1 | //===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Implementation of the ML eviction advisor and reward injection pass |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "AllocationOrder.h" |
14 | #include "RegAllocGreedy.h" |
15 | #include "llvm/Analysis/InteractiveModelRunner.h" |
16 | #include "llvm/Analysis/MLModelRunner.h" |
17 | #include "llvm/Analysis/TensorSpec.h" |
18 | #include "llvm/CodeGen/RegAllocEvictionAdvisor.h" |
19 | #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) || defined(LLVM_HAVE_TFLITE) |
20 | #include "llvm/Analysis/ModelUnderTrainingRunner.h" |
21 | #include "llvm/Analysis/NoInferenceModelRunner.h" |
22 | #include "llvm/Analysis/Utils/TrainingLogger.h" |
23 | #endif |
24 | #include "MLRegAllocEvictAdvisor.h" |
25 | #include "llvm/Analysis/ReleaseModeModelRunner.h" |
26 | #include "llvm/CodeGen/CalcSpillWeights.h" |
27 | #include "llvm/CodeGen/LiveRegMatrix.h" |
28 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
29 | #include "llvm/CodeGen/MachineFunction.h" |
30 | #include "llvm/CodeGen/MachineLoopInfo.h" |
31 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
32 | #include "llvm/CodeGen/Passes.h" |
33 | #include "llvm/CodeGen/RegisterClassInfo.h" |
34 | #include "llvm/CodeGen/VirtRegMap.h" |
35 | #include "llvm/IR/Module.h" |
36 | #include "llvm/InitializePasses.h" |
37 | #include "llvm/Pass.h" |
38 | #include "llvm/PassRegistry.h" |
39 | #include "llvm/Support/CommandLine.h" |
40 | #include "llvm/Support/ErrorHandling.h" |
41 | |
42 | #include <array> |
43 | #include <bitset> |
44 | #include <memory> |
45 | #include <unordered_map> |
46 | |
47 | using namespace llvm; |
48 | |
49 | #define DEBUG_TYPE "ml-regalloc" |
50 | |
51 | // Generated header in release (AOT) mode |
52 | #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) |
53 | #include "RegAllocEvictModel.h" |
54 | using CompiledModelType = RegAllocEvictModel; |
55 | #else |
56 | using CompiledModelType = NoopSavedModelImpl; |
57 | #endif |
58 | |
59 | static cl::opt<std::string> InteractiveChannelBaseName( |
60 | "regalloc-evict-interactive-channel-base" , cl::Hidden, |
61 | cl::desc( |
62 | "Base file path for the interactive mode. The incoming filename should " |
63 | "have the name <regalloc-evict-interactive-channel-base>.in, while the " |
64 | "outgoing name should be " |
65 | "<regalloc-evict-interactive-channel-base>.out" )); |
66 | |
67 | static cl::opt<unsigned> MaxEvictionCount( |
68 | "mlregalloc-max-eviction-count" , cl::Hidden, |
69 | cl::desc("The maximum number of times a live range can be " |
70 | "evicted before preventing it from being evicted" ), |
71 | cl::init(Val: 100)); |
72 | |
73 | // Options that only make sense in development mode |
74 | #ifdef LLVM_HAVE_TFLITE |
75 | #include "RegAllocScore.h" |
76 | #include "llvm/Analysis/Utils/TFUtils.h" |
77 | |
78 | static cl::opt<std::string> TrainingLog( |
79 | "regalloc-training-log" , cl::Hidden, |
80 | cl::desc("Training log for the register allocator eviction model" )); |
81 | |
82 | static cl::opt<std::string> ModelUnderTraining( |
83 | "regalloc-model" , cl::Hidden, |
84 | cl::desc("The model being trained for register allocation eviction" )); |
85 | |
86 | static cl::opt<bool> EnableDevelopmentFeatures( |
87 | "regalloc-enable-development-features" , cl::Hidden, |
88 | cl::desc("Whether or not to enable features under development for the ML " |
89 | "regalloc advisor" )); |
90 | |
91 | #else |
92 | static const bool EnableDevelopmentFeatures = false; |
93 | #endif // #ifdef LLVM_HAVE_TFLITE |
94 | |
95 | /// The score injection pass. |
96 | /// This pass calculates the score for a function and inserts it in the log, but |
97 | /// this happens only in development mode. It's a no-op otherwise. |
98 | namespace llvm { |
99 | extern cl::opt<unsigned> EvictInterferenceCutoff; |
100 | |
101 | class RegAllocScoring : public MachineFunctionPass { |
102 | public: |
103 | static char ID; |
104 | |
105 | RegAllocScoring() : MachineFunctionPass(ID) { |
106 | initializeRegAllocScoringPass(*PassRegistry::getPassRegistry()); |
107 | } |
108 | |
109 | ~RegAllocScoring() override = default; |
110 | |
111 | StringRef getPassName() const override { |
112 | return "Register Allocation Pass Scoring" ; |
113 | } |
114 | |
115 | /// RegAllocReward analysis usage. |
116 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
117 | AU.setPreservesAll(); |
118 | AU.addRequired<RegAllocEvictionAdvisorAnalysisLegacy>(); |
119 | AU.addRequired<RegAllocPriorityAdvisorAnalysisLegacy>(); |
120 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
121 | MachineFunctionPass::getAnalysisUsage(AU); |
122 | } |
123 | |
124 | /// Performs this pass |
125 | bool runOnMachineFunction(MachineFunction &) override; |
126 | }; |
127 | |
128 | char RegAllocScoring::ID = 0; |
129 | FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); } |
130 | |
131 | } // namespace llvm |
132 | |
133 | INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass" , |
134 | "Register Allocation Scoring Pass" , false, false) |
135 | |
136 | // =================================== |
137 | // Common ML Advisor declarations |
138 | // =================================== |
139 | namespace { |
140 | // The model can only accept a specified number of opcodes and will error it if |
141 | // fed an opcode it hasn't seen before. This constant sets the current cutoff. |
142 | static const int OpcodeValueCutoff = 17716; |
143 | |
144 | // Most features are as described above, so we'll reuse this vector in defining |
145 | // them. |
146 | static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences}; |
147 | |
148 | // -------------- |
149 | // Features table |
150 | // -------------- |
151 | // For each interfering live range (incl. the candidate) we collect a number of |
152 | // features. However, because the features are of different types (and because |
153 | // of ML best practices), we organize the tensors per feature, not per |
154 | // candidate. Each such tensor has a scalar value corresponding to the |
155 | // interferring live range at that position, in the order in AllocationOrder. |
156 | // The last position corresponds to the virt reg seeking allocation. |
157 | // Exception to all that is the progression feature, which is just a scalar (see |
158 | // its documentation for details). |
159 | // Note on naming: the "_by_max" are normalized using the largest value of that |
160 | // tensor, as observed in the current decision making stage (i.e. for the |
161 | // current call to the advisor's tryFindEvictionCandidate) |
162 | // |
163 | // The feature list format: type, name, shape, documentation. |
164 | // Note: we can really just use int64 and float, hence the modeling of some |
165 | // bools as int64 values. |
166 | #define RA_EVICT_FEATURES_LIST(M) \ |
167 | M(int64_t, mask, PerLiveRangeShape, \ |
168 | "boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \ |
169 | "it " \ |
170 | "can't be evicted)") \ |
171 | M(int64_t, is_free, PerLiveRangeShape, \ |
172 | "boolean values, 1 if this phys reg is actually free (no interferences)") \ |
173 | M(float, nr_urgent, PerLiveRangeShape, \ |
