| 1 | //===- lib/CodeGen/MachineInstr.cpp ---------------------------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Methods common to all machine instructions. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "llvm/CodeGen/MachineInstr.h" |
| 14 | #include "llvm/ADT/ArrayRef.h" |
| 15 | #include "llvm/ADT/Hashing.h" |
| 16 | #include "llvm/ADT/STLExtras.h" |
| 17 | #include "llvm/ADT/SmallBitVector.h" |
| 18 | #include "llvm/ADT/SmallVector.h" |
| 19 | #include "llvm/Analysis/AliasAnalysis.h" |
| 20 | #include "llvm/Analysis/MemoryLocation.h" |
| 21 | #include "llvm/CodeGen/LiveRegUnits.h" |
| 22 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 23 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 24 | #include "llvm/CodeGen/MachineFunction.h" |
| 25 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 26 | #include "llvm/CodeGen/MachineInstrBundle.h" |
| 27 | #include "llvm/CodeGen/MachineMemOperand.h" |
| 28 | #include "llvm/CodeGen/MachineModuleInfo.h" |
| 29 | #include "llvm/CodeGen/MachineOperand.h" |
| 30 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 31 | #include "llvm/CodeGen/PseudoSourceValue.h" |
| 32 | #include "llvm/CodeGen/Register.h" |
| 33 | #include "llvm/CodeGen/StackMaps.h" |
| 34 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 35 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 36 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 37 | #include "llvm/CodeGenTypes/LowLevelType.h" |
| 38 | #include "llvm/IR/Constants.h" |
| 39 | #include "llvm/IR/DebugInfoMetadata.h" |
| 40 | #include "llvm/IR/DebugLoc.h" |
| 41 | #include "llvm/IR/Function.h" |
| 42 | #include "llvm/IR/InlineAsm.h" |
| 43 | #include "llvm/IR/Instructions.h" |
| 44 | #include "llvm/IR/LLVMContext.h" |
| 45 | #include "llvm/IR/Metadata.h" |
| 46 | #include "llvm/IR/Module.h" |
| 47 | #include "llvm/IR/ModuleSlotTracker.h" |
| 48 | #include "llvm/IR/Operator.h" |
| 49 | #include "llvm/MC/MCInstrDesc.h" |
| 50 | #include "llvm/MC/MCRegisterInfo.h" |
| 51 | #include "llvm/Support/Casting.h" |
| 52 | #include "llvm/Support/Compiler.h" |
| 53 | #include "llvm/Support/Debug.h" |
| 54 | #include "llvm/Support/ErrorHandling.h" |
| 55 | #include "llvm/Support/FormattedStream.h" |
| 56 | #include "llvm/Support/raw_ostream.h" |
| 57 | #include "llvm/Target/TargetMachine.h" |
| 58 | #include <algorithm> |
| 59 | #include <cassert> |
| 60 | #include <cstdint> |
| 61 | #include <cstring> |
| 62 | #include <utility> |
| 63 | |
| 64 | using namespace llvm; |
| 65 | |
| 66 | static cl::opt<bool> |
| 67 | PrintMIAddrs("print-mi-addrs" , cl::Hidden, |
| 68 | cl::desc("Print addresses of MachineInstrs when dumping" )); |
| 69 | |
| 70 | static const MachineFunction *getMFIfAvailable(const MachineInstr &MI) { |
| 71 | if (const MachineBasicBlock *MBB = MI.getParent()) |
| 72 | if (const MachineFunction *MF = MBB->getParent()) |
| 73 | return MF; |
| 74 | return nullptr; |
| 75 | } |
| 76 | |
| 77 | // Try to crawl up to the machine function and get TRI/MRI/TII from it. |
| 78 | static void tryToGetTargetInfo(const MachineInstr &MI, |
| 79 | const TargetRegisterInfo *&TRI, |
| 80 | const MachineRegisterInfo *&MRI, |
| 81 | const TargetInstrInfo *&TII) { |
| 82 | |
| 83 | if (const MachineFunction *MF = getMFIfAvailable(MI)) { |
| 84 | TRI = MF->getSubtarget().getRegisterInfo(); |
| 85 | MRI = &MF->getRegInfo(); |
| 86 | TII = MF->getSubtarget().getInstrInfo(); |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) { |
| 91 | for (MCPhysReg ImpDef : MCID->implicit_defs()) |
| 92 | addOperand(MF, Op: MachineOperand::CreateReg(Reg: ImpDef, isDef: true, isImp: true)); |
| 93 | for (MCPhysReg ImpUse : MCID->implicit_uses()) |
| 94 | addOperand(MF, Op: MachineOperand::CreateReg(Reg: ImpUse, isDef: false, isImp: true)); |
| 95 | } |
| 96 | |
| 97 | /// MachineInstr ctor - This constructor creates a MachineInstr and adds the |
| 98 | /// implicit operands. It reserves space for the number of operands specified by |
| 99 | /// the MCInstrDesc. |
| 100 | MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &TID, |
| 101 | DebugLoc DL, bool NoImp) |
| 102 | : MCID(&TID), NumOperands(0), Flags(0), AsmPrinterFlags(0), |
| 103 | DbgLoc(std::move(DL)), DebugInstrNum(0), Opcode(TID.Opcode) { |
| 104 | assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor" ); |
| 105 | |
| 106 | // Reserve space for the expected number of operands. |
| 107 | if (unsigned NumOps = MCID->getNumOperands() + MCID->implicit_defs().size() + |
| 108 | MCID->implicit_uses().size()) { |
| 109 | CapOperands = OperandCapacity::get(N: NumOps); |
| 110 | Operands = MF.allocateOperandArray(Cap: CapOperands); |
| 111 | } |
| 112 | |
| 113 | if (!NoImp) |
| 114 | addImplicitDefUseOperands(MF); |
| 115 | } |
| 116 | |
| 117 | /// MachineInstr ctor - Copies MachineInstr arg exactly. |
| 118 | /// Does not copy the number from debug instruction numbering, to preserve |
| 119 | /// uniqueness. |
| 120 | MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI) |
| 121 | : MCID(&MI.getDesc()), NumOperands(0), Flags(0), AsmPrinterFlags(0), |
| 122 | Info(MI.Info), DbgLoc(MI.getDebugLoc()), DebugInstrNum(0), |
| 123 | Opcode(MI.getOpcode()) { |
| 124 | assert(DbgLoc.hasTrivialDestructor() && "Expected trivial destructor" ); |
| 125 | |
| 126 | CapOperands = OperandCapacity::get(N: MI.getNumOperands()); |
| 127 | Operands = MF.allocateOperandArray(Cap: CapOperands); |
| 128 | |
| 129 | // Copy operands. |
| 130 | for (const MachineOperand &MO : MI.operands()) |
| 131 | addOperand(MF, Op: MO); |
| 132 | |
| 133 | // Replicate ties between the operands, which addOperand was not |
| 134 | // able to do reliably. |
| 135 | for (unsigned i = 0, e = getNumOperands(); i < e; ++i) { |
| 136 | MachineOperand &NewMO = getOperand(i); |
| 137 | const MachineOperand &OrigMO = MI.getOperand(i); |
| 138 | NewMO.TiedTo = OrigMO.TiedTo; |
| 139 | } |
| 140 | |
| 141 | // Copy all the sensible flags. |
| 142 | setFlags(MI.Flags); |
| 143 | } |
| 144 | |
| 145 | void MachineInstr::setDesc(const MCInstrDesc &TID) { |
| 146 | if (getParent()) |
| 147 | getMF()->handleChangeDesc(MI&: *this, TID); |
| 148 | MCID = &TID; |
| 149 | Opcode = TID.Opcode; |
| 150 | } |
| 151 | |
| 152 | void MachineInstr::moveBefore(MachineInstr *MovePos) { |
| 153 | MovePos->getParent()->splice(Where: MovePos, Other: getParent(), From: getIterator()); |
| 154 | } |
| 155 | |
| 156 | /// getRegInfo - If this instruction is embedded into a MachineFunction, |
| 157 | /// return the MachineRegisterInfo object for the current function, otherwise |
| 158 | /// return null. |
| 159 | MachineRegisterInfo *MachineInstr::getRegInfo() { |
| 160 | if (MachineBasicBlock *MBB = getParent()) |
| 161 | return &MBB->getParent()->getRegInfo(); |
| 162 | return nullptr; |
| 163 | } |
| 164 | |
| 165 | const MachineRegisterInfo *MachineInstr::getRegInfo() const { |
| 166 | if (const MachineBasicBlock *MBB = getParent()) |
| 167 | return &MBB->getParent()->getRegInfo(); |
| 168 | return nullptr; |
| 169 | } |
| 170 | |
| 171 | void MachineInstr::removeRegOperandsFromUseLists(MachineRegisterInfo &MRI) { |
| 172 | for (MachineOperand &MO : operands()) |
| 173 | if (MO.isReg()) |
| 174 | MRI.removeRegOperandFromUseList(MO: &MO); |
| 175 | } |
| 176 | |
| 177 | void MachineInstr::addRegOperandsToUseLists(MachineRegisterInfo &MRI) { |
| 178 | for (MachineOperand &MO : operands()) |
| 179 | if (MO.isReg()) |
| 180 | MRI.addRegOperandToUseList(MO: &MO); |
| 181 | } |
| 182 | |
| 183 | void MachineInstr::addOperand(const MachineOperand &Op) { |
| 184 | MachineBasicBlock *MBB = getParent(); |
| 185 | assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs" ); |
| 186 | MachineFunction *MF = MBB->getParent(); |
| 187 | assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs" ); |
| 188 | addOperand(MF&: *MF, Op); |
| 189 | } |
| 190 | |
| 191 | /// Move NumOps MachineOperands from Src to Dst, with support for overlapping |
| 192 | /// ranges. If MRI is non-null also update use-def chains. |
| 193 | static void moveOperands(MachineOperand *Dst, MachineOperand *Src, |
| 194 | unsigned NumOps, MachineRegisterInfo *MRI) { |
| 195 | if (MRI) |
| 196 | return MRI->moveOperands(Dst, Src, NumOps); |
| 197 | // MachineOperand is a trivially copyable type so we can just use memmove. |
| 198 | assert(Dst && Src && "Unknown operands" ); |
| 199 | std::memmove(dest: Dst, src: Src, n: NumOps * sizeof(MachineOperand)); |
| 200 | } |
| 201 | |
| 202 | /// addOperand - Add the specified operand to the instruction. If it is an |
| 203 | /// implicit operand, it is added to the end of the operand list. If it is |
| 204 | /// an explicit operand it is added at the end of the explicit operand list |
| 205 | /// (before the first implicit operand). |
| 206 | void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) { |
| 207 | assert(isUInt<LLVM_MI_NUMOPERANDS_BITS>(NumOperands + 1) && |
| 208 | "Cannot add more operands." ); |
| 209 | assert(MCID && "Cannot add operands before providing an instr descriptor" ); |
| 210 | |
| 211 | // Check if we're adding one of our existing operands. |
| 212 | if (&Op >= Operands && &Op < Operands + NumOperands) { |
| 213 | // This is unusual: MI->addOperand(MI->getOperand(i)). |
| 214 | // If adding Op requires reallocating or moving existing operands around, |
| 215 | // the Op reference could go stale. Support it by copying Op. |
| 216 | MachineOperand CopyOp(Op); |
| 217 | return addOperand(MF, Op: CopyOp); |
| 218 | } |
| 219 | |
| 220 | // Find the insert location for the new operand. Implicit registers go at |
| 221 | // the end, everything else goes before the implicit regs. |
| 222 | // |
| 223 | // FIXME: Allow mixed explicit and implicit operands on inline asm. |
| 224 | // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as |
| 225 | // implicit-defs, but they must not be moved around. See the FIXME in |
| 226 | // InstrEmitter.cpp. |
| 227 | unsigned OpNo = getNumOperands(); |
| 228 | bool isImpReg = Op.isReg() && Op.isImplicit(); |
| 229 | if (!isImpReg && !isInlineAsm()) { |
| 230 | while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) { |
| 231 | --OpNo; |
| 232 | assert(!Operands[OpNo].isTied() && "Cannot move tied operands" ); |
| 233 | } |
| 234 | } |
| 235 | |
| 236 | // OpNo now points as the desired insertion point. Unless this is a variadic |
| 237 | // instruction, only implicit regs are allowed beyond MCID->getNumOperands(). |
| 238 | // RegMask operands go between the explicit and implicit operands. |
| 239 | MachineRegisterInfo *MRI = getRegInfo(); |
| 240 | |
| 241 | // Determine if the Operands array needs to be reallocated. |
| 242 | // Save the old capacity and operand array. |
| 243 | OperandCapacity OldCap = CapOperands; |
| 244 | MachineOperand *OldOperands = Operands; |
| 245 | if (!OldOperands || OldCap.getSize() == getNumOperands()) { |
| 246 | CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(N: 1); |
| 247 | Operands = MF.allocateOperandArray(Cap: CapOperands); |
| 248 | // Move the operands before the insertion point. |
| 249 | if (OpNo) |
| 250 | moveOperands(Dst: Operands, Src: OldOperands, NumOps: OpNo, MRI); |
| 251 | } |
| 252 | |
| 253 | // Move the operands following the insertion point. |
| 254 | if (OpNo != NumOperands) |
| 255 | moveOperands(Dst: Operands + OpNo + 1, Src: OldOperands + OpNo, NumOps: NumOperands - OpNo, |
| 256 | MRI); |
| 257 | ++NumOperands; |
| 258 | |
| 259 | // Deallocate the old operand array. |
| 260 | if (OldOperands != Operands && OldOperands) |
| 261 | MF.deallocateOperandArray(Cap: OldCap, Array: OldOperands); |
| 262 | |
| 263 | // Copy Op into place. It still needs to be inserted into the MRI use lists. |
| 264 | MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op); |
| 265 | NewMO->ParentMI = this; |
| 266 | |
| 267 | // When adding a register operand, tell MRI about it. |
| 268 | if (NewMO->isReg()) { |
| 269 | // Ensure isOnRegUseList() returns false, regardless of Op's status. |
| 270 | NewMO->Contents.Reg.Prev = nullptr; |
| 271 | // Ignore existing ties. This is not a property that can be copied. |
| 272 | NewMO->TiedTo = 0; |
| 273 | // Add the new operand to MRI, but only for instructions in an MBB. |
| 274 | if (MRI) |
| 275 | MRI->addRegOperandToUseList(MO: NewMO); |
| 276 | // The MCID operand information isn't accurate until we start adding |
| 277 | // explicit operands. The implicit operands are added first, then the |
| 278 | // explicits are inserted before them. |
| 279 | if (!isImpReg) { |
| 280 | // Tie uses to defs as indicated in MCInstrDesc. |
| 281 | if (NewMO->isUse()) { |
| 282 | int DefIdx = MCID->getOperandConstraint(OpNum: OpNo, Constraint: MCOI::TIED_TO); |
| 283 | if (DefIdx != -1) |
| 284 | tieOperands(DefIdx, UseIdx: OpNo); |
| 285 | } |
| 286 | // If the register operand is flagged as early, mark the operand as such. |
| 287 | if (MCID->getOperandConstraint(OpNum: OpNo, Constraint: MCOI::EARLY_CLOBBER) != -1) |
| 288 | NewMO->setIsEarlyClobber(true); |
| 289 | } |
| 290 | // Ensure debug instructions set debug flag on register uses. |
| 291 | if (NewMO->isUse() && isDebugInstr()) |
| 292 | NewMO->setIsDebug(); |
| 293 | } |
| 294 | } |
| 295 | |
| 296 | void MachineInstr::removeOperand(unsigned OpNo) { |
| 297 | assert(OpNo < getNumOperands() && "Invalid operand number" ); |
| 298 | untieRegOperand(OpIdx: OpNo); |
| 299 | |
| 300 | #ifndef NDEBUG |
| 301 | // Moving tied operands would break the ties. |
| 302 | for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i) |
| 303 | if (Operands[i].isReg()) |
| 304 | assert(!Operands[i].isTied() && "Cannot move tied operands" ); |
| 305 | #endif |
| 306 | |
| 307 | MachineRegisterInfo *MRI = getRegInfo(); |
| 308 | if (MRI && Operands[OpNo].isReg()) |
| 309 | MRI->removeRegOperandFromUseList(MO: Operands + OpNo); |
| 310 | |
| 311 | // Don't call the MachineOperand destructor. A lot of this code depends on |
| 312 | // MachineOperand having a trivial destructor anyway, and adding a call here |
| 313 | // wouldn't make it 'destructor-correct'. |
| 314 | |
| 315 | if (unsigned N = NumOperands - 1 - OpNo) |
| 316 | moveOperands(Dst: Operands + OpNo, Src: Operands + OpNo + 1, NumOps: N, MRI); |
| 317 | --NumOperands; |
| 318 | } |
| 319 | |
| 320 | void MachineInstr::setExtraInfo(MachineFunction &MF, |
| 321 | ArrayRef<MachineMemOperand *> MMOs, |
| 322 | MCSymbol *PreInstrSymbol, |
| 323 | MCSymbol *PostInstrSymbol, |
| 324 | MDNode *HeapAllocMarker, MDNode *PCSections, |
| 325 | uint32_t CFIType, MDNode *MMRAs) { |
| 326 | bool HasPreInstrSymbol = PreInstrSymbol != nullptr; |
| 327 | bool HasPostInstrSymbol = PostInstrSymbol != nullptr; |
