| 1 | //===- MachineFunction.cpp ------------------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Collect native machine code information for a function. This allows |
| 10 | // target-specific information about the generated code to be stored with each |
| 11 | // function. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "llvm/CodeGen/MachineFunction.h" |
| 16 | #include "llvm/ADT/BitVector.h" |
| 17 | #include "llvm/ADT/DenseMap.h" |
| 18 | #include "llvm/ADT/DenseSet.h" |
| 19 | #include "llvm/ADT/STLExtras.h" |
| 20 | #include "llvm/ADT/SmallString.h" |
| 21 | #include "llvm/ADT/SmallVector.h" |
| 22 | #include "llvm/ADT/StringRef.h" |
| 23 | #include "llvm/ADT/Twine.h" |
| 24 | #include "llvm/Analysis/ConstantFolding.h" |
| 25 | #include "llvm/Analysis/ProfileSummaryInfo.h" |
| 26 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 27 | #include "llvm/CodeGen/MachineConstantPool.h" |
| 28 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 29 | #include "llvm/CodeGen/MachineInstr.h" |
| 30 | #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| 31 | #include "llvm/CodeGen/MachineMemOperand.h" |
| 32 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 33 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 34 | #include "llvm/CodeGen/PseudoSourceValue.h" |
| 35 | #include "llvm/CodeGen/PseudoSourceValueManager.h" |
| 36 | #include "llvm/CodeGen/TargetFrameLowering.h" |
| 37 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 38 | #include "llvm/CodeGen/TargetLowering.h" |
| 39 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 40 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 41 | #include "llvm/CodeGen/WasmEHFuncInfo.h" |
| 42 | #include "llvm/CodeGen/WinEHFuncInfo.h" |
| 43 | #include "llvm/Config/llvm-config.h" |
| 44 | #include "llvm/IR/Attributes.h" |
| 45 | #include "llvm/IR/BasicBlock.h" |
| 46 | #include "llvm/IR/Constant.h" |
| 47 | #include "llvm/IR/DataLayout.h" |
| 48 | #include "llvm/IR/DerivedTypes.h" |
| 49 | #include "llvm/IR/EHPersonalities.h" |
| 50 | #include "llvm/IR/Function.h" |
| 51 | #include "llvm/IR/GlobalValue.h" |
| 52 | #include "llvm/IR/Instruction.h" |
| 53 | #include "llvm/IR/Instructions.h" |
| 54 | #include "llvm/IR/Metadata.h" |
| 55 | #include "llvm/IR/Module.h" |
| 56 | #include "llvm/IR/ModuleSlotTracker.h" |
| 57 | #include "llvm/IR/Value.h" |
| 58 | #include "llvm/MC/MCContext.h" |
| 59 | #include "llvm/MC/MCSymbol.h" |
| 60 | #include "llvm/MC/SectionKind.h" |
| 61 | #include "llvm/Support/Casting.h" |
| 62 | #include "llvm/Support/CommandLine.h" |
| 63 | #include "llvm/Support/Compiler.h" |
| 64 | #include "llvm/Support/DOTGraphTraits.h" |
| 65 | #include "llvm/Support/ErrorHandling.h" |
| 66 | #include "llvm/Support/GraphWriter.h" |
| 67 | #include "llvm/Support/raw_ostream.h" |
| 68 | #include "llvm/Target/TargetMachine.h" |
| 69 | #include <algorithm> |
| 70 | #include <cassert> |
| 71 | #include <cstddef> |
| 72 | #include <cstdint> |
| 73 | #include <iterator> |
| 74 | #include <string> |
| 75 | #include <utility> |
| 76 | #include <vector> |
| 77 | |
| 78 | #include "LiveDebugValues/LiveDebugValues.h" |
| 79 | |
| 80 | using namespace llvm; |
| 81 | |
| 82 | #define DEBUG_TYPE "codegen" |
| 83 | |
| 84 | static cl::opt<unsigned> AlignAllFunctions( |
| 85 | "align-all-functions" , |
| 86 | cl::desc("Force the alignment of all functions in log2 format (e.g. 4 " |
| 87 | "means align on 16B boundaries)." ), |
| 88 | cl::init(Val: 0), cl::Hidden); |
| 89 | |
| 90 | static const char *getPropertyName(MachineFunctionProperties::Property Prop) { |
| 91 | using P = MachineFunctionProperties::Property; |
| 92 | |
| 93 | // clang-format off |
| 94 | switch(Prop) { |
| 95 | case P::FailedISel: return "FailedISel" ; |
| 96 | case P::IsSSA: return "IsSSA" ; |
| 97 | case P::Legalized: return "Legalized" ; |
| 98 | case P::NoPHIs: return "NoPHIs" ; |
| 99 | case P::NoVRegs: return "NoVRegs" ; |
| 100 | case P::RegBankSelected: return "RegBankSelected" ; |
| 101 | case P::Selected: return "Selected" ; |
| 102 | case P::TracksLiveness: return "TracksLiveness" ; |
| 103 | case P::TiedOpsRewritten: return "TiedOpsRewritten" ; |
| 104 | case P::FailsVerification: return "FailsVerification" ; |
| 105 | case P::FailedRegAlloc: return "FailedRegAlloc" ; |
| 106 | case P::TracksDebugUserValues: return "TracksDebugUserValues" ; |
| 107 | } |
| 108 | // clang-format on |
| 109 | llvm_unreachable("Invalid machine function property" ); |
| 110 | } |
| 111 | |
| 112 | void setUnsafeStackSize(const Function &F, MachineFrameInfo &FrameInfo) { |
| 113 | if (!F.hasFnAttribute(Kind: Attribute::SafeStack)) |
| 114 | return; |
| 115 | |
| 116 | auto *Existing = |
| 117 | dyn_cast_or_null<MDTuple>(Val: F.getMetadata(KindID: LLVMContext::MD_annotation)); |
| 118 | |
| 119 | if (!Existing || Existing->getNumOperands() != 2) |
| 120 | return; |
| 121 | |
| 122 | auto *MetadataName = "unsafe-stack-size" ; |
| 123 | if (auto &N = Existing->getOperand(I: 0)) { |
| 124 | if (N.equalsStr(Str: MetadataName)) { |
| 125 | if (auto &Op = Existing->getOperand(I: 1)) { |
| 126 | auto Val = mdconst::extract<ConstantInt>(MD: Op)->getZExtValue(); |
| 127 | FrameInfo.setUnsafeStackSize(Val); |
| 128 | } |
| 129 | } |
| 130 | } |
| 131 | } |
| 132 | |
| 133 | // Pin the vtable to this file. |
| 134 | void MachineFunction::Delegate::anchor() {} |
| 135 | |
| 136 | void MachineFunctionProperties::print(raw_ostream &OS) const { |
| 137 | const char *Separator = "" ; |
| 138 | for (BitVector::size_type I = 0; I < Properties.size(); ++I) { |
| 139 | if (!Properties[I]) |
| 140 | continue; |
| 141 | OS << Separator << getPropertyName(Prop: static_cast<Property>(I)); |
| 142 | Separator = ", " ; |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | //===----------------------------------------------------------------------===// |
| 147 | // MachineFunction implementation |
| 148 | //===----------------------------------------------------------------------===// |
| 149 | |
| 150 | // Out-of-line virtual method. |
| 151 | MachineFunctionInfo::~MachineFunctionInfo() = default; |
| 152 | |
| 153 | void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) { |
| 154 | MBB->getParent()->deleteMachineBasicBlock(MBB); |
| 155 | } |
| 156 | |
| 157 | static inline Align getFnStackAlignment(const TargetSubtargetInfo *STI, |
| 158 | const Function &F) { |
| 159 | if (auto MA = F.getFnStackAlign()) |
| 160 | return *MA; |
| 161 | return STI->getFrameLowering()->getStackAlign(); |
| 162 | } |
| 163 | |
| 164 | MachineFunction::MachineFunction(Function &F, const TargetMachine &Target, |
| 165 | const TargetSubtargetInfo &STI, MCContext &Ctx, |
| 166 | unsigned FunctionNum) |
| 167 | : F(F), Target(Target), STI(&STI), Ctx(Ctx) { |
| 168 | FunctionNumber = FunctionNum; |
| 169 | init(); |
| 170 | } |
| 171 | |
| 172 | void MachineFunction::handleInsertion(MachineInstr &MI) { |
| 173 | if (TheDelegate) |
| 174 | TheDelegate->MF_HandleInsertion(MI); |
| 175 | } |
| 176 | |
| 177 | void MachineFunction::handleRemoval(MachineInstr &MI) { |
| 178 | if (TheDelegate) |
| 179 | TheDelegate->MF_HandleRemoval(MI); |
| 180 | } |
| 181 | |
| 182 | void MachineFunction::handleChangeDesc(MachineInstr &MI, |
| 183 | const MCInstrDesc &TID) { |
| 184 | if (TheDelegate) |
| 185 | TheDelegate->MF_HandleChangeDesc(MI, TID); |
| 186 | } |
| 187 | |
| 188 | void MachineFunction::init() { |
| 189 | // Assume the function starts in SSA form with correct liveness. |
| 190 | Properties.setIsSSA(); |
| 191 | Properties.setTracksLiveness(); |
| 192 | RegInfo = new (Allocator) MachineRegisterInfo(this); |
| 193 | |
| 194 | MFInfo = nullptr; |
| 195 | |
| 196 | // We can realign the stack if the target supports it and the user hasn't |
| 197 | // explicitly asked us not to. |
| 198 | bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() && |
| 199 | !F.hasFnAttribute(Kind: "no-realign-stack" ); |
| 200 | bool ForceRealignSP = F.hasFnAttribute(Kind: Attribute::StackAlignment) || |
| 201 | F.hasFnAttribute(Kind: "stackrealign" ); |
| 202 | FrameInfo = new (Allocator) MachineFrameInfo( |
| 203 | getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP, |
| 204 | /*ForcedRealign=*/ForceRealignSP && CanRealignSP); |
| 205 | |
| 206 | setUnsafeStackSize(F, FrameInfo&: *FrameInfo); |
| 207 | |
| 208 | if (F.hasFnAttribute(Kind: Attribute::StackAlignment)) |
| 209 | FrameInfo->ensureMaxAlignment(Alignment: *F.getFnStackAlign()); |
| 210 | |
| 211 | ConstantPool = new (Allocator) MachineConstantPool(getDataLayout()); |
| 212 | Alignment = STI->getTargetLowering()->getMinFunctionAlignment(); |
| 213 | |
| 214 | // FIXME: Shouldn't use pref alignment if explicit alignment is set on F. |
