1//===- MachineFunction.cpp ------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// Collect native machine code information for a function. This allows
10// target-specific information about the generated code to be stored with each
11// function.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/MachineFunction.h"
16#include "llvm/ADT/BitVector.h"
17#include "llvm/ADT/DenseMap.h"
18#include "llvm/ADT/DenseSet.h"
19#include "llvm/ADT/STLExtras.h"
20#include "llvm/ADT/SmallString.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/ProfileSummaryInfo.h"
26#include "llvm/CodeGen/MachineBasicBlock.h"
27#include "llvm/CodeGen/MachineConstantPool.h"
28#include "llvm/CodeGen/MachineFrameInfo.h"
29#include "llvm/CodeGen/MachineInstr.h"
30#include "llvm/CodeGen/MachineJumpTableInfo.h"
31#include "llvm/CodeGen/MachineMemOperand.h"
32#include "llvm/CodeGen/MachineModuleInfo.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/PseudoSourceValue.h"
35#include "llvm/CodeGen/PseudoSourceValueManager.h"
36#include "llvm/CodeGen/TargetFrameLowering.h"
37#include "llvm/CodeGen/TargetInstrInfo.h"
38#include "llvm/CodeGen/TargetLowering.h"
39#include "llvm/CodeGen/TargetRegisterInfo.h"
40#include "llvm/CodeGen/TargetSubtargetInfo.h"
41#include "llvm/CodeGen/WasmEHFuncInfo.h"
42#include "llvm/CodeGen/WinEHFuncInfo.h"
43#include "llvm/Config/llvm-config.h"
44#include "llvm/IR/Attributes.h"
45#include "llvm/IR/BasicBlock.h"
46#include "llvm/IR/Constant.h"
47#include "llvm/IR/DataLayout.h"
48#include "llvm/IR/DerivedTypes.h"
49#include "llvm/IR/EHPersonalities.h"
50#include "llvm/IR/Function.h"
51#include "llvm/IR/GlobalValue.h"
52#include "llvm/IR/Instruction.h"
53#include "llvm/IR/Instructions.h"
54#include "llvm/IR/Metadata.h"
55#include "llvm/IR/Module.h"
56#include "llvm/IR/ModuleSlotTracker.h"
57#include "llvm/IR/Value.h"
58#include "llvm/MC/MCContext.h"
59#include "llvm/MC/MCSymbol.h"
60#include "llvm/MC/SectionKind.h"
61#include "llvm/Support/Casting.h"
62#include "llvm/Support/CommandLine.h"
63#include "llvm/Support/Compiler.h"
64#include "llvm/Support/DOTGraphTraits.h"
65#include "llvm/Support/ErrorHandling.h"
66#include "llvm/Support/GraphWriter.h"
67#include "llvm/Support/raw_ostream.h"
68#include "llvm/Target/TargetMachine.h"
69#include <algorithm>
70#include <cassert>
71#include <cstddef>
72#include <cstdint>
73#include <iterator>
74#include <string>
75#include <utility>
76#include <vector>
77
78#include "LiveDebugValues/LiveDebugValues.h"
79
80using namespace llvm;
81
82#define DEBUG_TYPE "codegen"
83
84static cl::opt<unsigned> AlignAllFunctions(
85 "align-all-functions",
86 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
87 "means align on 16B boundaries)."),
88 cl::init(Val: 0), cl::Hidden);
89
90static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
91 using P = MachineFunctionProperties::Property;
92
93 // clang-format off
94 switch(Prop) {
95 case P::FailedISel: return "FailedISel";
96 case P::IsSSA: return "IsSSA";
97 case P::Legalized: return "Legalized";
98 case P::NoPHIs: return "NoPHIs";
99 case P::NoVRegs: return "NoVRegs";
100 case P::RegBankSelected: return "RegBankSelected";
101 case P::Selected: return "Selected";
102 case P::TracksLiveness: return "TracksLiveness";
103 case P::TiedOpsRewritten: return "TiedOpsRewritten";
104 case P::FailsVerification: return "FailsVerification";
105 case P::FailedRegAlloc: return "FailedRegAlloc";
106 case P::TracksDebugUserValues: return "TracksDebugUserValues";
107 }
108 // clang-format on
109 llvm_unreachable("Invalid machine function property");
110}
111
112void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) {
113 if (!F.hasFnAttribute(Kind: Attribute::SafeStack))
114 return;
115
116 auto *Existing =
117 dyn_cast_or_null<MDTuple>(Val: F.getMetadata(KindID: LLVMContext::MD_annotation));
118
119 if (!Existing || Existing->getNumOperands() != 2)
120 return;
121
122 auto *MetadataName = "unsafe-stack-size";
123 if (auto &N = Existing->getOperand(I: 0)) {
124 if (N.equalsStr(Str: MetadataName)) {
125 if (auto &Op = Existing->getOperand(I: 1)) {
126 auto Val = mdconst::extract<ConstantInt>(MD: Op)->getZExtValue();
127 FrameInfo.setUnsafeStackSize(Val);
128 }
129 }
130 }
131}
132
133// Pin the vtable to this file.
134void MachineFunction::Delegate::anchor() {}
135
136void MachineFunctionProperties::print(raw_ostream &OS) const {
137 const char *Separator = "";
138 for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
139 if (!Properties[I])
140 continue;
141 OS << Separator << getPropertyName(Prop: static_cast<Property>(I));
142 Separator = ", ";
143 }
144}
145
146//===----------------------------------------------------------------------===//
147// MachineFunction implementation
148//===----------------------------------------------------------------------===//
149
150// Out-of-line virtual method.
151MachineFunctionInfo::~MachineFunctionInfo() = default;
152
153void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
154 MBB->getParent()->deleteMachineBasicBlock(MBB);
155}
156
157static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI,
158 const Function &F) {
159 if (auto MA = F.getFnStackAlign())
160 return *MA;
161 return STI->getFrameLowering()->getStackAlign();
162}
163
164MachineFunction::MachineFunction(Function &F, const TargetMachine &Target,
165 const TargetSubtargetInfo &STI, MCContext &Ctx,
166 unsigned FunctionNum)
167 : F(F), Target(Target), STI(&STI), Ctx(Ctx) {
168 FunctionNumber = FunctionNum;
169 init();
170}
171
172void MachineFunction::handleInsertion(MachineInstr &MI) {
173 if (TheDelegate)
174 TheDelegate->MF_HandleInsertion(MI);
175}
176
177void MachineFunction::handleRemoval(MachineInstr &MI) {
178 if (TheDelegate)
179 TheDelegate->MF_HandleRemoval(MI);
180}
181
182void MachineFunction::handleChangeDesc(MachineInstr &MI,
183 const MCInstrDesc &TID) {
184 if (TheDelegate)
185 TheDelegate->MF_HandleChangeDesc(MI, TID);
186}
187
188void MachineFunction::init() {
189 // Assume the function starts in SSA form with correct liveness.
190 Properties.setIsSSA();
191 Properties.setTracksLiveness();
192 RegInfo = new (Allocator) MachineRegisterInfo(this);
193
194 MFInfo = nullptr;
195
196 // We can realign the stack if the target supports it and the user hasn't
197 // explicitly asked us not to.
198 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
199 !F.hasFnAttribute(Kind: "no-realign-stack");
200 bool ForceRealignSP = F.hasFnAttribute(Kind: Attribute::StackAlignment) ||
201 F.hasFnAttribute(Kind: "stackrealign");
202 FrameInfo = new (Allocator) MachineFrameInfo(
203 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
204 /*ForcedRealign=*/ForceRealignSP && CanRealignSP);
205
206 setUnsafeStackSize(F, FrameInfo&: *FrameInfo);
207
208 if (F.hasFnAttribute(Kind: Attribute::StackAlignment))
209 FrameInfo->ensureMaxAlignment(Alignment: *F.getFnStackAlign());
210
211 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
212 Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
213
214 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
215 // FIXME: Use Function::hasOptSize().
