| 1 | //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This pass performs loop invariant code motion on machine instructions. We |
| 10 | // attempt to remove as much code from the body of a loop as possible. |
| 11 | // |
| 12 | // This pass is not intended to be a replacement or a complete alternative |
| 13 | // for the LLVM-IR-level LICM pass. It is only designed to hoist simple |
| 14 | // constructs that are not exposed before lowering and instruction selection. |
| 15 | // |
| 16 | //===----------------------------------------------------------------------===// |
| 17 | |
| 18 | #include "llvm/CodeGen/MachineLICM.h" |
| 19 | #include "llvm/ADT/BitVector.h" |
| 20 | #include "llvm/ADT/DenseMap.h" |
| 21 | #include "llvm/ADT/STLExtras.h" |
| 22 | #include "llvm/ADT/SmallVector.h" |
| 23 | #include "llvm/ADT/Statistic.h" |
| 24 | #include "llvm/Analysis/AliasAnalysis.h" |
| 25 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 26 | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
| 27 | #include "llvm/CodeGen/MachineDomTreeUpdater.h" |
| 28 | #include "llvm/CodeGen/MachineDominators.h" |
| 29 | #include "llvm/CodeGen/MachineFrameInfo.h" |
| 30 | #include "llvm/CodeGen/MachineFunction.h" |
| 31 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 32 | #include "llvm/CodeGen/MachineInstr.h" |
| 33 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 34 | #include "llvm/CodeGen/MachineMemOperand.h" |
| 35 | #include "llvm/CodeGen/MachineOperand.h" |
| 36 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 37 | #include "llvm/CodeGen/PseudoSourceValue.h" |
| 38 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 39 | #include "llvm/CodeGen/TargetLowering.h" |
| 40 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 41 | #include "llvm/CodeGen/TargetSchedule.h" |
| 42 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 43 | #include "llvm/IR/DebugLoc.h" |
| 44 | #include "llvm/InitializePasses.h" |
| 45 | #include "llvm/MC/MCInstrDesc.h" |
| 46 | #include "llvm/MC/MCRegister.h" |
| 47 | #include "llvm/Pass.h" |
| 48 | #include "llvm/Support/Casting.h" |
| 49 | #include "llvm/Support/CommandLine.h" |
| 50 | #include "llvm/Support/Debug.h" |
| 51 | #include "llvm/Support/raw_ostream.h" |
| 52 | #include <algorithm> |
| 53 | #include <cassert> |
| 54 | #include <limits> |
| 55 | #include <vector> |
| 56 | |
| 57 | using namespace llvm; |
| 58 | |
| 59 | #define DEBUG_TYPE "machinelicm" |
| 60 | |
| 61 | static cl::opt<bool> |
| 62 | AvoidSpeculation("avoid-speculation" , |
| 63 | cl::desc("MachineLICM should avoid speculation" ), |
| 64 | cl::init(Val: true), cl::Hidden); |
| 65 | |
| 66 | static cl::opt<bool> |
| 67 | HoistCheapInsts("hoist-cheap-insts" , |
| 68 | cl::desc("MachineLICM should hoist even cheap instructions" ), |
| 69 | cl::init(Val: false), cl::Hidden); |
| 70 | |
| 71 | static cl::opt<bool> |
| 72 | HoistConstStores("hoist-const-stores" , |
| 73 | cl::desc("Hoist invariant stores" ), |
| 74 | cl::init(Val: true), cl::Hidden); |
| 75 | |
| 76 | static cl::opt<bool> HoistConstLoads("hoist-const-loads" , |
| 77 | cl::desc("Hoist invariant loads" ), |
| 78 | cl::init(Val: true), cl::Hidden); |
| 79 | |
| 80 | // The default threshold of 100 (i.e. if target block is 100 times hotter) |
| 81 | // is based on empirical data on a single target and is subject to tuning. |
| 82 | static cl::opt<unsigned> |
| 83 | BlockFrequencyRatioThreshold("block-freq-ratio-threshold" , |
| 84 | cl::desc("Do not hoist instructions if target" |
| 85 | "block is N times hotter than the source." ), |
| 86 | cl::init(Val: 100), cl::Hidden); |
| 87 | |
| 88 | enum class UseBFI { None, PGO, All }; |
| 89 | |
| 90 | static cl::opt<UseBFI> |
| 91 | DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks" , |
| 92 | cl::desc("Disable hoisting instructions to" |
| 93 | " hotter blocks" ), |
| 94 | cl::init(Val: UseBFI::PGO), cl::Hidden, |
| 95 | cl::values(clEnumValN(UseBFI::None, "none" , |
| 96 | "disable the feature" ), |
| 97 | clEnumValN(UseBFI::PGO, "pgo" , |
| 98 | "enable the feature when using profile data" ), |
| 99 | clEnumValN(UseBFI::All, "all" , |
| 100 | "enable the feature with/wo profile data" ))); |
| 101 | |
| 102 | STATISTIC(NumHoisted, |
| 103 | "Number of machine instructions hoisted out of loops" ); |
| 104 | STATISTIC(NumLowRP, |
| 105 | "Number of instructions hoisted in low reg pressure situation" ); |
| 106 | STATISTIC(NumHighLatency, |
| 107 | "Number of high latency instructions hoisted" ); |
| 108 | STATISTIC(NumCSEed, |
| 109 | "Number of hoisted machine instructions CSEed" ); |
| 110 | STATISTIC(NumPostRAHoisted, |
| 111 | "Number of machine instructions hoisted out of loops post regalloc" ); |
| 112 | STATISTIC(NumStoreConst, |
| 113 | "Number of stores of const phys reg hoisted out of loops" ); |
| 114 | STATISTIC(NumNotHoistedDueToHotness, |
| 115 | "Number of instructions not hoisted due to block frequency" ); |
| 116 | |
| 117 | namespace { |
| 118 | enum HoistResult { NotHoisted = 1, Hoisted = 2, ErasedMI = 4 }; |
| 119 | |
| 120 | class MachineLICMImpl { |
| 121 | const TargetInstrInfo *TII = nullptr; |
| 122 | const TargetLoweringBase *TLI = nullptr; |
| 123 | const TargetRegisterInfo *TRI = nullptr; |
| 124 | const MachineFrameInfo *MFI = nullptr; |
| 125 | MachineRegisterInfo *MRI = nullptr; |
| 126 | TargetSchedModel SchedModel; |
| 127 | bool PreRegAlloc = false; |
| 128 | bool HasProfileData = false; |
| 129 | Pass *LegacyPass; |
| 130 | MachineFunctionAnalysisManager *MFAM; |
| 131 | |
| 132 | // Various analyses that we use... |
| 133 | AliasAnalysis *AA = nullptr; // Alias analysis info. |
| 134 | MachineBlockFrequencyInfo *MBFI = nullptr; // Machine block frequncy info |
| 135 | MachineLoopInfo *MLI = nullptr; // Current MachineLoopInfo |
| 136 | MachineDomTreeUpdater *MDTU = nullptr; // Wraps current dominator tree |
| 137 | |
| 138 | // State that is updated as we process loops |
| 139 | bool Changed = false; // True if a loop is changed. |
| 140 | bool FirstInLoop = false; // True if it's the first LICM in the loop. |
| 141 | |
| 142 | // Holds information about whether it is allowed to move load instructions |
| 143 | // out of the loop |
| 144 | SmallDenseMap<MachineLoop *, bool> AllowedToHoistLoads; |
| 145 | |
| 146 | // Exit blocks of each Loop. |
| 147 | DenseMap<MachineLoop *, SmallVector<MachineBasicBlock *, 8>> ExitBlockMap; |
| 148 | |
| 149 | bool isExitBlock(MachineLoop *CurLoop, const MachineBasicBlock *MBB) { |
| 150 | auto [It, Inserted] = ExitBlockMap.try_emplace(Key: CurLoop); |
| 151 | if (Inserted) { |
| 152 | SmallVector<MachineBasicBlock *, 8> ExitBlocks; |
| 153 | CurLoop->getExitBlocks(ExitBlocks); |
| 154 | It->second = std::move(ExitBlocks); |
| 155 | } |
| 156 | return is_contained(Range&: It->second, Element: MBB); |
| 157 | } |
| 158 | |
| 159 | // Track 'estimated' register pressure. |
| 160 | SmallDenseSet<Register> RegSeen; |
| 161 | SmallVector<unsigned, 8> RegPressure; |
| 162 | |
| 163 | // Register pressure "limit" per register pressure set. If the pressure |
| 164 | // is higher than the limit, then it's considered high. |
| 165 | SmallVector<unsigned, 8> RegLimit; |
| 166 | |
| 167 | // Register pressure on path leading from loop preheader to current BB. |
| 168 | SmallVector<SmallVector<unsigned, 8>, 16> BackTrace; |
| 169 | |
| 170 | // For each opcode per preheader, keep a list of potential CSE instructions. |
| 171 | DenseMap<MachineBasicBlock *, |
| 172 | DenseMap<unsigned, std::vector<MachineInstr *>>> |
| 173 | CSEMap; |
| 174 | |
| 175 | enum { |
| 176 | SpeculateFalse = 0, |
| 177 | SpeculateTrue = 1, |
| 178 | SpeculateUnknown = 2 |
| 179 | }; |
| 180 | |
| 181 | // If a MBB does not dominate loop exiting blocks then it may not safe |
| 182 | // to hoist loads from this block. |
| 183 | // Tri-state: 0 - false, 1 - true, 2 - unknown |
| 184 | unsigned SpeculationState = SpeculateUnknown; |
| 185 | |
| 186 | public: |
| 187 | MachineLICMImpl(bool PreRegAlloc, Pass *LegacyPass, |
| 188 | MachineFunctionAnalysisManager *MFAM) |
| 189 | : PreRegAlloc(PreRegAlloc), LegacyPass(LegacyPass), MFAM(MFAM) { |
| 190 | assert((LegacyPass || MFAM) && "LegacyPass or MFAM must be provided" ); |
| 191 | assert(!(LegacyPass && MFAM) && |
| 192 | "LegacyPass and MFAM cannot be provided at the same time" ); |
| 193 | } |
| 194 | |
| 195 | bool run(MachineFunction &MF); |
| 196 | |
| 197 | void releaseMemory() { |
| 198 | RegSeen.clear(); |
| 199 | RegPressure.clear(); |
| 200 | RegLimit.clear(); |
| 201 | BackTrace.clear(); |
| 202 | CSEMap.clear(); |
| 203 | ExitBlockMap.clear(); |
| 204 | } |
| 205 | |
| 206 | private: |
| 207 | /// Keep track of information about hoisting candidates. |
| 208 | struct CandidateInfo { |
| 209 | MachineInstr *MI; |
| 210 | Register Def; |
| 211 | int FI; |
| 212 | |
| 213 | CandidateInfo(MachineInstr *mi, Register def, int fi) |
| 214 | : MI(mi), Def(def), FI(fi) {} |
| 215 | }; |
| 216 | |
| 217 | void HoistRegionPostRA(MachineLoop *CurLoop); |
| 218 | |
| 219 | void HoistPostRA(MachineInstr *MI, Register Def, MachineLoop *CurLoop); |
| 220 | |
| 221 | void ProcessMI(MachineInstr *MI, BitVector &RUDefs, BitVector &RUClobbers, |
| 222 | SmallDenseSet<int> &StoredFIs, |
| 223 | SmallVectorImpl<CandidateInfo> &Candidates, |
| 224 | MachineLoop *CurLoop); |
| 225 | |
| 226 | void AddToLiveIns(MCRegister Reg, MachineLoop *CurLoop); |
| 227 | |
| 228 | bool IsLICMCandidate(MachineInstr &I, MachineLoop *CurLoop); |
| 229 | |
| 230 | bool IsLoopInvariantInst(MachineInstr &I, MachineLoop *CurLoop); |
