| 1 | //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | |
| 9 | #include "llvm/CodeGen/ModuloSchedule.h" |
| 10 | #include "llvm/ADT/StringExtras.h" |
| 11 | #include "llvm/Analysis/MemoryLocation.h" |
| 12 | #include "llvm/CodeGen/LiveIntervals.h" |
| 13 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 14 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 15 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 16 | #include "llvm/InitializePasses.h" |
| 17 | #include "llvm/MC/MCContext.h" |
| 18 | #include "llvm/Support/Debug.h" |
| 19 | #include "llvm/Support/ErrorHandling.h" |
| 20 | #include "llvm/Support/raw_ostream.h" |
| 21 | |
| 22 | #define DEBUG_TYPE "pipeliner" |
| 23 | using namespace llvm; |
| 24 | |
| 25 | static cl::opt<bool> SwapBranchTargetsMVE( |
| 26 | "pipeliner-swap-branch-targets-mve" , cl::Hidden, cl::init(Val: false), |
| 27 | cl::desc("Swap target blocks of a conditional branch for MVE expander" )); |
| 28 | |
| 29 | void ModuloSchedule::print(raw_ostream &OS) { |
| 30 | for (MachineInstr *MI : ScheduledInstrs) |
| 31 | OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI; |
| 32 | } |
| 33 | |
| 34 | //===----------------------------------------------------------------------===// |
| 35 | // ModuloScheduleExpander implementation |
| 36 | //===----------------------------------------------------------------------===// |
| 37 | |
| 38 | /// Return the register values for the operands of a Phi instruction. |
| 39 | /// This function assume the instruction is a Phi. |
| 40 | static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, |
| 41 | Register &InitVal, Register &LoopVal) { |
| 42 | assert(Phi.isPHI() && "Expecting a Phi." ); |
| 43 | |
| 44 | InitVal = Register(); |
| 45 | LoopVal = Register(); |
| 46 | for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) |
| 47 | if (Phi.getOperand(i: i + 1).getMBB() != Loop) |
| 48 | InitVal = Phi.getOperand(i).getReg(); |
| 49 | else |
| 50 | LoopVal = Phi.getOperand(i).getReg(); |
| 51 | |
| 52 | assert(InitVal && LoopVal && "Unexpected Phi structure." ); |
| 53 | } |
| 54 | |
| 55 | /// Return the Phi register value that comes from the incoming block. |
| 56 | static Register getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { |
| 57 | for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) |
| 58 | if (Phi.getOperand(i: i + 1).getMBB() != LoopBB) |
| 59 | return Phi.getOperand(i).getReg(); |
| 60 | return Register(); |
| 61 | } |
| 62 | |
| 63 | /// Return the Phi register value that comes the loop block. |
| 64 | static Register getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { |
| 65 | for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) |
| 66 | if (Phi.getOperand(i: i + 1).getMBB() == LoopBB) |
| 67 | return Phi.getOperand(i).getReg(); |
| 68 | return Register(); |
| 69 | } |
| 70 | |
| 71 | void ModuloScheduleExpander::expand() { |
| 72 | BB = Schedule.getLoop()->getTopBlock(); |
| 73 | Preheader = *BB->pred_begin(); |
| 74 | if (Preheader == BB) |
| 75 | Preheader = *std::next(x: BB->pred_begin()); |
| 76 | |
| 77 | // Iterate over the definitions in each instruction, and compute the |
| 78 | // stage difference for each use. Keep the maximum value. |
| 79 | for (MachineInstr *MI : Schedule.getInstructions()) { |
| 80 | int DefStage = Schedule.getStage(MI); |
| 81 | for (const MachineOperand &Op : MI->all_defs()) { |
| 82 | Register Reg = Op.getReg(); |
| 83 | unsigned MaxDiff = 0; |
| 84 | bool PhiIsSwapped = false; |
| 85 | for (MachineOperand &UseOp : MRI.use_operands(Reg)) { |
| 86 | MachineInstr *UseMI = UseOp.getParent(); |
| 87 | int UseStage = Schedule.getStage(MI: UseMI); |
| 88 | unsigned Diff = 0; |
| 89 | if (UseStage != -1 && UseStage >= DefStage) |
| 90 | Diff = UseStage - DefStage; |
| 91 | if (MI->isPHI()) { |
| 92 | if (isLoopCarried(Phi&: *MI)) |
| 93 | ++Diff; |
| 94 | else |
| 95 | PhiIsSwapped = true; |
| 96 | } |
| 97 | MaxDiff = std::max(a: Diff, b: MaxDiff); |
| 98 | } |
| 99 | RegToStageDiff[Reg] = std::make_pair(x&: MaxDiff, y&: PhiIsSwapped); |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | generatePipelinedLoop(); |
| 104 | } |
| 105 | |
| 106 | void ModuloScheduleExpander::generatePipelinedLoop() { |
| 107 | LoopInfo = TII->analyzeLoopForPipelining(LoopBB: BB); |
| 108 | assert(LoopInfo && "Must be able to analyze loop!" ); |
| 109 | |
| 110 | // Create a new basic block for the kernel and add it to the CFG. |
| 111 | MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB: BB->getBasicBlock()); |
| 112 | |
| 113 | unsigned MaxStageCount = Schedule.getNumStages() - 1; |
| 114 | |
| 115 | // Remember the registers that are used in different stages. The index is |
| 116 | // the iteration, or stage, that the instruction is scheduled in. This is |
| 117 | // a map between register names in the original block and the names created |
| 118 | // in each stage of the pipelined loop. |
| 119 | ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; |
| 120 | |
| 121 | // The renaming destination by Phis for the registers across stages. |
| 122 | // This map is updated during Phis generation to point to the most recent |
| 123 | // renaming destination. |
| 124 | ValueMapTy *VRMapPhi = new ValueMapTy[(MaxStageCount + 1) * 2]; |
| 125 | |
| 126 | InstrMapTy InstrMap; |
| 127 | |
| 128 | SmallVector<MachineBasicBlock *, 4> PrologBBs; |
| 129 | |
| 130 | // Generate the prolog instructions that set up the pipeline. |
| 131 | generateProlog(LastStage: MaxStageCount, KernelBB, VRMap, PrologBBs); |
| 132 | MF.insert(MBBI: BB->getIterator(), MBB: KernelBB); |
| 133 | LIS.insertMBBInMaps(MBB: KernelBB); |
| 134 | |
| 135 | // Rearrange the instructions to generate the new, pipelined loop, |
| 136 | // and update register names as needed. |
| 137 | for (MachineInstr *CI : Schedule.getInstructions()) { |
| 138 | if (CI->isPHI()) |
| 139 | continue; |
| 140 | unsigned StageNum = Schedule.getStage(MI: CI); |
| 141 | MachineInstr *NewMI = cloneInstr(OldMI: CI, CurStageNum: MaxStageCount, InstStageNum: StageNum); |
| 142 | updateInstruction(NewMI, LastDef: false, CurStageNum: MaxStageCount, InstrStageNum: StageNum, VRMap); |
| 143 | KernelBB->push_back(MI: NewMI); |
| 144 | LIS.InsertMachineInstrInMaps(MI&: *NewMI); |
| 145 | InstrMap[NewMI] = CI; |
| 146 | } |
| 147 | |
| 148 | // Copy any terminator instructions to the new kernel, and update |
| 149 | // names as needed. |
| 150 | for (MachineInstr &MI : BB->terminators()) { |
| 151 | MachineInstr *NewMI = MF.CloneMachineInstr(Orig: &MI); |
| 152 | updateInstruction(NewMI, LastDef: false, CurStageNum: MaxStageCount, InstrStageNum: 0, VRMap); |
| 153 | KernelBB->push_back(MI: NewMI); |
| 154 | LIS.InsertMachineInstrInMaps(MI&: *NewMI); |
| 155 | InstrMap[NewMI] = &MI; |
| 156 | } |
| 157 | |
| 158 | NewKernel = KernelBB; |
| 159 | KernelBB->transferSuccessors(FromMBB: BB); |
| 160 | KernelBB->replaceSuccessor(Old: BB, New: KernelBB); |
| 161 | |
| 162 | generateExistingPhis(NewBB: KernelBB, BB1: PrologBBs.back(), BB2: KernelBB, KernelBB, VRMap, |
| 163 | InstrMap, LastStageNum: MaxStageCount, CurStageNum: MaxStageCount, IsLast: false); |
| 164 | generatePhis(NewBB: KernelBB, BB1: PrologBBs.back(), BB2: KernelBB, KernelBB, VRMap, VRMapPhi, |
| 165 | InstrMap, LastStageNum: MaxStageCount, CurStageNum: MaxStageCount, IsLast: false); |
| 166 | |
| 167 | LLVM_DEBUG(dbgs() << "New block\n" ; KernelBB->dump();); |
| 168 | |
| 169 | SmallVector<MachineBasicBlock *, 4> EpilogBBs; |
| 170 | // Generate the epilog instructions to complete the pipeline. |
| 171 | generateEpilog(LastStage: MaxStageCount, KernelBB, OrigBB: BB, VRMap, VRMapPhi, EpilogBBs, |
| 172 | PrologBBs); |
| 173 | |
| 174 | // We need this step because the register allocation doesn't handle some |
| 175 | // situations well, so we insert copies to help out. |
| 176 | splitLifetimes(KernelBB, EpilogBBs); |
| 177 | |
| 178 | // Remove dead instructions due to loop induction variables. |
| 179 | removeDeadInstructions(KernelBB, EpilogBBs); |
| 180 | |
| 181 | // Add branches between prolog and epilog blocks. |
| 182 | addBranches(PreheaderBB&: *Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap); |
| 183 | |
| 184 | delete[] VRMap; |
| 185 | delete[] VRMapPhi; |
| 186 | } |
| 187 | |
| 188 | void ModuloScheduleExpander::cleanup() { |
| 189 | // Remove the original loop since it's no longer referenced. |
| 190 | for (auto &I : *BB) |
| 191 | LIS.RemoveMachineInstrFromMaps(MI&: I); |
| 192 | BB->clear(); |
| 193 | BB->eraseFromParent(); |
| 194 | } |
| 195 | |
| 196 | /// Generate the pipeline prolog code. |
| 197 | void ModuloScheduleExpander::generateProlog(unsigned LastStage, |
| 198 | MachineBasicBlock *KernelBB, |
| 199 | ValueMapTy *VRMap, |
| 200 | MBBVectorTy &PrologBBs) { |
| 201 | MachineBasicBlock *PredBB = Preheader; |
| 202 | InstrMapTy InstrMap; |
| 203 | |
| 204 | // Generate a basic block for each stage, not including the last stage, |
| 205 | // which will be generated in the kernel. Each basic block may contain |
| 206 | // instructions from multiple stages/iterations. |
| 207 | for (unsigned i = 0; i < LastStage; ++i) { |
| 208 | // Create and insert the prolog basic block prior to the original loop |
| 209 | // basic block. The original loop is removed later. |
| 210 | MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB: BB->getBasicBlock()); |
| 211 | PrologBBs.push_back(Elt: NewBB); |
| 212 | MF.insert(MBBI: BB->getIterator(), MBB: NewBB); |
| 213 | NewBB->transferSuccessors(FromMBB: PredBB); |
| 214 | PredBB->addSuccessor(Succ: NewBB); |
| 215 | PredBB = NewBB; |
| 216 | LIS.insertMBBInMaps(MBB: NewBB); |
| 217 | |
| 218 | // Generate instructions for each appropriate stage. Process instructions |
| 219 | // in original program order. |
| 220 | for (int StageNum = i; StageNum >= 0; --StageNum) { |
| 221 | for (MachineBasicBlock::iterator BBI = BB->instr_begin(), |
| 222 | BBE = BB->getFirstTerminator(); |
| 223 | BBI != BBE; ++BBI) { |
| 224 | if (Schedule.getStage(MI: &*BBI) == StageNum) { |
| 225 | if (BBI->isPHI()) |
| 226 | continue; |
| 227 | MachineInstr *NewMI = |
| 228 | cloneAndChangeInstr(OldMI: &*BBI, CurStageNum: i, InstStageNum: (unsigned)StageNum); |
| 229 | updateInstruction(NewMI, LastDef: false, CurStageNum: i, InstrStageNum: (unsigned)StageNum, VRMap); |
| 230 | NewBB->push_back(MI: NewMI); |
| 231 | LIS.InsertMachineInstrInMaps(MI&: *NewMI); |
| 232 | InstrMap[NewMI] = &*BBI; |
| 233 | } |
| 234 | } |
| 235 | } |
| 236 | rewritePhiValues(NewBB, StageNum: i, VRMap, InstrMap); |
| 237 | LLVM_DEBUG({ |
| 238 | dbgs() << "prolog:\n" ; |
| 239 | NewBB->dump(); |
| 240 | }); |
| 241 | } |
| 242 | |
| 243 | PredBB->replaceSuccessor(Old: BB, New: KernelBB); |
| 244 | |
| 245 | // Check if we need to remove the branch from the preheader to the original |
| 246 | // loop, and replace it with a branch to the new loop. |
| 247 | unsigned numBranches = TII->removeBranch(MBB&: *Preheader); |
| 248 | if (numBranches) { |
| 249 | SmallVector<MachineOperand, 0> Cond; |
| 250 | TII->insertBranch(MBB&: *Preheader, TBB: PrologBBs[0], FBB: nullptr, Cond, DL: DebugLoc()); |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | /// Generate the pipeline epilog code. The epilog code finishes the iterations |
| 255 | /// that were started in either the prolog or the kernel. We create a basic |
| 256 | /// block for each stage that needs to complete. |
| 257 | void ModuloScheduleExpander::generateEpilog( |
| 258 | unsigned LastStage, MachineBasicBlock *KernelBB, MachineBasicBlock *OrigBB, |
| 259 | ValueMapTy *VRMap, ValueMapTy *VRMapPhi, MBBVectorTy &EpilogBBs, |
| 260 | MBBVectorTy &PrologBBs) { |
| 261 | // We need to change the branch from the kernel to the first epilog block, so |
| 262 | // this call to analyze branch uses the kernel rather than the original BB. |
| 263 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
| 264 | SmallVector<MachineOperand, 4> Cond; |
| 265 | bool checkBranch = TII->analyzeBranch(MBB&: *KernelBB, TBB, FBB, Cond); |
| 266 | assert(!checkBranch && "generateEpilog must be able to analyze the branch" ); |
| 267 | if (checkBranch) |
| 268 | return; |
| 269 | |
| 270 | MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); |
| 271 | if (*LoopExitI == KernelBB) |
| 272 | ++LoopExitI; |
| 273 | assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor" ); |
| 274 | MachineBasicBlock *LoopExitBB = *LoopExitI; |
| 275 | |
| 276 | MachineBasicBlock *PredBB = KernelBB; |
| 277 | MachineBasicBlock *EpilogStart = LoopExitBB; |
| 278 | InstrMapTy InstrMap; |
| 279 | |
| 280 | // Generate a basic block for each stage, not including the last stage, |
| 281 | // which was generated for the kernel. Each basic block may contain |
| 282 | // instructions from multiple stages/iterations. |
| 283 | int EpilogStage = LastStage + 1; |
| 284 | for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { |
| 285 | MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); |
| 286 | EpilogBBs.push_back(Elt: NewBB); |
| 287 | MF.insert(MBBI: BB->getIterator(), MBB: NewBB); |
| 288 | |
| 289 | PredBB->replaceSuccessor(Old: LoopExitBB, New: NewBB); |
| 290 | NewBB->addSuccessor(Succ: LoopExitBB); |
| 291 | LIS.insertMBBInMaps(MBB: NewBB); |
| 292 | |
| 293 | if (EpilogStart == LoopExitBB) |
| 294 | EpilogStart = NewBB; |
| 295 | |
| 296 | // Add instructions to the epilog depending on the current block. |
| 297 | // Process instructions in original program order. |
| 298 | for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { |
| 299 | for (auto &BBI : *BB) { |
| 300 | if (BBI.isPHI()) |
| 301 | continue; |
| 302 | MachineInstr *In = &BBI; |
| 303 | if ((unsigned)Schedule.getStage(MI: In) == StageNum) { |
| 304 | // Instructions with memoperands in the epilog are updated with |
| 305 | // conservative values. |
| 306 | MachineInstr *NewMI = cloneInstr(OldMI: In, UINT_MAX, InstStageNum: 0); |
| 307 | updateInstruction(NewMI, LastDef: i == 1, CurStageNum: EpilogStage, InstrStageNum: 0, VRMap); |
| 308 | NewBB->push_back(MI: NewMI); |
| 309 | LIS.InsertMachineInstrInMaps(MI&: *NewMI); |
| 310 | InstrMap[NewMI] = In; |
| 311 | } |
| 312 | } |
| 313 | } |
| 314 | generateExistingPhis(NewBB, BB1: PrologBBs[i - 1], BB2: PredBB, KernelBB, VRMap, |
| 315 | InstrMap, LastStageNum: LastStage, CurStageNum: EpilogStage, IsLast: i == 1); |
| 316 | generatePhis(NewBB, BB1: PrologBBs[i - 1], BB2: PredBB, KernelBB, VRMap, VRMapPhi, |
| 317 | InstrMap, LastStageNum: LastStage, CurStageNum: EpilogStage, IsLast: i == 1); |
| 318 | PredBB = NewBB; |
| 319 | |
| 320 | LLVM_DEBUG({ |
| 321 | dbgs() << "epilog:\n" ; |
| 322 | NewBB->dump(); |
| 323 | }); |
| 324 | } |
| 325 | |
| 326 | // Fix any Phi nodes in the loop exit block. |
| 327 | LoopExitBB->replacePhiUsesWith(Old: BB, New: PredBB); |
| 328 | |
| 329 | // Create a branch to the new epilog from the kernel. |
| 330 | // Remove the original branch and add a new branch to the epilog. |
| 331 | TII->removeBranch(MBB&: *KernelBB); |
| 332 | assert((OrigBB == TBB || OrigBB == FBB) && |
| 333 | "Unable to determine looping branch direction" ); |
| 334 | if (OrigBB != TBB) |
| 335 | TII->insertBranch(MBB&: *KernelBB, TBB: EpilogStart, FBB: KernelBB, Cond, DL: DebugLoc()); |
| 336 | else |
| 337 | TII->insertBranch(MBB&: *KernelBB, TBB: KernelBB, FBB: EpilogStart, Cond, DL: DebugLoc()); |
| 338 | // Add a branch to the loop exit. |
| 339 | if (EpilogBBs.size() > 0) { |
| 340 | MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); |
| 341 | SmallVector<MachineOperand, 4> Cond1; |
| 342 | TII->insertBranch(MBB&: *LastEpilogBB, TBB: LoopExitBB, FBB: nullptr, Cond: Cond1, DL: DebugLoc()); |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | /// Replace all uses of FromReg that appear outside the specified |
| 347 | /// basic block with ToReg. |
| 348 | static void replaceRegUsesAfterLoop(Register FromReg, Register ToReg, |
| 349 | MachineBasicBlock *MBB, |
| 350 | MachineRegisterInfo &MRI) { |
| 351 | for (MachineOperand &O : |
| 352 | llvm::make_early_inc_range(Range: MRI.use_operands(Reg: FromReg))) |
| 353 | if (O.getParent()->getParent() != MBB) |
| 354 | O.setReg(ToReg); |
| 355 | } |
| 356 | |
| 357 | /// Return true if the register has a use that occurs outside the |
| 358 | /// specified loop. |
| 359 | static bool hasUseAfterLoop(Register Reg, MachineBasicBlock *BB, |
| 360 | MachineRegisterInfo &MRI) { |
| 361 | for (const MachineOperand &MO : MRI.use_operands(Reg)) |
| 362 | if (MO.getParent()->getParent() != BB) |
| 363 | return true; |