216 if (!F.hasFnAttribute(Kind: Attribute::OptimizeForSize))
217 Alignment = std::max(a: Alignment,
218 b: STI->getTargetLowering()->getPrefFunctionAlignment());
219
220 // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls
221 // to load a type hash before the function label. Ensure functions are aligned
222 // by a least 4 to avoid unaligned access, which is especially important for
223 // -mno-unaligned-access.
224 if (F.hasMetadata(KindID: LLVMContext::MD_func_sanitize) ||
225 F.getMetadata(KindID: LLVMContext::MD_kcfi_type))
226 Alignment = std::max(a: Alignment, b: Align(4));
227
228 if (AlignAllFunctions)
229 Alignment = Align(1ULL << AlignAllFunctions);
230
231 JumpTableInfo = nullptr;
232
233 if (isFuncletEHPersonality(Pers: classifyEHPersonality(
234 Pers: F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
235 WinEHInfo = new (Allocator) WinEHFuncInfo();
236 }
237
238 if (isScopedEHPersonality(Pers: classifyEHPersonality(
239 Pers: F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
240 WasmEHInfo = new (Allocator) WasmEHFuncInfo();
241 }
242
243 assert(Target.isCompatibleDataLayout(getDataLayout()) &&
244 "Can't create a MachineFunction using a Module with a "
245 "Target-incompatible DataLayout attached\n");
246
247 PSVManager = std::make_unique<PseudoSourceValueManager>(args: getTarget());
248}
249
250void MachineFunction::initTargetMachineFunctionInfo(
251 const TargetSubtargetInfo &STI) {
252 assert(!MFInfo && "MachineFunctionInfo already set");
253 MFInfo = Target.createMachineFunctionInfo(Allocator, F, STI: &STI);
254}
255
256MachineFunction::~MachineFunction() {
257 clear();
258}
259
260void MachineFunction::clear() {
261 Properties.reset();
262
263 // Clear JumpTableInfo first. Otherwise, every MBB we delete would do a
264 // linear search over the jump table entries to find and erase itself.
265 if (JumpTableInfo) {
266 JumpTableInfo->~MachineJumpTableInfo();
267 Allocator.Deallocate(Ptr: JumpTableInfo);
268 JumpTableInfo = nullptr;
269 }
270
271 // Don't call destructors on MachineInstr and MachineOperand. All of their
272 // memory comes from the BumpPtrAllocator which is about to be purged.
273 //
274 // Do call MachineBasicBlock destructors, it contains std::vectors.
275 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(where: I))
276 I->Insts.clearAndLeakNodesUnsafely();
277 MBBNumbering.clear();
278
279 InstructionRecycler.clear(Allocator);
280 OperandRecycler.clear(Allocator);
281 BasicBlockRecycler.clear(Allocator);
282 CodeViewAnnotations.clear();
283 VariableDbgInfos.clear();
284 if (RegInfo) {
285 RegInfo->~MachineRegisterInfo();
286 Allocator.Deallocate(Ptr: RegInfo);
287 }
288 if (MFInfo) {
289 MFInfo->~MachineFunctionInfo();
290 Allocator.Deallocate(Ptr: MFInfo);
291 }
292
293 FrameInfo->~MachineFrameInfo();
294 Allocator.Deallocate(Ptr: FrameInfo);
295
296 ConstantPool->~MachineConstantPool();
297 Allocator.Deallocate(Ptr: ConstantPool);
298
299 if (WinEHInfo) {
300 WinEHInfo->~WinEHFuncInfo();
301 Allocator.Deallocate(Ptr: WinEHInfo);
302 }
303
304 if (WasmEHInfo) {
305 WasmEHInfo->~WasmEHFuncInfo();
306 Allocator.Deallocate(Ptr: WasmEHInfo);
307 }
308}
309
310const DataLayout &MachineFunction::getDataLayout() const {
311 return F.getDataLayout();
312}
313
314/// Get the JumpTableInfo for this function.
315/// If it does not already exist, allocate one.
316MachineJumpTableInfo *MachineFunction::
317getOrCreateJumpTableInfo(unsigned EntryKind) {
318 if (JumpTableInfo) return JumpTableInfo;
319
320 JumpTableInfo = new (Allocator)
321 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
322 return JumpTableInfo;
323}
324
325DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
326 return F.getDenormalMode(FPType);
327}
328
329/// Should we be emitting segmented stack stuff for the function
330bool MachineFunction::shouldSplitStack() const {
331 return getFunction().hasFnAttribute(Kind: "split-stack");
332}
333
334[[nodiscard]] unsigned
335MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
336 FrameInstructions.push_back(x: Inst);
337 return FrameInstructions.size() - 1;
338}
339
340/// This discards all of the MachineBasicBlock numbers and recomputes them.
341/// This guarantees that the MBB numbers are sequential, dense, and match the
342/// ordering of the blocks within the function. If a specific MachineBasicBlock
343/// is specified, only that block and those after it are renumbered.
344void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
345 if (empty()) { MBBNumbering.clear(); return; }
346 MachineFunction::iterator MBBI, E = end();
347 if (MBB == nullptr)
348 MBBI = begin();
349 else
350 MBBI = MBB->getIterator();
351
352 // Figure out the block number this should have.
353 unsigned BlockNo = 0;
354 if (MBBI != begin())
355 BlockNo = std::prev(x: MBBI)->getNumber() + 1;
356
357 for (; MBBI != E; ++MBBI, ++BlockNo) {
358 if (MBBI->getNumber() != (int)BlockNo) {
359 // Remove use of the old number.
360 if (MBBI->getNumber() != -1) {
361 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
362 "MBB number mismatch!");
363 MBBNumbering[MBBI->getNumber()] = nullptr;
364 }
365
366 // If BlockNo is already taken, set that block's number to -1.
367 if (MBBNumbering[BlockNo])
368 MBBNumbering[BlockNo]->setNumber(-1);
369
370 MBBNumbering[BlockNo] = &*MBBI;
371 MBBI->setNumber(BlockNo);
372 }
373 }
374
375 // Okay, all the blocks are renumbered. If we have compactified the block
376 // numbering, shrink MBBNumbering now.
377 assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
378 MBBNumbering.resize(new_size: BlockNo);
379 MBBNumberingEpoch++;
380}
381
382int64_t MachineFunction::estimateFunctionSizeInBytes() {
383 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
384 const Align FunctionAlignment = getAlignment();
385 MachineFunction::iterator MBBI = begin(), E = end();
386 /// Offset - Distance from the beginning of the function to the end
387 /// of the basic block.
388 int64_t Offset = 0;
389
390 for (; MBBI != E; ++MBBI) {
391 const Align Alignment = MBBI->getAlignment();
392 int64_t BlockSize = 0;
393
394 for (auto &MI : *MBBI) {
395 BlockSize += TII.getInstSizeInBytes(MI);
396 }
397
398 int64_t OffsetBB;
399 if (Alignment <= FunctionAlignment) {
400 OffsetBB = alignTo(Size: Offset, A: Alignment);
401 } else {
402 // The alignment of this MBB is larger than the function's alignment, so
403 // we can't tell whether or not it will insert nops. Assume that it will.
404 OffsetBB = alignTo(Size: Offset, A: Alignment) + Alignment.value() -
405 FunctionAlignment.value();
406 }
407 Offset = OffsetBB + BlockSize;
408 }
409
410 return Offset;
411}
412
413/// This method iterates over the basic blocks and assigns their IsBeginSection
414/// and IsEndSection fields. This must be called after MBB layout is finalized
415/// and the SectionID's are assigned to MBBs.