| 328 | bool HasHeapAllocMarker = HeapAllocMarker != nullptr; |
| 329 | bool HasPCSections = PCSections != nullptr; |
| 330 | bool HasCFIType = CFIType != 0; |
| 331 | bool HasMMRAs = MMRAs != nullptr; |
| 332 | int NumPointers = MMOs.size() + HasPreInstrSymbol + HasPostInstrSymbol + |
| 333 | HasHeapAllocMarker + HasPCSections + HasCFIType + HasMMRAs; |
| 334 | |
| 335 | // Drop all extra info if there is none. |
| 336 | if (NumPointers <= 0) { |
| 337 | Info.clear(); |
| 338 | return; |
| 339 | } |
| 340 | |
| 341 | // If more than one pointer, then store out of line. Store heap alloc markers |
| 342 | // out of line because PointerSumType cannot hold more than 4 tag types with |
| 343 | // 32-bit pointers. |
| 344 | // FIXME: Maybe we should make the symbols in the extra info mutable? |
| 345 | else if (NumPointers > 1 || HasMMRAs || HasHeapAllocMarker || HasPCSections || |
| 346 | HasCFIType) { |
| 347 | Info.set<EIIK_OutOfLine>( |
| 348 | MF.createMIExtraInfo(MMOs, PreInstrSymbol, PostInstrSymbol, |
| 349 | HeapAllocMarker, PCSections, CFIType, MMRAs)); |
| 350 | return; |
| 351 | } |
| 352 | |
| 353 | // Otherwise store the single pointer inline. |
| 354 | if (HasPreInstrSymbol) |
| 355 | Info.set<EIIK_PreInstrSymbol>(PreInstrSymbol); |
| 356 | else if (HasPostInstrSymbol) |
| 357 | Info.set<EIIK_PostInstrSymbol>(PostInstrSymbol); |
| 358 | else |
| 359 | Info.set<EIIK_MMO>(MMOs[0]); |
| 360 | } |
| 361 | |
| 362 | void MachineInstr::dropMemRefs(MachineFunction &MF) { |
| 363 | if (memoperands_empty()) |
| 364 | return; |
| 365 | |
| 366 | setExtraInfo(MF, MMOs: {}, PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(), |
| 367 | HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: getCFIType(), |
| 368 | MMRAs: getMMRAMetadata()); |
| 369 | } |
| 370 | |
| 371 | void MachineInstr::setMemRefs(MachineFunction &MF, |
| 372 | ArrayRef<MachineMemOperand *> MMOs) { |
| 373 | if (MMOs.empty()) { |
| 374 | dropMemRefs(MF); |
| 375 | return; |
| 376 | } |
| 377 | |
| 378 | setExtraInfo(MF, MMOs, PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(), |
| 379 | HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: getCFIType(), |
| 380 | MMRAs: getMMRAMetadata()); |
| 381 | } |
| 382 | |
| 383 | void MachineInstr::addMemOperand(MachineFunction &MF, |
| 384 | MachineMemOperand *MO) { |
| 385 | SmallVector<MachineMemOperand *, 2> MMOs; |
| 386 | MMOs.append(in_start: memoperands_begin(), in_end: memoperands_end()); |
| 387 | MMOs.push_back(Elt: MO); |
| 388 | setMemRefs(MF, MMOs); |
| 389 | } |
| 390 | |
| 391 | void MachineInstr::cloneMemRefs(MachineFunction &MF, const MachineInstr &MI) { |
| 392 | if (this == &MI) |
| 393 | // Nothing to do for a self-clone! |
| 394 | return; |
| 395 | |
| 396 | assert(&MF == MI.getMF() && |
| 397 | "Invalid machine functions when cloning memory refrences!" ); |
| 398 | // See if we can just steal the extra info already allocated for the |
| 399 | // instruction. We can do this whenever the pre- and post-instruction symbols |
| 400 | // are the same (including null). |
| 401 | if (getPreInstrSymbol() == MI.getPreInstrSymbol() && |
| 402 | getPostInstrSymbol() == MI.getPostInstrSymbol() && |
| 403 | getHeapAllocMarker() == MI.getHeapAllocMarker() && |
| 404 | getPCSections() == MI.getPCSections() && getMMRAMetadata() && |
| 405 | MI.getMMRAMetadata()) { |
| 406 | Info = MI.Info; |
| 407 | return; |
| 408 | } |
| 409 | |
| 410 | // Otherwise, fall back on a copy-based clone. |
| 411 | setMemRefs(MF, MMOs: MI.memoperands()); |
| 412 | } |
| 413 | |
| 414 | /// Check to see if the MMOs pointed to by the two MemRefs arrays are |
| 415 | /// identical. |
| 416 | static bool hasIdenticalMMOs(ArrayRef<MachineMemOperand *> LHS, |
| 417 | ArrayRef<MachineMemOperand *> RHS) { |
| 418 | if (LHS.size() != RHS.size()) |
| 419 | return false; |
| 420 | |
| 421 | auto LHSPointees = make_pointee_range(Range&: LHS); |
| 422 | auto RHSPointees = make_pointee_range(Range&: RHS); |
| 423 | return std::equal(first1: LHSPointees.begin(), last1: LHSPointees.end(), |
| 424 | first2: RHSPointees.begin()); |
| 425 | } |
| 426 | |
| 427 | void MachineInstr::cloneMergedMemRefs(MachineFunction &MF, |
| 428 | ArrayRef<const MachineInstr *> MIs) { |
| 429 | // Try handling easy numbers of MIs with simpler mechanisms. |
| 430 | if (MIs.empty()) { |
| 431 | dropMemRefs(MF); |
| 432 | return; |
| 433 | } |
| 434 | if (MIs.size() == 1) { |
| 435 | cloneMemRefs(MF, MI: *MIs[0]); |
| 436 | return; |
| 437 | } |
| 438 | // Because an empty memoperands list provides *no* information and must be |
| 439 | // handled conservatively (assuming the instruction can do anything), the only |
| 440 | // way to merge with it is to drop all other memoperands. |
| 441 | if (MIs[0]->memoperands_empty()) { |
| 442 | dropMemRefs(MF); |
| 443 | return; |
| 444 | } |
| 445 | |
| 446 | // Handle the general case. |
| 447 | SmallVector<MachineMemOperand *, 2> MergedMMOs; |
| 448 | // Start with the first instruction. |
| 449 | assert(&MF == MIs[0]->getMF() && |
| 450 | "Invalid machine functions when cloning memory references!" ); |
| 451 | MergedMMOs.append(in_start: MIs[0]->memoperands_begin(), in_end: MIs[0]->memoperands_end()); |
| 452 | // Now walk all the other instructions and accumulate any different MMOs. |
| 453 | for (const MachineInstr &MI : make_pointee_range(Range: MIs.slice(N: 1))) { |
| 454 | assert(&MF == MI.getMF() && |
| 455 | "Invalid machine functions when cloning memory references!" ); |
| 456 | |
| 457 | // Skip MIs with identical operands to the first. This is a somewhat |
| 458 | // arbitrary hack but will catch common cases without being quadratic. |
| 459 | // TODO: We could fully implement merge semantics here if needed. |
| 460 | if (hasIdenticalMMOs(LHS: MIs[0]->memoperands(), RHS: MI.memoperands())) |
| 461 | continue; |
| 462 | |
| 463 | // Because an empty memoperands list provides *no* information and must be |
| 464 | // handled conservatively (assuming the instruction can do anything), the |
| 465 | // only way to merge with it is to drop all other memoperands. |
| 466 | if (MI.memoperands_empty()) { |
| 467 | dropMemRefs(MF); |
| 468 | return; |
| 469 | } |
| 470 | |
| 471 | // Otherwise accumulate these into our temporary buffer of the merged state. |
| 472 | MergedMMOs.append(in_start: MI.memoperands_begin(), in_end: MI.memoperands_end()); |
| 473 | } |
| 474 | |
| 475 | setMemRefs(MF, MMOs: MergedMMOs); |
| 476 | } |
| 477 | |
| 478 | void MachineInstr::setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { |
| 479 | // Do nothing if old and new symbols are the same. |
| 480 | if (Symbol == getPreInstrSymbol()) |
| 481 | return; |
| 482 | |
| 483 | // If there was only one symbol and we're removing it, just clear info. |
| 484 | if (!Symbol && Info.is<EIIK_PreInstrSymbol>()) { |
| 485 | Info.clear(); |
| 486 | return; |
| 487 | } |
| 488 | |
| 489 | setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: Symbol, PostInstrSymbol: getPostInstrSymbol(), |
| 490 | HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: getCFIType(), |
| 491 | MMRAs: getMMRAMetadata()); |
| 492 | } |
| 493 | |
| 494 | void MachineInstr::setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol) { |
| 495 | // Do nothing if old and new symbols are the same. |
| 496 | if (Symbol == getPostInstrSymbol()) |
| 497 | return; |
| 498 | |
| 499 | // If there was only one symbol and we're removing it, just clear info. |
| 500 | if (!Symbol && Info.is<EIIK_PostInstrSymbol>()) { |
| 501 | Info.clear(); |
| 502 | return; |
| 503 | } |
| 504 | |
| 505 | setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: Symbol, |
| 506 | HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: getCFIType(), |
| 507 | MMRAs: getMMRAMetadata()); |
| 508 | } |
| 509 | |
| 510 | void MachineInstr::setHeapAllocMarker(MachineFunction &MF, MDNode *Marker) { |
| 511 | // Do nothing if old and new symbols are the same. |
| 512 | if (Marker == getHeapAllocMarker()) |
| 513 | return; |
| 514 | |
| 515 | setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(), |
| 516 | HeapAllocMarker: Marker, PCSections: getPCSections(), CFIType: getCFIType(), MMRAs: getMMRAMetadata()); |
| 517 | } |
| 518 | |
| 519 | void MachineInstr::setPCSections(MachineFunction &MF, MDNode *PCSections) { |
| 520 | // Do nothing if old and new symbols are the same. |
| 521 | if (PCSections == getPCSections()) |
| 522 | return; |
| 523 | |
| 524 | setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(), |
| 525 | HeapAllocMarker: getHeapAllocMarker(), PCSections, CFIType: getCFIType(), |
| 526 | MMRAs: getMMRAMetadata()); |
| 527 | } |
| 528 | |
| 529 | void MachineInstr::setCFIType(MachineFunction &MF, uint32_t Type) { |
| 530 | // Do nothing if old and new types are the same. |
| 531 | if (Type == getCFIType()) |
| 532 | return; |
| 533 | |
| 534 | setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(), |
| 535 | HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: Type, MMRAs: getMMRAMetadata()); |
| 536 | } |
| 537 | |
| 538 | void MachineInstr::setMMRAMetadata(MachineFunction &MF, MDNode *MMRAs) { |
| 539 | // Do nothing if old and new symbols are the same. |
| 540 | if (MMRAs == getMMRAMetadata()) |
| 541 | return; |
| 542 | |
| 543 | setExtraInfo(MF, MMOs: memoperands(), PreInstrSymbol: getPreInstrSymbol(), PostInstrSymbol: getPostInstrSymbol(), |
| 544 | HeapAllocMarker: getHeapAllocMarker(), PCSections: getPCSections(), CFIType: getCFIType(), MMRAs); |
| 545 | } |
| 546 | |
| 547 | void MachineInstr::cloneInstrSymbols(MachineFunction &MF, |
| 548 | const MachineInstr &MI) { |
| 549 | if (this == &MI) |
| 550 | // Nothing to do for a self-clone! |
| 551 | return; |
| 552 | |
| 553 | assert(&MF == MI.getMF() && |
| 554 | "Invalid machine functions when cloning instruction symbols!" ); |
| 555 | |
| 556 | setPreInstrSymbol(MF, Symbol: MI.getPreInstrSymbol()); |
| 557 | setPostInstrSymbol(MF, Symbol: MI.getPostInstrSymbol()); |
| 558 | setHeapAllocMarker(MF, Marker: MI.getHeapAllocMarker()); |
| 559 | setPCSections(MF, PCSections: MI.getPCSections()); |
| 560 | setMMRAMetadata(MF, MMRAs: MI.getMMRAMetadata()); |
| 561 | } |
| 562 | |
| 563 | uint32_t MachineInstr::mergeFlagsWith(const MachineInstr &Other) const { |
| 564 | // For now, the just return the union of the flags. If the flags get more |
| 565 | // complicated over time, we might need more logic here. |
| 566 | return getFlags() | Other.getFlags(); |
| 567 | } |
| 568 | |
| 569 | uint32_t MachineInstr::copyFlagsFromInstruction(const Instruction &I) { |
| 570 | uint32_t MIFlags = 0; |
| 571 | // Copy the wrapping flags. |
| 572 | if (const OverflowingBinaryOperator *OB = |
| 573 | dyn_cast<OverflowingBinaryOperator>(Val: &I)) { |
| 574 | if (OB->hasNoSignedWrap()) |
| 575 | MIFlags |= MachineInstr::MIFlag::NoSWrap; |
| 576 | if (OB->hasNoUnsignedWrap()) |
| 577 | MIFlags |= MachineInstr::MIFlag::NoUWrap; |
| 578 | } else if (const TruncInst *TI = dyn_cast<TruncInst>(Val: &I)) { |
| 579 | if (TI->hasNoSignedWrap()) |
| 580 | MIFlags |= MachineInstr::MIFlag::NoSWrap; |
| 581 | if (TI->hasNoUnsignedWrap()) |
| 582 | MIFlags |= MachineInstr::MIFlag::NoUWrap; |
| 583 | } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Val: &I)) { |
| 584 | if (GEP->hasNoUnsignedSignedWrap()) |
| 585 | MIFlags |= MachineInstr::MIFlag::NoUSWrap; |
| 586 | if (GEP->hasNoUnsignedWrap()) |
| 587 | MIFlags |= MachineInstr::MIFlag::NoUWrap; |
| 588 | } |
| 589 | |
| 590 | // Copy the nonneg flag. |
| 591 | if (const PossiblyNonNegInst *PNI = dyn_cast<PossiblyNonNegInst>(Val: &I)) { |
| 592 | if (PNI->hasNonNeg()) |
| 593 | MIFlags |= MachineInstr::MIFlag::NonNeg; |
| 594 | // Copy the disjoint flag. |
| 595 | } else if (const PossiblyDisjointInst *PD = |
| 596 | dyn_cast<PossiblyDisjointInst>(Val: &I)) { |
| 597 | if (PD->isDisjoint()) |
| 598 | MIFlags |= MachineInstr::MIFlag::Disjoint; |
| 599 | } |
| 600 | |
| 601 | // Copy the samesign flag. |
| 602 | if (const ICmpInst *ICmp = dyn_cast<ICmpInst>(Val: &I)) |
| 603 | if (ICmp->hasSameSign()) |
| 604 | MIFlags |= MachineInstr::MIFlag::SameSign; |
| 605 | |
| 606 | // Copy the exact flag. |
| 607 | if (const PossiblyExactOperator *PE = dyn_cast<PossiblyExactOperator>(Val: &I)) |
| 608 | if (PE->isExact()) |
| 609 | MIFlags |= MachineInstr::MIFlag::IsExact; |
| 610 | |
| 611 | // Copy the fast-math flags. |
| 612 | if (const FPMathOperator *FP = dyn_cast<FPMathOperator>(Val: &I)) { |
| 613 | const FastMathFlags Flags = FP->getFastMathFlags(); |
| 614 | if (Flags.noNaNs()) |
| 615 | MIFlags |= MachineInstr::MIFlag::FmNoNans; |
| 616 | if (Flags.noInfs()) |
| 617 | MIFlags |= MachineInstr::MIFlag::FmNoInfs; |
| 618 | if (Flags.noSignedZeros()) |
| 619 | MIFlags |= MachineInstr::MIFlag::FmNsz; |
| 620 | if (Flags.allowReciprocal()) |
| 621 | MIFlags |= MachineInstr::MIFlag::FmArcp; |
| 622 | if (Flags.allowContract()) |
| 623 | MIFlags |= MachineInstr::MIFlag::FmContract; |
| 624 | if (Flags.approxFunc()) |
| 625 | MIFlags |= MachineInstr::MIFlag::FmAfn; |
| 626 | if (Flags.allowReassoc()) |
| 627 | MIFlags |= MachineInstr::MIFlag::FmReassoc; |
| 628 | } |
| 629 | |
| 630 | if (I.getMetadata(KindID: LLVMContext::MD_unpredictable)) |
| 631 | MIFlags |= MachineInstr::MIFlag::Unpredictable; |
| 632 | |
| 633 | return MIFlags; |
| 634 | } |
| 635 | |
| 636 | void MachineInstr::copyIRFlags(const Instruction &I) { |
| 637 | Flags = copyFlagsFromInstruction(I); |
| 638 | } |
| 639 | |
| 640 | bool MachineInstr::hasPropertyInBundle(uint64_t Mask, QueryType Type) const { |
| 641 | assert(!isBundledWithPred() && "Must be called on bundle header" ); |
| 642 | for (MachineBasicBlock::const_instr_iterator MII = getIterator();; ++MII) { |
| 643 | if (MII->getDesc().getFlags() & Mask) { |
| 644 | if (Type == AnyInBundle) |
| 645 | return true; |
| 646 | } else { |
| 647 | if (Type == AllInBundle && !MII->isBundle()) |
| 648 | return false; |
| 649 | } |
| 650 | // This was the last instruction in the bundle. |
| 651 | if (!MII->isBundledWithSucc()) |
| 652 | return Type == AllInBundle; |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | bool MachineInstr::isIdenticalTo(const MachineInstr &Other, |
| 657 | MICheckType Check) const { |
| 658 | // If opcodes or number of operands are not the same then the two |
| 659 | // instructions are obviously not identical. |
| 660 | if (Other.getOpcode() != getOpcode() || |
| 661 | Other.getNumOperands() != getNumOperands()) |
| 662 | return false; |
| 663 | |
| 664 | if (isBundle()) { |
| 665 | // We have passed the test above that both instructions have the same |