174 | "number of 'urgent' intervals, normalized. Urgent are those that are OK " \ |
175 | "to break cascades") \ |
176 | M(float, nr_broken_hints, PerLiveRangeShape, \ |
177 | "if this position were evicted, how many broken hints would there be") \ |
178 | M(int64_t, is_hint, PerLiveRangeShape, \ |
179 | "is this a preferred phys reg for the candidate") \ |
180 | M(int64_t, is_local, PerLiveRangeShape, \ |
181 | "is this live range local to a basic block") \ |
182 | M(float, nr_rematerializable, PerLiveRangeShape, \ |
183 | "nr rematerializable ranges") \ |
184 | M(float, nr_defs_and_uses, PerLiveRangeShape, \ |
185 | "bb freq - weighed nr defs and uses") \ |
186 | M(float, weighed_reads_by_max, PerLiveRangeShape, \ |
187 | "bb freq - weighed nr of reads, normalized") \ |
188 | M(float, weighed_writes_by_max, PerLiveRangeShape, \ |
189 | "bb feq - weighed nr of writes, normalized") \ |
190 | M(float, weighed_read_writes_by_max, PerLiveRangeShape, \ |
191 | "bb freq - weighed nr of uses that are both read and writes, normalized") \ |
192 | M(float, weighed_indvars_by_max, PerLiveRangeShape, \ |
193 | "bb freq - weighed nr of uses that are indvars, normalized") \ |
194 | M(float, hint_weights_by_max, PerLiveRangeShape, \ |
195 | "bb freq - weighed nr of uses that are hints, normalized") \ |
196 | M(float, start_bb_freq_by_max, PerLiveRangeShape, \ |
197 | "the freq in the start block, normalized") \ |
198 | M(float, end_bb_freq_by_max, PerLiveRangeShape, \ |
199 | "freq of end block, normalized") \ |
200 | M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \ |
201 | "hottest BB freq, normalized") \ |
202 | M(float, liverange_size, PerLiveRangeShape, \ |
203 | "size (instr index diff) of the LR") \ |
204 | M(float, use_def_density, PerLiveRangeShape, \ |
205 | "the max weight, as computed by the manual heuristic") \ |
206 | M(int64_t, max_stage, PerLiveRangeShape, \ |
207 | "largest stage of an interval in this LR") \ |
208 | M(int64_t, min_stage, PerLiveRangeShape, \ |
209 | "lowest stage of an interval in this LR") \ |
210 | M(float, progress, {1}, "ratio of current queue size to initial size") |
211 | |
212 | #ifdef LLVM_HAVE_TFLITE |
213 | #define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M) \ |
214 | M(int64_t, instructions, InstructionsShape, \ |
215 | "Opcodes of the instructions covered by the eviction problem") |
216 | |
217 | #define RA_EVICT_REST_DEVELOPMENT_FEATURES(M) \ |
218 | M(int64_t, instructions_mapping, InstructionsMappingShape, \ |
219 | "A binary matrix mapping LRs to instruction opcodes") \ |
220 | M(float, mbb_frequencies, MBBFrequencyShape, \ |
221 | "A vector of machine basic block frequencies") \ |
222 | M(int64_t, mbb_mapping, InstructionsShape, \ |
223 | "A vector of indices mapping instructions to MBBs") |
224 | #else |
225 | #define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M) |
226 | #define RA_EVICT_REST_DEVELOPMENT_FEATURES(M) |
227 | #endif |
228 | |
229 | // The model learns to pick one of the mask == 1 interferences. This is the |
230 | // name of the output tensor. The contract with the model is that the output |
231 | // will be guaranteed to be to a mask == 1 position. Using a macro here to |
232 | // avoid 'not used' warnings (and keep cond compilation to a minimum) |
233 | #define DecisionName "index_to_evict" |
234 | static const TensorSpec DecisionSpec = |
235 | TensorSpec::createSpec<int64_t>(DecisionName, Shape: {1}); |
236 | |
237 | // Named features index. |
238 | enum FeatureIDs { |
239 | #define _FEATURE_IDX_SIMPLE(_, name, __, ___) name |
240 | #define _FEATURE_IDX(A, B, C, D) _FEATURE_IDX_SIMPLE(A, B, C, D), |
241 | RA_EVICT_FEATURES_LIST(_FEATURE_IDX) FeatureCount, |
242 | #ifdef LLVM_HAVE_TFLITE |
243 | RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX_SIMPLE) = FeatureCount, |
244 | #else |
245 | RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX) |
246 | #endif // #ifdef LLVM_HAVE_TFLITE |
247 | RA_EVICT_REST_DEVELOPMENT_FEATURES(_FEATURE_IDX) FeaturesWithDevelopmentCount |
248 | #undef _FEATURE_IDX |
249 | #undef _FEATURE_IDX_SIMPLE |
250 | }; |
251 | |
252 | // The ML advisor will typically have a sparse input to the evaluator, because |
253 | // various phys regs won't be available. It's easier (maintenance-wise) to |
254 | // bulk-reset the state of the evaluator each time we are about to use it |
255 | // again. |
256 | template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) { |
257 | size_t Ret = sizeof(T); |
258 | for (const auto V : Shape) |
259 | Ret *= V; |
260 | return Ret; |
261 | } |
262 | |
263 | void resetInputs(MLModelRunner &Runner) { |
264 | #define _RESET(TYPE, NAME, SHAPE, __) \ |
265 | std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \ |
266 | getTotalSize<TYPE>(SHAPE)); |
267 | RA_EVICT_FEATURES_LIST(_RESET) |
268 | if (EnableDevelopmentFeatures) { |
269 | RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_RESET) |
270 | RA_EVICT_REST_DEVELOPMENT_FEATURES(_RESET) |
271 | #undef _RESET |
272 | } |
273 | } |
274 | |
275 | // Per-live interval components that get aggregated into the feature values |
276 | // that will be passed to the evaluator. |
277 | struct LIFeatureComponents { |
278 | double R = 0; |
279 | double W = 0; |
280 | double RW = 0; |
281 | double IndVarUpdates = 0; |
282 | double HintWeights = 0.0; |
283 | int64_t NumDefsAndUses = 0; |
284 | float HottestBlockFreq = 0.0; |
285 | bool IsRemat = false; |
286 | }; |
287 | |
288 | using CandidateRegList = |
289 | std::array<std::pair<MCRegister, bool>, NumberOfInterferences>; |
290 | using FeaturesListNormalizer = |
291 | llvm::SmallVector<float, FeatureIDs::FeatureCount>; |
292 | |
293 | /// The ML evictor (commonalities between release and development mode) |
294 | class MLEvictAdvisor : public RegAllocEvictionAdvisor { |
295 | public: |
296 | MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, |
297 | MLModelRunner *Runner, const MachineBlockFrequencyInfo &MBFI, |
298 | const MachineLoopInfo &Loops); |
299 | |
300 | protected: |
301 | const RegAllocEvictionAdvisor &getDefaultAdvisor() const { |
302 | return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor); |
303 | } |
304 | |
305 | // The assumption is that if the Runner could not be constructed, we emit-ed |
306 | // error, and we shouldn't be asking for it here. |
307 | const MLModelRunner &getRunner() const { return *Runner; } |
308 | |
309 | /// This just calls Evaluate on the Runner, but in the development mode |
310 | /// case, if we're just capturing the log of the default advisor, it needs |
311 | /// to call the latter instead, so we need to pass all the necessary |
312 | /// parameters for it. In the development case, it will also log. |
313 | virtual int64_t |
314 | tryFindEvictionCandidatePosition(const LiveInterval &VirtReg, |
315 | const AllocationOrder &Order, |
316 | unsigned OrderLimit, uint8_t CostPerUseLimit, |
317 | const SmallVirtRegSet &FixedRegisters) const; |
318 | |
319 | /// Load the features of the given VirtReg (allocated or not) at column Pos, |
320 | /// but if that can't be evicted, return false instead. |
321 | bool |