416void MachineFunction::assignBeginEndSections() {
417 front().setIsBeginSection();
418 auto CurrentSectionID = front().getSectionID();
419 for (auto MBBI = std::next(x: begin()), E = end(); MBBI != E; ++MBBI) {
420 if (MBBI->getSectionID() == CurrentSectionID)
421 continue;
422 MBBI->setIsBeginSection();
423 std::prev(x: MBBI)->setIsEndSection();
424 CurrentSectionID = MBBI->getSectionID();
425 }
426 back().setIsEndSection();
427}
428
429/// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
430MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
431 DebugLoc DL,
432 bool NoImplicit) {
433 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
434 MachineInstr(*this, MCID, std::move(DL), NoImplicit);
435}
436
437/// Create a new MachineInstr which is a copy of the 'Orig' instruction,
438/// identical in all ways except the instruction has no parent, prev, or next.
439MachineInstr *
440MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
441 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
442 MachineInstr(*this, *Orig);
443}
444
445MachineInstr &MachineFunction::cloneMachineInstrBundle(
446 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
447 const MachineInstr &Orig) {
448 MachineInstr *FirstClone = nullptr;
449 MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
450 while (true) {
451 MachineInstr *Cloned = CloneMachineInstr(Orig: &*I);
452 MBB.insert(I: InsertBefore, MI: Cloned);
453 if (FirstClone == nullptr) {
454 FirstClone = Cloned;
455 } else {
456 Cloned->bundleWithPred();
457 }
458
459 if (!I->isBundledWithSucc())
460 break;
461 ++I;
462 }
463 // Copy over call info to the cloned instruction if needed. If Orig is in
464 // a bundle, copyAdditionalCallInfo takes care of finding the call instruction
465 // in the bundle.
466 if (Orig.shouldUpdateAdditionalCallInfo())
467 copyAdditionalCallInfo(Old: &Orig, New: FirstClone);
468 return *FirstClone;
469}
470
471/// Delete the given MachineInstr.
472///
473/// This function also serves as the MachineInstr destructor - the real
474/// ~MachineInstr() destructor must be empty.
475void MachineFunction::deleteMachineInstr(MachineInstr *MI) {
476 // Verify that a call site info is at valid state. This assertion should
477 // be triggered during the implementation of support for the
478 // call site info of a new architecture. If the assertion is triggered,
479 // back trace will tell where to insert a call to updateCallSiteInfo().
480 assert((!MI->isCandidateForAdditionalCallInfo() ||
481 !CallSitesInfo.contains(MI)) &&
482 "Call site info was not updated!");
483 // Verify that the "called globals" info is in a valid state.
484 assert((!MI->isCandidateForAdditionalCallInfo() ||
485 !CalledGlobalsInfo.contains(MI)) &&
486 "Called globals info was not updated!");
487 // Strip it for parts. The operand array and the MI object itself are
488 // independently recyclable.
489 if (MI->Operands)
490 deallocateOperandArray(Cap: MI->CapOperands, Array: MI->Operands);
491 // Don't call ~MachineInstr() which must be trivial anyway because
492 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
493 // destructors.
494 InstructionRecycler.Deallocate(Allocator, Element: MI);
495}
496
497/// Allocate a new MachineBasicBlock. Use this instead of
498/// `new MachineBasicBlock'.
499MachineBasicBlock *
500MachineFunction::CreateMachineBasicBlock(const BasicBlock *BB,
501 std::optional<UniqueBBID> BBID) {
502 MachineBasicBlock *MBB =
503 new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
504 MachineBasicBlock(*this, BB);
505 // Set BBID for `-basic-block-sections=list` and `-basic-block-address-map` to
506 // allow robust mapping of profiles to basic blocks.
507 if (Target.Options.BBAddrMap ||
508 Target.getBBSectionsType() == BasicBlockSection::List)
509 MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{.BaseID: NextBBID++, .CloneID: 0});
510 return MBB;
511}
512
513/// Delete the given MachineBasicBlock.
514void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) {
515 assert(MBB->getParent() == this && "MBB parent mismatch!");
516 // Clean up any references to MBB in jump tables before deleting it.
517 if (JumpTableInfo)
518 JumpTableInfo->RemoveMBBFromJumpTables(MBB);
519 MBB->~MachineBasicBlock();
520 BasicBlockRecycler.Deallocate(Allocator, Element: MBB);
521}
522
523MachineMemOperand *MachineFunction::getMachineMemOperand(
524 MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size,
525 Align BaseAlignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
526 SyncScope::ID SSID, AtomicOrdering Ordering,
527 AtomicOrdering FailureOrdering) {
528 assert((!Size.hasValue() ||
529 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
530 "Unexpected an unknown size to be represented using "
531 "LocationSize::beforeOrAfter()");
532 return new (Allocator)
533 MachineMemOperand(PtrInfo, F, Size, BaseAlignment, AAInfo, Ranges, SSID,
534 Ordering, FailureOrdering);
535}
536
537MachineMemOperand *MachineFunction::getMachineMemOperand(
538 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
539 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
540 SyncScope::ID SSID, AtomicOrdering Ordering,
541 AtomicOrdering FailureOrdering) {
542 return new (Allocator)
543 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
544 Ordering, FailureOrdering);
545}
546
547MachineMemOperand *
548MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
549 const MachinePointerInfo &PtrInfo,
550 LocationSize Size) {
551 assert((!Size.hasValue() ||
552 Size.getValue().getKnownMinValue() != ~UINT64_C(0)) &&
553 "Unexpected an unknown size to be represented using "
554 "LocationSize::beforeOrAfter()");
555 return new (Allocator)
556 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
557 AAMDNodes(), nullptr, MMO->getSyncScopeID(),
558 MMO->getSuccessOrdering(), MMO->getFailureOrdering());
559}
560
561MachineMemOperand *MachineFunction::getMachineMemOperand(
562 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
563 return new (Allocator)
564 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
565 AAMDNodes(), nullptr, MMO->getSyncScopeID(),
566 MMO->getSuccessOrdering(), MMO->getFailureOrdering());
567}
568
569MachineMemOperand *
570MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
571 int64_t Offset, LLT Ty) {
572 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
573
574 // If there is no pointer value, the offset isn't tracked so we need to adjust
575 // the base alignment.
576 Align Alignment = PtrInfo.V.isNull()
577 ? commonAlignment(A: MMO->getBaseAlign(), Offset)
578 : MMO->getBaseAlign();
579
580 // Do not preserve ranges, since we don't necessarily know what the high bits
581 // are anymore.