| 666 | // opcode, so we know that both instructions are bundles here. Let's compare |
| 667 | // MIs inside the bundle. |
| 668 | assert(Other.isBundle() && "Expected that both instructions are bundles." ); |
| 669 | MachineBasicBlock::const_instr_iterator I1 = getIterator(); |
| 670 | MachineBasicBlock::const_instr_iterator I2 = Other.getIterator(); |
| 671 | // Loop until we analysed the last intruction inside at least one of the |
| 672 | // bundles. |
| 673 | while (I1->isBundledWithSucc() && I2->isBundledWithSucc()) { |
| 674 | ++I1; |
| 675 | ++I2; |
| 676 | if (!I1->isIdenticalTo(Other: *I2, Check)) |
| 677 | return false; |
| 678 | } |
| 679 | // If we've reached the end of just one of the two bundles, but not both, |
| 680 | // the instructions are not identical. |
| 681 | if (I1->isBundledWithSucc() || I2->isBundledWithSucc()) |
| 682 | return false; |
| 683 | } |
| 684 | |
| 685 | // Check operands to make sure they match. |
| 686 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| 687 | const MachineOperand &MO = getOperand(i); |
| 688 | const MachineOperand &OMO = Other.getOperand(i); |
| 689 | if (!MO.isReg()) { |
| 690 | if (!MO.isIdenticalTo(Other: OMO)) |
| 691 | return false; |
| 692 | continue; |
| 693 | } |
| 694 | |
| 695 | // Clients may or may not want to ignore defs when testing for equality. |
| 696 | // For example, machine CSE pass only cares about finding common |
| 697 | // subexpressions, so it's safe to ignore virtual register defs. |
| 698 | if (MO.isDef()) { |
| 699 | if (Check == IgnoreDefs) |
| 700 | continue; |
| 701 | else if (Check == IgnoreVRegDefs) { |
| 702 | if (!MO.getReg().isVirtual() || !OMO.getReg().isVirtual()) |
| 703 | if (!MO.isIdenticalTo(Other: OMO)) |
| 704 | return false; |
| 705 | } else { |
| 706 | if (!MO.isIdenticalTo(Other: OMO)) |
| 707 | return false; |
| 708 | if (Check == CheckKillDead && MO.isDead() != OMO.isDead()) |
| 709 | return false; |
| 710 | } |
| 711 | } else { |
| 712 | if (!MO.isIdenticalTo(Other: OMO)) |
| 713 | return false; |
| 714 | if (Check == CheckKillDead && MO.isKill() != OMO.isKill()) |
| 715 | return false; |
| 716 | } |
| 717 | } |
| 718 | // If DebugLoc does not match then two debug instructions are not identical. |
| 719 | if (isDebugInstr()) |
| 720 | if (getDebugLoc() && Other.getDebugLoc() && |
| 721 | getDebugLoc() != Other.getDebugLoc()) |
| 722 | return false; |
| 723 | // If pre- or post-instruction symbols do not match then the two instructions |
| 724 | // are not identical. |
| 725 | if (getPreInstrSymbol() != Other.getPreInstrSymbol() || |
| 726 | getPostInstrSymbol() != Other.getPostInstrSymbol()) |
| 727 | return false; |
| 728 | // Call instructions with different CFI types are not identical. |
| 729 | if (isCall() && getCFIType() != Other.getCFIType()) |
| 730 | return false; |
| 731 | |
| 732 | return true; |
| 733 | } |
| 734 | |
| 735 | bool MachineInstr::isEquivalentDbgInstr(const MachineInstr &Other) const { |
| 736 | if (!isDebugValueLike() || !Other.isDebugValueLike()) |
| 737 | return false; |
| 738 | if (getDebugLoc() != Other.getDebugLoc()) |
| 739 | return false; |
| 740 | if (getDebugVariable() != Other.getDebugVariable()) |
| 741 | return false; |
| 742 | if (getNumDebugOperands() != Other.getNumDebugOperands()) |
| 743 | return false; |
| 744 | for (unsigned OpIdx = 0; OpIdx < getNumDebugOperands(); ++OpIdx) |
| 745 | if (!getDebugOperand(Index: OpIdx).isIdenticalTo(Other: Other.getDebugOperand(Index: OpIdx))) |
| 746 | return false; |
| 747 | if (!DIExpression::isEqualExpression( |
| 748 | FirstExpr: getDebugExpression(), FirstIndirect: isIndirectDebugValue(), |
| 749 | SecondExpr: Other.getDebugExpression(), SecondIndirect: Other.isIndirectDebugValue())) |
| 750 | return false; |
| 751 | return true; |
| 752 | } |
| 753 | |
| 754 | const MachineFunction *MachineInstr::getMF() const { |
| 755 | return getParent()->getParent(); |
| 756 | } |
| 757 | |
| 758 | MachineInstr *MachineInstr::removeFromParent() { |
| 759 | assert(getParent() && "Not embedded in a basic block!" ); |
| 760 | return getParent()->remove(I: this); |
| 761 | } |
| 762 | |
| 763 | MachineInstr *MachineInstr::removeFromBundle() { |
| 764 | assert(getParent() && "Not embedded in a basic block!" ); |
| 765 | return getParent()->remove_instr(I: this); |
| 766 | } |
| 767 | |
| 768 | void MachineInstr::eraseFromParent() { |
| 769 | assert(getParent() && "Not embedded in a basic block!" ); |
| 770 | getParent()->erase(I: this); |
| 771 | } |
| 772 | |
| 773 | void MachineInstr::eraseFromBundle() { |
| 774 | assert(getParent() && "Not embedded in a basic block!" ); |
| 775 | getParent()->erase_instr(I: this); |
| 776 | } |
| 777 | |
| 778 | bool MachineInstr::isCandidateForAdditionalCallInfo(QueryType Type) const { |
| 779 | if (!isCall(Type)) |
| 780 | return false; |
| 781 | switch (getOpcode()) { |
| 782 | case TargetOpcode::PATCHPOINT: |
| 783 | case TargetOpcode::STACKMAP: |
| 784 | case TargetOpcode::STATEPOINT: |
| 785 | case TargetOpcode::FENTRY_CALL: |
| 786 | return false; |
| 787 | } |
| 788 | return true; |
| 789 | } |
| 790 | |
| 791 | bool MachineInstr::shouldUpdateAdditionalCallInfo() const { |
| 792 | if (isBundle()) |
| 793 | return isCandidateForAdditionalCallInfo(Type: MachineInstr::AnyInBundle); |
| 794 | return isCandidateForAdditionalCallInfo(); |
| 795 | } |
| 796 | |
| 797 | template <typename Operand, typename Instruction> |
| 798 | static iterator_range< |
| 799 | filter_iterator<Operand *, std::function<bool(Operand &Op)>>> |
| 800 | getDebugOperandsForRegHelper(Instruction *MI, Register Reg) { |
| 801 | std::function<bool(Operand & Op)> OpUsesReg( |
| 802 | [Reg](Operand &Op) { return Op.isReg() && Op.getReg() == Reg; }); |
| 803 | return make_filter_range(MI->debug_operands(), OpUsesReg); |
| 804 | } |
| 805 | |
| 806 | iterator_range<filter_iterator<const MachineOperand *, |
| 807 | std::function<bool(const MachineOperand &Op)>>> |
| 808 | MachineInstr::getDebugOperandsForReg(Register Reg) const { |
| 809 | return getDebugOperandsForRegHelper<const MachineOperand, const MachineInstr>( |
| 810 | MI: this, Reg); |
| 811 | } |
| 812 | |
| 813 | iterator_range< |
| 814 | filter_iterator<MachineOperand *, std::function<bool(MachineOperand &Op)>>> |
| 815 | MachineInstr::getDebugOperandsForReg(Register Reg) { |
| 816 | return getDebugOperandsForRegHelper<MachineOperand, MachineInstr>(MI: this, Reg); |
| 817 | } |
| 818 | |
| 819 | unsigned MachineInstr::getNumExplicitOperands() const { |
| 820 | unsigned NumOperands = MCID->getNumOperands(); |
| 821 | if (!MCID->isVariadic()) |
| 822 | return NumOperands; |
| 823 | |
| 824 | for (const MachineOperand &MO : operands_impl().drop_front(N: NumOperands)) { |
| 825 | // The operands must always be in the following order: |
| 826 | // - explicit reg defs, |
| 827 | // - other explicit operands (reg uses, immediates, etc.), |
| 828 | // - implicit reg defs |
| 829 | // - implicit reg uses |
| 830 | if (MO.isReg() && MO.isImplicit()) |
| 831 | break; |
| 832 | ++NumOperands; |
| 833 | } |
| 834 | return NumOperands; |
| 835 | } |
| 836 | |
| 837 | unsigned MachineInstr::getNumExplicitDefs() const { |
| 838 | unsigned NumDefs = MCID->getNumDefs(); |
| 839 | if (!MCID->isVariadic()) |
| 840 | return NumDefs; |
| 841 | |
| 842 | for (const MachineOperand &MO : operands_impl().drop_front(N: NumDefs)) { |
| 843 | if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) |
| 844 | break; |
| 845 | ++NumDefs; |
| 846 | } |
| 847 | return NumDefs; |
| 848 | } |
| 849 | |
| 850 | void MachineInstr::bundleWithPred() { |
| 851 | assert(!isBundledWithPred() && "MI is already bundled with its predecessor" ); |
| 852 | setFlag(BundledPred); |
| 853 | MachineBasicBlock::instr_iterator Pred = getIterator(); |
| 854 | --Pred; |
| 855 | assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags" ); |
| 856 | Pred->setFlag(BundledSucc); |
| 857 | } |
| 858 | |
| 859 | void MachineInstr::bundleWithSucc() { |
| 860 | assert(!isBundledWithSucc() && "MI is already bundled with its successor" ); |
| 861 | setFlag(BundledSucc); |
| 862 | MachineBasicBlock::instr_iterator Succ = getIterator(); |
| 863 | ++Succ; |
| 864 | assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags" ); |
| 865 | Succ->setFlag(BundledPred); |
| 866 | } |
| 867 | |
| 868 | void MachineInstr::unbundleFromPred() { |
| 869 | assert(isBundledWithPred() && "MI isn't bundled with its predecessor" ); |
| 870 | clearFlag(Flag: BundledPred); |
| 871 | MachineBasicBlock::instr_iterator Pred = getIterator(); |
| 872 | --Pred; |
| 873 | assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags" ); |
| 874 | Pred->clearFlag(Flag: BundledSucc); |
| 875 | } |
| 876 | |
| 877 | void MachineInstr::unbundleFromSucc() { |
| 878 | assert(isBundledWithSucc() && "MI isn't bundled with its successor" ); |
| 879 | clearFlag(Flag: BundledSucc); |
| 880 | MachineBasicBlock::instr_iterator Succ = getIterator(); |
| 881 | ++Succ; |
| 882 | assert(Succ->isBundledWithPred() && "Inconsistent bundle flags" ); |
| 883 | Succ->clearFlag(Flag: BundledPred); |
| 884 | } |
| 885 | |
| 886 | bool MachineInstr::isStackAligningInlineAsm() const { |
| 887 | if (isInlineAsm()) { |
| 888 | unsigned = getOperand(i: InlineAsm::MIOp_ExtraInfo).getImm(); |
| 889 | if (ExtraInfo & InlineAsm::Extra_IsAlignStack) |
| 890 | return true; |
| 891 | } |
| 892 | return false; |
| 893 | } |
| 894 | |
| 895 | InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const { |
| 896 | assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!" ); |
| 897 | unsigned = getOperand(i: InlineAsm::MIOp_ExtraInfo).getImm(); |
| 898 | return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0); |
| 899 | } |
| 900 | |
| 901 | int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx, |
| 902 | unsigned *GroupNo) const { |
| 903 | assert(isInlineAsm() && "Expected an inline asm instruction" ); |
| 904 | assert(OpIdx < getNumOperands() && "OpIdx out of range" ); |
| 905 | |
| 906 | // Ignore queries about the initial operands. |
| 907 | if (OpIdx < InlineAsm::MIOp_FirstOperand) |
| 908 | return -1; |
| 909 | |
| 910 | unsigned Group = 0; |
| 911 | unsigned NumOps; |
| 912 | for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; |
| 913 | i += NumOps) { |
| 914 | const MachineOperand &FlagMO = getOperand(i); |
| 915 | // If we reach the implicit register operands, stop looking. |
| 916 | if (!FlagMO.isImm()) |
| 917 | return -1; |
| 918 | const InlineAsm::Flag F(FlagMO.getImm()); |
| 919 | NumOps = 1 + F.getNumOperandRegisters(); |
| 920 | if (i + NumOps > OpIdx) { |
| 921 | if (GroupNo) |
| 922 | *GroupNo = Group; |
| 923 | return i; |
| 924 | } |
| 925 | ++Group; |
| 926 | } |
| 927 | return -1; |
| 928 | } |
| 929 | |
| 930 | const DILabel *MachineInstr::getDebugLabel() const { |
| 931 | assert(isDebugLabel() && "not a DBG_LABEL" ); |
| 932 | return cast<DILabel>(Val: getOperand(i: 0).getMetadata()); |
| 933 | } |
| 934 | |
| 935 | const MachineOperand &MachineInstr::getDebugVariableOp() const { |
| 936 | assert((isDebugValueLike()) && "not a DBG_VALUE*" ); |
| 937 | unsigned VariableOp = isNonListDebugValue() ? 2 : 0; |
| 938 | return getOperand(i: VariableOp); |
| 939 | } |
| 940 | |
| 941 | MachineOperand &MachineInstr::getDebugVariableOp() { |
| 942 | assert((isDebugValueLike()) && "not a DBG_VALUE*" ); |
| 943 | unsigned VariableOp = isNonListDebugValue() ? 2 : 0; |
| 944 | return getOperand(i: VariableOp); |
| 945 | } |
| 946 | |
| 947 | const DILocalVariable *MachineInstr::getDebugVariable() const { |
| 948 | return cast<DILocalVariable>(Val: getDebugVariableOp().getMetadata()); |
| 949 | } |
| 950 | |
| 951 | const MachineOperand &MachineInstr::getDebugExpressionOp() const { |
| 952 | assert((isDebugValueLike()) && "not a DBG_VALUE*" ); |
| 953 | unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; |
| 954 | return getOperand(i: ExpressionOp); |
| 955 | } |
| 956 | |
| 957 | MachineOperand &MachineInstr::getDebugExpressionOp() { |
| 958 | assert((isDebugValueLike()) && "not a DBG_VALUE*" ); |
| 959 | unsigned ExpressionOp = isNonListDebugValue() ? 3 : 1; |
| 960 | return getOperand(i: ExpressionOp); |
| 961 | } |
| 962 | |
| 963 | const DIExpression *MachineInstr::getDebugExpression() const { |
| 964 | return cast<DIExpression>(Val: getDebugExpressionOp().getMetadata()); |
| 965 | } |
| 966 | |
| 967 | bool MachineInstr::isDebugEntryValue() const { |
| 968 | return isDebugValue() && getDebugExpression()->isEntryValue(); |
| 969 | } |
| 970 | |
| 971 | const TargetRegisterClass* |
| 972 | MachineInstr::getRegClassConstraint(unsigned OpIdx, |
| 973 | const TargetInstrInfo *TII, |
| 974 | const TargetRegisterInfo *TRI) const { |
| 975 | assert(getParent() && "Can't have an MBB reference here!" ); |
| 976 | assert(getMF() && "Can't have an MF reference here!" ); |
| 977 | const MachineFunction &MF = *getMF(); |
| 978 | |
| 979 | // Most opcodes have fixed constraints in their MCInstrDesc. |
| 980 | if (!isInlineAsm()) |
| 981 | return TII->getRegClass(MCID: getDesc(), OpNum: OpIdx, TRI, MF); |
| 982 | |
| 983 | if (!getOperand(i: OpIdx).isReg()) |
| 984 | return nullptr; |
| 985 | |
| 986 | // For tied uses on inline asm, get the constraint from the def. |
| 987 | unsigned DefIdx; |
| 988 | if (getOperand(i: OpIdx).isUse() && isRegTiedToDefOperand(UseOpIdx: OpIdx, DefOpIdx: &DefIdx)) |
| 989 | OpIdx = DefIdx; |
| 990 | |
| 991 | // Inline asm stores register class constraints in the flag word. |
| 992 | int FlagIdx = findInlineAsmFlagIdx(OpIdx); |
| 993 | if (FlagIdx < 0) |
| 994 | return nullptr; |
| 995 | |
| 996 | const InlineAsm::Flag F(getOperand(i: FlagIdx).getImm()); |
| 997 | unsigned RCID; |
| 998 | if ((F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) && |
| 999 | F.hasRegClassConstraint(RC&: RCID)) |
| 1000 | return TRI->getRegClass(i: RCID); |
| 1001 | |
| 1002 | // Assume that all registers in a memory operand are pointers. |
| 1003 | if (F.isMemKind()) |
| 1004 | return TRI->getPointerRegClass(MF); |
| 1005 | |
| 1006 | return nullptr; |
| 1007 | } |
| 1008 | |
| 1009 | const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVReg( |
| 1010 | Register Reg, const TargetRegisterClass *CurRC, const TargetInstrInfo *TII, |
| 1011 | const TargetRegisterInfo *TRI, bool ExploreBundle) const { |
| 1012 | // Check every operands inside the bundle if we have |
| 1013 | // been asked to. |
| 1014 | if (ExploreBundle) |
| 1015 | for (ConstMIBundleOperands OpndIt(*this); OpndIt.isValid() && CurRC; |
| 1016 | ++OpndIt) |
| 1017 | CurRC = OpndIt->getParent()->getRegClassConstraintEffectForVRegImpl( |
| 1018 | OpIdx: OpndIt.getOperandNo(), Reg, CurRC, TII, TRI); |
| 1019 | else |