322 | loadInterferenceFeatures(const LiveInterval &VirtReg, MCRegister PhysReg, |
323 | bool IsHint, const SmallVirtRegSet &FixedRegisters, |
324 | llvm::SmallVectorImpl<float> &Largest, size_t Pos, |
325 | SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const; |
326 | |
327 | private: |
328 | static float getInitialQueueSize(const MachineFunction &MF); |
329 | |
330 | MCRegister tryFindEvictionCandidate( |
331 | const LiveInterval &VirtReg, const AllocationOrder &Order, |
332 | uint8_t CostPerUseLimit, |
333 | const SmallVirtRegSet &FixedRegisters) const override; |
334 | |
335 | void extractFeatures(const SmallVectorImpl<const LiveInterval *> &Intervals, |
336 | llvm::SmallVectorImpl<float> &Largest, size_t Pos, |
337 | int64_t IsHint, int64_t LocalIntfsCount, float NumUrgent, |
338 | SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const; |
339 | |
340 | // Point-in-time: we didn't learn this, so we always delegate to the |
341 | // default. |
342 | bool canEvictHintInterference( |
343 | const LiveInterval &VirtReg, MCRegister PhysReg, |
344 | const SmallVirtRegSet &FixedRegisters) const override { |
345 | return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg, |
346 | FixedRegisters); |
347 | } |
348 | |
349 | const LIFeatureComponents & |
350 | getLIFeatureComponents(const LiveInterval &LI) const; |
351 | |
352 | // Hold on to a default advisor for: |
353 | // 1) the implementation of canEvictHintInterference, because we didn't |
354 | // learn that nuance yet; 2) for bootstrapping (logging) in the development |
355 | // mode case. |
356 | const DefaultEvictionAdvisor DefaultAdvisor; |
357 | MLModelRunner *const Runner; |
358 | const MachineBlockFrequencyInfo &MBFI; |
359 | const MachineLoopInfo &Loops; |
360 | |
361 | // Indices of those features we don't want to normalize. |
362 | // This could be static and shared, but its initialization is non-trivial. |
363 | std::bitset<FeatureIDs::FeatureCount> DoNotNormalize; |
364 | const float InitialQSize; |
365 | |
366 | using RegID = unsigned; |
367 | mutable DenseMap<RegID, LIFeatureComponents> CachedFeatures; |
368 | |
369 | mutable std::unordered_map<unsigned, unsigned> VirtRegEvictionCounts; |
370 | |
371 | void onEviction(Register RegBeingEvicted) const { |
372 | // If we cannot find the virtual register in the map, we just assume it has |
373 | // not been evicted before and thus has a value of zero (which is what the |
374 | // subscript operator returns by default). |
375 | ++VirtRegEvictionCounts[RegBeingEvicted.id()]; |
376 | } |
377 | |
378 | unsigned getEvictionCount(Register Reg) const { |
379 | auto EvictionCountIt = VirtRegEvictionCounts.find(x: Reg.id()); |
380 | if (EvictionCountIt != VirtRegEvictionCounts.end()) |
381 | return EvictionCountIt->second; |
382 | return 0; |
383 | } |
384 | }; |
385 | |
386 | #define _DECL_FEATURES(type, name, shape, _) \ |
387 | TensorSpec::createSpec<type>(#name, shape), |
388 | |
389 | // =================================== |
390 | // Release (AOT) - specifics |
391 | // =================================== |
392 | /// Common provider for legacy and new pass managers. |
393 | class ReleaseModeEvictionAdvisorProvider final |
394 | : public RegAllocEvictionAdvisorProvider { |
395 | public: |
396 | ReleaseModeEvictionAdvisorProvider(LLVMContext &Ctx) |
397 | : RegAllocEvictionAdvisorProvider(AdvisorMode::Release, Ctx) { |
398 | if (EnableDevelopmentFeatures) { |
399 | InputFeatures = {RA_EVICT_FEATURES_LIST( |
400 | _DECL_FEATURES) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES) |
401 | RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES)}; |
402 | } else { |
403 | InputFeatures = {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}; |
404 | } |
405 | } |
406 | // support for isa<> and dyn_cast. |
407 | static bool classof(const RegAllocEvictionAdvisorProvider *R) { |
408 | return R->getAdvisorMode() == AdvisorMode::Release; |
409 | } |
410 | |
411 | std::unique_ptr<RegAllocEvictionAdvisor> |
412 | getAdvisor(const MachineFunction &MF, const RAGreedy &RA, |
413 | MachineBlockFrequencyInfo *MBFI, MachineLoopInfo *Loops) override { |
414 | if (!Runner) { |
415 | if (InteractiveChannelBaseName.empty()) |
416 | Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>( |
417 | args&: MF.getFunction().getContext(), args&: InputFeatures, DecisionName); |
418 | else |
419 | Runner = std::make_unique<InteractiveModelRunner>( |
420 | args&: MF.getFunction().getContext(), args&: InputFeatures, args: DecisionSpec, |
421 | args: InteractiveChannelBaseName + ".out" , |
422 | args: InteractiveChannelBaseName + ".in" ); |
423 | } |
424 | assert(MBFI && Loops && |
425 | "Invalid provider state: must have analysis available" ); |
426 | return std::make_unique<MLEvictAdvisor>(args: MF, args: RA, args: Runner.get(), args&: *MBFI, |
427 | args&: *Loops); |
428 | } |
429 | |
430 | private: |
431 | std::vector<TensorSpec> InputFeatures; |
432 | std::unique_ptr<MLModelRunner> Runner; |
433 | }; |
434 | |
435 | class ReleaseModeEvictionAdvisorAnalysisLegacy final |
436 | : public RegAllocEvictionAdvisorAnalysisLegacy { |
437 | public: |
438 | ReleaseModeEvictionAdvisorAnalysisLegacy() |
439 | : RegAllocEvictionAdvisorAnalysisLegacy(AdvisorMode::Release) {} |
440 | |
441 | void logRewardIfNeeded(const MachineFunction &MF, |
442 | llvm::function_ref<float()> GetReward) override { |
443 | // No-op in release mode |
444 | } |
445 | |
446 | bool doInitialization(Module &M) override { |
447 | Provider = |
448 | std::make_unique<ReleaseModeEvictionAdvisorProvider>(args&: M.getContext()); |
449 | return false; |
450 | } |
451 | |
452 | static bool classof(const RegAllocEvictionAdvisorAnalysisLegacy *R) { |
453 | return R->getAdvisorMode() == AdvisorMode::Release; |
454 | } |
455 | |
456 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
457 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
458 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
459 | RegAllocEvictionAdvisorAnalysisLegacy::getAnalysisUsage(AU); |
460 | } |
461 | }; |
462 | |
463 | // =================================== |
464 | // Development mode-specifics |
465 | // =================================== |
466 | // |
467 | // Features we log |
468 | #ifdef LLVM_HAVE_TFLITE |
469 | static const TensorSpec Reward = TensorSpec::createSpec<float>("reward" , {1}); |
470 | |
471 | // Features we bind on the model. The tensor names have a prefix, and we also |
472 | // need to include some tensors that are expected to be present by the |
473 | // training algo. |
474 | // TODO: can we just get rid of these? |
475 | #define _DECL_TRAIN_FEATURES(type, name, shape, _) \ |
476 | TensorSpec::createSpec<type>(std::string("action_") + #name, shape), |
477 | |
478 | class DevelopmentModeEvictAdvisor : public MLEvictAdvisor { |
479 | public: |
480 | DevelopmentModeEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, |
481 | MLModelRunner *Runner, |
482 | const MachineBlockFrequencyInfo &MBFI, |
483 | const MachineLoopInfo &Loops, Logger *Log) |
484 | : MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {} |
485 | |
486 | private: |
487 | int64_t tryFindEvictionCandidatePosition( |