| 364 | return false; |
| 365 | } |
| 366 | |
| 367 | /// Generate Phis for the specific block in the generated pipelined code. |
| 368 | /// This function looks at the Phis from the original code to guide the |
| 369 | /// creation of new Phis. |
| 370 | void ModuloScheduleExpander::generateExistingPhis( |
| 371 | MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, |
| 372 | MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap, |
| 373 | unsigned LastStageNum, unsigned CurStageNum, bool IsLast) { |
| 374 | // Compute the stage number for the initial value of the Phi, which |
| 375 | // comes from the prolog. The prolog to use depends on to which kernel/ |
| 376 | // epilog that we're adding the Phi. |
| 377 | unsigned PrologStage = 0; |
| 378 | unsigned PrevStage = 0; |
| 379 | bool InKernel = (LastStageNum == CurStageNum); |
| 380 | if (InKernel) { |
| 381 | PrologStage = LastStageNum - 1; |
| 382 | PrevStage = CurStageNum; |
| 383 | } else { |
| 384 | PrologStage = LastStageNum - (CurStageNum - LastStageNum); |
| 385 | PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; |
| 386 | } |
| 387 | |
| 388 | for (MachineBasicBlock::iterator BBI = BB->instr_begin(), |
| 389 | BBE = BB->getFirstNonPHI(); |
| 390 | BBI != BBE; ++BBI) { |
| 391 | Register Def = BBI->getOperand(i: 0).getReg(); |
| 392 | |
| 393 | Register InitVal; |
| 394 | Register LoopVal; |
| 395 | getPhiRegs(Phi&: *BBI, Loop: BB, InitVal, LoopVal); |
| 396 | |
| 397 | Register PhiOp1; |
| 398 | // The Phi value from the loop body typically is defined in the loop, but |
| 399 | // not always. So, we need to check if the value is defined in the loop. |
| 400 | Register PhiOp2 = LoopVal; |
| 401 | if (auto It = VRMap[LastStageNum].find(Val: LoopVal); |
| 402 | It != VRMap[LastStageNum].end()) |
| 403 | PhiOp2 = It->second; |
| 404 | |
| 405 | int StageScheduled = Schedule.getStage(MI: &*BBI); |
| 406 | int LoopValStage = Schedule.getStage(MI: MRI.getVRegDef(Reg: LoopVal)); |
| 407 | unsigned NumStages = getStagesForReg(Reg: Def, CurStage: CurStageNum); |
| 408 | if (NumStages == 0) { |
| 409 | // We don't need to generate a Phi anymore, but we need to rename any uses |
| 410 | // of the Phi value. |
| 411 | Register NewReg = VRMap[PrevStage][LoopVal]; |
| 412 | rewriteScheduledInstr(BB: NewBB, InstrMap, CurStageNum, PhiNum: 0, Phi: &*BBI, OldReg: Def, |
| 413 | NewReg: InitVal, PrevReg: NewReg); |
| 414 | auto It = VRMap[CurStageNum].find(Val: LoopVal); |
| 415 | if (It != VRMap[CurStageNum].end()) { |
| 416 | Register Reg = It->second; |
| 417 | VRMap[CurStageNum][Def] = Reg; |
| 418 | } |
| 419 | } |
| 420 | // Adjust the number of Phis needed depending on the number of prologs left, |
| 421 | // and the distance from where the Phi is first scheduled. The number of |
| 422 | // Phis cannot exceed the number of prolog stages. Each stage can |
| 423 | // potentially define two values. |
| 424 | unsigned MaxPhis = PrologStage + 2; |
| 425 | if (!InKernel && (int)PrologStage <= LoopValStage) |
| 426 | MaxPhis = std::max(a: (int)MaxPhis - (int)LoopValStage, b: 1); |
| 427 | unsigned NumPhis = std::min(a: NumStages, b: MaxPhis); |
| 428 | |
| 429 | Register NewReg; |
| 430 | unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; |
| 431 | // In the epilog, we may need to look back one stage to get the correct |
| 432 | // Phi name, because the epilog and prolog blocks execute the same stage. |
| 433 | // The correct name is from the previous block only when the Phi has |
| 434 | // been completely scheduled prior to the epilog, and Phi value is not |
| 435 | // needed in multiple stages. |
| 436 | int StageDiff = 0; |
| 437 | if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && |
| 438 | NumPhis == 1) |
| 439 | StageDiff = 1; |
| 440 | // Adjust the computations below when the phi and the loop definition |
| 441 | // are scheduled in different stages. |
| 442 | if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) |
| 443 | StageDiff = StageScheduled - LoopValStage; |
| 444 | for (unsigned np = 0; np < NumPhis; ++np) { |
| 445 | // If the Phi hasn't been scheduled, then use the initial Phi operand |
| 446 | // value. Otherwise, use the scheduled version of the instruction. This |
| 447 | // is a little complicated when a Phi references another Phi. |
| 448 | if (np > PrologStage || StageScheduled >= (int)LastStageNum) |
| 449 | PhiOp1 = InitVal; |
| 450 | // Check if the Phi has already been scheduled in a prolog stage. |
| 451 | else if (PrologStage >= AccessStage + StageDiff + np && |
| 452 | VRMap[PrologStage - StageDiff - np].count(Val: LoopVal) != 0) |
| 453 | PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; |
| 454 | // Check if the Phi has already been scheduled, but the loop instruction |
| 455 | // is either another Phi, or doesn't occur in the loop. |
| 456 | else if (PrologStage >= AccessStage + StageDiff + np) { |
| 457 | // If the Phi references another Phi, we need to examine the other |
| 458 | // Phi to get the correct value. |
| 459 | PhiOp1 = LoopVal; |
| 460 | MachineInstr *InstOp1 = MRI.getVRegDef(Reg: PhiOp1); |
| 461 | int Indirects = 1; |
| 462 | while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { |
| 463 | int PhiStage = Schedule.getStage(MI: InstOp1); |
| 464 | if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) |
| 465 | PhiOp1 = getInitPhiReg(Phi&: *InstOp1, LoopBB: BB); |
| 466 | else |
| 467 | PhiOp1 = getLoopPhiReg(Phi&: *InstOp1, LoopBB: BB); |
| 468 | InstOp1 = MRI.getVRegDef(Reg: PhiOp1); |
| 469 | int PhiOpStage = Schedule.getStage(MI: InstOp1); |
| 470 | int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); |
| 471 | if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np) { |
| 472 | auto &M = VRMap[PrologStage - StageAdj - Indirects - np]; |
| 473 | if (auto It = M.find(Val: PhiOp1); It != M.end()) { |
| 474 | PhiOp1 = It->second; |
| 475 | break; |
| 476 | } |
| 477 | } |
| 478 | ++Indirects; |
| 479 | } |
| 480 | } else |
| 481 | PhiOp1 = InitVal; |
| 482 | // If this references a generated Phi in the kernel, get the Phi operand |
| 483 | // from the incoming block. |
| 484 | if (MachineInstr *InstOp1 = MRI.getVRegDef(Reg: PhiOp1)) |
| 485 | if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) |
| 486 | PhiOp1 = getInitPhiReg(Phi&: *InstOp1, LoopBB: KernelBB); |
| 487 | |
| 488 | MachineInstr *PhiInst = MRI.getVRegDef(Reg: LoopVal); |
| 489 | bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); |
| 490 | // In the epilog, a map lookup is needed to get the value from the kernel, |
| 491 | // or previous epilog block. How is does this depends on if the |
| 492 | // instruction is scheduled in the previous block. |
| 493 | if (!InKernel) { |
| 494 | int StageDiffAdj = 0; |
| 495 | if (LoopValStage != -1 && StageScheduled > LoopValStage) |
| 496 | StageDiffAdj = StageScheduled - LoopValStage; |
| 497 | // Use the loop value defined in the kernel, unless the kernel |
| 498 | // contains the last definition of the Phi. |
| 499 | if (np == 0 && PrevStage == LastStageNum && |
| 500 | (StageScheduled != 0 || LoopValStage != 0) && |
| 501 | VRMap[PrevStage - StageDiffAdj].count(Val: LoopVal)) |
| 502 | PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; |
| 503 | // Use the value defined by the Phi. We add one because we switch |
| 504 | // from looking at the loop value to the Phi definition. |
| 505 | else if (np > 0 && PrevStage == LastStageNum && |
| 506 | VRMap[PrevStage - np + 1].count(Val: Def)) |
| 507 | PhiOp2 = VRMap[PrevStage - np + 1][Def]; |
| 508 | // Use the loop value defined in the kernel. |
| 509 | else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 && |
| 510 | VRMap[PrevStage - StageDiffAdj - np].count(Val: LoopVal)) |
| 511 | PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; |
| 512 | // Use the value defined by the Phi, unless we're generating the first |
| 513 | // epilog and the Phi refers to a Phi in a different stage. |
| 514 | else if (VRMap[PrevStage - np].count(Val: Def) && |
| 515 | (!LoopDefIsPhi || (PrevStage != LastStageNum) || |
| 516 | (LoopValStage == StageScheduled))) |
| 517 | PhiOp2 = VRMap[PrevStage - np][Def]; |
| 518 | } |
| 519 | |
| 520 | // Check if we can reuse an existing Phi. This occurs when a Phi |
| 521 | // references another Phi, and the other Phi is scheduled in an |
| 522 | // earlier stage. We can try to reuse an existing Phi up until the last |
| 523 | // stage of the current Phi. |
| 524 | if (LoopDefIsPhi) { |
| 525 | if (static_cast<int>(PrologStage - np) >= StageScheduled) { |
| 526 | int LVNumStages = getStagesForPhi(Reg: LoopVal); |
| 527 | int StageDiff = (StageScheduled - LoopValStage); |
| 528 | LVNumStages -= StageDiff; |
| 529 | // Make sure the loop value Phi has been processed already. |
| 530 | if (LVNumStages > (int)np && VRMap[CurStageNum].count(Val: LoopVal)) { |
| 531 | NewReg = PhiOp2; |
| 532 | unsigned ReuseStage = CurStageNum; |
| 533 | if (isLoopCarried(Phi&: *PhiInst)) |
| 534 | ReuseStage -= LVNumStages; |
| 535 | // Check if the Phi to reuse has been generated yet. If not, then |
| 536 | // there is nothing to reuse. |
| 537 | if (VRMap[ReuseStage - np].count(Val: LoopVal)) { |
| 538 | NewReg = VRMap[ReuseStage - np][LoopVal]; |
| 539 | |
| 540 | rewriteScheduledInstr(BB: NewBB, InstrMap, CurStageNum, PhiNum: np, Phi: &*BBI, |
| 541 | OldReg: Def, NewReg); |
| 542 | // Update the map with the new Phi name. |
| 543 | VRMap[CurStageNum - np][Def] = NewReg; |
| 544 | PhiOp2 = NewReg; |
| 545 | if (VRMap[LastStageNum - np - 1].count(Val: LoopVal)) |
| 546 | PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; |
| 547 | |
| 548 | if (IsLast && np == NumPhis - 1) |
| 549 | replaceRegUsesAfterLoop(FromReg: Def, ToReg: NewReg, MBB: BB, MRI); |
| 550 | continue; |
| 551 | } |
| 552 | } |
| 553 | } |
| 554 | if (InKernel && StageDiff > 0 && |
| 555 | VRMap[CurStageNum - StageDiff - np].count(Val: LoopVal)) |
| 556 | PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; |
| 557 | } |
| 558 | |
| 559 | const TargetRegisterClass *RC = MRI.getRegClass(Reg: Def); |
| 560 | NewReg = MRI.createVirtualRegister(RegClass: RC); |
| 561 | |
| 562 | MachineInstrBuilder NewPhi = |
| 563 | BuildMI(BB&: *NewBB, I: NewBB->getFirstNonPHI(), MIMD: DebugLoc(), |
| 564 | MCID: TII->get(Opcode: TargetOpcode::PHI), DestReg: NewReg); |
| 565 | NewPhi.addReg(RegNo: PhiOp1).addMBB(MBB: BB1); |
| 566 | NewPhi.addReg(RegNo: PhiOp2).addMBB(MBB: BB2); |
| 567 | LIS.InsertMachineInstrInMaps(MI&: *NewPhi); |
| 568 | if (np == 0) |
| 569 | InstrMap[NewPhi] = &*BBI; |
| 570 | |
| 571 | // We define the Phis after creating the new pipelined code, so |
| 572 | // we need to rename the Phi values in scheduled instructions. |
| 573 | |
| 574 | Register PrevReg; |
| 575 | if (InKernel && VRMap[PrevStage - np].count(Val: LoopVal)) |
| 576 | PrevReg = VRMap[PrevStage - np][LoopVal]; |
| 577 | rewriteScheduledInstr(BB: NewBB, InstrMap, CurStageNum, PhiNum: np, Phi: &*BBI, OldReg: Def, |
| 578 | NewReg, PrevReg); |
| 579 | // If the Phi has been scheduled, use the new name for rewriting. |
| 580 | if (VRMap[CurStageNum - np].count(Val: Def)) { |
| 581 | Register R = VRMap[CurStageNum - np][Def]; |
| 582 | rewriteScheduledInstr(BB: NewBB, InstrMap, CurStageNum, PhiNum: np, Phi: &*BBI, OldReg: R, |
| 583 | NewReg); |
| 584 | } |
| 585 | |
| 586 | // Check if we need to rename any uses that occurs after the loop. The |
| 587 | // register to replace depends on whether the Phi is scheduled in the |
| 588 | // epilog. |
| 589 | if (IsLast && np == NumPhis - 1) |
| 590 | replaceRegUsesAfterLoop(FromReg: Def, ToReg: NewReg, MBB: BB, MRI); |
| 591 | |
| 592 | // In the kernel, a dependent Phi uses the value from this Phi. |
| 593 | if (InKernel) |
| 594 | PhiOp2 = NewReg; |
| 595 | |
| 596 | // Update the map with the new Phi name. |
| 597 | VRMap[CurStageNum - np][Def] = NewReg; |
| 598 | } |
| 599 | |
| 600 | while (NumPhis++ < NumStages) { |
| 601 | rewriteScheduledInstr(BB: NewBB, InstrMap, CurStageNum, PhiNum: NumPhis, Phi: &*BBI, OldReg: Def, |
| 602 | NewReg, PrevReg: 0); |
| 603 | } |
| 604 | |
| 605 | // Check if we need to rename a Phi that has been eliminated due to |
| 606 | // scheduling. |
| 607 | if (NumStages == 0 && IsLast) { |
| 608 | auto &CurStageMap = VRMap[CurStageNum]; |
| 609 | auto It = CurStageMap.find(Val: LoopVal); |
| 610 | if (It != CurStageMap.end()) |
| 611 | replaceRegUsesAfterLoop(FromReg: Def, ToReg: It->second, MBB: BB, MRI); |
| 612 | } |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | /// Generate Phis for the specified block in the generated pipelined code. |
| 617 | /// These are new Phis needed because the definition is scheduled after the |
| 618 | /// use in the pipelined sequence. |
| 619 | void ModuloScheduleExpander::generatePhis( |
| 620 | MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, |
| 621 | MachineBasicBlock *KernelBB, ValueMapTy *VRMap, ValueMapTy *VRMapPhi, |
| 622 | InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, |
| 623 | bool IsLast) { |
| 624 | // Compute the stage number that contains the initial Phi value, and |
| 625 | // the Phi from the previous stage. |
| 626 | unsigned PrologStage = 0; |
| 627 | unsigned PrevStage = 0; |
| 628 | unsigned StageDiff = CurStageNum - LastStageNum; |
| 629 | bool InKernel = (StageDiff == 0); |
| 630 | if (InKernel) { |
| 631 | PrologStage = LastStageNum - 1; |
| 632 | PrevStage = CurStageNum; |
| 633 | } else { |
| 634 | PrologStage = LastStageNum - StageDiff; |
| 635 | PrevStage = LastStageNum + StageDiff - 1; |
| 636 | } |
| 637 | |
| 638 | for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), |
| 639 | BBE = BB->instr_end(); |
| 640 | BBI != BBE; ++BBI) { |
| 641 | for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { |
| 642 | MachineOperand &MO = BBI->getOperand(i); |
| 643 | if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) |
| 644 | continue; |
| 645 | |
| 646 | int StageScheduled = Schedule.getStage(MI: &*BBI); |
| 647 | assert(StageScheduled != -1 && "Expecting scheduled instruction." ); |
| 648 | Register Def = MO.getReg(); |
| 649 | unsigned NumPhis = getStagesForReg(Reg: Def, CurStage: CurStageNum); |
| 650 | // An instruction scheduled in stage 0 and is used after the loop |
| 651 | // requires a phi in the epilog for the last definition from either |
| 652 | // the kernel or prolog. |
| 653 | if (!InKernel && NumPhis == 0 && StageScheduled == 0 && |
| 654 | hasUseAfterLoop(Reg: Def, BB, MRI)) |
| 655 | NumPhis = 1; |
| 656 | if (!InKernel && (unsigned)StageScheduled > PrologStage) |
| 657 | continue; |
| 658 | |
| 659 | Register PhiOp2; |
| 660 | if (InKernel) { |
| 661 | PhiOp2 = VRMap[PrevStage][Def]; |
| 662 | if (MachineInstr *InstOp2 = MRI.getVRegDef(Reg: PhiOp2)) |
| 663 | if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) |
| 664 | PhiOp2 = getLoopPhiReg(Phi&: *InstOp2, LoopBB: BB2); |
| 665 | } |
| 666 | // The number of Phis can't exceed the number of prolog stages. The |
| 667 | // prolog stage number is zero based. |
| 668 | if (NumPhis > PrologStage + 1 - StageScheduled) |
| 669 | NumPhis = PrologStage + 1 - StageScheduled; |
| 670 | for (unsigned np = 0; np < NumPhis; ++np) { |
| 671 | // Example for |
| 672 | // Org: |
| 673 | // %Org = ... (Scheduled at Stage#0, NumPhi = 2) |
| 674 | // |
| 675 | // Prolog0 (Stage0): |
| 676 | // %Clone0 = ... |
| 677 | // Prolog1 (Stage1): |
| 678 | // %Clone1 = ... |
| 679 | // Kernel (Stage2): |
| 680 | // %Phi0 = Phi %Clone1, Prolog1, %Clone2, Kernel |
| 681 | // %Phi1 = Phi %Clone0, Prolog1, %Phi0, Kernel |
| 682 | // %Clone2 = ... |
| 683 | // Epilog0 (Stage3): |
| 684 | // %Phi2 = Phi %Clone1, Prolog1, %Clone2, Kernel |
| 685 | // %Phi3 = Phi %Clone0, Prolog1, %Phi0, Kernel |
| 686 | // Epilog1 (Stage4): |
| 687 | // %Phi4 = Phi %Clone0, Prolog0, %Phi2, Epilog0 |
| 688 | // |
| 689 | // VRMap = {0: %Clone0, 1: %Clone1, 2: %Clone2} |
| 690 | // VRMapPhi (after Kernel) = {0: %Phi1, 1: %Phi0} |
| 691 | // VRMapPhi (after Epilog0) = {0: %Phi3, 1: %Phi2} |
| 692 | |
| 693 | Register PhiOp1 = VRMap[PrologStage][Def]; |
| 694 | if (np <= PrologStage) |
| 695 | PhiOp1 = VRMap[PrologStage - np][Def]; |
| 696 | if (!InKernel) { |
| 697 | if (PrevStage == LastStageNum && np == 0) |
| 698 | PhiOp2 = VRMap[LastStageNum][Def]; |
| 699 | else |
| 700 | PhiOp2 = VRMapPhi[PrevStage - np][Def]; |
| 701 | } |
| 702 | |
| 703 | const TargetRegisterClass *RC = MRI.getRegClass(Reg: Def); |
| 704 | Register NewReg = MRI.createVirtualRegister(RegClass: RC); |
| 705 | |
