1 | //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // Perform peephole optimizations on the machine code: |
10 | // |
11 | // - Optimize Extensions |
12 | // |
13 | // Optimization of sign / zero extension instructions. It may be extended to |
14 | // handle other instructions with similar properties. |
15 | // |
16 | // On some targets, some instructions, e.g. X86 sign / zero extension, may |
17 | // leave the source value in the lower part of the result. This optimization |
18 | // will replace some uses of the pre-extension value with uses of the |
19 | // sub-register of the results. |
20 | // |
21 | // - Optimize Comparisons |
22 | // |
23 | // Optimization of comparison instructions. For instance, in this code: |
24 | // |
25 | // sub r1, 1 |
26 | // cmp r1, 0 |
27 | // bz L1 |
28 | // |
29 | // If the "sub" instruction all ready sets (or could be modified to set) the |
30 | // same flag that the "cmp" instruction sets and that "bz" uses, then we can |
31 | // eliminate the "cmp" instruction. |
32 | // |
33 | // Another instance, in this code: |
34 | // |
35 | // sub r1, r3 | sub r1, imm |
36 | // cmp r3, r1 or cmp r1, r3 | cmp r1, imm |
37 | // bge L1 |
38 | // |
39 | // If the branch instruction can use flag from "sub", then we can replace |
40 | // "sub" with "subs" and eliminate the "cmp" instruction. |
41 | // |
42 | // - Optimize Loads: |
43 | // |
44 | // Loads that can be folded into a later instruction. A load is foldable |
45 | // if it loads to virtual registers and the virtual register defined has |
46 | // a single use. |
47 | // |
48 | // - Optimize Copies and Bitcast (more generally, target specific copies): |
49 | // |
50 | // Rewrite copies and bitcasts to avoid cross register bank copies |
51 | // when possible. |
52 | // E.g., Consider the following example, where capital and lower |
53 | // letters denote different register file: |
54 | // b = copy A <-- cross-bank copy |
55 | // C = copy b <-- cross-bank copy |
56 | // => |
57 | // b = copy A <-- cross-bank copy |
58 | // C = copy A <-- same-bank copy |
59 | // |
60 | // E.g., for bitcast: |
61 | // b = bitcast A <-- cross-bank copy |
62 | // C = bitcast b <-- cross-bank copy |
63 | // => |
64 | // b = bitcast A <-- cross-bank copy |
65 | // C = copy A <-- same-bank copy |
66 | //===----------------------------------------------------------------------===// |
67 | |
68 | #include "llvm/CodeGen/PeepholeOptimizer.h" |
69 | #include "llvm/ADT/DenseMap.h" |
70 | #include "llvm/ADT/SmallPtrSet.h" |
71 | #include "llvm/ADT/SmallSet.h" |
72 | #include "llvm/ADT/SmallVector.h" |
73 | #include "llvm/ADT/Statistic.h" |
74 | #include "llvm/CodeGen/MachineBasicBlock.h" |
75 | #include "llvm/CodeGen/MachineDominators.h" |
76 | #include "llvm/CodeGen/MachineFunction.h" |
77 | #include "llvm/CodeGen/MachineFunctionPass.h" |
78 | #include "llvm/CodeGen/MachineInstr.h" |
79 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
80 | #include "llvm/CodeGen/MachineLoopInfo.h" |
81 | #include "llvm/CodeGen/MachineOperand.h" |
82 | #include "llvm/CodeGen/MachinePassManager.h" |
83 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
84 | #include "llvm/CodeGen/TargetInstrInfo.h" |
85 | #include "llvm/CodeGen/TargetOpcodes.h" |
86 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
87 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
88 | #include "llvm/InitializePasses.h" |
89 | #include "llvm/MC/LaneBitmask.h" |
90 | #include "llvm/MC/MCInstrDesc.h" |
91 | #include "llvm/Pass.h" |
92 | #include "llvm/Support/CommandLine.h" |
93 | #include "llvm/Support/Debug.h" |
94 | #include "llvm/Support/raw_ostream.h" |
95 | #include <cassert> |
96 | #include <cstdint> |
97 | #include <utility> |
98 | |
99 | using namespace llvm; |
100 | using RegSubRegPair = TargetInstrInfo::RegSubRegPair; |
101 | using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx; |
102 | |
103 | #define DEBUG_TYPE "peephole-opt" |
104 | |
105 | // Optimize Extensions |
106 | static cl::opt<bool> Aggressive("aggressive-ext-opt" , cl::Hidden, |
107 | cl::desc("Aggressive extension optimization" )); |
108 | |
109 | static cl::opt<bool> |
110 | DisablePeephole("disable-peephole" , cl::Hidden, cl::init(Val: false), |
111 | cl::desc("Disable the peephole optimizer" )); |
112 | |
113 | /// Specifiy whether or not the value tracking looks through |
114 | /// complex instructions. When this is true, the value tracker |
115 | /// bails on everything that is not a copy or a bitcast. |
116 | static cl::opt<bool> |
117 | DisableAdvCopyOpt("disable-adv-copy-opt" , cl::Hidden, cl::init(Val: false), |
118 | cl::desc("Disable advanced copy optimization" )); |
119 | |
120 | static cl::opt<bool> DisableNAPhysCopyOpt( |
121 | "disable-non-allocatable-phys-copy-opt" , cl::Hidden, cl::init(Val: false), |
122 | cl::desc("Disable non-allocatable physical register copy optimization" )); |
123 | |
124 | // Limit the number of PHI instructions to process |
125 | // in PeepholeOptimizer::getNextSource. |
126 | static cl::opt<unsigned> |
127 | RewritePHILimit("rewrite-phi-limit" , cl::Hidden, cl::init(Val: 10), |
128 | cl::desc("Limit the length of PHI chains to lookup" )); |
129 | |
130 | // Limit the length of recurrence chain when evaluating the benefit of |
131 | // commuting operands. |
132 | static cl::opt<unsigned> MaxRecurrenceChain( |
133 | "recurrence-chain-limit" , cl::Hidden, cl::init(Val: 3), |
134 | cl::desc("Maximum length of recurrence chain when evaluating the benefit " |
135 | "of commuting operands" )); |
136 | |
137 | STATISTIC(NumReuse, "Number of extension results reused" ); |
138 | STATISTIC(NumCmps, "Number of compares eliminated" ); |
139 | STATISTIC(NumImmFold, "Number of move immediate folded" ); |
140 | STATISTIC(NumLoadFold, "Number of loads folded" ); |
141 | STATISTIC(NumSelects, "Number of selects optimized" ); |
142 | STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized" ); |
143 | STATISTIC(NumRewrittenCopies, "Number of copies rewritten" ); |
144 | STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed" ); |
145 | |
146 | namespace { |
147 | |
148 | class ValueTrackerResult; |
149 | class RecurrenceInstr; |
150 | |
151 | /// Interface to query instructions amenable to copy rewriting. |
152 | class Rewriter { |
153 | protected: |
154 | MachineInstr &CopyLike; |
155 | int CurrentSrcIdx = 0; ///< The index of the source being rewritten. |
156 | public: |
157 | Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {} |
158 | virtual ~Rewriter() = default; |
159 | |
160 | /// Get the next rewritable source (SrcReg, SrcSubReg) and |
161 | /// the related value that it affects (DstReg, DstSubReg). |
162 | /// A source is considered rewritable if its register class and the |
163 | /// register class of the related DstReg may not be register |
164 | /// coalescer friendly. In other words, given a copy-like instruction |
165 | /// not all the arguments may be returned at rewritable source, since |
166 | /// some arguments are none to be register coalescer friendly. |
167 | /// |
168 | /// Each call of this method moves the current source to the next |
169 | /// rewritable source. |
170 | /// For instance, let CopyLike be the instruction to rewrite. |
171 | /// CopyLike has one definition and one source: |
172 | /// dst.dstSubIdx = CopyLike src.srcSubIdx. |
173 | /// |
174 | /// The first call will give the first rewritable source, i.e., |
175 | /// the only source this instruction has: |
176 | /// (SrcReg, SrcSubReg) = (src, srcSubIdx). |
177 | /// This source defines the whole definition, i.e., |
178 | /// (DstReg, DstSubReg) = (dst, dstSubIdx). |
179 | /// |
180 | /// The second and subsequent calls will return false, as there is only one |
181 | /// rewritable source. |
182 | /// |
183 | /// \return True if a rewritable source has been found, false otherwise. |
184 | /// The output arguments are valid if and only if true is returned. |
185 | virtual bool getNextRewritableSource(RegSubRegPair &Src, |
186 | RegSubRegPair &Dst) = 0; |
187 | |
188 | /// Rewrite the current source with \p NewReg and \p NewSubReg if possible. |
189 | /// \return True if the rewriting was possible, false otherwise. |
190 | virtual bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) = 0; |
191 | }; |
192 | |
193 | /// Rewriter for COPY instructions. |
194 | class CopyRewriter : public Rewriter { |
195 | public: |
196 | CopyRewriter(MachineInstr &MI) : Rewriter(MI) { |
197 | assert(MI.isCopy() && "Expected copy instruction" ); |
198 | } |
199 | virtual ~CopyRewriter() = default; |
200 | |
201 | bool getNextRewritableSource(RegSubRegPair &Src, |
202 | RegSubRegPair &Dst) override { |
203 | if (++CurrentSrcIdx > 1) |
204 | return false; |
205 | |
206 | // The rewritable source is the argument. |
207 | const MachineOperand &MOSrc = CopyLike.getOperand(i: CurrentSrcIdx); |
208 | Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg()); |
209 | // What we track are the alternative sources of the definition. |
210 | const MachineOperand &MODef = CopyLike.getOperand(i: 0); |
211 | Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); |
212 | return true; |
213 | } |
214 | |
215 | bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { |
216 | MachineOperand &MOSrc = CopyLike.getOperand(i: CurrentSrcIdx); |
217 | MOSrc.setReg(NewReg); |
218 | MOSrc.setSubReg(NewSubReg); |
219 | return true; |
220 | } |
221 | }; |
222 | |
223 | /// Helper class to rewrite uncoalescable copy like instructions |
224 | /// into new COPY (coalescable friendly) instructions. |
225 | class UncoalescableRewriter : public Rewriter { |
226 | int NumDefs; ///< Number of defs in the bitcast. |
227 | |
228 | public: |
229 | UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) { |
230 | NumDefs = MI.getDesc().getNumDefs(); |
231 | } |
232 | |
233 | /// \see See Rewriter::getNextRewritableSource() |
234 | /// All such sources need to be considered rewritable in order to |
235 | /// rewrite a uncoalescable copy-like instruction. This method return |
236 | /// each definition that must be checked if rewritable. |
237 | bool getNextRewritableSource(RegSubRegPair &Src, |
238 | RegSubRegPair &Dst) override { |
239 | // Find the next non-dead definition and continue from there. |
240 | if (CurrentSrcIdx == NumDefs) |
241 | return false; |
242 | |
243 | while (CopyLike.getOperand(i: CurrentSrcIdx).isDead()) { |
244 | ++CurrentSrcIdx; |
245 | if (CurrentSrcIdx == NumDefs) |
246 | return false; |
247 | } |
248 | |
249 | // What we track are the alternative sources of the definition. |
250 | Src = RegSubRegPair(0, 0); |
251 | const MachineOperand &MODef = CopyLike.getOperand(i: CurrentSrcIdx); |
252 | Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); |
253 | |
254 | CurrentSrcIdx++; |
255 | return true; |
256 | } |
257 | |
258 | bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { |
259 | return false; |
260 | } |
261 | }; |
262 | |
263 | /// Specialized rewriter for INSERT_SUBREG instruction. |
264 | class InsertSubregRewriter : public Rewriter { |
265 | public: |
266 | InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) { |
267 | assert(MI.isInsertSubreg() && "Invalid instruction" ); |
268 | } |
269 | |
270 | /// \see See Rewriter::getNextRewritableSource() |
271 | /// Here CopyLike has the following form: |
272 | /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. |
273 | /// Src1 has the same register class has dst, hence, there is |
274 | /// nothing to rewrite. |
275 | /// Src2.src2SubIdx, may not be register coalescer friendly. |
276 | /// Therefore, the first call to this method returns: |
277 | /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). |
278 | /// (DstReg, DstSubReg) = (dst, subIdx). |
279 | /// |