| 215 | // FIXME: Use Function::hasOptSize(). |
| 216 | if (!F.hasFnAttribute(Kind: Attribute::OptimizeForSize)) |
| 217 | Alignment = std::max(a: Alignment, |
| 218 | b: STI->getTargetLowering()->getPrefFunctionAlignment()); |
| 219 | |
| 220 | // -fsanitize=function and -fsanitize=kcfi instrument indirect function calls |
| 221 | // to load a type hash before the function label. Ensure functions are aligned |
| 222 | // by a least 4 to avoid unaligned access, which is especially important for |
| 223 | // -mno-unaligned-access. |
| 224 | if (F.hasMetadata(KindID: LLVMContext::MD_func_sanitize) || |
| 225 | F.getMetadata(KindID: LLVMContext::MD_kcfi_type)) |
| 226 | Alignment = std::max(a: Alignment, b: Align(4)); |
| 227 | |
| 228 | if (AlignAllFunctions) |
| 229 | Alignment = Align(1ULL << AlignAllFunctions); |
| 230 | |
| 231 | JumpTableInfo = nullptr; |
| 232 | |
| 233 | if (isFuncletEHPersonality(Pers: classifyEHPersonality( |
| 234 | Pers: F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { |
| 235 | WinEHInfo = new (Allocator) WinEHFuncInfo(); |
| 236 | } |
| 237 | |
| 238 | if (isScopedEHPersonality(Pers: classifyEHPersonality( |
| 239 | Pers: F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) { |
| 240 | WasmEHInfo = new (Allocator) WasmEHFuncInfo(); |
| 241 | } |
| 242 | |
| 243 | assert(Target.isCompatibleDataLayout(getDataLayout()) && |
| 244 | "Can't create a MachineFunction using a Module with a " |
| 245 | "Target-incompatible DataLayout attached\n" ); |
| 246 | |
| 247 | PSVManager = std::make_unique<PseudoSourceValueManager>(args: getTarget()); |
| 248 | } |
| 249 | |
| 250 | void MachineFunction::initTargetMachineFunctionInfo( |
| 251 | const TargetSubtargetInfo &STI) { |
| 252 | assert(!MFInfo && "MachineFunctionInfo already set" ); |
| 253 | MFInfo = Target.createMachineFunctionInfo(Allocator, F, STI: &STI); |
| 254 | } |
| 255 | |
| 256 | MachineFunction::~MachineFunction() { |
| 257 | clear(); |
| 258 | } |
| 259 | |
| 260 | void MachineFunction::clear() { |
| 261 | Properties.reset(); |
| 262 | |
| 263 | // Clear JumpTableInfo first. Otherwise, every MBB we delete would do a |
| 264 | // linear search over the jump table entries to find and erase itself. |
| 265 | if (JumpTableInfo) { |
| 266 | JumpTableInfo->~MachineJumpTableInfo(); |
| 267 | Allocator.Deallocate(Ptr: JumpTableInfo); |
| 268 | JumpTableInfo = nullptr; |
| 269 | } |
| 270 | |
| 271 | // Don't call destructors on MachineInstr and MachineOperand. All of their |
| 272 | // memory comes from the BumpPtrAllocator which is about to be purged. |
| 273 | // |
| 274 | // Do call MachineBasicBlock destructors, it contains std::vectors. |
| 275 | for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(where: I)) |
| 276 | I->Insts.clearAndLeakNodesUnsafely(); |
| 277 | MBBNumbering.clear(); |
| 278 | |
| 279 | InstructionRecycler.clear(Allocator); |
| 280 | OperandRecycler.clear(Allocator); |
| 281 | BasicBlockRecycler.clear(Allocator); |
| 282 | CodeViewAnnotations.clear(); |
| 283 | VariableDbgInfos.clear(); |
| 284 | if (RegInfo) { |
| 285 | RegInfo->~MachineRegisterInfo(); |
| 286 | Allocator.Deallocate(Ptr: RegInfo); |
| 287 | } |
| 288 | if (MFInfo) { |
| 289 | MFInfo->~MachineFunctionInfo(); |
| 290 | Allocator.Deallocate(Ptr: MFInfo); |
| 291 | } |
| 292 | |
| 293 | FrameInfo->~MachineFrameInfo(); |
| 294 | Allocator.Deallocate(Ptr: FrameInfo); |
| 295 | |
| 296 | ConstantPool->~MachineConstantPool(); |
| 297 | Allocator.Deallocate(Ptr: ConstantPool); |
| 298 | |
| 299 | if (WinEHInfo) { |
| 300 | WinEHInfo->~WinEHFuncInfo(); |
| 301 | Allocator.Deallocate(Ptr: WinEHInfo); |
| 302 | } |
| 303 | |
| 304 | if (WasmEHInfo) { |
| 305 | WasmEHInfo->~WasmEHFuncInfo(); |
| 306 | Allocator.Deallocate(Ptr: WasmEHInfo); |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | const DataLayout &MachineFunction::getDataLayout() const { |
| 311 | return F.getDataLayout(); |
| 312 | } |
| 313 | |
| 314 | /// Get the JumpTableInfo for this function. |
| 315 | /// If it does not already exist, allocate one. |
| 316 | MachineJumpTableInfo *MachineFunction:: |
| 317 | getOrCreateJumpTableInfo(unsigned EntryKind) { |
| 318 | if (JumpTableInfo) return JumpTableInfo; |
| 319 | |
| 320 | JumpTableInfo = new (Allocator) |
| 321 | MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind); |
| 322 | return JumpTableInfo; |
| 323 | } |
| 324 | |
| 325 | DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const { |
| 326 | return F.getDenormalMode(FPType); |
| 327 | } |
| 328 | |
| 329 | /// Should we be emitting segmented stack stuff for the function |
| 330 | bool MachineFunction::shouldSplitStack() const { |
| 331 | return getFunction().hasFnAttribute(Kind: "split-stack" ); |
| 332 | } |
| 333 | |
| 334 | [[nodiscard]] unsigned |
| 335 | MachineFunction::addFrameInst(const MCCFIInstruction &Inst) { |
| 336 | FrameInstructions.push_back(x: Inst); |
| 337 | return FrameInstructions.size() - 1; |
| 338 | } |
| 339 | |
| 340 | /// This discards all of the MachineBasicBlock numbers and recomputes them. |
| 341 | /// This guarantees that the MBB numbers are sequential, dense, and match the |
| 342 | /// ordering of the blocks within the function. If a specific MachineBasicBlock |
| 343 | /// is specified, only that block and those after it are renumbered. |
| 344 | void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) { |
| 345 | if (empty()) { MBBNumbering.clear(); return; } |
| 346 | MachineFunction::iterator MBBI, E = end(); |
| 347 | if (MBB == nullptr) |
| 348 | MBBI = begin(); |
| 349 | else |
| 350 | MBBI = MBB->getIterator(); |
| 351 | |
| 352 | // Figure out the block number this should have. |
| 353 | unsigned BlockNo = 0; |
| 354 | if (MBBI != begin()) |
| 355 | BlockNo = std::prev(x: MBBI)->getNumber() + 1; |
| 356 | |
| 357 | for (; MBBI != E; ++MBBI, ++BlockNo) { |
| 358 | if (MBBI->getNumber() != (int)BlockNo) { |
| 359 | // Remove use of the old number. |
| 360 | if (MBBI->getNumber() != -1) { |
| 361 | assert(MBBNumbering[MBBI->getNumber()] == &*MBBI && |
| 362 | "MBB number mismatch!" ); |
| 363 | MBBNumbering[MBBI->getNumber()] = nullptr; |
| 364 | } |
| 365 | |
| 366 | // If BlockNo is already taken, set that block's number to -1. |
| 367 | if (MBBNumbering[BlockNo]) |
| 368 | MBBNumbering[BlockNo]->setNumber(-1); |
| 369 | |
| 370 | MBBNumbering[BlockNo] = &*MBBI; |
| 371 | MBBI->setNumber(BlockNo); |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | // Okay, all the blocks are renumbered. If we have compactified the block |
| 376 | // numbering, shrink MBBNumbering now. |
| 377 | assert(BlockNo <= MBBNumbering.size() && "Mismatch!" ); |
| 378 | MBBNumbering.resize(new_size: BlockNo); |
| 379 | MBBNumberingEpoch++; |
| 380 | } |
| 381 | |
| 382 | int64_t MachineFunction::estimateFunctionSizeInBytes() { |
| 383 | const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); |
| 384 | const Align FunctionAlignment = getAlignment(); |
| 385 | MachineFunction::iterator MBBI = begin(), E = end(); |
| 386 | /// Offset - Distance from the beginning of the function to the end |
| 387 | /// of the basic block. |
| 388 | int64_t Offset = 0; |
| 389 | |
| 390 | for (; MBBI != E; ++MBBI) { |
| 391 | const Align Alignment = MBBI->getAlignment(); |
| 392 | int64_t BlockSize = 0; |
| 393 | |
| 394 | for (auto &MI : *MBBI) { |
| 395 | BlockSize += TII.getInstSizeInBytes(MI); |
| 396 | } |
| 397 | |
| 398 | int64_t OffsetBB; |
| 399 | if (Alignment <= FunctionAlignment) { |
| 400 | OffsetBB = alignTo(Size: Offset, A: Alignment); |
| 401 | } else { |
| 402 | // The alignment of this MBB is larger than the function's alignment, so |
| 403 | // we can't tell whether or not it will insert nops. Assume that it will. |
| 404 | OffsetBB = alignTo(Size: Offset, A: Alignment) + Alignment.value() - |
| 405 | FunctionAlignment.value(); |
| 406 | } |
| 407 | Offset = OffsetBB + BlockSize; |
| 408 | } |
| 409 | |
| 410 | return Offset; |
| 411 | } |
| 412 | |
| 413 | /// This method iterates over the basic blocks and assigns their IsBeginSection |
| 414 | /// and IsEndSection fields. This must be called after MBB layout is finalized |
| 415 | /// and the SectionID's are assigned to MBBs. |
| 416 | void MachineFunction::assignBeginEndSections() { |
| 417 | front().setIsBeginSection(); |
| 418 | auto CurrentSectionID = front().getSectionID(); |
| 419 | for (auto MBBI = std::next(x: begin()), E = end(); MBBI != E; ++MBBI) { |
| 420 | if (MBBI->getSectionID() == CurrentSectionID) |
| 421 | continue; |
| 422 | MBBI->setIsBeginSection(); |
| 423 | std::prev(x: MBBI)->setIsEndSection(); |
| 424 | CurrentSectionID = MBBI->getSectionID(); |
| 425 | } |