| 706 | MachineInstrBuilder NewPhi = |
| 707 | BuildMI(BB&: *NewBB, I: NewBB->getFirstNonPHI(), MIMD: DebugLoc(), |
| 708 | MCID: TII->get(Opcode: TargetOpcode::PHI), DestReg: NewReg); |
| 709 | NewPhi.addReg(RegNo: PhiOp1).addMBB(MBB: BB1); |
| 710 | NewPhi.addReg(RegNo: PhiOp2).addMBB(MBB: BB2); |
| 711 | LIS.InsertMachineInstrInMaps(MI&: *NewPhi); |
| 712 | if (np == 0) |
| 713 | InstrMap[NewPhi] = &*BBI; |
| 714 | |
| 715 | // Rewrite uses and update the map. The actions depend upon whether |
| 716 | // we generating code for the kernel or epilog blocks. |
| 717 | if (InKernel) { |
| 718 | rewriteScheduledInstr(BB: NewBB, InstrMap, CurStageNum, PhiNum: np, Phi: &*BBI, OldReg: PhiOp1, |
| 719 | NewReg); |
| 720 | rewriteScheduledInstr(BB: NewBB, InstrMap, CurStageNum, PhiNum: np, Phi: &*BBI, OldReg: PhiOp2, |
| 721 | NewReg); |
| 722 | |
| 723 | PhiOp2 = NewReg; |
| 724 | VRMapPhi[PrevStage - np - 1][Def] = NewReg; |
| 725 | } else { |
| 726 | VRMapPhi[CurStageNum - np][Def] = NewReg; |
| 727 | if (np == NumPhis - 1) |
| 728 | rewriteScheduledInstr(BB: NewBB, InstrMap, CurStageNum, PhiNum: np, Phi: &*BBI, OldReg: Def, |
| 729 | NewReg); |
| 730 | } |
| 731 | if (IsLast && np == NumPhis - 1) |
| 732 | replaceRegUsesAfterLoop(FromReg: Def, ToReg: NewReg, MBB: BB, MRI); |
| 733 | } |
| 734 | } |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | /// Remove instructions that generate values with no uses. |
| 739 | /// Typically, these are induction variable operations that generate values |
| 740 | /// used in the loop itself. A dead instruction has a definition with |
| 741 | /// no uses, or uses that occur in the original loop only. |
| 742 | void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB, |
| 743 | MBBVectorTy &EpilogBBs) { |
| 744 | // For each epilog block, check that the value defined by each instruction |
| 745 | // is used. If not, delete it. |
| 746 | for (MachineBasicBlock *MBB : llvm::reverse(C&: EpilogBBs)) |
| 747 | for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(), |
| 748 | ME = MBB->instr_rend(); |
| 749 | MI != ME;) { |
| 750 | // From DeadMachineInstructionElem. Don't delete inline assembly. |
| 751 | if (MI->isInlineAsm()) { |
| 752 | ++MI; |
| 753 | continue; |
| 754 | } |
| 755 | bool SawStore = false; |
| 756 | // Check if it's safe to remove the instruction due to side effects. |
| 757 | // We can, and want to, remove Phis here. |
| 758 | if (!MI->isSafeToMove(SawStore) && !MI->isPHI()) { |
| 759 | ++MI; |
| 760 | continue; |
| 761 | } |
| 762 | bool used = true; |
| 763 | for (const MachineOperand &MO : MI->all_defs()) { |
| 764 | Register reg = MO.getReg(); |
| 765 | // Assume physical registers are used, unless they are marked dead. |
| 766 | if (reg.isPhysical()) { |
| 767 | used = !MO.isDead(); |
| 768 | if (used) |
| 769 | break; |
| 770 | continue; |
| 771 | } |
| 772 | unsigned realUses = 0; |
| 773 | for (const MachineOperand &U : MRI.use_operands(Reg: reg)) { |
| 774 | // Check if there are any uses that occur only in the original |
| 775 | // loop. If so, that's not a real use. |
| 776 | if (U.getParent()->getParent() != BB) { |
| 777 | realUses++; |
| 778 | used = true; |
| 779 | break; |
| 780 | } |
| 781 | } |
| 782 | if (realUses > 0) |
| 783 | break; |
| 784 | used = false; |
| 785 | } |
| 786 | if (!used) { |
| 787 | LIS.RemoveMachineInstrFromMaps(MI&: *MI); |
| 788 | MI++->eraseFromParent(); |
| 789 | continue; |
| 790 | } |
| 791 | ++MI; |
| 792 | } |
| 793 | // In the kernel block, check if we can remove a Phi that generates a value |
| 794 | // used in an instruction removed in the epilog block. |
| 795 | for (MachineInstr &MI : llvm::make_early_inc_range(Range: KernelBB->phis())) { |
| 796 | Register reg = MI.getOperand(i: 0).getReg(); |
| 797 | if (MRI.use_begin(RegNo: reg) == MRI.use_end()) { |
| 798 | LIS.RemoveMachineInstrFromMaps(MI); |
| 799 | MI.eraseFromParent(); |
| 800 | } |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | /// For loop carried definitions, we split the lifetime of a virtual register |
| 805 | /// that has uses past the definition in the next iteration. A copy with a new |
| 806 | /// virtual register is inserted before the definition, which helps with |
| 807 | /// generating a better register assignment. |
| 808 | /// |
| 809 | /// v1 = phi(a, v2) v1 = phi(a, v2) |
| 810 | /// v2 = phi(b, v3) v2 = phi(b, v3) |
| 811 | /// v3 = .. v4 = copy v1 |
| 812 | /// .. = V1 v3 = .. |
| 813 | /// .. = v4 |
| 814 | void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB, |
| 815 | MBBVectorTy &EpilogBBs) { |
| 816 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| 817 | for (auto &PHI : KernelBB->phis()) { |
| 818 | Register Def = PHI.getOperand(i: 0).getReg(); |
| 819 | // Check for any Phi definition that used as an operand of another Phi |
| 820 | // in the same block. |
| 821 | for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(RegNo: Def), |
| 822 | E = MRI.use_instr_end(); |
| 823 | I != E; ++I) { |
| 824 | if (I->isPHI() && I->getParent() == KernelBB) { |
| 825 | // Get the loop carried definition. |
| 826 | Register LCDef = getLoopPhiReg(Phi&: PHI, LoopBB: KernelBB); |
| 827 | if (!LCDef) |
| 828 | continue; |
| 829 | MachineInstr *MI = MRI.getVRegDef(Reg: LCDef); |
| 830 | if (!MI || MI->getParent() != KernelBB || MI->isPHI()) |
| 831 | continue; |
| 832 | // Search through the rest of the block looking for uses of the Phi |
| 833 | // definition. If one occurs, then split the lifetime. |
| 834 | Register SplitReg; |
| 835 | for (auto &BBJ : make_range(x: MachineBasicBlock::instr_iterator(MI), |
| 836 | y: KernelBB->instr_end())) |
| 837 | if (BBJ.readsRegister(Reg: Def, /*TRI=*/nullptr)) { |
| 838 | // We split the lifetime when we find the first use. |
| 839 | if (!SplitReg) { |
| 840 | SplitReg = MRI.createVirtualRegister(RegClass: MRI.getRegClass(Reg: Def)); |
| 841 | MachineInstr *newCopy = |
| 842 | BuildMI(BB&: *KernelBB, I: MI, MIMD: MI->getDebugLoc(), |
| 843 | MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: SplitReg) |
| 844 | .addReg(RegNo: Def); |
| 845 | LIS.InsertMachineInstrInMaps(MI&: *newCopy); |
| 846 | } |
| 847 | BBJ.substituteRegister(FromReg: Def, ToReg: SplitReg, SubIdx: 0, RegInfo: *TRI); |
| 848 | } |
| 849 | if (!SplitReg) |
| 850 | continue; |
| 851 | // Search through each of the epilog blocks for any uses to be renamed. |
| 852 | for (auto &Epilog : EpilogBBs) |
| 853 | for (auto &I : *Epilog) |
| 854 | if (I.readsRegister(Reg: Def, /*TRI=*/nullptr)) |
| 855 | I.substituteRegister(FromReg: Def, ToReg: SplitReg, SubIdx: 0, RegInfo: *TRI); |
| 856 | break; |
| 857 | } |
| 858 | } |
| 859 | } |
| 860 | } |
| 861 | |
| 862 | /// Remove the incoming block from the Phis in a basic block. |
| 863 | static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { |
| 864 | for (MachineInstr &MI : *BB) { |
| 865 | if (!MI.isPHI()) |
| 866 | break; |
| 867 | for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) |
| 868 | if (MI.getOperand(i: i + 1).getMBB() == Incoming) { |
| 869 | MI.removeOperand(OpNo: i + 1); |
| 870 | MI.removeOperand(OpNo: i); |
| 871 | break; |
| 872 | } |
| 873 | } |
| 874 | } |
| 875 | |
| 876 | /// Create branches from each prolog basic block to the appropriate epilog |
| 877 | /// block. These edges are needed if the loop ends before reaching the |
| 878 | /// kernel. |
| 879 | void ModuloScheduleExpander::addBranches(MachineBasicBlock &, |
| 880 | MBBVectorTy &PrologBBs, |
| 881 | MachineBasicBlock *KernelBB, |
| 882 | MBBVectorTy &EpilogBBs, |
| 883 | ValueMapTy *VRMap) { |
| 884 | assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch" ); |
| 885 | MachineBasicBlock *LastPro = KernelBB; |
| 886 | MachineBasicBlock *LastEpi = KernelBB; |
| 887 | |
| 888 | // Start from the blocks connected to the kernel and work "out" |
| 889 | // to the first prolog and the last epilog blocks. |
| 890 | unsigned MaxIter = PrologBBs.size() - 1; |
| 891 | for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { |
| 892 | // Add branches to the prolog that go to the corresponding |
| 893 | // epilog, and the fall-thru prolog/kernel block. |
| 894 | MachineBasicBlock *Prolog = PrologBBs[j]; |
| 895 | MachineBasicBlock *Epilog = EpilogBBs[i]; |
| 896 | |
| 897 | SmallVector<MachineOperand, 4> Cond; |
| 898 | std::optional<bool> StaticallyGreater = |
| 899 | LoopInfo->createTripCountGreaterCondition(TC: j + 1, MBB&: *Prolog, Cond); |
| 900 | unsigned numAdded = 0; |
| 901 | if (!StaticallyGreater) { |
| 902 | Prolog->addSuccessor(Succ: Epilog); |
| 903 | numAdded = TII->insertBranch(MBB&: *Prolog, TBB: Epilog, FBB: LastPro, Cond, DL: DebugLoc()); |
| 904 | } else if (*StaticallyGreater == false) { |
| 905 | Prolog->addSuccessor(Succ: Epilog); |
| 906 | Prolog->removeSuccessor(Succ: LastPro); |
| 907 | LastEpi->removeSuccessor(Succ: Epilog); |
| 908 | numAdded = TII->insertBranch(MBB&: *Prolog, TBB: Epilog, FBB: nullptr, Cond, DL: DebugLoc()); |
| 909 | removePhis(BB: Epilog, Incoming: LastEpi); |
| 910 | // Remove the blocks that are no longer referenced. |
| 911 | if (LastPro != LastEpi) { |
| 912 | for (auto &MI : *LastEpi) |
| 913 | LIS.RemoveMachineInstrFromMaps(MI); |
| 914 | LastEpi->clear(); |
| 915 | LastEpi->eraseFromParent(); |
| 916 | } |
| 917 | if (LastPro == KernelBB) { |
| 918 | LoopInfo->disposed(LIS: &LIS); |
| 919 | NewKernel = nullptr; |
| 920 | } |
| 921 | for (auto &MI : *LastPro) |
| 922 | LIS.RemoveMachineInstrFromMaps(MI); |
| 923 | LastPro->clear(); |
| 924 | LastPro->eraseFromParent(); |
| 925 | } else { |
| 926 | numAdded = TII->insertBranch(MBB&: *Prolog, TBB: LastPro, FBB: nullptr, Cond, DL: DebugLoc()); |
| 927 | removePhis(BB: Epilog, Incoming: Prolog); |
| 928 | } |
| 929 | LastPro = Prolog; |
| 930 | LastEpi = Epilog; |
| 931 | for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), |
| 932 | E = Prolog->instr_rend(); |
| 933 | I != E && numAdded > 0; ++I, --numAdded) |
| 934 | updateInstruction(NewMI: &*I, LastDef: false, CurStageNum: j, InstrStageNum: 0, VRMap); |
| 935 | } |
| 936 | |
| 937 | if (NewKernel) { |
| 938 | LoopInfo->setPreheader(PrologBBs[MaxIter]); |
| 939 | LoopInfo->adjustTripCount(TripCountAdjust: -(MaxIter + 1)); |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | /// Return true if we can compute the amount the instruction changes |
| 944 | /// during each iteration. Set Delta to the amount of the change. |
| 945 | bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) { |
| 946 | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| 947 | const MachineOperand *BaseOp; |
| 948 | int64_t Offset; |
| 949 | bool OffsetIsScalable; |
| 950 | if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) |
| 951 | return false; |
| 952 | |
| 953 | // FIXME: This algorithm assumes instructions have fixed-size offsets. |
| 954 | if (OffsetIsScalable) |
| 955 | return false; |
| 956 | |
| 957 | if (!BaseOp->isReg()) |
| 958 | return false; |
| 959 | |
| 960 | Register BaseReg = BaseOp->getReg(); |
| 961 | |
| 962 | MachineRegisterInfo &MRI = MF.getRegInfo(); |
| 963 | // Check if there is a Phi. If so, get the definition in the loop. |
| 964 | MachineInstr *BaseDef = MRI.getVRegDef(Reg: BaseReg); |
| 965 | if (BaseDef && BaseDef->isPHI()) { |
| 966 | BaseReg = getLoopPhiReg(Phi&: *BaseDef, LoopBB: MI.getParent()); |
| 967 | BaseDef = MRI.getVRegDef(Reg: BaseReg); |
| 968 | } |
| 969 | if (!BaseDef) |
| 970 | return false; |
| 971 | |
| 972 | int D = 0; |
| 973 | if (!TII->getIncrementValue(MI: *BaseDef, Value&: D) && D >= 0) |
| 974 | return false; |
| 975 | |
| 976 | Delta = D; |
| 977 | return true; |
| 978 | } |
| 979 | |
| 980 | /// Update the memory operand with a new offset when the pipeliner |
| 981 | /// generates a new copy of the instruction that refers to a |
| 982 | /// different memory location. |
| 983 | void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI, |
| 984 | MachineInstr &OldMI, |
| 985 | unsigned Num) { |
| 986 | if (Num == 0) |
| 987 | return; |
| 988 | // If the instruction has memory operands, then adjust the offset |
| 989 | // when the instruction appears in different stages. |
| 990 | if (NewMI.memoperands_empty()) |
| 991 | return; |
| 992 | SmallVector<MachineMemOperand *, 2> NewMMOs; |
| 993 | for (MachineMemOperand *MMO : NewMI.memoperands()) { |
| 994 | // TODO: Figure out whether isAtomic is really necessary (see D57601). |
| 995 | if (MMO->isVolatile() || MMO->isAtomic() || |
| 996 | (MMO->isInvariant() && MMO->isDereferenceable()) || |
| 997 | (!MMO->getValue())) { |
| 998 | NewMMOs.push_back(Elt: MMO); |
| 999 | continue; |
| 1000 | } |
| 1001 | unsigned Delta; |
| 1002 | if (Num != UINT_MAX && computeDelta(MI&: OldMI, Delta)) { |
| 1003 | int64_t AdjOffset = Delta * Num; |
| 1004 | NewMMOs.push_back( |
| 1005 | Elt: MF.getMachineMemOperand(MMO, Offset: AdjOffset, Size: MMO->getSize())); |
| 1006 | } else { |
| 1007 | NewMMOs.push_back(Elt: MF.getMachineMemOperand( |
| 1008 | MMO, Offset: 0, Size: LocationSize::beforeOrAfterPointer())); |
| 1009 | } |
| 1010 | } |
| 1011 | NewMI.setMemRefs(MF, MemRefs: NewMMOs); |
| 1012 | } |
| 1013 | |
| 1014 | /// Clone the instruction for the new pipelined loop and update the |
| 1015 | /// memory operands, if needed. |
| 1016 | MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI, |
| 1017 | unsigned CurStageNum, |
| 1018 | unsigned InstStageNum) { |
| 1019 | MachineInstr *NewMI = MF.CloneMachineInstr(Orig: OldMI); |
| 1020 | updateMemOperands(NewMI&: *NewMI, OldMI&: *OldMI, Num: CurStageNum - InstStageNum); |
| 1021 | return NewMI; |
| 1022 | } |
| 1023 | |
| 1024 | /// Clone the instruction for the new pipelined loop. If needed, this |
| 1025 | /// function updates the instruction using the values saved in the |
| 1026 | /// InstrChanges structure. |
| 1027 | MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr( |
| 1028 | MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) { |
| 1029 | MachineInstr *NewMI = MF.CloneMachineInstr(Orig: OldMI); |
| 1030 | auto It = InstrChanges.find(Val: OldMI); |
| 1031 | if (It != InstrChanges.end()) { |
| 1032 | std::pair<Register, int64_t> RegAndOffset = It->second; |
| 1033 | unsigned BasePos, OffsetPos; |
| 1034 | if (!TII->getBaseAndOffsetPosition(MI: *OldMI, BasePos, OffsetPos)) |
| 1035 | return nullptr; |
| 1036 | int64_t NewOffset = OldMI->getOperand(i: OffsetPos).getImm(); |
| 1037 | MachineInstr *LoopDef = findDefInLoop(Reg: RegAndOffset.first); |
| 1038 | if (Schedule.getStage(MI: LoopDef) > (signed)InstStageNum) |
| 1039 | NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); |
| 1040 | NewMI->getOperand(i: OffsetPos).setImm(NewOffset); |
| 1041 | } |
| 1042 | updateMemOperands(NewMI&: *NewMI, OldMI&: *OldMI, Num: CurStageNum - InstStageNum); |
| 1043 | return NewMI; |
| 1044 | } |
| 1045 | |
| 1046 | /// Update the machine instruction with new virtual registers. This |
| 1047 | /// function may change the definitions and/or uses. |
| 1048 | void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI, |
| 1049 | bool LastDef, |
| 1050 | unsigned CurStageNum, |
| 1051 | unsigned InstrStageNum, |
| 1052 | ValueMapTy *VRMap) { |
| 1053 | for (MachineOperand &MO : NewMI->operands()) { |
| 1054 | if (!MO.isReg() || !MO.getReg().isVirtual()) |
| 1055 | continue; |
| 1056 | Register reg = MO.getReg(); |
| 1057 | if (MO.isDef()) { |
| 1058 | // Create a new virtual register for the definition. |
| 1059 | const TargetRegisterClass *RC = MRI.getRegClass(Reg: reg); |
| 1060 | Register NewReg = MRI.createVirtualRegister(RegClass: RC); |
| 1061 | MO.setReg(NewReg); |
| 1062 | VRMap[CurStageNum][reg] = NewReg; |
| 1063 | if (LastDef) |
| 1064 | replaceRegUsesAfterLoop(FromReg: reg, ToReg: NewReg, MBB: BB, MRI); |
| 1065 | } else if (MO.isUse()) { |
| 1066 | MachineInstr *Def = MRI.getVRegDef(Reg: reg); |
| 1067 | // Compute the stage that contains the last definition for instruction. |
| 1068 | int DefStageNum = Schedule.getStage(MI: Def); |
| 1069 | unsigned StageNum = CurStageNum; |
| 1070 | if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { |
| 1071 | // Compute the difference in stages between the defintion and the use. |
| 1072 | unsigned StageDiff = (InstrStageNum - DefStageNum); |
| 1073 | // Make an adjustment to get the last definition. |
| 1074 | StageNum -= StageDiff; |
| 1075 | } |
| 1076 | if (auto It = VRMap[StageNum].find(Val: reg); It != VRMap[StageNum].end()) |
| 1077 | MO.setReg(It->second); |
| 1078 | } |
| 1079 | } |
| 1080 | } |
| 1081 | |
| 1082 | /// Return the instruction in the loop that defines the register. |