488 | const LiveInterval &VirtReg, const AllocationOrder &Order, |
489 | unsigned OrderLimit, uint8_t CostPerUseLimit, |
490 | const SmallVirtRegSet &FixedRegisters) const override; |
491 | |
492 | Logger *const Log; |
493 | }; |
494 | |
495 | class DevelopmentModeEvictionAdvisorProvider final |
496 | : public RegAllocEvictionAdvisorProvider { |
497 | public: |
498 | DevelopmentModeEvictionAdvisorProvider(LLVMContext &Ctx) |
499 | : RegAllocEvictionAdvisorProvider(AdvisorMode::Development, Ctx) { |
500 | if (EnableDevelopmentFeatures) { |
501 | InputFeatures = {RA_EVICT_FEATURES_LIST( |
502 | _DECL_FEATURES) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES) |
503 | RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES)}; |
504 | TrainingInputFeatures = { |
505 | RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES) |
506 | RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_TRAIN_FEATURES) |
507 | RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_TRAIN_FEATURES) |
508 | TensorSpec::createSpec<float>("action_discount" , {1}), |
509 | TensorSpec::createSpec<int32_t>("action_step_type" , {1}), |
510 | TensorSpec::createSpec<float>("action_reward" , {1})}; |
511 | } else { |
512 | InputFeatures = {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)}; |
513 | TrainingInputFeatures = { |
514 | RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES) |
515 | TensorSpec::createSpec<float>("action_discount" , {1}), |
516 | TensorSpec::createSpec<int32_t>("action_step_type" , {1}), |
517 | TensorSpec::createSpec<float>("action_reward" , {1})}; |
518 | } |
519 | if (ModelUnderTraining.empty() && TrainingLog.empty()) { |
520 | Ctx.emitError("Regalloc development mode should be requested with at " |
521 | "least logging enabled and/or a training model" ); |
522 | return; |
523 | } |
524 | if (ModelUnderTraining.empty()) |
525 | Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures); |
526 | else |
527 | Runner = ModelUnderTrainingRunner::createAndEnsureValid( |
528 | Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures); |
529 | if (!Runner) { |
530 | Ctx.emitError("Regalloc: could not set up the model runner" ); |
531 | return; |
532 | } |
533 | if (TrainingLog.empty()) |
534 | return; |
535 | std::error_code EC; |
536 | auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC); |
537 | if (EC) { |
538 | Ctx.emitError(EC.message() + ":" + TrainingLog); |
539 | return; |
540 | } |
541 | std::vector<TensorSpec> LFS = InputFeatures; |
542 | if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get())) |
543 | append_range(LFS, MUTR->extraOutputsForLoggingSpecs()); |
544 | // We always log the output; in particular, if we're not evaluating, we |
545 | // don't have an output spec json file. That's why we handle the |
546 | // 'normal' output separately. |
547 | LFS.push_back(DecisionSpec); |
548 | |
549 | Log = std::make_unique<Logger>(std::move(OS), LFS, Reward, |
550 | /*IncludeReward*/ true); |
551 | return; |
552 | } |
553 | |
554 | // support for isa<> and dyn_cast. |
555 | static bool classof(const RegAllocEvictionAdvisorProvider *R) { |
556 | return R->getAdvisorMode() == AdvisorMode::Development; |
557 | } |
558 | |
559 | void logRewardIfNeeded(const MachineFunction &MF, |
560 | llvm::function_ref<float()> GetReward) override { |
561 | if (!Log || !Log->hasAnyObservationForContext(MF.getName())) |
562 | return; |
563 | // The function pass manager would run all the function passes for a |
564 | // function, so we assume the last context belongs to this function. If |
565 | // this invariant ever changes, we can implement at that time switching |
566 | // contexts. At this point, it'd be an error |
567 | if (Log->currentContext() != MF.getName()) { |
568 | MF.getFunction().getContext().emitError( |
569 | "The training log context shouldn't have had changed." ); |
570 | } |
571 | if (Log->hasObservationInProgress()) |
572 | Log->logReward<float>(GetReward()); |
573 | } |
574 | |
575 | std::unique_ptr<RegAllocEvictionAdvisor> |
576 | getAdvisor(const MachineFunction &MF, const RAGreedy &RA, |
577 | MachineBlockFrequencyInfo *MBFI, MachineLoopInfo *Loops) override { |
578 | if (!Runner) |
579 | return nullptr; |
580 | if (Log) |
581 | Log->switchContext(MF.getName()); |
582 | assert(MBFI && Loops && |
583 | "Invalid provider state: must have analysis available" ); |
584 | return std::make_unique<DevelopmentModeEvictAdvisor>( |
585 | MF, RA, Runner.get(), *MBFI, *Loops, Log.get()); |
586 | } |
587 | |
588 | private: |
589 | std::vector<TensorSpec> InputFeatures; |
590 | std::vector<TensorSpec> TrainingInputFeatures; |
591 | |
592 | std::unique_ptr<MLModelRunner> Runner; |
593 | std::unique_ptr<Logger> Log; |
594 | }; |
595 | |
596 | class DevelopmentModeEvictionAdvisorAnalysisLegacy final |
597 | : public RegAllocEvictionAdvisorAnalysisLegacy { |
598 | public: |
599 | DevelopmentModeEvictionAdvisorAnalysisLegacy() |
600 | : RegAllocEvictionAdvisorAnalysisLegacy(AdvisorMode::Development) {} |
601 | |
602 | bool doInitialization(Module &M) override { |
603 | Provider = std::make_unique<DevelopmentModeEvictionAdvisorProvider>( |
604 | M.getContext()); |
605 | return false; |
606 | } |
607 | |
608 | void logRewardIfNeeded(const MachineFunction &MF, |
609 | llvm::function_ref<float()> GetReward) override { |
610 | Provider->logRewardIfNeeded(MF, GetReward); |
611 | } |
612 | |
613 | // support for isa<> and dyn_cast. |
614 | static bool classof(const RegAllocEvictionAdvisorAnalysisLegacy *R) { |
615 | return R->getAdvisorMode() == AdvisorMode::Development; |
616 | } |
617 | |
618 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
619 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
620 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
621 | RegAllocEvictionAdvisorAnalysisLegacy::getAnalysisUsage(AU); |
622 | } |
623 | }; |
624 | |
625 | #endif // #ifdef LLVM_HAVE_TFLITE |
626 | } // namespace |
627 | |
628 | float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) { |
629 | auto &MRI = MF.getRegInfo(); |
630 | unsigned NumUsedRegs = 0; |
631 | for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { |
632 | Register Reg = Register::index2VirtReg(Index: I); |
633 | if (!MRI.reg_nodbg_empty(RegNo: Reg)) |
634 | ++NumUsedRegs; |
635 | } |
636 | return static_cast<float>(NumUsedRegs); |
637 | } |
638 | |
639 | MLEvictAdvisor::MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA, |
640 | MLModelRunner *Runner, |
641 | const MachineBlockFrequencyInfo &MBFI, |
642 | const MachineLoopInfo &Loops) |
643 | : RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA), |
644 | Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops), |
645 | InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) { |
646 | assert(this->Runner); |
647 | Runner->switchContext(Name: MF.getName()); |
648 | DoNotNormalize.set(position: FeatureIDs::mask); |
649 | DoNotNormalize.set(position: FeatureIDs::is_free); |
650 | DoNotNormalize.set(position: FeatureIDs::is_hint); |
651 | DoNotNormalize.set(position: FeatureIDs::is_local); |
652 | DoNotNormalize.set(position: FeatureIDs::min_stage); |
