1 | //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This pass eliminates machine instruction PHI nodes by inserting copy |
10 | // instructions. This destroys SSA information, but is the desired input for |
11 | // some register allocators. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "llvm/CodeGen/PHIElimination.h" |
16 | #include "PHIEliminationUtils.h" |
17 | #include "llvm/ADT/DenseMap.h" |
18 | #include "llvm/ADT/SmallPtrSet.h" |
19 | #include "llvm/ADT/Statistic.h" |
20 | #include "llvm/Analysis/LoopInfo.h" |
21 | #include "llvm/CodeGen/LiveInterval.h" |
22 | #include "llvm/CodeGen/LiveIntervals.h" |
23 | #include "llvm/CodeGen/LiveVariables.h" |
24 | #include "llvm/CodeGen/MachineBasicBlock.h" |
25 | #include "llvm/CodeGen/MachineDomTreeUpdater.h" |
26 | #include "llvm/CodeGen/MachineDominators.h" |
27 | #include "llvm/CodeGen/MachineFunction.h" |
28 | #include "llvm/CodeGen/MachineFunctionPass.h" |
29 | #include "llvm/CodeGen/MachineInstr.h" |
30 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
31 | #include "llvm/CodeGen/MachineLoopInfo.h" |
32 | #include "llvm/CodeGen/MachineOperand.h" |
33 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
34 | #include "llvm/CodeGen/SlotIndexes.h" |
35 | #include "llvm/CodeGen/TargetInstrInfo.h" |
36 | #include "llvm/CodeGen/TargetOpcodes.h" |
37 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
38 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
39 | #include "llvm/Pass.h" |
40 | #include "llvm/Support/CommandLine.h" |
41 | #include "llvm/Support/Debug.h" |
42 | #include "llvm/Support/raw_ostream.h" |
43 | #include <cassert> |
44 | #include <iterator> |
45 | #include <utility> |
46 | |
47 | using namespace llvm; |
48 | |
49 | #define DEBUG_TYPE "phi-node-elimination" |
50 | |
51 | static cl::opt<bool> |
52 | DisableEdgeSplitting("disable-phi-elim-edge-splitting" , cl::init(Val: false), |
53 | cl::Hidden, |
54 | cl::desc("Disable critical edge splitting " |
55 | "during PHI elimination" )); |
56 | |
57 | static cl::opt<bool> |
58 | SplitAllCriticalEdges("phi-elim-split-all-critical-edges" , cl::init(Val: false), |
59 | cl::Hidden, |
60 | cl::desc("Split all critical edges during " |
61 | "PHI elimination" )); |
62 | |
63 | static cl::opt<bool> NoPhiElimLiveOutEarlyExit( |
64 | "no-phi-elim-live-out-early-exit" , cl::init(Val: false), cl::Hidden, |
65 | cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true." )); |
66 | |
67 | namespace { |
68 | |
69 | class PHIEliminationImpl { |
70 | MachineRegisterInfo *MRI = nullptr; // Machine register information |
71 | LiveVariables *LV = nullptr; |
72 | LiveIntervals *LIS = nullptr; |
73 | MachineLoopInfo *MLI = nullptr; |
74 | MachineDominatorTree *MDT = nullptr; |
75 | |
76 | /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions |
77 | /// in predecessor basic blocks. |
78 | bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); |
79 | |
80 | void LowerPHINode(MachineBasicBlock &MBB, |
81 | MachineBasicBlock::iterator LastPHIIt, |
82 | bool AllEdgesCritical); |
83 | |
84 | /// analyzePHINodes - Gather information about the PHI nodes in |
85 | /// here. In particular, we want to map the number of uses of a virtual |
86 | /// register which is used in a PHI node. We map that to the BB the |
87 | /// vreg is coming from. This is used later to determine when the vreg |
88 | /// is killed in the BB. |
89 | void analyzePHINodes(const MachineFunction &MF); |
90 | |
91 | /// Split critical edges where necessary for good coalescer performance. |
92 | bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, |
93 | MachineLoopInfo *MLI, |
94 | std::vector<SparseBitVector<>> *LiveInSets, |
95 | MachineDomTreeUpdater &MDTU); |
96 | |
97 | // These functions are temporary abstractions around LiveVariables and |
98 | // LiveIntervals, so they can go away when LiveVariables does. |
99 | bool isLiveIn(Register Reg, const MachineBasicBlock *MBB); |
100 | bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB); |
101 | |
102 | using BBVRegPair = std::pair<unsigned, Register>; |
103 | using VRegPHIUse = DenseMap<BBVRegPair, unsigned>; |
104 | |
105 | // Count the number of non-undef PHI uses of each register in each BB. |
106 | VRegPHIUse VRegPHIUseCount; |
107 | |
108 | // Defs of PHI sources which are implicit_def. |
109 | SmallPtrSet<MachineInstr *, 4> ImpDefs; |
110 | |
111 | // Map reusable lowered PHI node -> incoming join register. |
112 | using LoweredPHIMap = |
113 | DenseMap<MachineInstr *, Register, MachineInstrExpressionTrait>; |
114 | LoweredPHIMap LoweredPHIs; |
115 | |
116 | MachineFunctionPass *P = nullptr; |