| 231 | |
| 232 | bool HasLoopPHIUse(const MachineInstr *MI, MachineLoop *CurLoop); |
| 233 | |
| 234 | bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, Register Reg, |
| 235 | MachineLoop *CurLoop) const; |
| 236 | |
| 237 | bool IsCheapInstruction(MachineInstr &MI) const; |
| 238 | |
| 239 | bool CanCauseHighRegPressure(const SmallDenseMap<unsigned, int> &Cost, |
| 240 | bool Cheap); |
| 241 | |
| 242 | void UpdateBackTraceRegPressure(const MachineInstr *MI); |
| 243 | |
| 244 | bool IsProfitableToHoist(MachineInstr &MI, MachineLoop *CurLoop); |
| 245 | |
| 246 | bool IsGuaranteedToExecute(MachineBasicBlock *BB, MachineLoop *CurLoop); |
| 247 | |
| 248 | bool isTriviallyReMaterializable(const MachineInstr &MI) const; |
| 249 | |
| 250 | void EnterScope(MachineBasicBlock *MBB); |
| 251 | |
| 252 | void ExitScope(MachineBasicBlock *MBB); |
| 253 | |
| 254 | void ExitScopeIfDone( |
| 255 | MachineDomTreeNode *Node, |
| 256 | DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, |
| 257 | const DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap); |
| 258 | |
| 259 | void HoistOutOfLoop(MachineDomTreeNode *, MachineLoop *CurLoop); |
| 260 | |
| 261 | void InitRegPressure(MachineBasicBlock *BB); |
| 262 | |
| 263 | SmallDenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI, |
| 264 | bool ConsiderSeen, |
| 265 | bool ConsiderUnseenAsDef); |
| 266 | |
| 267 | void UpdateRegPressure(const MachineInstr *MI, |
| 268 | bool ConsiderUnseenAsDef = false); |
| 269 | |
| 270 | MachineInstr *ExtractHoistableLoad(MachineInstr *MI, MachineLoop *CurLoop); |
| 271 | |
| 272 | MachineInstr *LookForDuplicate(const MachineInstr *MI, |
| 273 | std::vector<MachineInstr *> &PrevMIs); |
| 274 | |
| 275 | bool |
| 276 | EliminateCSE(MachineInstr *MI, |
| 277 | DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI); |
| 278 | |
| 279 | bool MayCSE(MachineInstr *MI); |
| 280 | |
| 281 | unsigned Hoist(MachineInstr *MI, MachineBasicBlock *, |
| 282 | MachineLoop *CurLoop); |
| 283 | |
| 284 | void InitCSEMap(MachineBasicBlock *BB); |
| 285 | |
| 286 | void InitializeLoadsHoistableLoops(); |
| 287 | |
| 288 | bool isTgtHotterThanSrc(MachineBasicBlock *SrcBlock, |
| 289 | MachineBasicBlock *TgtBlock); |
| 290 | MachineBasicBlock *getOrCreatePreheader(MachineLoop *CurLoop); |
| 291 | }; |
| 292 | |
| 293 | class MachineLICMBase : public MachineFunctionPass { |
| 294 | bool PreRegAlloc; |
| 295 | |
| 296 | public: |
| 297 | MachineLICMBase(char &ID, bool PreRegAlloc) |
| 298 | : MachineFunctionPass(ID), PreRegAlloc(PreRegAlloc) {} |
| 299 | |
| 300 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 301 | |
| 302 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 303 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
| 304 | if (DisableHoistingToHotterBlocks != UseBFI::None) |
| 305 | AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); |
| 306 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
| 307 | AU.addRequired<AAResultsWrapperPass>(); |
| 308 | AU.addPreserved<MachineLoopInfoWrapperPass>(); |
| 309 | MachineFunctionPass::getAnalysisUsage(AU); |
| 310 | } |
| 311 | }; |
| 312 | |
| 313 | class MachineLICM : public MachineLICMBase { |
| 314 | public: |
| 315 | static char ID; |
| 316 | MachineLICM() : MachineLICMBase(ID, false) { |
| 317 | initializeMachineLICMPass(*PassRegistry::getPassRegistry()); |
| 318 | } |
| 319 | }; |
| 320 | |
| 321 | class EarlyMachineLICM : public MachineLICMBase { |
| 322 | public: |
| 323 | static char ID; |
| 324 | EarlyMachineLICM() : MachineLICMBase(ID, true) { |
| 325 | initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry()); |
| 326 | } |
| 327 | }; |
| 328 | |
| 329 | } // end anonymous namespace |
| 330 | |
| 331 | char MachineLICM::ID; |
| 332 | char EarlyMachineLICM::ID; |
| 333 | |
| 334 | char &llvm::MachineLICMID = MachineLICM::ID; |
| 335 | char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID; |
| 336 | |
| 337 | INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE, |
| 338 | "Machine Loop Invariant Code Motion" , false, false) |
| 339 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) |
| 340 | INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) |
| 341 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
| 342 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| 343 | INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE, |
| 344 | "Machine Loop Invariant Code Motion" , false, false) |
| 345 | |
| 346 | INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm" , |
| 347 | "Early Machine Loop Invariant Code Motion" , false, false) |
| 348 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) |
| 349 | INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfoWrapperPass) |
| 350 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
| 351 | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| 352 | INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm" , |
| 353 | "Early Machine Loop Invariant Code Motion" , false, false) |
| 354 | |
| 355 | bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) { |
| 356 | if (skipFunction(F: MF.getFunction())) |
| 357 | return false; |
| 358 | |
| 359 | MachineLICMImpl Impl(PreRegAlloc, this, nullptr); |
| 360 | return Impl.run(MF); |
| 361 | } |
| 362 | |
| 363 | #define GET_RESULT(RESULT, GETTER, INFIX) \ |
| 364 | ((LegacyPass) \ |
| 365 | ? &LegacyPass->getAnalysis<RESULT##INFIX##WrapperPass>().GETTER() \ |
| 366 | : &MFAM->getResult<RESULT##Analysis>(MF)) |
| 367 | |
| 368 | bool MachineLICMImpl::run(MachineFunction &MF) { |
| 369 | AA = MFAM != nullptr |
| 370 | ? &MFAM->getResult<FunctionAnalysisManagerMachineFunctionProxy>(IR&: MF) |
| 371 | .getManager() |
| 372 | .getResult<AAManager>(IR&: MF.getFunction()) |
| 373 | : &LegacyPass->getAnalysis<AAResultsWrapperPass>().getAAResults(); |
| 374 | MachineDomTreeUpdater DTU(GET_RESULT(MachineDominatorTree, getDomTree, ), |
| 375 | MachineDomTreeUpdater::UpdateStrategy::Lazy); |
| 376 | MDTU = &DTU; |
| 377 | MLI = GET_RESULT(MachineLoop, getLI, Info); |
| 378 | MBFI = DisableHoistingToHotterBlocks != UseBFI::None |
| 379 | ? GET_RESULT(MachineBlockFrequency, getMBFI, Info) |
| 380 | : nullptr; |
| 381 | |
| 382 | Changed = FirstInLoop = false; |
| 383 | const TargetSubtargetInfo &ST = MF.getSubtarget(); |
| 384 | TII = ST.getInstrInfo(); |
| 385 | TLI = ST.getTargetLowering(); |
| 386 | TRI = ST.getRegisterInfo(); |
| 387 | MFI = &MF.getFrameInfo(); |
| 388 | MRI = &MF.getRegInfo(); |
| 389 | SchedModel.init(TSInfo: &ST); |
| 390 | |
| 391 | HasProfileData = MF.getFunction().hasProfileData(); |
| 392 | |
| 393 | if (PreRegAlloc) |
| 394 | LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: " ); |
| 395 | else |
| 396 | LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: " ); |
| 397 | LLVM_DEBUG(dbgs() << MF.getName() << " ********\n" ); |
| 398 | |
| 399 | if (PreRegAlloc) { |
| 400 | // Estimate register pressure during pre-regalloc pass. |
| 401 | unsigned NumRPS = TRI->getNumRegPressureSets(); |
| 402 | RegPressure.resize(N: NumRPS); |
| 403 | llvm::fill(Range&: RegPressure, Value: 0); |
| 404 | RegLimit.resize(N: NumRPS); |
| 405 | for (unsigned i = 0, e = NumRPS; i != e; ++i) |
| 406 | RegLimit[i] = TRI->getRegPressureSetLimit(MF, Idx: i); |
| 407 | } |
| 408 | |
| 409 | if (HoistConstLoads) |
| 410 | InitializeLoadsHoistableLoops(); |
| 411 | |
| 412 | SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); |
| 413 | while (!Worklist.empty()) { |
| 414 | MachineLoop *CurLoop = Worklist.pop_back_val(); |
| 415 | |
| 416 | if (!PreRegAlloc) { |
| 417 | HoistRegionPostRA(CurLoop); |
| 418 | } else { |
| 419 | // CSEMap is initialized for loop header when the first instruction is |
| 420 | // being hoisted. |
| 421 | MachineDomTreeNode *N = MDTU->getDomTree().getNode(BB: CurLoop->getHeader()); |
| 422 | FirstInLoop = true; |
| 423 | HoistOutOfLoop(HeaderN: N, CurLoop); |
| 424 | CSEMap.clear(); |
| 425 | } |
| 426 | } |
| 427 | releaseMemory(); |
| 428 | return Changed; |
| 429 | } |
| 430 | |
| 431 | /// Return true if instruction stores to the specified frame. |
| 432 | static bool InstructionStoresToFI(const MachineInstr *MI, int FI) { |
| 433 | // Check mayStore before memory operands so that e.g. DBG_VALUEs will return |
| 434 | // true since they have no memory operands. |
| 435 | if (!MI->mayStore()) |
| 436 | return false; |
| 437 | // If we lost memory operands, conservatively assume that the instruction |
| 438 | // writes to all slots. |
| 439 | if (MI->memoperands_empty()) |
| 440 | return true; |
| 441 | for (const MachineMemOperand *MemOp : MI->memoperands()) { |
| 442 | if (!MemOp->isStore() || !MemOp->getPseudoValue()) |
| 443 | continue; |
| 444 | if (const FixedStackPseudoSourceValue *Value = |
| 445 | dyn_cast<FixedStackPseudoSourceValue>(Val: MemOp->getPseudoValue())) { |
| 446 | if (Value->getFrameIndex() == FI) |
| 447 | return true; |
| 448 | } |
| 449 | } |
| 450 | return false; |
| 451 | } |
| 452 | |
| 453 | static void applyBitsNotInRegMaskToRegUnitsMask(const TargetRegisterInfo &TRI, |
| 454 | BitVector &RUs, |
| 455 | const uint32_t *Mask) { |
| 456 | // FIXME: This intentionally works in reverse due to some issues with the |
| 457 | // Register Units infrastructure. |
| 458 | // |
| 459 | // This is used to apply callee-saved-register masks to the clobbered regunits |
| 460 | // mask. |
| 461 | // |
| 462 | // The right way to approach this is to start with a BitVector full of ones, |