653 | DoNotNormalize.set(position: FeatureIDs::max_stage); |
654 | DoNotNormalize.set(position: FeatureIDs::progress); |
655 | } |
656 | |
657 | int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition( |
658 | const LiveInterval &, const AllocationOrder &, unsigned, uint8_t, |
659 | const SmallVirtRegSet &) const { |
660 | int64_t Ret = Runner->evaluate<int64_t>(); |
661 | assert(Ret >= 0); |
662 | assert(Ret <= CandidateVirtRegPos); |
663 | return Ret; |
664 | } |
665 | |
666 | bool MLEvictAdvisor::loadInterferenceFeatures( |
667 | const LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint, |
668 | const SmallVirtRegSet &FixedRegisters, |
669 | llvm::SmallVectorImpl<float> &Largest, size_t Pos, |
670 | llvm::SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const { |
671 | // It is only possible to evict virtual register interference. |
672 | if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) { |
673 | // leave unavailable |
674 | return false; |
675 | } |
676 | |
677 | const bool IsLocal = LIS->intervalIsInOneMBB(LI: VirtReg); |
678 | int64_t LocalIntfs = 0; |
679 | float NumUrgent = 0.0f; |
680 | |
681 | // The cascade tracking is the same as in the default advisor |
682 | unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(Reg: VirtReg.reg()); |
683 | |
684 | SmallVector<const LiveInterval *, MaxInterferences> InterferingIntervals; |
685 | for (MCRegUnit Unit : TRI->regunits(Reg: PhysReg)) { |
686 | LiveIntervalUnion::Query &Q = Matrix->query(LR: VirtReg, RegUnit: Unit); |
687 | // Different from the default heuristic, we don't make any assumptions |
688 | // about what having more than 10 results in the query may mean. |
689 | const auto &IFIntervals = Q.interferingVRegs(MaxInterferingRegs: EvictInterferenceCutoff); |
690 | if (IFIntervals.empty() && InterferingIntervals.empty()) |
691 | continue; |
692 | if (IFIntervals.size() >= EvictInterferenceCutoff) |
693 | return false; |
694 | InterferingIntervals.append(in_start: IFIntervals.begin(), in_end: IFIntervals.end()); |
695 | for (const LiveInterval *Intf : reverse(C: IFIntervals)) { |
696 | assert(Intf->reg().isVirtual() && |
697 | "Only expecting virtual register interference from query" ); |
698 | // This is the same set of legality checks as in the default case: don't |
699 | // try to evict fixed regs or 'done' ones. Also don't break cascades, |
700 | // except in the urgent case, with the same nuances used in the default |
701 | // heuristic. |
702 | // We could try sharing this between the advisors, but it may end up |
703 | // more complex than it is right now. |
704 | if (FixedRegisters.count(V: Intf->reg())) |
705 | return false; |
706 | if (RA.getExtraInfo().getStage(VirtReg: *Intf) == RS_Done) |
707 | return false; |
708 | bool Urgent = |
709 | !VirtReg.isSpillable() && |
710 | (Intf->isSpillable() || |
711 | RegClassInfo.getNumAllocatableRegs(RC: MRI->getRegClass(Reg: VirtReg.reg())) < |
712 | RegClassInfo.getNumAllocatableRegs( |
713 | RC: MRI->getRegClass(Reg: Intf->reg()))); |
714 | |
715 | unsigned IntfCascade = RA.getExtraInfo().getCascade(Reg: Intf->reg()); |
716 | // There is a potential that the model could be adversarial and |
717 | // continually evict live ranges over and over again, leading to a |
718 | // large amount of compile time being spent in regalloc. If we hit the |
719 | // threshold, prevent the range from being evicted. We still let the |
720 | // range through if it is urgent as we are required to produce an |
721 | // eviction if the candidate is not spillable. |
722 | if (getEvictionCount(Reg: Intf->reg()) > MaxEvictionCount && !Urgent) |
723 | return false; |
724 | |
725 | // Only evict older cascades or live ranges without a cascade. |
726 | if (Cascade <= IntfCascade) { |
727 | if (!Urgent) |
728 | return false; |
729 | ++NumUrgent; |
730 | } |
731 | |
732 | LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(LI: *Intf) && |
733 | (!EnableLocalReassign || !canReassign(VirtReg: *Intf, FromReg: PhysReg))); |
734 | } |
735 | } |
736 | // OK, so if we made it this far, this LR is an eviction candidate, load its |
737 | // features. |
738 | extractFeatures(Intervals: InterferingIntervals, Largest, Pos, IsHint, LocalIntfsCount: LocalIntfs, |
739 | NumUrgent, LRPosInfo); |
740 | return true; |
741 | } |
742 | |
743 | MCRegister MLEvictAdvisor::tryFindEvictionCandidate( |
744 | const LiveInterval &VirtReg, const AllocationOrder &Order, |
745 | uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const { |
746 | auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit); |
747 | if (!MaybeOrderLimit) |
748 | return MCRegister::NoRegister; |
749 | unsigned OrderLimit = *MaybeOrderLimit; |
750 | |
751 | // The heuristic sets initial costs such as, if CostPerUseLimit is |
752 | // max<uint8_t>, then any of the costs of the legally-evictable intervals |
753 | // would be lower. When that happens, one of those will be selected. |
754 | // Therefore, we allow the candidate be selected, unless the candidate is |
755 | // unspillable, in which case it would be incorrect to not find a register |
756 | // for it. |
757 | const bool MustFindEviction = |
758 | (!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u)); |
759 | // Number of available candidates - if 0, no need to continue. |
760 | size_t Available = 0; |
761 | // Make sure we don't have leftover partial state from an attempt where we |
762 | // had no available candidates and bailed out early. |
763 | resetInputs(Runner&: *Runner); |
764 | |
765 | // Track the index->register mapping because AllocationOrder doesn't do that |
766 | // and we'd have to scan it. |
767 | // Also track their mask, to write asserts/debug. |
768 | CandidateRegList Regs; |
769 | Regs.fill(u: {0, false}); |
770 | |
771 | // Track the largest value of features seen during this eviction session. We |
772 | // only normalize (some of) the float features, but it's just simpler to |
773 | // dimension 'Largest' to all the features, especially since we have the |
774 | // 'DoNotNormalize' list. |
775 | FeaturesListNormalizer Largest(FeatureIDs::FeatureCount, 0.0); |
776 | |
777 | // Same overal idea as in the default eviction policy - we visit the values |
778 | // of AllocationOrder one at a time. If it's not legally available, we mask |
779 | // off the corresponding feature column (==do nothing because we already |
780 | // reset all the features to 0) Use Pos to capture the column we load |
781 | // features at - in AllocationOrder order. |
782 | size_t Pos = 0; |
783 | SmallVector<LRStartEndInfo, NumberOfInterferences> LRPosInfo; |
784 | for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E; |
785 | ++I, ++Pos) { |
786 | MCRegister PhysReg = *I; |
787 | assert(!Regs[Pos].second); |
788 | assert(PhysReg); |
789 | if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) { |
790 | continue; |
791 | } |
792 | if (loadInterferenceFeatures(VirtReg, PhysReg, IsHint: I.isHint(), FixedRegisters, |
793 | Largest, Pos, LRPosInfo)) { |
794 | ++Available; |
795 | Regs[Pos] = std::make_pair(x&: PhysReg, y: true); |
796 | } |
797 | } |
798 | if (Available == 0) { |
799 | // Nothing to decide, nothing to learn. |