| 1020 | // Otherwise, just check the current operands. |
| 1021 | for (unsigned i = 0, e = NumOperands; i < e && CurRC; ++i) |
| 1022 | CurRC = getRegClassConstraintEffectForVRegImpl(OpIdx: i, Reg, CurRC, TII, TRI); |
| 1023 | return CurRC; |
| 1024 | } |
| 1025 | |
| 1026 | const TargetRegisterClass *MachineInstr::getRegClassConstraintEffectForVRegImpl( |
| 1027 | unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, |
| 1028 | const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { |
| 1029 | assert(CurRC && "Invalid initial register class" ); |
| 1030 | // Check if Reg is constrained by some of its use/def from MI. |
| 1031 | const MachineOperand &MO = getOperand(i: OpIdx); |
| 1032 | if (!MO.isReg() || MO.getReg() != Reg) |
| 1033 | return CurRC; |
| 1034 | // If yes, accumulate the constraints through the operand. |
| 1035 | return getRegClassConstraintEffect(OpIdx, CurRC, TII, TRI); |
| 1036 | } |
| 1037 | |
| 1038 | const TargetRegisterClass *MachineInstr::getRegClassConstraintEffect( |
| 1039 | unsigned OpIdx, const TargetRegisterClass *CurRC, |
| 1040 | const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const { |
| 1041 | const TargetRegisterClass *OpRC = getRegClassConstraint(OpIdx, TII, TRI); |
| 1042 | const MachineOperand &MO = getOperand(i: OpIdx); |
| 1043 | assert(MO.isReg() && |
| 1044 | "Cannot get register constraints for non-register operand" ); |
| 1045 | assert(CurRC && "Invalid initial register class" ); |
| 1046 | if (unsigned SubIdx = MO.getSubReg()) { |
| 1047 | if (OpRC) |
| 1048 | CurRC = TRI->getMatchingSuperRegClass(A: CurRC, B: OpRC, Idx: SubIdx); |
| 1049 | else |
| 1050 | CurRC = TRI->getSubClassWithSubReg(RC: CurRC, Idx: SubIdx); |
| 1051 | } else if (OpRC) |
| 1052 | CurRC = TRI->getCommonSubClass(A: CurRC, B: OpRC); |
| 1053 | return CurRC; |
| 1054 | } |
| 1055 | |
| 1056 | /// Return the number of instructions inside the MI bundle, not counting the |
| 1057 | /// header instruction. |
| 1058 | unsigned MachineInstr::getBundleSize() const { |
| 1059 | MachineBasicBlock::const_instr_iterator I = getIterator(); |
| 1060 | unsigned Size = 0; |
| 1061 | while (I->isBundledWithSucc()) { |
| 1062 | ++Size; |
| 1063 | ++I; |
| 1064 | } |
| 1065 | return Size; |
| 1066 | } |
| 1067 | |
| 1068 | /// Returns true if the MachineInstr has an implicit-use operand of exactly |
| 1069 | /// the given register (not considering sub/super-registers). |
| 1070 | bool MachineInstr::hasRegisterImplicitUseOperand(Register Reg) const { |
| 1071 | for (const MachineOperand &MO : implicit_operands()) { |
| 1072 | if (MO.isReg() && MO.isUse() && MO.getReg() == Reg) |
| 1073 | return true; |
| 1074 | } |
| 1075 | return false; |
| 1076 | } |
| 1077 | |
| 1078 | /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of |
| 1079 | /// the specific register or -1 if it is not found. It further tightens |
| 1080 | /// the search criteria to a use that kills the register if isKill is true. |
| 1081 | int MachineInstr::findRegisterUseOperandIdx(Register Reg, |
| 1082 | const TargetRegisterInfo *TRI, |
| 1083 | bool isKill) const { |
| 1084 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| 1085 | const MachineOperand &MO = getOperand(i); |
| 1086 | if (!MO.isReg() || !MO.isUse()) |
| 1087 | continue; |
| 1088 | Register MOReg = MO.getReg(); |
| 1089 | if (!MOReg) |
| 1090 | continue; |
| 1091 | if (MOReg == Reg || (TRI && Reg && MOReg && TRI->regsOverlap(RegA: MOReg, RegB: Reg))) |
| 1092 | if (!isKill || MO.isKill()) |
| 1093 | return i; |
| 1094 | } |
| 1095 | return -1; |
| 1096 | } |
| 1097 | |
| 1098 | /// readsWritesVirtualRegister - Return a pair of bools (reads, writes) |
| 1099 | /// indicating if this instruction reads or writes Reg. This also considers |
| 1100 | /// partial defines. |
| 1101 | std::pair<bool,bool> |
| 1102 | MachineInstr::readsWritesVirtualRegister(Register Reg, |
| 1103 | SmallVectorImpl<unsigned> *Ops) const { |
| 1104 | bool PartDef = false; // Partial redefine. |
| 1105 | bool FullDef = false; // Full define. |
| 1106 | bool Use = false; |
| 1107 | |
| 1108 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| 1109 | const MachineOperand &MO = getOperand(i); |
| 1110 | if (!MO.isReg() || MO.getReg() != Reg) |
| 1111 | continue; |
| 1112 | if (Ops) |
| 1113 | Ops->push_back(Elt: i); |
| 1114 | if (MO.isUse()) |
| 1115 | Use |= !MO.isUndef(); |
| 1116 | else if (MO.getSubReg() && !MO.isUndef()) |
| 1117 | // A partial def undef doesn't count as reading the register. |
| 1118 | PartDef = true; |
| 1119 | else |
| 1120 | FullDef = true; |
| 1121 | } |
| 1122 | // A partial redefine uses Reg unless there is also a full define. |
| 1123 | return std::make_pair(x: Use || (PartDef && !FullDef), y: PartDef || FullDef); |
| 1124 | } |
| 1125 | |
| 1126 | /// findRegisterDefOperandIdx() - Returns the operand index that is a def of |
| 1127 | /// the specified register or -1 if it is not found. If isDead is true, defs |
| 1128 | /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it |
| 1129 | /// also checks if there is a def of a super-register. |
| 1130 | int MachineInstr::findRegisterDefOperandIdx(Register Reg, |
| 1131 | const TargetRegisterInfo *TRI, |
| 1132 | bool isDead, bool Overlap) const { |
| 1133 | bool isPhys = Reg.isPhysical(); |
| 1134 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| 1135 | const MachineOperand &MO = getOperand(i); |
| 1136 | // Accept regmask operands when Overlap is set. |
| 1137 | // Ignore them when looking for a specific def operand (Overlap == false). |
| 1138 | if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(PhysReg: Reg)) |
| 1139 | return i; |
| 1140 | if (!MO.isReg() || !MO.isDef()) |
| 1141 | continue; |
| 1142 | Register MOReg = MO.getReg(); |
| 1143 | bool Found = (MOReg == Reg); |
| 1144 | if (!Found && TRI && isPhys && MOReg.isPhysical()) { |
| 1145 | if (Overlap) |
| 1146 | Found = TRI->regsOverlap(RegA: MOReg, RegB: Reg); |
| 1147 | else |
| 1148 | Found = TRI->isSubRegister(RegA: MOReg, RegB: Reg); |
| 1149 | } |
| 1150 | if (Found && (!isDead || MO.isDead())) |
| 1151 | return i; |
| 1152 | } |
| 1153 | return -1; |
| 1154 | } |
| 1155 | |
| 1156 | /// findFirstPredOperandIdx() - Find the index of the first operand in the |
| 1157 | /// operand list that is used to represent the predicate. It returns -1 if |
| 1158 | /// none is found. |
| 1159 | int MachineInstr::findFirstPredOperandIdx() const { |
| 1160 | // Don't call MCID.findFirstPredOperandIdx() because this variant |
| 1161 | // is sometimes called on an instruction that's not yet complete, and |
| 1162 | // so the number of operands is less than the MCID indicates. In |
| 1163 | // particular, the PTX target does this. |
| 1164 | const MCInstrDesc &MCID = getDesc(); |
| 1165 | if (MCID.isPredicable()) { |
| 1166 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| 1167 | if (MCID.operands()[i].isPredicate()) |
| 1168 | return i; |
| 1169 | } |
| 1170 | |
| 1171 | return -1; |
| 1172 | } |
| 1173 | |
| 1174 | // MachineOperand::TiedTo is 4 bits wide. |
| 1175 | const unsigned TiedMax = 15; |
| 1176 | |
| 1177 | /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other. |
| 1178 | /// |
| 1179 | /// Use and def operands can be tied together, indicated by a non-zero TiedTo |
| 1180 | /// field. TiedTo can have these values: |
| 1181 | /// |
| 1182 | /// 0: Operand is not tied to anything. |
| 1183 | /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1). |
| 1184 | /// TiedMax: Tied to an operand >= TiedMax-1. |
| 1185 | /// |
| 1186 | /// The tied def must be one of the first TiedMax operands on a normal |
| 1187 | /// instruction. INLINEASM instructions allow more tied defs. |
| 1188 | /// |
| 1189 | void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) { |
| 1190 | MachineOperand &DefMO = getOperand(i: DefIdx); |
| 1191 | MachineOperand &UseMO = getOperand(i: UseIdx); |
| 1192 | assert(DefMO.isDef() && "DefIdx must be a def operand" ); |
| 1193 | assert(UseMO.isUse() && "UseIdx must be a use operand" ); |
| 1194 | assert(!DefMO.isTied() && "Def is already tied to another use" ); |
| 1195 | assert(!UseMO.isTied() && "Use is already tied to another def" ); |
| 1196 | |
| 1197 | if (DefIdx < TiedMax) { |
| 1198 | UseMO.TiedTo = DefIdx + 1; |
| 1199 | } else { |
| 1200 | // Inline asm can use the group descriptors to find tied operands, |
| 1201 | // statepoint tied operands are trivial to match (1-1 reg def with reg use), |
| 1202 | // but on normal instruction, the tied def must be within the first TiedMax |
| 1203 | // operands. |
| 1204 | assert((isInlineAsm() || getOpcode() == TargetOpcode::STATEPOINT) && |
| 1205 | "DefIdx out of range" ); |
| 1206 | UseMO.TiedTo = TiedMax; |
| 1207 | } |
| 1208 | |
| 1209 | // UseIdx can be out of range, we'll search for it in findTiedOperandIdx(). |
| 1210 | DefMO.TiedTo = std::min(a: UseIdx + 1, b: TiedMax); |
| 1211 | } |
| 1212 | |
| 1213 | /// Given the index of a tied register operand, find the operand it is tied to. |
| 1214 | /// Defs are tied to uses and vice versa. Returns the index of the tied operand |
| 1215 | /// which must exist. |
| 1216 | unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const { |
| 1217 | const MachineOperand &MO = getOperand(i: OpIdx); |
| 1218 | assert(MO.isTied() && "Operand isn't tied" ); |
| 1219 | |
| 1220 | // Normally TiedTo is in range. |
| 1221 | if (MO.TiedTo < TiedMax) |
| 1222 | return MO.TiedTo - 1; |
| 1223 | |
| 1224 | // Uses on normal instructions can be out of range. |
| 1225 | if (!isInlineAsm() && getOpcode() != TargetOpcode::STATEPOINT) { |
| 1226 | // Normal tied defs must be in the 0..TiedMax-1 range. |
| 1227 | if (MO.isUse()) |
| 1228 | return TiedMax - 1; |
| 1229 | // MO is a def. Search for the tied use. |
| 1230 | for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) { |
| 1231 | const MachineOperand &UseMO = getOperand(i); |
| 1232 | if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1) |
| 1233 | return i; |
| 1234 | } |
| 1235 | llvm_unreachable("Can't find tied use" ); |
| 1236 | } |
| 1237 | |
| 1238 | if (getOpcode() == TargetOpcode::STATEPOINT) { |
| 1239 | // In STATEPOINT defs correspond 1-1 to GC pointer operands passed |
| 1240 | // on registers. |
| 1241 | StatepointOpers SO(this); |
| 1242 | unsigned CurUseIdx = SO.getFirstGCPtrIdx(); |
| 1243 | assert(CurUseIdx != -1U && "only gc pointer statepoint operands can be tied" ); |
| 1244 | unsigned NumDefs = getNumDefs(); |
| 1245 | for (unsigned CurDefIdx = 0; CurDefIdx < NumDefs; ++CurDefIdx) { |
| 1246 | while (!getOperand(i: CurUseIdx).isReg()) |
| 1247 | CurUseIdx = StackMaps::getNextMetaArgIdx(MI: this, CurIdx: CurUseIdx); |
| 1248 | if (OpIdx == CurDefIdx) |
| 1249 | return CurUseIdx; |
| 1250 | if (OpIdx == CurUseIdx) |
| 1251 | return CurDefIdx; |
| 1252 | CurUseIdx = StackMaps::getNextMetaArgIdx(MI: this, CurIdx: CurUseIdx); |
| 1253 | } |
| 1254 | llvm_unreachable("Can't find tied use" ); |
| 1255 | } |
| 1256 | |
| 1257 | // Now deal with inline asm by parsing the operand group descriptor flags. |
| 1258 | // Find the beginning of each operand group. |
| 1259 | SmallVector<unsigned, 8> GroupIdx; |
| 1260 | unsigned OpIdxGroup = ~0u; |
| 1261 | unsigned NumOps; |
| 1262 | for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e; |
| 1263 | i += NumOps) { |
| 1264 | const MachineOperand &FlagMO = getOperand(i); |
| 1265 | assert(FlagMO.isImm() && "Invalid tied operand on inline asm" ); |
| 1266 | unsigned CurGroup = GroupIdx.size(); |
| 1267 | GroupIdx.push_back(Elt: i); |
| 1268 | const InlineAsm::Flag F(FlagMO.getImm()); |
| 1269 | NumOps = 1 + F.getNumOperandRegisters(); |
| 1270 | // OpIdx belongs to this operand group. |
| 1271 | if (OpIdx > i && OpIdx < i + NumOps) |
| 1272 | OpIdxGroup = CurGroup; |
| 1273 | unsigned TiedGroup; |
| 1274 | if (!F.isUseOperandTiedToDef(Idx&: TiedGroup)) |
| 1275 | continue; |
| 1276 | // Operands in this group are tied to operands in TiedGroup which must be |
| 1277 | // earlier. Find the number of operands between the two groups. |
| 1278 | unsigned Delta = i - GroupIdx[TiedGroup]; |
| 1279 | |
| 1280 | // OpIdx is a use tied to TiedGroup. |
| 1281 | if (OpIdxGroup == CurGroup) |
| 1282 | return OpIdx - Delta; |
| 1283 | |
| 1284 | // OpIdx is a def tied to this use group. |
| 1285 | if (OpIdxGroup == TiedGroup) |
| 1286 | return OpIdx + Delta; |
| 1287 | } |
| 1288 | llvm_unreachable("Invalid tied operand on inline asm" ); |
| 1289 | } |
| 1290 | |
| 1291 | /// clearKillInfo - Clears kill flags on all operands. |
| 1292 | /// |
| 1293 | void MachineInstr::clearKillInfo() { |
| 1294 | for (MachineOperand &MO : operands()) { |
| 1295 | if (MO.isReg() && MO.isUse()) |
| 1296 | MO.setIsKill(false); |
| 1297 | } |
| 1298 | } |
| 1299 | |
| 1300 | void MachineInstr::substituteRegister(Register FromReg, Register ToReg, |
| 1301 | unsigned SubIdx, |
| 1302 | const TargetRegisterInfo &RegInfo) { |
| 1303 | if (ToReg.isPhysical()) { |
| 1304 | if (SubIdx) |
| 1305 | ToReg = RegInfo.getSubReg(Reg: ToReg, Idx: SubIdx); |
| 1306 | for (MachineOperand &MO : operands()) { |
| 1307 | if (!MO.isReg() || MO.getReg() != FromReg) |
| 1308 | continue; |
| 1309 | MO.substPhysReg(Reg: ToReg, RegInfo); |
| 1310 | } |
| 1311 | } else { |
| 1312 | for (MachineOperand &MO : operands()) { |
| 1313 | if (!MO.isReg() || MO.getReg() != FromReg) |
| 1314 | continue; |
| 1315 | MO.substVirtReg(Reg: ToReg, SubIdx, RegInfo); |
| 1316 | } |
| 1317 | } |
| 1318 | } |
| 1319 | |
| 1320 | /// isSafeToMove - Return true if it is safe to move this instruction. If |
| 1321 | /// SawStore is set to true, it means that there is a store (or call) between |
| 1322 | /// the instruction's location and its intended destination. |
| 1323 | bool MachineInstr::isSafeToMove(bool &SawStore) const { |
| 1324 | // Ignore stuff that we obviously can't move. |
| 1325 | // |
| 1326 | // Treat volatile loads as stores. This is not strictly necessary for |
| 1327 | // volatiles, but it is required for atomic loads. It is not allowed to move |
| 1328 | // a load across an atomic load with Ordering > Monotonic. |
| 1329 | if (mayStore() || isCall() || isPHI() || |
| 1330 | (mayLoad() && hasOrderedMemoryRef())) { |
| 1331 | SawStore = true; |
| 1332 | return false; |
| 1333 | } |
| 1334 | |
| 1335 | // Don't touch instructions that have non-trivial invariants. For example, |
| 1336 | // terminators have to be at the end of a basic block. |
| 1337 | if (isPosition() || isDebugInstr() || isTerminator() || |
| 1338 | isJumpTableDebugInfo()) |
| 1339 | return false; |
| 1340 | |
| 1341 | // Don't touch instructions which can have non-load/store effects. |