| 463 | // then reset all the bits of the regunits of each register that is set in the |
| 464 | // mask (registers preserved), then OR the resulting bits with the Clobbers |
| 465 | // mask. This correctly prioritizes the saved registers, so if a RU is shared |
| 466 | // between a register that is preserved, and one that is NOT preserved, that |
| 467 | // RU will not be set in the output vector (the clobbers). |
| 468 | // |
| 469 | // What we have to do for now is the opposite: we have to assume that the |
| 470 | // regunits of all registers that are NOT preserved are clobbered, even if |
| 471 | // those regunits are preserved by another register. So if a RU is shared |
| 472 | // like described previously, that RU will be set. |
| 473 | // |
| 474 | // This is to work around an issue which appears in AArch64, but isn't |
| 475 | // exclusive to that target: AArch64's Qn registers (128 bits) have Dn |
| 476 | // register (lower 64 bits). A few Dn registers are preserved by some calling |
| 477 | // conventions, but Qn and Dn share exactly the same reg units. |
| 478 | // |
| 479 | // If we do this the right way, Qn will be marked as NOT clobbered even though |
| 480 | // its upper 64 bits are NOT preserved. The conservative approach handles this |
| 481 | // correctly at the cost of some missed optimizations on other targets. |
| 482 | // |
| 483 | // This is caused by how RegUnits are handled within TableGen. Ideally, Qn |
| 484 | // should have an extra RegUnit to model the "unknown" bits not covered by the |
| 485 | // subregs. |
| 486 | BitVector RUsFromRegsNotInMask(TRI.getNumRegUnits()); |
| 487 | const unsigned NumRegs = TRI.getNumRegs(); |
| 488 | const unsigned MaskWords = (NumRegs + 31) / 32; |
| 489 | for (unsigned K = 0; K < MaskWords; ++K) { |
| 490 | const uint32_t Word = Mask[K]; |
| 491 | for (unsigned Bit = 0; Bit < 32; ++Bit) { |
| 492 | const unsigned PhysReg = (K * 32) + Bit; |
| 493 | if (PhysReg == NumRegs) |
| 494 | break; |
| 495 | |
| 496 | if (PhysReg && !((Word >> Bit) & 1)) { |
| 497 | for (MCRegUnit Unit : TRI.regunits(Reg: PhysReg)) |
| 498 | RUsFromRegsNotInMask.set(Unit); |
| 499 | } |
| 500 | } |
| 501 | } |
| 502 | |
| 503 | RUs |= RUsFromRegsNotInMask; |
| 504 | } |
| 505 | |
| 506 | /// Examine the instruction for potential LICM candidate. Also |
| 507 | /// gather register def and frame object update information. |
| 508 | void MachineLICMImpl::ProcessMI(MachineInstr *MI, BitVector &RUDefs, |
| 509 | BitVector &RUClobbers, |
| 510 | SmallDenseSet<int> &StoredFIs, |
| 511 | SmallVectorImpl<CandidateInfo> &Candidates, |
| 512 | MachineLoop *CurLoop) { |
| 513 | bool RuledOut = false; |
| 514 | bool HasNonInvariantUse = false; |
| 515 | Register Def; |
| 516 | for (const MachineOperand &MO : MI->operands()) { |
| 517 | if (MO.isFI()) { |
| 518 | // Remember if the instruction stores to the frame index. |
| 519 | int FI = MO.getIndex(); |
| 520 | if (!StoredFIs.count(V: FI) && |
| 521 | MFI->isSpillSlotObjectIndex(ObjectIdx: FI) && |
| 522 | InstructionStoresToFI(MI, FI)) |
| 523 | StoredFIs.insert(V: FI); |
| 524 | HasNonInvariantUse = true; |
| 525 | continue; |
| 526 | } |
| 527 | |
| 528 | // We can't hoist an instruction defining a physreg that is clobbered in |
| 529 | // the loop. |
| 530 | if (MO.isRegMask()) { |
| 531 | applyBitsNotInRegMaskToRegUnitsMask(TRI: *TRI, RUs&: RUClobbers, Mask: MO.getRegMask()); |
| 532 | continue; |
| 533 | } |
| 534 | |
| 535 | if (!MO.isReg()) |
| 536 | continue; |
| 537 | Register Reg = MO.getReg(); |
| 538 | if (!Reg) |
| 539 | continue; |
| 540 | assert(Reg.isPhysical() && "Not expecting virtual register!" ); |
| 541 | |
| 542 | if (!MO.isDef()) { |
| 543 | if (!HasNonInvariantUse) { |
| 544 | for (MCRegUnit Unit : TRI->regunits(Reg)) { |
| 545 | // If it's using a non-loop-invariant register, then it's obviously |
| 546 | // not safe to hoist. |
| 547 | if (RUDefs.test(Idx: Unit) || RUClobbers.test(Idx: Unit)) { |
| 548 | HasNonInvariantUse = true; |
| 549 | break; |
| 550 | } |
| 551 | } |
| 552 | } |
| 553 | continue; |
| 554 | } |
| 555 | |
| 556 | if (MO.isImplicit()) { |
| 557 | for (MCRegUnit Unit : TRI->regunits(Reg)) |
| 558 | RUClobbers.set(Unit); |
| 559 | if (!MO.isDead()) |
| 560 | // Non-dead implicit def? This cannot be hoisted. |
| 561 | RuledOut = true; |
| 562 | // No need to check if a dead implicit def is also defined by |
| 563 | // another instruction. |
| 564 | continue; |
| 565 | } |
| 566 | |
| 567 | // FIXME: For now, avoid instructions with multiple defs, unless |
| 568 | // it's a dead implicit def. |
| 569 | if (Def) |
| 570 | RuledOut = true; |
| 571 | else |
| 572 | Def = Reg; |
| 573 | |
| 574 | // If we have already seen another instruction that defines the same |
| 575 | // register, then this is not safe. Two defs is indicated by setting a |
| 576 | // PhysRegClobbers bit. |
| 577 | for (MCRegUnit Unit : TRI->regunits(Reg)) { |
| 578 | if (RUDefs.test(Idx: Unit)) { |
| 579 | RUClobbers.set(Unit); |
| 580 | RuledOut = true; |
| 581 | } else if (RUClobbers.test(Idx: Unit)) { |
| 582 | // MI defined register is seen defined by another instruction in |
| 583 | // the loop, it cannot be a LICM candidate. |
| 584 | RuledOut = true; |
| 585 | } |
| 586 | |
| 587 | RUDefs.set(Unit); |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | // Only consider reloads for now and remats which do not have register |
| 592 | // operands. FIXME: Consider unfold load folding instructions. |
| 593 | if (Def && !RuledOut) { |
| 594 | int FI = std::numeric_limits<int>::min(); |
| 595 | if ((!HasNonInvariantUse && IsLICMCandidate(I&: *MI, CurLoop)) || |
| 596 | (TII->isLoadFromStackSlot(MI: *MI, FrameIndex&: FI) && MFI->isSpillSlotObjectIndex(ObjectIdx: FI))) |
| 597 | Candidates.push_back(Elt: CandidateInfo(MI, Def, FI)); |
| 598 | } |
| 599 | } |
| 600 | |
| 601 | /// Walk the specified region of the CFG and hoist loop invariants out to the |
| 602 | /// preheader. |
| 603 | void MachineLICMImpl::HoistRegionPostRA(MachineLoop *CurLoop) { |
| 604 | MachineBasicBlock * = getOrCreatePreheader(CurLoop); |
| 605 | if (!Preheader) |
| 606 | return; |
| 607 | |
| 608 | unsigned NumRegUnits = TRI->getNumRegUnits(); |
| 609 | BitVector RUDefs(NumRegUnits); // RUs defined once in the loop. |
| 610 | BitVector RUClobbers(NumRegUnits); // RUs defined more than once. |
| 611 | |
| 612 | SmallVector<CandidateInfo, 32> Candidates; |
| 613 | SmallDenseSet<int> StoredFIs; |
| 614 | |
| 615 | // Walk the entire region, count number of defs for each register, and |
| 616 | // collect potential LICM candidates. |
| 617 | for (MachineBasicBlock *BB : CurLoop->getBlocks()) { |
| 618 | // If the header of the loop containing this basic block is a landing pad, |
| 619 | // then don't try to hoist instructions out of this loop. |
| 620 | const MachineLoop *ML = MLI->getLoopFor(BB); |
| 621 | if (ML && ML->getHeader()->isEHPad()) continue; |
| 622 | |
| 623 | // Conservatively treat live-in's as an external def. |
| 624 | // FIXME: That means a reload that're reused in successor block(s) will not |
| 625 | // be LICM'ed. |
| 626 | for (const auto &LI : BB->liveins()) { |
| 627 | for (MCRegUnit Unit : TRI->regunits(Reg: LI.PhysReg)) |
| 628 | RUDefs.set(Unit); |
| 629 | } |
| 630 | |
| 631 | // Funclet entry blocks will clobber all registers |
| 632 | if (const uint32_t *Mask = BB->getBeginClobberMask(TRI)) |
| 633 | applyBitsNotInRegMaskToRegUnitsMask(TRI: *TRI, RUs&: RUClobbers, Mask); |
| 634 | |
| 635 | // EH landing pads clobber exception pointer/selector registers. |
| 636 | if (BB->isEHPad()) { |
| 637 | const MachineFunction &MF = *BB->getParent(); |
| 638 | const Constant *PersonalityFn = MF.getFunction().getPersonalityFn(); |
| 639 | const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); |
| 640 | if (MCRegister Reg = TLI.getExceptionPointerRegister(PersonalityFn)) |
| 641 | for (MCRegUnit Unit : TRI->regunits(Reg)) |
| 642 | RUClobbers.set(Unit); |
| 643 | if (MCRegister Reg = TLI.getExceptionSelectorRegister(PersonalityFn)) |
| 644 | for (MCRegUnit Unit : TRI->regunits(Reg)) |
| 645 | RUClobbers.set(Unit); |
| 646 | } |
| 647 | |
| 648 | SpeculationState = SpeculateUnknown; |
| 649 | for (MachineInstr &MI : *BB) |
| 650 | ProcessMI(MI: &MI, RUDefs, RUClobbers, StoredFIs, Candidates, CurLoop); |
| 651 | } |
| 652 | |
| 653 | // Gather the registers read / clobbered by the terminator. |
| 654 | BitVector TermRUs(NumRegUnits); |
| 655 | MachineBasicBlock::iterator TI = Preheader->getFirstTerminator(); |
| 656 | if (TI != Preheader->end()) { |
| 657 | for (const MachineOperand &MO : TI->operands()) { |
| 658 | if (!MO.isReg()) |
| 659 | continue; |
| 660 | Register Reg = MO.getReg(); |
| 661 | if (!Reg) |
| 662 | continue; |
| 663 | for (MCRegUnit Unit : TRI->regunits(Reg)) |
| 664 | TermRUs.set(Unit); |
| 665 | } |
| 666 | } |
| 667 | |
| 668 | // Now evaluate whether the potential candidates qualify. |
| 669 | // 1. Check if the candidate defined register is defined by another |
| 670 | // instruction in the loop. |
| 671 | // 2. If the candidate is a load from stack slot (always true for now), |
| 672 | // check if the slot is stored anywhere in the loop. |
| 673 | // 3. Make sure candidate def should not clobber |
| 674 | // registers read by the terminator. Similarly its def should not be |
| 675 | // clobbered by the terminator. |
| 676 | for (CandidateInfo &Candidate : Candidates) { |
| 677 | if (Candidate.FI != std::numeric_limits<int>::min() && |
| 678 | StoredFIs.count(V: Candidate.FI)) |
| 679 | continue; |
| 680 | |