117 | MachineFunctionAnalysisManager *MFAM = nullptr; |
118 | |
119 | public: |
120 | PHIEliminationImpl(MachineFunctionPass *P) : P(P) { |
121 | auto *LVWrapper = P->getAnalysisIfAvailable<LiveVariablesWrapperPass>(); |
122 | auto *LISWrapper = P->getAnalysisIfAvailable<LiveIntervalsWrapperPass>(); |
123 | auto *MLIWrapper = P->getAnalysisIfAvailable<MachineLoopInfoWrapperPass>(); |
124 | auto *MDTWrapper = |
125 | P->getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>(); |
126 | LV = LVWrapper ? &LVWrapper->getLV() : nullptr; |
127 | LIS = LISWrapper ? &LISWrapper->getLIS() : nullptr; |
128 | MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr; |
129 | MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr; |
130 | } |
131 | |
132 | PHIEliminationImpl(MachineFunction &MF, MachineFunctionAnalysisManager &AM) |
133 | : LV(AM.getCachedResult<LiveVariablesAnalysis>(IR&: MF)), |
134 | LIS(AM.getCachedResult<LiveIntervalsAnalysis>(IR&: MF)), |
135 | MLI(AM.getCachedResult<MachineLoopAnalysis>(IR&: MF)), |
136 | MDT(AM.getCachedResult<MachineDominatorTreeAnalysis>(IR&: MF)), MFAM(&AM) {} |
137 | |
138 | bool run(MachineFunction &MF); |
139 | }; |
140 | |
141 | class PHIElimination : public MachineFunctionPass { |
142 | public: |
143 | static char ID; // Pass identification, replacement for typeid |
144 | |
145 | PHIElimination() : MachineFunctionPass(ID) { |
146 | initializePHIEliminationPass(*PassRegistry::getPassRegistry()); |
147 | } |
148 | |
149 | bool runOnMachineFunction(MachineFunction &MF) override { |
150 | PHIEliminationImpl Impl(this); |
151 | return Impl.run(MF); |
152 | } |
153 | |
154 | MachineFunctionProperties getSetProperties() const override { |
155 | return MachineFunctionProperties().setNoPHIs(); |
156 | } |
157 | |
158 | void getAnalysisUsage(AnalysisUsage &AU) const override; |
159 | }; |
160 | |
161 | } // end anonymous namespace |
162 | |
163 | PreservedAnalyses |
164 | PHIEliminationPass::run(MachineFunction &MF, |
165 | MachineFunctionAnalysisManager &MFAM) { |
166 | PHIEliminationImpl Impl(MF, MFAM); |
167 | bool Changed = Impl.run(MF); |
168 | if (!Changed) |
169 | return PreservedAnalyses::all(); |
170 | auto PA = getMachineFunctionPassPreservedAnalyses(); |
171 | PA.preserve<LiveIntervalsAnalysis>(); |
172 | PA.preserve<LiveVariablesAnalysis>(); |
173 | PA.preserve<SlotIndexesAnalysis>(); |
174 | PA.preserve<MachineDominatorTreeAnalysis>(); |
175 | PA.preserve<MachineLoopAnalysis>(); |
176 | return PA; |
177 | } |
178 | |
179 | STATISTIC(NumLowered, "Number of phis lowered" ); |
180 | STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split" ); |
181 | STATISTIC(NumReused, "Number of reused lowered phis" ); |
182 | |
183 | char PHIElimination::ID = 0; |
184 | |
185 | char &llvm::PHIEliminationID = PHIElimination::ID; |
186 | |
187 | INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE, |
188 | "Eliminate PHI nodes for register allocation" , false, |
189 | false) |
190 | INITIALIZE_PASS_DEPENDENCY(LiveVariablesWrapperPass) |
191 | INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE, |
192 | "Eliminate PHI nodes for register allocation" , false, false) |
193 | |
194 | void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { |
195 | AU.addUsedIfAvailable<LiveVariablesWrapperPass>(); |
196 | AU.addPreserved<LiveVariablesWrapperPass>(); |
197 | AU.addPreserved<SlotIndexesWrapperPass>(); |
198 | AU.addPreserved<LiveIntervalsWrapperPass>(); |
199 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
200 | AU.addPreserved<MachineLoopInfoWrapperPass>(); |
201 | MachineFunctionPass::getAnalysisUsage(AU); |
202 | } |
203 | |
204 | bool PHIEliminationImpl::run(MachineFunction &MF) { |
205 | MRI = &MF.getRegInfo(); |
206 | |
207 | MachineDominatorTree *MDT = nullptr; |
208 | if (P) { |
209 | auto *MDTWrapper = |
210 | P->getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>(); |
211 | MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr; |
212 | } else { |
213 | MDT = MFAM->getCachedResult<MachineDominatorTreeAnalysis>(IR&: MF); |
214 | } |
215 | MachineDomTreeUpdater MDTU(MDT, MachineDomTreeUpdater::UpdateStrategy::Lazy); |
216 | |
217 | bool Changed = false; |
218 | |
219 | // Split critical edges to help the coalescer. |
220 | if (!DisableEdgeSplitting && (LV || LIS)) { |
221 | // A set of live-in regs for each MBB which is used to update LV |
222 | // efficiently also with large functions. |
223 | std::vector<SparseBitVector<>> LiveInSets; |
224 | if (LV) { |
225 | LiveInSets.resize(new_size: MF.size()); |
226 | for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) { |