| 1342 | // |
| 1343 | // Inline asm has a "sideeffect" marker to indicate whether the asm has |
| 1344 | // intentional side-effects. Even if an inline asm is not "sideeffect", |
| 1345 | // though, it still can't be speculatively executed: the operation might |
| 1346 | // not be valid on the current target, or for some combinations of operands. |
| 1347 | // (Some transforms that move an instruction don't speculatively execute it; |
| 1348 | // we currently don't try to handle that distinction here.) |
| 1349 | // |
| 1350 | // Other instructions handled here include those that can raise FP |
| 1351 | // exceptions, x86 "DIV" instructions which trap on divide by zero, and |
| 1352 | // stack adjustments. |
| 1353 | if (mayRaiseFPException() || hasProperty(MCFlag: MCID::UnmodeledSideEffects) || |
| 1354 | isInlineAsm()) |
| 1355 | return false; |
| 1356 | |
| 1357 | // See if this instruction does a load. If so, we have to guarantee that the |
| 1358 | // loaded value doesn't change between the load and the its intended |
| 1359 | // destination. The check for isInvariantLoad gives the target the chance to |
| 1360 | // classify the load as always returning a constant, e.g. a constant pool |
| 1361 | // load. |
| 1362 | if (mayLoad() && !isDereferenceableInvariantLoad()) |
| 1363 | // Otherwise, this is a real load. If there is a store between the load and |
| 1364 | // end of block, we can't move it. |
| 1365 | return !SawStore; |
| 1366 | |
| 1367 | return true; |
| 1368 | } |
| 1369 | |
| 1370 | bool MachineInstr::wouldBeTriviallyDead() const { |
| 1371 | // Don't delete frame allocation labels. |
| 1372 | // FIXME: Why is LOCAL_ESCAPE not considered in MachineInstr::isLabel? |
| 1373 | if (getOpcode() == TargetOpcode::LOCAL_ESCAPE) |
| 1374 | return false; |
| 1375 | |
| 1376 | // Don't delete FAKE_USE. |
| 1377 | // FIXME: Why is FAKE_USE not considered in MachineInstr::isPosition? |
| 1378 | if (isFakeUse()) |
| 1379 | return false; |
| 1380 | |
| 1381 | // LIFETIME markers should be preserved. |
| 1382 | // FIXME: Why are LIFETIME markers not considered in MachineInstr::isPosition? |
| 1383 | if (isLifetimeMarker()) |
| 1384 | return false; |
| 1385 | |
| 1386 | // If we can move an instruction, we can remove it. Otherwise, it has |
| 1387 | // a side-effect of some sort. |
| 1388 | bool SawStore = false; |
| 1389 | return isPHI() || isSafeToMove(SawStore); |
| 1390 | } |
| 1391 | |
| 1392 | bool MachineInstr::isDead(const MachineRegisterInfo &MRI, |
| 1393 | LiveRegUnits *LivePhysRegs) const { |
| 1394 | // Instructions without side-effects are dead iff they only define dead regs. |
| 1395 | // This function is hot and this loop returns early in the common case, |
| 1396 | // so only perform additional checks before this if absolutely necessary. |
| 1397 | for (const MachineOperand &MO : all_defs()) { |
| 1398 | Register Reg = MO.getReg(); |
| 1399 | if (Reg.isPhysical()) { |
| 1400 | // Don't delete live physreg defs, or any reserved register defs. |
| 1401 | if (!LivePhysRegs || !LivePhysRegs->available(Reg) || MRI.isReserved(PhysReg: Reg)) |
| 1402 | return false; |
| 1403 | } else { |
| 1404 | if (MO.isDead()) |
| 1405 | continue; |
| 1406 | for (const MachineInstr &Use : MRI.use_nodbg_instructions(Reg)) { |
| 1407 | if (&Use != this) |
| 1408 | // This def has a non-debug use. Don't delete the instruction! |
| 1409 | return false; |
| 1410 | } |
| 1411 | } |
| 1412 | } |
| 1413 | |
| 1414 | // Technically speaking inline asm without side effects and no defs can still |
| 1415 | // be deleted. But there is so much bad inline asm code out there, we should |
| 1416 | // let them be. |
| 1417 | if (isInlineAsm()) |
| 1418 | return false; |
| 1419 | |
| 1420 | // FIXME: See issue #105950 for why LIFETIME markers are considered dead here. |
| 1421 | if (isLifetimeMarker()) |
| 1422 | return true; |
| 1423 | |
| 1424 | // If there are no defs with uses, then we call the instruction dead so long |
| 1425 | // as we do not suspect it may have sideeffects. |
| 1426 | return wouldBeTriviallyDead(); |
| 1427 | } |
| 1428 | |
| 1429 | static bool MemOperandsHaveAlias(const MachineFrameInfo &MFI, |
| 1430 | BatchAAResults *AA, bool UseTBAA, |
| 1431 | const MachineMemOperand *MMOa, |
| 1432 | const MachineMemOperand *MMOb) { |
| 1433 | // The following interface to AA is fashioned after DAGCombiner::isAlias and |
| 1434 | // operates with MachineMemOperand offset with some important assumptions: |
| 1435 | // - LLVM fundamentally assumes flat address spaces. |
| 1436 | // - MachineOperand offset can *only* result from legalization and cannot |
| 1437 | // affect queries other than the trivial case of overlap checking. |
| 1438 | // - These offsets never wrap and never step outside of allocated objects. |
| 1439 | // - There should never be any negative offsets here. |
| 1440 | // |
| 1441 | // FIXME: Modify API to hide this math from "user" |
| 1442 | // Even before we go to AA we can reason locally about some memory objects. It |
| 1443 | // can save compile time, and possibly catch some corner cases not currently |
| 1444 | // covered. |
| 1445 | |
| 1446 | int64_t OffsetA = MMOa->getOffset(); |
| 1447 | int64_t OffsetB = MMOb->getOffset(); |
| 1448 | int64_t MinOffset = std::min(a: OffsetA, b: OffsetB); |
| 1449 | |
| 1450 | LocationSize WidthA = MMOa->getSize(); |
| 1451 | LocationSize WidthB = MMOb->getSize(); |
| 1452 | bool KnownWidthA = WidthA.hasValue(); |
| 1453 | bool KnownWidthB = WidthB.hasValue(); |
| 1454 | bool BothMMONonScalable = !WidthA.isScalable() && !WidthB.isScalable(); |
| 1455 | |
| 1456 | const Value *ValA = MMOa->getValue(); |
| 1457 | const Value *ValB = MMOb->getValue(); |
| 1458 | bool SameVal = (ValA && ValB && (ValA == ValB)); |
| 1459 | if (!SameVal) { |
| 1460 | const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); |
| 1461 | const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); |
| 1462 | if (PSVa && ValB && !PSVa->mayAlias(&MFI)) |
| 1463 | return false; |
| 1464 | if (PSVb && ValA && !PSVb->mayAlias(&MFI)) |
| 1465 | return false; |
| 1466 | if (PSVa && PSVb && (PSVa == PSVb)) |
| 1467 | SameVal = true; |
| 1468 | } |
| 1469 | |
| 1470 | if (SameVal && BothMMONonScalable) { |
| 1471 | if (!KnownWidthA || !KnownWidthB) |
| 1472 | return true; |
| 1473 | int64_t MaxOffset = std::max(a: OffsetA, b: OffsetB); |
| 1474 | int64_t LowWidth = (MinOffset == OffsetA) |
| 1475 | ? WidthA.getValue().getKnownMinValue() |
| 1476 | : WidthB.getValue().getKnownMinValue(); |
| 1477 | return (MinOffset + LowWidth > MaxOffset); |
| 1478 | } |
| 1479 | |
| 1480 | if (!AA) |
| 1481 | return true; |
| 1482 | |
| 1483 | if (!ValA || !ValB) |
| 1484 | return true; |
| 1485 | |
| 1486 | assert((OffsetA >= 0) && "Negative MachineMemOperand offset" ); |
| 1487 | assert((OffsetB >= 0) && "Negative MachineMemOperand offset" ); |
| 1488 | |
| 1489 | // If Scalable Location Size has non-zero offset, Width + Offset does not work |
| 1490 | // at the moment |
| 1491 | if ((WidthA.isScalable() && OffsetA > 0) || |
| 1492 | (WidthB.isScalable() && OffsetB > 0)) |
| 1493 | return true; |
| 1494 | |
| 1495 | int64_t OverlapA = |
| 1496 | KnownWidthA ? WidthA.getValue().getKnownMinValue() + OffsetA - MinOffset |
| 1497 | : MemoryLocation::UnknownSize; |
| 1498 | int64_t OverlapB = |
| 1499 | KnownWidthB ? WidthB.getValue().getKnownMinValue() + OffsetB - MinOffset |
| 1500 | : MemoryLocation::UnknownSize; |
| 1501 | |
| 1502 | LocationSize LocA = (WidthA.isScalable() || !KnownWidthA) |
| 1503 | ? WidthA |
| 1504 | : LocationSize::precise(Value: OverlapA); |
| 1505 | LocationSize LocB = (WidthB.isScalable() || !KnownWidthB) |
| 1506 | ? WidthB |
| 1507 | : LocationSize::precise(Value: OverlapB); |
| 1508 | |
| 1509 | return !AA->isNoAlias( |
| 1510 | LocA: MemoryLocation(ValA, LocA, UseTBAA ? MMOa->getAAInfo() : AAMDNodes()), |
| 1511 | LocB: MemoryLocation(ValB, LocB, UseTBAA ? MMOb->getAAInfo() : AAMDNodes())); |
| 1512 | } |
| 1513 | |
| 1514 | bool MachineInstr::mayAlias(BatchAAResults *AA, const MachineInstr &Other, |
| 1515 | bool UseTBAA) const { |
| 1516 | const MachineFunction *MF = getMF(); |
| 1517 | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
| 1518 | const MachineFrameInfo &MFI = MF->getFrameInfo(); |
| 1519 | |
| 1520 | // Exclude call instruction which may alter the memory but can not be handled |
| 1521 | // by this function. |
| 1522 | if (isCall() || Other.isCall()) |
| 1523 | return true; |
| 1524 | |
| 1525 | // If neither instruction stores to memory, they can't alias in any |
| 1526 | // meaningful way, even if they read from the same address. |
| 1527 | if (!mayStore() && !Other.mayStore()) |
| 1528 | return false; |
| 1529 | |
| 1530 | // Both instructions must be memory operations to be able to alias. |
| 1531 | if (!mayLoadOrStore() || !Other.mayLoadOrStore()) |
| 1532 | return false; |
| 1533 | |
| 1534 | // Let the target decide if memory accesses cannot possibly overlap. |
| 1535 | if (TII->areMemAccessesTriviallyDisjoint(MIa: *this, MIb: Other)) |
| 1536 | return false; |
| 1537 | |
| 1538 | // Memory operations without memory operands may access anything. Be |
| 1539 | // conservative and assume `MayAlias`. |
| 1540 | if (memoperands_empty() || Other.memoperands_empty()) |
| 1541 | return true; |
| 1542 | |
| 1543 | // Skip if there are too many memory operands. |
| 1544 | auto NumChecks = getNumMemOperands() * Other.getNumMemOperands(); |
| 1545 | if (NumChecks > TII->getMemOperandAACheckLimit()) |
| 1546 | return true; |
| 1547 | |
| 1548 | // Check each pair of memory operands from both instructions, which can't |
| 1549 | // alias only if all pairs won't alias. |
| 1550 | for (auto *MMOa : memoperands()) |
| 1551 | for (auto *MMOb : Other.memoperands()) |
| 1552 | if (MemOperandsHaveAlias(MFI, AA, UseTBAA, MMOa, MMOb)) |
| 1553 | return true; |
| 1554 | |
| 1555 | return false; |
| 1556 | } |
| 1557 | |
| 1558 | bool MachineInstr::mayAlias(AAResults *AA, const MachineInstr &Other, |
| 1559 | bool UseTBAA) const { |
| 1560 | if (AA) { |
| 1561 | BatchAAResults BAA(*AA); |
| 1562 | return mayAlias(AA: &BAA, Other, UseTBAA); |
| 1563 | } |
| 1564 | return mayAlias(AA: static_cast<BatchAAResults *>(nullptr), Other, UseTBAA); |
| 1565 | } |
| 1566 | |
| 1567 | /// hasOrderedMemoryRef - Return true if this instruction may have an ordered |
| 1568 | /// or volatile memory reference, or if the information describing the memory |
| 1569 | /// reference is not available. Return false if it is known to have no ordered |
| 1570 | /// memory references. |
| 1571 | bool MachineInstr::hasOrderedMemoryRef() const { |
| 1572 | // An instruction known never to access memory won't have a volatile access. |
| 1573 | if (!mayStore() && |
| 1574 | !mayLoad() && |
| 1575 | !isCall() && |
| 1576 | !hasUnmodeledSideEffects()) |
| 1577 | return false; |
| 1578 | |
| 1579 | // Otherwise, if the instruction has no memory reference information, |
| 1580 | // conservatively assume it wasn't preserved. |
| 1581 | if (memoperands_empty()) |
| 1582 | return true; |
| 1583 | |
| 1584 | // Check if any of our memory operands are ordered. |
| 1585 | return llvm::any_of(Range: memoperands(), P: [](const MachineMemOperand *MMO) { |
| 1586 | return !MMO->isUnordered(); |
| 1587 | }); |
| 1588 | } |
| 1589 | |
| 1590 | /// isDereferenceableInvariantLoad - Return true if this instruction will never |
| 1591 | /// trap and is loading from a location whose value is invariant across a run of |
| 1592 | /// this function. |
| 1593 | bool MachineInstr::isDereferenceableInvariantLoad() const { |
| 1594 | // If the instruction doesn't load at all, it isn't an invariant load. |
| 1595 | if (!mayLoad()) |
| 1596 | return false; |
| 1597 | |
| 1598 | // If the instruction has lost its memoperands, conservatively assume that |
| 1599 | // it may not be an invariant load. |
| 1600 | if (memoperands_empty()) |
| 1601 | return false; |
| 1602 | |
| 1603 | const MachineFrameInfo &MFI = getParent()->getParent()->getFrameInfo(); |
| 1604 | |
| 1605 | for (MachineMemOperand *MMO : memoperands()) { |
| 1606 | if (!MMO->isUnordered()) |
| 1607 | // If the memory operand has ordering side effects, we can't move the |
| 1608 | // instruction. Such an instruction is technically an invariant load, |
| 1609 | // but the caller code would need updated to expect that. |
| 1610 | return false; |
| 1611 | if (MMO->isStore()) return false; |
| 1612 | if (MMO->isInvariant() && MMO->isDereferenceable()) |
| 1613 | continue; |
| 1614 | |
| 1615 | // A load from a constant PseudoSourceValue is invariant. |
| 1616 | if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) { |
| 1617 | if (PSV->isConstant(&MFI)) |
| 1618 | continue; |
| 1619 | } |
| 1620 | |
| 1621 | // Otherwise assume conservatively. |
| 1622 | return false; |
| 1623 | } |
| 1624 | |
| 1625 | // Everything checks out. |
| 1626 | return true; |
| 1627 | } |
| 1628 | |
| 1629 | Register MachineInstr::isConstantValuePHI() const { |
| 1630 | if (!isPHI()) |
| 1631 | return {}; |
| 1632 | assert(getNumOperands() >= 3 && |
| 1633 | "It's illegal to have a PHI without source operands" ); |
| 1634 | |
| 1635 | Register Reg = getOperand(i: 1).getReg(); |
| 1636 | for (unsigned i = 3, e = getNumOperands(); i < e; i += 2) |
| 1637 | if (getOperand(i).getReg() != Reg) |
| 1638 | return {}; |
| 1639 | return Reg; |
| 1640 | } |
| 1641 | |
| 1642 | bool MachineInstr::hasUnmodeledSideEffects() const { |
| 1643 | if (hasProperty(MCFlag: MCID::UnmodeledSideEffects)) |
| 1644 | return true; |
| 1645 | if (isInlineAsm()) { |
| 1646 | unsigned = getOperand(i: InlineAsm::MIOp_ExtraInfo).getImm(); |
| 1647 | if (ExtraInfo & InlineAsm::Extra_HasSideEffects) |
| 1648 | return true; |
| 1649 | } |
| 1650 | |
| 1651 | return false; |
| 1652 | } |
| 1653 | |
| 1654 | bool MachineInstr::isLoadFoldBarrier() const { |
| 1655 | return mayStore() || isCall() || |
| 1656 | (hasUnmodeledSideEffects() && !isPseudoProbe()); |
| 1657 | } |
| 1658 | |
| 1659 | /// allDefsAreDead - Return true if all the defs of this instruction are dead. |
| 1660 | /// |
| 1661 | bool MachineInstr::allDefsAreDead() const { |
| 1662 | for (const MachineOperand &MO : operands()) { |
| 1663 | if (!MO.isReg() || MO.isUse()) |
| 1664 | continue; |
| 1665 | if (!MO.isDead()) |
| 1666 | return false; |
| 1667 | } |
| 1668 | return true; |
| 1669 | } |
| 1670 | |
| 1671 | bool MachineInstr::allImplicitDefsAreDead() const { |
| 1672 | for (const MachineOperand &MO : implicit_operands()) { |
| 1673 | if (!MO.isReg() || MO.isUse()) |
| 1674 | continue; |
| 1675 | if (!MO.isDead()) |
| 1676 | return false; |
