| 1 | //===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Implementation of the ML eviction advisor and reward injection pass |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "AllocationOrder.h" |
| 14 | #include "RegAllocGreedy.h" |
| 15 | #include "llvm/Analysis/InteractiveModelRunner.h" |
| 16 | #include "llvm/Analysis/MLModelRunner.h" |
| 17 | #include "llvm/Analysis/TensorSpec.h" |
| 18 | #include "llvm/CodeGen/RegAllocEvictionAdvisor.h" |
| 19 | #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) || defined(LLVM_HAVE_TFLITE) |
| 20 | #include "llvm/Analysis/ModelUnderTrainingRunner.h" |
| 21 | #include "llvm/Analysis/NoInferenceModelRunner.h" |
| 22 | #include "llvm/Analysis/Utils/TrainingLogger.h" |
| 23 | #endif |
| 24 | #include "MLRegAllocEvictAdvisor.h" |
| 25 | #include "llvm/Analysis/ReleaseModeModelRunner.h" |
| 26 | #include "llvm/CodeGen/CalcSpillWeights.h" |
| 27 | #include "llvm/CodeGen/LiveRegMatrix.h" |
| 28 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| 29 | #include "llvm/CodeGen/MachineFunction.h" |
| 30 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 31 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 32 | #include "llvm/CodeGen/Passes.h" |
| 33 | #include "llvm/CodeGen/RegisterClassInfo.h" |
| 34 | #include "llvm/CodeGen/VirtRegMap.h" |
| 35 | #include "llvm/IR/Module.h" |
| 36 | #include "llvm/InitializePasses.h" |
| 37 | #include "llvm/Pass.h" |
| 38 | #include "llvm/PassRegistry.h" |
| 39 | #include "llvm/Support/CommandLine.h" |
| 40 | #include "llvm/Support/ErrorHandling.h" |
| 41 | |
| 42 | #include <array> |
| 43 | #include <bitset> |
| 44 | #include <memory> |
| 45 | #include <unordered_map> |
| 46 | |
| 47 | using namespace llvm; |
| 48 | |
| 49 | #define DEBUG_TYPE "ml-regalloc" |
| 50 | |
| 51 | // Generated header in release (AOT) mode |
| 52 | #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) |
| 53 | #include "RegAllocEvictModel.h" |
| 54 | using CompiledModelType = RegAllocEvictModel; |
| 55 | #else |
| 56 | using CompiledModelType = NoopSavedModelImpl; |
| 57 | #endif |
| 58 | |
| 59 | static cl::opt<std::string> InteractiveChannelBaseName( |
| 60 | "regalloc-evict-interactive-channel-base" , cl::Hidden, |
| 61 | cl::desc( |
| 62 | "Base file path for the interactive mode. The incoming filename should " |
| 63 | "have the name <regalloc-evict-interactive-channel-base>.in, while the " |
| 64 | "outgoing name should be " |
| 65 | "<regalloc-evict-interactive-channel-base>.out" )); |
| 66 | |
| 67 | static cl::opt<unsigned> MaxEvictionCount( |
| 68 | "mlregalloc-max-eviction-count" , cl::Hidden, |
| 69 | cl::desc("The maximum number of times a live range can be " |
| 70 | "evicted before preventing it from being evicted" ), |
| 71 | cl::init(Val: 100)); |
| 72 | |
| 73 | // Options that only make sense in development mode |
| 74 | #ifdef LLVM_HAVE_TFLITE |
| 75 | #include "RegAllocScore.h" |
| 76 | #include "llvm/Analysis/Utils/TFUtils.h" |
| 77 | |
| 78 | static cl::opt<std::string> TrainingLog( |
| 79 | "regalloc-training-log" , cl::Hidden, |
| 80 | cl::desc("Training log for the register allocator eviction model" )); |
| 81 | |
| 82 | static cl::opt<std::string> ModelUnderTraining( |
| 83 | "regalloc-model" , cl::Hidden, |
| 84 | cl::desc("The model being trained for register allocation eviction" )); |
| 85 | |
| 86 | static cl::opt<bool> EnableDevelopmentFeatures( |
| 87 | "regalloc-enable-development-features" , cl::Hidden, |
| 88 | cl::desc("Whether or not to enable features under development for the ML " |
| 89 | "regalloc advisor" )); |
| 90 | |
| 91 | #else |
| 92 | static const bool EnableDevelopmentFeatures = false; |
| 93 | #endif // #ifdef LLVM_HAVE_TFLITE |
| 94 | |
| 95 | /// The score injection pass. |
| 96 | /// This pass calculates the score for a function and inserts it in the log, but |
| 97 | /// this happens only in development mode. It's a no-op otherwise. |
| 98 | namespace llvm { |
| 99 | extern cl::opt<unsigned> EvictInterferenceCutoff; |
| 100 | |
| 101 | class RegAllocScoring : public MachineFunctionPass { |
| 102 | public: |
| 103 | static char ID; |
| 104 | |
| 105 | RegAllocScoring() : MachineFunctionPass(ID) { |
| 106 | initializeRegAllocScoringPass(*PassRegistry::getPassRegistry()); |
| 107 | } |
| 108 | |
| 109 | ~RegAllocScoring() override = default; |
| 110 | |
| 111 | StringRef getPassName() const override { |
| 112 | return "Register Allocation Pass Scoring" ; |
| 113 | } |
| 114 | |
| 115 | /// RegAllocReward analysis usage. |
| 116 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 117 | AU.setPreservesAll(); |
| 118 | AU.addRequired<RegAllocEvictionAdvisorAnalysisLegacy>(); |
| 119 | AU.addRequired<RegAllocPriorityAdvisorAnalysisLegacy>(); |
| 120 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
| 121 | MachineFunctionPass::getAnalysisUsage(AU); |
| 122 | } |
| 123 | |
| 124 | /// Performs this pass |
| 125 | bool runOnMachineFunction(MachineFunction &) override; |
| 126 | }; |
| 127 | |
| 128 | char RegAllocScoring::ID = 0; |
| 129 | FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); } |
| 130 | |
| 131 | } // namespace llvm |
| 132 | |
| 133 | INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass" , |
| 134 | "Register Allocation Scoring Pass" , false, false) |
| 135 | |
| 136 | // =================================== |
| 137 | // Common ML Advisor declarations |
| 138 | // =================================== |
| 139 | namespace { |
| 140 | // The model can only accept a specified number of opcodes and will error it if |
| 141 | // fed an opcode it hasn't seen before. This constant sets the current cutoff. |
| 142 | static const int OpcodeValueCutoff = 17716; |
| 143 | |
| 144 | // Most features are as described above, so we'll reuse this vector in defining |
| 145 | // them. |
| 146 | static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences}; |
| 147 | |
| 148 | // -------------- |
| 149 | // Features table |
| 150 | // -------------- |
| 151 | // For each interfering live range (incl. the candidate) we collect a number of |
| 152 | // features. However, because the features are of different types (and because |
| 153 | // of ML best practices), we organize the tensors per feature, not per |
| 154 | // candidate. Each such tensor has a scalar value corresponding to the |
| 155 | // interferring live range at that position, in the order in AllocationOrder. |
| 156 | // The last position corresponds to the virt reg seeking allocation. |
| 157 | // Exception to all that is the progression feature, which is just a scalar (see |
| 158 | // its documentation for details). |
| 159 | // Note on naming: the "_by_max" are normalized using the largest value of that |
| 160 | // tensor, as observed in the current decision making stage (i.e. for the |
| 161 | // current call to the advisor's tryFindEvictionCandidate) |
| 162 | // |
| 163 | // The feature list format: type, name, shape, documentation. |
| 164 | // Note: we can really just use int64 and float, hence the modeling of some |
| 165 | // bools as int64 values. |
| 166 | #define RA_EVICT_FEATURES_LIST(M) \ |
| 167 | M(int64_t, mask, PerLiveRangeShape, \ |
| 168 | "boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \ |
| 169 | "it " \ |
| 170 | "can't be evicted)") \ |
| 171 | M(int64_t, is_free, PerLiveRangeShape, \ |
| 172 | "boolean values, 1 if this phys reg is actually free (no interferences)") \ |
| 173 | M(float, nr_urgent, PerLiveRangeShape, \ |