| 426 | back().setIsEndSection(); |
| 427 | } |
| 428 | |
| 429 | /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'. |
| 430 | MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID, |
| 431 | DebugLoc DL, |
| 432 | bool NoImplicit) { |
| 433 | return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) |
| 434 | MachineInstr(*this, MCID, std::move(DL), NoImplicit); |
| 435 | } |
| 436 | |
| 437 | /// Create a new MachineInstr which is a copy of the 'Orig' instruction, |
| 438 | /// identical in all ways except the instruction has no parent, prev, or next. |
| 439 | MachineInstr * |
| 440 | MachineFunction::CloneMachineInstr(const MachineInstr *Orig) { |
| 441 | return new (InstructionRecycler.Allocate<MachineInstr>(Allocator)) |
| 442 | MachineInstr(*this, *Orig); |
| 443 | } |
| 444 | |
| 445 | MachineInstr &MachineFunction::cloneMachineInstrBundle( |
| 446 | MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, |
| 447 | const MachineInstr &Orig) { |
| 448 | MachineInstr *FirstClone = nullptr; |
| 449 | MachineBasicBlock::const_instr_iterator I = Orig.getIterator(); |
| 450 | while (true) { |
| 451 | MachineInstr *Cloned = CloneMachineInstr(Orig: &*I); |
| 452 | MBB.insert(I: InsertBefore, MI: Cloned); |
| 453 | if (FirstClone == nullptr) { |
| 454 | FirstClone = Cloned; |
| 455 | } else { |
| 456 | Cloned->bundleWithPred(); |
| 457 | } |
| 458 | |
| 459 | if (!I->isBundledWithSucc()) |
| 460 | break; |
| 461 | ++I; |
| 462 | } |
| 463 | // Copy over call info to the cloned instruction if needed. If Orig is in |
| 464 | // a bundle, copyAdditionalCallInfo takes care of finding the call instruction |
| 465 | // in the bundle. |
| 466 | if (Orig.shouldUpdateAdditionalCallInfo()) |
| 467 | copyAdditionalCallInfo(Old: &Orig, New: FirstClone); |
| 468 | return *FirstClone; |
| 469 | } |
| 470 | |
| 471 | /// Delete the given MachineInstr. |
| 472 | /// |
| 473 | /// This function also serves as the MachineInstr destructor - the real |
| 474 | /// ~MachineInstr() destructor must be empty. |
| 475 | void MachineFunction::deleteMachineInstr(MachineInstr *MI) { |
| 476 | // Verify that a call site info is at valid state. This assertion should |
| 477 | // be triggered during the implementation of support for the |
| 478 | // call site info of a new architecture. If the assertion is triggered, |
| 479 | // back trace will tell where to insert a call to updateCallSiteInfo(). |
| 480 | assert((!MI->isCandidateForAdditionalCallInfo() || |
| 481 | !CallSitesInfo.contains(MI)) && |
| 482 | "Call site info was not updated!" ); |
| 483 | // Verify that the "called globals" info is in a valid state. |
| 484 | assert((!MI->isCandidateForAdditionalCallInfo() || |
| 485 | !CalledGlobalsInfo.contains(MI)) && |
| 486 | "Called globals info was not updated!" ); |
| 487 | // Strip it for parts. The operand array and the MI object itself are |
| 488 | // independently recyclable. |
| 489 | if (MI->Operands) |
| 490 | deallocateOperandArray(Cap: MI->CapOperands, Array: MI->Operands); |
| 491 | // Don't call ~MachineInstr() which must be trivial anyway because |
| 492 | // ~MachineFunction drops whole lists of MachineInstrs wihout calling their |
| 493 | // destructors. |
| 494 | InstructionRecycler.Deallocate(Allocator, Element: MI); |
| 495 | } |
| 496 | |
| 497 | /// Allocate a new MachineBasicBlock. Use this instead of |
| 498 | /// `new MachineBasicBlock'. |
| 499 | MachineBasicBlock * |
| 500 | MachineFunction::CreateMachineBasicBlock(const BasicBlock *BB, |
| 501 | std::optional<UniqueBBID> BBID) { |
| 502 | MachineBasicBlock *MBB = |
| 503 | new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator)) |
| 504 | MachineBasicBlock(*this, BB); |
| 505 | // Set BBID for `-basic-block-sections=list` and `-basic-block-address-map` to |
| 506 | // allow robust mapping of profiles to basic blocks. |
| 507 | if (Target.Options.BBAddrMap || |
| 508 | Target.getBBSectionsType() == BasicBlockSection::List) |
| 509 | MBB->setBBID(BBID.has_value() ? *BBID : UniqueBBID{.BaseID: NextBBID++, .CloneID: 0}); |
| 510 | return MBB; |
| 511 | } |
| 512 | |
| 513 | /// Delete the given MachineBasicBlock. |
| 514 | void MachineFunction::deleteMachineBasicBlock(MachineBasicBlock *MBB) { |
| 515 | assert(MBB->getParent() == this && "MBB parent mismatch!" ); |
| 516 | // Clean up any references to MBB in jump tables before deleting it. |
| 517 | if (JumpTableInfo) |
| 518 | JumpTableInfo->RemoveMBBFromJumpTables(MBB); |
| 519 | MBB->~MachineBasicBlock(); |
| 520 | BasicBlockRecycler.Deallocate(Allocator, Element: MBB); |
| 521 | } |
| 522 | |
| 523 | MachineMemOperand *MachineFunction::getMachineMemOperand( |
| 524 | MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size, |
| 525 | Align BaseAlignment, const AAMDNodes &AAInfo, const MDNode *Ranges, |
| 526 | SyncScope::ID SSID, AtomicOrdering Ordering, |
| 527 | AtomicOrdering FailureOrdering) { |
| 528 | assert((!Size.hasValue() || |
| 529 | Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && |
| 530 | "Unexpected an unknown size to be represented using " |
| 531 | "LocationSize::beforeOrAfter()" ); |
| 532 | return new (Allocator) |
| 533 | MachineMemOperand(PtrInfo, F, Size, BaseAlignment, AAInfo, Ranges, SSID, |
| 534 | Ordering, FailureOrdering); |
| 535 | } |
| 536 | |
| 537 | MachineMemOperand *MachineFunction::getMachineMemOperand( |
| 538 | MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy, |
| 539 | Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges, |
| 540 | SyncScope::ID SSID, AtomicOrdering Ordering, |
| 541 | AtomicOrdering FailureOrdering) { |
| 542 | return new (Allocator) |
| 543 | MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID, |
| 544 | Ordering, FailureOrdering); |
| 545 | } |
| 546 | |
| 547 | MachineMemOperand * |
| 548 | MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, |
| 549 | const MachinePointerInfo &PtrInfo, |
| 550 | LocationSize Size) { |
| 551 | assert((!Size.hasValue() || |
| 552 | Size.getValue().getKnownMinValue() != ~UINT64_C(0)) && |
| 553 | "Unexpected an unknown size to be represented using " |
| 554 | "LocationSize::beforeOrAfter()" ); |
| 555 | return new (Allocator) |
| 556 | MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(), |
| 557 | AAMDNodes(), nullptr, MMO->getSyncScopeID(), |
| 558 | MMO->getSuccessOrdering(), MMO->getFailureOrdering()); |
| 559 | } |
| 560 | |
| 561 | MachineMemOperand *MachineFunction::getMachineMemOperand( |
| 562 | const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) { |
| 563 | return new (Allocator) |
| 564 | MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(), |
| 565 | AAMDNodes(), nullptr, MMO->getSyncScopeID(), |
| 566 | MMO->getSuccessOrdering(), MMO->getFailureOrdering()); |
| 567 | } |
| 568 | |
| 569 | MachineMemOperand * |
| 570 | MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, |
| 571 | int64_t Offset, LLT Ty) { |
| 572 | const MachinePointerInfo &PtrInfo = MMO->getPointerInfo(); |
| 573 | |
| 574 | // If there is no pointer value, the offset isn't tracked so we need to adjust |
| 575 | // the base alignment. |
| 576 | Align Alignment = PtrInfo.V.isNull() |
| 577 | ? commonAlignment(A: MMO->getBaseAlign(), Offset) |
| 578 | : MMO->getBaseAlign(); |
| 579 | |
| 580 | // Do not preserve ranges, since we don't necessarily know what the high bits |
| 581 | // are anymore. |
| 582 | return new (Allocator) MachineMemOperand( |
| 583 | PtrInfo.getWithOffset(O: Offset), MMO->getFlags(), Ty, Alignment, |
| 584 | MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(), |
| 585 | MMO->getSuccessOrdering(), MMO->getFailureOrdering()); |
| 586 | } |
| 587 | |
| 588 | MachineMemOperand * |
| 589 | MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, |
| 590 | const AAMDNodes &AAInfo) { |
| 591 | MachinePointerInfo MPI = MMO->getValue() ? |
| 592 | MachinePointerInfo(MMO->getValue(), MMO->getOffset()) : |
| 593 | MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset()); |
| 594 | |
| 595 | return new (Allocator) MachineMemOperand( |
| 596 | MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo, |
| 597 | MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(), |
| 598 | MMO->getFailureOrdering()); |
| 599 | } |
| 600 | |
| 601 | MachineMemOperand * |
| 602 | MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO, |
| 603 | MachineMemOperand::Flags Flags) { |
| 604 | return new (Allocator) MachineMemOperand( |
| 605 | MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(), |
| 606 | MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(), |
| 607 | MMO->getSuccessOrdering(), MMO->getFailureOrdering()); |
| 608 | } |
| 609 | |
| 610 | MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo( |