280 | /// Subsequence calls will return false. |
281 | bool getNextRewritableSource(RegSubRegPair &Src, |
282 | RegSubRegPair &Dst) override { |
283 | // If we already get the only source we can rewrite, return false. |
284 | if (CurrentSrcIdx == 2) |
285 | return false; |
286 | // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. |
287 | CurrentSrcIdx = 2; |
288 | const MachineOperand &MOInsertedReg = CopyLike.getOperand(i: 2); |
289 | Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg()); |
290 | const MachineOperand &MODef = CopyLike.getOperand(i: 0); |
291 | |
292 | // We want to track something that is compatible with the |
293 | // partial definition. |
294 | if (MODef.getSubReg()) |
295 | // Bail if we have to compose sub-register indices. |
296 | return false; |
297 | Dst = RegSubRegPair(MODef.getReg(), |
298 | (unsigned)CopyLike.getOperand(i: 3).getImm()); |
299 | return true; |
300 | } |
301 | |
302 | bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { |
303 | if (CurrentSrcIdx != 2) |
304 | return false; |
305 | // We are rewriting the inserted reg. |
306 | MachineOperand &MO = CopyLike.getOperand(i: CurrentSrcIdx); |
307 | MO.setReg(NewReg); |
308 | MO.setSubReg(NewSubReg); |
309 | return true; |
310 | } |
311 | }; |
312 | |
313 | /// Specialized rewriter for EXTRACT_SUBREG instruction. |
314 | class : public Rewriter { |
315 | const TargetInstrInfo &; |
316 | |
317 | public: |
318 | (MachineInstr &MI, const TargetInstrInfo &TII) |
319 | : Rewriter(MI), TII(TII) { |
320 | assert(MI.isExtractSubreg() && "Invalid instruction" ); |
321 | } |
322 | |
323 | /// \see Rewriter::getNextRewritableSource() |
324 | /// Here CopyLike has the following form: |
325 | /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. |
326 | /// There is only one rewritable source: Src.subIdx, |
327 | /// which defines dst.dstSubIdx. |
328 | bool (RegSubRegPair &Src, |
329 | RegSubRegPair &Dst) override { |
330 | // If we already get the only source we can rewrite, return false. |
331 | if (CurrentSrcIdx == 1) |
332 | return false; |
333 | // We are looking at v1 = EXTRACT_SUBREG v0, sub0. |
334 | CurrentSrcIdx = 1; |
335 | const MachineOperand & = CopyLike.getOperand(i: 1); |
336 | // If we have to compose sub-register indices, bail out. |
337 | if (MOExtractedReg.getSubReg()) |
338 | return false; |
339 | |
340 | Src = |
341 | RegSubRegPair(MOExtractedReg.getReg(), CopyLike.getOperand(i: 2).getImm()); |
342 | |
343 | // We want to track something that is compatible with the definition. |
344 | const MachineOperand &MODef = CopyLike.getOperand(i: 0); |
345 | Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); |
346 | return true; |
347 | } |
348 | |
349 | bool (Register NewReg, unsigned NewSubReg) override { |
350 | // The only source we can rewrite is the input register. |
351 | if (CurrentSrcIdx != 1) |
352 | return false; |
353 | |
354 | CopyLike.getOperand(i: CurrentSrcIdx).setReg(NewReg); |
355 | |
356 | // If we find a source that does not require to extract something, |
357 | // rewrite the operation with a copy. |
358 | if (!NewSubReg) { |
359 | // Move the current index to an invalid position. |
360 | // We do not want another call to this method to be able |
361 | // to do any change. |
362 | CurrentSrcIdx = -1; |
363 | // Rewrite the operation as a COPY. |
364 | // Get rid of the sub-register index. |
365 | CopyLike.removeOperand(OpNo: 2); |
366 | // Morph the operation into a COPY. |
367 | CopyLike.setDesc(TII.get(Opcode: TargetOpcode::COPY)); |
368 | return true; |
369 | } |
370 | CopyLike.getOperand(i: CurrentSrcIdx + 1).setImm(NewSubReg); |
371 | return true; |
372 | } |
373 | }; |
374 | |
375 | /// Specialized rewriter for REG_SEQUENCE instruction. |
376 | class RegSequenceRewriter : public Rewriter { |
377 | public: |
378 | RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) { |
379 | assert(MI.isRegSequence() && "Invalid instruction" ); |
380 | CurrentSrcIdx = -1; |
381 | } |
382 | |
383 | /// \see Rewriter::getNextRewritableSource() |
384 | /// Here CopyLike has the following form: |
385 | /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. |
386 | /// Each call will return a different source, walking all the available |
387 | /// source. |
388 | /// |
389 | /// The first call returns: |
390 | /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). |
391 | /// (DstReg, DstSubReg) = (dst, subIdx1). |
392 | /// |
393 | /// The second call returns: |
394 | /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). |
395 | /// (DstReg, DstSubReg) = (dst, subIdx2). |
396 | /// |
397 | /// And so on, until all the sources have been traversed, then |
398 | /// it returns false. |
399 | bool getNextRewritableSource(RegSubRegPair &Src, |
400 | RegSubRegPair &Dst) override { |
401 | // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. |
402 | CurrentSrcIdx += 2; |
403 | if (static_cast<unsigned>(CurrentSrcIdx) >= CopyLike.getNumOperands()) |
404 | return false; |
405 | |
406 | const MachineOperand &MOInsertedReg = CopyLike.getOperand(i: CurrentSrcIdx); |
407 | Src.Reg = MOInsertedReg.getReg(); |
408 | Src.SubReg = MOInsertedReg.getSubReg(); |
409 | |
410 | // We want to track something that is compatible with the related |
411 | // partial definition. |
412 | Dst.SubReg = CopyLike.getOperand(i: CurrentSrcIdx + 1).getImm(); |
413 | |
414 | const MachineOperand &MODef = CopyLike.getOperand(i: 0); |
415 | Dst.Reg = MODef.getReg(); |
416 | assert(MODef.getSubReg() == 0 && "cannot have subregister def in SSA" ); |
417 | return true; |
418 | } |
419 | |
420 | bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { |
421 | MachineOperand &MO = CopyLike.getOperand(i: CurrentSrcIdx); |
422 | MO.setReg(NewReg); |
423 | MO.setSubReg(NewSubReg); |
424 | return true; |
425 | } |
426 | }; |
427 | |
428 | class PeepholeOptimizer : private MachineFunction::Delegate { |
429 | const TargetInstrInfo *TII = nullptr; |
430 | const TargetRegisterInfo *TRI = nullptr; |
431 | MachineRegisterInfo *MRI = nullptr; |
432 | MachineDominatorTree *DT = nullptr; // Machine dominator tree |
433 | MachineLoopInfo *MLI = nullptr; |
434 | |
435 | public: |
436 | PeepholeOptimizer(MachineDominatorTree *DT, MachineLoopInfo *MLI) |
437 | : DT(DT), MLI(MLI) {} |
438 | |
439 | bool run(MachineFunction &MF); |
440 | /// Track Def -> Use info used for rewriting copies. |
441 | using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>; |
442 | |
443 | /// Sequence of instructions that formulate recurrence cycle. |
444 | using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>; |
445 | |
446 | private: |
447 | bool optimizeCmpInstr(MachineInstr &MI); |
448 | bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, |
449 | SmallPtrSetImpl<MachineInstr *> &LocalMIs); |
450 | bool optimizeSelect(MachineInstr &MI, |
451 | SmallPtrSetImpl<MachineInstr *> &LocalMIs); |
452 | bool optimizeCondBranch(MachineInstr &MI); |
453 | |
454 | bool optimizeCoalescableCopyImpl(Rewriter &&CpyRewriter); |
455 | bool optimizeCoalescableCopy(MachineInstr &MI); |
456 | bool optimizeUncoalescableCopy(MachineInstr &MI, |
457 | SmallPtrSetImpl<MachineInstr *> &LocalMIs); |
458 | bool optimizeRecurrence(MachineInstr &PHI); |
459 | bool findNextSource(const TargetRegisterClass *DefRC, unsigned DefSubReg, |
460 | RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap); |
461 | bool isMoveImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, |
462 | DenseMap<Register, MachineInstr *> &ImmDefMIs); |
463 | bool foldImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, |
464 | DenseMap<Register, MachineInstr *> &ImmDefMIs, |
465 | bool &Deleted); |
466 | |
467 | /// Finds recurrence cycles, but only ones that formulated around |
468 | /// a def operand and a use operand that are tied. If there is a use |
469 | /// operand commutable with the tied use operand, find recurrence cycle |
470 | /// along that operand as well. |
471 | bool findTargetRecurrence(Register Reg, |
472 | const SmallSet<Register, 2> &TargetReg, |
473 | RecurrenceCycle &RC); |
474 | |
475 | /// If copy instruction \p MI is a virtual register copy or a copy of a |
476 | /// constant physical register to a virtual register, track it in the |
477 | /// set CopySrcMIs. If this virtual register was previously seen as a |
478 | /// copy, replace the uses of this copy with the previously seen copy's |
479 | /// destination register. |
480 | bool foldRedundantCopy(MachineInstr &MI); |
481 | |
482 | /// Is the register \p Reg a non-allocatable physical register? |
483 | bool isNAPhysCopy(Register Reg); |
484 | |
485 | /// If copy instruction \p MI is a non-allocatable virtual<->physical |
486 | /// register copy, track it in the \p NAPhysToVirtMIs map. If this |
487 | /// non-allocatable physical register was previously copied to a virtual |
488 | /// registered and hasn't been clobbered, the virt->phys copy can be |
489 | /// deleted. |
490 | bool |
491 | foldRedundantNAPhysCopy(MachineInstr &MI, |
492 | DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs); |
493 | |
494 | bool isLoadFoldable(MachineInstr &MI, |
495 | SmallSet<Register, 16> &FoldAsLoadDefCandidates); |
496 | |
497 | /// Check whether \p MI is understood by the register coalescer |
498 | /// but may require some rewriting. |
499 | static bool isCoalescableCopy(const MachineInstr &MI) { |
500 | // SubregToRegs are not interesting, because they are already register |
501 | // coalescer friendly. |
502 | return MI.isCopy() || |
503 | (!DisableAdvCopyOpt && (MI.isRegSequence() || MI.isInsertSubreg() || |
504 | MI.isExtractSubreg())); |
505 | } |
506 | |
507 | /// Check whether \p MI is a copy like instruction that is |
508 | /// not recognized by the register coalescer. |
509 | static bool isUncoalescableCopy(const MachineInstr &MI) { |
510 | return MI.isBitcast() || (!DisableAdvCopyOpt && (MI.isRegSequenceLike() || |
511 | MI.isInsertSubregLike() || |
512 | MI.isExtractSubregLike())); |
513 | } |
514 | |
515 | MachineInstr &rewriteSource(MachineInstr &CopyLike, RegSubRegPair Def, |
516 | RewriteMapTy &RewriteMap); |
517 | |
518 | // Set of copies to virtual registers keyed by source register. Never |
519 | // holds any physreg which requires def tracking. |
520 | DenseMap<RegSubRegPair, MachineInstr *> CopySrcMIs; |
521 | |
522 | // MachineFunction::Delegate implementation. Used to maintain CopySrcMIs. |
523 | void MF_HandleInsertion(MachineInstr &MI) override {} |
524 | |
525 | bool getCopySrc(MachineInstr &MI, RegSubRegPair &SrcPair) { |
526 | if (!MI.isCopy()) |
527 | return false; |
528 | |
529 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
530 | unsigned SrcSubReg = MI.getOperand(i: 1).getSubReg(); |
531 | if (!SrcReg.isVirtual() && !MRI->isConstantPhysReg(PhysReg: SrcReg)) |
532 | return false; |
533 | |
534 | SrcPair = RegSubRegPair(SrcReg, SrcSubReg); |
535 | return true; |
536 | } |
537 | |
538 | // If a COPY instruction is to be deleted or changed, we should also remove |
539 | // it from CopySrcMIs. |
540 | void deleteChangedCopy(MachineInstr &MI) { |
541 | RegSubRegPair SrcPair; |
542 | if (!getCopySrc(MI, SrcPair)) |
543 | return; |
544 | |
545 | auto It = CopySrcMIs.find(Val: SrcPair); |
546 | if (It != CopySrcMIs.end() && It->second == &MI) |
547 | CopySrcMIs.erase(I: It); |
548 | } |
549 | |
550 | void MF_HandleRemoval(MachineInstr &MI) override { deleteChangedCopy(MI); } |
551 | |
552 | void MF_HandleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID) override { |
553 | deleteChangedCopy(MI); |
554 | } |
555 | }; |
556 | |
557 | class PeepholeOptimizerLegacy : public MachineFunctionPass { |
558 | public: |
559 | static char ID; // Pass identification |
560 | |
561 | PeepholeOptimizerLegacy() : MachineFunctionPass(ID) { |