227 | // Set the bit for this register for each MBB where it is |
228 | // live-through or live-in (killed). |
229 | Register VirtReg = Register::index2VirtReg(Index); |
230 | MachineInstr *DefMI = MRI->getVRegDef(Reg: VirtReg); |
231 | if (!DefMI) |
232 | continue; |
233 | LiveVariables::VarInfo &VI = LV->getVarInfo(Reg: VirtReg); |
234 | SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin(); |
235 | SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end(); |
236 | while (AliveBlockItr != EndItr) { |
237 | unsigned BlockNum = *(AliveBlockItr++); |
238 | LiveInSets[BlockNum].set(Index); |
239 | } |
240 | // The register is live into an MBB in which it is killed but not |
241 | // defined. See comment for VarInfo in LiveVariables.h. |
242 | MachineBasicBlock *DefMBB = DefMI->getParent(); |
243 | if (VI.Kills.size() > 1 || |
244 | (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB)) |
245 | for (auto *MI : VI.Kills) |
246 | LiveInSets[MI->getParent()->getNumber()].set(Index); |
247 | } |
248 | } |
249 | |
250 | for (auto &MBB : MF) |
251 | Changed |= |
252 | SplitPHIEdges(MF, MBB, MLI, LiveInSets: (LV ? &LiveInSets : nullptr), MDTU); |
253 | } |
254 | |
255 | // This pass takes the function out of SSA form. |
256 | MRI->leaveSSA(); |
257 | |
258 | // Populate VRegPHIUseCount |
259 | if (LV || LIS) |
260 | analyzePHINodes(MF); |
261 | |
262 | // Eliminate PHI instructions by inserting copies into predecessor blocks. |
263 | for (auto &MBB : MF) |
264 | Changed |= EliminatePHINodes(MF, MBB); |
265 | |
266 | // Remove dead IMPLICIT_DEF instructions. |
267 | for (MachineInstr *DefMI : ImpDefs) { |
268 | Register DefReg = DefMI->getOperand(i: 0).getReg(); |
269 | if (MRI->use_nodbg_empty(RegNo: DefReg)) { |
270 | if (LIS) |
271 | LIS->RemoveMachineInstrFromMaps(MI&: *DefMI); |
272 | DefMI->eraseFromParent(); |
273 | } |
274 | } |
275 | |
276 | // Clean up the lowered PHI instructions. |
277 | for (auto &I : LoweredPHIs) { |
278 | if (LIS) |
279 | LIS->RemoveMachineInstrFromMaps(MI&: *I.first); |
280 | MF.deleteMachineInstr(MI: I.first); |
281 | } |
282 | |
283 | LoweredPHIs.clear(); |
284 | ImpDefs.clear(); |
285 | VRegPHIUseCount.clear(); |
286 | |
287 | MF.getProperties().setNoPHIs(); |
288 | |
289 | return Changed; |
290 | } |
291 | |
292 | /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in |
293 | /// predecessor basic blocks. |
294 | bool PHIEliminationImpl::EliminatePHINodes(MachineFunction &MF, |
295 | MachineBasicBlock &MBB) { |
296 | if (MBB.empty() || !MBB.front().isPHI()) |
297 | return false; // Quick exit for basic blocks without PHIs. |
298 | |
299 | // Get an iterator to the last PHI node. |
300 | MachineBasicBlock::iterator LastPHIIt = |
301 | std::prev(x: MBB.SkipPHIsAndLabels(I: MBB.begin())); |
302 | |
303 | // If all incoming edges are critical, we try to deduplicate identical PHIs so |
304 | // that we generate fewer copies. If at any edge is non-critical, we either |
305 | // have less than two predecessors (=> no PHIs) or a predecessor has only us |
306 | // as a successor (=> identical PHI node can't occur in different block). |
307 | bool AllEdgesCritical = MBB.pred_size() >= 2; |
308 | for (MachineBasicBlock *Pred : MBB.predecessors()) { |
309 | if (Pred->succ_size() < 2) { |
310 | AllEdgesCritical = false; |
311 | break; |
312 | } |
313 | } |
314 | |
315 | while (MBB.front().isPHI()) |
316 | LowerPHINode(MBB, LastPHIIt, AllEdgesCritical); |
317 | |
318 | return true; |
319 | } |
320 | |
321 | /// Return true if all defs of VirtReg are implicit-defs. |
322 | /// This includes registers with no defs. |
323 | static bool isImplicitlyDefined(Register VirtReg, |
324 | const MachineRegisterInfo &MRI) { |
325 | for (MachineInstr &DI : MRI.def_instructions(Reg: VirtReg)) |
326 | if (!DI.isImplicitDef()) |
327 | return false; |
328 | return true; |
329 | } |
330 | |
331 | /// Return true if all sources of the phi node are implicit_def's, or undef's. |
332 | static bool allPhiOperandsUndefined(const MachineInstr &MPhi, |
333 | const MachineRegisterInfo &MRI) { |
334 | for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) { |
335 | const MachineOperand &MO = MPhi.getOperand(i: I); |
336 | if (!isImplicitlyDefined(VirtReg: MO.getReg(), MRI) && !MO.isUndef()) |
337 | return false; |
338 | } |
339 | return true; |
340 | } |
341 | /// LowerPHINode - Lower the PHI node at the top of the specified block. |
342 | void PHIEliminationImpl::LowerPHINode(MachineBasicBlock &MBB, |
343 | MachineBasicBlock::iterator LastPHIIt, |
344 | bool AllEdgesCritical) { |
345 | ++NumLowered; |