| 681 | Register Def = Candidate.Def; |
| 682 | bool Safe = true; |
| 683 | for (MCRegUnit Unit : TRI->regunits(Reg: Def)) { |
| 684 | if (RUClobbers.test(Idx: Unit) || TermRUs.test(Idx: Unit)) { |
| 685 | Safe = false; |
| 686 | break; |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | if (!Safe) |
| 691 | continue; |
| 692 | |
| 693 | MachineInstr *MI = Candidate.MI; |
| 694 | for (const MachineOperand &MO : MI->all_uses()) { |
| 695 | if (!MO.getReg()) |
| 696 | continue; |
| 697 | for (MCRegUnit Unit : TRI->regunits(Reg: MO.getReg())) { |
| 698 | if (RUDefs.test(Idx: Unit) || RUClobbers.test(Idx: Unit)) { |
| 699 | // If it's using a non-loop-invariant register, then it's obviously |
| 700 | // not safe to hoist. |
| 701 | Safe = false; |
| 702 | break; |
| 703 | } |
| 704 | } |
| 705 | |
| 706 | if (!Safe) |
| 707 | break; |
| 708 | } |
| 709 | |
| 710 | if (Safe) |
| 711 | HoistPostRA(MI, Def: Candidate.Def, CurLoop); |
| 712 | } |
| 713 | } |
| 714 | |
| 715 | /// Add register 'Reg' to the livein sets of BBs in the current loop, and make |
| 716 | /// sure it is not killed by any instructions in the loop. |
| 717 | void MachineLICMImpl::AddToLiveIns(MCRegister Reg, MachineLoop *CurLoop) { |
| 718 | for (MachineBasicBlock *BB : CurLoop->getBlocks()) { |
| 719 | if (!BB->isLiveIn(Reg)) |
| 720 | BB->addLiveIn(PhysReg: Reg); |
| 721 | for (MachineInstr &MI : *BB) { |
| 722 | for (MachineOperand &MO : MI.all_uses()) { |
| 723 | if (!MO.getReg()) |
| 724 | continue; |
| 725 | if (TRI->regsOverlap(RegA: Reg, RegB: MO.getReg())) |
| 726 | MO.setIsKill(false); |
| 727 | } |
| 728 | } |
| 729 | } |
| 730 | } |
| 731 | |
| 732 | /// When an instruction is found to only use loop invariant operands that is |
| 733 | /// safe to hoist, this instruction is called to do the dirty work. |
| 734 | void MachineLICMImpl::HoistPostRA(MachineInstr *MI, Register Def, |
| 735 | MachineLoop *CurLoop) { |
| 736 | MachineBasicBlock * = CurLoop->getLoopPreheader(); |
| 737 | |
| 738 | // Now move the instructions to the predecessor, inserting it before any |
| 739 | // terminator instructions. |
| 740 | LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader) |
| 741 | << " from " << printMBBReference(*MI->getParent()) << ": " |
| 742 | << *MI); |
| 743 | |
| 744 | // Splice the instruction to the preheader. |
| 745 | MachineBasicBlock *MBB = MI->getParent(); |
| 746 | Preheader->splice(Where: Preheader->getFirstTerminator(), Other: MBB, From: MI); |
| 747 | |
| 748 | // Since we are moving the instruction out of its basic block, we do not |
| 749 | // retain its debug location. Doing so would degrade the debugging |
| 750 | // experience and adversely affect the accuracy of profiling information. |
| 751 | assert(!MI->isDebugInstr() && "Should not hoist debug inst" ); |
| 752 | MI->setDebugLoc(DebugLoc()); |
| 753 | |
| 754 | // Add register to livein list to all the BBs in the current loop since a |
| 755 | // loop invariant must be kept live throughout the whole loop. This is |
| 756 | // important to ensure later passes do not scavenge the def register. |
| 757 | AddToLiveIns(Reg: Def, CurLoop); |
| 758 | |
| 759 | ++NumPostRAHoisted; |
| 760 | Changed = true; |
| 761 | } |
| 762 | |
| 763 | /// Check if this mbb is guaranteed to execute. If not then a load from this mbb |
| 764 | /// may not be safe to hoist. |
| 765 | bool MachineLICMImpl::IsGuaranteedToExecute(MachineBasicBlock *BB, |
| 766 | MachineLoop *CurLoop) { |
| 767 | if (SpeculationState != SpeculateUnknown) |
| 768 | return SpeculationState == SpeculateFalse; |
| 769 | |
| 770 | if (BB != CurLoop->getHeader()) { |
| 771 | // Check loop exiting blocks. |
| 772 | SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks; |
| 773 | CurLoop->getExitingBlocks(ExitingBlocks&: CurrentLoopExitingBlocks); |
| 774 | for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks) |
| 775 | if (!MDTU->getDomTree().dominates(A: BB, B: CurrentLoopExitingBlock)) { |
| 776 | SpeculationState = SpeculateTrue; |
| 777 | return false; |
| 778 | } |
| 779 | } |
| 780 | |
| 781 | SpeculationState = SpeculateFalse; |
| 782 | return true; |
| 783 | } |
| 784 | |
| 785 | /// Check if \p MI is trivially remateralizable and if it does not have any |
| 786 | /// virtual register uses. Even though rematerializable RA might not actually |
| 787 | /// rematerialize it in this scenario. In that case we do not want to hoist such |
| 788 | /// instruction out of the loop in a belief RA will sink it back if needed. |
| 789 | bool MachineLICMImpl::isTriviallyReMaterializable( |
| 790 | const MachineInstr &MI) const { |
| 791 | if (!TII->isTriviallyReMaterializable(MI)) |
| 792 | return false; |
| 793 | |
| 794 | for (const MachineOperand &MO : MI.all_uses()) { |
| 795 | if (MO.getReg().isVirtual()) |
| 796 | return false; |
| 797 | } |
| 798 | |
| 799 | return true; |
| 800 | } |
| 801 | |
| 802 | void MachineLICMImpl::EnterScope(MachineBasicBlock *MBB) { |
| 803 | LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n'); |
| 804 | |
| 805 | // Remember livein register pressure. |
| 806 | BackTrace.push_back(Elt: RegPressure); |
| 807 | } |
| 808 | |
| 809 | void MachineLICMImpl::ExitScope(MachineBasicBlock *MBB) { |
| 810 | LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n'); |
| 811 | BackTrace.pop_back(); |
| 812 | } |
| 813 | |
| 814 | /// Destroy scope for the MBB that corresponds to the given dominator tree node |
| 815 | /// if its a leaf or all of its children are done. Walk up the dominator tree to |
| 816 | /// destroy ancestors which are now done. |
| 817 | void MachineLICMImpl::ExitScopeIfDone( |
| 818 | MachineDomTreeNode *Node, |
| 819 | DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren, |
| 820 | const DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap) { |
| 821 | if (OpenChildren[Node]) |
| 822 | return; |
| 823 | |
| 824 | for(;;) { |
| 825 | ExitScope(MBB: Node->getBlock()); |
| 826 | // Now traverse upwards to pop ancestors whose offsprings are all done. |
| 827 | MachineDomTreeNode *Parent = ParentMap.lookup(Val: Node); |
| 828 | if (!Parent || --OpenChildren[Parent] != 0) |
| 829 | break; |
| 830 | Node = Parent; |
| 831 | } |
| 832 | } |
| 833 | |
| 834 | /// Walk the specified loop in the CFG (defined by all blocks dominated by the |
| 835 | /// specified header block, and that are in the current loop) in depth first |
| 836 | /// order w.r.t the DominatorTree. This allows us to visit definitions before |
| 837 | /// uses, allowing us to hoist a loop body in one pass without iteration. |
| 838 | void MachineLICMImpl::HoistOutOfLoop(MachineDomTreeNode *, |
| 839 | MachineLoop *CurLoop) { |
| 840 | MachineBasicBlock * = getOrCreatePreheader(CurLoop); |
| 841 | if (!Preheader) |
| 842 | return; |
| 843 | |
| 844 | SmallVector<MachineDomTreeNode*, 32> Scopes; |
| 845 | SmallVector<MachineDomTreeNode*, 8> WorkList; |
| 846 | DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap; |
| 847 | DenseMap<MachineDomTreeNode*, unsigned> OpenChildren; |
| 848 | |
| 849 | // Perform a DFS walk to determine the order of visit. |
| 850 | WorkList.push_back(Elt: HeaderN); |
| 851 | while (!WorkList.empty()) { |
| 852 | MachineDomTreeNode *Node = WorkList.pop_back_val(); |
| 853 | assert(Node && "Null dominator tree node?" ); |
| 854 | MachineBasicBlock *BB = Node->getBlock(); |
| 855 | |
| 856 | // If the header of the loop containing this basic block is a landing pad, |
| 857 | // then don't try to hoist instructions out of this loop. |
| 858 | const MachineLoop *ML = MLI->getLoopFor(BB); |
| 859 | if (ML && ML->getHeader()->isEHPad()) |
| 860 | continue; |
| 861 | |
| 862 | // If this subregion is not in the top level loop at all, exit. |
| 863 | if (!CurLoop->contains(BB)) |
| 864 | continue; |
| 865 | |
| 866 | Scopes.push_back(Elt: Node); |
| 867 | unsigned NumChildren = Node->getNumChildren(); |
| 868 | |
| 869 | // Don't hoist things out of a large switch statement. This often causes |
| 870 | // code to be hoisted that wasn't going to be executed, and increases |
| 871 | // register pressure in a situation where it's likely to matter. |
| 872 | if (BB->succ_size() >= 25) |
| 873 | NumChildren = 0; |
| 874 | |
| 875 | OpenChildren[Node] = NumChildren; |
| 876 | if (NumChildren) { |
| 877 | // Add children in reverse order as then the next popped worklist node is |
| 878 | // the first child of this node. This means we ultimately traverse the |
| 879 | // DOM tree in exactly the same order as if we'd recursed. |
| 880 | for (MachineDomTreeNode *Child : reverse(C: Node->children())) { |
| 881 | ParentMap[Child] = Node; |
| 882 | WorkList.push_back(Elt: Child); |
| 883 | } |
| 884 | } |
| 885 | } |
| 886 | |
| 887 | if (Scopes.size() == 0) |
| 888 | return; |
| 889 | |
| 890 | // Compute registers which are livein into the loop headers. |
| 891 | RegSeen.clear(); |
| 892 | BackTrace.clear(); |
| 893 | InitRegPressure(BB: Preheader); |
| 894 | |
| 895 | // Now perform LICM. |
| 896 | for (MachineDomTreeNode *Node : Scopes) { |
| 897 | MachineBasicBlock *MBB = Node->getBlock(); |
| 898 | |
| 899 | EnterScope(MBB); |
| 900 | |
| 901 | // Process the block |
| 902 | SpeculationState = SpeculateUnknown; |
| 903 | for (MachineInstr &MI : llvm::make_early_inc_range(Range&: *MBB)) { |
| 904 | unsigned HoistRes = HoistResult::NotHoisted; |
| 905 | HoistRes = Hoist(MI: &MI, Preheader, CurLoop); |
| 906 | if (HoistRes & HoistResult::NotHoisted) { |
| 907 | // We have failed to hoist MI to outermost loop's preheader. If MI is in |