562 | initializePeepholeOptimizerLegacyPass(*PassRegistry::getPassRegistry()); |
563 | } |
564 | |
565 | bool runOnMachineFunction(MachineFunction &MF) override; |
566 | |
567 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
568 | AU.setPreservesCFG(); |
569 | MachineFunctionPass::getAnalysisUsage(AU); |
570 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
571 | AU.addPreserved<MachineLoopInfoWrapperPass>(); |
572 | if (Aggressive) { |
573 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
574 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
575 | } |
576 | } |
577 | |
578 | MachineFunctionProperties getRequiredProperties() const override { |
579 | return MachineFunctionProperties().setIsSSA(); |
580 | } |
581 | }; |
582 | |
583 | /// Helper class to hold instructions that are inside recurrence cycles. |
584 | /// The recurrence cycle is formulated around 1) a def operand and its |
585 | /// tied use operand, or 2) a def operand and a use operand that is commutable |
586 | /// with another use operand which is tied to the def operand. In the latter |
587 | /// case, index of the tied use operand and the commutable use operand are |
588 | /// maintained with CommutePair. |
589 | class RecurrenceInstr { |
590 | public: |
591 | using IndexPair = std::pair<unsigned, unsigned>; |
592 | |
593 | RecurrenceInstr(MachineInstr *MI) : MI(MI) {} |
594 | RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2) |
595 | : MI(MI), CommutePair(std::make_pair(x&: Idx1, y&: Idx2)) {} |
596 | |
597 | MachineInstr *getMI() const { return MI; } |
598 | std::optional<IndexPair> getCommutePair() const { return CommutePair; } |
599 | |
600 | private: |
601 | MachineInstr *MI; |
602 | std::optional<IndexPair> CommutePair; |
603 | }; |
604 | |
605 | /// Helper class to hold a reply for ValueTracker queries. |
606 | /// Contains the returned sources for a given search and the instructions |
607 | /// where the sources were tracked from. |
608 | class ValueTrackerResult { |
609 | private: |
610 | /// Track all sources found by one ValueTracker query. |
611 | SmallVector<RegSubRegPair, 2> RegSrcs; |
612 | |
613 | /// Instruction using the sources in 'RegSrcs'. |
614 | const MachineInstr *Inst = nullptr; |
615 | |
616 | public: |
617 | ValueTrackerResult() = default; |
618 | |
619 | ValueTrackerResult(Register Reg, unsigned SubReg) { addSource(SrcReg: Reg, SrcSubReg: SubReg); } |
620 | |
621 | bool isValid() const { return getNumSources() > 0; } |
622 | |
623 | void setInst(const MachineInstr *I) { Inst = I; } |
624 | const MachineInstr *getInst() const { return Inst; } |
625 | |
626 | void clear() { |
627 | RegSrcs.clear(); |
628 | Inst = nullptr; |
629 | } |
630 | |
631 | void addSource(Register SrcReg, unsigned SrcSubReg) { |
632 | RegSrcs.push_back(Elt: RegSubRegPair(SrcReg, SrcSubReg)); |
633 | } |
634 | |
635 | void setSource(int Idx, Register SrcReg, unsigned SrcSubReg) { |
636 | assert(Idx < getNumSources() && "Reg pair source out of index" ); |
637 | RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg); |
638 | } |
639 | |
640 | int getNumSources() const { return RegSrcs.size(); } |
641 | |
642 | RegSubRegPair getSrc(int Idx) const { return RegSrcs[Idx]; } |
643 | |
644 | Register getSrcReg(int Idx) const { |
645 | assert(Idx < getNumSources() && "Reg source out of index" ); |
646 | return RegSrcs[Idx].Reg; |
647 | } |
648 | |
649 | unsigned getSrcSubReg(int Idx) const { |
650 | assert(Idx < getNumSources() && "SubReg source out of index" ); |
651 | return RegSrcs[Idx].SubReg; |
652 | } |
653 | |
654 | bool operator==(const ValueTrackerResult &Other) const { |
655 | if (Other.getInst() != getInst()) |
656 | return false; |
657 | |
658 | if (Other.getNumSources() != getNumSources()) |
659 | return false; |
660 | |
661 | for (int i = 0, e = Other.getNumSources(); i != e; ++i) |
662 | if (Other.getSrcReg(Idx: i) != getSrcReg(Idx: i) || |
663 | Other.getSrcSubReg(Idx: i) != getSrcSubReg(Idx: i)) |
664 | return false; |
665 | return true; |
666 | } |
667 | }; |
668 | |
669 | /// Helper class to track the possible sources of a value defined by |
670 | /// a (chain of) copy related instructions. |
671 | /// Given a definition (instruction and definition index), this class |
672 | /// follows the use-def chain to find successive suitable sources. |
673 | /// The given source can be used to rewrite the definition into |
674 | /// def = COPY src. |
675 | /// |
676 | /// For instance, let us consider the following snippet: |
677 | /// v0 = |
678 | /// v2 = INSERT_SUBREG v1, v0, sub0 |
679 | /// def = COPY v2.sub0 |
680 | /// |
681 | /// Using a ValueTracker for def = COPY v2.sub0 will give the following |
682 | /// suitable sources: |
683 | /// v2.sub0 and v0. |
684 | /// Then, def can be rewritten into def = COPY v0. |
685 | class ValueTracker { |
686 | private: |
687 | /// The current point into the use-def chain. |
688 | const MachineInstr *Def = nullptr; |
689 | |
690 | /// The index of the definition in Def. |
691 | unsigned DefIdx = 0; |
692 | |
693 | /// The sub register index of the definition. |
694 | unsigned DefSubReg; |
695 | |
696 | /// The register where the value can be found. |
697 | Register Reg; |
698 | |
699 | /// MachineRegisterInfo used to perform tracking. |
700 | const MachineRegisterInfo &MRI; |
701 | |
702 | /// Optional TargetInstrInfo used to perform some complex tracking. |
703 | const TargetInstrInfo *TII; |
704 | |
705 | /// Dispatcher to the right underlying implementation of getNextSource. |
706 | ValueTrackerResult getNextSourceImpl(); |
707 | |
708 | /// Specialized version of getNextSource for Copy instructions. |
709 | ValueTrackerResult getNextSourceFromCopy(); |
710 | |
711 | /// Specialized version of getNextSource for Bitcast instructions. |
712 | ValueTrackerResult getNextSourceFromBitcast(); |
713 | |
714 | /// Specialized version of getNextSource for RegSequence instructions. |
715 | ValueTrackerResult getNextSourceFromRegSequence(); |
716 | |
717 | /// Specialized version of getNextSource for InsertSubreg instructions. |
718 | ValueTrackerResult getNextSourceFromInsertSubreg(); |
719 | |
720 | /// Specialized version of getNextSource for ExtractSubreg instructions. |
721 | ValueTrackerResult getNextSourceFromExtractSubreg(); |
722 | |
723 | /// Specialized version of getNextSource for SubregToReg instructions. |
724 | ValueTrackerResult getNextSourceFromSubregToReg(); |
725 | |
726 | /// Specialized version of getNextSource for PHI instructions. |
727 | ValueTrackerResult getNextSourceFromPHI(); |
728 | |
729 | public: |
730 | /// Create a ValueTracker instance for the value defined by \p Reg. |
731 | /// \p DefSubReg represents the sub register index the value tracker will |
732 | /// track. It does not need to match the sub register index used in the |
733 | /// definition of \p Reg. |
734 | /// If \p Reg is a physical register, a value tracker constructed with |
735 | /// this constructor will not find any alternative source. |
736 | /// Indeed, when \p Reg is a physical register that constructor does not |
737 | /// know which definition of \p Reg it should track. |
738 | /// Use the next constructor to track a physical register. |
739 | ValueTracker(Register Reg, unsigned DefSubReg, const MachineRegisterInfo &MRI, |
740 | const TargetInstrInfo *TII = nullptr) |
741 | : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) { |
742 | if (!Reg.isPhysical()) { |
743 | Def = MRI.getVRegDef(Reg); |
744 | DefIdx = MRI.def_begin(RegNo: Reg).getOperandNo(); |
745 | } |
746 | } |
747 | |
748 | /// Following the use-def chain, get the next available source |
749 | /// for the tracked value. |
750 | /// \return A ValueTrackerResult containing a set of registers |
751 | /// and sub registers with tracked values. A ValueTrackerResult with |
752 | /// an empty set of registers means no source was found. |
753 | ValueTrackerResult getNextSource(); |
754 | }; |
755 | |
756 | } // end anonymous namespace |
757 | |
758 | char PeepholeOptimizerLegacy::ID = 0; |
759 | |
760 | char &llvm::PeepholeOptimizerLegacyID = PeepholeOptimizerLegacy::ID; |
761 | |
762 | INITIALIZE_PASS_BEGIN(PeepholeOptimizerLegacy, DEBUG_TYPE, |
763 | "Peephole Optimizations" , false, false) |
764 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
765 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) |
766 | INITIALIZE_PASS_END(PeepholeOptimizerLegacy, DEBUG_TYPE, |
767 | "Peephole Optimizations" , false, false) |
768 | |
769 | /// If instruction is a copy-like instruction, i.e. it reads a single register |
770 | /// and writes a single register and it does not modify the source, and if the |
771 | /// source value is preserved as a sub-register of the result, then replace all |
772 | /// reachable uses of the source with the subreg of the result. |
773 | /// |
774 | /// Do not generate an EXTRACT that is used only in a debug use, as this changes |
775 | /// the code. Since this code does not currently share EXTRACTs, just ignore all |
776 | /// debug uses. |
777 | bool PeepholeOptimizer::optimizeExtInstr( |
778 | MachineInstr &MI, MachineBasicBlock &MBB, |
779 | SmallPtrSetImpl<MachineInstr *> &LocalMIs) { |
780 | Register SrcReg, DstReg; |
781 | unsigned SubIdx; |
782 | if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx)) |
783 | return false; |
784 | |
785 | if (DstReg.isPhysical() || SrcReg.isPhysical()) |
786 | return false; |
787 | |
788 | if (MRI->hasOneNonDBGUse(RegNo: SrcReg)) |
789 | // No other uses. |
790 | return false; |
791 | |
792 | // Ensure DstReg can get a register class that actually supports |
793 | // sub-registers. Don't change the class until we commit. |
794 | const TargetRegisterClass *DstRC = MRI->getRegClass(Reg: DstReg); |
795 | DstRC = TRI->getSubClassWithSubReg(RC: DstRC, Idx: SubIdx); |
796 | if (!DstRC) |
797 | return false; |
798 | |
799 | // The ext instr may be operating on a sub-register of SrcReg as well. |
800 | // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit |
801 | // register. |
802 | // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of |
803 | // SrcReg:SubIdx should be replaced. |
804 | bool UseSrcSubIdx = |
805 | TRI->getSubClassWithSubReg(RC: MRI->getRegClass(Reg: SrcReg), Idx: SubIdx) != nullptr; |
806 | |
807 | // The source has other uses. See if we can replace the other uses with use of |
808 | // the result of the extension. |
809 | SmallPtrSet<MachineBasicBlock *, 4> ReachedBBs; |
810 | for (MachineInstr &UI : MRI->use_nodbg_instructions(Reg: DstReg)) |
811 | ReachedBBs.insert(Ptr: UI.getParent()); |
812 | |
813 | // Uses that are in the same BB of uses of the result of the instruction. |
814 | SmallVector<MachineOperand *, 8> Uses; |
815 | |
816 | // Uses that the result of the instruction can reach. |
817 | SmallVector<MachineOperand *, 8> ExtendedUses; |
818 | |
819 | bool ExtendLife = true; |
820 | for (MachineOperand &UseMO : MRI->use_nodbg_operands(Reg: SrcReg)) { |
821 | MachineInstr *UseMI = UseMO.getParent(); |
822 | if (UseMI == &MI) |
823 | continue; |
824 | |
825 | if (UseMI->isPHI()) { |
826 | ExtendLife = false; |
827 | continue; |
828 | } |
829 | |
830 | // Only accept uses of SrcReg:SubIdx. |
831 | if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) |
832 | continue; |
833 | |
834 | // It's an error to translate this: |
835 | // |
836 | // %reg1025 = <sext> %reg1024 |
837 | // ... |
838 | // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 |
839 | // |
840 | // into this: |
841 | // |
842 | // %reg1025 = <sext> %reg1024 |
843 | // ... |
844 | // %reg1027 = COPY %reg1025:4 |
845 | // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 |
846 | // |
847 | // The problem here is that SUBREG_TO_REG is there to assert that an |