346 | |
347 | MachineBasicBlock::iterator AfterPHIsIt = std::next(x: LastPHIIt); |
348 | |
349 | // Unlink the PHI node from the basic block, but don't delete the PHI yet. |
350 | MachineInstr *MPhi = MBB.remove(I: &*MBB.begin()); |
351 | |
352 | unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; |
353 | Register DestReg = MPhi->getOperand(i: 0).getReg(); |
354 | assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs" ); |
355 | bool isDead = MPhi->getOperand(i: 0).isDead(); |
356 | |
357 | // Create a new register for the incoming PHI arguments. |
358 | MachineFunction &MF = *MBB.getParent(); |
359 | Register IncomingReg; |
360 | bool EliminateNow = true; // delay elimination of nodes in LoweredPHIs |
361 | bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? |
362 | |
363 | // Insert a register to register copy at the top of the current block (but |
364 | // after any remaining phi nodes) which copies the new incoming register |
365 | // into the phi node destination. |
366 | MachineInstr *PHICopy = nullptr; |
367 | const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); |
368 | if (allPhiOperandsUndefined(MPhi: *MPhi, MRI: *MRI)) |
369 | // If all sources of a PHI node are implicit_def or undef uses, just emit an |
370 | // implicit_def instead of a copy. |
371 | PHICopy = BuildMI(BB&: MBB, I: AfterPHIsIt, MIMD: MPhi->getDebugLoc(), |
372 | MCID: TII->get(Opcode: TargetOpcode::IMPLICIT_DEF), DestReg); |
373 | else { |
374 | // Can we reuse an earlier PHI node? This only happens for critical edges, |
375 | // typically those created by tail duplication. Typically, an identical PHI |
376 | // node can't occur, so avoid hashing/storing such PHIs, which is somewhat |
377 | // expensive. |
378 | Register *Entry = nullptr; |
379 | if (AllEdgesCritical) |
380 | Entry = &LoweredPHIs[MPhi]; |
381 | if (Entry && *Entry) { |
382 | // An identical PHI node was already lowered. Reuse the incoming register. |
383 | IncomingReg = *Entry; |
384 | reusedIncoming = true; |
385 | ++NumReused; |
386 | LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for " |
387 | << *MPhi); |
388 | } else { |
389 | const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg: DestReg); |
390 | IncomingReg = MF.getRegInfo().createVirtualRegister(RegClass: RC); |
391 | if (Entry) { |
392 | EliminateNow = false; |
393 | *Entry = IncomingReg; |
394 | } |
395 | } |
396 | |
397 | // Give the target possiblity to handle special cases fallthrough otherwise |
398 | PHICopy = TII->createPHIDestinationCopy( |
399 | MBB, InsPt: AfterPHIsIt, DL: MPhi->getDebugLoc(), Src: IncomingReg, Dst: DestReg); |
400 | } |
401 | |
402 | if (MPhi->peekDebugInstrNum()) { |
403 | // If referred to by debug-info, store where this PHI was. |
404 | MachineFunction *MF = MBB.getParent(); |
405 | unsigned ID = MPhi->peekDebugInstrNum(); |
406 | auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0); |
407 | auto Res = MF->DebugPHIPositions.insert(KV: {ID, P}); |
408 | assert(Res.second); |
409 | (void)Res; |
410 | } |
411 | |
412 | // Update live variable information if there is any. |
413 | if (LV) { |
414 | if (IncomingReg) { |
415 | LiveVariables::VarInfo &VI = LV->getVarInfo(Reg: IncomingReg); |
416 | |
417 | MachineInstr *OldKill = nullptr; |
418 | bool IsPHICopyAfterOldKill = false; |
419 | |
420 | if (reusedIncoming && (OldKill = VI.findKill(MBB: &MBB))) { |
421 | // Calculate whether the PHICopy is after the OldKill. |
422 | // In general, the PHICopy is inserted as the first non-phi instruction |
423 | // by default, so it's before the OldKill. But some Target hooks for |
424 | // createPHIDestinationCopy() may modify the default insert position of |
425 | // PHICopy. |
426 | for (auto I = MBB.SkipPHIsAndLabels(I: MBB.begin()), E = MBB.end(); I != E; |
427 | ++I) { |
428 | if (I == PHICopy) |
429 | break; |
430 | |
431 | if (I == OldKill) { |
432 | IsPHICopyAfterOldKill = true; |
433 | break; |
434 | } |
435 | } |
436 | } |
437 | |
438 | // When we are reusing the incoming register and it has been marked killed |
439 | // by OldKill, if the PHICopy is after the OldKill, we should remove the |
440 | // killed flag from OldKill. |
441 | if (IsPHICopyAfterOldKill) { |
442 | LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill); |
443 | LV->removeVirtualRegisterKilled(Reg: IncomingReg, MI&: *OldKill); |
444 | LLVM_DEBUG(MBB.dump()); |
445 | } |
446 | |
447 | // Add information to LiveVariables to know that the first used incoming |
448 | // value or the resued incoming value whose PHICopy is after the OldKIll |
449 | // is killed. Note that because the value is defined in several places |