582 return new (Allocator) MachineMemOperand(
583 PtrInfo.getWithOffset(O: Offset), MMO->getFlags(), Ty, Alignment,
584 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
585 MMO->getSuccessOrdering(), MMO->getFailureOrdering());
586}
587
588MachineMemOperand *
589MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
590 const AAMDNodes &AAInfo) {
591 MachinePointerInfo MPI = MMO->getValue() ?
592 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
593 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
594
595 return new (Allocator) MachineMemOperand(
596 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
597 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
598 MMO->getFailureOrdering());
599}
600
601MachineMemOperand *
602MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
603 MachineMemOperand::Flags Flags) {
604 return new (Allocator) MachineMemOperand(
605 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
606 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
607 MMO->getSuccessOrdering(), MMO->getFailureOrdering());
608}
609
610MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
611 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
612 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections,
613 uint32_t CFIType, MDNode *MMRAs) {
614 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
615 PostInstrSymbol, HeapAllocMarker,
616 PCSections, CFIType, MMRAs);
617}
618
619const char *MachineFunction::createExternalSymbolName(StringRef Name) {
620 char *Dest = Allocator.Allocate<char>(Num: Name.size() + 1);
621 llvm::copy(Range&: Name, Out: Dest);
622 Dest[Name.size()] = 0;
623 return Dest;
624}
625
626uint32_t *MachineFunction::allocateRegMask() {
627 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
628 unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
629 uint32_t *Mask = Allocator.Allocate<uint32_t>(Num: Size);
630 memset(s: Mask, c: 0, n: Size * sizeof(Mask[0]));
631 return Mask;
632}
633
634ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
635 int* AllocMask = Allocator.Allocate<int>(Num: Mask.size());
636 copy(Range&: Mask, Out: AllocMask);
637 return {AllocMask, Mask.size()};
638}
639
640#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
641LLVM_DUMP_METHOD void MachineFunction::dump() const {
642 print(dbgs());
643}
644#endif
645
646StringRef MachineFunction::getName() const {
647 return getFunction().getName();
648}
649
650void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
651 OS << "# Machine code for function " << getName() << ": ";
652 getProperties().print(OS);
653 OS << '\n';
654
655 // Print Frame Information
656 FrameInfo->print(MF: *this, OS);
657
658 // Print JumpTable Information
659 if (JumpTableInfo)
660 JumpTableInfo->print(OS);
661
662 // Print Constant Pool
663 ConstantPool->print(OS);
664
665 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
666
667 if (RegInfo && !RegInfo->livein_empty()) {
668 OS << "Function Live Ins: ";
669 for (MachineRegisterInfo::livein_iterator
670 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
671 OS << printReg(Reg: I->first, TRI);
672 if (I->second)
673 OS << " in " << printReg(Reg: I->second, TRI);
674 if (std::next(x: I) != E)
675 OS << ", ";
676 }
677 OS << '\n';
678 }
679
680 ModuleSlotTracker MST(getFunction().getParent());
681 MST.incorporateFunction(F: getFunction());
682 for (const auto &BB : *this) {
683 OS << '\n';
684 // If we print the whole function, print it at its most verbose level.
685 BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
686 }
687
688 OS << "\n# End machine code for function " << getName() << ".\n\n";
689}
690
691/// True if this function needs frame moves for debug or exceptions.
692bool MachineFunction::needsFrameMoves() const {
693 // TODO: Ideally, what we'd like is to have a switch that allows emitting
694 // synchronous (precise at call-sites only) CFA into .eh_frame. However, even
695 // under this switch, we'd like .debug_frame to be precise when using -g. At
696 // this moment, there's no way to specify that some CFI directives go into
697 // .eh_frame only, while others go into .debug_frame only.
698 return getTarget().Options.ForceDwarfFrameSection ||
699 F.needsUnwindTableEntry() ||
700 !F.getParent()->debug_compile_units().empty();
701}
702
703namespace llvm {
704
705 template<>
706 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
707 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
708
709 static std::string getGraphName(const MachineFunction *F) {
710 return ("CFG for '" + F->getName() + "' function").str();
711 }
712
713 std::string getNodeLabel(const MachineBasicBlock *Node,
714 const MachineFunction *Graph) {
715 std::string OutStr;
716 {
717 raw_string_ostream OSS(OutStr);
718
719 if (isSimple()) {
720 OSS << printMBBReference(MBB: *Node);
721 if (const BasicBlock *BB = Node->getBasicBlock())
722 OSS << ": " << BB->getName();
723 } else
724 Node->print(OS&: OSS);
725 }
726
727 if (OutStr[0] == '\n') OutStr.erase(position: OutStr.begin());
728
729 // Process string output to make it nicer...
730 for (unsigned i = 0; i != OutStr.length(); ++i)
731 if (OutStr[i] == '\n') { // Left justify
732 OutStr[i] = '\\';
733 OutStr.insert(p: OutStr.begin()+i+1, c: 'l');
734 }
735 return OutStr;
736 }
737 };
738
739} // end namespace llvm
740
741void MachineFunction::viewCFG() const
742{
743#ifndef NDEBUG
744 ViewGraph(this, "mf" + getName());
745#else
746 errs() << "MachineFunction::viewCFG is only available in debug builds on "
747 << "systems with Graphviz or gv!\n";
748#endif // NDEBUG
749}
750
751void MachineFunction::viewCFGOnly() const
752{
753#ifndef NDEBUG
754 ViewGraph(this, "mf" + getName(), true);
755#else
756 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
757 << "systems with Graphviz or gv!\n";
758#endif // NDEBUG
759}
760
761/// Add the specified physical register as a live-in value and
762/// create a corresponding virtual register for it.
763Register MachineFunction::addLiveIn(MCRegister PReg,
764 const TargetRegisterClass *RC) {
765 MachineRegisterInfo &MRI = getRegInfo();
766 Register VReg = MRI.getLiveInVirtReg(PReg);
767 if (VReg) {
768 const TargetRegisterClass *VRegRC = MRI.getRegClass(Reg: VReg);
769 (void)VRegRC;
770 // A physical register can be added several times.
771 // Between two calls, the register class of the related virtual register
772 // may have been constrained to match some operation constraints.
773 // In that case, check that the current register class includes the
774 // physical register and is a sub class of the specified RC.
775 assert((VRegRC == RC || (VRegRC->contains(PReg) &&
776 RC->hasSubClassEq(VRegRC))) &&
777 "Register class mismatch!");
778 return VReg;
779 }
780 VReg = MRI.createVirtualRegister(RegClass: RC);
781 MRI.addLiveIn(Reg: PReg, vreg: VReg);
782 return VReg;
783}
784
785/// Return the MCSymbol for the specified non-empty jump table.
786/// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
787/// normal 'L' label is returned.
788MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
789 bool isLinkerPrivate) const {
790 const DataLayout &DL = getDataLayout();
791 assert(JumpTableInfo && "No jump tables");
792 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
793
794 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
795 : DL.getPrivateGlobalPrefix();
796 SmallString<60> Name;
797 raw_svector_ostream(Name)
798 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
799 return Ctx.getOrCreateSymbol(Name);
800}
801
802/// Return a function-local symbol to represent the PIC base.
803MCSymbol *MachineFunction::getPICBaseSymbol() const {
804 const DataLayout &DL = getDataLayout();
805 return Ctx.getOrCreateSymbol(Name: Twine(DL.getPrivateGlobalPrefix()) +
806 Twine(getFunctionNumber()) + "$pb");
807}
808
809/// \name Exception Handling
810/// \{
811
812LandingPadInfo &
813MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
814 unsigned N = LandingPads.size();
815 for (unsigned i = 0; i < N; ++i) {
816 LandingPadInfo &LP = LandingPads[i];
817 if (LP.LandingPadBlock == LandingPad)
818 return LP;
819 }
820
821 LandingPads.push_back(x: LandingPadInfo(LandingPad));
822 return LandingPads[N];
823}
824
825void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
826 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
827 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
828 LP.BeginLabels.push_back(Elt: BeginLabel);
829 LP.EndLabels.push_back(Elt: EndLabel);
830}
831
832MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
833 MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
834 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
835 LP.LandingPadLabel = LandingPadLabel;
836
837 BasicBlock::const_iterator FirstI =
838 LandingPad->getBasicBlock()->getFirstNonPHIIt();
839 if (const auto *LPI = dyn_cast<LandingPadInst>(Val&: FirstI)) {
840 // If there's no typeid list specified, then "cleanup" is implicit.
841 // Otherwise, id 0 is reserved for the cleanup action.
842 if (LPI->isCleanup() && LPI->getNumClauses() != 0)
843 LP.TypeIds.push_back(x: 0);
844
845 // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
846 // correct, but we need to do it this way because of how the DWARF EH
847 // emitter processes the clauses.