| 1677 | } |
| 1678 | return true; |
| 1679 | } |
| 1680 | |
| 1681 | /// copyImplicitOps - Copy implicit register operands from specified |
| 1682 | /// instruction to this instruction. |
| 1683 | void MachineInstr::copyImplicitOps(MachineFunction &MF, |
| 1684 | const MachineInstr &MI) { |
| 1685 | for (const MachineOperand &MO : |
| 1686 | llvm::drop_begin(RangeOrContainer: MI.operands(), N: MI.getDesc().getNumOperands())) |
| 1687 | if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask()) |
| 1688 | addOperand(MF, Op: MO); |
| 1689 | } |
| 1690 | |
| 1691 | bool MachineInstr::hasComplexRegisterTies() const { |
| 1692 | const MCInstrDesc &MCID = getDesc(); |
| 1693 | if (MCID.Opcode == TargetOpcode::STATEPOINT) |
| 1694 | return true; |
| 1695 | for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { |
| 1696 | const auto &Operand = getOperand(i: I); |
| 1697 | if (!Operand.isReg() || Operand.isDef()) |
| 1698 | // Ignore the defined registers as MCID marks only the uses as tied. |
| 1699 | continue; |
| 1700 | int ExpectedTiedIdx = MCID.getOperandConstraint(OpNum: I, Constraint: MCOI::TIED_TO); |
| 1701 | int TiedIdx = Operand.isTied() ? int(findTiedOperandIdx(OpIdx: I)) : -1; |
| 1702 | if (ExpectedTiedIdx != TiedIdx) |
| 1703 | return true; |
| 1704 | } |
| 1705 | return false; |
| 1706 | } |
| 1707 | |
| 1708 | LLT MachineInstr::getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, |
| 1709 | const MachineRegisterInfo &MRI) const { |
| 1710 | const MachineOperand &Op = getOperand(i: OpIdx); |
| 1711 | if (!Op.isReg()) |
| 1712 | return LLT{}; |
| 1713 | |
| 1714 | if (isVariadic() || OpIdx >= getNumExplicitOperands()) |
| 1715 | return MRI.getType(Reg: Op.getReg()); |
| 1716 | |
| 1717 | auto &OpInfo = getDesc().operands()[OpIdx]; |
| 1718 | if (!OpInfo.isGenericType()) |
| 1719 | return MRI.getType(Reg: Op.getReg()); |
| 1720 | |
| 1721 | if (PrintedTypes[OpInfo.getGenericTypeIndex()]) |
| 1722 | return LLT{}; |
| 1723 | |
| 1724 | LLT TypeToPrint = MRI.getType(Reg: Op.getReg()); |
| 1725 | // Don't mark the type index printed if it wasn't actually printed: maybe |
| 1726 | // another operand with the same type index has an actual type attached: |
| 1727 | if (TypeToPrint.isValid()) |
| 1728 | PrintedTypes.set(OpInfo.getGenericTypeIndex()); |
| 1729 | return TypeToPrint; |
| 1730 | } |
| 1731 | |
| 1732 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1733 | LLVM_DUMP_METHOD void MachineInstr::dump() const { |
| 1734 | dbgs() << " " ; |
| 1735 | print(dbgs()); |
| 1736 | } |
| 1737 | |
| 1738 | LLVM_DUMP_METHOD void MachineInstr::dumprImpl( |
| 1739 | const MachineRegisterInfo &MRI, unsigned Depth, unsigned MaxDepth, |
| 1740 | SmallPtrSetImpl<const MachineInstr *> &AlreadySeenInstrs) const { |
| 1741 | if (Depth >= MaxDepth) |
| 1742 | return; |
| 1743 | if (!AlreadySeenInstrs.insert(this).second) |
| 1744 | return; |
| 1745 | // PadToColumn always inserts at least one space. |
| 1746 | // Don't mess up the alignment if we don't want any space. |
| 1747 | if (Depth) |
| 1748 | fdbgs().PadToColumn(Depth * 2); |
| 1749 | print(fdbgs()); |
| 1750 | for (const MachineOperand &MO : operands()) { |
| 1751 | if (!MO.isReg() || MO.isDef()) |
| 1752 | continue; |
| 1753 | Register Reg = MO.getReg(); |
| 1754 | if (Reg.isPhysical()) |
| 1755 | continue; |
| 1756 | const MachineInstr *NewMI = MRI.getUniqueVRegDef(Reg); |
| 1757 | if (NewMI == nullptr) |
| 1758 | continue; |
| 1759 | NewMI->dumprImpl(MRI, Depth + 1, MaxDepth, AlreadySeenInstrs); |
| 1760 | } |
| 1761 | } |
| 1762 | |
| 1763 | LLVM_DUMP_METHOD void MachineInstr::dumpr(const MachineRegisterInfo &MRI, |
| 1764 | unsigned MaxDepth) const { |
| 1765 | SmallPtrSet<const MachineInstr *, 16> AlreadySeenInstrs; |
| 1766 | dumprImpl(MRI, 0, MaxDepth, AlreadySeenInstrs); |
| 1767 | } |
| 1768 | #endif |
| 1769 | |
| 1770 | void MachineInstr::print(raw_ostream &OS, bool IsStandalone, bool SkipOpers, |
| 1771 | bool SkipDebugLoc, bool AddNewLine, |
| 1772 | const TargetInstrInfo *TII) const { |
| 1773 | const Module *M = nullptr; |
| 1774 | const Function *F = nullptr; |
| 1775 | if (const MachineFunction *MF = getMFIfAvailable(MI: *this)) { |
| 1776 | F = &MF->getFunction(); |
| 1777 | M = F->getParent(); |
| 1778 | if (!TII) |
| 1779 | TII = MF->getSubtarget().getInstrInfo(); |
| 1780 | } |
| 1781 | |
| 1782 | ModuleSlotTracker MST(M); |
| 1783 | if (F) |
| 1784 | MST.incorporateFunction(F: *F); |
| 1785 | print(OS, MST, IsStandalone, SkipOpers, SkipDebugLoc, AddNewLine, TII); |
| 1786 | } |
| 1787 | |
| 1788 | void MachineInstr::print(raw_ostream &OS, ModuleSlotTracker &MST, |
| 1789 | bool IsStandalone, bool SkipOpers, bool SkipDebugLoc, |
| 1790 | bool AddNewLine, const TargetInstrInfo *TII) const { |
| 1791 | // We can be a bit tidier if we know the MachineFunction. |
| 1792 | const TargetRegisterInfo *TRI = nullptr; |
| 1793 | const MachineRegisterInfo *MRI = nullptr; |
| 1794 | tryToGetTargetInfo(MI: *this, TRI, MRI, TII); |
| 1795 | |
| 1796 | if (isCFIInstruction()) |
| 1797 | assert(getNumOperands() == 1 && "Expected 1 operand in CFI instruction" ); |
| 1798 | |
| 1799 | SmallBitVector PrintedTypes(8); |
| 1800 | bool ShouldPrintRegisterTies = IsStandalone || hasComplexRegisterTies(); |
| 1801 | auto getTiedOperandIdx = [&](unsigned OpIdx) { |
| 1802 | if (!ShouldPrintRegisterTies) |
| 1803 | return 0U; |
| 1804 | const MachineOperand &MO = getOperand(i: OpIdx); |
| 1805 | if (MO.isReg() && MO.isTied() && !MO.isDef()) |
| 1806 | return findTiedOperandIdx(OpIdx); |
| 1807 | return 0U; |
| 1808 | }; |
| 1809 | unsigned StartOp = 0; |
| 1810 | unsigned e = getNumOperands(); |
| 1811 | |
| 1812 | // Print explicitly defined operands on the left of an assignment syntax. |
| 1813 | while (StartOp < e) { |
| 1814 | const MachineOperand &MO = getOperand(i: StartOp); |
| 1815 | if (!MO.isReg() || !MO.isDef() || MO.isImplicit()) |
| 1816 | break; |
| 1817 | |
| 1818 | if (StartOp != 0) |
| 1819 | OS << ", " ; |
| 1820 | |
| 1821 | LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx: StartOp, PrintedTypes, MRI: *MRI) : LLT{}; |
| 1822 | unsigned TiedOperandIdx = getTiedOperandIdx(StartOp); |
| 1823 | MO.print(os&: OS, MST, TypeToPrint, OpIdx: StartOp, /*PrintDef=*/false, IsStandalone, |
| 1824 | ShouldPrintRegisterTies, TiedOperandIdx, TRI); |
| 1825 | ++StartOp; |
| 1826 | } |
| 1827 | |
| 1828 | if (StartOp != 0) |
| 1829 | OS << " = " ; |
| 1830 | |
| 1831 | if (getFlag(Flag: MachineInstr::FrameSetup)) |
| 1832 | OS << "frame-setup " ; |
| 1833 | if (getFlag(Flag: MachineInstr::FrameDestroy)) |
| 1834 | OS << "frame-destroy " ; |
| 1835 | if (getFlag(Flag: MachineInstr::FmNoNans)) |
| 1836 | OS << "nnan " ; |
| 1837 | if (getFlag(Flag: MachineInstr::FmNoInfs)) |
| 1838 | OS << "ninf " ; |
| 1839 | if (getFlag(Flag: MachineInstr::FmNsz)) |
| 1840 | OS << "nsz " ; |
| 1841 | if (getFlag(Flag: MachineInstr::FmArcp)) |
| 1842 | OS << "arcp " ; |
| 1843 | if (getFlag(Flag: MachineInstr::FmContract)) |
| 1844 | OS << "contract " ; |
| 1845 | if (getFlag(Flag: MachineInstr::FmAfn)) |
| 1846 | OS << "afn " ; |
| 1847 | if (getFlag(Flag: MachineInstr::FmReassoc)) |
| 1848 | OS << "reassoc " ; |
| 1849 | if (getFlag(Flag: MachineInstr::NoUWrap)) |
| 1850 | OS << "nuw " ; |
| 1851 | if (getFlag(Flag: MachineInstr::NoSWrap)) |
| 1852 | OS << "nsw " ; |
| 1853 | if (getFlag(Flag: MachineInstr::IsExact)) |
| 1854 | OS << "exact " ; |
| 1855 | if (getFlag(Flag: MachineInstr::NoFPExcept)) |
| 1856 | OS << "nofpexcept " ; |
| 1857 | if (getFlag(Flag: MachineInstr::NoMerge)) |
| 1858 | OS << "nomerge " ; |
| 1859 | if (getFlag(Flag: MachineInstr::NonNeg)) |
| 1860 | OS << "nneg " ; |
| 1861 | if (getFlag(Flag: MachineInstr::Disjoint)) |
| 1862 | OS << "disjoint " ; |
| 1863 | if (getFlag(Flag: MachineInstr::SameSign)) |
| 1864 | OS << "samesign " ; |
| 1865 | |
| 1866 | // Print the opcode name. |
| 1867 | if (TII) |
| 1868 | OS << TII->getName(Opcode: getOpcode()); |
| 1869 | else |
| 1870 | OS << "UNKNOWN" ; |
| 1871 | |
| 1872 | if (SkipOpers) |
| 1873 | return; |
| 1874 | |
| 1875 | // Print the rest of the operands. |
| 1876 | bool FirstOp = true; |
| 1877 | unsigned AsmDescOp = ~0u; |
| 1878 | unsigned AsmOpCount = 0; |
| 1879 | |
| 1880 | if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) { |
| 1881 | // Print asm string. |
| 1882 | OS << " " ; |
| 1883 | const unsigned OpIdx = InlineAsm::MIOp_AsmString; |
| 1884 | LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx, PrintedTypes, MRI: *MRI) : LLT{}; |
| 1885 | unsigned TiedOperandIdx = getTiedOperandIdx(OpIdx); |
| 1886 | getOperand(i: OpIdx).print(os&: OS, MST, TypeToPrint, OpIdx, /*PrintDef=*/true, |
| 1887 | IsStandalone, ShouldPrintRegisterTies, |
| 1888 | TiedOperandIdx, TRI); |
| 1889 | |
| 1890 | // Print HasSideEffects, MayLoad, MayStore, IsAlignStack |
| 1891 | unsigned = getOperand(i: InlineAsm::MIOp_ExtraInfo).getImm(); |
| 1892 | if (ExtraInfo & InlineAsm::Extra_HasSideEffects) |
| 1893 | OS << " [sideeffect]" ; |
| 1894 | if (ExtraInfo & InlineAsm::Extra_MayLoad) |
| 1895 | OS << " [mayload]" ; |
| 1896 | if (ExtraInfo & InlineAsm::Extra_MayStore) |
| 1897 | OS << " [maystore]" ; |
| 1898 | if (ExtraInfo & InlineAsm::Extra_IsConvergent) |
| 1899 | OS << " [isconvergent]" ; |
| 1900 | if (ExtraInfo & InlineAsm::Extra_IsAlignStack) |
| 1901 | OS << " [alignstack]" ; |
| 1902 | if (getInlineAsmDialect() == InlineAsm::AD_ATT) |
| 1903 | OS << " [attdialect]" ; |
| 1904 | if (getInlineAsmDialect() == InlineAsm::AD_Intel) |
| 1905 | OS << " [inteldialect]" ; |
| 1906 | |
| 1907 | StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand; |
| 1908 | FirstOp = false; |
| 1909 | } |
| 1910 | |
| 1911 | for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) { |
| 1912 | const MachineOperand &MO = getOperand(i); |
| 1913 | |
| 1914 | if (FirstOp) FirstOp = false; else OS << "," ; |
| 1915 | OS << " " ; |
| 1916 | |
| 1917 | if (isDebugValueLike() && MO.isMetadata()) { |
| 1918 | // Pretty print DBG_VALUE* instructions. |
| 1919 | auto *DIV = dyn_cast<DILocalVariable>(Val: MO.getMetadata()); |
| 1920 | if (DIV && !DIV->getName().empty()) |
| 1921 | OS << "!\"" << DIV->getName() << '\"'; |
| 1922 | else { |
| 1923 | LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx: i, PrintedTypes, MRI: *MRI) : LLT{}; |
| 1924 | unsigned TiedOperandIdx = getTiedOperandIdx(i); |
| 1925 | MO.print(os&: OS, MST, TypeToPrint, OpIdx: i, /*PrintDef=*/true, IsStandalone, |
| 1926 | ShouldPrintRegisterTies, TiedOperandIdx, TRI); |
| 1927 | } |
| 1928 | } else if (isDebugLabel() && MO.isMetadata()) { |
| 1929 | // Pretty print DBG_LABEL instructions. |
| 1930 | auto *DIL = dyn_cast<DILabel>(Val: MO.getMetadata()); |
| 1931 | if (DIL && !DIL->getName().empty()) |
| 1932 | OS << "\"" << DIL->getName() << '\"'; |
| 1933 | else { |
| 1934 | LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx: i, PrintedTypes, MRI: *MRI) : LLT{}; |
| 1935 | unsigned TiedOperandIdx = getTiedOperandIdx(i); |
| 1936 | MO.print(os&: OS, MST, TypeToPrint, OpIdx: i, /*PrintDef=*/true, IsStandalone, |
| 1937 | ShouldPrintRegisterTies, TiedOperandIdx, TRI); |
| 1938 | } |
| 1939 | } else if (i == AsmDescOp && MO.isImm()) { |
| 1940 | // Pretty print the inline asm operand descriptor. |
| 1941 | OS << '$' << AsmOpCount++; |
| 1942 | unsigned Flag = MO.getImm(); |
| 1943 | const InlineAsm::Flag F(Flag); |
| 1944 | OS << ":[" ; |
| 1945 | OS << F.getKindName(); |
| 1946 | |
| 1947 | unsigned RCID; |
| 1948 | if (!F.isImmKind() && !F.isMemKind() && F.hasRegClassConstraint(RC&: RCID)) { |
| 1949 | if (TRI) { |
| 1950 | OS << ':' << TRI->getRegClassName(Class: TRI->getRegClass(i: RCID)); |
| 1951 | } else |
| 1952 | OS << ":RC" << RCID; |
| 1953 | } |
| 1954 | |
| 1955 | if (F.isMemKind()) { |
| 1956 | const InlineAsm::ConstraintCode MCID = F.getMemoryConstraintID(); |
| 1957 | OS << ":" << InlineAsm::getMemConstraintName(C: MCID); |
| 1958 | } |
| 1959 | |
| 1960 | unsigned TiedTo; |
| 1961 | if (F.isUseOperandTiedToDef(Idx&: TiedTo)) |
| 1962 | OS << " tiedto:$" << TiedTo; |
| 1963 | |
| 1964 | if ((F.isRegDefKind() || F.isRegDefEarlyClobberKind() || |
| 1965 | F.isRegUseKind()) && |
| 1966 | F.getRegMayBeFolded()) { |
| 1967 | OS << " foldable" ; |
| 1968 | } |
| 1969 | |
| 1970 | OS << ']'; |
| 1971 | |
| 1972 | // Compute the index of the next operand descriptor. |
| 1973 | AsmDescOp += 1 + F.getNumOperandRegisters(); |
| 1974 | } else { |
| 1975 | LLT TypeToPrint = MRI ? getTypeToPrint(OpIdx: i, PrintedTypes, MRI: *MRI) : LLT{}; |
| 1976 | unsigned TiedOperandIdx = getTiedOperandIdx(i); |
| 1977 | if (MO.isImm() && isOperandSubregIdx(OpIdx: i)) |
| 1978 | MachineOperand::printSubRegIdx(OS, Index: MO.getImm(), TRI); |
| 1979 | else |
| 1980 | MO.print(os&: OS, MST, TypeToPrint, OpIdx: i, /*PrintDef=*/true, IsStandalone, |
| 1981 | ShouldPrintRegisterTies, TiedOperandIdx, TRI); |
| 1982 | } |
| 1983 | } |
| 1984 | |
| 1985 | // Print any optional symbols attached to this instruction as-if they were |
| 1986 | // operands. |
| 1987 | if (MCSymbol *PreInstrSymbol = getPreInstrSymbol()) { |
| 1988 | if (!FirstOp) { |
| 1989 | FirstOp = false; |
| 1990 | OS << ','; |
| 1991 | } |
| 1992 | OS << " pre-instr-symbol " ; |
| 1993 | MachineOperand::printSymbol(OS, Sym&: *PreInstrSymbol); |
| 1994 | } |
| 1995 | if (MCSymbol *PostInstrSymbol = getPostInstrSymbol()) { |
| 1996 | if (!FirstOp) { |
| 1997 | FirstOp = false; |
| 1998 | OS << ','; |
| 1999 | } |
| 2000 | OS << " post-instr-symbol " ; |
| 2001 | MachineOperand::printSymbol(OS, Sym&: *PostInstrSymbol); |
| 2002 | } |
| 2003 | if (MDNode *HeapAllocMarker = getHeapAllocMarker()) { |
| 2004 | if (!FirstOp) { |
| 2005 | FirstOp = false; |
| 2006 | OS << ','; |
| 2007 | } |
| 2008 | OS << " heap-alloc-marker " ; |
| 2009 | HeapAllocMarker->printAsOperand(OS, MST); |
| 2010 | } |
| 2011 | if (MDNode *PCSections = getPCSections()) { |
| 2012 | if (!FirstOp) { |
| 2013 | FirstOp = false; |
| 2014 | OS << ','; |
| 2015 | } |
| 2016 | OS << " pcsections " ; |
| 2017 | PCSections->printAsOperand(OS, MST); |
| 2018 | } |
| 2019 | if (MDNode *MMRA = getMMRAMetadata()) { |
| 2020 | if (!FirstOp) { |
| 2021 | FirstOp = false; |
| 2022 | OS << ','; |
| 2023 | } |
| 2024 | OS << " mmra " ; |
| 2025 | MMRA->printAsOperand(OS, MST); |
| 2026 | } |
| 2027 | if (uint32_t CFIType = getCFIType()) { |
| 2028 | if (!FirstOp) |
| 2029 | OS << ','; |
| 2030 | OS << " cfi-type " << CFIType; |
| 2031 | } |
| 2032 | |
| 2033 | if (DebugInstrNum) { |
| 2034 | if (!FirstOp) |
| 2035 | OS << "," ; |
| 2036 | OS << " debug-instr-number " << DebugInstrNum; |
| 2037 | } |
| 2038 | |