| 908 | // a subloop, try to hoist it to subloop's preheader. |
| 909 | SmallVector<MachineLoop *> InnerLoopWorkList; |
| 910 | for (MachineLoop *L = MLI->getLoopFor(BB: MI.getParent()); L != CurLoop; |
| 911 | L = L->getParentLoop()) |
| 912 | InnerLoopWorkList.push_back(Elt: L); |
| 913 | |
| 914 | while (!InnerLoopWorkList.empty()) { |
| 915 | MachineLoop *InnerLoop = InnerLoopWorkList.pop_back_val(); |
| 916 | MachineBasicBlock * = InnerLoop->getLoopPreheader(); |
| 917 | if (InnerLoopPreheader) { |
| 918 | HoistRes = Hoist(MI: &MI, Preheader: InnerLoopPreheader, CurLoop: InnerLoop); |
| 919 | if (HoistRes & HoistResult::Hoisted) |
| 920 | break; |
| 921 | } |
| 922 | } |
| 923 | } |
| 924 | |
| 925 | if (HoistRes & HoistResult::ErasedMI) |
| 926 | continue; |
| 927 | |
| 928 | UpdateRegPressure(MI: &MI); |
| 929 | } |
| 930 | |
| 931 | // If it's a leaf node, it's done. Traverse upwards to pop ancestors. |
| 932 | ExitScopeIfDone(Node, OpenChildren, ParentMap); |
| 933 | } |
| 934 | } |
| 935 | |
| 936 | static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) { |
| 937 | return MO.isKill() || MRI->hasOneNonDBGUse(RegNo: MO.getReg()); |
| 938 | } |
| 939 | |
| 940 | /// Find all virtual register references that are liveout of the preheader to |
| 941 | /// initialize the starting "register pressure". Note this does not count live |
| 942 | /// through (livein but not used) registers. |
| 943 | void MachineLICMImpl::InitRegPressure(MachineBasicBlock *BB) { |
| 944 | llvm::fill(Range&: RegPressure, Value: 0); |
| 945 | |
| 946 | // If the preheader has only a single predecessor and it ends with a |
| 947 | // fallthrough or an unconditional branch, then scan its predecessor for live |
| 948 | // defs as well. This happens whenever the preheader is created by splitting |
| 949 | // the critical edge from the loop predecessor to the loop header. |
| 950 | if (BB->pred_size() == 1) { |
| 951 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
| 952 | SmallVector<MachineOperand, 4> Cond; |
| 953 | if (!TII->analyzeBranch(MBB&: *BB, TBB, FBB, Cond, AllowModify: false) && Cond.empty()) |
| 954 | InitRegPressure(BB: *BB->pred_begin()); |
| 955 | } |
| 956 | |
| 957 | for (const MachineInstr &MI : *BB) |
| 958 | UpdateRegPressure(MI: &MI, /*ConsiderUnseenAsDef=*/true); |
| 959 | } |
| 960 | |
| 961 | /// Update estimate of register pressure after the specified instruction. |
| 962 | void MachineLICMImpl::UpdateRegPressure(const MachineInstr *MI, |
| 963 | bool ConsiderUnseenAsDef) { |
| 964 | auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef); |
| 965 | for (const auto &RPIdAndCost : Cost) { |
| 966 | unsigned Class = RPIdAndCost.first; |
| 967 | if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second) |
| 968 | RegPressure[Class] = 0; |
| 969 | else |
| 970 | RegPressure[Class] += RPIdAndCost.second; |
| 971 | } |
| 972 | } |
| 973 | |
| 974 | /// Calculate the additional register pressure that the registers used in MI |
| 975 | /// cause. |
| 976 | /// |
| 977 | /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to |
| 978 | /// figure out which usages are live-ins. |
| 979 | /// FIXME: Figure out a way to consider 'RegSeen' from all code paths. |
| 980 | SmallDenseMap<unsigned, int> |
| 981 | MachineLICMImpl::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen, |
| 982 | bool ConsiderUnseenAsDef) { |
| 983 | SmallDenseMap<unsigned, int> Cost; |
| 984 | if (MI->isImplicitDef()) |
| 985 | return Cost; |
| 986 | for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) { |
| 987 | const MachineOperand &MO = MI->getOperand(i); |
| 988 | if (!MO.isReg() || MO.isImplicit()) |
| 989 | continue; |
| 990 | Register Reg = MO.getReg(); |
| 991 | if (!Reg.isVirtual()) |
| 992 | continue; |
| 993 | |
| 994 | // FIXME: It seems bad to use RegSeen only for some of these calculations. |
| 995 | bool isNew = ConsiderSeen ? RegSeen.insert(V: Reg).second : false; |
| 996 | const TargetRegisterClass *RC = MRI->getRegClass(Reg); |
| 997 | |
| 998 | RegClassWeight W = TRI->getRegClassWeight(RC); |
| 999 | int RCCost = 0; |
| 1000 | if (MO.isDef()) |
| 1001 | RCCost = W.RegWeight; |
| 1002 | else { |
| 1003 | bool isKill = isOperandKill(MO, MRI); |
| 1004 | if (isNew && !isKill && ConsiderUnseenAsDef) |
| 1005 | // Haven't seen this, it must be a livein. |
| 1006 | RCCost = W.RegWeight; |
| 1007 | else if (!isNew && isKill) |
| 1008 | RCCost = -W.RegWeight; |
| 1009 | } |
| 1010 | if (RCCost == 0) |
| 1011 | continue; |
| 1012 | const int *PS = TRI->getRegClassPressureSets(RC); |
| 1013 | for (; *PS != -1; ++PS) |
| 1014 | Cost[*PS] += RCCost; |
| 1015 | } |
| 1016 | return Cost; |
| 1017 | } |
| 1018 | |
| 1019 | /// Return true if this machine instruction loads from global offset table or |
| 1020 | /// constant pool. |
| 1021 | static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { |
| 1022 | assert(MI.mayLoad() && "Expected MI that loads!" ); |
| 1023 | |
| 1024 | // If we lost memory operands, conservatively assume that the instruction |
| 1025 | // reads from everything.. |
| 1026 | if (MI.memoperands_empty()) |
| 1027 | return true; |
| 1028 | |
| 1029 | for (MachineMemOperand *MemOp : MI.memoperands()) |
| 1030 | if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) |
| 1031 | if (PSV->isGOT() || PSV->isConstantPool()) |
| 1032 | return true; |
| 1033 | |
| 1034 | return false; |
| 1035 | } |
| 1036 | |
| 1037 | // This function iterates through all the operands of the input store MI and |
| 1038 | // checks that each register operand statisfies isCallerPreservedPhysReg. |
| 1039 | // This means, the value being stored and the address where it is being stored |
| 1040 | // is constant throughout the body of the function (not including prologue and |
| 1041 | // epilogue). When called with an MI that isn't a store, it returns false. |
| 1042 | // A future improvement can be to check if the store registers are constant |
| 1043 | // throughout the loop rather than throughout the funtion. |
| 1044 | static bool isInvariantStore(const MachineInstr &MI, |
| 1045 | const TargetRegisterInfo *TRI, |
| 1046 | const MachineRegisterInfo *MRI) { |
| 1047 | |
| 1048 | bool FoundCallerPresReg = false; |
| 1049 | if (!MI.mayStore() || MI.hasUnmodeledSideEffects() || |
| 1050 | (MI.getNumOperands() == 0)) |
| 1051 | return false; |
| 1052 | |
| 1053 | // Check that all register operands are caller-preserved physical registers. |
| 1054 | for (const MachineOperand &MO : MI.operands()) { |
| 1055 | if (MO.isReg()) { |
| 1056 | Register Reg = MO.getReg(); |
| 1057 | // If operand is a virtual register, check if it comes from a copy of a |
| 1058 | // physical register. |
| 1059 | if (Reg.isVirtual()) |
| 1060 | Reg = TRI->lookThruCopyLike(SrcReg: MO.getReg(), MRI); |
| 1061 | if (Reg.isVirtual()) |
| 1062 | return false; |
| 1063 | if (!TRI->isCallerPreservedPhysReg(PhysReg: Reg.asMCReg(), MF: *MI.getMF())) |
| 1064 | return false; |
| 1065 | else |
| 1066 | FoundCallerPresReg = true; |
| 1067 | } else if (!MO.isImm()) { |
| 1068 | return false; |
| 1069 | } |
| 1070 | } |
| 1071 | return FoundCallerPresReg; |
| 1072 | } |
| 1073 | |
| 1074 | // Return true if the input MI is a copy instruction that feeds an invariant |
| 1075 | // store instruction. This means that the src of the copy has to satisfy |
| 1076 | // isCallerPreservedPhysReg and atleast one of it's users should satisfy |
| 1077 | // isInvariantStore. |
| 1078 | static bool isCopyFeedingInvariantStore(const MachineInstr &MI, |
| 1079 | const MachineRegisterInfo *MRI, |
| 1080 | const TargetRegisterInfo *TRI) { |
| 1081 | |
| 1082 | // FIXME: If targets would like to look through instructions that aren't |
| 1083 | // pure copies, this can be updated to a query. |
| 1084 | if (!MI.isCopy()) |
| 1085 | return false; |
| 1086 | |
| 1087 | const MachineFunction *MF = MI.getMF(); |
| 1088 | // Check that we are copying a constant physical register. |
| 1089 | Register CopySrcReg = MI.getOperand(i: 1).getReg(); |
| 1090 | if (CopySrcReg.isVirtual()) |
| 1091 | return false; |
| 1092 | |
| 1093 | if (!TRI->isCallerPreservedPhysReg(PhysReg: CopySrcReg.asMCReg(), MF: *MF)) |
| 1094 | return false; |
| 1095 | |
| 1096 | Register CopyDstReg = MI.getOperand(i: 0).getReg(); |
| 1097 | // Check if any of the uses of the copy are invariant stores. |
| 1098 | assert(CopyDstReg.isVirtual() && "copy dst is not a virtual reg" ); |
| 1099 | |
| 1100 | for (MachineInstr &UseMI : MRI->use_instructions(Reg: CopyDstReg)) { |
| 1101 | if (UseMI.mayStore() && isInvariantStore(MI: UseMI, TRI, MRI)) |
| 1102 | return true; |
| 1103 | } |
| 1104 | return false; |
| 1105 | } |
| 1106 | |
| 1107 | /// Returns true if the instruction may be a suitable candidate for LICM. |
| 1108 | /// e.g. If the instruction is a call, then it's obviously not safe to hoist it. |
| 1109 | bool MachineLICMImpl::IsLICMCandidate(MachineInstr &I, MachineLoop *CurLoop) { |
| 1110 | // Check if it's safe to move the instruction. |
| 1111 | bool DontMoveAcrossStore = !HoistConstLoads || !AllowedToHoistLoads[CurLoop]; |
| 1112 | if ((!I.isSafeToMove(SawStore&: DontMoveAcrossStore)) && |
| 1113 | !(HoistConstStores && isInvariantStore(MI: I, TRI, MRI))) { |
| 1114 | LLVM_DEBUG(dbgs() << "LICM: Instruction not safe to move.\n" ); |
| 1115 | return false; |
| 1116 | } |
| 1117 | |
| 1118 | // If it is a load then check if it is guaranteed to execute by making sure |
| 1119 | // that it dominates all exiting blocks. If it doesn't, then there is a path |