848 for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
849 Value *Val = LPI->getClause(Idx: I - 1);
850 if (LPI->isCatch(Idx: I - 1)) {
851 LP.TypeIds.push_back(
852 x: getTypeIDFor(TI: dyn_cast<GlobalValue>(Val: Val->stripPointerCasts())));
853 } else {
854 // Add filters in a list.
855 auto *CVal = cast<Constant>(Val);
856 SmallVector<unsigned, 4> FilterList;
857 for (const Use &U : CVal->operands())
858 FilterList.push_back(
859 Elt: getTypeIDFor(TI: cast<GlobalValue>(Val: U->stripPointerCasts())));
860
861 LP.TypeIds.push_back(x: getFilterIDFor(TyIds: FilterList));
862 }
863 }
864
865 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Val&: FirstI)) {
866 for (unsigned I = CPI->arg_size(); I != 0; --I) {
867 auto *TypeInfo =
868 dyn_cast<GlobalValue>(Val: CPI->getArgOperand(i: I - 1)->stripPointerCasts());
869 LP.TypeIds.push_back(x: getTypeIDFor(TI: TypeInfo));
870 }
871
872 } else {
873 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
874 }
875
876 return LandingPadLabel;
877}
878
879void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
880 ArrayRef<unsigned> Sites) {
881 LPadToCallSiteMap[Sym].append(in_start: Sites.begin(), in_end: Sites.end());
882}
883
884unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
885 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
886 if (TypeInfos[i] == TI) return i + 1;
887
888 TypeInfos.push_back(x: TI);
889 return TypeInfos.size();
890}
891
892int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) {
893 // If the new filter coincides with the tail of an existing filter, then
894 // re-use the existing filter. Folding filters more than this requires
895 // re-ordering filters and/or their elements - probably not worth it.
896 for (unsigned i : FilterEnds) {
897 unsigned j = TyIds.size();
898
899 while (i && j)
900 if (FilterIds[--i] != TyIds[--j])
901 goto try_next;
902
903 if (!j)
904 // The new filter coincides with range [i, end) of the existing filter.
905 return -(1 + i);
906
907try_next:;
908 }
909
910 // Add the new filter.
911 int FilterID = -(1 + FilterIds.size());
912 FilterIds.reserve(n: FilterIds.size() + TyIds.size() + 1);
913 llvm::append_range(C&: FilterIds, R&: TyIds);
914 FilterEnds.push_back(x: FilterIds.size());
915 FilterIds.push_back(x: 0); // terminator
916 return FilterID;
917}
918
919MachineFunction::CallSiteInfoMap::iterator
920MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
921 assert(MI->isCandidateForAdditionalCallInfo() &&
922 "Call site info refers only to call (MI) candidates");
923
924 if (!Target.Options.EmitCallSiteInfo)
925 return CallSitesInfo.end();
926 return CallSitesInfo.find(Val: MI);
927}
928
929/// Return the call machine instruction or find a call within bundle.
930static const MachineInstr *getCallInstr(const MachineInstr *MI) {
931 if (!MI->isBundle())
932 return MI;
933
934 for (const auto &BMI : make_range(x: getBundleStart(I: MI->getIterator()),
935 y: getBundleEnd(I: MI->getIterator())))
936 if (BMI.isCandidateForAdditionalCallInfo())
937 return &BMI;
938
939 llvm_unreachable("Unexpected bundle without a call site candidate");
940}
941
942void MachineFunction::eraseAdditionalCallInfo(const MachineInstr *MI) {
943 assert(MI->shouldUpdateAdditionalCallInfo() &&
944 "Call info refers only to call (MI) candidates or "
945 "candidates inside bundles");
946
947 const MachineInstr *CallMI = getCallInstr(MI);
948
949 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(MI: CallMI);
950 if (CSIt != CallSitesInfo.end())
951 CallSitesInfo.erase(I: CSIt);
952
953 CalledGlobalsInfo.erase(Val: CallMI);
954}
955
956void MachineFunction::copyAdditionalCallInfo(const MachineInstr *Old,
957 const MachineInstr *New) {
958 assert(Old->shouldUpdateAdditionalCallInfo() &&
959 "Call info refers only to call (MI) candidates or "
960 "candidates inside bundles");
961
962 if (!New->isCandidateForAdditionalCallInfo())
963 return eraseAdditionalCallInfo(MI: Old);
964
965 const MachineInstr *OldCallMI = getCallInstr(MI: Old);
966 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(MI: OldCallMI);
967 if (CSIt != CallSitesInfo.end()) {
968 CallSiteInfo CSInfo = CSIt->second;
969 CallSitesInfo[New] = std::move(CSInfo);
970 }
971
972 CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(Val: OldCallMI);
973 if (CGIt != CalledGlobalsInfo.end()) {
974 CalledGlobalInfo CGInfo = CGIt->second;
975 CalledGlobalsInfo[New] = std::move(CGInfo);
976 }
977}
978
979void MachineFunction::moveAdditionalCallInfo(const MachineInstr *Old,
980 const MachineInstr *New) {
981 assert(Old->shouldUpdateAdditionalCallInfo() &&
982 "Call info refers only to call (MI) candidates or "
983 "candidates inside bundles");
984
985 if (!New->isCandidateForAdditionalCallInfo())
986 return eraseAdditionalCallInfo(MI: Old);
987
988 const MachineInstr *OldCallMI = getCallInstr(MI: Old);
989 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(MI: OldCallMI);
990 if (CSIt != CallSitesInfo.end()) {
991 CallSiteInfo CSInfo = std::move(CSIt->second);
992 CallSitesInfo.erase(I: CSIt);
993 CallSitesInfo[New] = std::move(CSInfo);
994 }
995
996 CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(Val: OldCallMI);
997 if (CGIt != CalledGlobalsInfo.end()) {
998 CalledGlobalInfo CGInfo = std::move(CGIt->second);
999 CalledGlobalsInfo.erase(I: CGIt);
1000 CalledGlobalsInfo[New] = std::move(CGInfo);
1001 }
1002}
1003
1004void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
1005 DebugInstrNumberingCount = Num;
1006}
1007
1008void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
1009 DebugInstrOperandPair B,
1010 unsigned Subreg) {
1011 // Catch any accidental self-loops.
1012 assert(A.first != B.first);
1013 // Don't allow any substitutions _from_ the memory operand number.
1014 assert(A.second != DebugOperandMemNumber);
1015
1016 DebugValueSubstitutions.push_back(Elt: {A, B, Subreg});
1017}
1018
1019void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
1020 MachineInstr &New,
1021 unsigned MaxOperand) {
1022 // If the Old instruction wasn't tracked at all, there is no work to do.
1023 unsigned OldInstrNum = Old.peekDebugInstrNum();
1024 if (!OldInstrNum)
1025 return;
1026
1027 // Iterate over all operands looking for defs to create substitutions for.
1028 // Avoid creating new instr numbers unless we create a new substitution.
1029 // While this has no functional effect, it risks confusing someone reading
1030 // MIR output.
1031 // Examine all the operands, or the first N specified by the caller.
1032 MaxOperand = std::min(a: MaxOperand, b: Old.getNumOperands());
1033 for (unsigned int I = 0; I < MaxOperand; ++I) {
1034 const auto &OldMO = Old.getOperand(i: I);
1035 auto &NewMO = New.getOperand(i: I);
1036 (void)NewMO;
1037
1038 if (!OldMO.isReg() || !OldMO.isDef())
1039 continue;
1040 assert(NewMO.isDef());
1041
1042 unsigned NewInstrNum = New.getDebugInstrNum();
1043 makeDebugValueSubstitution(A: std::make_pair(x&: OldInstrNum, y&: I),
1044 B: std::make_pair(x&: NewInstrNum, y&: I));
1045 }
1046}
1047
1048auto MachineFunction::salvageCopySSA(
1049 MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache)
1050 -> DebugInstrOperandPair {
1051 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1052
1053 // Check whether this copy-like instruction has already been salvaged into
1054 // an operand pair.