| 174 | "number of 'urgent' intervals, normalized. Urgent are those that are OK " \ |
| 175 | "to break cascades") \ |
| 176 | M(float, nr_broken_hints, PerLiveRangeShape, \ |
| 177 | "if this position were evicted, how many broken hints would there be") \ |
| 178 | M(int64_t, is_hint, PerLiveRangeShape, \ |
| 179 | "is this a preferred phys reg for the candidate") \ |
| 180 | M(int64_t, is_local, PerLiveRangeShape, \ |
| 181 | "is this live range local to a basic block") \ |
| 182 | M(float, nr_rematerializable, PerLiveRangeShape, \ |
| 183 | "nr rematerializable ranges") \ |
| 184 | M(float, nr_defs_and_uses, PerLiveRangeShape, \ |
| 185 | "bb freq - weighed nr defs and uses") \ |
| 186 | M(float, weighed_reads_by_max, PerLiveRangeShape, \ |
| 187 | "bb freq - weighed nr of reads, normalized") \ |
| 188 | M(float, weighed_writes_by_max, PerLiveRangeShape, \ |
| 189 | "bb feq - weighed nr of writes, normalized") \ |
| 190 | M(float, weighed_read_writes_by_max, PerLiveRangeShape, \ |
| 191 | "bb freq - weighed nr of uses that are both read and writes, normalized") \ |
| 192 | M(float, weighed_indvars_by_max, PerLiveRangeShape, \ |
| 193 | "bb freq - weighed nr of uses that are indvars, normalized") \ |
| 194 | M(float, hint_weights_by_max, PerLiveRangeShape, \ |
| 195 | "bb freq - weighed nr of uses that are hints, normalized") \ |
| 196 | M(float, start_bb_freq_by_max, PerLiveRangeShape, \ |
| 197 | "the freq in the start block, normalized") \ |
| 198 | M(float, end_bb_freq_by_max, PerLiveRangeShape, \ |
| 199 | "freq of end block, normalized") \ |
| 200 | M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \ |
| 201 | "hottest BB freq, normalized") \ |
| 202 | M(float, liverange_size, PerLiveRangeShape, \ |
| 203 | "size (instr index diff) of the LR") \ |
| 204 | M(float, use_def_density, PerLiveRangeShape, \ |
| 205 | "the max weight, as computed by the manual heuristic") \ |
| 206 | M(int64_t, max_stage, PerLiveRangeShape, \ |
| 207 | "largest stage of an interval in this LR") \ |
| 208 | M(int64_t, min_stage, PerLiveRangeShape, \ |
| 209 | "lowest stage of an interval in this LR") \ |
| 210 | M(float, progress, {1}, "ratio of current queue size to initial size") |
| 211 | |
| 212 | #ifdef LLVM_HAVE_TFLITE |
| 213 | #define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M) \ |
| 214 | M(int64_t, instructions, InstructionsShape, \ |
| 215 | "Opcodes of the instructions covered by the eviction problem") |
| 216 | |
| 217 | #define RA_EVICT_REST_DEVELOPMENT_FEATURES(M) \ |
| 218 | M(int64_t, instructions_mapping, InstructionsMappingShape, \ |
| 219 | "A binary matrix mapping LRs to instruction opcodes") \ |
| 220 | M(float, mbb_frequencies, MBBFrequencyShape, \ |
| 221 | "A vector of machine basic block frequencies") \ |
| 222 | M(int64_t, mbb_mapping, InstructionsShape, \ |
| 223 | "A vector of indices mapping instructions to MBBs") |
| 224 | #else |
| 225 | #define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M) |
| 226 | #define RA_EVICT_REST_DEVELOPMENT_FEATURES(M) |
| 227 | #endif |
| 228 | |
| 229 | // The model learns to pick one of the mask == 1 interferences. This is the |
| 230 | // name of the output tensor. The contract with the model is that the output |
| 231 | // will be guaranteed to be to a mask == 1 position. Using a macro here to |
| 232 | // avoid 'not used' warnings (and keep cond compilation to a minimum) |
| 233 | #define DecisionName "index_to_evict" |
| 234 | static const TensorSpec DecisionSpec = |
| 235 | TensorSpec::createSpec<int64_t>(DecisionName, Shape: {1}); |
| 236 | |
| 237 | // Named features index. |
| 238 | enum FeatureIDs { |
| 239 | #define _FEATURE_IDX_SIMPLE(_, name, __, ___) name |
| 240 | #define _FEATURE_IDX(A, B, C, D) _FEATURE_IDX_SIMPLE(A, B, C, D), |
| 241 | RA_EVICT_FEATURES_LIST(_FEATURE_IDX) FeatureCount, |
| 242 | #ifdef LLVM_HAVE_TFLITE |
| 243 | RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX_SIMPLE) = FeatureCount, |
| 244 | #else |
| 245 | RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX) |
| 246 | #endif // #ifdef LLVM_HAVE_TFLITE |
| 247 | RA_EVICT_REST_DEVELOPMENT_FEATURES(_FEATURE_IDX) FeaturesWithDevelopmentCount |
| 248 | #undef _FEATURE_IDX |
| 249 | #undef _FEATURE_IDX_SIMPLE |
| 250 | }; |
| 251 | |
| 252 | // The ML advisor will typically have a sparse input to the evaluator, because |
| 253 | // various phys regs won't be available. It's easier (maintenance-wise) to |
| 254 | // bulk-reset the state of the evaluator each time we are about to use it |
| 255 | // again. |
| 256 | template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) { |
| 257 | size_t Ret = sizeof(T); |
| 258 | for (const auto V : Shape) |
| 259 | Ret *= V; |
| 260 | return Ret; |
| 261 | } |
| 262 | |
| 263 | void resetInputs(MLModelRunner &Runner) { |
| 264 | #define _RESET(TYPE, NAME, SHAPE, __) \ |
| 265 | std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \ |
| 266 | getTotalSize<TYPE>(SHAPE)); |
| 267 | RA_EVICT_FEATURES_LIST(_RESET) |
| 268 | if (EnableDevelopmentFeatures) { |
| 269 | RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_RESET) |
| 270 | RA_EVICT_REST_DEVELOPMENT_FEATURES(_RESET) |
| 271 | #undef _RESET |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | // Per-live interval components that get aggregated into the feature values |
| 276 | // that will be passed to the evaluator. |
| 277 | struct LIFeatureComponents { |
| 278 | double R = 0; |
| 279 | double W = 0; |
| 280 | double RW = 0; |
| 281 | double IndVarUpdates = 0; |
| 282 | double HintWeights = 0.0; |
| 283 | int64_t NumDefsAndUses = 0; |
| 284 | float HottestBlockFreq = 0.0; |
| 285 | bool IsRemat = false; |
| 286 | }; |
| 287 | |
| 288 | using CandidateRegList = |
| 289 | std::array<std::pair<MCRegister, bool>, NumberOfInterferences>; |
| 290 | using FeaturesListNormalizer = |
| 291 | llvm::SmallVector<float, FeatureIDs::FeatureCount>; |
| 292 | |
| 293 | /// The ML evictor (commonalities between release and development mode) |
| 294 | class MLEvictAdvisor : public RegAllocEvictionAdvisor { |
| 295 | public: |
| 296 | MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, |
| 297 | MLModelRunner *Runner, const MachineBlockFrequencyInfo &MBFI, |
| 298 | const MachineLoopInfo &Loops); |
| 299 | |
| 300 | protected: |
| 301 | const RegAllocEvictionAdvisor &getDefaultAdvisor() const { |
| 302 | return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor); |
| 303 | } |
| 304 | |
| 305 | // The assumption is that if the Runner could not be constructed, we emit-ed |
| 306 | // error, and we shouldn't be asking for it here. |
| 307 | const MLModelRunner &getRunner() const { return *Runner; } |
| 308 | |
| 309 | /// This just calls Evaluate on the Runner, but in the development mode |
| 310 | /// case, if we're just capturing the log of the default advisor, it needs |
| 311 | /// to call the latter instead, so we need to pass all the necessary |
| 312 | /// parameters for it. In the development case, it will also log. |
| 313 | virtual int64_t |
| 314 | tryFindEvictionCandidatePosition(const LiveInterval &VirtReg, |
| 315 | const AllocationOrder &Order, |
| 316 | unsigned OrderLimit, uint8_t CostPerUseLimit, |
| 317 | const SmallVirtRegSet &FixedRegisters) const; |
| 318 | |
| 319 | /// Load the features of the given VirtReg (allocated or not) at column Pos, |
| 320 | /// but if that can't be evicted, return false instead. |
| 321 | bool |
