) { |
151 | MachineBasicBlock *Pred = WorkList.pop_back_val(); |
152 | MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB: Pred, WorkList); |
153 | } |
154 | } |
155 | |
156 | void LiveVariables::HandleVirtRegUse(Register Reg, MachineBasicBlock *MBB, |
157 | MachineInstr &MI) { |
158 | assert(MRI->getVRegDef(Reg) && "Register use before def!" ); |
159 | |
160 | unsigned BBNum = MBB->getNumber(); |
161 | |
162 | VarInfo &VRInfo = getVarInfo(Reg); |
163 | |
164 | // Check to see if this basic block is already a kill block. |
165 | if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { |
166 | // Yes, this register is killed in this basic block already. Increase the |
167 | // live range by updating the kill instruction. |
168 | VRInfo.Kills.back() = &MI; |
169 | return; |
170 | } |
171 | |
172 | #ifndef NDEBUG |
173 | for (MachineInstr *Kill : VRInfo.Kills) |
174 | assert(Kill->getParent() != MBB && "entry should be at end!" ); |
175 | #endif |
176 | |
177 | // This situation can occur: |
178 | // |
179 | // ,------. |
180 | // | | |
181 | // | v |
182 | // | t2 = phi ... t1 ... |
183 | // | | |
184 | // | v |
185 | // | t1 = ... |
186 | // | ... = ... t1 ... |
187 | // | | |
188 | // `------' |
189 | // |
190 | // where there is a use in a PHI node that's a predecessor to the defining |
191 | // block. We don't want to mark all predecessors as having the value "alive" |
192 | // in this case. |
193 | if (MBB == MRI->getVRegDef(Reg)->getParent()) |
194 | return; |
195 | |
196 | // Add a new kill entry for this basic block. If this virtual register is |
197 | // already marked as alive in this basic block, that means it is alive in at |
198 | // least one of the successor blocks, it's not a kill. |
199 | if (!VRInfo.AliveBlocks.test(Idx: BBNum)) |
200 | VRInfo.Kills.push_back(x: &MI); |
201 | |
202 | // Update all dominating blocks to mark them as "known live". |
203 | for (MachineBasicBlock *Pred : MBB->predecessors()) |
204 | MarkVirtRegAliveInBlock(VRInfo, DefBlock: MRI->getVRegDef(Reg)->getParent(), MBB: Pred); |
205 | } |
206 | |
207 | void LiveVariables::HandleVirtRegDef(Register Reg, MachineInstr &MI) { |
208 | VarInfo &VRInfo = getVarInfo(Reg); |
209 | |
210 | if (VRInfo.AliveBlocks.empty()) |
211 | // If vr is not alive in any block, then defaults to dead. |
212 | VRInfo.Kills.push_back(x: &MI); |
213 | } |
214 | |
215 | /// FindLastPartialDef - Return the last partial def of the specified register. |
216 | /// Also returns the sub-registers that're defined by the instruction. |
217 | MachineInstr * |
218 | LiveVariables::FindLastPartialDef(Register Reg, |
219 | SmallSet<Register, 4> &PartDefRegs) { |
220 | Register LastDefReg = 0; |
221 | unsigned LastDefDist = 0; |
222 | MachineInstr *LastDef = nullptr; |
223 | for (MCPhysReg SubReg : TRI->subregs(Reg)) { |
224 | MachineInstr *Def = PhysRegDef[SubReg]; |
225 | if (!Def) |
226 | continue; |
227 | unsigned Dist = DistanceMap[Def]; |
228 | if (Dist > LastDefDist) { |
229 | LastDefReg = SubReg; |
230 | LastDef = Def; |
231 | LastDefDist = Dist; |
232 | } |
233 | } |
234 | |
235 | if (!LastDef) |
236 | return nullptr; |
237 | |
238 | PartDefRegs.insert(V: LastDefReg); |
239 | for (MachineOperand &MO : LastDef->all_defs()) { |
240 | if (MO.getReg() == 0) |
241 | continue; |
242 | Register DefReg = MO.getReg(); |
243 | if (TRI->isSubRegister(RegA: Reg, RegB: DefReg)) |
244 | PartDefRegs.insert_range(R: TRI->subregs_inclusive(Reg: DefReg)); |
245 | } |
246 | return LastDef; |
247 | } |
248 | |
249 | /// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add |
250 | /// implicit defs to a machine instruction if there was an earlier def of its |
251 | /// super-register. |
252 | void LiveVariables::HandlePhysRegUse(Register Reg, MachineInstr &MI) { |
253 | MachineInstr *LastDef = PhysRegDef[Reg.id()]; |