1055 Register Dest;
1056 if (auto CopyDstSrc = TII.isCopyLikeInstr(MI)) {
1057 Dest = CopyDstSrc->Destination->getReg();
1058 } else {
1059 assert(MI.isSubregToReg());
1060 Dest = MI.getOperand(i: 0).getReg();
1061 }
1062
1063 auto CacheIt = DbgPHICache.find(Val: Dest);
1064 if (CacheIt != DbgPHICache.end())
1065 return CacheIt->second;
1066
1067 // Calculate the instruction number to use, or install a DBG_PHI.
1068 auto OperandPair = salvageCopySSAImpl(MI);
1069 DbgPHICache.insert(KV: {Dest, OperandPair});
1070 return OperandPair;
1071}
1072
1073auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI)
1074 -> DebugInstrOperandPair {
1075 MachineRegisterInfo &MRI = getRegInfo();
1076 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1077 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1078
1079 // Chase the value read by a copy-like instruction back to the instruction
1080 // that ultimately _defines_ that value. This may pass:
1081 // * Through multiple intermediate copies, including subregister moves /
1082 // copies,
1083 // * Copies from physical registers that must then be traced back to the
1084 // defining instruction,
1085 // * Or, physical registers may be live-in to (only) the entry block, which
1086 // requires a DBG_PHI to be created.
1087 // We can pursue this problem in that order: trace back through copies,
1088 // optionally through a physical register, to a defining instruction. We
1089 // should never move from physreg to vreg. As we're still in SSA form, no need
1090 // to worry about partial definitions of registers.
1091
1092 // Helper lambda to interpret a copy-like instruction. Takes instruction,
1093 // returns the register read and any subregister identifying which part is
1094 // read.
1095 auto GetRegAndSubreg =
1096 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1097 Register NewReg, OldReg;
1098 unsigned SubReg;
1099 if (Cpy.isCopy()) {
1100 OldReg = Cpy.getOperand(i: 0).getReg();
1101 NewReg = Cpy.getOperand(i: 1).getReg();
1102 SubReg = Cpy.getOperand(i: 1).getSubReg();
1103 } else if (Cpy.isSubregToReg()) {
1104 OldReg = Cpy.getOperand(i: 0).getReg();
1105 NewReg = Cpy.getOperand(i: 2).getReg();
1106 SubReg = Cpy.getOperand(i: 3).getImm();
1107 } else {
1108 auto CopyDetails = *TII.isCopyInstr(MI: Cpy);
1109 const MachineOperand &Src = *CopyDetails.Source;
1110 const MachineOperand &Dest = *CopyDetails.Destination;
1111 OldReg = Dest.getReg();
1112 NewReg = Src.getReg();
1113 SubReg = Src.getSubReg();
1114 }
1115
1116 return {NewReg, SubReg};
1117 };
1118
1119 // First seek either the defining instruction, or a copy from a physreg.
1120 // During search, the current state is the current copy instruction, and which
1121 // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1122 // deal with those later.
1123 auto State = GetRegAndSubreg(MI);
1124 auto CurInst = MI.getIterator();
1125 SmallVector<unsigned, 4> SubregsSeen;
1126 while (true) {
1127 // If we've found a copy from a physreg, first portion of search is over.
1128 if (!State.first.isVirtual())
1129 break;
1130
1131 // Record any subregister qualifier.
1132 if (State.second)
1133 SubregsSeen.push_back(Elt: State.second);
1134
1135 assert(MRI.hasOneDef(State.first));
1136 MachineInstr &Inst = *MRI.def_begin(RegNo: State.first)->getParent();
1137 CurInst = Inst.getIterator();
1138
1139 // Any non-copy instruction is the defining instruction we're seeking.
1140 if (!Inst.isCopyLike() && !TII.isCopyLikeInstr(MI: Inst))
1141 break;
1142 State = GetRegAndSubreg(Inst);
1143 };
1144
1145 // Helper lambda to apply additional subregister substitutions to a known
1146 // instruction/operand pair. Adds new (fake) substitutions so that we can
1147 // record the subregister. FIXME: this isn't very space efficient if multiple
1148 // values are tracked back through the same copies; cache something later.
1149 auto ApplySubregisters =
1150 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
1151 for (unsigned Subreg : reverse(C&: SubregsSeen)) {
1152 // Fetch a new instruction number, not attached to an actual instruction.
1153 unsigned NewInstrNumber = getNewDebugInstrNum();
1154 // Add a substitution from the "new" number to the known one, with a
1155 // qualifying subreg.
1156 makeDebugValueSubstitution(A: {NewInstrNumber, 0}, B: P, Subreg);
1157 // Return the new number; to find the underlying value, consumers need to
1158 // deal with the qualifying subreg.
1159 P = {NewInstrNumber, 0};
1160 }
1161 return P;
1162 };
1163
1164 // If we managed to find the defining instruction after COPYs, return an
1165 // instruction / operand pair after adding subregister qualifiers.
1166 if (State.first.isVirtual()) {
1167 // Virtual register def -- we can just look up where this happens.
1168 MachineInstr *Inst = MRI.def_begin(RegNo: State.first)->getParent();
1169 for (auto &MO : Inst->all_defs()) {
1170 if (MO.getReg() != State.first)
1171 continue;
1172 return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()});
1173 }
1174
1175 llvm_unreachable("Vreg def with no corresponding operand?");
1176 }
1177
1178 // Our search ended in a copy from a physreg: walk back up the function
1179 // looking for whatever defines the physreg.
1180 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1181 State = GetRegAndSubreg(*CurInst);
1182 Register RegToSeek = State.first;
1183
1184 auto RMII = CurInst->getReverseIterator();
1185 auto PrevInstrs = make_range(x: RMII, y: CurInst->getParent()->instr_rend());
1186 for (auto &ToExamine : PrevInstrs) {
1187 for (auto &MO : ToExamine.all_defs()) {
1188 // Test for operand that defines something aliasing RegToSeek.
1189 if (!TRI.regsOverlap(RegA: RegToSeek, RegB: MO.getReg()))
1190 continue;
1191
1192 return ApplySubregisters(
1193 {ToExamine.getDebugInstrNum(), MO.getOperandNo()});
1194 }
1195 }
1196
1197 MachineBasicBlock &InsertBB = *CurInst->getParent();
1198
1199 // We reached the start of the block before finding a defining instruction.
1200 // There are numerous scenarios where this can happen:
1201 // * Constant physical registers,
1202 // * Several intrinsics that allow LLVM-IR to read arbitary registers,
1203 // * Arguments in the entry block,
1204 // * Exception handling landing pads.
1205 // Validating all of them is too difficult, so just insert a DBG_PHI reading
1206 // the variable value at this position, rather than checking it makes sense.
1207
1208 // Create DBG_PHI for specified physreg.