| 322 | loadInterferenceFeatures(const LiveInterval &VirtReg, MCRegister PhysReg, |
| 323 | bool IsHint, const SmallVirtRegSet &FixedRegisters, |
| 324 | llvm::SmallVectorImpl<float> &Largest, size_t Pos, |
| 325 | SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const; |
| 326 | |
| 327 | private: |
| 328 | static float getInitialQueueSize(const MachineFunction &MF); |
| 329 | |
| 330 | MCRegister tryFindEvictionCandidate( |
| 331 | const LiveInterval &VirtReg, const AllocationOrder &Order, |
| 332 | uint8_t CostPerUseLimit, |
| 333 | const SmallVirtRegSet &FixedRegisters) const override; |
| 334 | |
| 335 | void extractFeatures(const SmallVectorImpl<const LiveInterval *> &Intervals, |
| 336 | llvm::SmallVectorImpl<float> &Largest, size_t Pos, |
| 337 | int64_t IsHint, int64_t LocalIntfsCount, float NumUrgent, |
| 338 | SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const; |
| 339 | |
| 340 | // Point-in-time: we didn't learn this, so we always delegate to the |
| 341 | // default. |
| 342 | bool canEvictHintInterference( |
| 343 | const LiveInterval &VirtReg, MCRegister PhysReg, |
| 344 | const SmallVirtRegSet &FixedRegisters) const override { |
| 345 | return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg, |
| 346 | FixedRegisters); |
| 347 | } |
| 348 | |
| 349 | const LIFeatureComponents & |
| 350 | getLIFeatureComponents(const LiveInterval &LI) const; |
| 351 | |
| 352 | // Hold on to a default advisor for: |
| 353 | // 1) the implementation of canEvictHintInterference, because we didn't |
| 354 | // learn that nuance yet; 2) for bootstrapping (logging) in the development |
| 355 | // mode case. |
| 356 | const DefaultEvictionAdvisor DefaultAdvisor; |
| 357 | MLModelRunner *const Runner; |
| 358 | const MachineBlockFrequencyInfo &MBFI; |
| 359 | const MachineLoopInfo &Loops; |
| 360 | |
| 361 | // Indices of those features we don't want to normalize. |
| 362 | // This could be static and shared, but its initialization is non-trivial. |
| 363 | std::bitset<FeatureIDs::FeatureCount> DoNotNormalize; |
| 364 | const float InitialQSize; |
| 365 | |
| 366 | using RegID = unsigned; |
| 367 | mutable DenseMap<RegID, LIFeatureComponents> CachedFeatures; |
| 368 | |
| 369 | mutable std::unordered_map<unsigned, unsigned> VirtRegEvictionCounts; |
| 370 | |
| 371 | void onEviction(Register RegBeingEvicted) const { |
| 372 | // If we cannot find the virtual register in the map, we just assume it has |
| 373 | // not been evicted before and thus has a value of zero (which is what the |
| 374 | // subscript operator returns by default). |
| 375 | ++VirtRegEvictionCounts[RegBeingEvicted.id()]; |
| 376 | } |
| 377 | |
| 378 | unsigned getEvictionCount(Register Reg) const { |
| 379 | auto EvictionCountIt = VirtRegEvictionCounts.find(x: Reg.id()); |
| 380 | if (EvictionCountIt != VirtRegEvictionCounts.end()) |
| 381 | return EvictionCountIt->second; |
| 382 | return 0; |
| 383 | } |
| 384 | }; |
| 385 | |
| 386 | #define _DECL_FEATURES(type, name, shape, _) \ |
| 387 | TensorSpec::createSpec<type>(#name, shape), |
| 388 | |
| 389 | // =================================== |
| 390 | // Release (AOT) - specifics |
| 391 | // =================================== |
| 392 | /// Common provider for legacy and new pass managers. |
| 393 | class ReleaseModeEvictionAdvisorProvider final |
| 394 | : public RegAllocEvictionAdvisorProvider { |
| 395 | public: |
| 396 | ReleaseModeEvictionAdvisorProvider(LLVMContext &Ctx) |
| 397 | : RegAllocEvictionAdvisorProvider(AdvisorMode::Release, Ctx) { |
| 398 | if (EnableDevelopmentFeatures) { |
| 399 | InputFeatures = {RA_EVICT_FEATURES_LIST( |
| 400 | _DECL_FEATURES) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES) |
| 401 | RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES)}; |
| 402 | } else { |
| 403 | InputFeatures = {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}; |
| 404 | } |
| 405 | } |
| 406 | // support for isa<> and dyn_cast. |
| 407 | static bool classof(const RegAllocEvictionAdvisorProvider *R) { |
| 408 | return R->getAdvisorMode() == AdvisorMode::Release; |
| 409 | } |
| 410 | |
| 411 | std::unique_ptr<RegAllocEvictionAdvisor> |
| 412 | getAdvisor(const MachineFunction &MF, const RAGreedy &RA, |
| 413 | MachineBlockFrequencyInfo *MBFI, MachineLoopInfo *Loops) override { |
| 414 | if (!Runner) { |
| 415 | if (InteractiveChannelBaseName.empty()) |
| 416 | Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>( |
| 417 | args&: MF.getFunction().getContext(), args&: InputFeatures, DecisionName); |
| 418 | else |
| 419 | Runner = std::make_unique<InteractiveModelRunner>( |
| 420 | args&: MF.getFunction().getContext(), args&: InputFeatures, args: DecisionSpec, |
| 421 | args: InteractiveChannelBaseName + ".out" , |
| 422 | args: InteractiveChannelBaseName + ".in" ); |
| 423 | } |
| 424 | assert(MBFI && Loops && |
| 425 | "Invalid provider state: must have analysis available" ); |
| 426 | return std::make_unique<MLEvictAdvisor>(args: MF, args: RA, args: Runner.get(), args&: *MBFI, |
| 427 | args&: *Loops); |
| 428 | } |
| 429 | |
| 430 | private: |
| 431 | std::vector<TensorSpec> InputFeatures; |
| 432 | std::unique_ptr<MLModelRunner> Runner; |
| 433 | }; |
| 434 | |
| 435 | class ReleaseModeEvictionAdvisorAnalysisLegacy final |
| 436 | : public RegAllocEvictionAdvisorAnalysisLegacy { |
| 437 | public: |
| 438 | ReleaseModeEvictionAdvisorAnalysisLegacy() |
| 439 | : RegAllocEvictionAdvisorAnalysisLegacy(AdvisorMode::Release) {} |
| 440 | |
| 441 | void logRewardIfNeeded(const MachineFunction &MF, |
| 442 | llvm::function_ref<float()> GetReward) override { |
| 443 | // No-op in release mode |
| 444 | } |
| 445 | |
| 446 | bool doInitialization(Module &M) override { |
| 447 | Provider = |
| 448 | std::make_unique<ReleaseModeEvictionAdvisorProvider>(args&: M.getContext()); |
| 449 | return false; |
| 450 | } |
| 451 | |
| 452 | static bool classof(const RegAllocEvictionAdvisorAnalysisLegacy *R) { |
| 453 | return R->getAdvisorMode() == AdvisorMode::Release; |
| 454 | } |
| 455 | |
| 456 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 457 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
| 458 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
| 459 | RegAllocEvictionAdvisorAnalysisLegacy::getAnalysisUsage(AU); |
| 460 | } |
| 461 | }; |
| 462 | |
| 463 | // =================================== |
| 464 | // Development mode-specifics |
| 465 | // =================================== |
| 466 | // |
| 467 | // Features we log |
| 468 | #ifdef LLVM_HAVE_TFLITE |
| 469 | static const TensorSpec Reward = TensorSpec::createSpec<float>("reward" , {1}); |
| 470 | |
| 471 | // Features we bind on the model. The tensor names have a prefix, and we also |
| 472 | // need to include some tensors that are expected to be present by the |
| 473 | // training algo. |
| 474 | // TODO: can we just get rid of these? |
| 475 | #define _DECL_TRAIN_FEATURES(type, name, shape, _) \ |
| 476 | TensorSpec::createSpec<type>(std::string("action_") + #name, shape), |
| 477 | |
| 478 | class DevelopmentModeEvictAdvisor : public MLEvictAdvisor { |
| 479 | public: |
| 480 | DevelopmentModeEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, |
| 481 | MLModelRunner *Runner, |
| 482 | const MachineBlockFrequencyInfo &MBFI, |
| 483 | const MachineLoopInfo &Loops, Logger *Log) |
| 484 | : MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {} |
| 485 | |
| 486 | private: |