848 | // implicit zext occurs. It doesn't insert a zext instruction. If we allow |
849 | // the COPY here, it will give us the value after the <sext>, not the |
850 | // original value of %reg1024 before <sext>. |
851 | if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) |
852 | continue; |
853 | |
854 | MachineBasicBlock *UseMBB = UseMI->getParent(); |
855 | if (UseMBB == &MBB) { |
856 | // Local uses that come after the extension. |
857 | if (!LocalMIs.count(Ptr: UseMI)) |
858 | Uses.push_back(Elt: &UseMO); |
859 | } else if (ReachedBBs.count(Ptr: UseMBB)) { |
860 | // Non-local uses where the result of the extension is used. Always |
861 | // replace these unless it's a PHI. |
862 | Uses.push_back(Elt: &UseMO); |
863 | } else if (Aggressive && DT->dominates(A: &MBB, B: UseMBB)) { |
864 | // We may want to extend the live range of the extension result in order |
865 | // to replace these uses. |
866 | ExtendedUses.push_back(Elt: &UseMO); |
867 | } else { |
868 | // Both will be live out of the def MBB anyway. Don't extend live range of |
869 | // the extension result. |
870 | ExtendLife = false; |
871 | break; |
872 | } |
873 | } |
874 | |
875 | if (ExtendLife && !ExtendedUses.empty()) |
876 | // Extend the liveness of the extension result. |
877 | Uses.append(in_start: ExtendedUses.begin(), in_end: ExtendedUses.end()); |
878 | |
879 | // Now replace all uses. |
880 | bool Changed = false; |
881 | if (!Uses.empty()) { |
882 | SmallPtrSet<MachineBasicBlock *, 4> PHIBBs; |
883 | |
884 | // Look for PHI uses of the extended result, we don't want to extend the |
885 | // liveness of a PHI input. It breaks all kinds of assumptions down |
886 | // stream. A PHI use is expected to be the kill of its source values. |
887 | for (MachineInstr &UI : MRI->use_nodbg_instructions(Reg: DstReg)) |
888 | if (UI.isPHI()) |
889 | PHIBBs.insert(Ptr: UI.getParent()); |
890 | |
891 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: SrcReg); |
892 | for (MachineOperand *UseMO : Uses) { |
893 | MachineInstr *UseMI = UseMO->getParent(); |
894 | MachineBasicBlock *UseMBB = UseMI->getParent(); |
895 | if (PHIBBs.count(Ptr: UseMBB)) |
896 | continue; |
897 | |
898 | // About to add uses of DstReg, clear DstReg's kill flags. |
899 | if (!Changed) { |
900 | MRI->clearKillFlags(Reg: DstReg); |
901 | MRI->constrainRegClass(Reg: DstReg, RC: DstRC); |
902 | } |
903 | |
904 | // SubReg defs are illegal in machine SSA phase, |
905 | // we should not generate SubReg defs. |
906 | // |
907 | // For example, for the instructions: |
908 | // |
909 | // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc |
910 | // %3:gprc_and_gprc_nor0 = COPY %0.sub_32:g8rc |
911 | // |
912 | // We should generate: |
913 | // |
914 | // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc |
915 | // %6:gprc_and_gprc_nor0 = COPY %1.sub_32:g8rc_and_g8rc_nox0 |
916 | // %3:gprc_and_gprc_nor0 = COPY %6:gprc_and_gprc_nor0 |
917 | // |
918 | if (UseSrcSubIdx) |
919 | RC = MRI->getRegClass(Reg: UseMI->getOperand(i: 0).getReg()); |
920 | |
921 | Register NewVR = MRI->createVirtualRegister(RegClass: RC); |
922 | BuildMI(BB&: *UseMBB, I: UseMI, MIMD: UseMI->getDebugLoc(), |
923 | MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: NewVR) |
924 | .addReg(RegNo: DstReg, flags: 0, SubReg: SubIdx); |
925 | if (UseSrcSubIdx) |
926 | UseMO->setSubReg(0); |
927 | |
928 | UseMO->setReg(NewVR); |
929 | ++NumReuse; |
930 | Changed = true; |
931 | } |
932 | } |
933 | |
934 | return Changed; |
935 | } |
936 | |
937 | /// If the instruction is a compare and the previous instruction it's comparing |
938 | /// against already sets (or could be modified to set) the same flag as the |
939 | /// compare, then we can remove the comparison and use the flag from the |
940 | /// previous instruction. |
941 | bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) { |
942 | // If this instruction is a comparison against zero and isn't comparing a |
943 | // physical register, we can try to optimize it. |
944 | Register SrcReg, SrcReg2; |
945 | int64_t CmpMask, CmpValue; |
946 | if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, Mask&: CmpMask, Value&: CmpValue) || |
947 | SrcReg.isPhysical() || SrcReg2.isPhysical()) |
948 | return false; |
949 | |
950 | // Attempt to optimize the comparison instruction. |
951 | LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI); |
952 | if (TII->optimizeCompareInstr(CmpInstr&: MI, SrcReg, SrcReg2, Mask: CmpMask, Value: CmpValue, MRI)) { |
953 | LLVM_DEBUG(dbgs() << " -> Successfully optimized compare!\n" ); |
954 | ++NumCmps; |
955 | return true; |
956 | } |
957 | |
958 | return false; |
959 | } |
960 | |
961 | /// Optimize a select instruction. |
962 | bool PeepholeOptimizer::optimizeSelect( |
963 | MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { |
964 | unsigned TrueOp = 0; |
965 | unsigned FalseOp = 0; |
966 | bool Optimizable = false; |
967 | SmallVector<MachineOperand, 4> Cond; |
968 | if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable)) |
969 | return false; |
970 | if (!Optimizable) |
971 | return false; |
972 | if (!TII->optimizeSelect(MI, NewMIs&: LocalMIs)) |
973 | return false; |
974 | LLVM_DEBUG(dbgs() << "Deleting select: " << MI); |
975 | MI.eraseFromParent(); |
976 | ++NumSelects; |
977 | return true; |
978 | } |
979 | |
980 | /// Check if a simpler conditional branch can be generated. |
981 | bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) { |
982 | return TII->optimizeCondBranch(MI); |
983 | } |
984 | |
985 | /// Try to find a better source value that shares the same register file to |
986 | /// replace \p RegSubReg in an instruction like |
987 | /// `DefRC.DefSubReg = COPY RegSubReg` |
988 | /// |
989 | /// When true is returned, the \p RewriteMap can be used by the client to |
990 | /// retrieve all Def -> Use along the way up to the next source. Any found |
991 | /// Use that is not itself a key for another entry, is the next source to |
992 | /// use. During the search for the next source, multiple sources can be found |
993 | /// given multiple incoming sources of a PHI instruction. In this case, we |
994 | /// look in each PHI source for the next source; all found next sources must |
995 | /// share the same register file as \p Reg and \p SubReg. The client should |
996 | /// then be capable to rewrite all intermediate PHIs to get the next source. |
997 | /// \return False if no alternative sources are available. True otherwise. |
998 | bool PeepholeOptimizer::findNextSource(const TargetRegisterClass *DefRC, |
999 | unsigned DefSubReg, |
1000 | RegSubRegPair RegSubReg, |
1001 | RewriteMapTy &RewriteMap) { |
1002 | // Do not try to find a new source for a physical register. |
1003 | // So far we do not have any motivating example for doing that. |
1004 | // Thus, instead of maintaining untested code, we will revisit that if |
1005 | // that changes at some point. |
1006 | Register Reg = RegSubReg.Reg; |
1007 | SmallVector<RegSubRegPair, 4> SrcToLook; |
1008 | RegSubRegPair CurSrcPair = RegSubReg; |
1009 | SrcToLook.push_back(Elt: CurSrcPair); |
1010 | |
1011 | unsigned PHICount = 0; |
1012 | do { |
1013 | CurSrcPair = SrcToLook.pop_back_val(); |
1014 | // As explained above, do not handle physical registers |
1015 | if (CurSrcPair.Reg.isPhysical()) |
1016 | return false; |
1017 | |
1018 | ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII); |
1019 | |
1020 | // Follow the chain of copies until we find a more suitable source, a phi |
1021 | // or have to abort. |
1022 | while (true) { |
1023 | ValueTrackerResult Res = ValTracker.getNextSource(); |
1024 | // Abort at the end of a chain (without finding a suitable source). |
1025 | if (!Res.isValid()) |
1026 | return false; |
1027 | |
1028 | // Insert the Def -> Use entry for the recently found source. |
1029 | auto [InsertPt, WasInserted] = RewriteMap.try_emplace(Key: CurSrcPair, Args&: Res); |
1030 | |
1031 | if (!WasInserted) { |
1032 | const ValueTrackerResult &CurSrcRes = InsertPt->second; |
1033 | |
1034 | assert(CurSrcRes == Res && "ValueTrackerResult found must match" ); |
1035 | // An existent entry with multiple sources is a PHI cycle we must avoid. |
1036 | // Otherwise it's an entry with a valid next source we already found. |
1037 | if (CurSrcRes.getNumSources() > 1) { |
1038 | LLVM_DEBUG(dbgs() |
1039 | << "findNextSource: found PHI cycle, aborting...\n" ); |
1040 | return false; |
1041 | } |
1042 | break; |
1043 | } |
1044 | |
1045 | // ValueTrackerResult usually have one source unless it's the result from |
1046 | // a PHI instruction. Add the found PHI edges to be looked up further. |
1047 | unsigned NumSrcs = Res.getNumSources(); |
1048 | if (NumSrcs > 1) { |
1049 | PHICount++; |
1050 | if (PHICount >= RewritePHILimit) { |
1051 | LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n" ); |
1052 | return false; |
1053 | } |
1054 | |
1055 | for (unsigned i = 0; i < NumSrcs; ++i) |
1056 | SrcToLook.push_back(Elt: Res.getSrc(Idx: i)); |
1057 | break; |
1058 | } |
1059 | |
1060 | CurSrcPair = Res.getSrc(Idx: 0); |
1061 | // Do not extend the live-ranges of physical registers as they add |
1062 | // constraints to the register allocator. Moreover, if we want to extend |
1063 | // the live-range of a physical register, unlike SSA virtual register, |
1064 | // we will have to check that they aren't redefine before the related use. |
1065 | if (CurSrcPair.Reg.isPhysical()) |
1066 | return false; |
1067 | |
1068 | // Keep following the chain if the value isn't any better yet. |
1069 | const TargetRegisterClass *SrcRC = MRI->getRegClass(Reg: CurSrcPair.Reg); |
1070 | if (!TRI->shouldRewriteCopySrc(DefRC, DefSubReg, SrcRC, |
1071 | SrcSubReg: CurSrcPair.SubReg)) |
1072 | continue; |
1073 | |
1074 | // We currently cannot deal with subreg operands on PHI instructions |
1075 | // (see insertPHI()). |
1076 | if (PHICount > 0 && CurSrcPair.SubReg != 0) |
1077 | continue; |
1078 | |
1079 | // We found a suitable source, and are done with this chain. |
1080 | break; |
1081 | } |
1082 | } while (!SrcToLook.empty()); |
1083 | |
1084 | // If we did not find a more suitable source, there is nothing to optimize. |
1085 | return CurSrcPair.Reg != Reg; |
1086 | } |
1087 | |
1088 | /// Insert a PHI instruction with incoming edges \p SrcRegs that are |
1089 | /// guaranteed to have the same register class. This is necessary whenever we |
1090 | /// successfully traverse a PHI instruction and find suitable sources coming |
1091 | /// from its edges. By inserting a new PHI, we provide a rewritten PHI def |
1092 | /// suitable to be used in a new COPY instruction. |
1093 | static MachineInstr &insertPHI(MachineRegisterInfo &MRI, |
1094 | const TargetInstrInfo &TII, |
1095 | const SmallVectorImpl<RegSubRegPair> &SrcRegs, |
1096 | MachineInstr &OrigPHI) { |
1097 | assert(!SrcRegs.empty() && "No sources to create a PHI instruction?" ); |
1098 | |
1099 | const TargetRegisterClass *NewRC = MRI.getRegClass(Reg: SrcRegs[0].Reg); |
1100 | // NewRC is only correct if no subregisters are involved. findNextSource() |
1101 | // should have rejected those cases already. |
1102 | assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand" ); |
1103 | Register NewVR = MRI.createVirtualRegister(RegClass: NewRC); |
1104 | MachineBasicBlock *MBB = OrigPHI.getParent(); |
1105 | MachineInstrBuilder MIB = BuildMI(BB&: *MBB, I: &OrigPHI, MIMD: OrigPHI.getDebugLoc(), |
1106 | MCID: TII.get(Opcode: TargetOpcode::PHI), DestReg: NewVR); |
1107 | |
1108 | unsigned MBBOpIdx = 2; |
1109 | for (const RegSubRegPair &RegPair : SrcRegs) { |
1110 | MIB.addReg(RegNo: RegPair.Reg, flags: 0, SubReg: RegPair.SubReg); |
1111 | MIB.addMBB(MBB: OrigPHI.getOperand(i: MBBOpIdx).getMBB()); |