254 | // If there was a previous use or a "full" def all is well. |
255 | if (!LastDef && !PhysRegUse[Reg.id()]) { |
256 | // Otherwise, the last sub-register def implicitly defines this register. |
257 | // e.g. |
258 | // AH = |
259 | // AL = ... implicit-def EAX, implicit killed AH |
260 | // = AH |
261 | // ... |
262 | // = EAX |
263 | // All of the sub-registers must have been defined before the use of Reg! |
264 | SmallSet<Register, 4> PartDefRegs; |
265 | MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs); |
266 | // If LastPartialDef is NULL, it must be using a livein register. |
267 | if (LastPartialDef) { |
268 | LastPartialDef->addOperand(Op: MachineOperand::CreateReg(Reg, isDef: true/*IsDef*/, |
269 | isImp: true/*IsImp*/)); |
270 | PhysRegDef[Reg.id()] = LastPartialDef; |
271 | SmallSet<MCPhysReg, 8> Processed; |
272 | for (MCPhysReg SubReg : TRI->subregs(Reg)) { |
273 | if (Processed.count(V: SubReg)) |
274 | continue; |
275 | if (PartDefRegs.count(V: SubReg)) |
276 | continue; |
277 | // This part of Reg was defined before the last partial def. It's killed |
278 | // here. |
279 | LastPartialDef->addOperand(Op: MachineOperand::CreateReg(Reg: SubReg, |
280 | isDef: false/*IsDef*/, |
281 | isImp: true/*IsImp*/)); |
282 | PhysRegDef[SubReg] = LastPartialDef; |
283 | Processed.insert_range(R: TRI->subregs(Reg: SubReg)); |
284 | } |
285 | } |
286 | } else if (LastDef && !PhysRegUse[Reg.id()] && |
287 | !LastDef->findRegisterDefOperand(Reg, /*TRI=*/nullptr)) |
288 | // Last def defines the super register, add an implicit def of reg. |
289 | LastDef->addOperand(Op: MachineOperand::CreateReg(Reg, isDef: true/*IsDef*/, |
290 | isImp: true/*IsImp*/)); |
291 | |
292 | // Remember this use. |
293 | for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg)) |
294 | PhysRegUse[SubReg] = &MI; |
295 | } |
296 | |
297 | /// FindLastRefOrPartRef - Return the last reference or partial reference of |
298 | /// the specified register. |
299 | MachineInstr *LiveVariables::FindLastRefOrPartRef(Register Reg) { |
300 | MachineInstr *LastDef = PhysRegDef[Reg.id()]; |
301 | MachineInstr *LastUse = PhysRegUse[Reg.id()]; |
302 | if (!LastDef && !LastUse) |
303 | return nullptr; |
304 | |
305 | MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; |
306 | unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; |
307 | unsigned LastPartDefDist = 0; |
308 | for (MCPhysReg SubReg : TRI->subregs(Reg)) { |
309 | MachineInstr *Def = PhysRegDef[SubReg]; |
310 | if (Def && Def != LastDef) { |
311 | // There was a def of this sub-register in between. This is a partial |
312 | // def, keep track of the last one. |
313 | unsigned Dist = DistanceMap[Def]; |
314 | if (Dist > LastPartDefDist) |
315 | LastPartDefDist = Dist; |
316 | } else if (MachineInstr *Use = PhysRegUse[SubReg]) { |
317 | unsigned Dist = DistanceMap[Use]; |
318 | if (Dist > LastRefOrPartRefDist) { |
319 | LastRefOrPartRefDist = Dist; |
320 | LastRefOrPartRef = Use; |
321 | } |
322 | } |
323 | } |
324 | |
325 | return LastRefOrPartRef; |
326 | } |
327 | |
328 | bool LiveVariables::HandlePhysRegKill(Register Reg, MachineInstr *MI) { |
329 | MachineInstr *LastDef = PhysRegDef[Reg.id()]; |
330 | MachineInstr *LastUse = PhysRegUse[Reg.id()]; |
331 | if (!LastDef && !LastUse) |
332 | return false; |
333 | |
334 | MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef; |
335 | unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef]; |
336 | // The whole register is used. |
337 | // AL = |
338 | // AH = |
339 | // |
340 | // = AX |
341 | // = AL, implicit killed AX |
342 | // AX = |
343 | // |
344 | // Or whole register is defined, but not used at all. |
345 | // dead AX = |
346 | // ... |
347 | // AX = |
348 | // |
349 | // Or whole register is defined, but only partly used. |
350 | // dead AX = implicit-def AL |