| 611 | ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol, |
| 612 | MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker, MDNode *PCSections, |
| 613 | uint32_t CFIType, MDNode *MMRAs) { |
| 614 | return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol, |
| 615 | PostInstrSymbol, HeapAllocMarker, |
| 616 | PCSections, CFIType, MMRAs); |
| 617 | } |
| 618 | |
| 619 | const char *MachineFunction::createExternalSymbolName(StringRef Name) { |
| 620 | char *Dest = Allocator.Allocate<char>(Num: Name.size() + 1); |
| 621 | llvm::copy(Range&: Name, Out: Dest); |
| 622 | Dest[Name.size()] = 0; |
| 623 | return Dest; |
| 624 | } |
| 625 | |
| 626 | uint32_t *MachineFunction::allocateRegMask() { |
| 627 | unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs(); |
| 628 | unsigned Size = MachineOperand::getRegMaskSize(NumRegs); |
| 629 | uint32_t *Mask = Allocator.Allocate<uint32_t>(Num: Size); |
| 630 | memset(s: Mask, c: 0, n: Size * sizeof(Mask[0])); |
| 631 | return Mask; |
| 632 | } |
| 633 | |
| 634 | ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) { |
| 635 | int* AllocMask = Allocator.Allocate<int>(Num: Mask.size()); |
| 636 | copy(Range&: Mask, Out: AllocMask); |
| 637 | return {AllocMask, Mask.size()}; |
| 638 | } |
| 639 | |
| 640 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 641 | LLVM_DUMP_METHOD void MachineFunction::dump() const { |
| 642 | print(dbgs()); |
| 643 | } |
| 644 | #endif |
| 645 | |
| 646 | StringRef MachineFunction::getName() const { |
| 647 | return getFunction().getName(); |
| 648 | } |
| 649 | |
| 650 | void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const { |
| 651 | OS << "# Machine code for function " << getName() << ": " ; |
| 652 | getProperties().print(OS); |
| 653 | OS << '\n'; |
| 654 | |
| 655 | // Print Frame Information |
| 656 | FrameInfo->print(MF: *this, OS); |
| 657 | |
| 658 | // Print JumpTable Information |
| 659 | if (JumpTableInfo) |
| 660 | JumpTableInfo->print(OS); |
| 661 | |
| 662 | // Print Constant Pool |
| 663 | ConstantPool->print(OS); |
| 664 | |
| 665 | const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo(); |
| 666 | |
| 667 | if (RegInfo && !RegInfo->livein_empty()) { |
| 668 | OS << "Function Live Ins: " ; |
| 669 | for (MachineRegisterInfo::livein_iterator |
| 670 | I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) { |
| 671 | OS << printReg(Reg: I->first, TRI); |
| 672 | if (I->second) |
| 673 | OS << " in " << printReg(Reg: I->second, TRI); |
| 674 | if (std::next(x: I) != E) |
| 675 | OS << ", " ; |
| 676 | } |
| 677 | OS << '\n'; |
| 678 | } |
| 679 | |
| 680 | ModuleSlotTracker MST(getFunction().getParent()); |
| 681 | MST.incorporateFunction(F: getFunction()); |
| 682 | for (const auto &BB : *this) { |
| 683 | OS << '\n'; |
| 684 | // If we print the whole function, print it at its most verbose level. |
| 685 | BB.print(OS, MST, Indexes, /*IsStandalone=*/true); |
| 686 | } |
| 687 | |
| 688 | OS << "\n# End machine code for function " << getName() << ".\n\n" ; |
| 689 | } |
| 690 | |
| 691 | /// True if this function needs frame moves for debug or exceptions. |
| 692 | bool MachineFunction::needsFrameMoves() const { |
| 693 | // TODO: Ideally, what we'd like is to have a switch that allows emitting |
| 694 | // synchronous (precise at call-sites only) CFA into .eh_frame. However, even |
| 695 | // under this switch, we'd like .debug_frame to be precise when using -g. At |
| 696 | // this moment, there's no way to specify that some CFI directives go into |
| 697 | // .eh_frame only, while others go into .debug_frame only. |
| 698 | return getTarget().Options.ForceDwarfFrameSection || |
| 699 | F.needsUnwindTableEntry() || |
| 700 | !F.getParent()->debug_compile_units().empty(); |
| 701 | } |
| 702 | |
| 703 | namespace llvm { |
| 704 | |
| 705 | template<> |
| 706 | struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits { |
| 707 | DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} |
| 708 | |
| 709 | static std::string getGraphName(const MachineFunction *F) { |
| 710 | return ("CFG for '" + F->getName() + "' function" ).str(); |
| 711 | } |
| 712 | |
| 713 | std::string getNodeLabel(const MachineBasicBlock *Node, |
| 714 | const MachineFunction *Graph) { |
| 715 | std::string OutStr; |
| 716 | { |
| 717 | raw_string_ostream OSS(OutStr); |
| 718 | |
| 719 | if (isSimple()) { |
| 720 | OSS << printMBBReference(MBB: *Node); |
| 721 | if (const BasicBlock *BB = Node->getBasicBlock()) |
| 722 | OSS << ": " << BB->getName(); |
| 723 | } else |
| 724 | Node->print(OS&: OSS); |
| 725 | } |
| 726 | |
| 727 | if (OutStr[0] == '\n') OutStr.erase(position: OutStr.begin()); |
| 728 | |
| 729 | // Process string output to make it nicer... |
| 730 | for (unsigned i = 0; i != OutStr.length(); ++i) |
| 731 | if (OutStr[i] == '\n') { // Left justify |
| 732 | OutStr[i] = '\\'; |
| 733 | OutStr.insert(p: OutStr.begin()+i+1, c: 'l'); |
| 734 | } |
| 735 | return OutStr; |
| 736 | } |
| 737 | }; |
| 738 | |
| 739 | } // end namespace llvm |
| 740 | |
| 741 | void MachineFunction::viewCFG() const |
| 742 | { |
| 743 | #ifndef NDEBUG |
| 744 | ViewGraph(this, "mf" + getName()); |
| 745 | #else |
| 746 | errs() << "MachineFunction::viewCFG is only available in debug builds on " |
| 747 | << "systems with Graphviz or gv!\n" ; |
| 748 | #endif // NDEBUG |
| 749 | } |
| 750 | |
| 751 | void MachineFunction::viewCFGOnly() const |
| 752 | { |
| 753 | #ifndef NDEBUG |
| 754 | ViewGraph(this, "mf" + getName(), true); |
| 755 | #else |
| 756 | errs() << "MachineFunction::viewCFGOnly is only available in debug builds on " |
| 757 | << "systems with Graphviz or gv!\n" ; |
| 758 | #endif // NDEBUG |
| 759 | } |
| 760 | |
| 761 | /// Add the specified physical register as a live-in value and |
| 762 | /// create a corresponding virtual register for it. |
| 763 | Register MachineFunction::addLiveIn(MCRegister PReg, |
| 764 | const TargetRegisterClass *RC) { |
| 765 | MachineRegisterInfo &MRI = getRegInfo(); |
| 766 | Register VReg = MRI.getLiveInVirtReg(PReg); |
| 767 | if (VReg) { |
| 768 | const TargetRegisterClass *VRegRC = MRI.getRegClass(Reg: VReg); |
| 769 | (void)VRegRC; |
| 770 | // A physical register can be added several times. |
| 771 | // Between two calls, the register class of the related virtual register |
| 772 | // may have been constrained to match some operation constraints. |
| 773 | // In that case, check that the current register class includes the |
| 774 | // physical register and is a sub class of the specified RC. |
| 775 | assert((VRegRC == RC || (VRegRC->contains(PReg) && |
| 776 | RC->hasSubClassEq(VRegRC))) && |
| 777 | "Register class mismatch!" ); |
| 778 | return VReg; |
| 779 | } |
| 780 | VReg = MRI.createVirtualRegister(RegClass: RC); |
| 781 | MRI.addLiveIn(Reg: PReg, vreg: VReg); |
| 782 | return VReg; |
| 783 | } |
| 784 | |
| 785 | /// Return the MCSymbol for the specified non-empty jump table. |
| 786 | /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a |
| 787 | /// normal 'L' label is returned. |
| 788 | MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx, |
| 789 | bool isLinkerPrivate) const { |
| 790 | const DataLayout &DL = getDataLayout(); |
| 791 | assert(JumpTableInfo && "No jump tables" ); |
| 792 | assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!" ); |
| 793 | |
| 794 | StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix() |
| 795 | : DL.getPrivateGlobalPrefix(); |
| 796 | SmallString<60> Name; |
| 797 | raw_svector_ostream(Name) |
| 798 | << Prefix << "JTI" << getFunctionNumber() << '_' << JTI; |
| 799 | return Ctx.getOrCreateSymbol(Name); |
| 800 | } |
| 801 | |
| 802 | /// Return a function-local symbol to represent the PIC base. |
| 803 | MCSymbol *MachineFunction::getPICBaseSymbol() const { |
| 804 | const DataLayout &DL = getDataLayout(); |
| 805 | return Ctx.getOrCreateSymbol(Name: Twine(DL.getPrivateGlobalPrefix()) + |
| 806 | Twine(getFunctionNumber()) + "$pb" ); |
| 807 | } |
| 808 | |
| 809 | /// \name Exception Handling |
| 810 | /// \{ |
| 811 | |
| 812 | LandingPadInfo & |
| 813 | MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) { |
| 814 | unsigned N = LandingPads.size(); |
| 815 | for (unsigned i = 0; i < N; ++i) { |
| 816 | LandingPadInfo &LP = LandingPads[i]; |
| 817 | if (LP.LandingPadBlock == LandingPad) |
| 818 | return LP; |
| 819 | } |
| 820 | |
| 821 | LandingPads.push_back(x: LandingPadInfo(LandingPad)); |
| 822 | return LandingPads[N]; |
| 823 | } |
| 824 | |
| 825 | void MachineFunction::addInvoke(MachineBasicBlock *LandingPad, |
| 826 | MCSymbol *BeginLabel, MCSymbol *EndLabel) { |
| 827 | LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); |