800 | assert(!MustFindEviction); |
801 | return MCRegister::NoRegister; |
802 | } |
803 | const size_t ValidPosLimit = Pos; |
804 | // If we must find eviction, the candidate should be masked out of the |
805 | // decision making process. |
806 | Regs[CandidateVirtRegPos].second = !MustFindEviction; |
807 | if (!MustFindEviction) |
808 | extractFeatures(Intervals: SmallVector<const LiveInterval *, 1>(1, &VirtReg), Largest, |
809 | Pos: CandidateVirtRegPos, /*IsHint*/ 0, |
810 | /*LocalIntfsCount*/ 0, |
811 | /*NumUrgent*/ 0.0, LRPosInfo); |
812 | assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had " |
813 | "nothing to allocate initially." ); |
814 | #ifdef LLVM_HAVE_TFLITE |
815 | if (EnableDevelopmentFeatures) { |
816 | extractInstructionFeatures( |
817 | LRPosInfo, Runner, |
818 | [this](SlotIndex InputIndex) -> int { |
819 | auto *CurrentMachineInstruction = |
820 | LIS->getInstructionFromIndex(InputIndex); |
821 | if (!CurrentMachineInstruction) { |
822 | return -1; |
823 | } |
824 | return CurrentMachineInstruction->getOpcode(); |
825 | }, |
826 | [this](SlotIndex InputIndex) -> float { |
827 | auto *CurrentMachineInstruction = |
828 | LIS->getInstructionFromIndex(InputIndex); |
829 | return MBFI.getBlockFreqRelativeToEntryBlock( |
830 | CurrentMachineInstruction->getParent()); |
831 | }, |
832 | [this](SlotIndex InputIndex) -> MachineBasicBlock * { |
833 | auto *CurrentMachineInstruction = |
834 | LIS->getInstructionFromIndex(InputIndex); |
835 | return CurrentMachineInstruction->getParent(); |
836 | }, |
837 | FeatureIDs::instructions, FeatureIDs::instructions_mapping, |
838 | FeatureIDs::mbb_frequencies, FeatureIDs::mbb_mapping, |
839 | LIS->getSlotIndexes()->getLastIndex()); |
840 | } |
841 | #endif // #ifdef LLVM_HAVE_TFLITE |
842 | // Normalize the features. |
843 | for (auto &V : Largest) |
844 | V = V ? V : 1.0; |
845 | for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount; |
846 | ++FeatureIndex) { |
847 | if (DoNotNormalize.test(position: FeatureIndex)) |
848 | continue; |
849 | for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) { |
850 | Runner->getTensor<float>(FeatureID: FeatureIndex)[Pos] /= Largest[FeatureIndex]; |
851 | } |
852 | } |
853 | *Runner->getTensor<float>(FeatureID: FeatureIDs::progress) = |
854 | static_cast<float>(RA.getQueueSize()) / InitialQSize; |
855 | |
856 | // Get a decision. |
857 | size_t CandidatePos = tryFindEvictionCandidatePosition( |
858 | VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); |
859 | // The contract with the ML side is that CandidatePos is mask == 1 (i.e. |
860 | // Regs[CandidatePos].second) |
861 | assert(Regs[CandidatePos].second); |
862 | if (CandidatePos == CandidateVirtRegPos) { |
863 | onEviction(RegBeingEvicted: VirtReg.reg()); |
864 | assert(!MustFindEviction); |
865 | return MCRegister::NoRegister; |
866 | } |
867 | assert(CandidatePos < ValidPosLimit); |
868 | (void)ValidPosLimit; |
869 | |
870 | // Update information about how many times the virtual registers being |
871 | // evicted have been evicted so that we can prevent the model from evicting |
872 | // the same ranges continually and eating compile time. |
873 | for (MCRegUnit Unit : TRI->regunits(Reg: Regs[CandidatePos].first)) { |
874 | LiveIntervalUnion::Query &Q = Matrix->query(LR: VirtReg, RegUnit: Unit); |
875 | const auto &IFIntervals = Q.interferingVRegs(MaxInterferingRegs: EvictInterferenceCutoff); |
876 | for (const LiveInterval *Intf : reverse(C: IFIntervals)) { |
877 | onEviction(RegBeingEvicted: Intf->reg()); |
878 | } |
879 | } |
880 | |
881 | return Regs[CandidatePos].first; |
882 | } |
883 | |
884 | const LIFeatureComponents & |
885 | MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const { |
886 | RegID ID = LI.reg().id(); |
887 | LIFeatureComponents Empty; |
888 | auto I = CachedFeatures.insert(KV: std::make_pair(x&: ID, y&: Empty)); |
889 | LIFeatureComponents &Ret = I.first->getSecond(); |
890 | if (!I.second) |
891 | return Ret; |
892 | |
893 | SmallPtrSet<MachineInstr *, 8> Visited; |
894 | const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); |
895 | |
896 | for (MachineRegisterInfo::reg_instr_nodbg_iterator |
897 | I = MRI->reg_instr_nodbg_begin(RegNo: LI.reg()), |
898 | E = MRI->reg_instr_nodbg_end(); |
899 | I != E;) { |
900 | MachineInstr *MI = &*(I++); |
901 | |
902 | ++Ret.NumDefsAndUses; |
903 | if (!Visited.insert(Ptr: MI).second) |
904 | continue; |
905 | |
906 | if (MI->isIdentityCopy() || MI->isImplicitDef()) |
907 | continue; |
908 | |
909 | bool Reads, Writes; |
910 | std::tie(args&: Reads, args&: Writes) = MI->readsWritesVirtualRegister(Reg: LI.reg()); |
911 | |
912 | float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MBB: MI->getParent()); |
913 | Ret.HottestBlockFreq = std::max(a: Freq, b: Ret.HottestBlockFreq); |
914 | |
915 | Ret.R += (Reads && !Writes) * Freq; |
916 | Ret.W += (!Reads && Writes) * Freq; |
917 | Ret.RW += (Reads && Writes) * Freq; |
918 | |
919 | auto *MBB = MI->getParent(); |
920 | auto *Loop = Loops.getLoopFor(BB: MBB); |
921 | bool IsExiting = Loop ? Loop->isLoopExiting(BB: MBB) : false; |
922 | |
923 | if (Writes && IsExiting && LIS->isLiveOutOfMBB(LR: LI, mbb: MBB)) |
924 | Ret.IndVarUpdates += Freq; |
925 | |
926 | if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, Reg: LI.reg(), TRI, MRI: *MRI)) |
927 | Ret.HintWeights += Freq; |
928 | } |
929 | Ret.IsRemat = VirtRegAuxInfo::isRematerializable( |
930 | LI, LIS: *LIS, VRM: *VRM, TII: *MF.getSubtarget().getInstrInfo()); |
931 | return Ret; |
932 | } |
933 | |
934 | // Overall, this currently mimics what we do for weight calculation, but instead |
935 | // of accummulating the various features, we keep them separate. |
936 | void MLEvictAdvisor::( |
937 | const SmallVectorImpl<const LiveInterval *> &Intervals, |
938 | llvm::SmallVectorImpl<float> &Largest, size_t Pos, int64_t IsHint, |
939 | int64_t LocalIntfsCount, float NumUrgent, |
940 | SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const { |
941 | int64_t NumDefsAndUses = 0; |
942 | int64_t NumBrokenHints = 0; |
943 | double R = 0.0; |
944 | double W = 0.0; |
945 | double RW = 0.0; |
946 | double IndVarUpdates = 0.0; |
947 | double HintWeights = 0.0; |
948 | float StartBBFreq = 0.0; |
949 | float EndBBFreq = 0.0; |
950 | float HottestBlockFreq = 0.0; |
951 | int32_t NumRematerializable = 0; |
952 | float TotalWeight = 0.0; |
953 | |
954 | SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex(); |
955 | SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex(); |
956 | int64_t MaxStage = 0; |
957 | int64_t MinStage = |
958 | Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max(); |
959 | |
960 | for (const auto *L : Intervals) { |
961 | const LiveInterval &LI = *L; |
962 | MaxStage = std::max<int64_t>( |
963 | a: MaxStage, b: static_cast<int64_t>(RA.getExtraInfo().getStage(VirtReg: LI))); |
964 | MinStage = std::min<int64_t>( |
965 | a: MinStage, b: static_cast<int64_t>(RA.getExtraInfo().getStage(VirtReg: LI))); |
966 | |
967 | TotalWeight = std::max(a: TotalWeight, b: LI.weight()); |
968 | |
969 | if (LI.beginIndex() < StartSI) |
970 | StartSI = LI.beginIndex(); |