1112 | // Since we're extended the lifetime of RegPair.Reg, clear the |
1113 | // kill flags to account for that and make RegPair.Reg reaches |
1114 | // the new PHI. |
1115 | MRI.clearKillFlags(Reg: RegPair.Reg); |
1116 | MBBOpIdx += 2; |
1117 | } |
1118 | |
1119 | return *MIB; |
1120 | } |
1121 | |
1122 | /// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find |
1123 | /// the new source to use for rewrite. If \p HandleMultipleSources is true and |
1124 | /// multiple sources for a given \p Def are found along the way, we found a |
1125 | /// PHI instructions that needs to be rewritten. |
1126 | /// TODO: HandleMultipleSources should be removed once we test PHI handling |
1127 | /// with coalescable copies. |
1128 | static RegSubRegPair |
1129 | getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, |
1130 | RegSubRegPair Def, |
1131 | const PeepholeOptimizer::RewriteMapTy &RewriteMap, |
1132 | bool HandleMultipleSources = true) { |
1133 | RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); |
1134 | while (true) { |
1135 | ValueTrackerResult Res = RewriteMap.lookup(Val: LookupSrc); |
1136 | // If there are no entries on the map, LookupSrc is the new source. |
1137 | if (!Res.isValid()) |
1138 | return LookupSrc; |
1139 | |
1140 | // There's only one source for this definition, keep searching... |
1141 | unsigned NumSrcs = Res.getNumSources(); |
1142 | if (NumSrcs == 1) { |
1143 | LookupSrc.Reg = Res.getSrcReg(Idx: 0); |
1144 | LookupSrc.SubReg = Res.getSrcSubReg(Idx: 0); |
1145 | continue; |
1146 | } |
1147 | |
1148 | // TODO: Remove once multiple srcs w/ coalescable copies are supported. |
1149 | if (!HandleMultipleSources) |
1150 | break; |
1151 | |
1152 | // Multiple sources, recurse into each source to find a new source |
1153 | // for it. Then, rewrite the PHI accordingly to its new edges. |
1154 | SmallVector<RegSubRegPair, 4> NewPHISrcs; |
1155 | for (unsigned i = 0; i < NumSrcs; ++i) { |
1156 | RegSubRegPair PHISrc(Res.getSrcReg(Idx: i), Res.getSrcSubReg(Idx: i)); |
1157 | NewPHISrcs.push_back( |
1158 | Elt: getNewSource(MRI, TII, Def: PHISrc, RewriteMap, HandleMultipleSources)); |
1159 | } |
1160 | |
1161 | // Build the new PHI node and return its def register as the new source. |
1162 | MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst()); |
1163 | MachineInstr &NewPHI = insertPHI(MRI&: *MRI, TII: *TII, SrcRegs: NewPHISrcs, OrigPHI); |
1164 | LLVM_DEBUG(dbgs() << "-- getNewSource\n" ); |
1165 | LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI); |
1166 | LLVM_DEBUG(dbgs() << " With: " << NewPHI); |
1167 | const MachineOperand &MODef = NewPHI.getOperand(i: 0); |
1168 | return RegSubRegPair(MODef.getReg(), MODef.getSubReg()); |
1169 | } |
1170 | |
1171 | return RegSubRegPair(0, 0); |
1172 | } |
1173 | |
1174 | bool PeepholeOptimizer::optimizeCoalescableCopyImpl(Rewriter &&CpyRewriter) { |
1175 | bool Changed = false; |
1176 | // Get the right rewriter for the current copy. |
1177 | // Rewrite each rewritable source. |
1178 | RegSubRegPair Dst; |
1179 | RegSubRegPair TrackPair; |
1180 | while (CpyRewriter.getNextRewritableSource(Src&: TrackPair, Dst)) { |
1181 | if (Dst.Reg.isPhysical()) { |
1182 | // Do not try to find a new source for a physical register. |
1183 | // So far we do not have any motivating example for doing that. |
1184 | // Thus, instead of maintaining untested code, we will revisit that if |
1185 | // that changes at some point. |
1186 | continue; |
1187 | } |
1188 | |
1189 | const TargetRegisterClass *DefRC = MRI->getRegClass(Reg: Dst.Reg); |
1190 | |
1191 | // Keep track of PHI nodes and its incoming edges when looking for sources. |
1192 | RewriteMapTy RewriteMap; |
1193 | // Try to find a more suitable source. If we failed to do so, or get the |
1194 | // actual source, move to the next source. |
1195 | if (!findNextSource(DefRC, DefSubReg: Dst.SubReg, RegSubReg: TrackPair, RewriteMap)) |
1196 | continue; |
1197 | |
1198 | // Get the new source to rewrite. TODO: Only enable handling of multiple |
1199 | // sources (PHIs) once we have a motivating example and testcases for it. |
1200 | RegSubRegPair NewSrc = getNewSource(MRI, TII, Def: TrackPair, RewriteMap, |
1201 | /*HandleMultipleSources=*/false); |
1202 | assert(TrackPair.Reg != NewSrc.Reg && |
1203 | "should not rewrite source to original value" ); |
1204 | if (!NewSrc.Reg) |
1205 | continue; |
1206 | |
1207 | // Rewrite source. |
1208 | if (CpyRewriter.RewriteCurrentSource(NewReg: NewSrc.Reg, NewSubReg: NewSrc.SubReg)) { |
1209 | // We may have extended the live-range of NewSrc, account for that. |
1210 | MRI->clearKillFlags(Reg: NewSrc.Reg); |
1211 | Changed = true; |
1212 | } |
1213 | } |
1214 | |
1215 | // TODO: We could have a clean-up method to tidy the instruction. |
1216 | // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 |
1217 | // => v0 = COPY v1 |
1218 | // Currently we haven't seen motivating example for that and we |
1219 | // want to avoid untested code. |
1220 | NumRewrittenCopies += Changed; |
1221 | return Changed; |
1222 | } |
1223 | |
1224 | /// Optimize generic copy instructions to avoid cross register bank copy. |
1225 | /// The optimization looks through a chain of copies and tries to find a source |
1226 | /// that has a compatible register class. |
1227 | /// Two register classes are considered to be compatible if they share the same |
1228 | /// register bank. |
1229 | /// New copies issued by this optimization are register allocator |
1230 | /// friendly. This optimization does not remove any copy as it may |
1231 | /// overconstrain the register allocator, but replaces some operands |
1232 | /// when possible. |
1233 | /// \pre isCoalescableCopy(*MI) is true. |
1234 | /// \return True, when \p MI has been rewritten. False otherwise. |
1235 | bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) { |
1236 | assert(isCoalescableCopy(MI) && "Invalid argument" ); |
1237 | assert(MI.getDesc().getNumDefs() == 1 && |
1238 | "Coalescer can understand multiple defs?!" ); |
1239 | const MachineOperand &MODef = MI.getOperand(i: 0); |
1240 | // Do not rewrite physical definitions. |
1241 | if (MODef.getReg().isPhysical()) |
1242 | return false; |
1243 | |
1244 | switch (MI.getOpcode()) { |
1245 | case TargetOpcode::COPY: |
1246 | return optimizeCoalescableCopyImpl(CpyRewriter: CopyRewriter(MI)); |
1247 | case TargetOpcode::INSERT_SUBREG: |
1248 | return optimizeCoalescableCopyImpl(CpyRewriter: InsertSubregRewriter(MI)); |
1249 | case TargetOpcode::EXTRACT_SUBREG: |
1250 | return optimizeCoalescableCopyImpl(CpyRewriter: ExtractSubregRewriter(MI, *TII)); |
1251 | case TargetOpcode::REG_SEQUENCE: |
1252 | return optimizeCoalescableCopyImpl(CpyRewriter: RegSequenceRewriter(MI)); |
1253 | default: |
1254 | // Handle uncoalescable copy-like instructions. |
1255 | if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() || |
1256 | MI.isExtractSubregLike()) |
1257 | return optimizeCoalescableCopyImpl(CpyRewriter: UncoalescableRewriter(MI)); |
1258 | return false; |
1259 | } |
1260 | } |
1261 | |
1262 | /// Rewrite the source found through \p Def, by using the \p RewriteMap |
1263 | /// and create a new COPY instruction. More info about RewriteMap in |
1264 | /// PeepholeOptimizer::findNextSource. Right now this is only used to handle |
1265 | /// Uncoalescable copies, since they are copy like instructions that aren't |
1266 | /// recognized by the register allocator. |
1267 | MachineInstr &PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike, |
1268 | RegSubRegPair Def, |
1269 | RewriteMapTy &RewriteMap) { |
1270 | assert(!Def.Reg.isPhysical() && "We do not rewrite physical registers" ); |
1271 | |
1272 | // Find the new source to use in the COPY rewrite. |
1273 | RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap); |
1274 | |
1275 | // Insert the COPY. |
1276 | const TargetRegisterClass *DefRC = MRI->getRegClass(Reg: Def.Reg); |
1277 | Register NewVReg = MRI->createVirtualRegister(RegClass: DefRC); |
1278 | |
1279 | MachineInstr *NewCopy = |
1280 | BuildMI(BB&: *CopyLike.getParent(), I: &CopyLike, MIMD: CopyLike.getDebugLoc(), |
1281 | MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: NewVReg) |
1282 | .addReg(RegNo: NewSrc.Reg, flags: 0, SubReg: NewSrc.SubReg); |
1283 | |
1284 | if (Def.SubReg) { |
1285 | NewCopy->getOperand(i: 0).setSubReg(Def.SubReg); |
1286 | NewCopy->getOperand(i: 0).setIsUndef(); |
1287 | } |
1288 | |
1289 | LLVM_DEBUG(dbgs() << "-- RewriteSource\n" ); |
1290 | LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike); |
1291 | LLVM_DEBUG(dbgs() << " With: " << *NewCopy); |
1292 | MRI->replaceRegWith(FromReg: Def.Reg, ToReg: NewVReg); |
1293 | MRI->clearKillFlags(Reg: NewVReg); |
1294 | |
1295 | // We extended the lifetime of NewSrc.Reg, clear the kill flags to |
1296 | // account for that. |
1297 | MRI->clearKillFlags(Reg: NewSrc.Reg); |
1298 | |
1299 | return *NewCopy; |
1300 | } |
1301 | |
1302 | /// Optimize copy-like instructions to create |
1303 | /// register coalescer friendly instruction. |
1304 | /// The optimization tries to kill-off the \p MI by looking |
1305 | /// through a chain of copies to find a source that has a compatible |
1306 | /// register class. |
1307 | /// If such a source is found, it replace \p MI by a generic COPY |
1308 | /// operation. |
1309 | /// \pre isUncoalescableCopy(*MI) is true. |
1310 | /// \return True, when \p MI has been optimized. In that case, \p MI has |
1311 | /// been removed from its parent. |
1312 | /// All COPY instructions created, are inserted in \p LocalMIs. |
1313 | bool PeepholeOptimizer::optimizeUncoalescableCopy( |
1314 | MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { |
1315 | assert(isUncoalescableCopy(MI) && "Invalid argument" ); |
1316 | UncoalescableRewriter CpyRewriter(MI); |
1317 | |
1318 | // Rewrite each rewritable source by generating new COPYs. This works |
1319 | // differently from optimizeCoalescableCopy since it first makes sure that all |
1320 | // definitions can be rewritten. |
1321 | RewriteMapTy RewriteMap; |
1322 | RegSubRegPair Src; |
1323 | RegSubRegPair Def; |
1324 | SmallVector<RegSubRegPair, 4> RewritePairs; |
1325 | while (CpyRewriter.getNextRewritableSource(Src, Dst&: Def)) { |
1326 | // If a physical register is here, this is probably for a good reason. |
1327 | // Do not rewrite that. |
1328 | if (Def.Reg.isPhysical()) |
1329 | return false; |
1330 | |
1331 | // FIXME: Uncoalescable copies are treated differently by |
1332 | // UncoalescableRewriter, and this probably should not share |
1333 | // API. getNextRewritableSource really finds rewritable defs. |
1334 | const TargetRegisterClass *DefRC = MRI->getRegClass(Reg: Def.Reg); |
1335 | |
1336 | // If we do not know how to rewrite this definition, there is no point |
1337 | // in trying to kill this instruction. |
1338 | if (!findNextSource(DefRC, DefSubReg: Def.SubReg, RegSubReg: Def, RewriteMap)) |
1339 | return false; |
1340 | |
1341 | RewritePairs.push_back(Elt: Def); |
1342 | } |
1343 | |
1344 | // The change is possible for all defs, do it. |
1345 | for (const RegSubRegPair &Def : RewritePairs) { |
1346 | // Rewrite the "copy" in a way the register coalescer understands. |
1347 | MachineInstr &NewCopy = rewriteSource(CopyLike&: MI, Def, RewriteMap); |
1348 | LocalMIs.insert(Ptr: &NewCopy); |
1349 | } |
1350 | |
1351 | // MI is now dead. |
1352 | LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI); |
1353 | MI.eraseFromParent(); |
1354 | ++NumUncoalescableCopies; |
1355 | return true; |
1356 | } |
1357 | |
1358 | /// Check whether MI is a candidate for folding into a later instruction. |
1359 | /// We only fold loads to virtual registers and the virtual register defined |
1360 | /// has a single user. |