| 1083 | /// If the definition is a Phi, then follow the Phi operand to |
| 1084 | /// the instruction in the loop. |
| 1085 | MachineInstr *ModuloScheduleExpander::findDefInLoop(Register Reg) { |
| 1086 | SmallPtrSet<MachineInstr *, 8> Visited; |
| 1087 | MachineInstr *Def = MRI.getVRegDef(Reg); |
| 1088 | while (Def->isPHI()) { |
| 1089 | if (!Visited.insert(Ptr: Def).second) |
| 1090 | break; |
| 1091 | for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) |
| 1092 | if (Def->getOperand(i: i + 1).getMBB() == BB) { |
| 1093 | Def = MRI.getVRegDef(Reg: Def->getOperand(i).getReg()); |
| 1094 | break; |
| 1095 | } |
| 1096 | } |
| 1097 | return Def; |
| 1098 | } |
| 1099 | |
| 1100 | /// Return the new name for the value from the previous stage. |
| 1101 | Register ModuloScheduleExpander::getPrevMapVal( |
| 1102 | unsigned StageNum, unsigned PhiStage, Register LoopVal, unsigned LoopStage, |
| 1103 | ValueMapTy *VRMap, MachineBasicBlock *BB) { |
| 1104 | Register PrevVal; |
| 1105 | if (StageNum > PhiStage) { |
| 1106 | MachineInstr *LoopInst = MRI.getVRegDef(Reg: LoopVal); |
| 1107 | if (PhiStage == LoopStage && VRMap[StageNum - 1].count(Val: LoopVal)) |
| 1108 | // The name is defined in the previous stage. |
| 1109 | PrevVal = VRMap[StageNum - 1][LoopVal]; |
| 1110 | else if (VRMap[StageNum].count(Val: LoopVal)) |
| 1111 | // The previous name is defined in the current stage when the instruction |
| 1112 | // order is swapped. |
| 1113 | PrevVal = VRMap[StageNum][LoopVal]; |
| 1114 | else if (!LoopInst->isPHI() || LoopInst->getParent() != BB) |
| 1115 | // The loop value hasn't yet been scheduled. |
| 1116 | PrevVal = LoopVal; |
| 1117 | else if (StageNum == PhiStage + 1) |
| 1118 | // The loop value is another phi, which has not been scheduled. |
| 1119 | PrevVal = getInitPhiReg(Phi&: *LoopInst, LoopBB: BB); |
| 1120 | else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) |
| 1121 | // The loop value is another phi, which has been scheduled. |
| 1122 | PrevVal = |
| 1123 | getPrevMapVal(StageNum: StageNum - 1, PhiStage, LoopVal: getLoopPhiReg(Phi&: *LoopInst, LoopBB: BB), |
| 1124 | LoopStage, VRMap, BB); |
| 1125 | } |
| 1126 | return PrevVal; |
| 1127 | } |
| 1128 | |
| 1129 | /// Rewrite the Phi values in the specified block to use the mappings |
| 1130 | /// from the initial operand. Once the Phi is scheduled, we switch |
| 1131 | /// to using the loop value instead of the Phi value, so those names |
| 1132 | /// do not need to be rewritten. |
| 1133 | void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB, |
| 1134 | unsigned StageNum, |
| 1135 | ValueMapTy *VRMap, |
| 1136 | InstrMapTy &InstrMap) { |
| 1137 | for (auto &PHI : BB->phis()) { |
| 1138 | Register InitVal; |
| 1139 | Register LoopVal; |
| 1140 | getPhiRegs(Phi&: PHI, Loop: BB, InitVal, LoopVal); |
| 1141 | Register PhiDef = PHI.getOperand(i: 0).getReg(); |
| 1142 | |
| 1143 | unsigned PhiStage = (unsigned)Schedule.getStage(MI: MRI.getVRegDef(Reg: PhiDef)); |
| 1144 | unsigned LoopStage = (unsigned)Schedule.getStage(MI: MRI.getVRegDef(Reg: LoopVal)); |
| 1145 | unsigned NumPhis = getStagesForPhi(Reg: PhiDef); |
| 1146 | if (NumPhis > StageNum) |
| 1147 | NumPhis = StageNum; |
| 1148 | for (unsigned np = 0; np <= NumPhis; ++np) { |
| 1149 | Register NewVal = |
| 1150 | getPrevMapVal(StageNum: StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); |
| 1151 | if (!NewVal) |
| 1152 | NewVal = InitVal; |
| 1153 | rewriteScheduledInstr(BB: NewBB, InstrMap, CurStageNum: StageNum - np, PhiNum: np, Phi: &PHI, OldReg: PhiDef, |
| 1154 | NewReg: NewVal); |
| 1155 | } |
| 1156 | } |
| 1157 | } |
| 1158 | |
| 1159 | /// Rewrite a previously scheduled instruction to use the register value |
| 1160 | /// from the new instruction. Make sure the instruction occurs in the |
| 1161 | /// basic block, and we don't change the uses in the new instruction. |
| 1162 | void ModuloScheduleExpander::rewriteScheduledInstr( |
| 1163 | MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum, |
| 1164 | unsigned PhiNum, MachineInstr *Phi, Register OldReg, Register NewReg, |
| 1165 | Register PrevReg) { |
| 1166 | bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1); |
| 1167 | int StagePhi = Schedule.getStage(MI: Phi) + PhiNum; |
| 1168 | // Rewrite uses that have been scheduled already to use the new |
| 1169 | // Phi register. |
| 1170 | for (MachineOperand &UseOp : |
| 1171 | llvm::make_early_inc_range(Range: MRI.use_operands(Reg: OldReg))) { |
| 1172 | MachineInstr *UseMI = UseOp.getParent(); |
| 1173 | if (UseMI->getParent() != BB) |
| 1174 | continue; |
| 1175 | if (UseMI->isPHI()) { |
| 1176 | if (!Phi->isPHI() && UseMI->getOperand(i: 0).getReg() == NewReg) |
| 1177 | continue; |
| 1178 | if (getLoopPhiReg(Phi&: *UseMI, LoopBB: BB) != OldReg) |
| 1179 | continue; |
| 1180 | } |
| 1181 | InstrMapTy::iterator OrigInstr = InstrMap.find(Val: UseMI); |
| 1182 | assert(OrigInstr != InstrMap.end() && "Instruction not scheduled." ); |
| 1183 | MachineInstr *OrigMI = OrigInstr->second; |
| 1184 | int StageSched = Schedule.getStage(MI: OrigMI); |
| 1185 | int CycleSched = Schedule.getCycle(MI: OrigMI); |
| 1186 | Register ReplaceReg; |
| 1187 | // This is the stage for the scheduled instruction. |
| 1188 | if (StagePhi == StageSched && Phi->isPHI()) { |
| 1189 | int CyclePhi = Schedule.getCycle(MI: Phi); |
| 1190 | if (PrevReg && InProlog) |
| 1191 | ReplaceReg = PrevReg; |
| 1192 | else if (PrevReg && !isLoopCarried(Phi&: *Phi) && |
| 1193 | (CyclePhi <= CycleSched || OrigMI->isPHI())) |
| 1194 | ReplaceReg = PrevReg; |
| 1195 | else |
| 1196 | ReplaceReg = NewReg; |
| 1197 | } |
| 1198 | // The scheduled instruction occurs before the scheduled Phi, and the |
| 1199 | // Phi is not loop carried. |
| 1200 | if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(Phi&: *Phi)) |
| 1201 | ReplaceReg = NewReg; |
| 1202 | if (StagePhi > StageSched && Phi->isPHI()) |
| 1203 | ReplaceReg = NewReg; |
| 1204 | if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) |
| 1205 | ReplaceReg = NewReg; |
| 1206 | if (ReplaceReg) { |
| 1207 | const TargetRegisterClass *NRC = |
| 1208 | MRI.constrainRegClass(Reg: ReplaceReg, RC: MRI.getRegClass(Reg: OldReg)); |
| 1209 | if (NRC) |
| 1210 | UseOp.setReg(ReplaceReg); |
| 1211 | else { |
| 1212 | Register SplitReg = MRI.createVirtualRegister(RegClass: MRI.getRegClass(Reg: OldReg)); |
| 1213 | MachineInstr *newCopy = BuildMI(BB&: *BB, I: UseMI, MIMD: UseMI->getDebugLoc(), |
| 1214 | MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: SplitReg) |
| 1215 | .addReg(RegNo: ReplaceReg); |
| 1216 | UseOp.setReg(SplitReg); |
| 1217 | LIS.InsertMachineInstrInMaps(MI&: *newCopy); |
| 1218 | } |
| 1219 | } |
| 1220 | } |
| 1221 | } |
| 1222 | |
| 1223 | bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) { |
| 1224 | if (!Phi.isPHI()) |
| 1225 | return false; |
| 1226 | int DefCycle = Schedule.getCycle(MI: &Phi); |
| 1227 | int DefStage = Schedule.getStage(MI: &Phi); |
| 1228 | |
| 1229 | Register InitVal; |
| 1230 | Register LoopVal; |
| 1231 | getPhiRegs(Phi, Loop: Phi.getParent(), InitVal, LoopVal); |
| 1232 | MachineInstr *Use = MRI.getVRegDef(Reg: LoopVal); |
| 1233 | if (!Use || Use->isPHI()) |
| 1234 | return true; |
| 1235 | int LoopCycle = Schedule.getCycle(MI: Use); |
| 1236 | int LoopStage = Schedule.getStage(MI: Use); |
| 1237 | return (LoopCycle > DefCycle) || (LoopStage <= DefStage); |
| 1238 | } |
| 1239 | |
| 1240 | //===----------------------------------------------------------------------===// |
| 1241 | // PeelingModuloScheduleExpander implementation |
| 1242 | //===----------------------------------------------------------------------===// |
| 1243 | // This is a reimplementation of ModuloScheduleExpander that works by creating |
| 1244 | // a fully correct steady-state kernel and peeling off the prolog and epilogs. |
| 1245 | //===----------------------------------------------------------------------===// |
| 1246 | |
| 1247 | namespace { |
| 1248 | // Remove any dead phis in MBB. Dead phis either have only one block as input |
| 1249 | // (in which case they are the identity) or have no uses. |
| 1250 | void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI, |
| 1251 | LiveIntervals *LIS, bool KeepSingleSrcPhi = false) { |
| 1252 | bool Changed = true; |
| 1253 | while (Changed) { |
| 1254 | Changed = false; |
| 1255 | for (MachineInstr &MI : llvm::make_early_inc_range(Range: MBB->phis())) { |
| 1256 | assert(MI.isPHI()); |
| 1257 | if (MRI.use_empty(RegNo: MI.getOperand(i: 0).getReg())) { |
| 1258 | if (LIS) |
| 1259 | LIS->RemoveMachineInstrFromMaps(MI); |
| 1260 | MI.eraseFromParent(); |
| 1261 | Changed = true; |
| 1262 | } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) { |
| 1263 | const TargetRegisterClass *ConstrainRegClass = |
| 1264 | MRI.constrainRegClass(Reg: MI.getOperand(i: 1).getReg(), |
| 1265 | RC: MRI.getRegClass(Reg: MI.getOperand(i: 0).getReg())); |
| 1266 | assert(ConstrainRegClass && |
| 1267 | "Expected a valid constrained register class!" ); |
| 1268 | (void)ConstrainRegClass; |
| 1269 | MRI.replaceRegWith(FromReg: MI.getOperand(i: 0).getReg(), |
| 1270 | ToReg: MI.getOperand(i: 1).getReg()); |
| 1271 | if (LIS) |
| 1272 | LIS->RemoveMachineInstrFromMaps(MI); |
| 1273 | MI.eraseFromParent(); |
| 1274 | Changed = true; |
| 1275 | } |
| 1276 | } |
| 1277 | } |
| 1278 | } |
| 1279 | |
| 1280 | /// Rewrites the kernel block in-place to adhere to the given schedule. |
| 1281 | /// KernelRewriter holds all of the state required to perform the rewriting. |
| 1282 | class KernelRewriter { |
| 1283 | ModuloSchedule &S; |
| 1284 | MachineBasicBlock *BB; |
| 1285 | MachineBasicBlock *, *ExitBB; |
| 1286 | MachineRegisterInfo &MRI; |
| 1287 | const TargetInstrInfo *TII; |
| 1288 | LiveIntervals *LIS; |
| 1289 | |
| 1290 | // Map from register class to canonical undef register for that class. |
| 1291 | DenseMap<const TargetRegisterClass *, Register> Undefs; |
| 1292 | // Map from <LoopReg, InitReg> to phi register for all created phis. Note that |
| 1293 | // this map is only used when InitReg is non-undef. |
| 1294 | DenseMap<std::pair<Register, Register>, Register> Phis; |
| 1295 | // Map from LoopReg to phi register where the InitReg is undef. |
| 1296 | DenseMap<Register, Register> UndefPhis; |
| 1297 | |
| 1298 | // Reg is used by MI. Return the new register MI should use to adhere to the |
| 1299 | // schedule. Insert phis as necessary. |
| 1300 | Register remapUse(Register Reg, MachineInstr &MI); |
| 1301 | // Insert a phi that carries LoopReg from the loop body and InitReg otherwise. |
| 1302 | // If InitReg is not given it is chosen arbitrarily. It will either be undef |
| 1303 | // or will be chosen so as to share another phi. |
| 1304 | Register phi(Register LoopReg, std::optional<Register> InitReg = {}, |
| 1305 | const TargetRegisterClass *RC = nullptr); |
| 1306 | // Create an undef register of the given register class. |
| 1307 | Register undef(const TargetRegisterClass *RC); |
| 1308 | |
| 1309 | public: |
| 1310 | KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB, |
| 1311 | LiveIntervals *LIS = nullptr); |
| 1312 | void rewrite(); |
| 1313 | }; |
| 1314 | } // namespace |
| 1315 | |
| 1316 | KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S, |
| 1317 | MachineBasicBlock *LoopBB, LiveIntervals *LIS) |
| 1318 | : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()), |
| 1319 | ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()), |
| 1320 | TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) { |
| 1321 | PreheaderBB = *BB->pred_begin(); |
| 1322 | if (PreheaderBB == BB) |
| 1323 | PreheaderBB = *std::next(x: BB->pred_begin()); |
| 1324 | } |
| 1325 | |
| 1326 | void KernelRewriter::rewrite() { |
| 1327 | // Rearrange the loop to be in schedule order. Note that the schedule may |
| 1328 | // contain instructions that are not owned by the loop block (InstrChanges and |
| 1329 | // friends), so we gracefully handle unowned instructions and delete any |
| 1330 | // instructions that weren't in the schedule. |
| 1331 | auto InsertPt = BB->getFirstTerminator(); |
| 1332 | MachineInstr *FirstMI = nullptr; |
| 1333 | for (MachineInstr *MI : S.getInstructions()) { |
| 1334 | if (MI->isPHI()) |
| 1335 | continue; |
| 1336 | if (MI->getParent()) |
| 1337 | MI->removeFromParent(); |
| 1338 | BB->insert(I: InsertPt, MI); |
| 1339 | if (!FirstMI) |
| 1340 | FirstMI = MI; |
| 1341 | } |
| 1342 | assert(FirstMI && "Failed to find first MI in schedule" ); |
| 1343 | |
| 1344 | // At this point all of the scheduled instructions are between FirstMI |
| 1345 | // and the end of the block. Kill from the first non-phi to FirstMI. |
| 1346 | for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) { |
| 1347 | if (LIS) |
| 1348 | LIS->RemoveMachineInstrFromMaps(MI&: *I); |
| 1349 | (I++)->eraseFromParent(); |
| 1350 | } |
| 1351 | |
| 1352 | // Now remap every instruction in the loop. |
| 1353 | for (MachineInstr &MI : *BB) { |
| 1354 | if (MI.isPHI() || MI.isTerminator()) |
| 1355 | continue; |
| 1356 | for (MachineOperand &MO : MI.uses()) { |
| 1357 | if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit()) |
| 1358 | continue; |
| 1359 | Register Reg = remapUse(Reg: MO.getReg(), MI); |
| 1360 | MO.setReg(Reg); |
| 1361 | } |
| 1362 | } |
| 1363 | EliminateDeadPhis(MBB: BB, MRI, LIS); |
| 1364 | |
| 1365 | // Ensure a phi exists for all instructions that are either referenced by |
| 1366 | // an illegal phi or by an instruction outside the loop. This allows us to |
| 1367 | // treat remaps of these values the same as "normal" values that come from |
| 1368 | // loop-carried phis. |
| 1369 | for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) { |
| 1370 | if (MI->isPHI()) { |
| 1371 | Register R = MI->getOperand(i: 0).getReg(); |
| 1372 | phi(LoopReg: R); |
| 1373 | continue; |
| 1374 | } |
| 1375 | |
| 1376 | for (MachineOperand &Def : MI->defs()) { |
| 1377 | for (MachineInstr &MI : MRI.use_instructions(Reg: Def.getReg())) { |
| 1378 | if (MI.getParent() != BB) { |
| 1379 | phi(LoopReg: Def.getReg()); |
| 1380 | break; |
| 1381 | } |
| 1382 | } |
| 1383 | } |
| 1384 | } |
| 1385 | } |
| 1386 | |
| 1387 | Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) { |
| 1388 | MachineInstr *Producer = MRI.getUniqueVRegDef(Reg); |
| 1389 | if (!Producer) |
| 1390 | return Reg; |
| 1391 | |
| 1392 | int ConsumerStage = S.getStage(MI: &MI); |
| 1393 | if (!Producer->isPHI()) { |
| 1394 | // Non-phi producers are simple to remap. Insert as many phis as the |
| 1395 | // difference between the consumer and producer stages. |
| 1396 | if (Producer->getParent() != BB) |
| 1397 | // Producer was not inside the loop. Use the register as-is. |
| 1398 | return Reg; |
| 1399 | int ProducerStage = S.getStage(MI: Producer); |
| 1400 | assert(ConsumerStage != -1 && |
| 1401 | "In-loop consumer should always be scheduled!" ); |
| 1402 | assert(ConsumerStage >= ProducerStage); |
| 1403 | unsigned StageDiff = ConsumerStage - ProducerStage; |
| 1404 | |
| 1405 | for (unsigned I = 0; I < StageDiff; ++I) |
| 1406 | Reg = phi(LoopReg: Reg); |
| 1407 | return Reg; |
| 1408 | } |
| 1409 | |
| 1410 | // First, dive through the phi chain to find the defaults for the generated |
| 1411 | // phis. |
| 1412 | SmallVector<std::optional<Register>, 4> Defaults; |
| 1413 | Register LoopReg = Reg; |
| 1414 | auto LoopProducer = Producer; |
| 1415 | while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) { |
| 1416 | LoopReg = getLoopPhiReg(Phi&: *LoopProducer, LoopBB: BB); |
| 1417 | Defaults.emplace_back(Args: getInitPhiReg(Phi&: *LoopProducer, LoopBB: BB)); |
| 1418 | LoopProducer = MRI.getUniqueVRegDef(Reg: LoopReg); |
| 1419 | assert(LoopProducer); |
| 1420 | } |
| 1421 | int LoopProducerStage = S.getStage(MI: LoopProducer); |
| 1422 | |
| 1423 | std::optional<Register> IllegalPhiDefault; |
| 1424 | |
| 1425 | if (LoopProducerStage == -1) { |
| 1426 | // Do nothing. |
| 1427 | } else if (LoopProducerStage > ConsumerStage) { |
| 1428 | // This schedule is only representable if ProducerStage == ConsumerStage+1. |
| 1429 | // In addition, Consumer's cycle must be scheduled after Producer in the |
| 1430 | // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP |
| 1431 | // functions. |
| 1432 | #ifndef NDEBUG // Silence unused variables in non-asserts mode. |
| 1433 | int LoopProducerCycle = S.getCycle(LoopProducer); |
| 1434 | int ConsumerCycle = S.getCycle(&MI); |
| 1435 | #endif |