| 487 | int64_t tryFindEvictionCandidatePosition( |
| 488 | const LiveInterval &VirtReg, const AllocationOrder &Order, |
| 489 | unsigned OrderLimit, uint8_t CostPerUseLimit, |
| 490 | const SmallVirtRegSet &FixedRegisters) const override; |
| 491 | |
| 492 | Logger *const Log; |
| 493 | }; |
| 494 | |
| 495 | class DevelopmentModeEvictionAdvisorProvider final |
| 496 | : public RegAllocEvictionAdvisorProvider { |
| 497 | public: |
| 498 | DevelopmentModeEvictionAdvisorProvider(LLVMContext &Ctx) |
| 499 | : RegAllocEvictionAdvisorProvider(AdvisorMode::Development, Ctx) { |
| 500 | if (EnableDevelopmentFeatures) { |
| 501 | InputFeatures = {RA_EVICT_FEATURES_LIST( |
| 502 | _DECL_FEATURES) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES) |
| 503 | RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES)}; |
| 504 | TrainingInputFeatures = { |
| 505 | RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES) |
| 506 | RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_TRAIN_FEATURES) |
| 507 | RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_TRAIN_FEATURES) |
| 508 | TensorSpec::createSpec<float>("action_discount" , {1}), |
| 509 | TensorSpec::createSpec<int32_t>("action_step_type" , {1}), |
| 510 | TensorSpec::createSpec<float>("action_reward" , {1})}; |
| 511 | } else { |
| 512 | InputFeatures = {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}; |
| 513 | TrainingInputFeatures = { |
| 514 | RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES) |
| 515 | TensorSpec::createSpec<float>("action_discount" , {1}), |
| 516 | TensorSpec::createSpec<int32_t>("action_step_type" , {1}), |
| 517 | TensorSpec::createSpec<float>("action_reward" , {1})}; |
| 518 | } |
| 519 | if (ModelUnderTraining.empty() && TrainingLog.empty()) { |
| 520 | Ctx.emitError("Regalloc development mode should be requested with at " |
| 521 | "least logging enabled and/or a training model" ); |
| 522 | return; |
| 523 | } |
| 524 | if (ModelUnderTraining.empty()) |
| 525 | Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures); |
| 526 | else |
| 527 | Runner = ModelUnderTrainingRunner::createAndEnsureValid( |
| 528 | Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures); |
| 529 | if (!Runner) { |
| 530 | Ctx.emitError("Regalloc: could not set up the model runner" ); |
| 531 | return; |
| 532 | } |
| 533 | if (TrainingLog.empty()) |
| 534 | return; |
| 535 | std::error_code EC; |
| 536 | auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC); |
| 537 | if (EC) { |
| 538 | Ctx.emitError(EC.message() + ":" + TrainingLog); |
| 539 | return; |
| 540 | } |
| 541 | std::vector<TensorSpec> LFS = InputFeatures; |
| 542 | if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get())) |
| 543 | append_range(LFS, MUTR->extraOutputsForLoggingSpecs()); |
| 544 | // We always log the output; in particular, if we're not evaluating, we |
| 545 | // don't have an output spec json file. That's why we handle the |
| 546 | // 'normal' output separately. |
| 547 | LFS.push_back(DecisionSpec); |
| 548 | |
| 549 | Log = std::make_unique<Logger>(std::move(OS), LFS, Reward, |
| 550 | /*IncludeReward*/ true); |
| 551 | return; |
| 552 | } |
| 553 | |
| 554 | // support for isa<> and dyn_cast. |
| 555 | static bool classof(const RegAllocEvictionAdvisorProvider *R) { |
| 556 | return R->getAdvisorMode() == AdvisorMode::Development; |
| 557 | } |
| 558 | |
| 559 | void logRewardIfNeeded(const MachineFunction &MF, |
| 560 | llvm::function_ref<float()> GetReward) override { |
| 561 | if (!Log || !Log->hasAnyObservationForContext(MF.getName())) |
| 562 | return; |
| 563 | // The function pass manager would run all the function passes for a |
| 564 | // function, so we assume the last context belongs to this function. If |
| 565 | // this invariant ever changes, we can implement at that time switching |
| 566 | // contexts. At this point, it'd be an error |
| 567 | if (Log->currentContext() != MF.getName()) { |
| 568 | MF.getFunction().getContext().emitError( |
| 569 | "The training log context shouldn't have had changed." ); |
| 570 | } |
| 571 | if (Log->hasObservationInProgress()) |
| 572 | Log->logReward<float>(GetReward()); |
| 573 | } |
| 574 | |
| 575 | std::unique_ptr<RegAllocEvictionAdvisor> |
| 576 | getAdvisor(const MachineFunction &MF, const RAGreedy &RA, |
| 577 | MachineBlockFrequencyInfo *MBFI, MachineLoopInfo *Loops) override { |
| 578 | if (!Runner) |
| 579 | return nullptr; |
| 580 | if (Log) |
| 581 | Log->switchContext(MF.getName()); |
| 582 | assert(MBFI && Loops && |
| 583 | "Invalid provider state: must have analysis available" ); |
| 584 | return std::make_unique<DevelopmentModeEvictAdvisor>( |
| 585 | MF, RA, Runner.get(), *MBFI, *Loops, Log.get()); |
| 586 | } |
| 587 | |
| 588 | private: |
| 589 | std::vector<TensorSpec> InputFeatures; |
| 590 | std::vector<TensorSpec> TrainingInputFeatures; |
| 591 | |
| 592 | std::unique_ptr<MLModelRunner> Runner; |
| 593 | std::unique_ptr<Logger> Log; |
| 594 | }; |
| 595 | |
| 596 | class DevelopmentModeEvictionAdvisorAnalysisLegacy final |
| 597 | : public RegAllocEvictionAdvisorAnalysisLegacy { |
| 598 | public: |
| 599 | DevelopmentModeEvictionAdvisorAnalysisLegacy() |
| 600 | : RegAllocEvictionAdvisorAnalysisLegacy(AdvisorMode::Development) {} |
| 601 | |
| 602 | bool doInitialization(Module &M) override { |
| 603 | Provider = std::make_unique<DevelopmentModeEvictionAdvisorProvider>( |
| 604 | M.getContext()); |
| 605 | return false; |
| 606 | } |
| 607 | |
| 608 | void logRewardIfNeeded(const MachineFunction &MF, |
| 609 | llvm::function_ref<float()> GetReward) override { |
| 610 | Provider->logRewardIfNeeded(MF, GetReward); |
| 611 | } |
| 612 | |
| 613 | // support for isa<> and dyn_cast. |
| 614 | static bool classof(const RegAllocEvictionAdvisorAnalysisLegacy *R) { |
| 615 | return R->getAdvisorMode() == AdvisorMode::Development; |
| 616 | } |
| 617 | |
| 618 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 619 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
| 620 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
| 621 | RegAllocEvictionAdvisorAnalysisLegacy::getAnalysisUsage(AU); |
| 622 | } |
| 623 | }; |
| 624 | |
| 625 | #endif // #ifdef LLVM_HAVE_TFLITE |
| 626 | } // namespace |
| 627 | |
| 628 | float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) { |
| 629 | auto &MRI = MF.getRegInfo(); |
| 630 | unsigned NumUsedRegs = 0; |
| 631 | for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { |
| 632 | Register Reg = Register::index2VirtReg(Index: I); |
| 633 | if (!MRI.reg_nodbg_empty(RegNo: Reg)) |
| 634 | ++NumUsedRegs; |
| 635 | } |
| 636 | return static_cast<float>(NumUsedRegs); |
| 637 | } |
| 638 | |
| 639 | MLEvictAdvisor::MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, |
| 640 | MLModelRunner *Runner, |
| 641 | const MachineBlockFrequencyInfo &MBFI, |
| 642 | const MachineLoopInfo &Loops) |
| 643 | : RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA), |
| 644 | Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops), |
| 645 | InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) { |
| 646 | assert(this->Runner); |
| 647 | Runner->switchContext(Name: MF.getName()); |
| 648 | DoNotNormalize.set(position: FeatureIDs::mask); |
| 649 | DoNotNormalize.set(position: FeatureIDs::is_free); |
| 650 | DoNotNormalize.set(position: FeatureIDs::is_hint); |
| 651 | DoNotNormalize.set(position: FeatureIDs::is_local); |
| 652 | DoNotNormalize.set(position: FeatureIDs::min_stage); |