1361 | bool PeepholeOptimizer::isLoadFoldable( |
1362 | MachineInstr &MI, SmallSet<Register, 16> &FoldAsLoadDefCandidates) { |
1363 | if (!MI.canFoldAsLoad() || !MI.mayLoad()) |
1364 | return false; |
1365 | const MCInstrDesc &MCID = MI.getDesc(); |
1366 | if (MCID.getNumDefs() != 1) |
1367 | return false; |
1368 | |
1369 | Register Reg = MI.getOperand(i: 0).getReg(); |
1370 | // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting |
1371 | // loads. It should be checked when processing uses of the load, since |
1372 | // uses can be removed during peephole. |
1373 | if (Reg.isVirtual() && !MI.getOperand(i: 0).getSubReg() && |
1374 | MRI->hasOneNonDBGUser(RegNo: Reg)) { |
1375 | FoldAsLoadDefCandidates.insert(V: Reg); |
1376 | return true; |
1377 | } |
1378 | return false; |
1379 | } |
1380 | |
1381 | bool PeepholeOptimizer::isMoveImmediate( |
1382 | MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, |
1383 | DenseMap<Register, MachineInstr *> &ImmDefMIs) { |
1384 | const MCInstrDesc &MCID = MI.getDesc(); |
1385 | if (MCID.getNumDefs() != 1 || !MI.getOperand(i: 0).isReg()) |
1386 | return false; |
1387 | Register Reg = MI.getOperand(i: 0).getReg(); |
1388 | if (!Reg.isVirtual()) |
1389 | return false; |
1390 | |
1391 | int64_t ImmVal; |
1392 | if (!MI.isMoveImmediate() && !TII->getConstValDefinedInReg(MI, Reg, ImmVal)) |
1393 | return false; |
1394 | |
1395 | ImmDefMIs.insert(KV: std::make_pair(x&: Reg, y: &MI)); |
1396 | ImmDefRegs.insert(V: Reg); |
1397 | return true; |
1398 | } |
1399 | |
1400 | /// Try folding register operands that are defined by move immediate |
1401 | /// instructions, i.e. a trivial constant folding optimization, if |
1402 | /// and only if the def and use are in the same BB. |
1403 | bool PeepholeOptimizer::foldImmediate( |
1404 | MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, |
1405 | DenseMap<Register, MachineInstr *> &ImmDefMIs, bool &Deleted) { |
1406 | Deleted = false; |
1407 | for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { |
1408 | MachineOperand &MO = MI.getOperand(i); |
1409 | if (!MO.isReg() || MO.isDef()) |
1410 | continue; |
1411 | Register Reg = MO.getReg(); |
1412 | if (!Reg.isVirtual()) |
1413 | continue; |
1414 | if (ImmDefRegs.count(V: Reg) == 0) |
1415 | continue; |
1416 | DenseMap<Register, MachineInstr *>::iterator II = ImmDefMIs.find(Val: Reg); |
1417 | assert(II != ImmDefMIs.end() && "couldn't find immediate definition" ); |
1418 | if (TII->foldImmediate(UseMI&: MI, DefMI&: *II->second, Reg, MRI)) { |
1419 | ++NumImmFold; |
1420 | // foldImmediate can delete ImmDefMI if MI was its only user. If ImmDefMI |
1421 | // is not deleted, and we happened to get a same MI, we can delete MI and |
1422 | // replace its users. |
1423 | if (MRI->getVRegDef(Reg) && |
1424 | MI.isIdenticalTo(Other: *II->second, Check: MachineInstr::IgnoreVRegDefs)) { |
1425 | Register DstReg = MI.getOperand(i: 0).getReg(); |
1426 | if (DstReg.isVirtual() && |
1427 | MRI->getRegClass(Reg: DstReg) == MRI->getRegClass(Reg)) { |
1428 | MRI->replaceRegWith(FromReg: DstReg, ToReg: Reg); |
1429 | MI.eraseFromParent(); |
1430 | Deleted = true; |
1431 | } |
1432 | } |
1433 | return true; |
1434 | } |
1435 | } |
1436 | return false; |
1437 | } |
1438 | |
1439 | // FIXME: This is very simple and misses some cases which should be handled when |
1440 | // motivating examples are found. |
1441 | // |
1442 | // The copy rewriting logic should look at uses as well as defs and be able to |
1443 | // eliminate copies across blocks. |
1444 | // |
1445 | // Later copies that are subregister extracts will also not be eliminated since |
1446 | // only the first copy is considered. |
1447 | // |
1448 | // e.g. |
1449 | // %1 = COPY %0 |
1450 | // %2 = COPY %0:sub1 |
1451 | // |
1452 | // Should replace %2 uses with %1:sub1 |
1453 | bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI) { |
1454 | assert(MI.isCopy() && "expected a COPY machine instruction" ); |
1455 | |
1456 | RegSubRegPair SrcPair; |
1457 | if (!getCopySrc(MI, SrcPair)) |
1458 | return false; |
1459 | |
1460 | Register DstReg = MI.getOperand(i: 0).getReg(); |
1461 | if (!DstReg.isVirtual()) |
1462 | return false; |
1463 | |
1464 | if (CopySrcMIs.insert(KV: std::make_pair(x&: SrcPair, y: &MI)).second) { |
1465 | // First copy of this reg seen. |
1466 | return false; |
1467 | } |
1468 | |
1469 | MachineInstr *PrevCopy = CopySrcMIs.find(Val: SrcPair)->second; |
1470 | |
1471 | assert(SrcPair.SubReg == PrevCopy->getOperand(1).getSubReg() && |
1472 | "Unexpected mismatching subreg!" ); |
1473 | |
1474 | Register PrevDstReg = PrevCopy->getOperand(i: 0).getReg(); |
1475 | |
1476 | // Only replace if the copy register class is the same. |
1477 | // |
1478 | // TODO: If we have multiple copies to different register classes, we may want |
1479 | // to track multiple copies of the same source register. |
1480 | if (MRI->getRegClass(Reg: DstReg) != MRI->getRegClass(Reg: PrevDstReg)) |
1481 | return false; |
1482 | |
1483 | MRI->replaceRegWith(FromReg: DstReg, ToReg: PrevDstReg); |
1484 | |
1485 | // Lifetime of the previous copy has been extended. |
1486 | MRI->clearKillFlags(Reg: PrevDstReg); |
1487 | return true; |
1488 | } |
1489 | |
1490 | bool PeepholeOptimizer::isNAPhysCopy(Register Reg) { |
1491 | return Reg.isPhysical() && !MRI->isAllocatable(PhysReg: Reg); |
1492 | } |
1493 | |
1494 | bool PeepholeOptimizer::foldRedundantNAPhysCopy( |
1495 | MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs) { |
1496 | assert(MI.isCopy() && "expected a COPY machine instruction" ); |
1497 | |
1498 | if (DisableNAPhysCopyOpt) |
1499 | return false; |
1500 | |
1501 | Register DstReg = MI.getOperand(i: 0).getReg(); |
1502 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
1503 | if (isNAPhysCopy(Reg: SrcReg) && DstReg.isVirtual()) { |
1504 | // %vreg = COPY $physreg |
1505 | // Avoid using a datastructure which can track multiple live non-allocatable |
1506 | // phys->virt copies since LLVM doesn't seem to do this. |
1507 | NAPhysToVirtMIs.insert(KV: {SrcReg, &MI}); |
1508 | return false; |
1509 | } |
1510 | |
1511 | if (!(SrcReg.isVirtual() && isNAPhysCopy(Reg: DstReg))) |
1512 | return false; |
1513 | |
1514 | // $physreg = COPY %vreg |
1515 | auto PrevCopy = NAPhysToVirtMIs.find(Val: DstReg); |
1516 | if (PrevCopy == NAPhysToVirtMIs.end()) { |
1517 | // We can't remove the copy: there was an intervening clobber of the |
1518 | // non-allocatable physical register after the copy to virtual. |
1519 | LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " |
1520 | << MI); |
1521 | return false; |
1522 | } |
1523 | |
1524 | Register PrevDstReg = PrevCopy->second->getOperand(i: 0).getReg(); |
1525 | if (PrevDstReg == SrcReg) { |
1526 | // Remove the virt->phys copy: we saw the virtual register definition, and |
1527 | // the non-allocatable physical register's state hasn't changed since then. |
1528 | LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI); |
1529 | ++NumNAPhysCopies; |
1530 | return true; |
1531 | } |
1532 | |
1533 | // Potential missed optimization opportunity: we saw a different virtual |
1534 | // register get a copy of the non-allocatable physical register, and we only |
1535 | // track one such copy. Avoid getting confused by this new non-allocatable |
1536 | // physical register definition, and remove it from the tracked copies. |
1537 | LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI); |
1538 | NAPhysToVirtMIs.erase(I: PrevCopy); |
1539 | return false; |
1540 | } |
1541 | |
1542 | /// \bried Returns true if \p MO is a virtual register operand. |
1543 | static bool isVirtualRegisterOperand(MachineOperand &MO) { |
1544 | return MO.isReg() && MO.getReg().isVirtual(); |
1545 | } |
1546 | |
1547 | bool PeepholeOptimizer::findTargetRecurrence( |
1548 | Register Reg, const SmallSet<Register, 2> &TargetRegs, |
1549 | RecurrenceCycle &RC) { |
1550 | // Recurrence found if Reg is in TargetRegs. |
1551 | if (TargetRegs.count(V: Reg)) |
1552 | return true; |
1553 | |
1554 | // TODO: Curerntly, we only allow the last instruction of the recurrence |
1555 | // cycle (the instruction that feeds the PHI instruction) to have more than |
1556 | // one uses to guarantee that commuting operands does not tie registers |
1557 | // with overlapping live range. Once we have actual live range info of |
1558 | // each register, this constraint can be relaxed. |
1559 | if (!MRI->hasOneNonDBGUse(RegNo: Reg)) |
1560 | return false; |
1561 | |
1562 | // Give up if the reccurrence chain length is longer than the limit. |
1563 | if (RC.size() >= MaxRecurrenceChain) |
1564 | return false; |
1565 | |
1566 | MachineInstr &MI = *(MRI->use_instr_nodbg_begin(RegNo: Reg)); |
1567 | unsigned Idx = MI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr); |
1568 | |
1569 | // Only interested in recurrences whose instructions have only one def, which |
1570 | // is a virtual register. |
1571 | if (MI.getDesc().getNumDefs() != 1) |
1572 | return false; |
1573 | |
1574 | MachineOperand &DefOp = MI.getOperand(i: 0); |
1575 | if (!isVirtualRegisterOperand(MO&: DefOp)) |
1576 | return false; |
1577 | |
1578 | // Check if def operand of MI is tied to any use operand. We are only |
1579 | // interested in the case that all the instructions in the recurrence chain |
1580 | // have there def operand tied with one of the use operand. |
1581 | unsigned TiedUseIdx; |
1582 | if (!MI.isRegTiedToUseOperand(DefOpIdx: 0, UseOpIdx: &TiedUseIdx)) |
1583 | return false; |
1584 | |
1585 | if (Idx == TiedUseIdx) { |
1586 | RC.push_back(Elt: RecurrenceInstr(&MI)); |
1587 | return findTargetRecurrence(Reg: DefOp.getReg(), TargetRegs, RC); |
1588 | } else { |
1589 | // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx. |
1590 | unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex; |
1591 | if (TII->findCommutedOpIndices(MI, SrcOpIdx1&: Idx, SrcOpIdx2&: CommIdx) && CommIdx == TiedUseIdx) { |
1592 | RC.push_back(Elt: RecurrenceInstr(&MI, Idx, CommIdx)); |
1593 | return findTargetRecurrence(Reg: DefOp.getReg(), TargetRegs, RC); |
1594 | } |
1595 | } |
1596 | |
1597 | return false; |
1598 | } |
1599 | |
1600 | /// Phi instructions will eventually be lowered to copy instructions. |
1601 | /// If phi is in a loop header, a recurrence may formulated around the source |
1602 | /// and destination of the phi. For such case commuting operands of the |
1603 | /// instructions in the recurrence may enable coalescing of the copy instruction |
1604 | /// generated from the phi. For example, if there is a recurrence of |
1605 | /// |
1606 | /// LoopHeader: |
1607 | /// %1 = phi(%0, %100) |
1608 | /// LoopLatch: |
1609 | /// %0<def, tied1> = ADD %2<def, tied0>, %1 |
1610 | /// |
1611 | /// , the fact that %0 and %2 are in the same tied operands set makes |
1612 | /// the coalescing of copy instruction generated from the phi in |
1613 | /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and |
1614 | /// %2 have overlapping live range. This introduces additional move |
1615 | /// instruction to the final assembly. However, if we commute %2 and |
1616 | /// %1 of ADD instruction, the redundant move instruction can be |
1617 | /// avoided. |
1618 | bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) { |
1619 | SmallSet<Register, 2> TargetRegs; |
1620 | for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) { |
1621 | MachineOperand &MO = PHI.getOperand(i: Idx); |
1622 | assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction" ); |
1623 | TargetRegs.insert(V: MO.getReg()); |
1624 | } |
1625 | |
1626 | bool Changed = false; |
1627 | RecurrenceCycle RC; |
1628 | if (findTargetRecurrence(Reg: PHI.getOperand(i: 0).getReg(), TargetRegs, RC)) { |
1629 | // Commutes operands of instructions in RC if necessary so that the copy to |