| 1120 | // out of the loop which does not execute this load, so we can't hoist it. |
| 1121 | // Loads from constant memory are safe to speculate, for example indexed load |
| 1122 | // from a jump table. |
| 1123 | // Stores and side effects are already checked by isSafeToMove. |
| 1124 | if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(MI&: I) && |
| 1125 | !IsGuaranteedToExecute(BB: I.getParent(), CurLoop)) { |
| 1126 | LLVM_DEBUG(dbgs() << "LICM: Load not guaranteed to execute.\n" ); |
| 1127 | return false; |
| 1128 | } |
| 1129 | |
| 1130 | // Convergent attribute has been used on operations that involve inter-thread |
| 1131 | // communication which results are implicitly affected by the enclosing |
| 1132 | // control flows. It is not safe to hoist or sink such operations across |
| 1133 | // control flow. |
| 1134 | if (I.isConvergent()) |
| 1135 | return false; |
| 1136 | |
| 1137 | if (!TII->shouldHoist(MI: I, FromLoop: CurLoop)) |
| 1138 | return false; |
| 1139 | |
| 1140 | return true; |
| 1141 | } |
| 1142 | |
| 1143 | /// Returns true if the instruction is loop invariant. |
| 1144 | bool MachineLICMImpl::IsLoopInvariantInst(MachineInstr &I, |
| 1145 | MachineLoop *CurLoop) { |
| 1146 | if (!IsLICMCandidate(I, CurLoop)) { |
| 1147 | LLVM_DEBUG(dbgs() << "LICM: Instruction not a LICM candidate\n" ); |
| 1148 | return false; |
| 1149 | } |
| 1150 | return CurLoop->isLoopInvariant(I); |
| 1151 | } |
| 1152 | |
| 1153 | /// Return true if the specified instruction is used by a phi node and hoisting |
| 1154 | /// it could cause a copy to be inserted. |
| 1155 | bool MachineLICMImpl::HasLoopPHIUse(const MachineInstr *MI, |
| 1156 | MachineLoop *CurLoop) { |
| 1157 | SmallVector<const MachineInstr *, 8> Work(1, MI); |
| 1158 | do { |
| 1159 | MI = Work.pop_back_val(); |
| 1160 | for (const MachineOperand &MO : MI->all_defs()) { |
| 1161 | Register Reg = MO.getReg(); |
| 1162 | if (!Reg.isVirtual()) |
| 1163 | continue; |
| 1164 | for (MachineInstr &UseMI : MRI->use_instructions(Reg)) { |
| 1165 | // A PHI may cause a copy to be inserted. |
| 1166 | if (UseMI.isPHI()) { |
| 1167 | // A PHI inside the loop causes a copy because the live range of Reg is |
| 1168 | // extended across the PHI. |
| 1169 | if (CurLoop->contains(Inst: &UseMI)) |
| 1170 | return true; |
| 1171 | // A PHI in an exit block can cause a copy to be inserted if the PHI |
| 1172 | // has multiple predecessors in the loop with different values. |
| 1173 | // For now, approximate by rejecting all exit blocks. |
| 1174 | if (isExitBlock(CurLoop, MBB: UseMI.getParent())) |
| 1175 | return true; |
| 1176 | continue; |
| 1177 | } |
| 1178 | // Look past copies as well. |
| 1179 | if (UseMI.isCopy() && CurLoop->contains(Inst: &UseMI)) |
| 1180 | Work.push_back(Elt: &UseMI); |
| 1181 | } |
| 1182 | } |
| 1183 | } while (!Work.empty()); |
| 1184 | return false; |
| 1185 | } |
| 1186 | |
| 1187 | /// Compute operand latency between a def of 'Reg' and an use in the current |
| 1188 | /// loop, return true if the target considered it high. |
| 1189 | bool MachineLICMImpl::HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx, |
| 1190 | Register Reg, |
| 1191 | MachineLoop *CurLoop) const { |
| 1192 | if (MRI->use_nodbg_empty(RegNo: Reg)) |
| 1193 | return false; |
| 1194 | |
| 1195 | for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) { |
| 1196 | if (UseMI.isCopyLike()) |
| 1197 | continue; |
| 1198 | if (!CurLoop->contains(BB: UseMI.getParent())) |
| 1199 | continue; |
| 1200 | for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) { |
| 1201 | const MachineOperand &MO = UseMI.getOperand(i); |
| 1202 | if (!MO.isReg() || !MO.isUse()) |
| 1203 | continue; |
| 1204 | Register MOReg = MO.getReg(); |
| 1205 | if (MOReg != Reg) |
| 1206 | continue; |
| 1207 | |
| 1208 | if (TII->hasHighOperandLatency(SchedModel, MRI, DefMI: MI, DefIdx, UseMI, UseIdx: i)) |
| 1209 | return true; |
| 1210 | } |
| 1211 | |
| 1212 | // Only look at the first in loop use. |
| 1213 | break; |
| 1214 | } |
| 1215 | |
| 1216 | return false; |
| 1217 | } |
| 1218 | |
| 1219 | /// Return true if the instruction is marked "cheap" or the operand latency |
| 1220 | /// between its def and a use is one or less. |
| 1221 | bool MachineLICMImpl::IsCheapInstruction(MachineInstr &MI) const { |
| 1222 | if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike()) |
| 1223 | return true; |
| 1224 | |
| 1225 | bool isCheap = false; |
| 1226 | unsigned NumDefs = MI.getDesc().getNumDefs(); |
| 1227 | for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) { |
| 1228 | MachineOperand &DefMO = MI.getOperand(i); |
| 1229 | if (!DefMO.isReg() || !DefMO.isDef()) |
| 1230 | continue; |
| 1231 | --NumDefs; |
| 1232 | Register Reg = DefMO.getReg(); |
| 1233 | if (Reg.isPhysical()) |
| 1234 | continue; |
| 1235 | |
| 1236 | if (!TII->hasLowDefLatency(SchedModel, DefMI: MI, DefIdx: i)) |
| 1237 | return false; |
| 1238 | isCheap = true; |
| 1239 | } |
| 1240 | |
| 1241 | return isCheap; |
| 1242 | } |
| 1243 | |
| 1244 | /// Visit BBs from header to current BB, check if hoisting an instruction of the |
| 1245 | /// given cost matrix can cause high register pressure. |
| 1246 | bool MachineLICMImpl::CanCauseHighRegPressure( |
| 1247 | const SmallDenseMap<unsigned, int> &Cost, bool CheapInstr) { |
| 1248 | for (const auto &RPIdAndCost : Cost) { |
| 1249 | if (RPIdAndCost.second <= 0) |
| 1250 | continue; |
| 1251 | |
| 1252 | unsigned Class = RPIdAndCost.first; |
| 1253 | int Limit = RegLimit[Class]; |
| 1254 | |
| 1255 | // Don't hoist cheap instructions if they would increase register pressure, |
| 1256 | // even if we're under the limit. |
| 1257 | if (CheapInstr && !HoistCheapInsts) |
| 1258 | return true; |
| 1259 | |
| 1260 | for (const auto &RP : BackTrace) |
| 1261 | if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit) |
| 1262 | return true; |
| 1263 | } |
| 1264 | |
| 1265 | return false; |
| 1266 | } |
| 1267 | |
| 1268 | /// Traverse the back trace from header to the current block and update their |
| 1269 | /// register pressures to reflect the effect of hoisting MI from the current |
| 1270 | /// block to the preheader. |
| 1271 | void MachineLICMImpl::UpdateBackTraceRegPressure(const MachineInstr *MI) { |
| 1272 | // First compute the 'cost' of the instruction, i.e. its contribution |
| 1273 | // to register pressure. |
| 1274 | auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false, |
| 1275 | /*ConsiderUnseenAsDef=*/false); |
| 1276 | |
| 1277 | // Update register pressure of blocks from loop header to current block. |
| 1278 | for (auto &RP : BackTrace) |
| 1279 | for (const auto &RPIdAndCost : Cost) |
| 1280 | RP[RPIdAndCost.first] += RPIdAndCost.second; |
| 1281 | } |
| 1282 | |
| 1283 | /// Return true if it is potentially profitable to hoist the given loop |
| 1284 | /// invariant. |
| 1285 | bool MachineLICMImpl::IsProfitableToHoist(MachineInstr &MI, |
| 1286 | MachineLoop *CurLoop) { |
| 1287 | if (MI.isImplicitDef()) |
| 1288 | return true; |
| 1289 | |
| 1290 | // Besides removing computation from the loop, hoisting an instruction has |
| 1291 | // these effects: |
| 1292 | // |
| 1293 | // - The value defined by the instruction becomes live across the entire |
| 1294 | // loop. This increases register pressure in the loop. |
| 1295 | // |
| 1296 | // - If the value is used by a PHI in the loop, a copy will be required for |
| 1297 | // lowering the PHI after extending the live range. |
| 1298 | // |
| 1299 | // - When hoisting the last use of a value in the loop, that value no longer |
| 1300 | // needs to be live in the loop. This lowers register pressure in the loop. |
| 1301 | |
| 1302 | if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI)) |
| 1303 | return true; |
| 1304 | |
| 1305 | bool CheapInstr = IsCheapInstruction(MI); |
| 1306 | bool CreatesCopy = HasLoopPHIUse(MI: &MI, CurLoop); |
| 1307 | |
| 1308 | // Don't hoist a cheap instruction if it would create a copy in the loop. |
| 1309 | if (CheapInstr && CreatesCopy) { |
| 1310 | LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI); |
| 1311 | return false; |
| 1312 | } |
| 1313 | |
| 1314 | // Rematerializable instructions should always be hoisted providing the |
| 1315 | // register allocator can just pull them down again when needed. |
| 1316 | if (isTriviallyReMaterializable(MI)) |
| 1317 | return true; |
| 1318 | |
| 1319 | // FIXME: If there are long latency loop-invariant instructions inside the |
| 1320 | // loop at this point, why didn't the optimizer's LICM hoist them? |
| 1321 | for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { |
| 1322 | const MachineOperand &MO = MI.getOperand(i); |
| 1323 | if (!MO.isReg() || MO.isImplicit()) |
| 1324 | continue; |
| 1325 | Register Reg = MO.getReg(); |
| 1326 | if (!Reg.isVirtual()) |
| 1327 | continue; |
| 1328 | if (MO.isDef() && HasHighOperandLatency(MI, DefIdx: i, Reg, CurLoop)) { |
| 1329 | LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI); |
| 1330 | ++NumHighLatency; |
| 1331 | return true; |
| 1332 | } |
| 1333 | } |
| 1334 | |
| 1335 | // Estimate register pressure to determine whether to LICM the instruction. |
| 1336 | // In low register pressure situation, we can be more aggressive about |
| 1337 | // hoisting. Also, favors hoisting long latency instructions even in |
| 1338 | // moderately high pressure situation. |
| 1339 | // Cheap instructions will only be hoisted if they don't increase register |
| 1340 | // pressure at all. |
| 1341 | auto Cost = calcRegisterCost(MI: &MI, /*ConsiderSeen=*/false, |