| 653 | DoNotNormalize.set(position: FeatureIDs::max_stage); |
| 654 | DoNotNormalize.set(position: FeatureIDs::progress); |
| 655 | } |
| 656 | |
| 657 | int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition( |
| 658 | const LiveInterval &, const AllocationOrder &, unsigned, uint8_t, |
| 659 | const SmallVirtRegSet &) const { |
| 660 | int64_t Ret = Runner->evaluate<int64_t>(); |
| 661 | assert(Ret >= 0); |
| 662 | assert(Ret <= CandidateVirtRegPos); |
| 663 | return Ret; |
| 664 | } |
| 665 | |
| 666 | bool MLEvictAdvisor::loadInterferenceFeatures( |
| 667 | const LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, |
| 668 | const SmallVirtRegSet &FixedRegisters, |
| 669 | llvm::SmallVectorImpl<float> &Largest, size_t Pos, |
| 670 | llvm::SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const { |
| 671 | // It is only possible to evict virtual register interference. |
| 672 | if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) { |
| 673 | // leave unavailable |
| 674 | return false; |
| 675 | } |
| 676 | |
| 677 | const bool IsLocal = LIS->intervalIsInOneMBB(LI: VirtReg); |
| 678 | int64_t LocalIntfs = 0; |
| 679 | float NumUrgent = 0.0f; |
| 680 | |
| 681 | // The cascade tracking is the same as in the default advisor |
| 682 | unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(Reg: VirtReg.reg()); |
| 683 | |
| 684 | SmallVector<const LiveInterval *, MaxInterferences> InterferingIntervals; |
| 685 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) { |
| 686 | LiveIntervalUnion::Query &Q = Matrix->query(LR: VirtReg, RegUnit: Unit); |
| 687 | // Different from the default heuristic, we don't make any assumptions |
| 688 | // about what having more than 10 results in the query may mean. |
| 689 | const auto &IFIntervals = Q.interferingVRegs(MaxInterferingRegs: EvictInterferenceCutoff); |
| 690 | if (IFIntervals.empty() && InterferingIntervals.empty()) |
| 691 | continue; |
| 692 | if (IFIntervals.size() >= EvictInterferenceCutoff) |
| 693 | return false; |
| 694 | InterferingIntervals.append(in_start: IFIntervals.begin(), in_end: IFIntervals.end()); |
| 695 | for (const LiveInterval *Intf : reverse(C: IFIntervals)) { |
| 696 | assert(Intf->reg().isVirtual() && |
| 697 | "Only expecting virtual register interference from query" ); |
| 698 | // This is the same set of legality checks as in the default case: don't |
| 699 | // try to evict fixed regs or 'done' ones. Also don't break cascades, |
| 700 | // except in the urgent case, with the same nuances used in the default |
| 701 | // heuristic. |
| 702 | // We could try sharing this between the advisors, but it may end up |
| 703 | // more complex than it is right now. |
| 704 | if (FixedRegisters.count(V: Intf->reg())) |
| 705 | return false; |
| 706 | if (RA.getExtraInfo().getStage(VirtReg: *Intf) == RS_Done) |
| 707 | return false; |
| 708 | bool Urgent = |
| 709 | !VirtReg.isSpillable() && |
| 710 | (Intf->isSpillable() || |
| 711 | RegClassInfo.getNumAllocatableRegs(RC: MRI->getRegClass(Reg: VirtReg.reg())) < |
| 712 | RegClassInfo.getNumAllocatableRegs( |
| 713 | RC: MRI->getRegClass(Reg: Intf->reg()))); |
| 714 | |
| 715 | unsigned IntfCascade = RA.getExtraInfo().getCascade(Reg: Intf->reg()); |
| 716 | // There is a potential that the model could be adversarial and |
| 717 | // continually evict live ranges over and over again, leading to a |
| 718 | // large amount of compile time being spent in regalloc. If we hit the |
| 719 | // threshold, prevent the range from being evicted. We still let the |
| 720 | // range through if it is urgent as we are required to produce an |
| 721 | // eviction if the candidate is not spillable. |
| 722 | if (getEvictionCount(Reg: Intf->reg()) > MaxEvictionCount && !Urgent) |
| 723 | return false; |
| 724 | |
| 725 | // Only evict older cascades or live ranges without a cascade. |
| 726 | if (Cascade <= IntfCascade) { |
| 727 | if (!Urgent) |
| 728 | return false; |
| 729 | ++NumUrgent; |
| 730 | } |
| 731 | |
| 732 | LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(LI: *Intf) && |
| 733 | (!EnableLocalReassign || !canReassign(VirtReg: *Intf, FromReg: PhysReg))); |
| 734 | } |
| 735 | } |
| 736 | // OK, so if we made it this far, this LR is an eviction candidate, load its |
| 737 | // features. |
| 738 | extractFeatures(Intervals: InterferingIntervals, Largest, Pos, IsHint, LocalIntfsCount: LocalIntfs, |
| 739 | NumUrgent, LRPosInfo); |
| 740 | return true; |
| 741 | } |
| 742 | |
| 743 | MCRegister MLEvictAdvisor::tryFindEvictionCandidate( |
| 744 | const LiveInterval &VirtReg, const AllocationOrder &Order, |
| 745 | uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { |
| 746 | auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit); |
| 747 | if (!MaybeOrderLimit) |
| 748 | return MCRegister::NoRegister; |
| 749 | unsigned OrderLimit = *MaybeOrderLimit; |
| 750 | |
| 751 | // The heuristic sets initial costs such as, if CostPerUseLimit is |
| 752 | // max<uint8_t>, then any of the costs of the legally-evictable intervals |
| 753 | // would be lower. When that happens, one of those will be selected. |
| 754 | // Therefore, we allow the candidate be selected, unless the candidate is |
| 755 | // unspillable, in which case it would be incorrect to not find a register |
| 756 | // for it. |
| 757 | const bool MustFindEviction = |
| 758 | (!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u)); |
| 759 | // Number of available candidates - if 0, no need to continue. |
| 760 | size_t Available = 0; |
| 761 | // Make sure we don't have leftover partial state from an attempt where we |
| 762 | // had no available candidates and bailed out early. |
| 763 | resetInputs(Runner&: *Runner); |
| 764 | |
| 765 | // Track the index->register mapping because AllocationOrder doesn't do that |
| 766 | // and we'd have to scan it. |
| 767 | // Also track their mask, to write asserts/debug. |
| 768 | CandidateRegList Regs; |
| 769 | Regs.fill(u: {0, false}); |
| 770 | |
| 771 | // Track the largest value of features seen during this eviction session. We |
| 772 | // only normalize (some of) the float features, but it's just simpler to |
| 773 | // dimension 'Largest' to all the features, especially since we have the |
| 774 | // 'DoNotNormalize' list. |
| 775 | FeaturesListNormalizer Largest(FeatureIDs::FeatureCount, 0.0); |
| 776 | |
| 777 | // Same overal idea as in the default eviction policy - we visit the values |
| 778 | // of AllocationOrder one at a time. If it's not legally available, we mask |
| 779 | // off the corresponding feature column (==do nothing because we already |
| 780 | // reset all the features to 0) Use Pos to capture the column we load |
| 781 | // features at - in AllocationOrder order. |
| 782 | size_t Pos = 0; |
| 783 | SmallVector<LRStartEndInfo, NumberOfInterferences> LRPosInfo; |
| 784 | for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; |
| 785 | ++I, ++Pos) { |
| 786 | MCRegister PhysReg = *I; |
| 787 | assert(!Regs[Pos].second); |
| 788 | assert(PhysReg); |
| 789 | if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) { |
| 790 | continue; |
| 791 | } |
| 792 | if (loadInterferenceFeatures(VirtReg, PhysReg, IsHint: I.isHint(), FixedRegisters, |
| 793 | Largest, Pos, LRPosInfo)) { |
| 794 | ++Available; |
| 795 | Regs[Pos] = std::make_pair(x&: PhysReg, y: true); |
| 796 | } |
| 797 | } |
| 798 | if (Available == 0) { |
| 799 | // Nothing to decide, nothing to learn. |