| 828 | LP.BeginLabels.push_back(Elt: BeginLabel); |
| 829 | LP.EndLabels.push_back(Elt: EndLabel); |
| 830 | } |
| 831 | |
| 832 | MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) { |
| 833 | MCSymbol *LandingPadLabel = Ctx.createTempSymbol(); |
| 834 | LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad); |
| 835 | LP.LandingPadLabel = LandingPadLabel; |
| 836 | |
| 837 | BasicBlock::const_iterator FirstI = |
| 838 | LandingPad->getBasicBlock()->getFirstNonPHIIt(); |
| 839 | if (const auto *LPI = dyn_cast<LandingPadInst>(Val&: FirstI)) { |
| 840 | // If there's no typeid list specified, then "cleanup" is implicit. |
| 841 | // Otherwise, id 0 is reserved for the cleanup action. |
| 842 | if (LPI->isCleanup() && LPI->getNumClauses() != 0) |
| 843 | LP.TypeIds.push_back(x: 0); |
| 844 | |
| 845 | // FIXME: New EH - Add the clauses in reverse order. This isn't 100% |
| 846 | // correct, but we need to do it this way because of how the DWARF EH |
| 847 | // emitter processes the clauses. |
| 848 | for (unsigned I = LPI->getNumClauses(); I != 0; --I) { |
| 849 | Value *Val = LPI->getClause(Idx: I - 1); |
| 850 | if (LPI->isCatch(Idx: I - 1)) { |
| 851 | LP.TypeIds.push_back( |
| 852 | x: getTypeIDFor(TI: dyn_cast<GlobalValue>(Val: Val->stripPointerCasts()))); |
| 853 | } else { |
| 854 | // Add filters in a list. |
| 855 | auto *CVal = cast<Constant>(Val); |
| 856 | SmallVector<unsigned, 4> FilterList; |
| 857 | for (const Use &U : CVal->operands()) |
| 858 | FilterList.push_back( |
| 859 | Elt: getTypeIDFor(TI: cast<GlobalValue>(Val: U->stripPointerCasts()))); |
| 860 | |
| 861 | LP.TypeIds.push_back(x: getFilterIDFor(TyIds: FilterList)); |
| 862 | } |
| 863 | } |
| 864 | |
| 865 | } else if (const auto *CPI = dyn_cast<CatchPadInst>(Val&: FirstI)) { |
| 866 | for (unsigned I = CPI->arg_size(); I != 0; --I) { |
| 867 | auto *TypeInfo = |
| 868 | dyn_cast<GlobalValue>(Val: CPI->getArgOperand(i: I - 1)->stripPointerCasts()); |
| 869 | LP.TypeIds.push_back(x: getTypeIDFor(TI: TypeInfo)); |
| 870 | } |
| 871 | |
| 872 | } else { |
| 873 | assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!" ); |
| 874 | } |
| 875 | |
| 876 | return LandingPadLabel; |
| 877 | } |
| 878 | |
| 879 | void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym, |
| 880 | ArrayRef<unsigned> Sites) { |
| 881 | LPadToCallSiteMap[Sym].append(in_start: Sites.begin(), in_end: Sites.end()); |
| 882 | } |
| 883 | |
| 884 | unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) { |
| 885 | for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i) |
| 886 | if (TypeInfos[i] == TI) return i + 1; |
| 887 | |
| 888 | TypeInfos.push_back(x: TI); |
| 889 | return TypeInfos.size(); |
| 890 | } |
| 891 | |
| 892 | int MachineFunction::getFilterIDFor(ArrayRef<unsigned> TyIds) { |
| 893 | // If the new filter coincides with the tail of an existing filter, then |
| 894 | // re-use the existing filter. Folding filters more than this requires |
| 895 | // re-ordering filters and/or their elements - probably not worth it. |
| 896 | for (unsigned i : FilterEnds) { |
| 897 | unsigned j = TyIds.size(); |
| 898 | |
| 899 | while (i && j) |
| 900 | if (FilterIds[--i] != TyIds[--j]) |
| 901 | goto try_next; |
| 902 | |
| 903 | if (!j) |
| 904 | // The new filter coincides with range [i, end) of the existing filter. |
| 905 | return -(1 + i); |
| 906 | |
| 907 | try_next:; |
| 908 | } |
| 909 | |
| 910 | // Add the new filter. |
| 911 | int FilterID = -(1 + FilterIds.size()); |
| 912 | FilterIds.reserve(n: FilterIds.size() + TyIds.size() + 1); |
| 913 | llvm::append_range(C&: FilterIds, R&: TyIds); |
| 914 | FilterEnds.push_back(x: FilterIds.size()); |
| 915 | FilterIds.push_back(x: 0); // terminator |
| 916 | return FilterID; |
| 917 | } |
| 918 | |
| 919 | MachineFunction::CallSiteInfoMap::iterator |
| 920 | MachineFunction::getCallSiteInfo(const MachineInstr *MI) { |
| 921 | assert(MI->isCandidateForAdditionalCallInfo() && |
| 922 | "Call site info refers only to call (MI) candidates" ); |
| 923 | |
| 924 | if (!Target.Options.EmitCallSiteInfo) |
| 925 | return CallSitesInfo.end(); |
| 926 | return CallSitesInfo.find(Val: MI); |
| 927 | } |
| 928 | |
| 929 | /// Return the call machine instruction or find a call within bundle. |
| 930 | static const MachineInstr *getCallInstr(const MachineInstr *MI) { |
| 931 | if (!MI->isBundle()) |
| 932 | return MI; |
| 933 | |
| 934 | for (const auto &BMI : make_range(x: getBundleStart(I: MI->getIterator()), |
| 935 | y: getBundleEnd(I: MI->getIterator()))) |
| 936 | if (BMI.isCandidateForAdditionalCallInfo()) |
| 937 | return &BMI; |
| 938 | |
| 939 | llvm_unreachable("Unexpected bundle without a call site candidate" ); |
| 940 | } |
| 941 | |
| 942 | void MachineFunction::eraseAdditionalCallInfo(const MachineInstr *MI) { |
| 943 | assert(MI->shouldUpdateAdditionalCallInfo() && |
| 944 | "Call info refers only to call (MI) candidates or " |
| 945 | "candidates inside bundles" ); |
| 946 | |
| 947 | const MachineInstr *CallMI = getCallInstr(MI); |
| 948 | |
| 949 | CallSiteInfoMap::iterator CSIt = getCallSiteInfo(MI: CallMI); |
| 950 | if (CSIt != CallSitesInfo.end()) |
| 951 | CallSitesInfo.erase(I: CSIt); |
| 952 | |
| 953 | CalledGlobalsInfo.erase(Val: CallMI); |
| 954 | } |
| 955 | |
| 956 | void MachineFunction::copyAdditionalCallInfo(const MachineInstr *Old, |
| 957 | const MachineInstr *New) { |
| 958 | assert(Old->shouldUpdateAdditionalCallInfo() && |
| 959 | "Call info refers only to call (MI) candidates or " |
| 960 | "candidates inside bundles" ); |
| 961 | |
| 962 | if (!New->isCandidateForAdditionalCallInfo()) |
| 963 | return eraseAdditionalCallInfo(MI: Old); |
| 964 | |
| 965 | const MachineInstr *OldCallMI = getCallInstr(MI: Old); |
| 966 | CallSiteInfoMap::iterator CSIt = getCallSiteInfo(MI: OldCallMI); |
| 967 | if (CSIt != CallSitesInfo.end()) { |
| 968 | CallSiteInfo CSInfo = CSIt->second; |
| 969 | CallSitesInfo[New] = std::move(CSInfo); |
| 970 | } |
| 971 | |
| 972 | CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(Val: OldCallMI); |
| 973 | if (CGIt != CalledGlobalsInfo.end()) { |
| 974 | CalledGlobalInfo CGInfo = CGIt->second; |
| 975 | CalledGlobalsInfo[New] = std::move(CGInfo); |
| 976 | } |
| 977 | } |
| 978 | |
| 979 | void MachineFunction::moveAdditionalCallInfo(const MachineInstr *Old, |
| 980 | const MachineInstr *New) { |
| 981 | assert(Old->shouldUpdateAdditionalCallInfo() && |
| 982 | "Call info refers only to call (MI) candidates or " |
| 983 | "candidates inside bundles" ); |
| 984 | |
| 985 | if (!New->isCandidateForAdditionalCallInfo()) |
| 986 | return eraseAdditionalCallInfo(MI: Old); |
| 987 | |
| 988 | const MachineInstr *OldCallMI = getCallInstr(MI: Old); |
| 989 | CallSiteInfoMap::iterator CSIt = getCallSiteInfo(MI: OldCallMI); |
| 990 | if (CSIt != CallSitesInfo.end()) { |
| 991 | CallSiteInfo CSInfo = std::move(CSIt->second); |
| 992 | CallSitesInfo.erase(I: CSIt); |
| 993 | CallSitesInfo[New] = std::move(CSInfo); |
| 994 | } |
| 995 | |
| 996 | CalledGlobalsMap::iterator CGIt = CalledGlobalsInfo.find(Val: OldCallMI); |
| 997 | if (CGIt != CalledGlobalsInfo.end()) { |
| 998 | CalledGlobalInfo CGInfo = std::move(CGIt->second); |
| 999 | CalledGlobalsInfo.erase(I: CGIt); |
| 1000 | CalledGlobalsInfo[New] = std::move(CGInfo); |
| 1001 | } |
| 1002 | } |
| 1003 | |
| 1004 | void MachineFunction::setDebugInstrNumberingCount(unsigned Num) { |
| 1005 | DebugInstrNumberingCount = Num; |
| 1006 | } |
| 1007 | |
| 1008 | void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A, |
| 1009 | DebugInstrOperandPair B, |
| 1010 | unsigned Subreg) { |
| 1011 | // Catch any accidental self-loops. |
| 1012 | assert(A.first != B.first); |
| 1013 | // Don't allow any substitutions _from_ the memory operand number. |
| 1014 | assert(A.second != DebugOperandMemNumber); |
| 1015 | |
| 1016 | DebugValueSubstitutions.push_back(Elt: {A, B, Subreg}); |
| 1017 | } |
| 1018 | |
| 1019 | void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old, |
| 1020 | MachineInstr &New, |
| 1021 | unsigned MaxOperand) { |
| 1022 | // If the Old instruction wasn't tracked at all, there is no work to do. |
| 1023 | unsigned OldInstrNum = Old.peekDebugInstrNum(); |
| 1024 | if (!OldInstrNum) |
| 1025 | return; |
| 1026 | |
| 1027 | // Iterate over all operands looking for defs to create substitutions for. |
| 1028 | // Avoid creating new instr numbers unless we create a new substitution. |
| 1029 | // While this has no functional effect, it risks confusing someone reading |
| 1030 | // MIR output. |
| 1031 | // Examine all the operands, or the first N specified by the caller. |
| 1032 | MaxOperand = std::min(a: MaxOperand, b: Old.getNumOperands()); |