351 | // = killed AL |
352 | // AX = |
353 | MachineInstr *LastPartDef = nullptr; |
354 | unsigned LastPartDefDist = 0; |
355 | SmallSet<unsigned, 8> PartUses; |
356 | for (MCPhysReg SubReg : TRI->subregs(Reg)) { |
357 | MachineInstr *Def = PhysRegDef[SubReg]; |
358 | if (Def && Def != LastDef) { |
359 | // There was a def of this sub-register in between. This is a partial |
360 | // def, keep track of the last one. |
361 | unsigned Dist = DistanceMap[Def]; |
362 | if (Dist > LastPartDefDist) { |
363 | LastPartDefDist = Dist; |
364 | LastPartDef = Def; |
365 | } |
366 | continue; |
367 | } |
368 | if (MachineInstr *Use = PhysRegUse[SubReg]) { |
369 | PartUses.insert_range(R: TRI->subregs_inclusive(Reg: SubReg)); |
370 | unsigned Dist = DistanceMap[Use]; |
371 | if (Dist > LastRefOrPartRefDist) { |
372 | LastRefOrPartRefDist = Dist; |
373 | LastRefOrPartRef = Use; |
374 | } |
375 | } |
376 | } |
377 | |
378 | if (!PhysRegUse[Reg.id()]) { |
379 | // Partial uses. Mark register def dead and add implicit def of |
380 | // sub-registers which are used. |
381 | // dead EAX = op implicit-def AL |
382 | // That is, EAX def is dead but AL def extends pass it. |
383 | PhysRegDef[Reg.id()]->addRegisterDead(Reg, RegInfo: TRI, AddIfNotFound: true); |
384 | for (MCPhysReg SubReg : TRI->subregs(Reg)) { |
385 | if (!PartUses.count(V: SubReg)) |
386 | continue; |
387 | bool NeedDef = true; |
388 | if (PhysRegDef[Reg.id()] == PhysRegDef[SubReg]) { |
389 | MachineOperand *MO = PhysRegDef[Reg.id()]->findRegisterDefOperand( |
390 | Reg: SubReg, /*TRI=*/nullptr); |
391 | if (MO) { |
392 | NeedDef = false; |
393 | assert(!MO->isDead()); |
394 | } |
395 | } |
396 | if (NeedDef) |
397 | PhysRegDef[Reg.id()]->addOperand( |
398 | Op: MachineOperand::CreateReg(Reg: SubReg, isDef: true /*IsDef*/, isImp: true /*IsImp*/)); |
399 | MachineInstr *LastSubRef = FindLastRefOrPartRef(Reg: SubReg); |
400 | if (LastSubRef) |
401 | LastSubRef->addRegisterKilled(IncomingReg: SubReg, RegInfo: TRI, AddIfNotFound: true); |
402 | else { |
403 | LastRefOrPartRef->addRegisterKilled(IncomingReg: SubReg, RegInfo: TRI, AddIfNotFound: true); |
404 | for (MCPhysReg SS : TRI->subregs_inclusive(Reg: SubReg)) |
405 | PhysRegUse[SS] = LastRefOrPartRef; |
406 | } |
407 | for (MCPhysReg SS : TRI->subregs(Reg: SubReg)) |
408 | PartUses.erase(V: SS); |
409 | } |
410 | } else if (LastRefOrPartRef == PhysRegDef[Reg.id()] && |
411 | LastRefOrPartRef != MI) { |
412 | if (LastPartDef) |
413 | // The last partial def kills the register. |
414 | LastPartDef->addOperand(Op: MachineOperand::CreateReg(Reg, isDef: false/*IsDef*/, |
415 | isImp: true/*IsImp*/, isKill: true/*IsKill*/)); |
416 | else { |
417 | MachineOperand *MO = |
418 | LastRefOrPartRef->findRegisterDefOperand(Reg, TRI, isDead: false, Overlap: false); |
419 | bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg; |
420 | // If the last reference is the last def, then it's not used at all. |
421 | // That is, unless we are currently processing the last reference itself. |
422 | LastRefOrPartRef->addRegisterDead(Reg, RegInfo: TRI, AddIfNotFound: true); |
423 | if (NeedEC) { |
424 | // If we are adding a subreg def and the superreg def is marked early |
425 | // clobber, add an early clobber marker to the subreg def. |
426 | MO = LastRefOrPartRef->findRegisterDefOperand(Reg, /*TRI=*/nullptr); |
427 | if (MO) |
428 | MO->setIsEarlyClobber(); |
429 | } |
430 | } |
431 | } else |
432 | LastRefOrPartRef->addRegisterKilled(IncomingReg: Reg, RegInfo: TRI, AddIfNotFound: true); |
433 | return true; |
434 | } |
435 | |
436 | void LiveVariables::HandleRegMask(const MachineOperand &MO, unsigned NumRegs) { |
437 | // Call HandlePhysRegKill() for all live registers clobbered by Mask. |
438 | // Clobbered registers are always dead, sp there is no need to use |