1630 | // be generated from PHI can be coalesced. |
1631 | LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI); |
1632 | for (auto &RI : RC) { |
1633 | LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI())); |
1634 | auto CP = RI.getCommutePair(); |
1635 | if (CP) { |
1636 | Changed = true; |
1637 | TII->commuteInstruction(MI&: *(RI.getMI()), NewMI: false, OpIdx1: (*CP).first, |
1638 | OpIdx2: (*CP).second); |
1639 | LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI())); |
1640 | } |
1641 | } |
1642 | } |
1643 | |
1644 | return Changed; |
1645 | } |
1646 | |
1647 | PreservedAnalyses |
1648 | PeepholeOptimizerPass::run(MachineFunction &MF, |
1649 | MachineFunctionAnalysisManager &MFAM) { |
1650 | MFPropsModifier _(*this, MF); |
1651 | auto *DT = |
1652 | Aggressive ? &MFAM.getResult<MachineDominatorTreeAnalysis>(IR&: MF) : nullptr; |
1653 | auto *MLI = &MFAM.getResult<MachineLoopAnalysis>(IR&: MF); |
1654 | PeepholeOptimizer Impl(DT, MLI); |
1655 | bool Changed = Impl.run(MF); |
1656 | if (!Changed) |
1657 | return PreservedAnalyses::all(); |
1658 | |
1659 | auto PA = getMachineFunctionPassPreservedAnalyses(); |
1660 | PA.preserve<MachineDominatorTreeAnalysis>(); |
1661 | PA.preserve<MachineLoopAnalysis>(); |
1662 | PA.preserveSet<CFGAnalyses>(); |
1663 | return PA; |
1664 | } |
1665 | |
1666 | bool PeepholeOptimizerLegacy::runOnMachineFunction(MachineFunction &MF) { |
1667 | if (skipFunction(F: MF.getFunction())) |
1668 | return false; |
1669 | auto *DT = Aggressive |
1670 | ? &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree() |
1671 | : nullptr; |
1672 | auto *MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
1673 | PeepholeOptimizer Impl(DT, MLI); |
1674 | return Impl.run(MF); |
1675 | } |
1676 | |
1677 | bool PeepholeOptimizer::run(MachineFunction &MF) { |
1678 | |
1679 | LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n" ); |
1680 | LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); |
1681 | |
1682 | if (DisablePeephole) |
1683 | return false; |
1684 | |
1685 | TII = MF.getSubtarget().getInstrInfo(); |
1686 | TRI = MF.getSubtarget().getRegisterInfo(); |
1687 | MRI = &MF.getRegInfo(); |
1688 | MF.setDelegate(this); |
1689 | |
1690 | bool Changed = false; |
1691 | |
1692 | for (MachineBasicBlock &MBB : MF) { |
1693 | bool SeenMoveImm = false; |
1694 | |
1695 | // During this forward scan, at some point it needs to answer the question |
1696 | // "given a pointer to an MI in the current BB, is it located before or |
1697 | // after the current instruction". |
1698 | // To perform this, the following set keeps track of the MIs already seen |
1699 | // during the scan, if a MI is not in the set, it is assumed to be located |
1700 | // after. Newly created MIs have to be inserted in the set as well. |
1701 | SmallPtrSet<MachineInstr *, 16> LocalMIs; |
1702 | SmallSet<Register, 4> ImmDefRegs; |
1703 | DenseMap<Register, MachineInstr *> ImmDefMIs; |
1704 | SmallSet<Register, 16> FoldAsLoadDefCandidates; |
1705 | |
1706 | // Track when a non-allocatable physical register is copied to a virtual |
1707 | // register so that useless moves can be removed. |
1708 | // |
1709 | // $physreg is the map index; MI is the last valid `%vreg = COPY $physreg` |
1710 | // without any intervening re-definition of $physreg. |
1711 | DenseMap<Register, MachineInstr *> NAPhysToVirtMIs; |
1712 | |
1713 | CopySrcMIs.clear(); |
1714 | |
1715 | bool = MLI->isLoopHeader(BB: &MBB); |
1716 | |
1717 | for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end(); |
1718 | MII != MIE;) { |
1719 | MachineInstr *MI = &*MII; |
1720 | // We may be erasing MI below, increment MII now. |
1721 | ++MII; |
1722 | LocalMIs.insert(Ptr: MI); |
1723 | |
1724 | // Skip debug instructions. They should not affect this peephole |
1725 | // optimization. |
1726 | if (MI->isDebugInstr()) |
1727 | continue; |
1728 | |
1729 | if (MI->isPosition()) |
1730 | continue; |
1731 | |
1732 | if (IsLoopHeader && MI->isPHI()) { |
1733 | if (optimizeRecurrence(PHI&: *MI)) { |
1734 | Changed = true; |
1735 | continue; |
1736 | } |
1737 | } |
1738 | |
1739 | if (!MI->isCopy()) { |
1740 | for (const MachineOperand &MO : MI->operands()) { |
1741 | // Visit all operands: definitions can be implicit or explicit. |
1742 | if (MO.isReg()) { |
1743 | Register Reg = MO.getReg(); |
1744 | if (MO.isDef() && isNAPhysCopy(Reg)) { |
1745 | const auto &Def = NAPhysToVirtMIs.find(Val: Reg); |
1746 | if (Def != NAPhysToVirtMIs.end()) { |
1747 | // A new definition of the non-allocatable physical register |
1748 | // invalidates previous copies. |
1749 | LLVM_DEBUG(dbgs() |
1750 | << "NAPhysCopy: invalidating because of " << *MI); |
1751 | NAPhysToVirtMIs.erase(I: Def); |
1752 | } |
1753 | } |
1754 | } else if (MO.isRegMask()) { |
1755 | const uint32_t *RegMask = MO.getRegMask(); |
1756 | for (auto &RegMI : NAPhysToVirtMIs) { |
1757 | Register Def = RegMI.first; |
1758 | if (MachineOperand::clobbersPhysReg(RegMask, PhysReg: Def)) { |
1759 | LLVM_DEBUG(dbgs() |
1760 | << "NAPhysCopy: invalidating because of " << *MI); |
1761 | NAPhysToVirtMIs.erase(Val: Def); |
1762 | } |
1763 | } |
1764 | } |
1765 | } |
1766 | } |
1767 | |
1768 | if (MI->isImplicitDef() || MI->isKill()) |
1769 | continue; |
1770 | |
1771 | if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) { |
1772 | // Blow away all non-allocatable physical registers knowledge since we |
1773 | // don't know what's correct anymore. |
1774 | // |
1775 | // FIXME: handle explicit asm clobbers. |
1776 | LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " |
1777 | << *MI); |
1778 | NAPhysToVirtMIs.clear(); |
1779 | } |
1780 | |
1781 | if ((isUncoalescableCopy(MI: *MI) && |
1782 | optimizeUncoalescableCopy(MI&: *MI, LocalMIs)) || |
1783 | (MI->isCompare() && optimizeCmpInstr(MI&: *MI)) || |
1784 | (MI->isSelect() && optimizeSelect(MI&: *MI, LocalMIs))) { |
1785 | // MI is deleted. |
1786 | LocalMIs.erase(Ptr: MI); |
1787 | Changed = true; |
1788 | continue; |
1789 | } |
1790 | |
1791 | if (MI->isConditionalBranch() && optimizeCondBranch(MI&: *MI)) { |
1792 | Changed = true; |
1793 | continue; |
1794 | } |
1795 | |
1796 | if (isCoalescableCopy(MI: *MI) && optimizeCoalescableCopy(MI&: *MI)) { |
1797 | // MI is just rewritten. |
1798 | Changed = true; |
1799 | continue; |
1800 | } |
1801 | |
1802 | if (MI->isCopy() && (foldRedundantCopy(MI&: *MI) || |
1803 | foldRedundantNAPhysCopy(MI&: *MI, NAPhysToVirtMIs))) { |
1804 | LocalMIs.erase(Ptr: MI); |
1805 | LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n" ); |
1806 | MI->eraseFromParent(); |
1807 | Changed = true; |
1808 | continue; |
1809 | } |
1810 | |
1811 | if (isMoveImmediate(MI&: *MI, ImmDefRegs, ImmDefMIs)) { |
1812 | SeenMoveImm = true; |
1813 | } else { |
1814 | Changed |= optimizeExtInstr(MI&: *MI, MBB, LocalMIs); |
1815 | // optimizeExtInstr might have created new instructions after MI |
1816 | // and before the already incremented MII. Adjust MII so that the |
1817 | // next iteration sees the new instructions. |
1818 | MII = MI; |
1819 | ++MII; |
1820 | if (SeenMoveImm) { |
1821 | bool Deleted; |
1822 | Changed |= foldImmediate(MI&: *MI, ImmDefRegs, ImmDefMIs, Deleted); |
1823 | if (Deleted) { |
1824 | LocalMIs.erase(Ptr: MI); |
1825 | continue; |
1826 | } |
1827 | } |
1828 | } |
1829 | |
1830 | // Check whether MI is a load candidate for folding into a later |
1831 | // instruction. If MI is not a candidate, check whether we can fold an |
1832 | // earlier load into MI. |
1833 | if (!isLoadFoldable(MI&: *MI, FoldAsLoadDefCandidates) && |
1834 | !FoldAsLoadDefCandidates.empty()) { |
1835 | |
1836 | // We visit each operand even after successfully folding a previous |
1837 | // one. This allows us to fold multiple loads into a single |
1838 | // instruction. We do assume that optimizeLoadInstr doesn't insert |
1839 | // foldable uses earlier in the argument list. Since we don't restart |
1840 | // iteration, we'd miss such cases. |
1841 | const MCInstrDesc &MIDesc = MI->getDesc(); |
1842 | for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands(); ++i) { |
1843 | const MachineOperand &MOp = MI->getOperand(i); |
1844 | if (!MOp.isReg()) |
1845 | continue; |
1846 | Register FoldAsLoadDefReg = MOp.getReg(); |
1847 | if (FoldAsLoadDefCandidates.count(V: FoldAsLoadDefReg)) { |
1848 | // We need to fold load after optimizeCmpInstr, since |
1849 | // optimizeCmpInstr can enable folding by converting SUB to CMP. |
1850 | // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and |
1851 | // we need it for markUsesInDebugValueAsUndef(). |
1852 | Register FoldedReg = FoldAsLoadDefReg; |
1853 | MachineInstr *DefMI = nullptr; |
1854 | if (MachineInstr *FoldMI = |
1855 | TII->optimizeLoadInstr(MI&: *MI, MRI, FoldAsLoadDefReg, DefMI)) { |
1856 | // Update LocalMIs since we replaced MI with FoldMI and deleted |
1857 | // DefMI. |
1858 | LLVM_DEBUG(dbgs() << "Replacing: " << *MI); |
1859 | LLVM_DEBUG(dbgs() << " With: " << *FoldMI); |
1860 | LocalMIs.erase(Ptr: MI); |
1861 | LocalMIs.erase(Ptr: DefMI); |
1862 | LocalMIs.insert(Ptr: FoldMI); |
1863 | // Update the call info. |
1864 | if (MI->shouldUpdateAdditionalCallInfo()) |
1865 | MI->getMF()->moveAdditionalCallInfo(Old: MI, New: FoldMI); |
1866 | MI->eraseFromParent(); |
1867 | DefMI->eraseFromParent(); |
1868 | MRI->markUsesInDebugValueAsUndef(Reg: FoldedReg); |
1869 | FoldAsLoadDefCandidates.erase(V: FoldedReg); |
1870 | ++NumLoadFold; |
1871 | |
1872 | // MI is replaced with FoldMI so we can continue trying to fold |
1873 | Changed = true; |
1874 | MI = FoldMI; |
1875 | } |
1876 | } |
1877 | } |
1878 | } |
1879 | |
1880 | // If we run into an instruction we can't fold across, discard |
1881 | // the load candidates. Note: We might be able to fold *into* this |
1882 | // instruction, so this needs to be after the folding logic. |
1883 | if (MI->isLoadFoldBarrier()) { |
1884 | LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI); |
1885 | FoldAsLoadDefCandidates.clear(); |
1886 | } |
1887 | } |
1888 | } |
1889 | |
1890 | MF.resetDelegate(delegate: this); |
1891 | return Changed; |
1892 | } |
1893 | |
1894 | ValueTrackerResult ValueTracker::getNextSourceFromCopy() { |
1895 | assert(Def->isCopy() && "Invalid definition" ); |
1896 | // Copy instruction are supposed to be: Def = Src. |
1897 | // If someone breaks this assumption, bad things will happen everywhere. |
1898 | // There may be implicit uses preventing the copy to be moved across |
1899 | // some target specific register definitions |
1900 | assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 && |
1901 | "Invalid number of operands" ); |
1902 | assert(!Def->hasImplicitDef() && "Only implicit uses are allowed" ); |
1903 | assert(!Def->getOperand(DefIdx).getSubReg() && "no subregister defs in SSA" ); |
1904 | |
1905 | // Otherwise, we want the whole source. |
1906 | const MachineOperand &Src = Def->getOperand(i: 1); |
1907 | if (Src.isUndef()) |
1908 | return ValueTrackerResult(); |
1909 | return ValueTrackerResult(Src.getReg(), Src.getSubReg()); |
1910 | } |
1911 | |
1912 | ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { |
1913 | assert(Def->isBitcast() && "Invalid definition" ); |
1914 | |
1915 | // Bail if there are effects that a plain copy will not expose. |
1916 | if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects()) |
1917 | return ValueTrackerResult(); |
1918 | |
1919 | // Bitcasts with more than one def are not supported. |
1920 | if (Def->getDesc().getNumDefs() != 1) |
1921 | return ValueTrackerResult(); |
1922 | |
1923 | assert(!Def->getOperand(DefIdx).getSubReg() && "no subregister defs in SSA" ); |
1924 | |
1925 | unsigned SrcIdx = Def->getNumOperands(); |