| 1436 | assert(LoopProducerCycle <= ConsumerCycle); |
| 1437 | assert(LoopProducerStage == ConsumerStage + 1); |
| 1438 | // Peel off the first phi from Defaults and insert a phi between producer |
| 1439 | // and consumer. This phi will not be at the front of the block so we |
| 1440 | // consider it illegal. It will only exist during the rewrite process; it |
| 1441 | // needs to exist while we peel off prologs because these could take the |
| 1442 | // default value. After that we can replace all uses with the loop producer |
| 1443 | // value. |
| 1444 | IllegalPhiDefault = Defaults.front(); |
| 1445 | Defaults.erase(CI: Defaults.begin()); |
| 1446 | } else { |
| 1447 | assert(ConsumerStage >= LoopProducerStage); |
| 1448 | int StageDiff = ConsumerStage - LoopProducerStage; |
| 1449 | if (StageDiff > 0) { |
| 1450 | LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size() |
| 1451 | << " to " << (Defaults.size() + StageDiff) << "\n" ); |
| 1452 | // If we need more phis than we have defaults for, pad out with undefs for |
| 1453 | // the earliest phis, which are at the end of the defaults chain (the |
| 1454 | // chain is in reverse order). |
| 1455 | Defaults.resize(N: Defaults.size() + StageDiff, |
| 1456 | NV: Defaults.empty() ? std::optional<Register>() |
| 1457 | : Defaults.back()); |
| 1458 | } |
| 1459 | } |
| 1460 | |
| 1461 | // Now we know the number of stages to jump back, insert the phi chain. |
| 1462 | auto DefaultI = Defaults.rbegin(); |
| 1463 | while (DefaultI != Defaults.rend()) |
| 1464 | LoopReg = phi(LoopReg, InitReg: *DefaultI++, RC: MRI.getRegClass(Reg)); |
| 1465 | |
| 1466 | if (IllegalPhiDefault) { |
| 1467 | // The consumer optionally consumes LoopProducer in the same iteration |
| 1468 | // (because the producer is scheduled at an earlier cycle than the consumer) |
| 1469 | // or the initial value. To facilitate this we create an illegal block here |
| 1470 | // by embedding a phi in the middle of the block. We will fix this up |
| 1471 | // immediately prior to pruning. |
| 1472 | auto RC = MRI.getRegClass(Reg); |
| 1473 | Register R = MRI.createVirtualRegister(RegClass: RC); |
| 1474 | MachineInstr *IllegalPhi = |
| 1475 | BuildMI(BB&: *BB, I&: MI, MIMD: DebugLoc(), MCID: TII->get(Opcode: TargetOpcode::PHI), DestReg: R) |
| 1476 | .addReg(RegNo: *IllegalPhiDefault) |
| 1477 | .addMBB(MBB: PreheaderBB) // Block choice is arbitrary and has no effect. |
| 1478 | .addReg(RegNo: LoopReg) |
| 1479 | .addMBB(MBB: BB); // Block choice is arbitrary and has no effect. |
| 1480 | // Illegal phi should belong to the producer stage so that it can be |
| 1481 | // filtered correctly during peeling. |
| 1482 | S.setStage(MI: IllegalPhi, MIStage: LoopProducerStage); |
| 1483 | return R; |
| 1484 | } |
| 1485 | |
| 1486 | return LoopReg; |
| 1487 | } |
| 1488 | |
| 1489 | Register KernelRewriter::phi(Register LoopReg, std::optional<Register> InitReg, |
| 1490 | const TargetRegisterClass *RC) { |
| 1491 | // If the init register is not undef, try and find an existing phi. |
| 1492 | if (InitReg) { |
| 1493 | auto I = Phis.find(Val: {LoopReg, *InitReg}); |
| 1494 | if (I != Phis.end()) |
| 1495 | return I->second; |
| 1496 | } else { |
| 1497 | for (auto &KV : Phis) { |
| 1498 | if (KV.first.first == LoopReg) |
| 1499 | return KV.second; |
| 1500 | } |
| 1501 | } |
| 1502 | |
| 1503 | // InitReg is either undef or no existing phi takes InitReg as input. Try and |
| 1504 | // find a phi that takes undef as input. |
| 1505 | auto I = UndefPhis.find(Val: LoopReg); |
| 1506 | if (I != UndefPhis.end()) { |
| 1507 | Register R = I->second; |
| 1508 | if (!InitReg) |
| 1509 | // Found a phi taking undef as input, and this input is undef so return |
| 1510 | // without any more changes. |
| 1511 | return R; |
| 1512 | // Found a phi taking undef as input, so rewrite it to take InitReg. |
| 1513 | MachineInstr *MI = MRI.getVRegDef(Reg: R); |
| 1514 | MI->getOperand(i: 1).setReg(*InitReg); |
| 1515 | Phis.insert(KV: {{LoopReg, *InitReg}, R}); |
| 1516 | const TargetRegisterClass *ConstrainRegClass = |
| 1517 | MRI.constrainRegClass(Reg: R, RC: MRI.getRegClass(Reg: *InitReg)); |
| 1518 | assert(ConstrainRegClass && "Expected a valid constrained register class!" ); |
| 1519 | (void)ConstrainRegClass; |
| 1520 | UndefPhis.erase(I); |
| 1521 | return R; |
| 1522 | } |
| 1523 | |
| 1524 | // Failed to find any existing phi to reuse, so create a new one. |
| 1525 | if (!RC) |
| 1526 | RC = MRI.getRegClass(Reg: LoopReg); |
| 1527 | Register R = MRI.createVirtualRegister(RegClass: RC); |
| 1528 | if (InitReg) { |
| 1529 | const TargetRegisterClass *ConstrainRegClass = |
| 1530 | MRI.constrainRegClass(Reg: R, RC: MRI.getRegClass(Reg: *InitReg)); |
| 1531 | assert(ConstrainRegClass && "Expected a valid constrained register class!" ); |
| 1532 | (void)ConstrainRegClass; |
| 1533 | } |
| 1534 | BuildMI(BB&: *BB, I: BB->getFirstNonPHI(), MIMD: DebugLoc(), MCID: TII->get(Opcode: TargetOpcode::PHI), DestReg: R) |
| 1535 | .addReg(RegNo: InitReg ? *InitReg : undef(RC)) |
| 1536 | .addMBB(MBB: PreheaderBB) |
| 1537 | .addReg(RegNo: LoopReg) |
| 1538 | .addMBB(MBB: BB); |
| 1539 | if (!InitReg) |
| 1540 | UndefPhis[LoopReg] = R; |
| 1541 | else |
| 1542 | Phis[{LoopReg, *InitReg}] = R; |
| 1543 | return R; |
| 1544 | } |
| 1545 | |
| 1546 | Register KernelRewriter::undef(const TargetRegisterClass *RC) { |
| 1547 | Register &R = Undefs[RC]; |
| 1548 | if (R == 0) { |
| 1549 | // Create an IMPLICIT_DEF that defines this register if we need it. |
| 1550 | // All uses of this should be removed by the time we have finished unrolling |
| 1551 | // prologs and epilogs. |
| 1552 | R = MRI.createVirtualRegister(RegClass: RC); |
| 1553 | auto *InsertBB = &PreheaderBB->getParent()->front(); |
| 1554 | BuildMI(BB&: *InsertBB, I: InsertBB->getFirstTerminator(), MIMD: DebugLoc(), |
| 1555 | MCID: TII->get(Opcode: TargetOpcode::IMPLICIT_DEF), DestReg: R); |
| 1556 | } |
| 1557 | return R; |
| 1558 | } |
| 1559 | |
| 1560 | namespace { |
| 1561 | /// Describes an operand in the kernel of a pipelined loop. Characteristics of |
| 1562 | /// the operand are discovered, such as how many in-loop PHIs it has to jump |
| 1563 | /// through and defaults for these phis. |
| 1564 | class KernelOperandInfo { |
| 1565 | MachineBasicBlock *BB; |
| 1566 | MachineRegisterInfo &MRI; |
| 1567 | SmallVector<Register, 4> PhiDefaults; |
| 1568 | MachineOperand *Source; |
| 1569 | MachineOperand *Target; |
| 1570 | |
| 1571 | public: |
| 1572 | KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI, |
| 1573 | const SmallPtrSetImpl<MachineInstr *> &IllegalPhis) |
| 1574 | : MRI(MRI) { |
| 1575 | Source = MO; |
| 1576 | BB = MO->getParent()->getParent(); |
| 1577 | while (isRegInLoop(MO)) { |
| 1578 | MachineInstr *MI = MRI.getVRegDef(Reg: MO->getReg()); |
| 1579 | if (MI->isFullCopy()) { |
| 1580 | MO = &MI->getOperand(i: 1); |
| 1581 | continue; |
| 1582 | } |
| 1583 | if (!MI->isPHI()) |
| 1584 | break; |
| 1585 | // If this is an illegal phi, don't count it in distance. |
| 1586 | if (IllegalPhis.count(Ptr: MI)) { |
| 1587 | MO = &MI->getOperand(i: 3); |
| 1588 | continue; |
| 1589 | } |
| 1590 | |
| 1591 | Register Default = getInitPhiReg(Phi&: *MI, LoopBB: BB); |
| 1592 | MO = MI->getOperand(i: 2).getMBB() == BB ? &MI->getOperand(i: 1) |
| 1593 | : &MI->getOperand(i: 3); |
| 1594 | PhiDefaults.push_back(Elt: Default); |
| 1595 | } |
| 1596 | Target = MO; |
| 1597 | } |
| 1598 | |
| 1599 | bool operator==(const KernelOperandInfo &Other) const { |
| 1600 | return PhiDefaults.size() == Other.PhiDefaults.size(); |
| 1601 | } |
| 1602 | |
| 1603 | void print(raw_ostream &OS) const { |
| 1604 | OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in " |
| 1605 | << *Source->getParent(); |
| 1606 | } |
| 1607 | |
| 1608 | private: |
| 1609 | bool isRegInLoop(MachineOperand *MO) { |
| 1610 | return MO->isReg() && MO->getReg().isVirtual() && |
| 1611 | MRI.getVRegDef(Reg: MO->getReg())->getParent() == BB; |
| 1612 | } |
| 1613 | }; |
| 1614 | } // namespace |
| 1615 | |
| 1616 | MachineBasicBlock * |
| 1617 | PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) { |
| 1618 | MachineBasicBlock *NewBB = PeelSingleBlockLoop(Direction: LPD, Loop: BB, MRI, TII); |
| 1619 | if (LPD == LPD_Front) |
| 1620 | PeeledFront.push_back(x: NewBB); |
| 1621 | else |
| 1622 | PeeledBack.push_front(x: NewBB); |
| 1623 | for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator(); |
| 1624 | ++I, ++NI) { |
| 1625 | CanonicalMIs[&*I] = &*I; |
| 1626 | CanonicalMIs[&*NI] = &*I; |
| 1627 | BlockMIs[{NewBB, &*I}] = &*NI; |
| 1628 | BlockMIs[{BB, &*I}] = &*I; |
| 1629 | } |
| 1630 | return NewBB; |
| 1631 | } |
| 1632 | |
| 1633 | void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB, |
| 1634 | int MinStage) { |
| 1635 | for (auto I = MB->getFirstInstrTerminator()->getReverseIterator(); |
| 1636 | I != std::next(x: MB->getFirstNonPHI()->getReverseIterator());) { |
| 1637 | MachineInstr *MI = &*I++; |
| 1638 | int Stage = getStage(MI); |
| 1639 | if (Stage == -1 || Stage >= MinStage) |
| 1640 | continue; |
| 1641 | |
| 1642 | for (MachineOperand &DefMO : MI->defs()) { |
| 1643 | SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; |
| 1644 | for (MachineInstr &UseMI : MRI.use_instructions(Reg: DefMO.getReg())) { |
| 1645 | // Only PHIs can use values from this block by construction. |
| 1646 | // Match with the equivalent PHI in B. |
| 1647 | assert(UseMI.isPHI()); |
| 1648 | Register Reg = getEquivalentRegisterIn(Reg: UseMI.getOperand(i: 0).getReg(), |
| 1649 | BB: MI->getParent()); |
| 1650 | Subs.emplace_back(Args: &UseMI, Args&: Reg); |
| 1651 | } |
| 1652 | for (auto &Sub : Subs) |
| 1653 | Sub.first->substituteRegister(FromReg: DefMO.getReg(), ToReg: Sub.second, /*SubIdx=*/0, |
| 1654 | RegInfo: *MRI.getTargetRegisterInfo()); |
| 1655 | } |
| 1656 | if (LIS) |
| 1657 | LIS->RemoveMachineInstrFromMaps(MI&: *MI); |
| 1658 | MI->eraseFromParent(); |
| 1659 | } |
| 1660 | } |
| 1661 | |
| 1662 | void PeelingModuloScheduleExpander::moveStageBetweenBlocks( |
| 1663 | MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) { |
| 1664 | auto InsertPt = DestBB->getFirstNonPHI(); |
| 1665 | DenseMap<Register, Register> Remaps; |
| 1666 | for (MachineInstr &MI : llvm::make_early_inc_range( |
| 1667 | Range: llvm::make_range(x: SourceBB->getFirstNonPHI(), y: SourceBB->end()))) { |
| 1668 | if (MI.isPHI()) { |
| 1669 | // This is an illegal PHI. If we move any instructions using an illegal |
| 1670 | // PHI, we need to create a legal Phi. |
| 1671 | if (getStage(MI: &MI) != Stage) { |
| 1672 | // The legal Phi is not necessary if the illegal phi's stage |
| 1673 | // is being moved. |
| 1674 | Register PhiR = MI.getOperand(i: 0).getReg(); |
| 1675 | auto RC = MRI.getRegClass(Reg: PhiR); |
| 1676 | Register NR = MRI.createVirtualRegister(RegClass: RC); |
| 1677 | MachineInstr *NI = BuildMI(BB&: *DestBB, I: DestBB->getFirstNonPHI(), |
| 1678 | MIMD: DebugLoc(), MCID: TII->get(Opcode: TargetOpcode::PHI), DestReg: NR) |
| 1679 | .addReg(RegNo: PhiR) |
| 1680 | .addMBB(MBB: SourceBB); |
| 1681 | BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI; |
| 1682 | CanonicalMIs[NI] = CanonicalMIs[&MI]; |
| 1683 | Remaps[PhiR] = NR; |
| 1684 | } |
| 1685 | } |
| 1686 | if (getStage(MI: &MI) != Stage) |
| 1687 | continue; |
| 1688 | MI.removeFromParent(); |
| 1689 | DestBB->insert(I: InsertPt, MI: &MI); |
| 1690 | auto *KernelMI = CanonicalMIs[&MI]; |
| 1691 | BlockMIs[{DestBB, KernelMI}] = &MI; |
| 1692 | BlockMIs.erase(Val: {SourceBB, KernelMI}); |
| 1693 | } |
| 1694 | SmallVector<MachineInstr *, 4> PhiToDelete; |
| 1695 | for (MachineInstr &MI : DestBB->phis()) { |
| 1696 | assert(MI.getNumOperands() == 3); |
| 1697 | MachineInstr *Def = MRI.getVRegDef(Reg: MI.getOperand(i: 1).getReg()); |
| 1698 | // If the instruction referenced by the phi is moved inside the block |
| 1699 | // we don't need the phi anymore. |
| 1700 | if (getStage(MI: Def) == Stage) { |
| 1701 | Register PhiReg = MI.getOperand(i: 0).getReg(); |
| 1702 | assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg(), |
| 1703 | /*TRI=*/nullptr) != -1); |
| 1704 | MRI.replaceRegWith(FromReg: MI.getOperand(i: 0).getReg(), ToReg: MI.getOperand(i: 1).getReg()); |
| 1705 | MI.getOperand(i: 0).setReg(PhiReg); |
| 1706 | PhiToDelete.push_back(Elt: &MI); |
| 1707 | } |
| 1708 | } |
| 1709 | for (auto *P : PhiToDelete) |
| 1710 | P->eraseFromParent(); |
| 1711 | InsertPt = DestBB->getFirstNonPHI(); |
| 1712 | // Helper to clone Phi instructions into the destination block. We clone Phi |
| 1713 | // greedily to avoid combinatorial explosion of Phi instructions. |
| 1714 | auto clonePhi = [&](MachineInstr *Phi) { |
| 1715 | MachineInstr *NewMI = MF.CloneMachineInstr(Orig: Phi); |
| 1716 | DestBB->insert(I: InsertPt, MI: NewMI); |
| 1717 | Register OrigR = Phi->getOperand(i: 0).getReg(); |
| 1718 | Register R = MRI.createVirtualRegister(RegClass: MRI.getRegClass(Reg: OrigR)); |
| 1719 | NewMI->getOperand(i: 0).setReg(R); |
| 1720 | NewMI->getOperand(i: 1).setReg(OrigR); |
| 1721 | NewMI->getOperand(i: 2).setMBB(*DestBB->pred_begin()); |
| 1722 | Remaps[OrigR] = R; |
| 1723 | CanonicalMIs[NewMI] = CanonicalMIs[Phi]; |
| 1724 | BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI; |
| 1725 | PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi]; |
| 1726 | return R; |
| 1727 | }; |
| 1728 | for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) { |
| 1729 | for (MachineOperand &MO : I->uses()) { |
| 1730 | if (!MO.isReg()) |
| 1731 | continue; |
| 1732 | if (auto It = Remaps.find(Val: MO.getReg()); It != Remaps.end()) |
| 1733 | MO.setReg(It->second); |
| 1734 | else { |
| 1735 | // If we are using a phi from the source block we need to add a new phi |
| 1736 | // pointing to the old one. |
| 1737 | MachineInstr *Use = MRI.getUniqueVRegDef(Reg: MO.getReg()); |
| 1738 | if (Use && Use->isPHI() && Use->getParent() == SourceBB) { |
| 1739 | Register R = clonePhi(Use); |
| 1740 | MO.setReg(R); |
| 1741 | } |
| 1742 | } |
| 1743 | } |
| 1744 | } |
| 1745 | } |
| 1746 | |
| 1747 | Register |
| 1748 | PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi, |
| 1749 | MachineInstr *Phi) { |
| 1750 | unsigned distance = PhiNodeLoopIteration[Phi]; |
| 1751 | MachineInstr *CanonicalUse = CanonicalPhi; |
| 1752 | Register CanonicalUseReg = CanonicalUse->getOperand(i: 0).getReg(); |
| 1753 | for (unsigned I = 0; I < distance; ++I) { |
| 1754 | assert(CanonicalUse->isPHI()); |
| 1755 | assert(CanonicalUse->getNumOperands() == 5); |
| 1756 | unsigned LoopRegIdx = 3, InitRegIdx = 1; |
| 1757 | if (CanonicalUse->getOperand(i: 2).getMBB() == CanonicalUse->getParent()) |
| 1758 | std::swap(a&: LoopRegIdx, b&: InitRegIdx); |
| 1759 | CanonicalUseReg = CanonicalUse->getOperand(i: LoopRegIdx).getReg(); |
| 1760 | CanonicalUse = MRI.getVRegDef(Reg: CanonicalUseReg); |
| 1761 | } |
| 1762 | return CanonicalUseReg; |
| 1763 | } |
| 1764 | |
| 1765 | void PeelingModuloScheduleExpander::peelPrologAndEpilogs() { |
| 1766 | BitVector LS(Schedule.getNumStages(), true); |
| 1767 | BitVector AS(Schedule.getNumStages(), true); |
| 1768 | LiveStages[BB] = LS; |
| 1769 | AvailableStages[BB] = AS; |
| 1770 | |
| 1771 | // Peel out the prologs. |
| 1772 | LS.reset(); |
| 1773 | for (int I = 0; I < Schedule.getNumStages() - 1; ++I) { |
| 1774 | LS[I] = true; |
| 1775 | Prologs.push_back(Elt: peelKernel(LPD: LPD_Front)); |
| 1776 | LiveStages[Prologs.back()] = LS; |
| 1777 | AvailableStages[Prologs.back()] = LS; |
| 1778 | } |
| 1779 | |
| 1780 | // Create a block that will end up as the new loop exiting block (dominated by |
| 1781 | // all prologs and epilogs). It will only contain PHIs, in the same order as |
| 1782 | // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property |
| 1783 | // that the exiting block is a (sub) clone of BB. This in turn gives us the |
| 1784 | // property that any value deffed in BB but used outside of BB is used by a |
| 1785 | // PHI in the exiting block. |
| 1786 | MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock(); |
| 1787 | EliminateDeadPhis(MBB: ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true); |
| 1788 | // Push out the epilogs, again in reverse order. |
| 1789 | // We can't assume anything about the minumum loop trip count at this point, |
| 1790 | // so emit a fairly complex epilog. |
| 1791 | |
| 1792 | // We first peel number of stages minus one epilogue. Then we remove dead |
| 1793 | // stages and reorder instructions based on their stage. If we have 3 stages |