| 1342 | /*ConsiderUnseenAsDef=*/false); |
| 1343 | |
| 1344 | // Visit BBs from header to current BB, if hoisting this doesn't cause |
| 1345 | // high register pressure, then it's safe to proceed. |
| 1346 | if (!CanCauseHighRegPressure(Cost, CheapInstr)) { |
| 1347 | LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI); |
| 1348 | ++NumLowRP; |
| 1349 | return true; |
| 1350 | } |
| 1351 | |
| 1352 | // Don't risk increasing register pressure if it would create copies. |
| 1353 | if (CreatesCopy) { |
| 1354 | LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI); |
| 1355 | return false; |
| 1356 | } |
| 1357 | |
| 1358 | // Do not "speculate" in high register pressure situation. If an |
| 1359 | // instruction is not guaranteed to be executed in the loop, it's best to be |
| 1360 | // conservative. |
| 1361 | if (AvoidSpeculation && |
| 1362 | (!IsGuaranteedToExecute(BB: MI.getParent(), CurLoop) && !MayCSE(MI: &MI))) { |
| 1363 | LLVM_DEBUG(dbgs() << "Won't speculate: " << MI); |
| 1364 | return false; |
| 1365 | } |
| 1366 | |
| 1367 | // If we have a COPY with other uses in the loop, hoist to allow the users to |
| 1368 | // also be hoisted. |
| 1369 | // TODO: Handle all isCopyLike? |
| 1370 | if (MI.isCopy() || MI.isRegSequence()) { |
| 1371 | Register DefReg = MI.getOperand(i: 0).getReg(); |
| 1372 | if (DefReg.isVirtual() && |
| 1373 | all_of(Range: MI.uses(), |
| 1374 | P: [this](const MachineOperand &UseOp) { |
| 1375 | return !UseOp.isReg() || UseOp.getReg().isVirtual() || |
| 1376 | MRI->isConstantPhysReg(PhysReg: UseOp.getReg()); |
| 1377 | }) && |
| 1378 | IsLoopInvariantInst(I&: MI, CurLoop) && |
| 1379 | any_of(Range: MRI->use_nodbg_instructions(Reg: DefReg), |
| 1380 | P: [&CurLoop, this, DefReg, |
| 1381 | Cost = std::move(Cost)](MachineInstr &UseMI) { |
| 1382 | if (!CurLoop->contains(Inst: &UseMI)) |
| 1383 | return false; |
| 1384 | |
| 1385 | // COPY is a cheap instruction, but if moving it won't cause |
| 1386 | // high RP we're fine to hoist it even if the user can't be |
| 1387 | // hoisted later Otherwise we want to check the user if it's |
| 1388 | // hoistable |
| 1389 | if (CanCauseHighRegPressure(Cost, CheapInstr: false) && |
| 1390 | !CurLoop->isLoopInvariant(I&: UseMI, ExcludeReg: DefReg)) |
| 1391 | return false; |
| 1392 | |
| 1393 | return true; |
| 1394 | })) |
| 1395 | return true; |
| 1396 | } |
| 1397 | |
| 1398 | // High register pressure situation, only hoist if the instruction is going |
| 1399 | // to be remat'ed. |
| 1400 | if (!isTriviallyReMaterializable(MI) && |
| 1401 | !MI.isDereferenceableInvariantLoad()) { |
| 1402 | LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI); |
| 1403 | return false; |
| 1404 | } |
| 1405 | |
| 1406 | return true; |
| 1407 | } |
| 1408 | |
| 1409 | /// Unfold a load from the given machineinstr if the load itself could be |
| 1410 | /// hoisted. Return the unfolded and hoistable load, or null if the load |
| 1411 | /// couldn't be unfolded or if it wouldn't be hoistable. |
| 1412 | MachineInstr *MachineLICMImpl::(MachineInstr *MI, |
| 1413 | MachineLoop *CurLoop) { |
| 1414 | // Don't unfold simple loads. |
| 1415 | if (MI->canFoldAsLoad()) |
| 1416 | return nullptr; |
| 1417 | |
| 1418 | // If not, we may be able to unfold a load and hoist that. |
| 1419 | // First test whether the instruction is loading from an amenable |
| 1420 | // memory location. |
| 1421 | if (!MI->isDereferenceableInvariantLoad()) |
| 1422 | return nullptr; |
| 1423 | |
| 1424 | // Next determine the register class for a temporary register. |
| 1425 | unsigned LoadRegIndex; |
| 1426 | unsigned NewOpc = |
| 1427 | TII->getOpcodeAfterMemoryUnfold(Opc: MI->getOpcode(), |
| 1428 | /*UnfoldLoad=*/true, |
| 1429 | /*UnfoldStore=*/false, |
| 1430 | LoadRegIndex: &LoadRegIndex); |
| 1431 | if (NewOpc == 0) return nullptr; |
| 1432 | const MCInstrDesc &MID = TII->get(Opcode: NewOpc); |
| 1433 | MachineFunction &MF = *MI->getMF(); |
| 1434 | const TargetRegisterClass *RC = TII->getRegClass(MCID: MID, OpNum: LoadRegIndex, TRI, MF); |
| 1435 | // Ok, we're unfolding. Create a temporary register and do the unfold. |
| 1436 | Register Reg = MRI->createVirtualRegister(RegClass: RC); |
| 1437 | |
| 1438 | SmallVector<MachineInstr *, 2> NewMIs; |
| 1439 | bool Success = TII->unfoldMemoryOperand(MF, MI&: *MI, Reg, |
| 1440 | /*UnfoldLoad=*/true, |
| 1441 | /*UnfoldStore=*/false, NewMIs); |
| 1442 | (void)Success; |
| 1443 | assert(Success && |
| 1444 | "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold " |
| 1445 | "succeeded!" ); |
| 1446 | assert(NewMIs.size() == 2 && |
| 1447 | "Unfolded a load into multiple instructions!" ); |
| 1448 | MachineBasicBlock *MBB = MI->getParent(); |
| 1449 | MachineBasicBlock::iterator Pos = MI; |
| 1450 | MBB->insert(I: Pos, MI: NewMIs[0]); |
| 1451 | MBB->insert(I: Pos, MI: NewMIs[1]); |
| 1452 | // If unfolding produced a load that wasn't loop-invariant or profitable to |
| 1453 | // hoist, discard the new instructions and bail. |
| 1454 | if (!IsLoopInvariantInst(I&: *NewMIs[0], CurLoop) || |
| 1455 | !IsProfitableToHoist(MI&: *NewMIs[0], CurLoop)) { |
| 1456 | NewMIs[0]->eraseFromParent(); |
| 1457 | NewMIs[1]->eraseFromParent(); |
| 1458 | return nullptr; |
| 1459 | } |
| 1460 | |
| 1461 | // Update register pressure for the unfolded instruction. |
| 1462 | UpdateRegPressure(MI: NewMIs[1]); |
| 1463 | |
| 1464 | // Otherwise we successfully unfolded a load that we can hoist. |
| 1465 | |
| 1466 | // Update the call info. |
| 1467 | if (MI->shouldUpdateAdditionalCallInfo()) |
| 1468 | MF.eraseAdditionalCallInfo(MI); |
| 1469 | |
| 1470 | MI->eraseFromParent(); |
| 1471 | return NewMIs[0]; |
| 1472 | } |
| 1473 | |
| 1474 | /// Initialize the CSE map with instructions that are in the current loop |
| 1475 | /// preheader that may become duplicates of instructions that are hoisted |
| 1476 | /// out of the loop. |
| 1477 | void MachineLICMImpl::InitCSEMap(MachineBasicBlock *BB) { |
| 1478 | for (MachineInstr &MI : *BB) |
| 1479 | CSEMap[BB][MI.getOpcode()].push_back(x: &MI); |
| 1480 | } |
| 1481 | |
| 1482 | /// Initialize AllowedToHoistLoads with information about whether invariant |
| 1483 | /// loads can be moved outside a given loop |
| 1484 | void MachineLICMImpl::InitializeLoadsHoistableLoops() { |
| 1485 | SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end()); |
| 1486 | SmallVector<MachineLoop *, 8> LoopsInPreOrder; |
| 1487 | |
| 1488 | // Mark all loops as hoistable initially and prepare a list of loops in |
| 1489 | // pre-order DFS. |
| 1490 | while (!Worklist.empty()) { |
| 1491 | auto *L = Worklist.pop_back_val(); |
| 1492 | AllowedToHoistLoads[L] = true; |
| 1493 | LoopsInPreOrder.push_back(Elt: L); |
| 1494 | llvm::append_range(C&: Worklist, R: L->getSubLoops()); |
| 1495 | } |
| 1496 | |
| 1497 | // Going from the innermost to outermost loops, check if a loop has |
| 1498 | // instructions preventing invariant load hoisting. If such instruction is |
| 1499 | // found, mark this loop and its parent as non-hoistable and continue |
| 1500 | // investigating the next loop. |
| 1501 | // Visiting in a reversed pre-ordered DFS manner |
| 1502 | // allows us to not process all the instructions of the outer loop if the |
| 1503 | // inner loop is proved to be non-load-hoistable. |
| 1504 | for (auto *Loop : reverse(C&: LoopsInPreOrder)) { |
| 1505 | for (auto *MBB : Loop->blocks()) { |
| 1506 | // If this loop has already been marked as non-hoistable, skip it. |
| 1507 | if (!AllowedToHoistLoads[Loop]) |
| 1508 | continue; |
| 1509 | for (auto &MI : *MBB) { |
| 1510 | if (!MI.isLoadFoldBarrier() && !MI.mayStore() && !MI.isCall() && |
| 1511 | !(MI.mayLoad() && MI.hasOrderedMemoryRef())) |
| 1512 | continue; |
| 1513 | for (MachineLoop *L = Loop; L != nullptr; L = L->getParentLoop()) |
| 1514 | AllowedToHoistLoads[L] = false; |
| 1515 | break; |
| 1516 | } |
| 1517 | } |
| 1518 | } |
| 1519 | } |
| 1520 | |
| 1521 | /// Find an instruction amount PrevMIs that is a duplicate of MI. |
| 1522 | /// Return this instruction if it's found. |
| 1523 | MachineInstr * |
| 1524 | MachineLICMImpl::LookForDuplicate(const MachineInstr *MI, |
| 1525 | std::vector<MachineInstr *> &PrevMIs) { |
| 1526 | for (MachineInstr *PrevMI : PrevMIs) |
| 1527 | if (TII->produceSameValue(MI0: *MI, MI1: *PrevMI, MRI: (PreRegAlloc ? MRI : nullptr))) |
| 1528 | return PrevMI; |
| 1529 | |
| 1530 | return nullptr; |
| 1531 | } |
| 1532 | |
| 1533 | /// Given a LICM'ed instruction, look for an instruction on the preheader that |
| 1534 | /// computes the same value. If it's found, do a RAU on with the definition of |
| 1535 | /// the existing instruction rather than hoisting the instruction to the |
| 1536 | /// preheader. |
| 1537 | bool MachineLICMImpl::EliminateCSE( |
| 1538 | MachineInstr *MI, |
| 1539 | DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI) { |
| 1540 | // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate |
| 1541 | // the undef property onto uses. |
| 1542 | if (MI->isImplicitDef()) |
| 1543 | return false; |
| 1544 | |
| 1545 | // Do not CSE normal loads because between them could be store instructions |
| 1546 | // that change the loaded value |
| 1547 | if (MI->mayLoad() && !MI->isDereferenceableInvariantLoad()) |
| 1548 | return false; |
| 1549 | |
| 1550 | if (MachineInstr *Dup = LookForDuplicate(MI, PrevMIs&: CI->second)) { |
| 1551 | LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup); |
| 1552 | |
| 1553 | // Replace virtual registers defined by MI by their counterparts defined |