450 | // (once each for each incoming block), the "def" block and instruction |
451 | // fields for the VarInfo is not filled in. |
452 | if (!OldKill || IsPHICopyAfterOldKill) |
453 | LV->addVirtualRegisterKilled(IncomingReg, MI&: *PHICopy); |
454 | } |
455 | |
456 | // Since we are going to be deleting the PHI node, if it is the last use of |
457 | // any registers, or if the value itself is dead, we need to move this |
458 | // information over to the new copy we just inserted. |
459 | LV->removeVirtualRegistersKilled(MI&: *MPhi); |
460 | |
461 | // If the result is dead, update LV. |
462 | if (isDead) { |
463 | LV->addVirtualRegisterDead(IncomingReg: DestReg, MI&: *PHICopy); |
464 | LV->removeVirtualRegisterDead(Reg: DestReg, MI&: *MPhi); |
465 | } |
466 | } |
467 | |
468 | // Update LiveIntervals for the new copy or implicit def. |
469 | if (LIS) { |
470 | SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(MI&: *PHICopy); |
471 | |
472 | SlotIndex MBBStartIndex = LIS->getMBBStartIdx(mbb: &MBB); |
473 | if (IncomingReg) { |
474 | // Add the region from the beginning of MBB to the copy instruction to |
475 | // IncomingReg's live interval. |
476 | LiveInterval &IncomingLI = LIS->getOrCreateEmptyInterval(Reg: IncomingReg); |
477 | VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(Idx: MBBStartIndex); |
478 | if (!IncomingVNI) |
479 | IncomingVNI = |
480 | IncomingLI.getNextValue(Def: MBBStartIndex, VNInfoAllocator&: LIS->getVNInfoAllocator()); |
481 | IncomingLI.addSegment(S: LiveInterval::Segment( |
482 | MBBStartIndex, DestCopyIndex.getRegSlot(), IncomingVNI)); |
483 | } |
484 | |
485 | LiveInterval &DestLI = LIS->getInterval(Reg: DestReg); |
486 | assert(!DestLI.empty() && "PHIs should have non-empty LiveIntervals." ); |
487 | |
488 | SlotIndex NewStart = DestCopyIndex.getRegSlot(); |
489 | |
490 | SmallVector<LiveRange *> ToUpdate({&DestLI}); |
491 | for (auto &SR : DestLI.subranges()) |
492 | ToUpdate.push_back(Elt: &SR); |
493 | |
494 | for (auto LR : ToUpdate) { |
495 | auto DestSegment = LR->find(Pos: MBBStartIndex); |
496 | assert(DestSegment != LR->end() && |
497 | "PHI destination must be live in block" ); |
498 | |
499 | if (LR->endIndex().isDead()) { |
500 | // A dead PHI's live range begins and ends at the start of the MBB, but |
501 | // the lowered copy, which will still be dead, needs to begin and end at |
502 | // the copy instruction. |
503 | VNInfo *OrigDestVNI = LR->getVNInfoAt(Idx: DestSegment->start); |
504 | assert(OrigDestVNI && "PHI destination should be live at block entry." ); |
505 | LR->removeSegment(Start: DestSegment->start, End: DestSegment->start.getDeadSlot()); |
506 | LR->createDeadDef(Def: NewStart, VNIAlloc&: LIS->getVNInfoAllocator()); |
507 | LR->removeValNo(ValNo: OrigDestVNI); |
508 | continue; |
509 | } |
510 | |
511 | // Destination copies are not inserted in the same order as the PHI nodes |
512 | // they replace. Hence the start of the live range may need to be adjusted |
513 | // to match the actual slot index of the copy. |
514 | if (DestSegment->start > NewStart) { |
515 | VNInfo *VNI = LR->getVNInfoAt(Idx: DestSegment->start); |
516 | assert(VNI && "value should be defined for known segment" ); |
517 | LR->addSegment( |
518 | S: LiveInterval::Segment(NewStart, DestSegment->start, VNI)); |
519 | } else if (DestSegment->start < NewStart) { |
520 | assert(DestSegment->start >= MBBStartIndex); |
521 | assert(DestSegment->end >= DestCopyIndex.getRegSlot()); |
522 | LR->removeSegment(Start: DestSegment->start, End: NewStart); |
523 | } |
524 | VNInfo *DestVNI = LR->getVNInfoAt(Idx: NewStart); |
525 | assert(DestVNI && "PHI destination should be live at its definition." ); |
526 | DestVNI->def = NewStart; |
527 | } |
528 | } |
529 | |
530 | // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. |
531 | if (LV || LIS) { |
532 | for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) { |
533 | if (!MPhi->getOperand(i).isUndef()) { |
534 | --VRegPHIUseCount[BBVRegPair( |
535 | MPhi->getOperand(i: i + 1).getMBB()->getNumber(), |
536 | MPhi->getOperand(i).getReg())]; |
537 | } |
538 | } |
539 | } |
540 | |
541 | // Now loop over all of the incoming arguments, changing them to copy into the |
542 | // IncomingReg register in the corresponding predecessor basic block. |
543 | SmallPtrSet<MachineBasicBlock *, 8> MBBsInsertedInto; |
544 | for (int i = NumSrcs - 1; i >= 0; --i) { |
545 | Register SrcReg = MPhi->getOperand(i: i * 2 + 1).getReg(); |
546 | unsigned SrcSubReg = MPhi->getOperand(i: i * 2 + 1).getSubReg(); |