971 | |
972 | if (LI.endIndex() > EndSI) |
973 | EndSI = LI.endIndex(); |
974 | const LIFeatureComponents &LIFC = getLIFeatureComponents(LI); |
975 | NumBrokenHints += VRM->hasPreferredPhys(VirtReg: LI.reg()); |
976 | |
977 | NumDefsAndUses += LIFC.NumDefsAndUses; |
978 | HottestBlockFreq = std::max(a: HottestBlockFreq, b: LIFC.HottestBlockFreq); |
979 | R += LIFC.R; |
980 | W += LIFC.W; |
981 | RW += LIFC.RW; |
982 | |
983 | IndVarUpdates += LIFC.IndVarUpdates; |
984 | |
985 | HintWeights += LIFC.HintWeights; |
986 | NumRematerializable += LIFC.IsRemat; |
987 | |
988 | if (EnableDevelopmentFeatures) { |
989 | for (auto CurrentSegment : LI) { |
990 | LRPosInfo.push_back( |
991 | Elt: LRStartEndInfo{.Begin: CurrentSegment.start, .End: CurrentSegment.end, .Pos: Pos}); |
992 | } |
993 | } |
994 | } |
995 | size_t Size = 0; |
996 | if (!Intervals.empty()) { |
997 | StartBBFreq = |
998 | MBFI.getBlockFreqRelativeToEntryBlock(MBB: LIS->getMBBFromIndex(index: StartSI)); |
999 | if (EndSI >= LIS->getSlotIndexes()->getLastIndex()) |
1000 | EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex(); |
1001 | EndBBFreq = |
1002 | MBFI.getBlockFreqRelativeToEntryBlock(MBB: LIS->getMBBFromIndex(index: EndSI)); |
1003 | Size = StartSI.distance(other: EndSI); |
1004 | } |
1005 | // Set the features at the column 'Pos'. |
1006 | #define SET(ID, TYPE, VAL) \ |
1007 | do { \ |
1008 | Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \ |
1009 | if (!DoNotNormalize.test(FeatureIDs::ID)) \ |
1010 | Largest[FeatureIDs::ID] = \ |
1011 | std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \ |
1012 | } while (false) |
1013 | SET(mask, int64_t, 1); |
1014 | SET(is_free, int64_t, Intervals.empty()); |
1015 | SET(nr_urgent, float, NumUrgent); |
1016 | SET(nr_broken_hints, float, NumBrokenHints); |
1017 | SET(is_hint, int64_t, IsHint); |
1018 | SET(is_local, int64_t, LocalIntfsCount); |
1019 | SET(nr_rematerializable, float, NumRematerializable); |
1020 | SET(nr_defs_and_uses, float, NumDefsAndUses); |
1021 | SET(weighed_reads_by_max, float, R); |
1022 | SET(weighed_writes_by_max, float, W); |
1023 | SET(weighed_read_writes_by_max, float, RW); |
1024 | SET(weighed_indvars_by_max, float, IndVarUpdates); |
1025 | SET(hint_weights_by_max, float, HintWeights); |
1026 | SET(start_bb_freq_by_max, float, StartBBFreq); |
1027 | SET(end_bb_freq_by_max, float, EndBBFreq); |
1028 | SET(hottest_bb_freq_by_max, float, HottestBlockFreq); |
1029 | SET(liverange_size, float, Size); |
1030 | SET(use_def_density, float, TotalWeight); |
1031 | SET(max_stage, int64_t, MaxStage); |
1032 | SET(min_stage, int64_t, MinStage); |
1033 | #undef SET |
1034 | } |
1035 | |
1036 | void llvm::( |
1037 | SmallVectorImpl<LRStartEndInfo> &LRPosInfo, MLModelRunner *RegallocRunner, |
1038 | function_ref<int(SlotIndex)> GetOpcode, |
1039 | function_ref<float(SlotIndex)> GetMBBFreq, |
1040 | function_ref<MachineBasicBlock *(SlotIndex)> GetMBBReference, |
1041 | const int InstructionsIndex, const int InstructionsMappingIndex, |
1042 | const int MBBFreqIndex, const int MBBMappingIndex, |
1043 | const SlotIndex LastIndex) { |
1044 | // This function extracts instruction based features relevant to the eviction |
1045 | // problem currently being solved. This function ends up extracting two |
1046 | // tensors. |
1047 | // 1 - A vector of size max instruction count. It contains the opcodes of the |
1048 | // instructions spanned by all the intervals in the current instance of the |
1049 | // eviction problem. |
1050 | // 2 - A binary mapping matrix of size (LR count * max |
1051 | // instruction count) which maps where the LRs are live to the actual opcodes |
1052 | // for which they are live. |
1053 | // 3 - A vector of size max supported MBB count storing MBB frequencies, |
1054 | // encompassing all of the MBBs covered by the eviction problem. |
1055 | // 4 - A vector of size max instruction count of indices to members of the MBB |
1056 | // frequency vector, mapping each instruction to its associated MBB. |
1057 | |
1058 | // Start off by sorting the segments based on the beginning slot index. |
1059 | std::sort( |
1060 | first: LRPosInfo.begin(), last: LRPosInfo.end(), |
1061 | comp: [](LRStartEndInfo A, LRStartEndInfo B) { return A.Begin < B.Begin; }); |
1062 | size_t InstructionIndex = 0; |
1063 | size_t CurrentSegmentIndex = 0; |
1064 | SlotIndex CurrentIndex = LRPosInfo[0].Begin; |
1065 | std::map<MachineBasicBlock *, size_t> VisitedMBBs; |
1066 | size_t CurrentMBBIndex = 0; |
1067 | // This loop processes all the segments sequentially by starting at the |
1068 | // beginning slot index of the first segment, iterating through all the slot |
1069 | // indices before the end slot index of that segment (while checking for |
1070 | // overlaps with segments that start at greater slot indices). After hitting |
1071 | // that end index, the current segment being processed gets bumped until they |
1072 | // are all processed or the max instruction count is hit, where everything is |
1073 | // just truncated. |
1074 | while (true) { |
1075 | // If the index that we are currently at is within the current segment and |
1076 | // we haven't hit the max instruction count, continue processing the current |
1077 | // segment. |
1078 | while (CurrentIndex <= LRPosInfo[CurrentSegmentIndex].End && |
1079 | InstructionIndex < ModelMaxSupportedInstructionCount) { |
1080 | int CurrentOpcode = GetOpcode(CurrentIndex); |
1081 | // If the current machine instruction is null, skip it |
1082 | if (CurrentOpcode == -1) { |
1083 | // If we're currently at the last index in the SlotIndex analysis, |
1084 | // we can't go any further, so return from the function |
1085 | if (CurrentIndex >= LastIndex) { |
1086 | return; |
1087 | } |
1088 | CurrentIndex = CurrentIndex.getNextIndex(); |
1089 | continue; |
1090 | } |
1091 | MachineBasicBlock *CurrentMBBReference = GetMBBReference(CurrentIndex); |
1092 | if (VisitedMBBs.count(x: CurrentMBBReference) == 0) { |
1093 | VisitedMBBs[CurrentMBBReference] = CurrentMBBIndex; |
1094 | ++CurrentMBBIndex; |
1095 | } |
1096 | extractMBBFrequency(CurrentIndex, CurrentInstructionIndex: InstructionIndex, VisitedMBBs, |
1097 | GetMBBFreq, CurrentMBBReference, RegallocRunner, |
1098 | MBBFreqIndex, MBBMappingIndex); |
1099 | // Current code assumes we're not going to get any disjointed segments |
1100 | assert(LRPosInfo[CurrentSegmentIndex].Begin <= CurrentIndex); |
1101 | RegallocRunner->getTensor<int64_t>(FeatureID: InstructionsIndex)[InstructionIndex] = |
1102 | CurrentOpcode < OpcodeValueCutoff ? CurrentOpcode : 0; |
1103 | // set value in the binary mapping matrix for the current instruction |
1104 | auto CurrentSegmentPosition = LRPosInfo[CurrentSegmentIndex].Pos; |
1105 | RegallocRunner->getTensor<int64_t>( |
1106 | FeatureID: InstructionsMappingIndex)[CurrentSegmentPosition * |
1107 | ModelMaxSupportedInstructionCount + |
1108 | InstructionIndex] = 1; |
1109 | // All of the segments are sorted based on the beginning slot index, but |
1110 | // this doesn't mean that the beginning slot index of the next segment is |
1111 | // after the end segment of the one being currently processed. This while |