| 800 | assert(!MustFindEviction); |
| 801 | return MCRegister::NoRegister; |
| 802 | } |
| 803 | const size_t ValidPosLimit = Pos; |
| 804 | // If we must find eviction, the candidate should be masked out of the |
| 805 | // decision making process. |
| 806 | Regs[CandidateVirtRegPos].second = !MustFindEviction; |
| 807 | if (!MustFindEviction) |
| 808 | extractFeatures(Intervals: SmallVector<const LiveInterval *, 1>(1, &VirtReg), Largest, |
| 809 | Pos: CandidateVirtRegPos, /*IsHint*/ 0, |
| 810 | /*LocalIntfsCount*/ 0, |
| 811 | /*NumUrgent*/ 0.0, LRPosInfo); |
| 812 | assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had " |
| 813 | "nothing to allocate initially." ); |
| 814 | #ifdef LLVM_HAVE_TFLITE |
| 815 | if (EnableDevelopmentFeatures) { |
| 816 | extractInstructionFeatures( |
| 817 | LRPosInfo, Runner, |
| 818 | [this](SlotIndex InputIndex) -> int { |
| 819 | auto *CurrentMachineInstruction = |
| 820 | LIS->getInstructionFromIndex(InputIndex); |
| 821 | if (!CurrentMachineInstruction) { |
| 822 | return -1; |
| 823 | } |
| 824 | return CurrentMachineInstruction->getOpcode(); |
| 825 | }, |
| 826 | [this](SlotIndex InputIndex) -> float { |
| 827 | auto *CurrentMachineInstruction = |
| 828 | LIS->getInstructionFromIndex(InputIndex); |
| 829 | return MBFI.getBlockFreqRelativeToEntryBlock( |
| 830 | CurrentMachineInstruction->getParent()); |
| 831 | }, |
| 832 | [this](SlotIndex InputIndex) -> MachineBasicBlock * { |
| 833 | auto *CurrentMachineInstruction = |
| 834 | LIS->getInstructionFromIndex(InputIndex); |
| 835 | return CurrentMachineInstruction->getParent(); |
| 836 | }, |
| 837 | FeatureIDs::instructions, FeatureIDs::instructions_mapping, |
| 838 | FeatureIDs::mbb_frequencies, FeatureIDs::mbb_mapping, |
| 839 | LIS->getSlotIndexes()->getLastIndex()); |
| 840 | } |
| 841 | #endif // #ifdef LLVM_HAVE_TFLITE |
| 842 | // Normalize the features. |
| 843 | for (auto &V : Largest) |
| 844 | V = V ? V : 1.0; |
| 845 | for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount; |
| 846 | ++FeatureIndex) { |
| 847 | if (DoNotNormalize.test(position: FeatureIndex)) |
| 848 | continue; |
| 849 | for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) { |
| 850 | Runner->getTensor<float>(FeatureID: FeatureIndex)[Pos] /= Largest[FeatureIndex]; |
| 851 | } |
| 852 | } |
| 853 | *Runner->getTensor<float>(FeatureID: FeatureIDs::progress) = |
| 854 | static_cast<float>(RA.getQueueSize()) / InitialQSize; |
| 855 | |
| 856 | // Get a decision. |
| 857 | size_t CandidatePos = tryFindEvictionCandidatePosition( |
| 858 | VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); |
| 859 | // The contract with the ML side is that CandidatePos is mask == 1 (i.e. |
| 860 | // Regs[CandidatePos].second) |
| 861 | assert(Regs[CandidatePos].second); |
| 862 | if (CandidatePos == CandidateVirtRegPos) { |
| 863 | onEviction(RegBeingEvicted: VirtReg.reg()); |
| 864 | assert(!MustFindEviction); |
| 865 | return MCRegister::NoRegister; |
| 866 | } |
| 867 | assert(CandidatePos < ValidPosLimit); |
| 868 | (void)ValidPosLimit; |
| 869 | |
| 870 | // Update information about how many times the virtual registers being |
| 871 | // evicted have been evicted so that we can prevent the model from evicting |
| 872 | // the same ranges continually and eating compile time. |
| 873 | for (MCRegUnit Unit : TRI->regunits(Reg: Regs[CandidatePos].first)) { |
| 874 | LiveIntervalUnion::Query &Q = Matrix->query(LR: VirtReg, RegUnit: Unit); |
| 875 | const auto &IFIntervals = Q.interferingVRegs(MaxInterferingRegs: EvictInterferenceCutoff); |
| 876 | for (const LiveInterval *Intf : reverse(C: IFIntervals)) { |
| 877 | onEviction(RegBeingEvicted: Intf->reg()); |
| 878 | } |
| 879 | } |
| 880 | |
| 881 | return Regs[CandidatePos].first; |
| 882 | } |
| 883 | |
| 884 | const LIFeatureComponents & |
| 885 | MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const { |
| 886 | RegID ID = LI.reg().id(); |
| 887 | LIFeatureComponents Empty; |
| 888 | auto I = CachedFeatures.insert(KV: std::make_pair(x&: ID, y&: Empty)); |
| 889 | LIFeatureComponents &Ret = I.first->getSecond(); |
| 890 | if (!I.second) |
| 891 | return Ret; |
| 892 | |
| 893 | SmallPtrSet<MachineInstr *, 8> Visited; |
| 894 | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
| 895 | |
| 896 | for (MachineRegisterInfo::reg_instr_nodbg_iterator |
| 897 | I = MRI->reg_instr_nodbg_begin(RegNo: LI.reg()), |
| 898 | E = MRI->reg_instr_nodbg_end(); |
| 899 | I != E;) { |
| 900 | MachineInstr *MI = &*(I++); |
| 901 | |
| 902 | ++Ret.NumDefsAndUses; |
| 903 | if (!Visited.insert(Ptr: MI).second) |
| 904 | continue; |
| 905 | |
| 906 | if (MI->isIdentityCopy() || MI->isImplicitDef()) |
| 907 | continue; |
| 908 | |
| 909 | bool Reads, Writes; |
| 910 | std::tie(args&: Reads, args&: Writes) = MI->readsWritesVirtualRegister(Reg: LI.reg()); |
| 911 | |
| 912 | float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MBB: MI->getParent()); |
| 913 | Ret.HottestBlockFreq = std::max(a: Freq, b: Ret.HottestBlockFreq); |
| 914 | |
| 915 | Ret.R += (Reads && !Writes) * Freq; |
| 916 | Ret.W += (!Reads && Writes) * Freq; |
| 917 | Ret.RW += (Reads && Writes) * Freq; |
| 918 | |
| 919 | auto *MBB = MI->getParent(); |
| 920 | auto *Loop = Loops.getLoopFor(BB: MBB); |
| 921 | bool IsExiting = Loop ? Loop->isLoopExiting(BB: MBB) : false; |
| 922 | |
| 923 | if (Writes && IsExiting && LIS->isLiveOutOfMBB(LR: LI, mbb: MBB)) |
| 924 | Ret.IndVarUpdates += Freq; |
| 925 | |
| 926 | if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, Reg: LI.reg(), TRI, MRI: *MRI)) |
| 927 | Ret.HintWeights += Freq; |
| 928 | } |
| 929 | Ret.IsRemat = VirtRegAuxInfo::isRematerializable( |
| 930 | LI, LIS: *LIS, VRM: *VRM, TII: *MF.getSubtarget().getInstrInfo()); |
| 931 | return Ret; |
| 932 | } |
| 933 | |
| 934 | // Overall, this currently mimics what we do for weight calculation, but instead |
| 935 | // of accummulating the various features, we keep them separate. |
| 936 | void MLEvictAdvisor::( |
| 937 | const SmallVectorImpl<const LiveInterval *> &Intervals, |
| 938 | llvm::SmallVectorImpl<float> &Largest, size_t Pos, int64_t IsHint, |
| 939 | int64_t LocalIntfsCount, float NumUrgent, |
| 940 | SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const { |
| 941 | int64_t NumDefsAndUses = 0; |
| 942 | int64_t NumBrokenHints = 0; |
| 943 | double R = 0.0; |
| 944 | double W = 0.0; |
| 945 | double RW = 0.0; |
| 946 | double IndVarUpdates = 0.0; |
| 947 | double HintWeights = 0.0; |
| 948 | float StartBBFreq = 0.0; |
| 949 | float EndBBFreq = 0.0; |
| 950 | float HottestBlockFreq = 0.0; |
| 951 | int32_t NumRematerializable = 0; |
| 952 | float TotalWeight = 0.0; |
| 953 | |
| 954 | SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex(); |
| 955 | SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex(); |
| 956 | int64_t MaxStage = 0; |
| 957 | int64_t MinStage = |
| 958 | Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max(); |
| 959 | |
| 960 | for (const auto *L : Intervals) { |
| 961 | const LiveInterval &LI = *L; |
| 962 | MaxStage = std::max<int64_t>( |
| 963 | a: MaxStage, b: static_cast<int64_t>(RA.getExtraInfo().getStage(VirtReg: LI))); |
| 964 | MinStage = std::min<int64_t>( |
| 965 | a: MinStage, b: static_cast<int64_t>(RA.getExtraInfo().getStage(VirtReg: LI))); |
| 966 | |
| 967 | TotalWeight = std::max(a: TotalWeight, b: LI.weight()); |
| 968 | |
| 969 | if (LI.beginIndex() < StartSI) |