439 | // HandlePhysRegDef(). |
440 | for (unsigned Reg = 1; Reg != NumRegs; ++Reg) { |
441 | // Skip dead regs. |
442 | if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) |
443 | continue; |
444 | // Skip mask-preserved regs. |
445 | if (!MO.clobbersPhysReg(PhysReg: Reg)) |
446 | continue; |
447 | // Kill the largest clobbered super-register. |
448 | // This avoids needless implicit operands. |
449 | unsigned Super = Reg; |
450 | for (MCPhysReg SR : TRI->superregs(Reg)) |
451 | if (SR < NumRegs && (PhysRegDef[SR] || PhysRegUse[SR]) && |
452 | MO.clobbersPhysReg(PhysReg: SR)) |
453 | Super = SR; |
454 | HandlePhysRegKill(Reg: Super, MI: nullptr); |
455 | } |
456 | } |
457 | |
458 | void LiveVariables::HandlePhysRegDef(Register Reg, MachineInstr *MI, |
459 | SmallVectorImpl<Register> &Defs) { |
460 | // What parts of the register are previously defined? |
461 | SmallSet<unsigned, 32> Live; |
462 | if (PhysRegDef[Reg.id()] || PhysRegUse[Reg.id()]) { |
463 | Live.insert_range(R: TRI->subregs_inclusive(Reg)); |
464 | } else { |
465 | for (MCPhysReg SubReg : TRI->subregs(Reg)) { |
466 | // If a register isn't itself defined, but all parts that make up of it |
467 | // are defined, then consider it also defined. |
468 | // e.g. |
469 | // AL = |
470 | // AH = |
471 | // = AX |
472 | if (Live.count(V: SubReg)) |
473 | continue; |
474 | if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) |
475 | Live.insert_range(R: TRI->subregs_inclusive(Reg: SubReg)); |
476 | } |
477 | } |
478 | |
479 | // Start from the largest piece, find the last time any part of the register |
480 | // is referenced. |
481 | HandlePhysRegKill(Reg, MI); |
482 | // Only some of the sub-registers are used. |
483 | for (MCPhysReg SubReg : TRI->subregs(Reg)) { |
484 | if (!Live.count(V: SubReg)) |
485 | // Skip if this sub-register isn't defined. |
486 | continue; |
487 | HandlePhysRegKill(Reg: SubReg, MI); |
488 | } |
489 | |
490 | if (MI) |
491 | Defs.push_back(Elt: Reg); // Remember this def. |
492 | } |
493 | |
494 | void LiveVariables::UpdatePhysRegDefs(MachineInstr &MI, |
495 | SmallVectorImpl<Register> &Defs) { |
496 | while (!Defs.empty()) { |
497 | Register Reg = Defs.pop_back_val(); |
498 | for (MCPhysReg SubReg : TRI->subregs_inclusive(Reg)) { |
499 | PhysRegDef[SubReg] = &MI; |
500 | PhysRegUse[SubReg] = nullptr; |
501 | } |
502 | } |
503 | } |
504 | |
505 | void LiveVariables::runOnInstr(MachineInstr &MI, |
506 | SmallVectorImpl<Register> &Defs, |
507 | unsigned NumRegs) { |
508 | assert(!MI.isDebugOrPseudoInstr()); |
509 | // Process all of the operands of the instruction... |
510 | unsigned NumOperandsToProcess = MI.getNumOperands(); |
511 | |
512 | // Unless it is a PHI node. In this case, ONLY process the DEF, not any |
513 | // of the uses. They will be handled in other basic blocks. |
514 | if (MI.isPHI()) |
515 | NumOperandsToProcess = 1; |
516 | |
517 | // Clear kill and dead markers. LV will recompute them. |
518 | SmallVector<Register, 4> UseRegs; |
519 | SmallVector<Register, 4> DefRegs; |
520 | SmallVector<unsigned, 1> RegMasks; |
521 | for (unsigned i = 0; i != NumOperandsToProcess; ++i) { |
522 | MachineOperand &MO = MI.getOperand(i); |
523 | if (MO.isRegMask()) { |
524 | RegMasks.push_back(Elt: i); |
525 | continue; |
526 | } |
527 | if (!MO.isReg() || !MO.getReg()) |
528 | continue; |
529 | Register MOReg = MO.getReg(); |
530 | if (MO.isUse()) { |
531 | if (!(MOReg.isPhysical() && MRI->isReserved(PhysReg: MOReg))) |
532 | MO.setIsKill(false); |
533 | if (MO.readsReg()) |
534 | UseRegs.push_back(Elt: MOReg); |
535 | } else { |
536 | assert(MO.isDef()); |
537 | // FIXME: We should not remove any dead flags. However the MIPS RDDSP |
538 | // instruction needs it at the moment: http://llvm.org/PR27116. |
539 | if (MOReg.isPhysical() && !MRI->isReserved(PhysReg: MOReg)) |