547 | bool SrcUndef = MPhi->getOperand(i: i * 2 + 1).isUndef() || |
548 | isImplicitlyDefined(VirtReg: SrcReg, MRI: *MRI); |
549 | assert(SrcReg.isVirtual() && |
550 | "Machine PHI Operands must all be virtual registers!" ); |
551 | |
552 | // Get the MachineBasicBlock equivalent of the BasicBlock that is the source |
553 | // path the PHI. |
554 | MachineBasicBlock &opBlock = *MPhi->getOperand(i: i * 2 + 2).getMBB(); |
555 | |
556 | // Check to make sure we haven't already emitted the copy for this block. |
557 | // This can happen because PHI nodes may have multiple entries for the same |
558 | // basic block. |
559 | if (!MBBsInsertedInto.insert(Ptr: &opBlock).second) |
560 | continue; // If the copy has already been emitted, we're done. |
561 | |
562 | MachineInstr *SrcRegDef = MRI->getVRegDef(Reg: SrcReg); |
563 | if (SrcRegDef && TII->isUnspillableTerminator(MI: SrcRegDef)) { |
564 | assert(SrcRegDef->getOperand(0).isReg() && |
565 | SrcRegDef->getOperand(0).isDef() && |
566 | "Expected operand 0 to be a reg def!" ); |
567 | // Now that the PHI's use has been removed (as the instruction was |
568 | // removed) there should be no other uses of the SrcReg. |
569 | assert(MRI->use_empty(SrcReg) && |
570 | "Expected a single use from UnspillableTerminator" ); |
571 | SrcRegDef->getOperand(i: 0).setReg(IncomingReg); |
572 | |
573 | // Update LiveVariables. |
574 | if (LV) { |
575 | LiveVariables::VarInfo &SrcVI = LV->getVarInfo(Reg: SrcReg); |
576 | LiveVariables::VarInfo &IncomingVI = LV->getVarInfo(Reg: IncomingReg); |
577 | IncomingVI.AliveBlocks = std::move(SrcVI.AliveBlocks); |
578 | SrcVI.AliveBlocks.clear(); |
579 | } |
580 | |
581 | continue; |
582 | } |
583 | |
584 | // Find a safe location to insert the copy, this may be the first terminator |
585 | // in the block (or end()). |
586 | MachineBasicBlock::iterator InsertPos = |
587 | findPHICopyInsertPoint(MBB: &opBlock, SuccMBB: &MBB, SrcReg); |
588 | |
589 | // Insert the copy. |
590 | MachineInstr *NewSrcInstr = nullptr; |
591 | if (!reusedIncoming && IncomingReg) { |
592 | if (SrcUndef) { |
593 | // The source register is undefined, so there is no need for a real |
594 | // COPY, but we still need to ensure joint dominance by defs. |
595 | // Insert an IMPLICIT_DEF instruction. |
596 | NewSrcInstr = |
597 | BuildMI(BB&: opBlock, I: InsertPos, MIMD: MPhi->getDebugLoc(), |
598 | MCID: TII->get(Opcode: TargetOpcode::IMPLICIT_DEF), DestReg: IncomingReg); |
599 | |
600 | // Clean up the old implicit-def, if there even was one. |
601 | if (MachineInstr *DefMI = MRI->getVRegDef(Reg: SrcReg)) |
602 | if (DefMI->isImplicitDef()) |
603 | ImpDefs.insert(Ptr: DefMI); |
604 | } else { |
605 | // Delete the debug location, since the copy is inserted into a |
606 | // different basic block. |
607 | NewSrcInstr = TII->createPHISourceCopy(MBB&: opBlock, InsPt: InsertPos, DL: nullptr, |
608 | Src: SrcReg, SrcSubReg, Dst: IncomingReg); |
609 | } |
610 | } |
611 | |
612 | // We only need to update the LiveVariables kill of SrcReg if this was the |
613 | // last PHI use of SrcReg to be lowered on this CFG edge and it is not live |
614 | // out of the predecessor. We can also ignore undef sources. |
615 | if (LV && !SrcUndef && |
616 | !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] && |
617 | !LV->isLiveOut(Reg: SrcReg, MBB: opBlock)) { |
618 | // We want to be able to insert a kill of the register if this PHI (aka, |
619 | // the copy we just inserted) is the last use of the source value. Live |
620 | // variable analysis conservatively handles this by saying that the value |
621 | // is live until the end of the block the PHI entry lives in. If the value |
622 | // really is dead at the PHI copy, there will be no successor blocks which |
623 | // have the value live-in. |
624 | |
625 | // Okay, if we now know that the value is not live out of the block, we |
626 | // can add a kill marker in this block saying that it kills the incoming |
627 | // value! |
628 | |
629 | // In our final twist, we have to decide which instruction kills the |
630 | // register. In most cases this is the copy, however, terminator |
631 | // instructions at the end of the block may also use the value. In this |
632 | // case, we should mark the last such terminator as being the killing |
633 | // block, not the copy. |
634 | MachineBasicBlock::iterator KillInst = opBlock.end(); |
635 | for (MachineBasicBlock::iterator Term = InsertPos; Term != opBlock.end(); |
636 | ++Term) { |
637 | if (Term->readsRegister(Reg: SrcReg, /*TRI=*/nullptr)) |
638 | KillInst = Term; |
639 | } |
640 | |
641 | if (KillInst == opBlock.end()) { |