| 970 | StartSI = LI.beginIndex(); |
| 971 | |
| 972 | if (LI.endIndex() > EndSI) |
| 973 | EndSI = LI.endIndex(); |
| 974 | const LIFeatureComponents &LIFC = getLIFeatureComponents(LI); |
| 975 | NumBrokenHints += VRM->hasPreferredPhys(VirtReg: LI.reg()); |
| 976 | |
| 977 | NumDefsAndUses += LIFC.NumDefsAndUses; |
| 978 | HottestBlockFreq = std::max(a: HottestBlockFreq, b: LIFC.HottestBlockFreq); |
| 979 | R += LIFC.R; |
| 980 | W += LIFC.W; |
| 981 | RW += LIFC.RW; |
| 982 | |
| 983 | IndVarUpdates += LIFC.IndVarUpdates; |
| 984 | |
| 985 | HintWeights += LIFC.HintWeights; |
| 986 | NumRematerializable += LIFC.IsRemat; |
| 987 | |
| 988 | if (EnableDevelopmentFeatures) { |
| 989 | for (auto CurrentSegment : LI) { |
| 990 | LRPosInfo.push_back( |
| 991 | Elt: LRStartEndInfo{.Begin: CurrentSegment.start, .End: CurrentSegment.end, .Pos: Pos}); |
| 992 | } |
| 993 | } |
| 994 | } |
| 995 | size_t Size = 0; |
| 996 | if (!Intervals.empty()) { |
| 997 | StartBBFreq = |
| 998 | MBFI.getBlockFreqRelativeToEntryBlock(MBB: LIS->getMBBFromIndex(index: StartSI)); |
| 999 | if (EndSI >= LIS->getSlotIndexes()->getLastIndex()) |
| 1000 | EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex(); |
| 1001 | EndBBFreq = |
| 1002 | MBFI.getBlockFreqRelativeToEntryBlock(MBB: LIS->getMBBFromIndex(index: EndSI)); |
| 1003 | Size = StartSI.distance(other: EndSI); |
| 1004 | } |
| 1005 | // Set the features at the column 'Pos'. |
| 1006 | #define SET(ID, TYPE, VAL) \ |
| 1007 | do { \ |
| 1008 | Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \ |
| 1009 | if (!DoNotNormalize.test(FeatureIDs::ID)) \ |
| 1010 | Largest[FeatureIDs::ID] = \ |
| 1011 | std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \ |
| 1012 | } while (false) |
| 1013 | SET(mask, int64_t, 1); |
| 1014 | SET(is_free, int64_t, Intervals.empty()); |
| 1015 | SET(nr_urgent, float, NumUrgent); |
| 1016 | SET(nr_broken_hints, float, NumBrokenHints); |
| 1017 | SET(is_hint, int64_t, IsHint); |
| 1018 | SET(is_local, int64_t, LocalIntfsCount); |
| 1019 | SET(nr_rematerializable, float, NumRematerializable); |
| 1020 | SET(nr_defs_and_uses, float, NumDefsAndUses); |
| 1021 | SET(weighed_reads_by_max, float, R); |
| 1022 | SET(weighed_writes_by_max, float, W); |
| 1023 | SET(weighed_read_writes_by_max, float, RW); |
| 1024 | SET(weighed_indvars_by_max, float, IndVarUpdates); |
| 1025 | SET(hint_weights_by_max, float, HintWeights); |
| 1026 | SET(start_bb_freq_by_max, float, StartBBFreq); |
| 1027 | SET(end_bb_freq_by_max, float, EndBBFreq); |
| 1028 | SET(hottest_bb_freq_by_max, float, HottestBlockFreq); |
| 1029 | SET(liverange_size, float, Size); |
| 1030 | SET(use_def_density, float, TotalWeight); |
| 1031 | SET(max_stage, int64_t, MaxStage); |
| 1032 | SET(min_stage, int64_t, MinStage); |
| 1033 | #undef SET |
| 1034 | } |
| 1035 | |
| 1036 | void llvm::( |
| 1037 | SmallVectorImpl<LRStartEndInfo> &LRPosInfo, MLModelRunner *RegallocRunner, |
| 1038 | function_ref<int(SlotIndex)> GetOpcode, |
| 1039 | function_ref<float(SlotIndex)> GetMBBFreq, |
| 1040 | function_ref<MachineBasicBlock *(SlotIndex)> GetMBBReference, |
| 1041 | const int InstructionsIndex, const int InstructionsMappingIndex, |
| 1042 | const int MBBFreqIndex, const int MBBMappingIndex, |
| 1043 | const SlotIndex LastIndex) { |
| 1044 | // This function extracts instruction based features relevant to the eviction |
| 1045 | // problem currently being solved. This function ends up extracting two |
| 1046 | // tensors. |
| 1047 | // 1 - A vector of size max instruction count. It contains the opcodes of the |
| 1048 | // instructions spanned by all the intervals in the current instance of the |
| 1049 | // eviction problem. |
| 1050 | // 2 - A binary mapping matrix of size (LR count * max |
| 1051 | // instruction count) which maps where the LRs are live to the actual opcodes |
| 1052 | // for which they are live. |
| 1053 | // 3 - A vector of size max supported MBB count storing MBB frequencies, |
| 1054 | // encompassing all of the MBBs covered by the eviction problem. |
| 1055 | // 4 - A vector of size max instruction count of indices to members of the MBB |
| 1056 | // frequency vector, mapping each instruction to its associated MBB. |
| 1057 | |
| 1058 | // Start off by sorting the segments based on the beginning slot index. |
| 1059 | std::sort( |
| 1060 | first: LRPosInfo.begin(), last: LRPosInfo.end(), |
| 1061 | comp: [](LRStartEndInfo A, LRStartEndInfo B) { return A.Begin < B.Begin; }); |
| 1062 | size_t InstructionIndex = 0; |
| 1063 | size_t CurrentSegmentIndex = 0; |
| 1064 | SlotIndex CurrentIndex = LRPosInfo[0].Begin; |
| 1065 | std::map<MachineBasicBlock *, size_t> VisitedMBBs; |
| 1066 | size_t CurrentMBBIndex = 0; |
| 1067 | // This loop processes all the segments sequentially by starting at the |
| 1068 | // beginning slot index of the first segment, iterating through all the slot |
| 1069 | // indices before the end slot index of that segment (while checking for |
| 1070 | // overlaps with segments that start at greater slot indices). After hitting |
| 1071 | // that end index, the current segment being processed gets bumped until they |
| 1072 | // are all processed or the max instruction count is hit, where everything is |
| 1073 | // just truncated. |
| 1074 | while (true) { |
| 1075 | // If the index that we are currently at is within the current segment and |
| 1076 | // we haven't hit the max instruction count, continue processing the current |
| 1077 | // segment. |
| 1078 | while (CurrentIndex <= LRPosInfo[CurrentSegmentIndex].End && |
| 1079 | InstructionIndex < ModelMaxSupportedInstructionCount) { |
| 1080 | int CurrentOpcode = GetOpcode(CurrentIndex); |
| 1081 | // If the current machine instruction is null, skip it |
| 1082 | if (CurrentOpcode == -1) { |
| 1083 | // If we're currently at the last index in the SlotIndex analysis, |
| 1084 | // we can't go any further, so return from the function |
| 1085 | if (CurrentIndex >= LastIndex) { |
| 1086 | return; |
| 1087 | } |
| 1088 | CurrentIndex = CurrentIndex.getNextIndex(); |
| 1089 | continue; |
| 1090 | } |
| 1091 | MachineBasicBlock *CurrentMBBReference = GetMBBReference(CurrentIndex); |
| 1092 | if (VisitedMBBs.count(x: CurrentMBBReference) == 0) { |
| 1093 | VisitedMBBs[CurrentMBBReference] = CurrentMBBIndex; |
| 1094 | ++CurrentMBBIndex; |
| 1095 | } |
| 1096 | extractMBBFrequency(CurrentIndex, CurrentInstructionIndex: InstructionIndex, VisitedMBBs, |
| 1097 | GetMBBFreq, CurrentMBBReference, RegallocRunner, |
| 1098 | MBBFreqIndex, MBBMappingIndex); |
| 1099 | // Current code assumes we're not going to get any disjointed segments |
| 1100 | assert(LRPosInfo[CurrentSegmentIndex].Begin <= CurrentIndex); |
| 1101 | RegallocRunner->getTensor<int64_t>(FeatureID: InstructionsIndex)[InstructionIndex] = |
| 1102 | CurrentOpcode < OpcodeValueCutoff ? CurrentOpcode : 0; |
| 1103 | // set value in the binary mapping matrix for the current instruction |
| 1104 | auto CurrentSegmentPosition = LRPosInfo[CurrentSegmentIndex].Pos; |
| 1105 | RegallocRunner->getTensor<int64_t>( |
| 1106 | FeatureID: InstructionsMappingIndex)[CurrentSegmentPosition * |
| 1107 | ModelMaxSupportedInstructionCount + |
| 1108 | InstructionIndex] = 1; |
| 1109 | // All of the segments are sorted based on the beginning slot index, but |
| 1110 | // this doesn't mean that the beginning slot index of the next segment is |
| 1111 | // after the end segment of the one being currently processed. This while |