540 | MO.setIsDead(false); |
541 | DefRegs.push_back(Elt: MOReg); |
542 | } |
543 | } |
544 | |
545 | MachineBasicBlock *MBB = MI.getParent(); |
546 | // Process all uses. |
547 | for (Register MOReg : UseRegs) { |
548 | if (MOReg.isVirtual()) |
549 | HandleVirtRegUse(Reg: MOReg, MBB, MI); |
550 | else if (!MRI->isReserved(PhysReg: MOReg)) |
551 | HandlePhysRegUse(Reg: MOReg, MI); |
552 | } |
553 | |
554 | // Process all masked registers. (Call clobbers). |
555 | for (unsigned Mask : RegMasks) |
556 | HandleRegMask(MO: MI.getOperand(i: Mask), NumRegs); |
557 | |
558 | // Process all defs. |
559 | for (Register MOReg : DefRegs) { |
560 | if (MOReg.isVirtual()) |
561 | HandleVirtRegDef(Reg: MOReg, MI); |
562 | else if (!MRI->isReserved(PhysReg: MOReg)) |
563 | HandlePhysRegDef(Reg: MOReg, MI: &MI, Defs); |
564 | } |
565 | UpdatePhysRegDefs(MI, Defs); |
566 | } |
567 | |
568 | void LiveVariables::runOnBlock(MachineBasicBlock *MBB, unsigned NumRegs) { |
569 | // Mark live-in registers as live-in. |
570 | SmallVector<Register, 4> Defs; |
571 | for (const auto &LI : MBB->liveins()) { |
572 | assert(LI.PhysReg.isPhysical() && |
573 | "Cannot have a live-in virtual register!" ); |
574 | HandlePhysRegDef(Reg: LI.PhysReg, MI: nullptr, Defs); |
575 | } |
576 | |
577 | // Loop over all of the instructions, processing them. |
578 | DistanceMap.clear(); |
579 | unsigned Dist = 0; |
580 | for (MachineInstr &MI : *MBB) { |
581 | if (MI.isDebugOrPseudoInstr()) |
582 | continue; |
583 | DistanceMap.insert(KV: std::make_pair(x: &MI, y: Dist++)); |
584 | |
585 | runOnInstr(MI, Defs, NumRegs); |
586 | } |
587 | |
588 | // Handle any virtual assignments from PHI nodes which might be at the |
589 | // bottom of this basic block. We check all of our successor blocks to see |
590 | // if they have PHI nodes, and if so, we simulate an assignment at the end |
591 | // of the current block. |
592 | if (!PHIVarInfo[MBB->getNumber()].empty()) { |
593 | SmallVectorImpl<Register> &VarInfoVec = PHIVarInfo[MBB->getNumber()]; |
594 | |
595 | for (Register I : VarInfoVec) |
596 | // Mark it alive only in the block we are representing. |
597 | MarkVirtRegAliveInBlock(VRInfo&: getVarInfo(Reg: I), DefBlock: MRI->getVRegDef(Reg: I)->getParent(), |
598 | MBB); |
599 | } |
600 | |
601 | // MachineCSE may CSE instructions which write to non-allocatable physical |
602 | // registers across MBBs. Remember if any reserved register is liveout. |
603 | SmallSet<unsigned, 4> LiveOuts; |
604 | for (const MachineBasicBlock *SuccMBB : MBB->successors()) { |
605 | if (SuccMBB->isEHPad()) |
606 | continue; |
607 | for (const auto &LI : SuccMBB->liveins()) { |
608 | if (!TRI->isInAllocatableClass(RegNo: LI.PhysReg)) |
609 | // Ignore other live-ins, e.g. those that are live into landing pads. |
610 | LiveOuts.insert(V: LI.PhysReg); |
611 | } |
612 | } |
613 | |
614 | // Loop over PhysRegDef / PhysRegUse, killing any registers that are |
615 | // available at the end of the basic block. |
616 | for (unsigned i = 0; i != NumRegs; ++i) |
617 | if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(V: i)) |
618 | HandlePhysRegDef(Reg: i, MI: nullptr, Defs); |
619 | } |
620 | |
621 | void LiveVariables::analyze(MachineFunction &mf) { |
622 | MF = &mf; |
623 | MRI = &mf.getRegInfo(); |
624 | TRI = MF->getSubtarget().getRegisterInfo(); |
625 | |
626 | const unsigned NumRegs = TRI->getNumSupportedRegs(mf); |
627 | PhysRegDef.assign(n: NumRegs, val: nullptr); |
628 | PhysRegUse.assign(n: NumRegs, val: nullptr); |
629 | PHIVarInfo.resize(new_size: MF->getNumBlockIDs()); |
630 | |
631 | // FIXME: LiveIntervals will be updated to remove its dependence on |
632 | // LiveVariables to improve compilation time and eliminate bizarre pass |
633 | // dependencies. Until then, we can't change much in -O0. |
634 | if (!MRI->isSSA()) |