642 | // No terminator uses the register. |
643 | |
644 | if (reusedIncoming || !IncomingReg) { |
645 | // We may have to rewind a bit if we didn't insert a copy this time. |
646 | KillInst = InsertPos; |
647 | while (KillInst != opBlock.begin()) { |
648 | --KillInst; |
649 | if (KillInst->isDebugInstr()) |
650 | continue; |
651 | if (KillInst->readsRegister(Reg: SrcReg, /*TRI=*/nullptr)) |
652 | break; |
653 | } |
654 | } else { |
655 | // We just inserted this copy. |
656 | KillInst = NewSrcInstr; |
657 | } |
658 | } |
659 | assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) && |
660 | "Cannot find kill instruction" ); |
661 | |
662 | // Finally, mark it killed. |
663 | LV->addVirtualRegisterKilled(IncomingReg: SrcReg, MI&: *KillInst); |
664 | |
665 | // This vreg no longer lives all of the way through opBlock. |
666 | unsigned opBlockNum = opBlock.getNumber(); |
667 | LV->getVarInfo(Reg: SrcReg).AliveBlocks.reset(Idx: opBlockNum); |
668 | } |
669 | |
670 | if (LIS) { |
671 | if (NewSrcInstr) { |
672 | LIS->InsertMachineInstrInMaps(MI&: *NewSrcInstr); |
673 | LIS->addSegmentToEndOfBlock(Reg: IncomingReg, startInst&: *NewSrcInstr); |
674 | } |
675 | |
676 | if (!SrcUndef && |
677 | !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) { |
678 | LiveInterval &SrcLI = LIS->getInterval(Reg: SrcReg); |
679 | |
680 | bool isLiveOut = false; |
681 | for (MachineBasicBlock *Succ : opBlock.successors()) { |
682 | SlotIndex startIdx = LIS->getMBBStartIdx(mbb: Succ); |
683 | VNInfo *VNI = SrcLI.getVNInfoAt(Idx: startIdx); |
684 | |
685 | // Definitions by other PHIs are not truly live-in for our purposes. |
686 | if (VNI && VNI->def != startIdx) { |
687 | isLiveOut = true; |
688 | break; |
689 | } |
690 | } |
691 | |
692 | if (!isLiveOut) { |
693 | MachineBasicBlock::iterator KillInst = opBlock.end(); |
694 | for (MachineBasicBlock::iterator Term = InsertPos; |
695 | Term != opBlock.end(); ++Term) { |
696 | if (Term->readsRegister(Reg: SrcReg, /*TRI=*/nullptr)) |
697 | KillInst = Term; |
698 | } |
699 | |
700 | if (KillInst == opBlock.end()) { |
701 | // No terminator uses the register. |
702 | |
703 | if (reusedIncoming || !IncomingReg) { |
704 | // We may have to rewind a bit if we didn't just insert a copy. |
705 | KillInst = InsertPos; |
706 | while (KillInst != opBlock.begin()) { |
707 | --KillInst; |
708 | if (KillInst->isDebugInstr()) |
709 | continue; |
710 | if (KillInst->readsRegister(Reg: SrcReg, /*TRI=*/nullptr)) |
711 | break; |
712 | } |
713 | } else { |
714 | // We just inserted this copy. |
715 | KillInst = std::prev(x: InsertPos); |
716 | } |
717 | } |
718 | assert(KillInst->readsRegister(SrcReg, /*TRI=*/nullptr) && |
719 | "Cannot find kill instruction" ); |
720 | |
721 | SlotIndex LastUseIndex = LIS->getInstructionIndex(Instr: *KillInst); |
722 | SrcLI.removeSegment(Start: LastUseIndex.getRegSlot(), |
723 | End: LIS->getMBBEndIdx(mbb: &opBlock)); |
724 | for (auto &SR : SrcLI.subranges()) { |
725 | SR.removeSegment(Start: LastUseIndex.getRegSlot(), |
726 | End: LIS->getMBBEndIdx(mbb: &opBlock)); |
727 | } |
728 | } |
729 | } |
730 | } |
731 | } |
732 | |
733 | // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. |
734 | if (EliminateNow) { |
735 | if (LIS) |
736 | LIS->RemoveMachineInstrFromMaps(MI&: *MPhi); |
737 | MF.deleteMachineInstr(MI: MPhi); |
738 | } |
739 | } |
740 | |
741 | /// analyzePHINodes - Gather information about the PHI nodes in here. In |
742 | /// particular, we want to map the number of uses of a virtual register which is |
743 | /// used in a PHI node. We map that to the BB the vreg is coming from. This is |
744 | /// used later to determine when the vreg is killed in the BB. |
745 | void PHIEliminationImpl::analyzePHINodes(const MachineFunction &MF) { |
746 | for (const auto &MBB : MF) { |
747 | for (const auto &BBI : MBB) { |
748 | if (!BBI.isPHI()) |
749 | break; |
750 | for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2) { |
751 | if (!BBI.getOperand(i).isUndef()) { |
752 | ++VRegPHIUseCount[BBVRegPair( |
753 | BBI.getOperand(i: i + 1).getMBB()->getNumber(), |
754 | BBI.getOperand(i).getReg())]; |
755 | } |
756 | } |
757 | } |
758 | } |
759 | } |
760 | |
761 | bool PHIEliminationImpl::SplitPHIEdges( |
762 | MachineFunction &MF, MachineBasicBlock &MBB, MachineLoopInfo *MLI, |
763 | std::vector<SparseBitVector<>> *LiveInSets, MachineDomTreeUpdater &MDTU) { |
764 | if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad()) |
765 | return false; // Quick exit for basic blocks without PHIs. |
766 | |
767 | const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(BB: &MBB) : nullptr; |