1112 | // loop checks for overlapping segments and modifies the portion of the |
1113 | // column in the mapping matrix for the currently processed instruction |
1114 | // for the LR it is checking. Also make sure that the beginning of the |
1115 | // current segment we're checking for overlap in is less than the current |
1116 | // index, otherwise we're done checking overlaps. |
1117 | size_t OverlapCheckCurrentSegment = CurrentSegmentIndex + 1; |
1118 | while (OverlapCheckCurrentSegment < LRPosInfo.size() && |
1119 | LRPosInfo[OverlapCheckCurrentSegment].Begin <= CurrentIndex) { |
1120 | auto OverlapCurrentSegmentPosition = |
1121 | LRPosInfo[OverlapCheckCurrentSegment].Pos; |
1122 | if (LRPosInfo[OverlapCheckCurrentSegment].End >= CurrentIndex) { |
1123 | RegallocRunner->getTensor<int64_t>( |
1124 | FeatureID: InstructionsMappingIndex)[OverlapCurrentSegmentPosition * |
1125 | ModelMaxSupportedInstructionCount + |
1126 | InstructionIndex] = 1; |
1127 | } |
1128 | ++OverlapCheckCurrentSegment; |
1129 | } |
1130 | ++InstructionIndex; |
1131 | if (CurrentIndex >= LastIndex) { |
1132 | return; |
1133 | } |
1134 | CurrentIndex = CurrentIndex.getNextIndex(); |
1135 | } |
1136 | // if we've just finished processing through the last segment or if we've |
1137 | // hit the maximum number of instructions, break out of the loop. |
1138 | if (CurrentSegmentIndex == LRPosInfo.size() - 1 || |
1139 | InstructionIndex >= ModelMaxSupportedInstructionCount) { |
1140 | break; |
1141 | } |
1142 | // If the segments are not overlapping, we need to move to the beginning |
1143 | // index of the next segment to avoid having instructions not attached to |
1144 | // any register. |
1145 | if (LRPosInfo[CurrentSegmentIndex + 1].Begin > |
1146 | LRPosInfo[CurrentSegmentIndex].End) { |
1147 | CurrentIndex = LRPosInfo[CurrentSegmentIndex + 1].Begin; |
1148 | } |
1149 | ++CurrentSegmentIndex; |
1150 | } |
1151 | } |
1152 | |
1153 | void llvm::( |
1154 | const SlotIndex CurrentIndex, const size_t CurrentInstructionIndex, |
1155 | std::map<MachineBasicBlock *, size_t> &VisitedMBBs, |
1156 | function_ref<float(SlotIndex)> GetMBBFreq, |
1157 | MachineBasicBlock *CurrentMBBReference, MLModelRunner *RegallocRunner, |
1158 | const int MBBFreqIndex, const int MBBMappingIndex) { |
1159 | size_t CurrentMBBIndex = VisitedMBBs[CurrentMBBReference]; |
1160 | float CurrentMBBFreq = GetMBBFreq(CurrentIndex); |
1161 | if (CurrentMBBIndex < ModelMaxSupportedMBBCount) { |
1162 | RegallocRunner->getTensor<float>(FeatureID: MBBFreqIndex)[CurrentMBBIndex] = |
1163 | CurrentMBBFreq; |
1164 | RegallocRunner->getTensor<int64_t>( |
1165 | FeatureID: MBBMappingIndex)[CurrentInstructionIndex] = CurrentMBBIndex; |
1166 | } |
1167 | } |
1168 | |
1169 | // Development mode-specific implementations |
1170 | #ifdef LLVM_HAVE_TFLITE |
1171 | |
1172 | RegAllocEvictionAdvisorAnalysisLegacy * |
1173 | llvm::createDevelopmentModeAdvisorAnalysisLegacy() { |
1174 | return new DevelopmentModeEvictionAdvisorAnalysisLegacy(); |
1175 | } |
1176 | |
1177 | int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition( |
1178 | const LiveInterval &VirtReg, const AllocationOrder &Order, |
1179 | unsigned OrderLimit, uint8_t CostPerUseLimit, |
1180 | const SmallVirtRegSet &FixedRegisters) const { |
1181 | int64_t Ret = 0; |
1182 | if (isa<ModelUnderTrainingRunner>(getRunner())) { |
1183 | Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition( |
1184 | VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters); |
1185 | } else { |
1186 | MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate( |
1187 | VirtReg, Order, CostPerUseLimit, FixedRegisters); |
1188 | // Find the index of the selected PhysReg. We need it for logging, |
1189 | // otherwise this is wasted cycles (but so would starting development mode |
1190 | // without a model nor logging) |
1191 | if (!PhysReg) |
1192 | Ret = CandidateVirtRegPos; |
1193 | else |
1194 | for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); |
1195 | I != E; ++I, ++Ret) |
1196 | if (*I == PhysReg) |
1197 | break; |
1198 | } |
1199 | if (TrainingLog.empty()) |
1200 | return Ret; |
1201 | // TODO(mtrofin): when we support optional rewards, this can go away. In the |
1202 | // meantime, we log the "pretend" reward (0) for the previous observation |
1203 | // before starting a new one. |
1204 | if (Log->hasObservationInProgress()) |
1205 | Log->logReward<float>(0.0); |
1206 | |
1207 | Log->startObservation(); |
1208 | size_t CurrentFeature = 0; |
1209 | size_t FeatureCount = EnableDevelopmentFeatures |
1210 | ? FeatureIDs::FeaturesWithDevelopmentCount |
1211 | : FeatureIDs::FeatureCount; |
1212 | for (; CurrentFeature < FeatureCount; ++CurrentFeature) { |
1213 | Log->logTensorValue(CurrentFeature, |
1214 | reinterpret_cast<const char *>( |
1215 | getRunner().getTensorUntyped(CurrentFeature))); |
1216 | } |
1217 | if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner())) |
1218 | for (size_t I = 0; I < MUTR->extraOutputsForLoggingSpecs().size(); |
1219 | ++I, ++CurrentFeature) |
1220 | Log->logTensorValue( |
1221 | CurrentFeature, |
1222 | reinterpret_cast<const char *>(MUTR->getUntypedExtraOutputValue(I))); |
1223 | // The output is right after the features and the extra outputs |
1224 | Log->logTensorValue(CurrentFeature, reinterpret_cast<const char *>(&Ret)); |
1225 | Log->endObservation(); |
1226 | return Ret; |
1227 | } |
1228 | |
1229 | bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) { |
1230 | std::optional<float> CachedReward; |
1231 | auto GetReward = [&]() { |
1232 | if (!CachedReward) |
1233 | CachedReward = static_cast<float>( |
1234 | calculateRegAllocScore( |
1235 | MF, getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI()) |
1236 | .getScore()); |
1237 | return *CachedReward; |
1238 | }; |
1239 | |
1240 | getAnalysis<RegAllocEvictionAdvisorAnalysisLegacy>().logRewardIfNeeded( |
1241 | MF, GetReward); |
1242 | getAnalysis<RegAllocPriorityAdvisorAnalysisLegacy>().logRewardIfNeeded( |
1243 | MF, GetReward); |
1244 | return false; |
1245 | } |
1246 | #endif // #ifdef LLVM_HAVE_TFLITE |
1247 | |
1248 | RegAllocEvictionAdvisorProvider * |
1249 | llvm::createReleaseModeAdvisorProvider(LLVMContext &Ctx) { |
1250 | return new ReleaseModeEvictionAdvisorProvider(Ctx); |
1251 | } |
1252 | |
1253 | RegAllocEvictionAdvisorProvider * |
1254 | llvm::createDevelopmentModeAdvisorProvider(LLVMContext &Ctx) { |
1255 | #if defined(LLVM_HAVE_TFLITE) |
1256 | return new DevelopmentModeEvictionAdvisorProvider(Ctx); |
1257 | #endif |
1258 | return nullptr; |
1259 | } |
1260 | |
1261 | RegAllocEvictionAdvisorAnalysisLegacy * |
1262 | llvm::createReleaseModeAdvisorAnalysisLegacy() { |
1263 | return llvm::isEmbeddedModelEvaluatorValid<CompiledModelType>() || |
1264 | !InteractiveChannelBaseName.empty() |
1265 | ? new ReleaseModeEvictionAdvisorAnalysisLegacy() |
1266 | : nullptr; |
1267 | } |
1268 | |
1269 | // In all cases except development mode, we don't need scoring. |
1270 | #if !defined(LLVM_HAVE_TFLITE) |
1271 | bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; } |
1272 | #endif |
1273 | |