635 | reportFatalUsageError(reason: "regalloc=... not currently supported with -O0" ); |
636 | |
637 | analyzePHINodes(Fn: mf); |
638 | |
639 | // Calculate live variable information in depth first order on the CFG of the |
640 | // function. This guarantees that we will see the definition of a virtual |
641 | // register before its uses due to dominance properties of SSA (except for PHI |
642 | // nodes, which are treated as a special case). |
643 | MachineBasicBlock *Entry = &MF->front(); |
644 | df_iterator_default_set<MachineBasicBlock*,16> Visited; |
645 | |
646 | for (MachineBasicBlock *MBB : depth_first_ext(G: Entry, S&: Visited)) { |
647 | runOnBlock(MBB, NumRegs); |
648 | |
649 | PhysRegDef.assign(n: NumRegs, val: nullptr); |
650 | PhysRegUse.assign(n: NumRegs, val: nullptr); |
651 | } |
652 | |
653 | // Convert and transfer the dead / killed information we have gathered into |
654 | // VirtRegInfo onto MI's. |
655 | for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) { |
656 | const Register Reg = Register::index2VirtReg(Index: i); |
657 | for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j) |
658 | if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg)) |
659 | VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, RegInfo: TRI); |
660 | else |
661 | VirtRegInfo[Reg].Kills[j]->addRegisterKilled(IncomingReg: Reg, RegInfo: TRI); |
662 | } |
663 | |
664 | // Check to make sure there are no unreachable blocks in the MC CFG for the |
665 | // function. If so, it is due to a bug in the instruction selector or some |
666 | // other part of the code generator if this happens. |
667 | #ifndef NDEBUG |
668 | for (const MachineBasicBlock &MBB : *MF) |
669 | assert(Visited.contains(&MBB) && "unreachable basic block found" ); |
670 | #endif |
671 | |
672 | PhysRegDef.clear(); |
673 | PhysRegUse.clear(); |
674 | PHIVarInfo.clear(); |
675 | } |
676 | |
677 | void LiveVariables::recomputeForSingleDefVirtReg(Register Reg) { |
678 | assert(Reg.isVirtual()); |
679 | |
680 | VarInfo &VI = getVarInfo(Reg); |
681 | VI.AliveBlocks.clear(); |
682 | VI.Kills.clear(); |
683 | |
684 | MachineInstr &DefMI = *MRI->getUniqueVRegDef(Reg); |
685 | MachineBasicBlock &DefBB = *DefMI.getParent(); |
686 | |
687 | // Initialize a worklist of BBs that Reg is live-to-end of. (Here |
688 | // "live-to-end" means Reg is live at the end of a block even if it is only |
689 | // live because of phi uses in a successor. This is different from isLiveOut() |
690 | // which does not consider phi uses.) |
691 | SmallVector<MachineBasicBlock *> LiveToEndBlocks; |
692 | SparseBitVector<> UseBlocks; |
693 | unsigned NumRealUses = 0; |
694 | for (auto &UseMO : MRI->use_nodbg_operands(Reg)) { |
695 | UseMO.setIsKill(false); |
696 | if (!UseMO.readsReg()) |
697 | continue; |
698 | ++NumRealUses; |
699 | MachineInstr &UseMI = *UseMO.getParent(); |
700 | MachineBasicBlock &UseBB = *UseMI.getParent(); |
701 | UseBlocks.set(UseBB.getNumber()); |
702 | if (UseMI.isPHI()) { |
703 | // If Reg is used in a phi then it is live-to-end of the corresponding |
704 | // predecessor. |
705 | unsigned Idx = UseMO.getOperandNo(); |
706 | LiveToEndBlocks.push_back(Elt: UseMI.getOperand(i: Idx + 1).getMBB()); |
707 | } else if (&UseBB == &DefBB) { |
708 | // A non-phi use in the same BB as the single def must come after the def. |
709 | } else { |
710 | // Otherwise Reg must be live-to-end of all predecessors. |
711 | LiveToEndBlocks.append(in_start: UseBB.pred_begin(), in_end: UseBB.pred_end()); |
712 | } |
713 | } |
714 | |
715 | // Handle the case where all uses have been removed. |
716 | if (NumRealUses == 0) { |
717 | VI.Kills.push_back(x: &DefMI); |
718 | DefMI.addRegisterDead(Reg, RegInfo: nullptr); |
719 | return; |
720 | } |
721 | DefMI.clearRegisterDeads(Reg); |
722 | |