| 2039 | if (!SkipDebugLoc) { |
| 2040 | if (const DebugLoc &DL = getDebugLoc()) { |
| 2041 | if (!FirstOp) |
| 2042 | OS << ','; |
| 2043 | OS << " debug-location " ; |
| 2044 | DL->printAsOperand(OS, MST); |
| 2045 | } |
| 2046 | } |
| 2047 | |
| 2048 | if (!memoperands_empty()) { |
| 2049 | SmallVector<StringRef, 0> SSNs; |
| 2050 | const LLVMContext *Context = nullptr; |
| 2051 | std::unique_ptr<LLVMContext> CtxPtr; |
| 2052 | const MachineFrameInfo *MFI = nullptr; |
| 2053 | if (const MachineFunction *MF = getMFIfAvailable(MI: *this)) { |
| 2054 | MFI = &MF->getFrameInfo(); |
| 2055 | Context = &MF->getFunction().getContext(); |
| 2056 | } else { |
| 2057 | CtxPtr = std::make_unique<LLVMContext>(); |
| 2058 | Context = CtxPtr.get(); |
| 2059 | } |
| 2060 | |
| 2061 | OS << " :: " ; |
| 2062 | bool NeedComma = false; |
| 2063 | for (const MachineMemOperand *Op : memoperands()) { |
| 2064 | if (NeedComma) |
| 2065 | OS << ", " ; |
| 2066 | Op->print(OS, MST, SSNs, Context: *Context, MFI, TII); |
| 2067 | NeedComma = true; |
| 2068 | } |
| 2069 | } |
| 2070 | |
| 2071 | if (SkipDebugLoc) |
| 2072 | return; |
| 2073 | |
| 2074 | bool HaveSemi = false; |
| 2075 | |
| 2076 | // Print debug location information. |
| 2077 | if (const DebugLoc &DL = getDebugLoc()) { |
| 2078 | if (!HaveSemi) { |
| 2079 | OS << ';'; |
| 2080 | HaveSemi = true; |
| 2081 | } |
| 2082 | OS << ' '; |
| 2083 | DL.print(OS); |
| 2084 | } |
| 2085 | |
| 2086 | // Print extra comments for DEBUG_VALUE and friends if they are well-formed. |
| 2087 | if ((isNonListDebugValue() && getNumOperands() >= 4) || |
| 2088 | (isDebugValueList() && getNumOperands() >= 2) || |
| 2089 | (isDebugRef() && getNumOperands() >= 3)) { |
| 2090 | if (getDebugVariableOp().isMetadata()) { |
| 2091 | if (!HaveSemi) { |
| 2092 | OS << ";" ; |
| 2093 | HaveSemi = true; |
| 2094 | } |
| 2095 | auto *DV = getDebugVariable(); |
| 2096 | OS << " line no:" << DV->getLine(); |
| 2097 | if (isIndirectDebugValue()) |
| 2098 | OS << " indirect" ; |
| 2099 | } |
| 2100 | } |
| 2101 | // TODO: DBG_LABEL |
| 2102 | |
| 2103 | if (PrintMIAddrs) |
| 2104 | OS << " ; " << this; |
| 2105 | |
| 2106 | if (AddNewLine) |
| 2107 | OS << '\n'; |
| 2108 | } |
| 2109 | |
| 2110 | bool MachineInstr::addRegisterKilled(Register IncomingReg, |
| 2111 | const TargetRegisterInfo *RegInfo, |
| 2112 | bool AddIfNotFound) { |
| 2113 | bool isPhysReg = IncomingReg.isPhysical(); |
| 2114 | bool hasAliases = isPhysReg && |
| 2115 | MCRegAliasIterator(IncomingReg, RegInfo, false).isValid(); |
| 2116 | bool Found = false; |
| 2117 | SmallVector<unsigned,4> DeadOps; |
| 2118 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| 2119 | MachineOperand &MO = getOperand(i); |
| 2120 | if (!MO.isReg() || !MO.isUse() || MO.isUndef()) |
| 2121 | continue; |
| 2122 | |
| 2123 | // DEBUG_VALUE nodes do not contribute to code generation and should |
| 2124 | // always be ignored. Failure to do so may result in trying to modify |
| 2125 | // KILL flags on DEBUG_VALUE nodes. |
| 2126 | if (MO.isDebug()) |
| 2127 | continue; |
| 2128 | |
| 2129 | Register Reg = MO.getReg(); |
| 2130 | if (!Reg) |
| 2131 | continue; |
| 2132 | |
| 2133 | if (Reg == IncomingReg) { |
| 2134 | if (!Found) { |
| 2135 | if (MO.isKill()) |
| 2136 | // The register is already marked kill. |
| 2137 | return true; |
| 2138 | if (isPhysReg && isRegTiedToDefOperand(UseOpIdx: i)) |
| 2139 | // Two-address uses of physregs must not be marked kill. |
| 2140 | return true; |
| 2141 | MO.setIsKill(); |
| 2142 | Found = true; |
| 2143 | } |
| 2144 | } else if (hasAliases && MO.isKill() && Reg.isPhysical()) { |
| 2145 | // A super-register kill already exists. |
| 2146 | if (RegInfo->isSuperRegister(RegA: IncomingReg, RegB: Reg)) |
| 2147 | return true; |
| 2148 | if (RegInfo->isSubRegister(RegA: IncomingReg, RegB: Reg)) |
| 2149 | DeadOps.push_back(Elt: i); |
| 2150 | } |
| 2151 | } |
| 2152 | |
| 2153 | // Trim unneeded kill operands. |
| 2154 | while (!DeadOps.empty()) { |
| 2155 | unsigned OpIdx = DeadOps.back(); |
| 2156 | if (getOperand(i: OpIdx).isImplicit() && |
| 2157 | (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) |
| 2158 | removeOperand(OpNo: OpIdx); |
| 2159 | else |
| 2160 | getOperand(i: OpIdx).setIsKill(false); |
| 2161 | DeadOps.pop_back(); |
| 2162 | } |
| 2163 | |
| 2164 | // If not found, this means an alias of one of the operands is killed. Add a |
| 2165 | // new implicit operand if required. |
| 2166 | if (!Found && AddIfNotFound) { |
| 2167 | addOperand(Op: MachineOperand::CreateReg(Reg: IncomingReg, |
| 2168 | isDef: false /*IsDef*/, |
| 2169 | isImp: true /*IsImp*/, |
| 2170 | isKill: true /*IsKill*/)); |
| 2171 | return true; |
| 2172 | } |
| 2173 | return Found; |
| 2174 | } |
| 2175 | |
| 2176 | void MachineInstr::clearRegisterKills(Register Reg, |
| 2177 | const TargetRegisterInfo *RegInfo) { |
| 2178 | if (!Reg.isPhysical()) |
| 2179 | RegInfo = nullptr; |
| 2180 | for (MachineOperand &MO : operands()) { |
| 2181 | if (!MO.isReg() || !MO.isUse() || !MO.isKill()) |
| 2182 | continue; |
| 2183 | Register OpReg = MO.getReg(); |
| 2184 | if ((RegInfo && RegInfo->regsOverlap(RegA: Reg, RegB: OpReg)) || Reg == OpReg) |
| 2185 | MO.setIsKill(false); |
| 2186 | } |
| 2187 | } |
| 2188 | |
| 2189 | bool MachineInstr::addRegisterDead(Register Reg, |
| 2190 | const TargetRegisterInfo *RegInfo, |
| 2191 | bool AddIfNotFound) { |
| 2192 | bool isPhysReg = Reg.isPhysical(); |
| 2193 | bool hasAliases = isPhysReg && |
| 2194 | MCRegAliasIterator(Reg, RegInfo, false).isValid(); |
| 2195 | bool Found = false; |
| 2196 | SmallVector<unsigned,4> DeadOps; |
| 2197 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { |
| 2198 | MachineOperand &MO = getOperand(i); |
| 2199 | if (!MO.isReg() || !MO.isDef()) |
| 2200 | continue; |
| 2201 | Register MOReg = MO.getReg(); |
| 2202 | if (!MOReg) |
| 2203 | continue; |
| 2204 | |
| 2205 | if (MOReg == Reg) { |
| 2206 | MO.setIsDead(); |
| 2207 | Found = true; |
| 2208 | } else if (hasAliases && MO.isDead() && MOReg.isPhysical()) { |
| 2209 | // There exists a super-register that's marked dead. |
| 2210 | if (RegInfo->isSuperRegister(RegA: Reg, RegB: MOReg)) |
| 2211 | return true; |
| 2212 | if (RegInfo->isSubRegister(RegA: Reg, RegB: MOReg)) |
| 2213 | DeadOps.push_back(Elt: i); |
| 2214 | } |
| 2215 | } |
| 2216 | |
| 2217 | // Trim unneeded dead operands. |
| 2218 | while (!DeadOps.empty()) { |
| 2219 | unsigned OpIdx = DeadOps.back(); |
| 2220 | if (getOperand(i: OpIdx).isImplicit() && |
| 2221 | (!isInlineAsm() || findInlineAsmFlagIdx(OpIdx) < 0)) |
| 2222 | removeOperand(OpNo: OpIdx); |
| 2223 | else |
| 2224 | getOperand(i: OpIdx).setIsDead(false); |
| 2225 | DeadOps.pop_back(); |
| 2226 | } |
| 2227 | |
| 2228 | // If not found, this means an alias of one of the operands is dead. Add a |
| 2229 | // new implicit operand if required. |
| 2230 | if (Found || !AddIfNotFound) |
| 2231 | return Found; |
| 2232 | |
| 2233 | addOperand(Op: MachineOperand::CreateReg(Reg, |
| 2234 | isDef: true /*IsDef*/, |
| 2235 | isImp: true /*IsImp*/, |
| 2236 | isKill: false /*IsKill*/, |
| 2237 | isDead: true /*IsDead*/)); |
| 2238 | return true; |
| 2239 | } |
| 2240 | |
| 2241 | void MachineInstr::clearRegisterDeads(Register Reg) { |
| 2242 | for (MachineOperand &MO : all_defs()) |
| 2243 | if (MO.getReg() == Reg) |
| 2244 | MO.setIsDead(false); |
| 2245 | } |
| 2246 | |
| 2247 | void MachineInstr::setRegisterDefReadUndef(Register Reg, bool IsUndef) { |
| 2248 | for (MachineOperand &MO : all_defs()) |
| 2249 | if (MO.getReg() == Reg && MO.getSubReg() != 0) |
| 2250 | MO.setIsUndef(IsUndef); |
| 2251 | } |
| 2252 | |
| 2253 | void MachineInstr::addRegisterDefined(Register Reg, |
| 2254 | const TargetRegisterInfo *RegInfo) { |
| 2255 | if (Reg.isPhysical()) { |
| 2256 | MachineOperand *MO = findRegisterDefOperand(Reg, TRI: RegInfo, isDead: false, Overlap: false); |
| 2257 | if (MO) |
| 2258 | return; |
| 2259 | } else { |
| 2260 | for (const MachineOperand &MO : all_defs()) { |
| 2261 | if (MO.getReg() == Reg && MO.getSubReg() == 0) |
| 2262 | return; |
| 2263 | } |
| 2264 | } |
| 2265 | addOperand(Op: MachineOperand::CreateReg(Reg, |
| 2266 | isDef: true /*IsDef*/, |
| 2267 | isImp: true /*IsImp*/)); |
| 2268 | } |
| 2269 | |
| 2270 | void MachineInstr::setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, |
| 2271 | const TargetRegisterInfo &TRI) { |
| 2272 | bool HasRegMask = false; |
| 2273 | for (MachineOperand &MO : operands()) { |
| 2274 | if (MO.isRegMask()) { |
| 2275 | HasRegMask = true; |
| 2276 | continue; |
| 2277 | } |
| 2278 | if (!MO.isReg() || !MO.isDef()) continue; |
| 2279 | Register Reg = MO.getReg(); |
| 2280 | if (!Reg.isPhysical()) |
| 2281 | continue; |
| 2282 | // If there are no uses, including partial uses, the def is dead. |
| 2283 | if (llvm::none_of(Range&: UsedRegs, |
| 2284 | P: [&](MCRegister Use) { return TRI.regsOverlap(RegA: Use, RegB: Reg); })) |
| 2285 | MO.setIsDead(); |
| 2286 | } |
| 2287 | |
| 2288 | // This is a call with a register mask operand. |
| 2289 | // Mask clobbers are always dead, so add defs for the non-dead defines. |
| 2290 | if (HasRegMask) |
| 2291 | for (const Register &UsedReg : UsedRegs) |
| 2292 | addRegisterDefined(Reg: UsedReg, RegInfo: &TRI); |
| 2293 | } |
| 2294 | |
| 2295 | unsigned |
| 2296 | MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) { |
| 2297 | // Build up a buffer of hash code components. |
| 2298 | SmallVector<size_t, 16> HashComponents; |
| 2299 | HashComponents.reserve(N: MI->getNumOperands() + 1); |
| 2300 | HashComponents.push_back(Elt: MI->getOpcode()); |
| 2301 | for (const MachineOperand &MO : MI->operands()) { |
| 2302 | if (MO.isReg() && MO.isDef() && MO.getReg().isVirtual()) |
| 2303 | continue; // Skip virtual register defs. |
| 2304 | |
| 2305 | HashComponents.push_back(Elt: hash_value(MO)); |
| 2306 | } |
| 2307 | return hash_combine_range(R&: HashComponents); |
| 2308 | } |
| 2309 | |
| 2310 | const MDNode *MachineInstr::getLocCookieMD() const { |
| 2311 | // Find the source location cookie. |
| 2312 | const MDNode *LocMD = nullptr; |
| 2313 | for (unsigned i = getNumOperands(); i != 0; --i) { |
| 2314 | if (getOperand(i: i-1).isMetadata() && |
| 2315 | (LocMD = getOperand(i: i-1).getMetadata()) && |
| 2316 | LocMD->getNumOperands() != 0) { |
| 2317 | if (mdconst::hasa<ConstantInt>(MD: LocMD->getOperand(I: 0))) |
| 2318 | return LocMD; |
| 2319 | } |
| 2320 | } |
| 2321 | |
| 2322 | return nullptr; |
| 2323 | } |
| 2324 | |
| 2325 | void MachineInstr::emitInlineAsmError(const Twine &Msg) const { |
| 2326 | assert(isInlineAsm()); |
| 2327 | const MDNode *LocMD = getLocCookieMD(); |
| 2328 | uint64_t LocCookie = |
| 2329 | LocMD |
| 2330 | ? mdconst::extract<ConstantInt>(MD: LocMD->getOperand(I: 0))->getZExtValue() |
| 2331 | : 0; |
| 2332 | LLVMContext &Ctx = getMF()->getFunction().getContext(); |
| 2333 | Ctx.diagnose(DI: DiagnosticInfoInlineAsm(LocCookie, Msg)); |
| 2334 | } |
| 2335 | |
| 2336 | void MachineInstr::emitGenericError(const Twine &Msg) const { |
| 2337 | const Function &Fn = getMF()->getFunction(); |
| 2338 | Fn.getContext().diagnose( |
| 2339 | DI: DiagnosticInfoGenericWithLoc(Msg, Fn, getDebugLoc())); |
| 2340 | } |
| 2341 | |
| 2342 | MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, |
| 2343 | const MCInstrDesc &MCID, bool IsIndirect, |
| 2344 | Register Reg, const MDNode *Variable, |
| 2345 | const MDNode *Expr) { |
| 2346 | assert(isa<DILocalVariable>(Variable) && "not a variable" ); |
| 2347 | assert(cast<DIExpression>(Expr)->isValid() && "not an expression" ); |
| 2348 | assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && |
| 2349 | "Expected inlined-at fields to agree" ); |
| 2350 | auto MIB = BuildMI(MF, MIMD: DL, MCID).addReg(RegNo: Reg); |
| 2351 | if (IsIndirect) |
| 2352 | MIB.addImm(Val: 0U); |
| 2353 | else |
| 2354 | MIB.addReg(RegNo: 0U); |
| 2355 | return MIB.addMetadata(MD: Variable).addMetadata(MD: Expr); |
| 2356 | } |
| 2357 | |
| 2358 | MachineInstrBuilder llvm::BuildMI(MachineFunction &MF, const DebugLoc &DL, |
| 2359 | const MCInstrDesc &MCID, bool IsIndirect, |
| 2360 | ArrayRef<MachineOperand> DebugOps, |
| 2361 | const MDNode *Variable, const MDNode *Expr) { |
| 2362 | assert(isa<DILocalVariable>(Variable) && "not a variable" ); |
| 2363 | assert(cast<DIExpression>(Expr)->isValid() && "not an expression" ); |
| 2364 | assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) && |
| 2365 | "Expected inlined-at fields to agree" ); |
| 2366 | if (MCID.Opcode == TargetOpcode::DBG_VALUE) { |
| 2367 | assert(DebugOps.size() == 1 && |
| 2368 | "DBG_VALUE must contain exactly one debug operand" ); |
| 2369 | MachineOperand DebugOp = DebugOps[0]; |
| 2370 | if (DebugOp.isReg()) |
| 2371 | return BuildMI(MF, DL, MCID, IsIndirect, Reg: DebugOp.getReg(), Variable, |
| 2372 | Expr); |
| 2373 | |
| 2374 | auto MIB = BuildMI(MF, MIMD: DL, MCID).add(MO: DebugOp); |
| 2375 | if (IsIndirect) |
| 2376 | MIB.addImm(Val: 0U); |
| 2377 | else |
| 2378 | MIB.addReg(RegNo: 0U); |
| 2379 | return MIB.addMetadata(MD: Variable).addMetadata(MD: Expr); |
| 2380 | } |
| 2381 | |
| 2382 | auto MIB = BuildMI(MF, MIMD: DL, MCID); |
| 2383 | MIB.addMetadata(MD: Variable).addMetadata(MD: Expr); |
| 2384 | for (const MachineOperand &DebugOp : DebugOps) |
| 2385 | if (DebugOp.isReg()) |
| 2386 | MIB.addReg(RegNo: DebugOp.getReg()); |
| 2387 | else |
| 2388 | MIB.add(MO: DebugOp); |
| 2389 | return MIB; |
| 2390 | } |
| 2391 | |
| 2392 | MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, |
| 2393 | MachineBasicBlock::iterator I, |
| 2394 | const DebugLoc &DL, const MCInstrDesc &MCID, |
| 2395 | bool IsIndirect, Register Reg, |
| 2396 | const MDNode *Variable, const MDNode *Expr) { |
| 2397 | MachineFunction &MF = *BB.getParent(); |
| 2398 | MachineInstr *MI = BuildMI(MF, DL, MCID, IsIndirect, Reg, Variable, Expr); |
| 2399 | BB.insert(I, MI); |
| 2400 | return MachineInstrBuilder(MF, MI); |
| 2401 | } |
| 2402 | |
| 2403 | MachineInstrBuilder llvm::BuildMI(MachineBasicBlock &BB, |
| 2404 | MachineBasicBlock::iterator I, |
| 2405 | const DebugLoc &DL, const MCInstrDesc &MCID, |
| 2406 | bool IsIndirect, |
| 2407 | ArrayRef<MachineOperand> DebugOps, |
| 2408 | const MDNode *Variable, const MDNode *Expr) { |
| 2409 | MachineFunction &MF = *BB.getParent(); |
| 2410 | MachineInstr *MI = |
| 2411 | BuildMI(MF, DL, MCID, IsIndirect, DebugOps, Variable, Expr); |
| 2412 | BB.insert(I, MI); |
| 2413 | return MachineInstrBuilder(MF, *MI); |
| 2414 | } |
| 2415 | |
| 2416 | /// Compute the new DIExpression to use with a DBG_VALUE for a spill slot. |