| 1794 | // we generate first: |
| 1795 | // E0[3, 2, 1] |
| 1796 | // E1[3', 2'] |
| 1797 | // E2[3''] |
| 1798 | // And then we move instructions based on their stages to have: |
| 1799 | // E0[3] |
| 1800 | // E1[2, 3'] |
| 1801 | // E2[1, 2', 3''] |
| 1802 | // The transformation is legal because we only move instructions past |
| 1803 | // instructions of a previous loop iteration. |
| 1804 | for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) { |
| 1805 | Epilogs.push_back(Elt: peelKernel(LPD: LPD_Back)); |
| 1806 | MachineBasicBlock *B = Epilogs.back(); |
| 1807 | filterInstructions(MB: B, MinStage: Schedule.getNumStages() - I); |
| 1808 | // Keep track at which iteration each phi belongs to. We need it to know |
| 1809 | // what version of the variable to use during prologue/epilogue stitching. |
| 1810 | EliminateDeadPhis(MBB: B, MRI, LIS, /*KeepSingleSrcPhi=*/true); |
| 1811 | for (MachineInstr &Phi : B->phis()) |
| 1812 | PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I; |
| 1813 | } |
| 1814 | for (size_t I = 0; I < Epilogs.size(); I++) { |
| 1815 | LS.reset(); |
| 1816 | for (size_t J = I; J < Epilogs.size(); J++) { |
| 1817 | int Iteration = J; |
| 1818 | unsigned Stage = Schedule.getNumStages() - 1 + I - J; |
| 1819 | // Move stage one block at a time so that Phi nodes are updated correctly. |
| 1820 | for (size_t K = Iteration; K > I; K--) |
| 1821 | moveStageBetweenBlocks(DestBB: Epilogs[K - 1], SourceBB: Epilogs[K], Stage); |
| 1822 | LS[Stage] = true; |
| 1823 | } |
| 1824 | LiveStages[Epilogs[I]] = LS; |
| 1825 | AvailableStages[Epilogs[I]] = AS; |
| 1826 | } |
| 1827 | |
| 1828 | // Now we've defined all the prolog and epilog blocks as a fallthrough |
| 1829 | // sequence, add the edges that will be followed if the loop trip count is |
| 1830 | // lower than the number of stages (connecting prologs directly with epilogs). |
| 1831 | auto PI = Prologs.begin(); |
| 1832 | auto EI = Epilogs.begin(); |
| 1833 | assert(Prologs.size() == Epilogs.size()); |
| 1834 | for (; PI != Prologs.end(); ++PI, ++EI) { |
| 1835 | MachineBasicBlock *Pred = *(*EI)->pred_begin(); |
| 1836 | (*PI)->addSuccessor(Succ: *EI); |
| 1837 | for (MachineInstr &MI : (*EI)->phis()) { |
| 1838 | Register Reg = MI.getOperand(i: 1).getReg(); |
| 1839 | MachineInstr *Use = MRI.getUniqueVRegDef(Reg); |
| 1840 | if (Use && Use->getParent() == Pred) { |
| 1841 | MachineInstr *CanonicalUse = CanonicalMIs[Use]; |
| 1842 | if (CanonicalUse->isPHI()) { |
| 1843 | // If the use comes from a phi we need to skip as many phi as the |
| 1844 | // distance between the epilogue and the kernel. Trace through the phi |
| 1845 | // chain to find the right value. |
| 1846 | Reg = getPhiCanonicalReg(CanonicalPhi: CanonicalUse, Phi: Use); |
| 1847 | } |
| 1848 | Reg = getEquivalentRegisterIn(Reg, BB: *PI); |
| 1849 | } |
| 1850 | MI.addOperand(Op: MachineOperand::CreateReg(Reg, /*isDef=*/false)); |
| 1851 | MI.addOperand(Op: MachineOperand::CreateMBB(MBB: *PI)); |
| 1852 | } |
| 1853 | } |
| 1854 | |
| 1855 | // Create a list of all blocks in order. |
| 1856 | SmallVector<MachineBasicBlock *, 8> Blocks; |
| 1857 | llvm::append_range(C&: Blocks, R&: PeeledFront); |
| 1858 | Blocks.push_back(Elt: BB); |
| 1859 | llvm::append_range(C&: Blocks, R&: PeeledBack); |
| 1860 | |
| 1861 | // Iterate in reverse order over all instructions, remapping as we go. |
| 1862 | for (MachineBasicBlock *B : reverse(C&: Blocks)) { |
| 1863 | for (auto I = B->instr_rbegin(); |
| 1864 | I != std::next(x: B->getFirstNonPHI()->getReverseIterator());) { |
| 1865 | MachineBasicBlock::reverse_instr_iterator MI = I++; |
| 1866 | rewriteUsesOf(MI: &*MI); |
| 1867 | } |
| 1868 | } |
| 1869 | for (auto *MI : IllegalPhisToDelete) { |
| 1870 | if (LIS) |
| 1871 | LIS->RemoveMachineInstrFromMaps(MI&: *MI); |
| 1872 | MI->eraseFromParent(); |
| 1873 | } |
| 1874 | IllegalPhisToDelete.clear(); |
| 1875 | |
| 1876 | // Now all remapping has been done, we're free to optimize the generated code. |
| 1877 | for (MachineBasicBlock *B : reverse(C&: Blocks)) |
| 1878 | EliminateDeadPhis(MBB: B, MRI, LIS); |
| 1879 | EliminateDeadPhis(MBB: ExitingBB, MRI, LIS); |
| 1880 | } |
| 1881 | |
| 1882 | MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() { |
| 1883 | MachineFunction &MF = *BB->getParent(); |
| 1884 | MachineBasicBlock *Exit = *BB->succ_begin(); |
| 1885 | if (Exit == BB) |
| 1886 | Exit = *std::next(x: BB->succ_begin()); |
| 1887 | |
| 1888 | MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB: BB->getBasicBlock()); |
| 1889 | MF.insert(MBBI: std::next(x: BB->getIterator()), MBB: NewBB); |
| 1890 | |
| 1891 | // Clone all phis in BB into NewBB and rewrite. |
| 1892 | for (MachineInstr &MI : BB->phis()) { |
| 1893 | auto RC = MRI.getRegClass(Reg: MI.getOperand(i: 0).getReg()); |
| 1894 | Register OldR = MI.getOperand(i: 3).getReg(); |
| 1895 | Register R = MRI.createVirtualRegister(RegClass: RC); |
| 1896 | SmallVector<MachineInstr *, 4> Uses; |
| 1897 | for (MachineInstr &Use : MRI.use_instructions(Reg: OldR)) |
| 1898 | if (Use.getParent() != BB) |
| 1899 | Uses.push_back(Elt: &Use); |
| 1900 | for (MachineInstr *Use : Uses) |
| 1901 | Use->substituteRegister(FromReg: OldR, ToReg: R, /*SubIdx=*/0, |
| 1902 | RegInfo: *MRI.getTargetRegisterInfo()); |
| 1903 | MachineInstr *NI = BuildMI(BB: NewBB, MIMD: DebugLoc(), MCID: TII->get(Opcode: TargetOpcode::PHI), DestReg: R) |
| 1904 | .addReg(RegNo: OldR) |
| 1905 | .addMBB(MBB: BB); |
| 1906 | BlockMIs[{NewBB, &MI}] = NI; |
| 1907 | CanonicalMIs[NI] = &MI; |
| 1908 | } |
| 1909 | BB->replaceSuccessor(Old: Exit, New: NewBB); |
| 1910 | Exit->replacePhiUsesWith(Old: BB, New: NewBB); |
| 1911 | NewBB->addSuccessor(Succ: Exit); |
| 1912 | |
| 1913 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
| 1914 | SmallVector<MachineOperand, 4> Cond; |
| 1915 | bool CanAnalyzeBr = !TII->analyzeBranch(MBB&: *BB, TBB, FBB, Cond); |
| 1916 | (void)CanAnalyzeBr; |
| 1917 | assert(CanAnalyzeBr && "Must be able to analyze the loop branch!" ); |
| 1918 | TII->removeBranch(MBB&: *BB); |
| 1919 | TII->insertBranch(MBB&: *BB, TBB: TBB == Exit ? NewBB : TBB, FBB: FBB == Exit ? NewBB : FBB, |
| 1920 | Cond, DL: DebugLoc()); |
| 1921 | TII->insertUnconditionalBranch(MBB&: *NewBB, DestBB: Exit, DL: DebugLoc()); |
| 1922 | return NewBB; |
| 1923 | } |
| 1924 | |
| 1925 | Register |
| 1926 | PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg, |
| 1927 | MachineBasicBlock *BB) { |
| 1928 | MachineInstr *MI = MRI.getUniqueVRegDef(Reg); |
| 1929 | unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg, /*TRI=*/nullptr); |
| 1930 | return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(i: OpIdx).getReg(); |
| 1931 | } |
| 1932 | |
| 1933 | void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) { |
| 1934 | if (MI->isPHI()) { |
| 1935 | // This is an illegal PHI. The loop-carried (desired) value is operand 3, |
| 1936 | // and it is produced by this block. |
| 1937 | Register PhiR = MI->getOperand(i: 0).getReg(); |
| 1938 | Register R = MI->getOperand(i: 3).getReg(); |
| 1939 | int RMIStage = getStage(MI: MRI.getUniqueVRegDef(Reg: R)); |
| 1940 | if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(Idx: RMIStage)) |
| 1941 | R = MI->getOperand(i: 1).getReg(); |
| 1942 | MRI.setRegClass(Reg: R, RC: MRI.getRegClass(Reg: PhiR)); |
| 1943 | MRI.replaceRegWith(FromReg: PhiR, ToReg: R); |
| 1944 | // Postpone deleting the Phi as it may be referenced by BlockMIs and used |
| 1945 | // later to figure out how to remap registers. |
| 1946 | MI->getOperand(i: 0).setReg(PhiR); |
| 1947 | IllegalPhisToDelete.push_back(Elt: MI); |
| 1948 | return; |
| 1949 | } |
| 1950 | |
| 1951 | int Stage = getStage(MI); |
| 1952 | if (Stage == -1 || LiveStages.count(Val: MI->getParent()) == 0 || |
| 1953 | LiveStages[MI->getParent()].test(Idx: Stage)) |
| 1954 | // Instruction is live, no rewriting to do. |
| 1955 | return; |
| 1956 | |
| 1957 | for (MachineOperand &DefMO : MI->defs()) { |
| 1958 | SmallVector<std::pair<MachineInstr *, Register>, 4> Subs; |
| 1959 | for (MachineInstr &UseMI : MRI.use_instructions(Reg: DefMO.getReg())) { |
| 1960 | // Only PHIs can use values from this block by construction. |
| 1961 | // Match with the equivalent PHI in B. |
| 1962 | assert(UseMI.isPHI()); |
| 1963 | Register Reg = getEquivalentRegisterIn(Reg: UseMI.getOperand(i: 0).getReg(), |
| 1964 | BB: MI->getParent()); |
| 1965 | Subs.emplace_back(Args: &UseMI, Args&: Reg); |
| 1966 | } |
| 1967 | for (auto &Sub : Subs) |
| 1968 | Sub.first->substituteRegister(FromReg: DefMO.getReg(), ToReg: Sub.second, /*SubIdx=*/0, |
| 1969 | RegInfo: *MRI.getTargetRegisterInfo()); |
| 1970 | } |
| 1971 | if (LIS) |
| 1972 | LIS->RemoveMachineInstrFromMaps(MI&: *MI); |
| 1973 | MI->eraseFromParent(); |
| 1974 | } |
| 1975 | |
| 1976 | void PeelingModuloScheduleExpander::fixupBranches() { |
| 1977 | // Work outwards from the kernel. |
| 1978 | bool KernelDisposed = false; |
| 1979 | int TC = Schedule.getNumStages() - 1; |
| 1980 | for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend(); |
| 1981 | ++PI, ++EI, --TC) { |
| 1982 | MachineBasicBlock *Prolog = *PI; |
| 1983 | MachineBasicBlock *Fallthrough = *Prolog->succ_begin(); |
| 1984 | MachineBasicBlock *Epilog = *EI; |
| 1985 | SmallVector<MachineOperand, 4> Cond; |
| 1986 | TII->removeBranch(MBB&: *Prolog); |
| 1987 | std::optional<bool> StaticallyGreater = |
| 1988 | LoopInfo->createTripCountGreaterCondition(TC, MBB&: *Prolog, Cond); |
| 1989 | if (!StaticallyGreater) { |
| 1990 | LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n" ); |
| 1991 | // Dynamically branch based on Cond. |
| 1992 | TII->insertBranch(MBB&: *Prolog, TBB: Epilog, FBB: Fallthrough, Cond, DL: DebugLoc()); |
| 1993 | } else if (*StaticallyGreater == false) { |
| 1994 | LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n" ); |
| 1995 | // Prolog never falls through; branch to epilog and orphan interior |
| 1996 | // blocks. Leave it to unreachable-block-elim to clean up. |
| 1997 | Prolog->removeSuccessor(Succ: Fallthrough); |
| 1998 | for (MachineInstr &P : Fallthrough->phis()) { |
| 1999 | P.removeOperand(OpNo: 2); |
| 2000 | P.removeOperand(OpNo: 1); |
| 2001 | } |
| 2002 | TII->insertUnconditionalBranch(MBB&: *Prolog, DestBB: Epilog, DL: DebugLoc()); |
| 2003 | KernelDisposed = true; |
| 2004 | } else { |
| 2005 | LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n" ); |
| 2006 | // Prolog always falls through; remove incoming values in epilog. |
| 2007 | Prolog->removeSuccessor(Succ: Epilog); |
| 2008 | for (MachineInstr &P : Epilog->phis()) { |
| 2009 | P.removeOperand(OpNo: 4); |
| 2010 | P.removeOperand(OpNo: 3); |
| 2011 | } |
| 2012 | } |
| 2013 | } |
| 2014 | |
| 2015 | if (!KernelDisposed) { |
| 2016 | LoopInfo->adjustTripCount(TripCountAdjust: -(Schedule.getNumStages() - 1)); |
| 2017 | LoopInfo->setPreheader(Prologs.back()); |
| 2018 | } else { |
| 2019 | LoopInfo->disposed(); |
| 2020 | } |
| 2021 | } |
| 2022 | |
| 2023 | void PeelingModuloScheduleExpander::rewriteKernel() { |
| 2024 | KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); |
| 2025 | KR.rewrite(); |
| 2026 | } |
| 2027 | |
| 2028 | void PeelingModuloScheduleExpander::expand() { |
| 2029 | BB = Schedule.getLoop()->getTopBlock(); |
| 2030 | Preheader = Schedule.getLoop()->getLoopPreheader(); |
| 2031 | LLVM_DEBUG(Schedule.dump()); |
| 2032 | LoopInfo = TII->analyzeLoopForPipelining(LoopBB: BB); |
| 2033 | assert(LoopInfo); |
| 2034 | |
| 2035 | rewriteKernel(); |
| 2036 | peelPrologAndEpilogs(); |
| 2037 | fixupBranches(); |
| 2038 | } |
| 2039 | |
| 2040 | void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() { |
| 2041 | BB = Schedule.getLoop()->getTopBlock(); |
| 2042 | Preheader = Schedule.getLoop()->getLoopPreheader(); |
| 2043 | |
| 2044 | // Dump the schedule before we invalidate and remap all its instructions. |
| 2045 | // Stash it in a string so we can print it if we found an error. |
| 2046 | std::string ScheduleDump; |
| 2047 | raw_string_ostream OS(ScheduleDump); |
| 2048 | Schedule.print(OS); |
| 2049 | OS.flush(); |
| 2050 | |
| 2051 | // First, run the normal ModuleScheduleExpander. We don't support any |
| 2052 | // InstrChanges. |
| 2053 | assert(LIS && "Requires LiveIntervals!" ); |
| 2054 | ModuloScheduleExpander MSE(MF, Schedule, *LIS, |
| 2055 | ModuloScheduleExpander::InstrChangesTy()); |
| 2056 | MSE.expand(); |
| 2057 | MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel(); |
| 2058 | if (!ExpandedKernel) { |
| 2059 | // The expander optimized away the kernel. We can't do any useful checking. |
| 2060 | MSE.cleanup(); |
| 2061 | return; |
| 2062 | } |
| 2063 | // Before running the KernelRewriter, re-add BB into the CFG. |
| 2064 | Preheader->addSuccessor(Succ: BB); |
| 2065 | |
| 2066 | // Now run the new expansion algorithm. |
| 2067 | KernelRewriter KR(*Schedule.getLoop(), Schedule, BB); |
| 2068 | KR.rewrite(); |
| 2069 | peelPrologAndEpilogs(); |
| 2070 | |
| 2071 | // Collect all illegal phis that the new algorithm created. We'll give these |
| 2072 | // to KernelOperandInfo. |
| 2073 | SmallPtrSet<MachineInstr *, 4> IllegalPhis; |
| 2074 | for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) { |
| 2075 | if (NI->isPHI()) |
| 2076 | IllegalPhis.insert(Ptr: &*NI); |
| 2077 | } |
| 2078 | |
| 2079 | // Co-iterate across both kernels. We expect them to be identical apart from |
| 2080 | // phis and full COPYs (we look through both). |
| 2081 | SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs; |
| 2082 | auto OI = ExpandedKernel->begin(); |
| 2083 | auto NI = BB->begin(); |
| 2084 | for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) { |
| 2085 | while (OI->isPHI() || OI->isFullCopy()) |
| 2086 | ++OI; |
| 2087 | while (NI->isPHI() || NI->isFullCopy()) |
| 2088 | ++NI; |
| 2089 | assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!" ); |
| 2090 | // Analyze every operand separately. |
| 2091 | for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin(); |
| 2092 | OOpI != OI->operands_end(); ++OOpI, ++NOpI) |
| 2093 | KOIs.emplace_back(Args: KernelOperandInfo(&*OOpI, MRI, IllegalPhis), |
| 2094 | Args: KernelOperandInfo(&*NOpI, MRI, IllegalPhis)); |
| 2095 | } |
| 2096 | |
| 2097 | bool Failed = false; |
| 2098 | for (auto &OldAndNew : KOIs) { |
| 2099 | if (OldAndNew.first == OldAndNew.second) |
| 2100 | continue; |
| 2101 | Failed = true; |
| 2102 | errs() << "Modulo kernel validation error: [\n" ; |
| 2103 | errs() << " [golden] " ; |
| 2104 | OldAndNew.first.print(OS&: errs()); |
| 2105 | errs() << " " ; |
| 2106 | OldAndNew.second.print(OS&: errs()); |
| 2107 | errs() << "]\n" ; |
| 2108 | } |
| 2109 | |
| 2110 | if (Failed) { |
| 2111 | errs() << "Golden reference kernel:\n" ; |
| 2112 | ExpandedKernel->print(OS&: errs()); |
| 2113 | errs() << "New kernel:\n" ; |
| 2114 | BB->print(OS&: errs()); |
| 2115 | errs() << ScheduleDump; |
| 2116 | report_fatal_error( |
| 2117 | reason: "Modulo kernel validation (-pipeliner-experimental-cg) failed" ); |
| 2118 | } |
| 2119 | |
| 2120 | // Cleanup by removing BB from the CFG again as the original |
| 2121 | // ModuloScheduleExpander intended. |
| 2122 | Preheader->removeSuccessor(Succ: BB); |
| 2123 | MSE.cleanup(); |
| 2124 | } |
| 2125 | |
| 2126 | MachineInstr *ModuloScheduleExpanderMVE::cloneInstr(MachineInstr *OldMI) { |
| 2127 | MachineInstr *NewMI = MF.CloneMachineInstr(Orig: OldMI); |
| 2128 | |
| 2129 | // TODO: Offset information needs to be corrected. |
| 2130 | NewMI->dropMemRefs(MF); |
| 2131 | |
| 2132 | return NewMI; |
| 2133 | } |
| 2134 | |
| 2135 | /// Create a dedicated exit for Loop. Exit is the original exit for Loop. |
| 2136 | /// If it is already dedicated exit, return it. Otherwise, insert a new |
| 2137 | /// block between them and return the new block. |
| 2138 | static MachineBasicBlock *createDedicatedExit(MachineBasicBlock *Loop, |
| 2139 | MachineBasicBlock *Exit, |
| 2140 | LiveIntervals &LIS) { |
| 2141 | if (Exit->pred_size() == 1) |
| 2142 | return Exit; |
| 2143 | |
| 2144 | MachineFunction *MF = Loop->getParent(); |
| 2145 | const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
| 2146 | |
| 2147 | MachineBasicBlock *NewExit = |
| 2148 | MF->CreateMachineBasicBlock(BB: Loop->getBasicBlock()); |
| 2149 | MF->insert(MBBI: Loop->getIterator(), MBB: NewExit); |
| 2150 | LIS.insertMBBInMaps(MBB: NewExit); |
| 2151 | |
| 2152 | MachineBasicBlock *TBB = nullptr, *FBB = nullptr; |
| 2153 | SmallVector<MachineOperand, 4> Cond; |