| 1554 | // by Dup. |
| 1555 | SmallVector<unsigned, 2> Defs; |
| 1556 | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| 1557 | const MachineOperand &MO = MI->getOperand(i); |
| 1558 | |
| 1559 | // Physical registers may not differ here. |
| 1560 | assert((!MO.isReg() || MO.getReg() == 0 || !MO.getReg().isPhysical() || |
| 1561 | MO.getReg() == Dup->getOperand(i).getReg()) && |
| 1562 | "Instructions with different phys regs are not identical!" ); |
| 1563 | |
| 1564 | if (MO.isReg() && MO.isDef() && !MO.getReg().isPhysical()) |
| 1565 | Defs.push_back(Elt: i); |
| 1566 | } |
| 1567 | |
| 1568 | SmallVector<const TargetRegisterClass*, 2> OrigRCs; |
| 1569 | for (unsigned i = 0, e = Defs.size(); i != e; ++i) { |
| 1570 | unsigned Idx = Defs[i]; |
| 1571 | Register Reg = MI->getOperand(i: Idx).getReg(); |
| 1572 | Register DupReg = Dup->getOperand(i: Idx).getReg(); |
| 1573 | OrigRCs.push_back(Elt: MRI->getRegClass(Reg: DupReg)); |
| 1574 | |
| 1575 | if (!MRI->constrainRegClass(Reg: DupReg, RC: MRI->getRegClass(Reg))) { |
| 1576 | // Restore old RCs if more than one defs. |
| 1577 | for (unsigned j = 0; j != i; ++j) |
| 1578 | MRI->setRegClass(Reg: Dup->getOperand(i: Defs[j]).getReg(), RC: OrigRCs[j]); |
| 1579 | return false; |
| 1580 | } |
| 1581 | } |
| 1582 | |
| 1583 | for (unsigned Idx : Defs) { |
| 1584 | Register Reg = MI->getOperand(i: Idx).getReg(); |
| 1585 | Register DupReg = Dup->getOperand(i: Idx).getReg(); |
| 1586 | MRI->replaceRegWith(FromReg: Reg, ToReg: DupReg); |
| 1587 | MRI->clearKillFlags(Reg: DupReg); |
| 1588 | // Clear Dup dead flag if any, we reuse it for Reg. |
| 1589 | if (!MRI->use_nodbg_empty(RegNo: DupReg)) |
| 1590 | Dup->getOperand(i: Idx).setIsDead(false); |
| 1591 | } |
| 1592 | |
| 1593 | MI->eraseFromParent(); |
| 1594 | ++NumCSEed; |
| 1595 | return true; |
| 1596 | } |
| 1597 | return false; |
| 1598 | } |
| 1599 | |
| 1600 | /// Return true if the given instruction will be CSE'd if it's hoisted out of |
| 1601 | /// the loop. |
| 1602 | bool MachineLICMImpl::MayCSE(MachineInstr *MI) { |
| 1603 | if (MI->mayLoad() && !MI->isDereferenceableInvariantLoad()) |
| 1604 | return false; |
| 1605 | |
| 1606 | unsigned Opcode = MI->getOpcode(); |
| 1607 | for (auto &Map : CSEMap) { |
| 1608 | // Check this CSEMap's preheader dominates MI's basic block. |
| 1609 | if (MDTU->getDomTree().dominates(A: Map.first, B: MI->getParent())) { |
| 1610 | DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI = |
| 1611 | Map.second.find(Val: Opcode); |
| 1612 | // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate |
| 1613 | // the undef property onto uses. |
| 1614 | if (CI == Map.second.end() || MI->isImplicitDef()) |
| 1615 | continue; |
| 1616 | if (LookForDuplicate(MI, PrevMIs&: CI->second) != nullptr) |
| 1617 | return true; |
| 1618 | } |
| 1619 | } |
| 1620 | |
| 1621 | return false; |
| 1622 | } |
| 1623 | |
| 1624 | /// When an instruction is found to use only loop invariant operands |
| 1625 | /// that are safe to hoist, this instruction is called to do the dirty work. |
| 1626 | /// It returns true if the instruction is hoisted. |
| 1627 | unsigned MachineLICMImpl::Hoist(MachineInstr *MI, MachineBasicBlock *, |
| 1628 | MachineLoop *CurLoop) { |
| 1629 | MachineBasicBlock *SrcBlock = MI->getParent(); |
| 1630 | |
| 1631 | // Disable the instruction hoisting due to block hotness |
| 1632 | if ((DisableHoistingToHotterBlocks == UseBFI::All || |
| 1633 | (DisableHoistingToHotterBlocks == UseBFI::PGO && HasProfileData)) && |
| 1634 | isTgtHotterThanSrc(SrcBlock, TgtBlock: Preheader)) { |
| 1635 | ++NumNotHoistedDueToHotness; |
| 1636 | return HoistResult::NotHoisted; |
| 1637 | } |
| 1638 | // First check whether we should hoist this instruction. |
| 1639 | bool = false; |
| 1640 | if (!IsLoopInvariantInst(I&: *MI, CurLoop) || |
| 1641 | !IsProfitableToHoist(MI&: *MI, CurLoop)) { |
| 1642 | // If not, try unfolding a hoistable load. |
| 1643 | MI = ExtractHoistableLoad(MI, CurLoop); |
| 1644 | if (!MI) |
| 1645 | return HoistResult::NotHoisted; |
| 1646 | HasExtractHoistableLoad = true; |
| 1647 | } |
| 1648 | |
| 1649 | // If we have hoisted an instruction that may store, it can only be a constant |
| 1650 | // store. |
| 1651 | if (MI->mayStore()) |
| 1652 | NumStoreConst++; |
| 1653 | |
| 1654 | // Now move the instructions to the predecessor, inserting it before any |
| 1655 | // terminator instructions. |
| 1656 | LLVM_DEBUG({ |
| 1657 | dbgs() << "Hoisting " << *MI; |
| 1658 | if (MI->getParent()->getBasicBlock()) |
| 1659 | dbgs() << " from " << printMBBReference(*MI->getParent()); |
| 1660 | if (Preheader->getBasicBlock()) |
| 1661 | dbgs() << " to " << printMBBReference(*Preheader); |
| 1662 | dbgs() << "\n" ; |
| 1663 | }); |
| 1664 | |
| 1665 | // If this is the first instruction being hoisted to the preheader, |
| 1666 | // initialize the CSE map with potential common expressions. |
| 1667 | if (FirstInLoop) { |
| 1668 | InitCSEMap(BB: Preheader); |
| 1669 | FirstInLoop = false; |
| 1670 | } |
| 1671 | |
| 1672 | // Look for opportunity to CSE the hoisted instruction. |
| 1673 | unsigned Opcode = MI->getOpcode(); |
| 1674 | bool HasCSEDone = false; |
| 1675 | for (auto &Map : CSEMap) { |
| 1676 | // Check this CSEMap's preheader dominates MI's basic block. |
| 1677 | if (MDTU->getDomTree().dominates(A: Map.first, B: MI->getParent())) { |
| 1678 | DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI = |
| 1679 | Map.second.find(Val: Opcode); |
| 1680 | if (CI != Map.second.end()) { |
| 1681 | if (EliminateCSE(MI, CI)) { |
| 1682 | HasCSEDone = true; |
| 1683 | break; |
| 1684 | } |
| 1685 | } |
| 1686 | } |
| 1687 | } |
| 1688 | |
| 1689 | if (!HasCSEDone) { |
| 1690 | // Otherwise, splice the instruction to the preheader. |
| 1691 | Preheader->splice(Where: Preheader->getFirstTerminator(),Other: MI->getParent(),From: MI); |
| 1692 | |
| 1693 | // Since we are moving the instruction out of its basic block, we do not |
| 1694 | // retain its debug location. Doing so would degrade the debugging |
| 1695 | // experience and adversely affect the accuracy of profiling information. |
| 1696 | assert(!MI->isDebugInstr() && "Should not hoist debug inst" ); |
| 1697 | MI->setDebugLoc(DebugLoc()); |
| 1698 | |
| 1699 | // Update register pressure for BBs from header to this block. |
| 1700 | UpdateBackTraceRegPressure(MI); |
| 1701 | |
| 1702 | // Clear the kill flags of any register this instruction defines, |
| 1703 | // since they may need to be live throughout the entire loop |
| 1704 | // rather than just live for part of it. |
| 1705 | for (MachineOperand &MO : MI->all_defs()) |
| 1706 | if (!MO.isDead()) |
| 1707 | MRI->clearKillFlags(Reg: MO.getReg()); |
| 1708 | |
| 1709 | CSEMap[Preheader][Opcode].push_back(x: MI); |
| 1710 | } |
| 1711 | |
| 1712 | ++NumHoisted; |
| 1713 | Changed = true; |
| 1714 | |
| 1715 | if (HasCSEDone || HasExtractHoistableLoad) |
| 1716 | return HoistResult::Hoisted | HoistResult::ErasedMI; |
| 1717 | return HoistResult::Hoisted; |
| 1718 | } |
| 1719 | |
| 1720 | /// Get the preheader for the current loop, splitting a critical edge if needed. |
| 1721 | MachineBasicBlock *MachineLICMImpl::(MachineLoop *CurLoop) { |
| 1722 | // Determine the block to which to hoist instructions. If we can't find a |
| 1723 | // suitable loop predecessor, we can't do any hoisting. |
| 1724 | if (MachineBasicBlock * = CurLoop->getLoopPreheader()) |
| 1725 | return Preheader; |
| 1726 | |
| 1727 | // Try forming a preheader by splitting the critical edge between the single |
| 1728 | // predecessor and the loop header. |
| 1729 | if (MachineBasicBlock *Pred = CurLoop->getLoopPredecessor()) { |
| 1730 | MachineBasicBlock * = Pred->SplitCriticalEdge( |
| 1731 | Succ: CurLoop->getHeader(), P: LegacyPass, MFAM, LiveInSets: nullptr, MDTU); |
| 1732 | if (NewPreheader) |
| 1733 | Changed = true; |
| 1734 | return NewPreheader; |
| 1735 | } |
| 1736 | |
| 1737 | return nullptr; |
| 1738 | } |
| 1739 | |
| 1740 | /// Is the target basic block at least "BlockFrequencyRatioThreshold" |
| 1741 | /// times hotter than the source basic block. |
| 1742 | bool MachineLICMImpl::isTgtHotterThanSrc(MachineBasicBlock *SrcBlock, |
| 1743 | MachineBasicBlock *TgtBlock) { |
| 1744 | // Parse source and target basic block frequency from MBFI |
| 1745 | uint64_t SrcBF = MBFI->getBlockFreq(MBB: SrcBlock).getFrequency(); |
| 1746 | uint64_t DstBF = MBFI->getBlockFreq(MBB: TgtBlock).getFrequency(); |
| 1747 | |
| 1748 | // Disable the hoisting if source block frequency is zero |
| 1749 | if (!SrcBF) |
| 1750 | return true; |
| 1751 | |
| 1752 | double Ratio = (double)DstBF / SrcBF; |
| 1753 | |
| 1754 | // Compare the block frequency ratio with the threshold |
| 1755 | return Ratio > BlockFrequencyRatioThreshold; |
| 1756 | } |
| 1757 | |
| 1758 | template <typename DerivedT, bool PreRegAlloc> |
| 1759 | PreservedAnalyses MachineLICMBasePass<DerivedT, PreRegAlloc>::run( |
| 1760 | MachineFunction &MF, MachineFunctionAnalysisManager &MFAM) { |
| 1761 | bool Changed = MachineLICMImpl(PreRegAlloc, nullptr, &MFAM).run(MF); |
| 1762 | if (!Changed) |
| 1763 | return PreservedAnalyses::all(); |
| 1764 | auto PA = getMachineFunctionPassPreservedAnalyses(); |
| 1765 | PA.preserve<MachineLoopAnalysis>(); |
| 1766 | return PA; |
| 1767 | } |
| 1768 | |
| 1769 | template class llvm::MachineLICMBasePass<EarlyMachineLICMPass, true>; |
| 1770 | template class llvm::MachineLICMBasePass<MachineLICMPass, false>; |
| 1771 | |