1926 | for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; |
1927 | ++OpIdx) { |
1928 | const MachineOperand &MO = Def->getOperand(i: OpIdx); |
1929 | if (!MO.isReg() || !MO.getReg()) |
1930 | continue; |
1931 | // Ignore dead implicit defs. |
1932 | if (MO.isImplicit() && MO.isDead()) |
1933 | continue; |
1934 | assert(!MO.isDef() && "We should have skipped all the definitions by now" ); |
1935 | if (SrcIdx != EndOpIdx) |
1936 | // Multiple sources? |
1937 | return ValueTrackerResult(); |
1938 | SrcIdx = OpIdx; |
1939 | } |
1940 | |
1941 | // In some rare case, Def has no input, SrcIdx is out of bound, |
1942 | // getOperand(SrcIdx) will fail below. |
1943 | if (SrcIdx >= Def->getNumOperands()) |
1944 | return ValueTrackerResult(); |
1945 | |
1946 | const MachineOperand &DefOp = Def->getOperand(i: DefIdx); |
1947 | |
1948 | // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY |
1949 | // will break the assumed guarantees for the upper bits. |
1950 | for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(Reg: DefOp.getReg())) { |
1951 | if (UseMI.isSubregToReg()) |
1952 | return ValueTrackerResult(); |
1953 | } |
1954 | |
1955 | const MachineOperand &Src = Def->getOperand(i: SrcIdx); |
1956 | if (Src.isUndef()) |
1957 | return ValueTrackerResult(); |
1958 | return ValueTrackerResult(Src.getReg(), Src.getSubReg()); |
1959 | } |
1960 | |
1961 | ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { |
1962 | assert((Def->isRegSequence() || Def->isRegSequenceLike()) && |
1963 | "Invalid definition" ); |
1964 | |
1965 | assert(!Def->getOperand(DefIdx).getSubReg() && "illegal subregister def" ); |
1966 | |
1967 | SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs; |
1968 | if (!TII->getRegSequenceInputs(MI: *Def, DefIdx, InputRegs&: RegSeqInputRegs)) |
1969 | return ValueTrackerResult(); |
1970 | |
1971 | // We are looking at: |
1972 | // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... |
1973 | // |
1974 | // Check if one of the operands exactly defines the subreg we are interested |
1975 | // in. |
1976 | for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) { |
1977 | if (RegSeqInput.SubIdx == DefSubReg) |
1978 | return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); |
1979 | } |
1980 | |
1981 | const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); |
1982 | |
1983 | // If we did not find an exact match, see if we can do a composition to |
1984 | // extract a sub-subregister. |
1985 | for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) { |
1986 | LaneBitmask DefMask = TRI->getSubRegIndexLaneMask(SubIdx: DefSubReg); |
1987 | LaneBitmask ThisOpRegMask = TRI->getSubRegIndexLaneMask(SubIdx: RegSeqInput.SubIdx); |
1988 | |
1989 | // Check that this extract reads a subset of this single reg_sequence input. |
1990 | // |
1991 | // FIXME: We should be able to filter this in terms of the indexes directly |
1992 | // without checking the lanemasks. |
1993 | if ((DefMask & ThisOpRegMask) != DefMask) |
1994 | continue; |
1995 | |
1996 | unsigned ReverseDefCompose = |
1997 | TRI->reverseComposeSubRegIndices(a: RegSeqInput.SubIdx, b: DefSubReg); |
1998 | if (!ReverseDefCompose) |
1999 | continue; |
2000 | |
2001 | unsigned ComposedDefInSrcReg1 = |
2002 | TRI->composeSubRegIndices(a: RegSeqInput.SubReg, b: ReverseDefCompose); |
2003 | |
2004 | // TODO: We should be able to defer checking if the result register class |
2005 | // supports the index to continue looking for a rewritable source. |
2006 | // |
2007 | // TODO: Should we modify the register class to support the index? |
2008 | const TargetRegisterClass *SrcRC = MRI.getRegClass(Reg: RegSeqInput.Reg); |
2009 | const TargetRegisterClass *SrcWithSubRC = |
2010 | TRI->getSubClassWithSubReg(RC: SrcRC, Idx: ComposedDefInSrcReg1); |
2011 | if (SrcRC != SrcWithSubRC) |
2012 | return ValueTrackerResult(); |
2013 | |
2014 | return ValueTrackerResult(RegSeqInput.Reg, ComposedDefInSrcReg1); |
2015 | } |
2016 | |
2017 | // If the subreg we are tracking is super-defined by another subreg, |
2018 | // we could follow this value. However, this would require to compose |
2019 | // the subreg and we do not do that for now. |
2020 | return ValueTrackerResult(); |
2021 | } |
2022 | |
2023 | ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { |
2024 | assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && |
2025 | "Invalid definition" ); |
2026 | assert(!Def->getOperand(DefIdx).getSubReg() && "no subreg defs in SSA" ); |
2027 | |
2028 | RegSubRegPair BaseReg; |
2029 | RegSubRegPairAndIdx InsertedReg; |
2030 | if (!TII->getInsertSubregInputs(MI: *Def, DefIdx, BaseReg, InsertedReg)) |
2031 | return ValueTrackerResult(); |
2032 | |
2033 | // We are looking at: |
2034 | // Def = INSERT_SUBREG v0, v1, sub1 |
2035 | // There are two cases: |
2036 | // 1. DefSubReg == sub1, get v1. |
2037 | // 2. DefSubReg != sub1, the value may be available through v0. |
2038 | |
2039 | // #1 Check if the inserted register matches the required sub index. |
2040 | if (InsertedReg.SubIdx == DefSubReg) { |
2041 | return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); |
2042 | } |
2043 | // #2 Otherwise, if the sub register we are looking for is not partial |
2044 | // defined by the inserted element, we can look through the main |
2045 | // register (v0). |
2046 | const MachineOperand &MODef = Def->getOperand(i: DefIdx); |
2047 | // If the result register (Def) and the base register (v0) do not |
2048 | // have the same register class or if we have to compose |
2049 | // subregisters, bail out. |
2050 | if (MRI.getRegClass(Reg: MODef.getReg()) != MRI.getRegClass(Reg: BaseReg.Reg) || |
2051 | BaseReg.SubReg) |
2052 | return ValueTrackerResult(); |
2053 | |
2054 | // Get the TRI and check if the inserted sub-register overlaps with the |
2055 | // sub-register we are tracking. |
2056 | const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); |
2057 | if ((TRI->getSubRegIndexLaneMask(SubIdx: DefSubReg) & |
2058 | TRI->getSubRegIndexLaneMask(SubIdx: InsertedReg.SubIdx)) |
2059 | .any()) |
2060 | return ValueTrackerResult(); |
2061 | // At this point, the value is available in v0 via the same subreg |
2062 | // we used for Def. |
2063 | return ValueTrackerResult(BaseReg.Reg, DefSubReg); |
2064 | } |
2065 | |
2066 | ValueTrackerResult ValueTracker::() { |
2067 | assert((Def->isExtractSubreg() || Def->isExtractSubregLike()) && |
2068 | "Invalid definition" ); |
2069 | // We are looking at: |
2070 | // Def = EXTRACT_SUBREG v0, sub0 |
2071 | |
2072 | // Bail if we have to compose sub registers. |
2073 | // Indeed, if DefSubReg != 0, we would have to compose it with sub0. |
2074 | if (DefSubReg) |
2075 | return ValueTrackerResult(); |
2076 | |
2077 | RegSubRegPairAndIdx ; |
2078 | if (!TII->getExtractSubregInputs(MI: *Def, DefIdx, InputReg&: ExtractSubregInputReg)) |
2079 | return ValueTrackerResult(); |
2080 | |
2081 | // Bail if we have to compose sub registers. |
2082 | // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. |
2083 | if (ExtractSubregInputReg.SubReg) |
2084 | return ValueTrackerResult(); |
2085 | // Otherwise, the value is available in the v0.sub0. |
2086 | return ValueTrackerResult(ExtractSubregInputReg.Reg, |
2087 | ExtractSubregInputReg.SubIdx); |
2088 | } |
2089 | |
2090 | ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { |
2091 | assert(Def->isSubregToReg() && "Invalid definition" ); |
2092 | // We are looking at: |
2093 | // Def = SUBREG_TO_REG Imm, v0, sub0 |
2094 | |
2095 | // Bail if we have to compose sub registers. |
2096 | // If DefSubReg != sub0, we would have to check that all the bits |
2097 | // we track are included in sub0 and if yes, we would have to |
2098 | // determine the right subreg in v0. |
2099 | if (DefSubReg != Def->getOperand(i: 3).getImm()) |
2100 | return ValueTrackerResult(); |
2101 | // Bail if we have to compose sub registers. |
2102 | // Likewise, if v0.subreg != 0, we would have to compose it with sub0. |
2103 | if (Def->getOperand(i: 2).getSubReg()) |
2104 | return ValueTrackerResult(); |
2105 | |
2106 | return ValueTrackerResult(Def->getOperand(i: 2).getReg(), |
2107 | Def->getOperand(i: 3).getImm()); |
2108 | } |
2109 | |
2110 | /// Explore each PHI incoming operand and return its sources. |
2111 | ValueTrackerResult ValueTracker::getNextSourceFromPHI() { |
2112 | assert(Def->isPHI() && "Invalid definition" ); |
2113 | ValueTrackerResult Res; |
2114 | |
2115 | // Return all register sources for PHI instructions. |
2116 | for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { |
2117 | const MachineOperand &MO = Def->getOperand(i); |
2118 | assert(MO.isReg() && "Invalid PHI instruction" ); |
2119 | // We have no code to deal with undef operands. They shouldn't happen in |
2120 | // normal programs anyway. |
2121 | if (MO.isUndef()) |
2122 | return ValueTrackerResult(); |
2123 | Res.addSource(SrcReg: MO.getReg(), SrcSubReg: MO.getSubReg()); |
2124 | } |
2125 | |
2126 | return Res; |
2127 | } |
2128 | |
2129 | ValueTrackerResult ValueTracker::getNextSourceImpl() { |
2130 | assert(Def && "This method needs a valid definition" ); |
2131 | |
2132 | assert(((Def->getOperand(DefIdx).isDef() && |
2133 | (DefIdx < Def->getDesc().getNumDefs() || |
2134 | Def->getDesc().isVariadic())) || |
2135 | Def->getOperand(DefIdx).isImplicit()) && |
2136 | "Invalid DefIdx" ); |
2137 | if (Def->isCopy()) |
2138 | return getNextSourceFromCopy(); |
2139 | if (Def->isBitcast()) |
2140 | return getNextSourceFromBitcast(); |
2141 | // All the remaining cases involve "complex" instructions. |
2142 | // Bail if we did not ask for the advanced tracking. |
2143 | if (DisableAdvCopyOpt) |
2144 | return ValueTrackerResult(); |
2145 | if (Def->isRegSequence() || Def->isRegSequenceLike()) |
2146 | return getNextSourceFromRegSequence(); |
2147 | if (Def->isInsertSubreg() || Def->isInsertSubregLike()) |
2148 | return getNextSourceFromInsertSubreg(); |
2149 | if (Def->isExtractSubreg() || Def->isExtractSubregLike()) |
2150 | return getNextSourceFromExtractSubreg(); |
2151 | if (Def->isSubregToReg()) |
2152 | return getNextSourceFromSubregToReg(); |
2153 | if (Def->isPHI()) |
2154 | return getNextSourceFromPHI(); |
2155 | return ValueTrackerResult(); |
2156 | } |
2157 | |
2158 | ValueTrackerResult ValueTracker::getNextSource() { |
2159 | // If we reach a point where we cannot move up in the use-def chain, |
2160 | // there is nothing we can get. |
2161 | if (!Def) |
2162 | return ValueTrackerResult(); |
2163 | |
2164 | ValueTrackerResult Res = getNextSourceImpl(); |
2165 | if (Res.isValid()) { |
2166 | // Update definition, definition index, and subregister for the |
2167 | // next call of getNextSource. |
2168 | // Update the current register. |
2169 | bool OneRegSrc = Res.getNumSources() == 1; |
2170 | if (OneRegSrc) |
2171 | Reg = Res.getSrcReg(Idx: 0); |
2172 | // Update the result before moving up in the use-def chain |
2173 | // with the instruction containing the last found sources. |
2174 | Res.setInst(Def); |
2175 | |
2176 | // If we can still move up in the use-def chain, move to the next |
2177 | // definition. |
2178 | if (!Reg.isPhysical() && OneRegSrc) { |
2179 | MachineRegisterInfo::def_iterator DI = MRI.def_begin(RegNo: Reg); |
2180 | if (DI != MRI.def_end()) { |
2181 | Def = DI->getParent(); |
2182 | DefIdx = DI.getOperandNo(); |
2183 | DefSubReg = Res.getSrcSubReg(Idx: 0); |
2184 | } else { |
2185 | Def = nullptr; |
2186 | } |
2187 | return Res; |
2188 | } |
2189 | } |
2190 | // If we end up here, this means we will not be able to find another source |
2191 | // for the next iteration. Make sure any new call to getNextSource bails out |
2192 | // early by cutting the use-def chain. |
2193 | Def = nullptr; |
2194 | return Res; |
2195 | } |
2196 | |