| 2154 | TII->analyzeBranch(MBB&: *Loop, TBB, FBB, Cond); |
| 2155 | if (TBB == Loop) |
| 2156 | FBB = NewExit; |
| 2157 | else if (FBB == Loop) |
| 2158 | TBB = NewExit; |
| 2159 | else |
| 2160 | llvm_unreachable("unexpected loop structure" ); |
| 2161 | TII->removeBranch(MBB&: *Loop); |
| 2162 | TII->insertBranch(MBB&: *Loop, TBB, FBB, Cond, DL: DebugLoc()); |
| 2163 | Loop->replaceSuccessor(Old: Exit, New: NewExit); |
| 2164 | TII->insertUnconditionalBranch(MBB&: *NewExit, DestBB: Exit, DL: DebugLoc()); |
| 2165 | NewExit->addSuccessor(Succ: Exit); |
| 2166 | |
| 2167 | Exit->replacePhiUsesWith(Old: Loop, New: NewExit); |
| 2168 | |
| 2169 | return NewExit; |
| 2170 | } |
| 2171 | |
| 2172 | /// Insert branch code into the end of MBB. It branches to GreaterThan if the |
| 2173 | /// remaining trip count for instructions in LastStage0Insts is greater than |
| 2174 | /// RequiredTC, and to Otherwise otherwise. |
| 2175 | void ModuloScheduleExpanderMVE::insertCondBranch(MachineBasicBlock &MBB, |
| 2176 | int RequiredTC, |
| 2177 | InstrMapTy &LastStage0Insts, |
| 2178 | MachineBasicBlock &GreaterThan, |
| 2179 | MachineBasicBlock &Otherwise) { |
| 2180 | SmallVector<MachineOperand, 4> Cond; |
| 2181 | LoopInfo->createRemainingIterationsGreaterCondition(TC: RequiredTC, MBB, Cond, |
| 2182 | LastStage0Insts); |
| 2183 | |
| 2184 | if (SwapBranchTargetsMVE) { |
| 2185 | // Set SwapBranchTargetsMVE to true if a target prefers to replace TBB and |
| 2186 | // FBB for optimal performance. |
| 2187 | if (TII->reverseBranchCondition(Cond)) |
| 2188 | llvm_unreachable("can not reverse branch condition" ); |
| 2189 | TII->insertBranch(MBB, TBB: &Otherwise, FBB: &GreaterThan, Cond, DL: DebugLoc()); |
| 2190 | } else { |
| 2191 | TII->insertBranch(MBB, TBB: &GreaterThan, FBB: &Otherwise, Cond, DL: DebugLoc()); |
| 2192 | } |
| 2193 | } |
| 2194 | |
| 2195 | /// Generate a pipelined loop that is unrolled by using MVE algorithm and any |
| 2196 | /// other necessary blocks. The control flow is modified to execute the |
| 2197 | /// pipelined loop if the trip count satisfies the condition, otherwise the |
| 2198 | /// original loop. The original loop is also used to execute the remainder |
| 2199 | /// iterations which occur due to unrolling. |
| 2200 | void ModuloScheduleExpanderMVE::generatePipelinedLoop() { |
| 2201 | // The control flow for pipelining with MVE: |
| 2202 | // |
| 2203 | // OrigPreheader: |
| 2204 | // // The block that is originally the loop preheader |
| 2205 | // goto Check |
| 2206 | // |
| 2207 | // Check: |
| 2208 | // // Check whether the trip count satisfies the requirements to pipeline. |
| 2209 | // if (LoopCounter > NumStages + NumUnroll - 2) |
| 2210 | // // The minimum number of iterations to pipeline = |
| 2211 | // // iterations executed in prolog/epilog (NumStages-1) + |
| 2212 | // // iterations executed in one kernel run (NumUnroll) |
| 2213 | // goto Prolog |
| 2214 | // // fallback to the original loop |
| 2215 | // goto NewPreheader |
| 2216 | // |
| 2217 | // Prolog: |
| 2218 | // // All prolog stages. There are no direct branches to the epilogue. |
| 2219 | // goto NewKernel |
| 2220 | // |
| 2221 | // NewKernel: |
| 2222 | // // NumUnroll copies of the kernel |
| 2223 | // if (LoopCounter > MVE-1) |
| 2224 | // goto NewKernel |
| 2225 | // goto Epilog |
| 2226 | // |
| 2227 | // Epilog: |
| 2228 | // // All epilog stages. |
| 2229 | // if (LoopCounter > 0) |
| 2230 | // // The remainder is executed in the original loop |
| 2231 | // goto NewPreheader |
| 2232 | // goto NewExit |
| 2233 | // |
| 2234 | // NewPreheader: |
| 2235 | // // Newly created preheader for the original loop. |
| 2236 | // // The initial values of the phis in the loop are merged from two paths. |
| 2237 | // NewInitVal = Phi OrigInitVal, Check, PipelineLastVal, Epilog |
| 2238 | // goto OrigKernel |
| 2239 | // |
| 2240 | // OrigKernel: |
| 2241 | // // The original loop block. |
| 2242 | // if (LoopCounter != 0) |
| 2243 | // goto OrigKernel |
| 2244 | // goto NewExit |
| 2245 | // |
| 2246 | // NewExit: |
| 2247 | // // Newly created dedicated exit for the original loop. |
| 2248 | // // Merge values which are referenced after the loop |
| 2249 | // Merged = Phi OrigVal, OrigKernel, PipelineVal, Epilog |
| 2250 | // goto OrigExit |
| 2251 | // |
| 2252 | // OrigExit: |
| 2253 | // // The block that is originally the loop exit. |
| 2254 | // // If it is already deicated exit, NewExit is not created. |
| 2255 | |
| 2256 | // An example of where each stage is executed: |
| 2257 | // Assume #Stages 3, #MVE 4, #Iterations 12 |
| 2258 | // Iter 0 1 2 3 4 5 6 7 8 9 10-11 |
| 2259 | // ------------------------------------------------- |
| 2260 | // Stage 0 Prolog#0 |
| 2261 | // Stage 1 0 Prolog#1 |
| 2262 | // Stage 2 1 0 Kernel Unroll#0 Iter#0 |
| 2263 | // Stage 2 1 0 Kernel Unroll#1 Iter#0 |
| 2264 | // Stage 2 1 0 Kernel Unroll#2 Iter#0 |
| 2265 | // Stage 2 1 0 Kernel Unroll#3 Iter#0 |
| 2266 | // Stage 2 1 0 Kernel Unroll#0 Iter#1 |
| 2267 | // Stage 2 1 0 Kernel Unroll#1 Iter#1 |
| 2268 | // Stage 2 1 0 Kernel Unroll#2 Iter#1 |
| 2269 | // Stage 2 1 0 Kernel Unroll#3 Iter#1 |
| 2270 | // Stage 2 1 Epilog#0 |
| 2271 | // Stage 2 Epilog#1 |
| 2272 | // Stage 0-2 OrigKernel |
| 2273 | |
| 2274 | LoopInfo = TII->analyzeLoopForPipelining(LoopBB: OrigKernel); |
| 2275 | assert(LoopInfo && "Must be able to analyze loop!" ); |
| 2276 | |
| 2277 | calcNumUnroll(); |
| 2278 | |
| 2279 | Check = MF.CreateMachineBasicBlock(BB: OrigKernel->getBasicBlock()); |
| 2280 | Prolog = MF.CreateMachineBasicBlock(BB: OrigKernel->getBasicBlock()); |
| 2281 | NewKernel = MF.CreateMachineBasicBlock(BB: OrigKernel->getBasicBlock()); |
| 2282 | Epilog = MF.CreateMachineBasicBlock(BB: OrigKernel->getBasicBlock()); |
| 2283 | NewPreheader = MF.CreateMachineBasicBlock(BB: OrigKernel->getBasicBlock()); |
| 2284 | |
| 2285 | MF.insert(MBBI: OrigKernel->getIterator(), MBB: Check); |
| 2286 | LIS.insertMBBInMaps(MBB: Check); |
| 2287 | MF.insert(MBBI: OrigKernel->getIterator(), MBB: Prolog); |
| 2288 | LIS.insertMBBInMaps(MBB: Prolog); |
| 2289 | MF.insert(MBBI: OrigKernel->getIterator(), MBB: NewKernel); |
| 2290 | LIS.insertMBBInMaps(MBB: NewKernel); |
| 2291 | MF.insert(MBBI: OrigKernel->getIterator(), MBB: Epilog); |
| 2292 | LIS.insertMBBInMaps(MBB: Epilog); |
| 2293 | MF.insert(MBBI: OrigKernel->getIterator(), MBB: NewPreheader); |
| 2294 | LIS.insertMBBInMaps(MBB: NewPreheader); |
| 2295 | |
| 2296 | NewExit = createDedicatedExit(Loop: OrigKernel, Exit: OrigExit, LIS); |
| 2297 | |
| 2298 | NewPreheader->transferSuccessorsAndUpdatePHIs(FromMBB: OrigPreheader); |
| 2299 | TII->insertUnconditionalBranch(MBB&: *NewPreheader, DestBB: OrigKernel, DL: DebugLoc()); |
| 2300 | |
| 2301 | OrigPreheader->addSuccessor(Succ: Check); |
| 2302 | TII->removeBranch(MBB&: *OrigPreheader); |
| 2303 | TII->insertUnconditionalBranch(MBB&: *OrigPreheader, DestBB: Check, DL: DebugLoc()); |
| 2304 | |
| 2305 | Check->addSuccessor(Succ: Prolog); |
| 2306 | Check->addSuccessor(Succ: NewPreheader); |
| 2307 | |
| 2308 | Prolog->addSuccessor(Succ: NewKernel); |
| 2309 | |
| 2310 | NewKernel->addSuccessor(Succ: NewKernel); |
| 2311 | NewKernel->addSuccessor(Succ: Epilog); |
| 2312 | |
| 2313 | Epilog->addSuccessor(Succ: NewPreheader); |
| 2314 | Epilog->addSuccessor(Succ: NewExit); |
| 2315 | |
| 2316 | InstrMapTy LastStage0Insts; |
| 2317 | insertCondBranch(MBB&: *Check, RequiredTC: Schedule.getNumStages() + NumUnroll - 2, |
| 2318 | LastStage0Insts, GreaterThan&: *Prolog, Otherwise&: *NewPreheader); |
| 2319 | |
| 2320 | // VRMaps map (prolog/kernel/epilog phase#, original register#) to new |
| 2321 | // register# |
| 2322 | SmallVector<ValueMapTy> PrologVRMap, KernelVRMap, EpilogVRMap; |
| 2323 | generateProlog(VRMap&: PrologVRMap); |
| 2324 | generateKernel(PrologVRMap, KernelVRMap, LastStage0Insts); |
| 2325 | generateEpilog(KernelVRMap, EpilogVRMap, LastStage0Insts); |
| 2326 | } |
| 2327 | |
| 2328 | /// Replace MI's use operands according to the maps. |
| 2329 | void ModuloScheduleExpanderMVE::updateInstrUse( |
| 2330 | MachineInstr *MI, int StageNum, int PhaseNum, |
| 2331 | SmallVectorImpl<ValueMapTy> &CurVRMap, |
| 2332 | SmallVectorImpl<ValueMapTy> *PrevVRMap) { |
| 2333 | // If MI is in the prolog/kernel/epilog block, CurVRMap is |
| 2334 | // PrologVRMap/KernelVRMap/EpilogVRMap respectively. |
| 2335 | // PrevVRMap is nullptr/PhiVRMap/KernelVRMap respectively. |
| 2336 | // Refer to the appropriate map according to the stage difference between |
| 2337 | // MI and the definition of an operand. |
| 2338 | |
| 2339 | for (MachineOperand &UseMO : MI->uses()) { |
| 2340 | if (!UseMO.isReg() || !UseMO.getReg().isVirtual()) |
| 2341 | continue; |
| 2342 | int DiffStage = 0; |
| 2343 | Register OrigReg = UseMO.getReg(); |
| 2344 | MachineInstr *DefInst = MRI.getVRegDef(Reg: OrigReg); |
| 2345 | if (!DefInst || DefInst->getParent() != OrigKernel) |
| 2346 | continue; |
| 2347 | Register InitReg; |
| 2348 | Register DefReg = OrigReg; |
| 2349 | if (DefInst->isPHI()) { |
| 2350 | ++DiffStage; |
| 2351 | Register LoopReg; |
| 2352 | getPhiRegs(Phi&: *DefInst, Loop: OrigKernel, InitVal&: InitReg, LoopVal&: LoopReg); |
| 2353 | // LoopReg is guaranteed to be defined within the loop by canApply() |
| 2354 | DefReg = LoopReg; |
| 2355 | DefInst = MRI.getVRegDef(Reg: LoopReg); |
| 2356 | } |
| 2357 | unsigned DefStageNum = Schedule.getStage(MI: DefInst); |
| 2358 | DiffStage += StageNum - DefStageNum; |
| 2359 | Register NewReg; |
| 2360 | if (PhaseNum >= DiffStage && CurVRMap[PhaseNum - DiffStage].count(Val: DefReg)) |
| 2361 | // NewReg is defined in a previous phase of the same block |
| 2362 | NewReg = CurVRMap[PhaseNum - DiffStage][DefReg]; |
| 2363 | else if (!PrevVRMap) |
| 2364 | // Since this is the first iteration, refer the initial register of the |
| 2365 | // loop |
| 2366 | NewReg = InitReg; |
| 2367 | else |
| 2368 | // Cases where DiffStage is larger than PhaseNum. |
| 2369 | // If MI is in the kernel block, the value is defined by the previous |
| 2370 | // iteration and PhiVRMap is referenced. If MI is in the epilog block, the |
| 2371 | // value is defined in the kernel block and KernelVRMap is referenced. |
| 2372 | NewReg = (*PrevVRMap)[PrevVRMap->size() - (DiffStage - PhaseNum)][DefReg]; |
| 2373 | |
| 2374 | const TargetRegisterClass *NRC = |
| 2375 | MRI.constrainRegClass(Reg: NewReg, RC: MRI.getRegClass(Reg: OrigReg)); |
| 2376 | if (NRC) |
| 2377 | UseMO.setReg(NewReg); |
| 2378 | else { |
| 2379 | Register SplitReg = MRI.createVirtualRegister(RegClass: MRI.getRegClass(Reg: OrigReg)); |
| 2380 | MachineInstr *NewCopy = BuildMI(BB&: *OrigKernel, I: MI, MIMD: MI->getDebugLoc(), |
| 2381 | MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: SplitReg) |
| 2382 | .addReg(RegNo: NewReg); |
| 2383 | LIS.InsertMachineInstrInMaps(MI&: *NewCopy); |
| 2384 | UseMO.setReg(SplitReg); |
| 2385 | } |
| 2386 | } |
| 2387 | } |
| 2388 | |
| 2389 | /// Return a phi if Reg is referenced by the phi. |
| 2390 | /// canApply() guarantees that at most only one such phi exists. |
| 2391 | static MachineInstr *getLoopPhiUser(Register Reg, MachineBasicBlock *Loop) { |
| 2392 | for (MachineInstr &Phi : Loop->phis()) { |
| 2393 | Register InitVal, LoopVal; |
| 2394 | getPhiRegs(Phi, Loop, InitVal, LoopVal); |
| 2395 | if (LoopVal == Reg) |
| 2396 | return Φ |
| 2397 | } |
| 2398 | return nullptr; |
| 2399 | } |
| 2400 | |
| 2401 | /// Generate phis for registers defined by OrigMI. |
| 2402 | void ModuloScheduleExpanderMVE::generatePhi( |
| 2403 | MachineInstr *OrigMI, int UnrollNum, |
| 2404 | SmallVectorImpl<ValueMapTy> &PrologVRMap, |
| 2405 | SmallVectorImpl<ValueMapTy> &KernelVRMap, |
| 2406 | SmallVectorImpl<ValueMapTy> &PhiVRMap) { |
| 2407 | int StageNum = Schedule.getStage(MI: OrigMI); |
| 2408 | bool UsePrologReg; |
| 2409 | if (Schedule.getNumStages() - NumUnroll + UnrollNum - 1 >= StageNum) |
| 2410 | UsePrologReg = true; |
| 2411 | else if (Schedule.getNumStages() - NumUnroll + UnrollNum == StageNum) |
| 2412 | UsePrologReg = false; |
| 2413 | else |
| 2414 | return; |
| 2415 | |
| 2416 | // Examples that show which stages are merged by phi. |
| 2417 | // Meaning of the symbol following the stage number: |
| 2418 | // a/b: Stages with the same letter are merged (UsePrologReg == true) |
| 2419 | // +: Merged with the initial value (UsePrologReg == false) |
| 2420 | // *: No phis required |
| 2421 | // |
| 2422 | // #Stages 3, #MVE 4 |
| 2423 | // Iter 0 1 2 3 4 5 6 7 8 |
| 2424 | // ----------------------------------------- |
| 2425 | // Stage 0a Prolog#0 |
| 2426 | // Stage 1a 0b Prolog#1 |
| 2427 | // Stage 2* 1* 0* Kernel Unroll#0 |
| 2428 | // Stage 2* 1* 0+ Kernel Unroll#1 |
| 2429 | // Stage 2* 1+ 0a Kernel Unroll#2 |
| 2430 | // Stage 2+ 1a 0b Kernel Unroll#3 |
| 2431 | // |
| 2432 | // #Stages 3, #MVE 2 |
| 2433 | // Iter 0 1 2 3 4 5 6 7 8 |
| 2434 | // ----------------------------------------- |
| 2435 | // Stage 0a Prolog#0 |
| 2436 | // Stage 1a 0b Prolog#1 |
| 2437 | // Stage 2* 1+ 0a Kernel Unroll#0 |
| 2438 | // Stage 2+ 1a 0b Kernel Unroll#1 |
| 2439 | // |
| 2440 | // #Stages 3, #MVE 1 |
| 2441 | // Iter 0 1 2 3 4 5 6 7 8 |
| 2442 | // ----------------------------------------- |
| 2443 | // Stage 0* Prolog#0 |
| 2444 | // Stage 1a 0b Prolog#1 |
| 2445 | // Stage 2+ 1a 0b Kernel Unroll#0 |
| 2446 | |
| 2447 | for (MachineOperand &DefMO : OrigMI->defs()) { |
| 2448 | if (!DefMO.isReg() || DefMO.isDead()) |
| 2449 | continue; |
| 2450 | Register OrigReg = DefMO.getReg(); |
| 2451 | auto NewReg = KernelVRMap[UnrollNum].find(Val: OrigReg); |
| 2452 | if (NewReg == KernelVRMap[UnrollNum].end()) |
| 2453 | continue; |
| 2454 | Register CorrespondReg; |
| 2455 | if (UsePrologReg) { |
| 2456 | int PrologNum = Schedule.getNumStages() - NumUnroll + UnrollNum - 1; |
| 2457 | CorrespondReg = PrologVRMap[PrologNum][OrigReg]; |
| 2458 | } else { |
| 2459 | MachineInstr *Phi = getLoopPhiUser(Reg: OrigReg, Loop: OrigKernel); |
| 2460 | if (!Phi) |
| 2461 | continue; |
| 2462 | CorrespondReg = getInitPhiReg(Phi&: *Phi, LoopBB: OrigKernel); |
| 2463 | } |
| 2464 | |
| 2465 | assert(CorrespondReg.isValid()); |
| 2466 | Register PhiReg = MRI.createVirtualRegister(RegClass: MRI.getRegClass(Reg: OrigReg)); |
| 2467 | MachineInstr *NewPhi = |
| 2468 | BuildMI(BB&: *NewKernel, I: NewKernel->getFirstNonPHI(), MIMD: DebugLoc(), |
| 2469 | MCID: TII->get(Opcode: TargetOpcode::PHI), DestReg: PhiReg) |
| 2470 | .addReg(RegNo: NewReg->second) |
| 2471 | .addMBB(MBB: NewKernel) |
| 2472 | .addReg(RegNo: CorrespondReg) |
| 2473 | .addMBB(MBB: Prolog); |
| 2474 | LIS.InsertMachineInstrInMaps(MI&: *NewPhi); |
| 2475 | PhiVRMap[UnrollNum][OrigReg] = PhiReg; |
| 2476 | } |
| 2477 | } |
| 2478 | |
| 2479 | static void replacePhiSrc(MachineInstr &Phi, Register OrigReg, Register NewReg, |
| 2480 | MachineBasicBlock *NewMBB) { |
| 2481 | for (unsigned Idx = 1; Idx < Phi.getNumOperands(); Idx += 2) { |
| 2482 | if (Phi.getOperand(i: Idx).getReg() == OrigReg) { |
| 2483 | Phi.getOperand(i: Idx).setReg(NewReg); |
| 2484 | Phi.getOperand(i: Idx + 1).setMBB(NewMBB); |
| 2485 | return; |
| 2486 | } |
| 2487 | } |
| 2488 | } |
| 2489 | |
| 2490 | /// Generate phis that merge values from multiple routes |
| 2491 | void ModuloScheduleExpanderMVE::mergeRegUsesAfterPipeline(Register OrigReg, |
| 2492 | Register NewReg) { |
| 2493 | SmallVector<MachineOperand *> UsesAfterLoop; |
| 2494 | SmallVector<MachineInstr *> LoopPhis; |
| 2495 | for (MachineRegisterInfo::use_iterator I = MRI.use_begin(RegNo: OrigReg), |
| 2496 | E = MRI.use_end(); |
| 2497 | I != E; ++I) { |
| 2498 | MachineOperand &O = *I; |
| 2499 | if (O.getParent()->getParent() != OrigKernel && |
| 2500 | O.getParent()->getParent() != Prolog && |
| 2501 | O.getParent()->getParent() != NewKernel && |
| 2502 | O.getParent()->getParent() != Epilog) |
| 2503 | UsesAfterLoop.push_back(Elt: &O); |
| 2504 | if (O.getParent()->getParent() == OrigKernel && O.getParent()->isPHI()) |
| 2505 | LoopPhis.push_back(Elt: O.getParent()); |
| 2506 | } |
| 2507 | |
| 2508 | // Merge the route that only execute the pipelined loop (when there are no |
| 2509 | // remaining iterations) with the route that execute the original loop. |
| 2510 | if (!UsesAfterLoop.empty()) { |
| 2511 | Register PhiReg = MRI.createVirtualRegister(RegClass: MRI.getRegClass(Reg: OrigReg)); |
| 2512 | MachineInstr *NewPhi = |
| 2513 | BuildMI(BB&: *NewExit, I: NewExit->getFirstNonPHI(), MIMD: DebugLoc(), |