| 1033 | for (unsigned int I = 0; I < MaxOperand; ++I) { |
| 1034 | const auto &OldMO = Old.getOperand(i: I); |
| 1035 | auto &NewMO = New.getOperand(i: I); |
| 1036 | (void)NewMO; |
| 1037 | |
| 1038 | if (!OldMO.isReg() || !OldMO.isDef()) |
| 1039 | continue; |
| 1040 | assert(NewMO.isDef()); |
| 1041 | |
| 1042 | unsigned NewInstrNum = New.getDebugInstrNum(); |
| 1043 | makeDebugValueSubstitution(A: std::make_pair(x&: OldInstrNum, y&: I), |
| 1044 | B: std::make_pair(x&: NewInstrNum, y&: I)); |
| 1045 | } |
| 1046 | } |
| 1047 | |
| 1048 | auto MachineFunction::salvageCopySSA( |
| 1049 | MachineInstr &MI, DenseMap<Register, DebugInstrOperandPair> &DbgPHICache) |
| 1050 | -> DebugInstrOperandPair { |
| 1051 | const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); |
| 1052 | |
| 1053 | // Check whether this copy-like instruction has already been salvaged into |
| 1054 | // an operand pair. |
| 1055 | Register Dest; |
| 1056 | if (auto CopyDstSrc = TII.isCopyLikeInstr(MI)) { |
| 1057 | Dest = CopyDstSrc->Destination->getReg(); |
| 1058 | } else { |
| 1059 | assert(MI.isSubregToReg()); |
| 1060 | Dest = MI.getOperand(i: 0).getReg(); |
| 1061 | } |
| 1062 | |
| 1063 | auto CacheIt = DbgPHICache.find(Val: Dest); |
| 1064 | if (CacheIt != DbgPHICache.end()) |
| 1065 | return CacheIt->second; |
| 1066 | |
| 1067 | // Calculate the instruction number to use, or install a DBG_PHI. |
| 1068 | auto OperandPair = salvageCopySSAImpl(MI); |
| 1069 | DbgPHICache.insert(KV: {Dest, OperandPair}); |
| 1070 | return OperandPair; |
| 1071 | } |
| 1072 | |
| 1073 | auto MachineFunction::salvageCopySSAImpl(MachineInstr &MI) |
| 1074 | -> DebugInstrOperandPair { |
| 1075 | MachineRegisterInfo &MRI = getRegInfo(); |
| 1076 | const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); |
| 1077 | const TargetInstrInfo &TII = *getSubtarget().getInstrInfo(); |
| 1078 | |
| 1079 | // Chase the value read by a copy-like instruction back to the instruction |
| 1080 | // that ultimately _defines_ that value. This may pass: |
| 1081 | // * Through multiple intermediate copies, including subregister moves / |
| 1082 | // copies, |
| 1083 | // * Copies from physical registers that must then be traced back to the |
| 1084 | // defining instruction, |
| 1085 | // * Or, physical registers may be live-in to (only) the entry block, which |
| 1086 | // requires a DBG_PHI to be created. |
| 1087 | // We can pursue this problem in that order: trace back through copies, |
| 1088 | // optionally through a physical register, to a defining instruction. We |
| 1089 | // should never move from physreg to vreg. As we're still in SSA form, no need |
| 1090 | // to worry about partial definitions of registers. |
| 1091 | |
| 1092 | // Helper lambda to interpret a copy-like instruction. Takes instruction, |
| 1093 | // returns the register read and any subregister identifying which part is |
| 1094 | // read. |
| 1095 | auto GetRegAndSubreg = |
| 1096 | [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> { |
| 1097 | Register NewReg, OldReg; |
| 1098 | unsigned SubReg; |
| 1099 | if (Cpy.isCopy()) { |
| 1100 | OldReg = Cpy.getOperand(i: 0).getReg(); |
| 1101 | NewReg = Cpy.getOperand(i: 1).getReg(); |
| 1102 | SubReg = Cpy.getOperand(i: 1).getSubReg(); |
| 1103 | } else if (Cpy.isSubregToReg()) { |
| 1104 | OldReg = Cpy.getOperand(i: 0).getReg(); |
| 1105 | NewReg = Cpy.getOperand(i: 2).getReg(); |
| 1106 | SubReg = Cpy.getOperand(i: 3).getImm(); |
| 1107 | } else { |
| 1108 | auto CopyDetails = *TII.isCopyInstr(MI: Cpy); |
| 1109 | const MachineOperand &Src = *CopyDetails.Source; |
| 1110 | const MachineOperand &Dest = *CopyDetails.Destination; |
| 1111 | OldReg = Dest.getReg(); |
| 1112 | NewReg = Src.getReg(); |
| 1113 | SubReg = Src.getSubReg(); |
| 1114 | } |
| 1115 | |
| 1116 | return {NewReg, SubReg}; |
| 1117 | }; |
| 1118 | |
| 1119 | // First seek either the defining instruction, or a copy from a physreg. |
| 1120 | // During search, the current state is the current copy instruction, and which |
| 1121 | // register we've read. Accumulate qualifying subregisters into SubregsSeen; |
| 1122 | // deal with those later. |
| 1123 | auto State = GetRegAndSubreg(MI); |
| 1124 | auto CurInst = MI.getIterator(); |
| 1125 | SmallVector<unsigned, 4> SubregsSeen; |
| 1126 | while (true) { |
| 1127 | // If we've found a copy from a physreg, first portion of search is over. |
| 1128 | if (!State.first.isVirtual()) |
| 1129 | break; |
| 1130 | |
| 1131 | // Record any subregister qualifier. |
| 1132 | if (State.second) |
| 1133 | SubregsSeen.push_back(Elt: State.second); |
| 1134 | |
| 1135 | assert(MRI.hasOneDef(State.first)); |
| 1136 | MachineInstr &Inst = *MRI.def_begin(RegNo: State.first)->getParent(); |
| 1137 | CurInst = Inst.getIterator(); |
| 1138 | |
| 1139 | // Any non-copy instruction is the defining instruction we're seeking. |
| 1140 | if (!Inst.isCopyLike() && !TII.isCopyLikeInstr(MI: Inst)) |
| 1141 | break; |
| 1142 | State = GetRegAndSubreg(Inst); |
| 1143 | }; |
| 1144 | |
| 1145 | // Helper lambda to apply additional subregister substitutions to a known |
| 1146 | // instruction/operand pair. Adds new (fake) substitutions so that we can |
| 1147 | // record the subregister. FIXME: this isn't very space efficient if multiple |
| 1148 | // values are tracked back through the same copies; cache something later. |
| 1149 | auto ApplySubregisters = |
| 1150 | [&](DebugInstrOperandPair P) -> DebugInstrOperandPair { |
| 1151 | for (unsigned Subreg : reverse(C&: SubregsSeen)) { |
| 1152 | // Fetch a new instruction number, not attached to an actual instruction. |
| 1153 | unsigned NewInstrNumber = getNewDebugInstrNum(); |
| 1154 | // Add a substitution from the "new" number to the known one, with a |
| 1155 | // qualifying subreg. |
| 1156 | makeDebugValueSubstitution(A: {NewInstrNumber, 0}, B: P, Subreg); |
| 1157 | // Return the new number; to find the underlying value, consumers need to |
| 1158 | // deal with the qualifying subreg. |
| 1159 | P = {NewInstrNumber, 0}; |
| 1160 | } |
| 1161 | return P; |
| 1162 | }; |
| 1163 | |
| 1164 | // If we managed to find the defining instruction after COPYs, return an |
| 1165 | // instruction / operand pair after adding subregister qualifiers. |
| 1166 | if (State.first.isVirtual()) { |
| 1167 | // Virtual register def -- we can just look up where this happens. |
| 1168 | MachineInstr *Inst = MRI.def_begin(RegNo: State.first)->getParent(); |
| 1169 | for (auto &MO : Inst->all_defs()) { |
| 1170 | if (MO.getReg() != State.first) |
| 1171 | continue; |
| 1172 | return ApplySubregisters({Inst->getDebugInstrNum(), MO.getOperandNo()}); |
| 1173 | } |
| 1174 | |
| 1175 | llvm_unreachable("Vreg def with no corresponding operand?" ); |
| 1176 | } |
| 1177 | |
| 1178 | // Our search ended in a copy from a physreg: walk back up the function |
| 1179 | // looking for whatever defines the physreg. |
| 1180 | assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst)); |
| 1181 | State = GetRegAndSubreg(*CurInst); |
| 1182 | Register RegToSeek = State.first; |
| 1183 | |
| 1184 | auto RMII = CurInst->getReverseIterator(); |
| 1185 | auto PrevInstrs = make_range(x: RMII, y: CurInst->getParent()->instr_rend()); |
| 1186 | for (auto &ToExamine : PrevInstrs) { |
| 1187 | for (auto &MO : ToExamine.all_defs()) { |
| 1188 | // Test for operand that defines something aliasing RegToSeek. |
| 1189 | if (!TRI.regsOverlap(RegA: RegToSeek, RegB: MO.getReg())) |
| 1190 | continue; |
| 1191 | |
| 1192 | return ApplySubregisters( |
| 1193 | {ToExamine.getDebugInstrNum(), MO.getOperandNo()}); |
| 1194 | } |
| 1195 | } |
| 1196 | |
| 1197 | MachineBasicBlock &InsertBB = *CurInst->getParent(); |
| 1198 | |
| 1199 | // We reached the start of the block before finding a defining instruction. |
| 1200 | // There are numerous scenarios where this can happen: |
| 1201 | // * Constant physical registers, |
| 1202 | // * Several intrinsics that allow LLVM-IR to read arbitary registers, |
| 1203 | // * Arguments in the entry block, |
| 1204 | // * Exception handling landing pads. |
| 1205 | // Validating all of them is too difficult, so just insert a DBG_PHI reading |
| 1206 | // the variable value at this position, rather than checking it makes sense. |
| 1207 | |
| 1208 | // Create DBG_PHI for specified physreg. |
| 1209 | auto Builder = BuildMI(BB&: InsertBB, I: InsertBB.getFirstNonPHI(), MIMD: DebugLoc(), |
| 1210 | MCID: TII.get(Opcode: TargetOpcode::DBG_PHI)); |
| 1211 | Builder.addReg(RegNo: State.first); |
| 1212 | unsigned NewNum = getNewDebugInstrNum(); |
| 1213 | Builder.addImm(Val: NewNum); |
| 1214 | return ApplySubregisters({NewNum, 0u}); |