723 | // Iterate over the worklist adding blocks to AliveBlocks. |
724 | bool LiveToEndOfDefBB = false; |
725 | while (!LiveToEndBlocks.empty()) { |
726 | MachineBasicBlock &BB = *LiveToEndBlocks.pop_back_val(); |
727 | if (&BB == &DefBB) { |
728 | LiveToEndOfDefBB = true; |
729 | continue; |
730 | } |
731 | if (VI.AliveBlocks.test(Idx: BB.getNumber())) |
732 | continue; |
733 | VI.AliveBlocks.set(BB.getNumber()); |
734 | LiveToEndBlocks.append(in_start: BB.pred_begin(), in_end: BB.pred_end()); |
735 | } |
736 | |
737 | // Recompute kill flags. For each block in which Reg is used but is not |
738 | // live-through, find the last instruction that uses Reg. Ignore phi nodes |
739 | // because they should not be included in Kills. |
740 | for (unsigned UseBBNum : UseBlocks) { |
741 | if (VI.AliveBlocks.test(Idx: UseBBNum)) |
742 | continue; |
743 | MachineBasicBlock &UseBB = *MF->getBlockNumbered(N: UseBBNum); |
744 | if (&UseBB == &DefBB && LiveToEndOfDefBB) |
745 | continue; |
746 | for (auto &MI : reverse(C&: UseBB)) { |
747 | if (MI.isDebugOrPseudoInstr()) |
748 | continue; |
749 | if (MI.isPHI()) |
750 | break; |
751 | if (MI.readsVirtualRegister(Reg)) { |
752 | assert(!MI.killsRegister(Reg, /*TRI=*/nullptr)); |
753 | MI.addRegisterKilled(IncomingReg: Reg, RegInfo: nullptr); |
754 | VI.Kills.push_back(x: &MI); |
755 | break; |
756 | } |
757 | } |
758 | } |
759 | } |
760 | |
761 | /// replaceKillInstruction - Update register kill info by replacing a kill |
762 | /// instruction with a new one. |
763 | void LiveVariables::replaceKillInstruction(Register Reg, MachineInstr &OldMI, |
764 | MachineInstr &NewMI) { |
765 | VarInfo &VI = getVarInfo(Reg); |
766 | llvm::replace(Range&: VI.Kills, OldValue: &OldMI, NewValue: &NewMI); |
767 | } |
768 | |
769 | /// removeVirtualRegistersKilled - Remove all killed info for the specified |
770 | /// instruction. |
771 | void LiveVariables::removeVirtualRegistersKilled(MachineInstr &MI) { |
772 | for (MachineOperand &MO : MI.operands()) { |
773 | if (MO.isReg() && MO.isKill()) { |
774 | MO.setIsKill(false); |
775 | Register Reg = MO.getReg(); |
776 | if (Reg.isVirtual()) { |
777 | bool removed = getVarInfo(Reg).removeKill(MI); |
778 | assert(removed && "kill not in register's VarInfo?" ); |
779 | (void)removed; |
780 | } |
781 | } |
782 | } |
783 | } |
784 | |
785 | /// analyzePHINodes - Gather information about the PHI nodes in here. In |
786 | /// particular, we want to map the variable information of a virtual register |
787 | /// which is used in a PHI node. We map that to the BB the vreg is coming from. |
788 | /// |
789 | void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { |
790 | for (const auto &MBB : Fn) |
791 | for (const auto &BBI : MBB) { |
792 | if (!BBI.isPHI()) |
793 | break; |
794 | for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) |
795 | if (BBI.getOperand(i).readsReg()) |
796 | PHIVarInfo[BBI.getOperand(i: i + 1).getMBB()->getNumber()] |
797 | .push_back(Elt: BBI.getOperand(i).getReg()); |
798 | } |
799 | } |
800 | |
801 | bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB, |
802 | Register Reg, MachineRegisterInfo &MRI) { |
803 | unsigned Num = MBB.getNumber(); |
804 | |
805 | // Reg is live-through. |
806 | if (AliveBlocks.test(Idx: Num)) |
807 | return true; |
808 | |
809 | // Registers defined in MBB cannot be live in. |
810 | const MachineInstr *Def = MRI.getVRegDef(Reg); |
811 | if (Def && Def->getParent() == &MBB) |
812 | return false; |
813 | |
814 | // Reg was not defined in MBB, was it killed here? |
815 | return findKill(MBB: &MBB); |
816 | } |
817 | |
818 | bool LiveVariables::isLiveOut(Register Reg, const MachineBasicBlock &MBB) { |
819 | LiveVariables::VarInfo &VI = getVarInfo(Reg); |
820 | |
821 | SmallPtrSet<const MachineBasicBlock *, 8> Kills; |
822 | for (MachineInstr *MI : VI.Kills) |