| 2514 | MCID: TII->get(Opcode: TargetOpcode::PHI), DestReg: PhiReg) |
| 2515 | .addReg(RegNo: OrigReg) |
| 2516 | .addMBB(MBB: OrigKernel) |
| 2517 | .addReg(RegNo: NewReg) |
| 2518 | .addMBB(MBB: Epilog); |
| 2519 | LIS.InsertMachineInstrInMaps(MI&: *NewPhi); |
| 2520 | |
| 2521 | for (MachineOperand *MO : UsesAfterLoop) |
| 2522 | MO->setReg(PhiReg); |
| 2523 | |
| 2524 | // The interval of OrigReg is invalid and should be recalculated when |
| 2525 | // LiveInterval::getInterval() is called. |
| 2526 | if (LIS.hasInterval(Reg: OrigReg)) |
| 2527 | LIS.removeInterval(Reg: OrigReg); |
| 2528 | } |
| 2529 | |
| 2530 | // Merge routes from the pipelined loop and the bypassed route before the |
| 2531 | // original loop |
| 2532 | if (!LoopPhis.empty()) { |
| 2533 | for (MachineInstr *Phi : LoopPhis) { |
| 2534 | Register InitReg, LoopReg; |
| 2535 | getPhiRegs(Phi&: *Phi, Loop: OrigKernel, InitVal&: InitReg, LoopVal&: LoopReg); |
| 2536 | Register NewInit = MRI.createVirtualRegister(RegClass: MRI.getRegClass(Reg: InitReg)); |
| 2537 | MachineInstr *NewPhi = |
| 2538 | BuildMI(BB&: *NewPreheader, I: NewPreheader->getFirstNonPHI(), |
| 2539 | MIMD: Phi->getDebugLoc(), MCID: TII->get(Opcode: TargetOpcode::PHI), DestReg: NewInit) |
| 2540 | .addReg(RegNo: InitReg) |
| 2541 | .addMBB(MBB: Check) |
| 2542 | .addReg(RegNo: NewReg) |
| 2543 | .addMBB(MBB: Epilog); |
| 2544 | LIS.InsertMachineInstrInMaps(MI&: *NewPhi); |
| 2545 | replacePhiSrc(Phi&: *Phi, OrigReg: InitReg, NewReg: NewInit, NewMBB: NewPreheader); |
| 2546 | } |
| 2547 | } |
| 2548 | } |
| 2549 | |
| 2550 | void ModuloScheduleExpanderMVE::generateProlog( |
| 2551 | SmallVectorImpl<ValueMapTy> &PrologVRMap) { |
| 2552 | PrologVRMap.clear(); |
| 2553 | PrologVRMap.resize(N: Schedule.getNumStages() - 1); |
| 2554 | DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap; |
| 2555 | for (int PrologNum = 0; PrologNum < Schedule.getNumStages() - 1; |
| 2556 | ++PrologNum) { |
| 2557 | for (MachineInstr *MI : Schedule.getInstructions()) { |
| 2558 | if (MI->isPHI()) |
| 2559 | continue; |
| 2560 | int StageNum = Schedule.getStage(MI); |
| 2561 | if (StageNum > PrologNum) |
| 2562 | continue; |
| 2563 | MachineInstr *NewMI = cloneInstr(OldMI: MI); |
| 2564 | updateInstrDef(NewMI, VRMap&: PrologVRMap[PrologNum], LastDef: false); |
| 2565 | NewMIMap[NewMI] = {PrologNum, StageNum}; |
| 2566 | Prolog->push_back(MI: NewMI); |
| 2567 | LIS.InsertMachineInstrInMaps(MI&: *NewMI); |
| 2568 | } |
| 2569 | } |
| 2570 | |
| 2571 | for (auto I : NewMIMap) { |
| 2572 | MachineInstr *MI = I.first; |
| 2573 | int PrologNum = I.second.first; |
| 2574 | int StageNum = I.second.second; |
| 2575 | updateInstrUse(MI, StageNum, PhaseNum: PrologNum, CurVRMap&: PrologVRMap, PrevVRMap: nullptr); |
| 2576 | } |
| 2577 | |
| 2578 | LLVM_DEBUG({ |
| 2579 | dbgs() << "prolog:\n" ; |
| 2580 | Prolog->dump(); |
| 2581 | }); |
| 2582 | } |
| 2583 | |
| 2584 | void ModuloScheduleExpanderMVE::generateKernel( |
| 2585 | SmallVectorImpl<ValueMapTy> &PrologVRMap, |
| 2586 | SmallVectorImpl<ValueMapTy> &KernelVRMap, InstrMapTy &LastStage0Insts) { |
| 2587 | KernelVRMap.clear(); |
| 2588 | KernelVRMap.resize(N: NumUnroll); |
| 2589 | SmallVector<ValueMapTy> PhiVRMap; |
| 2590 | PhiVRMap.resize(N: NumUnroll); |
| 2591 | DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap; |
| 2592 | for (int UnrollNum = 0; UnrollNum < NumUnroll; ++UnrollNum) { |
| 2593 | for (MachineInstr *MI : Schedule.getInstructions()) { |
| 2594 | if (MI->isPHI()) |
| 2595 | continue; |
| 2596 | int StageNum = Schedule.getStage(MI); |
| 2597 | MachineInstr *NewMI = cloneInstr(OldMI: MI); |
| 2598 | if (UnrollNum == NumUnroll - 1) |
| 2599 | LastStage0Insts[MI] = NewMI; |
| 2600 | updateInstrDef(NewMI, VRMap&: KernelVRMap[UnrollNum], |
| 2601 | LastDef: (UnrollNum == NumUnroll - 1 && StageNum == 0)); |
| 2602 | generatePhi(OrigMI: MI, UnrollNum, PrologVRMap, KernelVRMap, PhiVRMap); |
| 2603 | NewMIMap[NewMI] = {UnrollNum, StageNum}; |
| 2604 | NewKernel->push_back(MI: NewMI); |
| 2605 | LIS.InsertMachineInstrInMaps(MI&: *NewMI); |
| 2606 | } |
| 2607 | } |
| 2608 | |
| 2609 | for (auto I : NewMIMap) { |
| 2610 | MachineInstr *MI = I.first; |
| 2611 | int UnrollNum = I.second.first; |
| 2612 | int StageNum = I.second.second; |
| 2613 | updateInstrUse(MI, StageNum, PhaseNum: UnrollNum, CurVRMap&: KernelVRMap, PrevVRMap: &PhiVRMap); |
| 2614 | } |
| 2615 | |
| 2616 | // If remaining trip count is greater than NumUnroll-1, loop continues |
| 2617 | insertCondBranch(MBB&: *NewKernel, RequiredTC: NumUnroll - 1, LastStage0Insts, GreaterThan&: *NewKernel, |
| 2618 | Otherwise&: *Epilog); |
| 2619 | |
| 2620 | LLVM_DEBUG({ |
| 2621 | dbgs() << "kernel:\n" ; |
| 2622 | NewKernel->dump(); |
| 2623 | }); |
| 2624 | } |
| 2625 | |
| 2626 | void ModuloScheduleExpanderMVE::generateEpilog( |
| 2627 | SmallVectorImpl<ValueMapTy> &KernelVRMap, |
| 2628 | SmallVectorImpl<ValueMapTy> &EpilogVRMap, InstrMapTy &LastStage0Insts) { |
| 2629 | EpilogVRMap.clear(); |
| 2630 | EpilogVRMap.resize(N: Schedule.getNumStages() - 1); |
| 2631 | DenseMap<MachineInstr *, std::pair<int, int>> NewMIMap; |
| 2632 | for (int EpilogNum = 0; EpilogNum < Schedule.getNumStages() - 1; |
| 2633 | ++EpilogNum) { |
| 2634 | for (MachineInstr *MI : Schedule.getInstructions()) { |
| 2635 | if (MI->isPHI()) |
| 2636 | continue; |
| 2637 | int StageNum = Schedule.getStage(MI); |
| 2638 | if (StageNum <= EpilogNum) |
| 2639 | continue; |
| 2640 | MachineInstr *NewMI = cloneInstr(OldMI: MI); |
| 2641 | updateInstrDef(NewMI, VRMap&: EpilogVRMap[EpilogNum], LastDef: StageNum - 1 == EpilogNum); |
| 2642 | NewMIMap[NewMI] = {EpilogNum, StageNum}; |
| 2643 | Epilog->push_back(MI: NewMI); |
| 2644 | LIS.InsertMachineInstrInMaps(MI&: *NewMI); |
| 2645 | } |
| 2646 | } |
| 2647 | |
| 2648 | for (auto I : NewMIMap) { |
| 2649 | MachineInstr *MI = I.first; |
| 2650 | int EpilogNum = I.second.first; |
| 2651 | int StageNum = I.second.second; |
| 2652 | updateInstrUse(MI, StageNum, PhaseNum: EpilogNum, CurVRMap&: EpilogVRMap, PrevVRMap: &KernelVRMap); |
| 2653 | } |
| 2654 | |
| 2655 | // If there are remaining iterations, they are executed in the original loop. |
| 2656 | // Instructions related to loop control, such as loop counter comparison, |
| 2657 | // are indicated by shouldIgnoreForPipelining() and are assumed to be placed |
| 2658 | // in stage 0. Thus, the map is for the last one in the kernel. |
| 2659 | insertCondBranch(MBB&: *Epilog, RequiredTC: 0, LastStage0Insts, GreaterThan&: *NewPreheader, Otherwise&: *NewExit); |
| 2660 | |
| 2661 | LLVM_DEBUG({ |
| 2662 | dbgs() << "epilog:\n" ; |
| 2663 | Epilog->dump(); |
| 2664 | }); |
| 2665 | } |
| 2666 | |
| 2667 | /// Calculate the number of unroll required and set it to NumUnroll |
| 2668 | void ModuloScheduleExpanderMVE::calcNumUnroll() { |
| 2669 | DenseMap<MachineInstr *, unsigned> Inst2Idx; |
| 2670 | NumUnroll = 1; |
| 2671 | for (unsigned I = 0; I < Schedule.getInstructions().size(); ++I) |
| 2672 | Inst2Idx[Schedule.getInstructions()[I]] = I; |
| 2673 | |
| 2674 | for (MachineInstr *MI : Schedule.getInstructions()) { |
| 2675 | if (MI->isPHI()) |
| 2676 | continue; |
| 2677 | int StageNum = Schedule.getStage(MI); |
| 2678 | for (const MachineOperand &MO : MI->uses()) { |
| 2679 | if (!MO.isReg() || !MO.getReg().isVirtual()) |
| 2680 | continue; |
| 2681 | MachineInstr *DefMI = MRI.getVRegDef(Reg: MO.getReg()); |
| 2682 | if (DefMI->getParent() != OrigKernel) |
| 2683 | continue; |
| 2684 | |
| 2685 | int NumUnrollLocal = 1; |
| 2686 | if (DefMI->isPHI()) { |
| 2687 | ++NumUnrollLocal; |
| 2688 | // canApply() guarantees that DefMI is not phi and is an instruction in |
| 2689 | // the loop |
| 2690 | DefMI = MRI.getVRegDef(Reg: getLoopPhiReg(Phi&: *DefMI, LoopBB: OrigKernel)); |
| 2691 | } |
| 2692 | NumUnrollLocal += StageNum - Schedule.getStage(MI: DefMI); |
| 2693 | if (Inst2Idx[MI] <= Inst2Idx[DefMI]) |
| 2694 | --NumUnrollLocal; |
| 2695 | NumUnroll = std::max(a: NumUnroll, b: NumUnrollLocal); |
| 2696 | } |
| 2697 | } |
| 2698 | LLVM_DEBUG(dbgs() << "NumUnroll: " << NumUnroll << "\n" ); |
| 2699 | } |
| 2700 | |
| 2701 | /// Create new virtual registers for definitions of NewMI and update NewMI. |
| 2702 | /// If the definitions are referenced after the pipelined loop, phis are |
| 2703 | /// created to merge with other routes. |
| 2704 | void ModuloScheduleExpanderMVE::updateInstrDef(MachineInstr *NewMI, |
| 2705 | ValueMapTy &VRMap, |
| 2706 | bool LastDef) { |
| 2707 | for (MachineOperand &MO : NewMI->all_defs()) { |
| 2708 | if (!MO.getReg().isVirtual()) |
| 2709 | continue; |
| 2710 | Register Reg = MO.getReg(); |
| 2711 | const TargetRegisterClass *RC = MRI.getRegClass(Reg); |
| 2712 | Register NewReg = MRI.createVirtualRegister(RegClass: RC); |
| 2713 | MO.setReg(NewReg); |
| 2714 | VRMap[Reg] = NewReg; |
| 2715 | if (LastDef) |
| 2716 | mergeRegUsesAfterPipeline(OrigReg: Reg, NewReg); |
| 2717 | } |
| 2718 | } |
| 2719 | |
| 2720 | void ModuloScheduleExpanderMVE::expand() { |
| 2721 | OrigKernel = Schedule.getLoop()->getTopBlock(); |
| 2722 | OrigPreheader = Schedule.getLoop()->getLoopPreheader(); |
| 2723 | OrigExit = Schedule.getLoop()->getExitBlock(); |
| 2724 | |
| 2725 | LLVM_DEBUG(Schedule.dump()); |
| 2726 | |
| 2727 | generatePipelinedLoop(); |
| 2728 | } |
| 2729 | |
| 2730 | /// Check if ModuloScheduleExpanderMVE can be applied to L |
| 2731 | bool ModuloScheduleExpanderMVE::canApply(MachineLoop &L) { |
| 2732 | if (!L.getExitBlock()) { |
| 2733 | LLVM_DEBUG(dbgs() << "Can not apply MVE expander: No single exit block.\n" ); |
| 2734 | return false; |
| 2735 | } |
| 2736 | |
| 2737 | MachineBasicBlock *BB = L.getTopBlock(); |
| 2738 | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); |
| 2739 | |
| 2740 | // Put some constraints on the operands of the phis to simplify the |
| 2741 | // transformation |
| 2742 | DenseSet<Register> UsedByPhi; |
| 2743 | for (MachineInstr &MI : BB->phis()) { |
| 2744 | // Registers defined by phis must be used only inside the loop and be never |
| 2745 | // used by phis. |
| 2746 | for (MachineOperand &MO : MI.defs()) |
| 2747 | if (MO.isReg()) |
| 2748 | for (MachineInstr &Ref : MRI.use_instructions(Reg: MO.getReg())) |
| 2749 | if (Ref.getParent() != BB || Ref.isPHI()) { |
| 2750 | LLVM_DEBUG(dbgs() << "Can not apply MVE expander: A phi result is " |
| 2751 | "referenced outside of the loop or by phi.\n" ); |
| 2752 | return false; |
| 2753 | } |
| 2754 | |
| 2755 | // A source register from the loop block must be defined inside the loop. |
| 2756 | // A register defined inside the loop must be referenced by only one phi at |
| 2757 | // most. |
| 2758 | Register InitVal, LoopVal; |
| 2759 | getPhiRegs(Phi&: MI, Loop: MI.getParent(), InitVal, LoopVal); |
| 2760 | if (!Register(LoopVal).isVirtual() || |
| 2761 | MRI.getVRegDef(Reg: LoopVal)->getParent() != BB) { |
| 2762 | LLVM_DEBUG( |
| 2763 | dbgs() << "Can not apply MVE expander: A phi source value coming " |
| 2764 | "from the loop is not defined in the loop.\n" ); |
| 2765 | return false; |
| 2766 | } |
| 2767 | if (UsedByPhi.count(V: LoopVal)) { |
| 2768 | LLVM_DEBUG(dbgs() << "Can not apply MVE expander: A value defined in the " |
| 2769 | "loop is referenced by two or more phis.\n" ); |
| 2770 | return false; |
| 2771 | } |
| 2772 | UsedByPhi.insert(V: LoopVal); |
| 2773 | } |
| 2774 | |
| 2775 | return true; |
| 2776 | } |
| 2777 | |
| 2778 | //===----------------------------------------------------------------------===// |
| 2779 | // ModuloScheduleTestPass implementation |
| 2780 | //===----------------------------------------------------------------------===// |
| 2781 | // This pass constructs a ModuloSchedule from its module and runs |
| 2782 | // ModuloScheduleExpander. |
| 2783 | // |
| 2784 | // The module is expected to contain a single-block analyzable loop. |
| 2785 | // The total order of instructions is taken from the loop as-is. |
| 2786 | // Instructions are expected to be annotated with a PostInstrSymbol. |
| 2787 | // This PostInstrSymbol must have the following format: |
| 2788 | // "Stage=%d Cycle=%d". |
| 2789 | //===----------------------------------------------------------------------===// |
| 2790 | |
| 2791 | namespace { |
| 2792 | class ModuloScheduleTest : public MachineFunctionPass { |
| 2793 | public: |
| 2794 | static char ID; |
| 2795 | |
| 2796 | ModuloScheduleTest() : MachineFunctionPass(ID) { |
| 2797 | initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry()); |
| 2798 | } |
| 2799 | |
| 2800 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 2801 | void runOnLoop(MachineFunction &MF, MachineLoop &L); |
| 2802 | |
| 2803 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 2804 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
| 2805 | AU.addRequired<LiveIntervalsWrapperPass>(); |
| 2806 | MachineFunctionPass::getAnalysisUsage(AU); |
| 2807 | } |
| 2808 | }; |
| 2809 | } // namespace |
| 2810 | |
| 2811 | char ModuloScheduleTest::ID = 0; |
| 2812 | |
| 2813 | INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test" , |
| 2814 | "Modulo Schedule test pass" , false, false) |
| 2815 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) |
| 2816 | INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) |
| 2817 | INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test" , |
| 2818 | "Modulo Schedule test pass" , false, false) |
| 2819 | |
| 2820 | bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) { |
| 2821 | MachineLoopInfo &MLI = getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
| 2822 | for (auto *L : MLI) { |
| 2823 | if (L->getTopBlock() != L->getBottomBlock()) |
| 2824 | continue; |
| 2825 | runOnLoop(MF, L&: *L); |
| 2826 | return false; |
| 2827 | } |
| 2828 | return false; |
| 2829 | } |
| 2830 | |
| 2831 | static void parseSymbolString(StringRef S, int &Cycle, int &Stage) { |
| 2832 | std::pair<StringRef, StringRef> StageAndCycle = getToken(Source: S, Delimiters: "_" ); |
| 2833 | std::pair<StringRef, StringRef> StageTokenAndValue = |
| 2834 | getToken(Source: StageAndCycle.first, Delimiters: "-" ); |
| 2835 | std::pair<StringRef, StringRef> CycleTokenAndValue = |
| 2836 | getToken(Source: StageAndCycle.second, Delimiters: "-" ); |
| 2837 | if (StageTokenAndValue.first != "Stage" || |
| 2838 | CycleTokenAndValue.first != "_Cycle" ) { |
| 2839 | llvm_unreachable( |
| 2840 | "Bad post-instr symbol syntax: see comment in ModuloScheduleTest" ); |
| 2841 | return; |
| 2842 | } |
| 2843 | |
| 2844 | StageTokenAndValue.second.drop_front().getAsInteger(Radix: 10, Result&: Stage); |
| 2845 | CycleTokenAndValue.second.drop_front().getAsInteger(Radix: 10, Result&: Cycle); |
| 2846 | |
| 2847 | dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n" ; |
| 2848 | } |
| 2849 | |
| 2850 | void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) { |
| 2851 | LiveIntervals &LIS = getAnalysis<LiveIntervalsWrapperPass>().getLIS(); |
| 2852 | MachineBasicBlock *BB = L.getTopBlock(); |
| 2853 | dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n" ; |
| 2854 | |
| 2855 | DenseMap<MachineInstr *, int> Cycle, Stage; |
| 2856 | std::vector<MachineInstr *> Instrs; |
| 2857 | for (MachineInstr &MI : *BB) { |
| 2858 | if (MI.isTerminator()) |
| 2859 | continue; |
| 2860 | Instrs.push_back(x: &MI); |
| 2861 | if (MCSymbol *Sym = MI.getPostInstrSymbol()) { |
| 2862 | dbgs() << "Parsing post-instr symbol for " << MI; |
| 2863 | parseSymbolString(S: Sym->getName(), Cycle&: Cycle[&MI], Stage&: Stage[&MI]); |
| 2864 | } |
| 2865 | } |
| 2866 | |
| 2867 | ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle), |
| 2868 | std::move(Stage)); |
| 2869 | ModuloScheduleExpander MSE( |
| 2870 | MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy()); |
| 2871 | MSE.expand(); |
| 2872 | MSE.cleanup(); |
| 2873 | } |
| 2874 | |
| 2875 | //===----------------------------------------------------------------------===// |
| 2876 | // ModuloScheduleTestAnnotater implementation |
| 2877 | //===----------------------------------------------------------------------===// |
| 2878 | |
| 2879 | void ModuloScheduleTestAnnotater::annotate() { |
| 2880 | for (MachineInstr *MI : S.getInstructions()) { |
| 2881 | SmallVector<char, 16> SV; |
| 2882 | raw_svector_ostream OS(SV); |
| 2883 | OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI); |
| 2884 | MCSymbol *Sym = MF.getContext().getOrCreateSymbol(Name: OS.str()); |
| 2885 | MI->setPostInstrSymbol(MF, Symbol: Sym); |
| 2886 | } |
| 2887 | } |
| 2888 | |