| 1215 | } |
| 1216 | |
| 1217 | void MachineFunction::finalizeDebugInstrRefs() { |
| 1218 | auto *TII = getSubtarget().getInstrInfo(); |
| 1219 | |
| 1220 | auto MakeUndefDbgValue = [&](MachineInstr &MI) { |
| 1221 | const MCInstrDesc &RefII = TII->get(Opcode: TargetOpcode::DBG_VALUE_LIST); |
| 1222 | MI.setDesc(RefII); |
| 1223 | MI.setDebugValueUndef(); |
| 1224 | }; |
| 1225 | |
| 1226 | DenseMap<Register, DebugInstrOperandPair> ArgDbgPHIs; |
| 1227 | for (auto &MBB : *this) { |
| 1228 | for (auto &MI : MBB) { |
| 1229 | if (!MI.isDebugRef()) |
| 1230 | continue; |
| 1231 | |
| 1232 | bool IsValidRef = true; |
| 1233 | |
| 1234 | for (MachineOperand &MO : MI.debug_operands()) { |
| 1235 | if (!MO.isReg()) |
| 1236 | continue; |
| 1237 | |
| 1238 | Register Reg = MO.getReg(); |
| 1239 | |
| 1240 | // Some vregs can be deleted as redundant in the meantime. Mark those |
| 1241 | // as DBG_VALUE $noreg. Additionally, some normal instructions are |
| 1242 | // quickly deleted, leaving dangling references to vregs with no def. |
| 1243 | if (Reg == 0 || !RegInfo->hasOneDef(RegNo: Reg)) { |
| 1244 | IsValidRef = false; |
| 1245 | break; |
| 1246 | } |
| 1247 | |
| 1248 | assert(Reg.isVirtual()); |
| 1249 | MachineInstr &DefMI = *RegInfo->def_instr_begin(RegNo: Reg); |
| 1250 | |
| 1251 | // If we've found a copy-like instruction, follow it back to the |
| 1252 | // instruction that defines the source value, see salvageCopySSA docs |
| 1253 | // for why this is important. |
| 1254 | if (DefMI.isCopyLike() || TII->isCopyInstr(MI: DefMI)) { |
| 1255 | auto Result = salvageCopySSA(MI&: DefMI, DbgPHICache&: ArgDbgPHIs); |
| 1256 | MO.ChangeToDbgInstrRef(InstrIdx: Result.first, OpIdx: Result.second); |
| 1257 | } else { |
| 1258 | // Otherwise, identify the operand number that the VReg refers to. |
| 1259 | unsigned OperandIdx = 0; |
| 1260 | for (const auto &DefMO : DefMI.operands()) { |
| 1261 | if (DefMO.isReg() && DefMO.isDef() && DefMO.getReg() == Reg) |
| 1262 | break; |
| 1263 | ++OperandIdx; |
| 1264 | } |
| 1265 | assert(OperandIdx < DefMI.getNumOperands()); |
| 1266 | |
| 1267 | // Morph this instr ref to point at the given instruction and operand. |
| 1268 | unsigned ID = DefMI.getDebugInstrNum(); |
| 1269 | MO.ChangeToDbgInstrRef(InstrIdx: ID, OpIdx: OperandIdx); |
| 1270 | } |
| 1271 | } |
| 1272 | |
| 1273 | if (!IsValidRef) |
| 1274 | MakeUndefDbgValue(MI); |
| 1275 | } |
| 1276 | } |
| 1277 | } |
| 1278 | |
| 1279 | bool MachineFunction::shouldUseDebugInstrRef() const { |
| 1280 | // Disable instr-ref at -O0: it's very slow (in compile time). We can still |
| 1281 | // have optimized code inlined into this unoptimized code, however with |
| 1282 | // fewer and less aggressive optimizations happening, coverage and accuracy |
| 1283 | // should not suffer. |
| 1284 | if (getTarget().getOptLevel() == CodeGenOptLevel::None) |
| 1285 | return false; |
| 1286 | |
| 1287 | // Don't use instr-ref if this function is marked optnone. |
| 1288 | if (F.hasFnAttribute(Kind: Attribute::OptimizeNone)) |
| 1289 | return false; |
| 1290 | |
| 1291 | if (llvm::debuginfoShouldUseDebugInstrRef(T: getTarget().getTargetTriple())) |
| 1292 | return true; |
| 1293 | |
| 1294 | return false; |
| 1295 | } |
| 1296 | |
| 1297 | bool MachineFunction::useDebugInstrRef() const { |
| 1298 | return UseDebugInstrRef; |
| 1299 | } |
| 1300 | |
| 1301 | void MachineFunction::setUseDebugInstrRef(bool Use) { |
| 1302 | UseDebugInstrRef = Use; |
| 1303 | } |
| 1304 | |
| 1305 | // Use one million as a high / reserved number. |
| 1306 | const unsigned MachineFunction::DebugOperandMemNumber = 1000000; |
| 1307 | |
| 1308 | /// \} |
| 1309 | |
| 1310 | //===----------------------------------------------------------------------===// |
| 1311 | // MachineJumpTableInfo implementation |
| 1312 | //===----------------------------------------------------------------------===// |
| 1313 | |
| 1314 | MachineJumpTableEntry::MachineJumpTableEntry( |
| 1315 | const std::vector<MachineBasicBlock *> &MBBs) |
| 1316 | : MBBs(MBBs), Hotness(MachineFunctionDataHotness::Unknown) {} |
| 1317 | |
| 1318 | /// Return the size of each entry in the jump table. |
| 1319 | unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const { |
| 1320 | // The size of a jump table entry is 4 bytes unless the entry is just the |
| 1321 | // address of a block, in which case it is the pointer size. |
| 1322 | switch (getEntryKind()) { |
| 1323 | case MachineJumpTableInfo::EK_BlockAddress: |
| 1324 | return TD.getPointerSize(); |
| 1325 | case MachineJumpTableInfo::EK_GPRel64BlockAddress: |
| 1326 | case MachineJumpTableInfo::EK_LabelDifference64: |
| 1327 | return 8; |
| 1328 | case MachineJumpTableInfo::EK_GPRel32BlockAddress: |
| 1329 | case MachineJumpTableInfo::EK_LabelDifference32: |
| 1330 | case MachineJumpTableInfo::EK_Custom32: |
| 1331 | return 4; |
| 1332 | case MachineJumpTableInfo::EK_Inline: |
| 1333 | return 0; |
| 1334 | } |
| 1335 | llvm_unreachable("Unknown jump table encoding!" ); |
| 1336 | } |
| 1337 | |
| 1338 | /// Return the alignment of each entry in the jump table. |
| 1339 | unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const { |
| 1340 | // The alignment of a jump table entry is the alignment of int32 unless the |
| 1341 | // entry is just the address of a block, in which case it is the pointer |
| 1342 | // alignment. |
| 1343 | switch (getEntryKind()) { |
| 1344 | case MachineJumpTableInfo::EK_BlockAddress: |
| 1345 | return TD.getPointerABIAlignment(AS: 0).value(); |
| 1346 | case MachineJumpTableInfo::EK_GPRel64BlockAddress: |
| 1347 | case MachineJumpTableInfo::EK_LabelDifference64: |
| 1348 | return TD.getABIIntegerTypeAlignment(BitWidth: 64).value(); |
| 1349 | case MachineJumpTableInfo::EK_GPRel32BlockAddress: |
| 1350 | case MachineJumpTableInfo::EK_LabelDifference32: |
| 1351 | case MachineJumpTableInfo::EK_Custom32: |
| 1352 | return TD.getABIIntegerTypeAlignment(BitWidth: 32).value(); |
| 1353 | case MachineJumpTableInfo::EK_Inline: |
| 1354 | return 1; |
| 1355 | } |
| 1356 | llvm_unreachable("Unknown jump table encoding!" ); |
| 1357 | } |
| 1358 | |
| 1359 | /// Create a new jump table entry in the jump table info. |
| 1360 | unsigned MachineJumpTableInfo::createJumpTableIndex( |
| 1361 | const std::vector<MachineBasicBlock*> &DestBBs) { |
| 1362 | assert(!DestBBs.empty() && "Cannot create an empty jump table!" ); |
| 1363 | JumpTables.push_back(x: MachineJumpTableEntry(DestBBs)); |
| 1364 | return JumpTables.size()-1; |
| 1365 | } |
| 1366 | |
| 1367 | bool MachineJumpTableInfo::updateJumpTableEntryHotness( |
| 1368 | size_t JTI, MachineFunctionDataHotness Hotness) { |
| 1369 | assert(JTI < JumpTables.size() && "Invalid JTI!" ); |
| 1370 | // Record the largest hotness value. |
| 1371 | if (Hotness <= JumpTables[JTI].Hotness) |
| 1372 | return false; |
| 1373 | |
| 1374 | JumpTables[JTI].Hotness = Hotness; |
| 1375 | return true; |
| 1376 | } |
| 1377 | |
| 1378 | /// If Old is the target of any jump tables, update the jump tables to branch |
| 1379 | /// to New instead. |
| 1380 | bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old, |
| 1381 | MachineBasicBlock *New) { |
| 1382 | assert(Old != New && "Not making a change?" ); |
| 1383 | bool MadeChange = false; |
| 1384 | for (size_t i = 0, e = JumpTables.size(); i != e; ++i) |
| 1385 | ReplaceMBBInJumpTable(Idx: i, Old, New); |
| 1386 | return MadeChange; |
| 1387 | } |
| 1388 | |
| 1389 | /// If MBB is present in any jump tables, remove it. |
| 1390 | bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) { |
| 1391 | bool MadeChange = false; |
| 1392 | for (MachineJumpTableEntry &JTE : JumpTables) { |
| 1393 | auto removeBeginItr = std::remove(first: JTE.MBBs.begin(), last: JTE.MBBs.end(), value: MBB); |
| 1394 | MadeChange |= (removeBeginItr != JTE.MBBs.end()); |
| 1395 | JTE.MBBs.erase(first: removeBeginItr, last: JTE.MBBs.end()); |
| 1396 | } |
| 1397 | return MadeChange; |
| 1398 | } |
| 1399 | |
| 1400 | /// If Old is a target of the jump tables, update the jump table to branch to |
| 1401 | /// New instead. |
| 1402 | bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx, |
| 1403 | MachineBasicBlock *Old, |
| 1404 | MachineBasicBlock *New) { |
| 1405 | assert(Old != New && "Not making a change?" ); |
| 1406 | bool MadeChange = false; |
| 1407 | MachineJumpTableEntry &JTE = JumpTables[Idx]; |
| 1408 | for (MachineBasicBlock *&MBB : JTE.MBBs) |
| 1409 | if (MBB == Old) { |
| 1410 | MBB = New; |
| 1411 | MadeChange = true; |
| 1412 | } |
| 1413 | return MadeChange; |
| 1414 | } |
| 1415 | |
| 1416 | void MachineJumpTableInfo::print(raw_ostream &OS) const { |