1209 auto Builder = BuildMI(BB&: InsertBB, I: InsertBB.getFirstNonPHI(), MIMD: DebugLoc(),
1210 MCID: TII.get(Opcode: TargetOpcode::DBG_PHI));
1211 Builder.addReg(RegNo: State.first);
1212 unsigned NewNum = getNewDebugInstrNum();
1213 Builder.addImm(Val: NewNum);
1214 return ApplySubregisters({NewNum, 0u});
1215}
1216
1217void MachineFunction::finalizeDebugInstrRefs() {
1218 auto *TII = getSubtarget().getInstrInfo();
1219
1220 auto MakeUndefDbgValue = [&](MachineInstr &MI) {
1221 const MCInstrDesc &RefII = TII->get(Opcode: TargetOpcode::DBG_VALUE_LIST);
1222 MI.setDesc(RefII);
1223 MI.setDebugValueUndef();
1224 };
1225
1226 DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs;
1227 for (auto &MBB : *this) {
1228 for (auto &MI : MBB) {
1229 if (!MI.isDebugRef())
1230 continue;
1231
1232 bool IsValidRef = true;
1233
1234 for (MachineOperand &MO : MI.debug_operands()) {
1235 if (!MO.isReg())
1236 continue;
1237
1238 Register Reg = MO.getReg();
1239
1240 // Some vregs can be deleted as redundant in the meantime. Mark those
1241 // as DBG_VALUE $noreg. Additionally, some normal instructions are
1242 // quickly deleted, leaving dangling references to vregs with no def.
1243 if (Reg == 0 || !RegInfo->hasOneDef(RegNo: Reg)) {
1244 IsValidRef = false;
1245 break;
1246 }
1247
1248 assert(Reg.isVirtual());
1249 MachineInstr &DefMI = *RegInfo->def_instr_begin(RegNo: Reg);
1250
1251 // If we've found a copy-like instruction, follow it back to the
1252 // instruction that defines the source value, see salvageCopySSA docs
1253 // for why this is important.
1254 if (DefMI.isCopyLike() || TII->isCopyInstr(MI: DefMI)) {
1255 auto Result = salvageCopySSA(MI&: DefMI, DbgPHICache&: ArgDbgPHIs);
1256 MO.ChangeToDbgInstrRef(InstrIdx: Result.first, OpIdx: Result.second);
1257 } else {
1258 // Otherwise, identify the operand number that the VReg refers to.
1259 unsigned OperandIdx = 0;
1260 for (const auto &DefMO : DefMI.operands()) {
1261 if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg)
1262 break;
1263 ++OperandIdx;
1264 }
1265 assert(OperandIdx < DefMI.getNumOperands());
1266
1267 // Morph this instr ref to point at the given instruction and operand.
1268 unsigned ID = DefMI.getDebugInstrNum();
1269 MO.ChangeToDbgInstrRef(InstrIdx: ID, OpIdx: OperandIdx);
1270 }
1271 }
1272
1273 if (!IsValidRef)
1274 MakeUndefDbgValue(MI);
1275 }
1276 }
1277}
1278
1279bool MachineFunction::shouldUseDebugInstrRef() const {
1280 // Disable instr-ref at -O0: it's very slow (in compile time). We can still
1281 // have optimized code inlined into this unoptimized code, however with
1282 // fewer and less aggressive optimizations happening, coverage and accuracy
1283 // should not suffer.
1284 if (getTarget().getOptLevel() == CodeGenOptLevel::None)
1285 return false;
1286
1287 // Don't use instr-ref if this function is marked optnone.
1288 if (F.hasFnAttribute(Kind: Attribute::OptimizeNone))
1289 return false;
1290
1291 if (llvm::debuginfoShouldUseDebugInstrRef(T: getTarget().getTargetTriple()))
1292 return true;
1293
1294 return false;
1295}
1296
1297bool MachineFunction::useDebugInstrRef() const {
1298 return UseDebugInstrRef;
1299}
1300
1301void MachineFunction::setUseDebugInstrRef(bool Use) {
1302 UseDebugInstrRef = Use;
1303}
1304
1305// Use one million as a high / reserved number.
1306const unsigned MachineFunction::DebugOperandMemNumber = 1000000;
1307
1308/// \}
1309
1310//===----------------------------------------------------------------------===//
1311// MachineJumpTableInfo implementation
1312//===----------------------------------------------------------------------===//
1313
1314MachineJumpTableEntry::MachineJumpTableEntry(
1315 const std::vector<MachineBasicBlock *> &MBBs)
1316 : MBBs(MBBs), Hotness(MachineFunctionDataHotness::Unknown) {}
1317
1318/// Return the size of each entry in the jump table.
1319unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1320 // The size of a jump table entry is 4 bytes unless the entry is just the
1321 // address of a block, in which case it is the pointer size.
1322 switch (getEntryKind()) {
1323 case MachineJumpTableInfo::EK_BlockAddress:
1324 return TD.getPointerSize();
1325 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1326 case MachineJumpTableInfo::EK_LabelDifference64:
1327 return 8;
1328 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1329 case MachineJumpTableInfo::EK_LabelDifference32:
1330 case MachineJumpTableInfo::EK_Custom32:
1331 return 4;
1332 case MachineJumpTableInfo::EK_Inline:
1333 return 0;
1334 }
1335 llvm_unreachable("Unknown jump table encoding!");
1336}
1337
1338/// Return the alignment of each entry in the jump table.
1339unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1340 // The alignment of a jump table entry is the alignment of int32 unless the
1341 // entry is just the address of a block, in which case it is the pointer
1342 // alignment.
1343 switch (getEntryKind()) {
1344 case MachineJumpTableInfo::EK_BlockAddress:
1345 return TD.getPointerABIAlignment(AS: 0).value();
1346 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1347 case MachineJumpTableInfo::EK_LabelDifference64:
1348 return TD.getABIIntegerTypeAlignment(BitWidth: 64).value();
1349 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1350 case MachineJumpTableInfo::EK_LabelDifference32:
1351 case MachineJumpTableInfo::EK_Custom32:
1352 return TD.getABIIntegerTypeAlignment(BitWidth: 32).value();
1353 case MachineJumpTableInfo::EK_Inline:
1354 return 1;
1355 }
1356 llvm_unreachable("Unknown jump table encoding!");
1357}
1358
1359/// Create a new jump table entry in the jump table info.
1360unsigned MachineJumpTableInfo::createJumpTableIndex(
1361 const std::vector<MachineBasicBlock*> &DestBBs) {
1362 assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1363 JumpTables.push_back(x: MachineJumpTableEntry(DestBBs));
1364 return JumpTables.size()-1;
1365}
1366
1367bool MachineJumpTableInfo::updateJumpTableEntryHotness(
1368 size_t JTI, MachineFunctionDataHotness Hotness) {
1369 assert(JTI < JumpTables.size() && "Invalid JTI!");
1370 // Record the largest hotness value.
1371 if (Hotness <= JumpTables[JTI].Hotness)
1372 return false;
1373
1374 JumpTables[JTI].Hotness = Hotness;
1375 return true;
1376}
1377
1378/// If Old is the target of any jump tables, update the jump tables to branch
1379/// to New instead.
1380bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1381 MachineBasicBlock *New) {
1382 assert(Old != New && "Not making a change?");
1383 bool MadeChange = false;
1384 for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1385 ReplaceMBBInJumpTable(Idx: i, Old, New);
1386 return MadeChange;
1387}
1388
1389/// If MBB is present in any jump tables, remove it.
1390bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1391 bool MadeChange = false;
1392 for (MachineJumpTableEntry &JTE : JumpTables) {
1393 auto removeBeginItr = std::remove(first: JTE.MBBs.begin(), last: JTE.MBBs.end(), value: MBB);
1394 MadeChange |= (removeBeginItr != JTE.MBBs.end());
1395 JTE.MBBs.erase(first: removeBeginItr, last: JTE.MBBs.end());
1396 }
1397 return MadeChange;
1398}
1399
1400/// If Old is a target of the jump tables, update the jump table to branch to
1401/// New instead.