| 1112 | // loop checks for overlapping segments and modifies the portion of the |
| 1113 | // column in the mapping matrix for the currently processed instruction |
| 1114 | // for the LR it is checking. Also make sure that the beginning of the |
| 1115 | // current segment we're checking for overlap in is less than the current |
| 1116 | // index, otherwise we're done checking overlaps. |
| 1117 | size_t OverlapCheckCurrentSegment = CurrentSegmentIndex + 1; |
| 1118 | while (OverlapCheckCurrentSegment < LRPosInfo.size() && |
| 1119 | LRPosInfo[OverlapCheckCurrentSegment].Begin <= CurrentIndex) { |
| 1120 | auto OverlapCurrentSegmentPosition = |
| 1121 | LRPosInfo[OverlapCheckCurrentSegment].Pos; |
| 1122 | if (LRPosInfo[OverlapCheckCurrentSegment].End >= CurrentIndex) { |
| 1123 | RegallocRunner->getTensor<int64_t>( |
| 1124 | FeatureID: InstructionsMappingIndex)[OverlapCurrentSegmentPosition * |
| 1125 | ModelMaxSupportedInstructionCount + |
| 1126 | InstructionIndex] = 1; |
| 1127 | } |
| 1128 | ++OverlapCheckCurrentSegment; |
| 1129 | } |
| 1130 | ++InstructionIndex; |
| 1131 | if (CurrentIndex >= LastIndex) { |
| 1132 | return; |
| 1133 | } |
| 1134 | CurrentIndex = CurrentIndex.getNextIndex(); |
| 1135 | } |
| 1136 | // if we've just finished processing through the last segment or if we've |
| 1137 | // hit the maximum number of instructions, break out of the loop. |
| 1138 | if (CurrentSegmentIndex == LRPosInfo.size() - 1 || |
| 1139 | InstructionIndex >= ModelMaxSupportedInstructionCount) { |
| 1140 | break; |
| 1141 | } |
| 1142 | // If the segments are not overlapping, we need to move to the beginning |
| 1143 | // index of the next segment to avoid having instructions not attached to |
| 1144 | // any register. |
| 1145 | if (LRPosInfo[CurrentSegmentIndex + 1].Begin > |
| 1146 | LRPosInfo[CurrentSegmentIndex].End) { |
| 1147 | CurrentIndex = LRPosInfo[CurrentSegmentIndex + 1].Begin; |
| 1148 | } |
| 1149 | ++CurrentSegmentIndex; |
| 1150 | } |
| 1151 | } |
| 1152 | |
| 1153 | void llvm::( |
| 1154 | const SlotIndex CurrentIndex, const size_t CurrentInstructionIndex, |
| 1155 | std::map<MachineBasicBlock *, size_t> &VisitedMBBs, |
| 1156 | function_ref<float(SlotIndex)> GetMBBFreq, |
| 1157 | MachineBasicBlock *CurrentMBBReference, MLModelRunner *RegallocRunner, |
| 1158 | const int MBBFreqIndex, const int MBBMappingIndex) { |
| 1159 | size_t CurrentMBBIndex = VisitedMBBs[CurrentMBBReference]; |
| 1160 | float CurrentMBBFreq = GetMBBFreq(CurrentIndex); |
| 1161 | if (CurrentMBBIndex < ModelMaxSupportedMBBCount) { |
| 1162 | RegallocRunner->getTensor<float>(FeatureID: MBBFreqIndex)[CurrentMBBIndex] = |
| 1163 | CurrentMBBFreq; |
| 1164 | RegallocRunner->getTensor<int64_t>( |
| 1165 | FeatureID: MBBMappingIndex)[CurrentInstructionIndex] = CurrentMBBIndex; |
| 1166 | } |
| 1167 | } |
| 1168 | |
| 1169 | // Development mode-specific implementations |
| 1170 | #ifdef LLVM_HAVE_TFLITE |
| 1171 | |
| 1172 | RegAllocEvictionAdvisorAnalysisLegacy * |
| 1173 | llvm::createDevelopmentModeAdvisorAnalysisLegacy() { |
| 1174 | return new DevelopmentModeEvictionAdvisorAnalysisLegacy(); |
| 1175 | } |
| 1176 | |
| 1177 | int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition( |
| 1178 | const LiveInterval &VirtReg, const AllocationOrder &Order, |
| 1179 | unsigned OrderLimit, uint8_t CostPerUseLimit, |
| 1180 | const SmallVirtRegSet &FixedRegisters) const { |
| 1181 | int64_t Ret = 0; |
| 1182 | if (isa<ModelUnderTrainingRunner>(getRunner())) { |
| 1183 | Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition( |
| 1184 | VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); |
| 1185 | } else { |
| 1186 | MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate( |
| 1187 | VirtReg, Order, CostPerUseLimit, FixedRegisters); |
| 1188 | // Find the index of the selected PhysReg. We need it for logging, |
| 1189 | // otherwise this is wasted cycles (but so would starting development mode |
| 1190 | // without a model nor logging) |
| 1191 | if (!PhysReg) |
| 1192 | Ret = CandidateVirtRegPos; |
| 1193 | else |
| 1194 | for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); |
| 1195 | I != E; ++I, ++Ret) |
| 1196 | if (*I == PhysReg) |
| 1197 | break; |
| 1198 | } |
| 1199 | if (TrainingLog.empty()) |
| 1200 | return Ret; |
| 1201 | // TODO(mtrofin): when we support optional rewards, this can go away. In the |
| 1202 | // meantime, we log the "pretend" reward (0) for the previous observation |
| 1203 | // before starting a new one. |
| 1204 | if (Log->hasObservationInProgress()) |
| 1205 | Log->logReward<float>(0.0); |
| 1206 | |
| 1207 | Log->startObservation(); |
| 1208 | size_t CurrentFeature = 0; |
| 1209 | size_t FeatureCount = EnableDevelopmentFeatures |
| 1210 | ? FeatureIDs::FeaturesWithDevelopmentCount |
| 1211 | : FeatureIDs::FeatureCount; |
| 1212 | for (; CurrentFeature < FeatureCount; ++CurrentFeature) { |
| 1213 | Log->logTensorValue(CurrentFeature, |
| 1214 | reinterpret_cast<const char *>( |
| 1215 | getRunner().getTensorUntyped(CurrentFeature))); |
| 1216 | } |
| 1217 | if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner())) |
| 1218 | for (size_t I = 0; I < MUTR->extraOutputsForLoggingSpecs().size(); |
| 1219 | ++I, ++CurrentFeature) |
| 1220 | Log->logTensorValue( |
| 1221 | CurrentFeature, |
| 1222 | reinterpret_cast<const char *>(MUTR->getUntypedExtraOutputValue(I))); |
| 1223 | // The output is right after the features and the extra outputs |
| 1224 | Log->logTensorValue(CurrentFeature, reinterpret_cast<const char *>(&Ret)); |
| 1225 | Log->endObservation(); |
| 1226 | return Ret; |
| 1227 | } |
| 1228 | |
| 1229 | bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) { |
| 1230 | std::optional<float> CachedReward; |
| 1231 | auto GetReward = [&]() { |
| 1232 | if (!CachedReward) |
| 1233 | CachedReward = static_cast<float>( |
| 1234 | calculateRegAllocScore( |
| 1235 | MF, getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()) |
| 1236 | .getScore()); |
| 1237 | return *CachedReward; |
| 1238 | }; |
| 1239 | |
| 1240 | getAnalysis<RegAllocEvictionAdvisorAnalysisLegacy>().logRewardIfNeeded( |
| 1241 | MF, GetReward); |
| 1242 | getAnalysis<RegAllocPriorityAdvisorAnalysisLegacy>().logRewardIfNeeded( |
| 1243 | MF, GetReward); |
| 1244 | return false; |
| 1245 | } |
| 1246 | #endif // #ifdef LLVM_HAVE_TFLITE |
| 1247 | |
| 1248 | RegAllocEvictionAdvisorProvider * |
| 1249 | llvm::createReleaseModeAdvisorProvider(LLVMContext &Ctx) { |
| 1250 | return new ReleaseModeEvictionAdvisorProvider(Ctx); |
| 1251 | } |
| 1252 | |
| 1253 | RegAllocEvictionAdvisorProvider * |
| 1254 | llvm::createDevelopmentModeAdvisorProvider(LLVMContext &Ctx) { |
| 1255 | #if defined(LLVM_HAVE_TFLITE) |
| 1256 | return new DevelopmentModeEvictionAdvisorProvider(Ctx); |
| 1257 | #endif |
| 1258 | return nullptr; |
| 1259 | } |
| 1260 | |
| 1261 | RegAllocEvictionAdvisorAnalysisLegacy * |
| 1262 | llvm::createReleaseModeAdvisorAnalysisLegacy() { |
| 1263 | return llvm::isEmbeddedModelEvaluatorValid<CompiledModelType>() || |
| 1264 | !InteractiveChannelBaseName.empty() |
| 1265 | ? new ReleaseModeEvictionAdvisorAnalysisLegacy() |
| 1266 | : nullptr; |
| 1267 | } |
| 1268 | |
| 1269 | // In all cases except development mode, we don't need scoring. |
| 1270 | #if !defined(LLVM_HAVE_TFLITE) |
| 1271 | bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; } |
| 1272 | #endif |
| 1273 | |