| 2417 | /// This prepends DW_OP_deref when spilling an indirect DBG_VALUE. |
| 2418 | static const DIExpression *computeExprForSpill( |
| 2419 | const MachineInstr &MI, |
| 2420 | const SmallVectorImpl<const MachineOperand *> &SpilledOperands) { |
| 2421 | assert(MI.getDebugVariable()->isValidLocationForIntrinsic(MI.getDebugLoc()) && |
| 2422 | "Expected inlined-at fields to agree" ); |
| 2423 | |
| 2424 | const DIExpression *Expr = MI.getDebugExpression(); |
| 2425 | if (MI.isIndirectDebugValue()) { |
| 2426 | assert(MI.getDebugOffset().getImm() == 0 && |
| 2427 | "DBG_VALUE with nonzero offset" ); |
| 2428 | Expr = DIExpression::prepend(Expr, Flags: DIExpression::DerefBefore); |
| 2429 | } else if (MI.isDebugValueList()) { |
| 2430 | // We will replace the spilled register with a frame index, so |
| 2431 | // immediately deref all references to the spilled register. |
| 2432 | std::array<uint64_t, 1> Ops{._M_elems: {dwarf::DW_OP_deref}}; |
| 2433 | for (const MachineOperand *Op : SpilledOperands) { |
| 2434 | unsigned OpIdx = MI.getDebugOperandIndex(Op); |
| 2435 | Expr = DIExpression::appendOpsToArg(Expr, Ops, ArgNo: OpIdx); |
| 2436 | } |
| 2437 | } |
| 2438 | return Expr; |
| 2439 | } |
| 2440 | static const DIExpression *computeExprForSpill(const MachineInstr &MI, |
| 2441 | Register SpillReg) { |
| 2442 | assert(MI.hasDebugOperandForReg(SpillReg) && "Spill Reg is not used in MI." ); |
| 2443 | SmallVector<const MachineOperand *> SpillOperands( |
| 2444 | llvm::make_pointer_range(Range: MI.getDebugOperandsForReg(Reg: SpillReg))); |
| 2445 | return computeExprForSpill(MI, SpilledOperands: SpillOperands); |
| 2446 | } |
| 2447 | |
| 2448 | MachineInstr *llvm::buildDbgValueForSpill(MachineBasicBlock &BB, |
| 2449 | MachineBasicBlock::iterator I, |
| 2450 | const MachineInstr &Orig, |
| 2451 | int FrameIndex, Register SpillReg) { |
| 2452 | assert(!Orig.isDebugRef() && |
| 2453 | "DBG_INSTR_REF should not reference a virtual register." ); |
| 2454 | const DIExpression *Expr = computeExprForSpill(MI: Orig, SpillReg); |
| 2455 | MachineInstrBuilder NewMI = |
| 2456 | BuildMI(BB, I, MIMD: Orig.getDebugLoc(), MCID: Orig.getDesc()); |
| 2457 | // Non-Variadic Operands: Location, Offset, Variable, Expression |
| 2458 | // Variadic Operands: Variable, Expression, Locations... |
| 2459 | if (Orig.isNonListDebugValue()) |
| 2460 | NewMI.addFrameIndex(Idx: FrameIndex).addImm(Val: 0U); |
| 2461 | NewMI.addMetadata(MD: Orig.getDebugVariable()).addMetadata(MD: Expr); |
| 2462 | if (Orig.isDebugValueList()) { |
| 2463 | for (const MachineOperand &Op : Orig.debug_operands()) |
| 2464 | if (Op.isReg() && Op.getReg() == SpillReg) |
| 2465 | NewMI.addFrameIndex(Idx: FrameIndex); |
| 2466 | else |
| 2467 | NewMI.add(MO: MachineOperand(Op)); |
| 2468 | } |
| 2469 | return NewMI; |
| 2470 | } |
| 2471 | MachineInstr *llvm::buildDbgValueForSpill( |
| 2472 | MachineBasicBlock &BB, MachineBasicBlock::iterator I, |
| 2473 | const MachineInstr &Orig, int FrameIndex, |
| 2474 | const SmallVectorImpl<const MachineOperand *> &SpilledOperands) { |
| 2475 | const DIExpression *Expr = computeExprForSpill(MI: Orig, SpilledOperands); |
| 2476 | MachineInstrBuilder NewMI = |
| 2477 | BuildMI(BB, I, MIMD: Orig.getDebugLoc(), MCID: Orig.getDesc()); |
| 2478 | // Non-Variadic Operands: Location, Offset, Variable, Expression |
| 2479 | // Variadic Operands: Variable, Expression, Locations... |
| 2480 | if (Orig.isNonListDebugValue()) |
| 2481 | NewMI.addFrameIndex(Idx: FrameIndex).addImm(Val: 0U); |
| 2482 | NewMI.addMetadata(MD: Orig.getDebugVariable()).addMetadata(MD: Expr); |
| 2483 | if (Orig.isDebugValueList()) { |
| 2484 | for (const MachineOperand &Op : Orig.debug_operands()) |
| 2485 | if (is_contained(Range: SpilledOperands, Element: &Op)) |
| 2486 | NewMI.addFrameIndex(Idx: FrameIndex); |
| 2487 | else |
| 2488 | NewMI.add(MO: MachineOperand(Op)); |
| 2489 | } |
| 2490 | return NewMI; |
| 2491 | } |
| 2492 | |
| 2493 | void llvm::updateDbgValueForSpill(MachineInstr &Orig, int FrameIndex, |
| 2494 | Register Reg) { |
| 2495 | const DIExpression *Expr = computeExprForSpill(MI: Orig, SpillReg: Reg); |
| 2496 | if (Orig.isNonListDebugValue()) |
| 2497 | Orig.getDebugOffset().ChangeToImmediate(ImmVal: 0U); |
| 2498 | for (MachineOperand &Op : Orig.getDebugOperandsForReg(Reg)) |
| 2499 | Op.ChangeToFrameIndex(Idx: FrameIndex); |
| 2500 | Orig.getDebugExpressionOp().setMetadata(Expr); |
| 2501 | } |
| 2502 | |
| 2503 | void MachineInstr::collectDebugValues( |
| 2504 | SmallVectorImpl<MachineInstr *> &DbgValues) { |
| 2505 | MachineInstr &MI = *this; |
| 2506 | if (!MI.getOperand(i: 0).isReg()) |
| 2507 | return; |
| 2508 | |
| 2509 | MachineBasicBlock::iterator DI = MI; ++DI; |
| 2510 | for (MachineBasicBlock::iterator DE = MI.getParent()->end(); |
| 2511 | DI != DE; ++DI) { |
| 2512 | if (!DI->isDebugValue()) |
| 2513 | return; |
| 2514 | if (DI->hasDebugOperandForReg(Reg: MI.getOperand(i: 0).getReg())) |
| 2515 | DbgValues.push_back(Elt: &*DI); |
| 2516 | } |
| 2517 | } |
| 2518 | |
| 2519 | void MachineInstr::changeDebugValuesDefReg(Register Reg) { |
| 2520 | // Collect matching debug values. |
| 2521 | SmallVector<MachineInstr *, 2> DbgValues; |
| 2522 | |
| 2523 | if (!getOperand(i: 0).isReg()) |
| 2524 | return; |
| 2525 | |
| 2526 | Register DefReg = getOperand(i: 0).getReg(); |
| 2527 | auto *MRI = getRegInfo(); |
| 2528 | for (auto &MO : MRI->use_operands(Reg: DefReg)) { |
| 2529 | auto *DI = MO.getParent(); |
| 2530 | if (!DI->isDebugValue()) |
| 2531 | continue; |
| 2532 | if (DI->hasDebugOperandForReg(Reg: DefReg)) { |
| 2533 | DbgValues.push_back(Elt: DI); |
| 2534 | } |
| 2535 | } |
| 2536 | |
| 2537 | // Propagate Reg to debug value instructions. |
| 2538 | for (auto *DBI : DbgValues) |
| 2539 | for (MachineOperand &Op : DBI->getDebugOperandsForReg(Reg: DefReg)) |
| 2540 | Op.setReg(Reg); |
| 2541 | } |
| 2542 | |
| 2543 | using MMOList = SmallVector<const MachineMemOperand *, 2>; |
| 2544 | |
| 2545 | static LocationSize getSpillSlotSize(const MMOList &Accesses, |
| 2546 | const MachineFrameInfo &MFI) { |
| 2547 | std::optional<TypeSize> Size; |
| 2548 | for (const auto *A : Accesses) { |
| 2549 | if (MFI.isSpillSlotObjectIndex( |
| 2550 | ObjectIdx: cast<FixedStackPseudoSourceValue>(Val: A->getPseudoValue()) |
| 2551 | ->getFrameIndex())) { |
| 2552 | LocationSize S = A->getSize(); |
| 2553 | if (!S.hasValue()) |
| 2554 | return LocationSize::beforeOrAfterPointer(); |
| 2555 | if (!Size) |
| 2556 | Size = S.getValue(); |
| 2557 | else |
| 2558 | Size = *Size + S.getValue(); |
| 2559 | } |
| 2560 | } |
| 2561 | if (!Size) |
| 2562 | return LocationSize::precise(Value: 0); |
| 2563 | return LocationSize::precise(Value: *Size); |
| 2564 | } |
| 2565 | |
| 2566 | std::optional<LocationSize> |
| 2567 | MachineInstr::getSpillSize(const TargetInstrInfo *TII) const { |
| 2568 | int FI; |
| 2569 | if (TII->isStoreToStackSlotPostFE(MI: *this, FrameIndex&: FI)) { |
| 2570 | const MachineFrameInfo &MFI = getMF()->getFrameInfo(); |
| 2571 | if (MFI.isSpillSlotObjectIndex(ObjectIdx: FI)) |
| 2572 | return (*memoperands_begin())->getSize(); |
| 2573 | } |
| 2574 | return std::nullopt; |
| 2575 | } |
| 2576 | |
| 2577 | std::optional<LocationSize> |
| 2578 | MachineInstr::getFoldedSpillSize(const TargetInstrInfo *TII) const { |
| 2579 | MMOList Accesses; |
| 2580 | if (TII->hasStoreToStackSlot(MI: *this, Accesses)) |
| 2581 | return getSpillSlotSize(Accesses, MFI: getMF()->getFrameInfo()); |
| 2582 | return std::nullopt; |
| 2583 | } |
| 2584 | |
| 2585 | std::optional<LocationSize> |
| 2586 | MachineInstr::getRestoreSize(const TargetInstrInfo *TII) const { |
| 2587 | int FI; |
| 2588 | if (TII->isLoadFromStackSlotPostFE(MI: *this, FrameIndex&: FI)) { |
| 2589 | const MachineFrameInfo &MFI = getMF()->getFrameInfo(); |
| 2590 | if (MFI.isSpillSlotObjectIndex(ObjectIdx: FI)) |
| 2591 | return (*memoperands_begin())->getSize(); |
| 2592 | } |
| 2593 | return std::nullopt; |
| 2594 | } |
| 2595 | |
| 2596 | std::optional<LocationSize> |
| 2597 | MachineInstr::getFoldedRestoreSize(const TargetInstrInfo *TII) const { |
| 2598 | MMOList Accesses; |
| 2599 | if (TII->hasLoadFromStackSlot(MI: *this, Accesses)) |
| 2600 | return getSpillSlotSize(Accesses, MFI: getMF()->getFrameInfo()); |
| 2601 | return std::nullopt; |
| 2602 | } |
| 2603 | |
| 2604 | unsigned MachineInstr::getDebugInstrNum() { |
| 2605 | if (DebugInstrNum == 0) |
| 2606 | DebugInstrNum = getParent()->getParent()->getNewDebugInstrNum(); |
| 2607 | return DebugInstrNum; |
| 2608 | } |
| 2609 | |
| 2610 | unsigned MachineInstr::getDebugInstrNum(MachineFunction &MF) { |
| 2611 | if (DebugInstrNum == 0) |
| 2612 | DebugInstrNum = MF.getNewDebugInstrNum(); |
| 2613 | return DebugInstrNum; |
| 2614 | } |
| 2615 | |
| 2616 | std::tuple<LLT, LLT> MachineInstr::getFirst2LLTs() const { |
| 2617 | return std::tuple(getRegInfo()->getType(Reg: getOperand(i: 0).getReg()), |
| 2618 | getRegInfo()->getType(Reg: getOperand(i: 1).getReg())); |
| 2619 | } |
| 2620 | |
| 2621 | std::tuple<LLT, LLT, LLT> MachineInstr::getFirst3LLTs() const { |
| 2622 | return std::tuple(getRegInfo()->getType(Reg: getOperand(i: 0).getReg()), |
| 2623 | getRegInfo()->getType(Reg: getOperand(i: 1).getReg()), |
| 2624 | getRegInfo()->getType(Reg: getOperand(i: 2).getReg())); |
| 2625 | } |
| 2626 | |
| 2627 | std::tuple<LLT, LLT, LLT, LLT> MachineInstr::getFirst4LLTs() const { |
| 2628 | return std::tuple(getRegInfo()->getType(Reg: getOperand(i: 0).getReg()), |
| 2629 | getRegInfo()->getType(Reg: getOperand(i: 1).getReg()), |
| 2630 | getRegInfo()->getType(Reg: getOperand(i: 2).getReg()), |
| 2631 | getRegInfo()->getType(Reg: getOperand(i: 3).getReg())); |
| 2632 | } |
| 2633 | |
| 2634 | std::tuple<LLT, LLT, LLT, LLT, LLT> MachineInstr::getFirst5LLTs() const { |
| 2635 | return std::tuple(getRegInfo()->getType(Reg: getOperand(i: 0).getReg()), |
| 2636 | getRegInfo()->getType(Reg: getOperand(i: 1).getReg()), |
| 2637 | getRegInfo()->getType(Reg: getOperand(i: 2).getReg()), |
| 2638 | getRegInfo()->getType(Reg: getOperand(i: 3).getReg()), |
| 2639 | getRegInfo()->getType(Reg: getOperand(i: 4).getReg())); |
| 2640 | } |
| 2641 | |
| 2642 | std::tuple<Register, LLT, Register, LLT> |
| 2643 | MachineInstr::getFirst2RegLLTs() const { |
| 2644 | Register Reg0 = getOperand(i: 0).getReg(); |
| 2645 | Register Reg1 = getOperand(i: 1).getReg(); |
| 2646 | return std::tuple(Reg0, getRegInfo()->getType(Reg: Reg0), Reg1, |
| 2647 | getRegInfo()->getType(Reg: Reg1)); |
| 2648 | } |
| 2649 | |
| 2650 | std::tuple<Register, LLT, Register, LLT, Register, LLT> |
| 2651 | MachineInstr::getFirst3RegLLTs() const { |
| 2652 | Register Reg0 = getOperand(i: 0).getReg(); |
| 2653 | Register Reg1 = getOperand(i: 1).getReg(); |
| 2654 | Register Reg2 = getOperand(i: 2).getReg(); |
| 2655 | return std::tuple(Reg0, getRegInfo()->getType(Reg: Reg0), Reg1, |
| 2656 | getRegInfo()->getType(Reg: Reg1), Reg2, |
| 2657 | getRegInfo()->getType(Reg: Reg2)); |
| 2658 | } |
| 2659 | |
| 2660 | std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT> |
| 2661 | MachineInstr::getFirst4RegLLTs() const { |
| 2662 | Register Reg0 = getOperand(i: 0).getReg(); |
| 2663 | Register Reg1 = getOperand(i: 1).getReg(); |
| 2664 | Register Reg2 = getOperand(i: 2).getReg(); |
| 2665 | Register Reg3 = getOperand(i: 3).getReg(); |
| 2666 | return std::tuple( |
| 2667 | Reg0, getRegInfo()->getType(Reg: Reg0), Reg1, getRegInfo()->getType(Reg: Reg1), |
| 2668 | Reg2, getRegInfo()->getType(Reg: Reg2), Reg3, getRegInfo()->getType(Reg: Reg3)); |
| 2669 | } |
| 2670 | |
| 2671 | std::tuple<Register, LLT, Register, LLT, Register, LLT, Register, LLT, Register, |
| 2672 | LLT> |
| 2673 | MachineInstr::getFirst5RegLLTs() const { |
| 2674 | Register Reg0 = getOperand(i: 0).getReg(); |
| 2675 | Register Reg1 = getOperand(i: 1).getReg(); |
| 2676 | Register Reg2 = getOperand(i: 2).getReg(); |
| 2677 | Register Reg3 = getOperand(i: 3).getReg(); |
| 2678 | Register Reg4 = getOperand(i: 4).getReg(); |
| 2679 | return std::tuple( |
| 2680 | Reg0, getRegInfo()->getType(Reg: Reg0), Reg1, getRegInfo()->getType(Reg: Reg1), |
| 2681 | Reg2, getRegInfo()->getType(Reg: Reg2), Reg3, getRegInfo()->getType(Reg: Reg3), |
| 2682 | Reg4, getRegInfo()->getType(Reg: Reg4)); |
| 2683 | } |
| 2684 | |
| 2685 | void MachineInstr::insert(mop_iterator InsertBefore, |
| 2686 | ArrayRef<MachineOperand> Ops) { |
| 2687 | assert(InsertBefore != nullptr && "invalid iterator" ); |
| 2688 | assert(InsertBefore->getParent() == this && |
| 2689 | "iterator points to operand of other inst" ); |
| 2690 | if (Ops.empty()) |
| 2691 | return; |
| 2692 | |
| 2693 | // Do one pass to untie operands. |
| 2694 | SmallDenseMap<unsigned, unsigned> TiedOpIndices; |
| 2695 | for (const MachineOperand &MO : operands()) { |
| 2696 | if (MO.isReg() && MO.isTied()) { |
| 2697 | unsigned OpNo = getOperandNo(I: &MO); |
| 2698 | unsigned TiedTo = findTiedOperandIdx(OpIdx: OpNo); |
| 2699 | TiedOpIndices[OpNo] = TiedTo; |
| 2700 | untieRegOperand(OpIdx: OpNo); |
| 2701 | } |
| 2702 | } |
| 2703 | |
| 2704 | unsigned OpIdx = getOperandNo(I: InsertBefore); |
| 2705 | unsigned NumOperands = getNumOperands(); |
| 2706 | unsigned OpsToMove = NumOperands - OpIdx; |
| 2707 | |
| 2708 | SmallVector<MachineOperand> MovingOps; |
| 2709 | MovingOps.reserve(N: OpsToMove); |
| 2710 | |
| 2711 | for (unsigned I = 0; I < OpsToMove; ++I) { |
| 2712 | MovingOps.emplace_back(Args&: getOperand(i: OpIdx)); |
| 2713 | removeOperand(OpNo: OpIdx); |
| 2714 | } |
| 2715 | for (const MachineOperand &MO : Ops) |
| 2716 | addOperand(Op: MO); |
| 2717 | for (const MachineOperand &OpMoved : MovingOps) |
| 2718 | addOperand(Op: OpMoved); |
| 2719 | |
| 2720 | // Re-tie operands. |
| 2721 | for (auto [Tie1, Tie2] : TiedOpIndices) { |
| 2722 | if (Tie1 >= OpIdx) |
| 2723 | Tie1 += Ops.size(); |
| 2724 | if (Tie2 >= OpIdx) |
| 2725 | Tie2 += Ops.size(); |
| 2726 | tieOperands(DefIdx: Tie1, UseIdx: Tie2); |
| 2727 | } |
| 2728 | } |
| 2729 | |
| 2730 | bool MachineInstr::mayFoldInlineAsmRegOp(unsigned OpId) const { |
| 2731 | assert(OpId && "expected non-zero operand id" ); |
| 2732 | assert(isInlineAsm() && "should only be used on inline asm" ); |
| 2733 | |
| 2734 | if (!getOperand(i: OpId).isReg()) |
| 2735 | return false; |
| 2736 | |
| 2737 | const MachineOperand &MD = getOperand(i: OpId - 1); |
| 2738 | if (!MD.isImm()) |
| 2739 | return false; |
| 2740 | |
| 2741 | InlineAsm::Flag F(MD.getImm()); |
| 2742 | if (F.isRegUseKind() || F.isRegDefKind() || F.isRegDefEarlyClobberKind()) |
| 2743 | return F.getRegMayBeFolded(); |
| 2744 | return false; |
| 2745 | } |
| 2746 | |