1402bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1403 MachineBasicBlock *Old,
1404 MachineBasicBlock *New) {
1405 assert(Old != New && "Not making a change?");
1406 bool MadeChange = false;
1407 MachineJumpTableEntry &JTE = JumpTables[Idx];
1408 for (MachineBasicBlock *&MBB : JTE.MBBs)
1409 if (MBB == Old) {
1410 MBB = New;
1411 MadeChange = true;
1412 }
1413 return MadeChange;
1414}
1415
1416void MachineJumpTableInfo::print(raw_ostream &OS) const {
1417 if (JumpTables.empty()) return;
1418
1419 OS << "Jump Tables:\n";
1420
1421 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1422 OS << printJumpTableEntryReference(Idx: i) << ':';
1423 for (const MachineBasicBlock *MBB : JumpTables[i].MBBs)
1424 OS << ' ' << printMBBReference(MBB: *MBB);
1425 if (i != e)
1426 OS << '\n';
1427 }
1428
1429 OS << '\n';
1430}
1431
1432#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1433LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1434#endif
1435
1436Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1437 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1438}
1439
1440//===----------------------------------------------------------------------===//
1441// MachineConstantPool implementation
1442//===----------------------------------------------------------------------===//
1443
1444void MachineConstantPoolValue::anchor() {}
1445
1446unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1447 return DL.getTypeAllocSize(Ty);
1448}
1449
1450unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1451 if (isMachineConstantPoolEntry())
1452 return Val.MachineCPVal->getSizeInBytes(DL);
1453 return DL.getTypeAllocSize(Ty: Val.ConstVal->getType());
1454}
1455
1456bool MachineConstantPoolEntry::needsRelocation() const {
1457 if (isMachineConstantPoolEntry())
1458 return true;
1459 return Val.ConstVal->needsDynamicRelocation();
1460}
1461
1462SectionKind
1463MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1464 if (needsRelocation())
1465 return SectionKind::getReadOnlyWithRel();
1466 switch (getSizeInBytes(DL: *DL)) {
1467 case 4:
1468 return SectionKind::getMergeableConst4();
1469 case 8:
1470 return SectionKind::getMergeableConst8();
1471 case 16:
1472 return SectionKind::getMergeableConst16();
1473 case 32:
1474 return SectionKind::getMergeableConst32();
1475 default:
1476 return SectionKind::getReadOnly();
1477 }
1478}
1479
1480MachineConstantPool::~MachineConstantPool() {
1481 // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1482 // so keep track of which we've deleted to avoid double deletions.
1483 DenseSet<MachineConstantPoolValue*> Deleted;
1484 for (const MachineConstantPoolEntry &C : Constants)
1485 if (C.isMachineConstantPoolEntry()) {
1486 Deleted.insert(V: C.Val.MachineCPVal);
1487 delete C.Val.MachineCPVal;
1488 }
1489 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1490 if (Deleted.count(V: CPV) == 0)
1491 delete CPV;
1492 }
1493}
1494
1495/// Test whether the given two constants can be allocated the same constant pool
1496/// entry referenced by \param A.
1497static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1498 const DataLayout &DL) {
1499 // Handle the trivial case quickly.
1500 if (A == B) return true;
1501
1502 // If they have the same type but weren't the same constant, quickly
1503 // reject them.
1504 if (A->getType() == B->getType()) return false;
1505
1506 // We can't handle structs or arrays.
1507 if (isa<StructType>(Val: A->getType()) || isa<ArrayType>(Val: A->getType()) ||
1508 isa<StructType>(Val: B->getType()) || isa<ArrayType>(Val: B->getType()))
1509 return false;
1510
1511 // For now, only support constants with the same size.
1512 uint64_t StoreSize = DL.getTypeStoreSize(Ty: A->getType());
1513 if (StoreSize != DL.getTypeStoreSize(Ty: B->getType()) || StoreSize > 128)
1514 return false;
1515
1516 bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement();
1517
1518 Type *IntTy = IntegerType::get(C&: A->getContext(), NumBits: StoreSize*8);
1519
1520 // Try constant folding a bitcast of both instructions to an integer. If we
1521 // get two identical ConstantInt's, then we are good to share them. We use
1522 // the constant folding APIs to do this so that we get the benefit of
1523 // DataLayout.
1524 if (isa<PointerType>(Val: A->getType()))
1525 A = ConstantFoldCastOperand(Opcode: Instruction::PtrToInt,
1526 C: const_cast<Constant *>(A), DestTy: IntTy, DL);
1527 else if (A->getType() != IntTy)
1528 A = ConstantFoldCastOperand(Opcode: Instruction::BitCast, C: const_cast<Constant *>(A),
1529 DestTy: IntTy, DL);
1530 if (isa<PointerType>(Val: B->getType()))
1531 B = ConstantFoldCastOperand(Opcode: Instruction::PtrToInt,
1532 C: const_cast<Constant *>(B), DestTy: IntTy, DL);
1533 else if (B->getType() != IntTy)
1534 B = ConstantFoldCastOperand(Opcode: Instruction::BitCast, C: const_cast<Constant *>(B),
1535 DestTy: IntTy, DL);
1536
1537 if (A != B)
1538 return false;
1539
1540 // Constants only safely match if A doesn't contain undef/poison.
1541 // As we'll be reusing A, it doesn't matter if B contain undef/poison.
1542 // TODO: Handle cases where A and B have the same undef/poison elements.
1543 // TODO: Merge A and B with mismatching undef/poison elements.
1544 return !ContainsUndefOrPoisonA;
1545}
1546
1547/// Create a new entry in the constant pool or return an existing one.
1548/// User must specify the log2 of the minimum required alignment for the object.
1549unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1550 Align Alignment) {
1551 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1552
1553 // Check to see if we already have this constant.
1554 //
1555 // FIXME, this could be made much more efficient for large constant pools.
1556 for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1557 if (!Constants[i].isMachineConstantPoolEntry() &&
1558 CanShareConstantPoolEntry(A: Constants[i].Val.ConstVal, B: C, DL)) {
1559 if (Constants[i].getAlign() < Alignment)
1560 Constants[i].Alignment = Alignment;
1561 return i;
1562 }
1563
1564 Constants.push_back(x: MachineConstantPoolEntry(C, Alignment));
1565 return Constants.size()-1;
1566}
1567
1568unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1569 Align Alignment) {
1570 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1571
1572 // Check to see if we already have this constant.
1573 //
1574 // FIXME, this could be made much more efficient for large constant pools.
1575 int Idx = V->getExistingMachineCPValue(CP: this, Alignment);
1576 if (Idx != -1) {
1577 MachineCPVsSharingEntries.insert(V);
1578 return (unsigned)Idx;
1579 }
1580
1581 Constants.push_back(x: MachineConstantPoolEntry(V, Alignment));
1582 return Constants.size()-1;
1583}
1584
1585void MachineConstantPool::print(raw_ostream &OS) const {
1586 if (Constants.empty()) return;
1587
1588 OS << "Constant Pool:\n";
1589 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1590 OS << " cp#" << i << ": ";
1591 if (Constants[i].isMachineConstantPoolEntry())
1592 Constants[i].Val.MachineCPVal->print(O&: OS);
1593 else
1594 Constants[i].Val.ConstVal->printAsOperand(O&: OS, /*PrintType=*/false);
1595 OS << ", align=" << Constants[i].getAlign().value();
1596 OS << "\n";
1597 }
1598}
1599
1600//===----------------------------------------------------------------------===//
1601// Template specialization for MachineFunction implementation of
1602// ProfileSummaryInfo::getEntryCount().
1603//===----------------------------------------------------------------------===//
1604template <>
1605std::optional<Function::ProfileCount>
1606ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>(
1607 const llvm::MachineFunction *F) const {
1608 return F->getFunction().getEntryCount();
1609}
1610
1611#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1612LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1613#endif
1614