768 | bool = CurLoop && &MBB == CurLoop->getHeader(); |
769 | |
770 | bool Changed = false; |
771 | for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); |
772 | BBI != BBE && BBI->isPHI(); ++BBI) { |
773 | for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { |
774 | Register Reg = BBI->getOperand(i).getReg(); |
775 | MachineBasicBlock *PreMBB = BBI->getOperand(i: i + 1).getMBB(); |
776 | // Is there a critical edge from PreMBB to MBB? |
777 | if (PreMBB->succ_size() == 1) |
778 | continue; |
779 | |
780 | // Avoid splitting backedges of loops. It would introduce small |
781 | // out-of-line blocks into the loop which is very bad for code placement. |
782 | if (PreMBB == &MBB && !SplitAllCriticalEdges) |
783 | continue; |
784 | const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(BB: PreMBB) : nullptr; |
785 | if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges) |
786 | continue; |
787 | |
788 | // LV doesn't consider a phi use live-out, so isLiveOut only returns true |
789 | // when the source register is live-out for some other reason than a phi |
790 | // use. That means the copy we will insert in PreMBB won't be a kill, and |
791 | // there is a risk it may not be coalesced away. |
792 | // |
793 | // If the copy would be a kill, there is no need to split the edge. |
794 | bool ShouldSplit = isLiveOutPastPHIs(Reg, MBB: PreMBB); |
795 | if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit) |
796 | continue; |
797 | if (ShouldSplit) { |
798 | LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge " |
799 | << printMBBReference(*PreMBB) << " -> " |
800 | << printMBBReference(MBB) << ": " << *BBI); |
801 | } |
802 | |
803 | // If Reg is not live-in to MBB, it means it must be live-in to some |
804 | // other PreMBB successor, and we can avoid the interference by splitting |
805 | // the edge. |
806 | // |
807 | // If Reg *is* live-in to MBB, the interference is inevitable and a copy |
808 | // is likely to be left after coalescing. If we are looking at a loop |
809 | // exiting edge, split it so we won't insert code in the loop, otherwise |
810 | // don't bother. |
811 | ShouldSplit = ShouldSplit && !isLiveIn(Reg, MBB: &MBB); |
812 | |
813 | // Check for a loop exiting edge. |
814 | if (!ShouldSplit && CurLoop != PreLoop) { |
815 | LLVM_DEBUG({ |
816 | dbgs() << "Split wouldn't help, maybe avoid loop copies?\n" ; |
817 | if (PreLoop) |
818 | dbgs() << "PreLoop: " << *PreLoop; |
819 | if (CurLoop) |
820 | dbgs() << "CurLoop: " << *CurLoop; |
821 | }); |
822 | // This edge could be entering a loop, exiting a loop, or it could be |
823 | // both: Jumping directly form one loop to the header of a sibling |
824 | // loop. |
825 | // Split unless this edge is entering CurLoop from an outer loop. |
826 | ShouldSplit = PreLoop && !PreLoop->contains(L: CurLoop); |
827 | } |
828 | if (!ShouldSplit && !SplitAllCriticalEdges) |
829 | continue; |
830 | if (!(P ? PreMBB->SplitCriticalEdge(Succ: &MBB, P&: *P, LiveInSets, MDTU: &MDTU) |
831 | : PreMBB->SplitCriticalEdge(Succ: &MBB, MFAM&: *MFAM, LiveInSets, MDTU: &MDTU))) { |
832 | LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n" ); |
833 | continue; |
834 | } |
835 | Changed = true; |
836 | ++NumCriticalEdgesSplit; |
837 | } |
838 | } |
839 | return Changed; |
840 | } |
841 | |
842 | bool PHIEliminationImpl::isLiveIn(Register Reg, const MachineBasicBlock *MBB) { |
843 | assert((LV || LIS) && |
844 | "isLiveIn() requires either LiveVariables or LiveIntervals" ); |
845 | if (LIS) |
846 | return LIS->isLiveInToMBB(LR: LIS->getInterval(Reg), mbb: MBB); |
847 | else |
848 | return LV->isLiveIn(Reg, MBB: *MBB); |
849 | } |
850 | |
851 | bool PHIEliminationImpl::isLiveOutPastPHIs(Register Reg, |
852 | const MachineBasicBlock *MBB) { |
853 | assert((LV || LIS) && |
854 | "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals" ); |
855 | // LiveVariables considers uses in PHIs to be in the predecessor basic block, |
856 | // so that a register used only in a PHI is not live out of the block. In |
857 | // contrast, LiveIntervals considers uses in PHIs to be on the edge rather |
858 | // than in the predecessor basic block, so that a register used only in a PHI |
859 | // is live out of the block. |
860 | if (LIS) { |
861 | const LiveInterval &LI = LIS->getInterval(Reg); |
862 | for (const MachineBasicBlock *SI : MBB->successors()) |
863 | if (LI.liveAt(index: LIS->getMBBStartIdx(mbb: SI))) |
864 | return true; |
865 | return false; |
866 | } else { |
867 | return LV->isLiveOut(Reg, MBB: *MBB); |
868 | } |
869 | } |
870 | |