823 | Kills.insert(Ptr: MI->getParent()); |
824 | |
825 | // Loop over all of the successors of the basic block, checking to see if |
826 | // the value is either live in the block, or if it is killed in the block. |
827 | for (const MachineBasicBlock *SuccMBB : MBB.successors()) { |
828 | // Is it alive in this successor? |
829 | unsigned SuccIdx = SuccMBB->getNumber(); |
830 | if (VI.AliveBlocks.test(Idx: SuccIdx)) |
831 | return true; |
832 | // Or is it live because there is a use in a successor that kills it? |
833 | if (Kills.count(Ptr: SuccMBB)) |
834 | return true; |
835 | } |
836 | |
837 | return false; |
838 | } |
839 | |
840 | /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All |
841 | /// variables that are live out of DomBB will be marked as passing live through |
842 | /// BB. |
843 | void LiveVariables::addNewBlock(MachineBasicBlock *BB, |
844 | MachineBasicBlock *DomBB, |
845 | MachineBasicBlock *SuccBB) { |
846 | const unsigned NumNew = BB->getNumber(); |
847 | |
848 | DenseSet<Register> Defs, Kills; |
849 | |
850 | MachineBasicBlock::iterator BBI = SuccBB->begin(), BBE = SuccBB->end(); |
851 | for (; BBI != BBE && BBI->isPHI(); ++BBI) { |
852 | // Record the def of the PHI node. |
853 | Defs.insert(V: BBI->getOperand(i: 0).getReg()); |
854 | |
855 | // All registers used by PHI nodes in SuccBB must be live through BB. |
856 | for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) |
857 | if (BBI->getOperand(i: i+1).getMBB() == BB) |
858 | getVarInfo(Reg: BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew); |
859 | } |
860 | |
861 | // Record all vreg defs and kills of all instructions in SuccBB. |
862 | for (; BBI != BBE; ++BBI) { |
863 | for (const MachineOperand &Op : BBI->operands()) { |
864 | if (Op.isReg() && Op.getReg().isVirtual()) { |
865 | if (Op.isDef()) |
866 | Defs.insert(V: Op.getReg()); |
867 | else if (Op.isKill()) |
868 | Kills.insert(V: Op.getReg()); |
869 | } |
870 | } |
871 | } |
872 | |
873 | // Update info for all live variables |
874 | for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { |
875 | Register Reg = Register::index2VirtReg(Index: i); |
876 | |
877 | // If the Defs is defined in the successor it can't be live in BB. |
878 | if (Defs.count(V: Reg)) |
879 | continue; |
880 | |
881 | // If the register is either killed in or live through SuccBB it's also live |
882 | // through BB. |
883 | VarInfo &VI = getVarInfo(Reg); |
884 | if (Kills.count(V: Reg) || VI.AliveBlocks.test(Idx: SuccBB->getNumber())) |
885 | VI.AliveBlocks.set(NumNew); |
886 | } |
887 | } |
888 | |
889 | /// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All |
890 | /// variables that are live out of DomBB will be marked as passing live through |
891 | /// BB. LiveInSets[BB] is *not* updated (because it is not needed during |
892 | /// PHIElimination). |
893 | void LiveVariables::addNewBlock(MachineBasicBlock *BB, |
894 | MachineBasicBlock *DomBB, |
895 | MachineBasicBlock *SuccBB, |
896 | std::vector<SparseBitVector<>> &LiveInSets) { |
897 | const unsigned NumNew = BB->getNumber(); |
898 | |
899 | SparseBitVector<> &BV = LiveInSets[SuccBB->getNumber()]; |
900 | for (unsigned R : BV) { |
901 | Register VirtReg = Register::index2VirtReg(Index: R); |
902 | LiveVariables::VarInfo &VI = getVarInfo(Reg: VirtReg); |
903 | VI.AliveBlocks.set(NumNew); |
904 | } |
905 | // All registers used by PHI nodes in SuccBB must be live through BB. |
906 | for (MachineBasicBlock::iterator BBI = SuccBB->begin(), |
907 | BBE = SuccBB->end(); |
908 | BBI != BBE && BBI->isPHI(); ++BBI) { |
909 | for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) |
910 | if (BBI->getOperand(i: i + 1).getMBB() == BB && |
911 | BBI->getOperand(i).readsReg()) |
912 | getVarInfo(Reg: BBI->getOperand(i).getReg()) |
913 | .AliveBlocks.set(NumNew); |
914 | } |
915 | } |
916 | |