| 1417 | if (JumpTables.empty()) return; |
| 1418 | |
| 1419 | OS << "Jump Tables:\n" ; |
| 1420 | |
| 1421 | for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) { |
| 1422 | OS << printJumpTableEntryReference(Idx: i) << ':'; |
| 1423 | for (const MachineBasicBlock *MBB : JumpTables[i].MBBs) |
| 1424 | OS << ' ' << printMBBReference(MBB: *MBB); |
| 1425 | if (i != e) |
| 1426 | OS << '\n'; |
| 1427 | } |
| 1428 | |
| 1429 | OS << '\n'; |
| 1430 | } |
| 1431 | |
| 1432 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1433 | LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); } |
| 1434 | #endif |
| 1435 | |
| 1436 | Printable llvm::printJumpTableEntryReference(unsigned Idx) { |
| 1437 | return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; }); |
| 1438 | } |
| 1439 | |
| 1440 | //===----------------------------------------------------------------------===// |
| 1441 | // MachineConstantPool implementation |
| 1442 | //===----------------------------------------------------------------------===// |
| 1443 | |
| 1444 | void MachineConstantPoolValue::anchor() {} |
| 1445 | |
| 1446 | unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const { |
| 1447 | return DL.getTypeAllocSize(Ty); |
| 1448 | } |
| 1449 | |
| 1450 | unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const { |
| 1451 | if (isMachineConstantPoolEntry()) |
| 1452 | return Val.MachineCPVal->getSizeInBytes(DL); |
| 1453 | return DL.getTypeAllocSize(Ty: Val.ConstVal->getType()); |
| 1454 | } |
| 1455 | |
| 1456 | bool MachineConstantPoolEntry::needsRelocation() const { |
| 1457 | if (isMachineConstantPoolEntry()) |
| 1458 | return true; |
| 1459 | return Val.ConstVal->needsDynamicRelocation(); |
| 1460 | } |
| 1461 | |
| 1462 | SectionKind |
| 1463 | MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const { |
| 1464 | if (needsRelocation()) |
| 1465 | return SectionKind::getReadOnlyWithRel(); |
| 1466 | switch (getSizeInBytes(DL: *DL)) { |
| 1467 | case 4: |
| 1468 | return SectionKind::getMergeableConst4(); |
| 1469 | case 8: |
| 1470 | return SectionKind::getMergeableConst8(); |
| 1471 | case 16: |
| 1472 | return SectionKind::getMergeableConst16(); |
| 1473 | case 32: |
| 1474 | return SectionKind::getMergeableConst32(); |
| 1475 | default: |
| 1476 | return SectionKind::getReadOnly(); |
| 1477 | } |
| 1478 | } |
| 1479 | |
| 1480 | MachineConstantPool::~MachineConstantPool() { |
| 1481 | // A constant may be a member of both Constants and MachineCPVsSharingEntries, |
| 1482 | // so keep track of which we've deleted to avoid double deletions. |
| 1483 | DenseSet<MachineConstantPoolValue*> Deleted; |
| 1484 | for (const MachineConstantPoolEntry &C : Constants) |
| 1485 | if (C.isMachineConstantPoolEntry()) { |
| 1486 | Deleted.insert(V: C.Val.MachineCPVal); |
| 1487 | delete C.Val.MachineCPVal; |
| 1488 | } |
| 1489 | for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) { |
| 1490 | if (Deleted.count(V: CPV) == 0) |
| 1491 | delete CPV; |
| 1492 | } |
| 1493 | } |
| 1494 | |
| 1495 | /// Test whether the given two constants can be allocated the same constant pool |
| 1496 | /// entry referenced by \param A. |
| 1497 | static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B, |
| 1498 | const DataLayout &DL) { |
| 1499 | // Handle the trivial case quickly. |
| 1500 | if (A == B) return true; |
| 1501 | |
| 1502 | // If they have the same type but weren't the same constant, quickly |
| 1503 | // reject them. |
| 1504 | if (A->getType() == B->getType()) return false; |
| 1505 | |
| 1506 | // We can't handle structs or arrays. |
| 1507 | if (isa<StructType>(Val: A->getType()) || isa<ArrayType>(Val: A->getType()) || |
| 1508 | isa<StructType>(Val: B->getType()) || isa<ArrayType>(Val: B->getType())) |
| 1509 | return false; |
| 1510 | |
| 1511 | // For now, only support constants with the same size. |
| 1512 | uint64_t StoreSize = DL.getTypeStoreSize(Ty: A->getType()); |
| 1513 | if (StoreSize != DL.getTypeStoreSize(Ty: B->getType()) || StoreSize > 128) |
| 1514 | return false; |
| 1515 | |
| 1516 | bool ContainsUndefOrPoisonA = A->containsUndefOrPoisonElement(); |
| 1517 | |
| 1518 | Type *IntTy = IntegerType::get(C&: A->getContext(), NumBits: StoreSize*8); |
| 1519 | |
| 1520 | // Try constant folding a bitcast of both instructions to an integer. If we |
| 1521 | // get two identical ConstantInt's, then we are good to share them. We use |
| 1522 | // the constant folding APIs to do this so that we get the benefit of |
| 1523 | // DataLayout. |
| 1524 | if (isa<PointerType>(Val: A->getType())) |
| 1525 | A = ConstantFoldCastOperand(Opcode: Instruction::PtrToInt, |
| 1526 | C: const_cast<Constant *>(A), DestTy: IntTy, DL); |
| 1527 | else if (A->getType() != IntTy) |
| 1528 | A = ConstantFoldCastOperand(Opcode: Instruction::BitCast, C: const_cast<Constant *>(A), |
| 1529 | DestTy: IntTy, DL); |
| 1530 | if (isa<PointerType>(Val: B->getType())) |
| 1531 | B = ConstantFoldCastOperand(Opcode: Instruction::PtrToInt, |
| 1532 | C: const_cast<Constant *>(B), DestTy: IntTy, DL); |
| 1533 | else if (B->getType() != IntTy) |
| 1534 | B = ConstantFoldCastOperand(Opcode: Instruction::BitCast, C: const_cast<Constant *>(B), |
| 1535 | DestTy: IntTy, DL); |
| 1536 | |
| 1537 | if (A != B) |
| 1538 | return false; |
| 1539 | |
| 1540 | // Constants only safely match if A doesn't contain undef/poison. |
| 1541 | // As we'll be reusing A, it doesn't matter if B contain undef/poison. |
| 1542 | // TODO: Handle cases where A and B have the same undef/poison elements. |
| 1543 | // TODO: Merge A and B with mismatching undef/poison elements. |
| 1544 | return !ContainsUndefOrPoisonA; |
| 1545 | } |
| 1546 | |
| 1547 | /// Create a new entry in the constant pool or return an existing one. |
| 1548 | /// User must specify the log2 of the minimum required alignment for the object. |
| 1549 | unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C, |
| 1550 | Align Alignment) { |
| 1551 | if (Alignment > PoolAlignment) PoolAlignment = Alignment; |
| 1552 | |
| 1553 | // Check to see if we already have this constant. |
| 1554 | // |
| 1555 | // FIXME, this could be made much more efficient for large constant pools. |
| 1556 | for (unsigned i = 0, e = Constants.size(); i != e; ++i) |
| 1557 | if (!Constants[i].isMachineConstantPoolEntry() && |
| 1558 | CanShareConstantPoolEntry(A: Constants[i].Val.ConstVal, B: C, DL)) { |
| 1559 | if (Constants[i].getAlign() < Alignment) |
| 1560 | Constants[i].Alignment = Alignment; |
| 1561 | return i; |
| 1562 | } |
| 1563 | |
| 1564 | Constants.push_back(x: MachineConstantPoolEntry(C, Alignment)); |
| 1565 | return Constants.size()-1; |
| 1566 | } |
| 1567 | |
| 1568 | unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V, |
| 1569 | Align Alignment) { |
| 1570 | if (Alignment > PoolAlignment) PoolAlignment = Alignment; |
| 1571 | |
| 1572 | // Check to see if we already have this constant. |
| 1573 | // |
| 1574 | // FIXME, this could be made much more efficient for large constant pools. |
| 1575 | int Idx = V->getExistingMachineCPValue(CP: this, Alignment); |
| 1576 | if (Idx != -1) { |
| 1577 | MachineCPVsSharingEntries.insert(V); |
| 1578 | return (unsigned)Idx; |
| 1579 | } |
| 1580 | |
| 1581 | Constants.push_back(x: MachineConstantPoolEntry(V, Alignment)); |
| 1582 | return Constants.size()-1; |
| 1583 | } |
| 1584 | |
| 1585 | void MachineConstantPool::print(raw_ostream &OS) const { |
| 1586 | if (Constants.empty()) return; |
| 1587 | |
| 1588 | OS << "Constant Pool:\n" ; |
| 1589 | for (unsigned i = 0, e = Constants.size(); i != e; ++i) { |
| 1590 | OS << " cp#" << i << ": " ; |
| 1591 | if (Constants[i].isMachineConstantPoolEntry()) |
| 1592 | Constants[i].Val.MachineCPVal->print(O&: OS); |
| 1593 | else |
| 1594 | Constants[i].Val.ConstVal->printAsOperand(O&: OS, /*PrintType=*/false); |
| 1595 | OS << ", align=" << Constants[i].getAlign().value(); |
| 1596 | OS << "\n" ; |
| 1597 | } |
| 1598 | } |
| 1599 | |
| 1600 | //===----------------------------------------------------------------------===// |
| 1601 | // Template specialization for MachineFunction implementation of |
| 1602 | // ProfileSummaryInfo::getEntryCount(). |
| 1603 | //===----------------------------------------------------------------------===// |
| 1604 | template <> |
| 1605 | std::optional<Function::ProfileCount> |
| 1606 | ProfileSummaryInfo::getEntryCount<llvm::MachineFunction>( |
| 1607 | const llvm::MachineFunction *F) const { |
| 1608 | return F->getFunction().getEntryCount(); |
| 1609 | } |
| 1610 | |
| 1611 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1612 | LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); } |
| 1613 | #endif |
| 1614 | |