| 1 | //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // Perform peephole optimizations on the machine code: |
| 10 | // |
| 11 | // - Optimize Extensions |
| 12 | // |
| 13 | // Optimization of sign / zero extension instructions. It may be extended to |
| 14 | // handle other instructions with similar properties. |
| 15 | // |
| 16 | // On some targets, some instructions, e.g. X86 sign / zero extension, may |
| 17 | // leave the source value in the lower part of the result. This optimization |
| 18 | // will replace some uses of the pre-extension value with uses of the |
| 19 | // sub-register of the results. |
| 20 | // |
| 21 | // - Optimize Comparisons |
| 22 | // |
| 23 | // Optimization of comparison instructions. For instance, in this code: |
| 24 | // |
| 25 | // sub r1, 1 |
| 26 | // cmp r1, 0 |
| 27 | // bz L1 |
| 28 | // |
| 29 | // If the "sub" instruction all ready sets (or could be modified to set) the |
| 30 | // same flag that the "cmp" instruction sets and that "bz" uses, then we can |
| 31 | // eliminate the "cmp" instruction. |
| 32 | // |
| 33 | // Another instance, in this code: |
| 34 | // |
| 35 | // sub r1, r3 | sub r1, imm |
| 36 | // cmp r3, r1 or cmp r1, r3 | cmp r1, imm |
| 37 | // bge L1 |
| 38 | // |
| 39 | // If the branch instruction can use flag from "sub", then we can replace |
| 40 | // "sub" with "subs" and eliminate the "cmp" instruction. |
| 41 | // |
| 42 | // - Optimize Loads: |
| 43 | // |
| 44 | // Loads that can be folded into a later instruction. A load is foldable |
| 45 | // if it loads to virtual registers and the virtual register defined has |
| 46 | // a single use. |
| 47 | // |
| 48 | // - Optimize Copies and Bitcast (more generally, target specific copies): |
| 49 | // |
| 50 | // Rewrite copies and bitcasts to avoid cross register bank copies |
| 51 | // when possible. |
| 52 | // E.g., Consider the following example, where capital and lower |
| 53 | // letters denote different register file: |
| 54 | // b = copy A <-- cross-bank copy |
| 55 | // C = copy b <-- cross-bank copy |
| 56 | // => |
| 57 | // b = copy A <-- cross-bank copy |
| 58 | // C = copy A <-- same-bank copy |
| 59 | // |
| 60 | // E.g., for bitcast: |
| 61 | // b = bitcast A <-- cross-bank copy |
| 62 | // C = bitcast b <-- cross-bank copy |
| 63 | // => |
| 64 | // b = bitcast A <-- cross-bank copy |
| 65 | // C = copy A <-- same-bank copy |
| 66 | //===----------------------------------------------------------------------===// |
| 67 | |
| 68 | #include "llvm/CodeGen/PeepholeOptimizer.h" |
| 69 | #include "llvm/ADT/DenseMap.h" |
| 70 | #include "llvm/ADT/SmallPtrSet.h" |
| 71 | #include "llvm/ADT/SmallSet.h" |
| 72 | #include "llvm/ADT/SmallVector.h" |
| 73 | #include "llvm/ADT/Statistic.h" |
| 74 | #include "llvm/CodeGen/MachineBasicBlock.h" |
| 75 | #include "llvm/CodeGen/MachineDominators.h" |
| 76 | #include "llvm/CodeGen/MachineFunction.h" |
| 77 | #include "llvm/CodeGen/MachineFunctionPass.h" |
| 78 | #include "llvm/CodeGen/MachineInstr.h" |
| 79 | #include "llvm/CodeGen/MachineInstrBuilder.h" |
| 80 | #include "llvm/CodeGen/MachineLoopInfo.h" |
| 81 | #include "llvm/CodeGen/MachineOperand.h" |
| 82 | #include "llvm/CodeGen/MachinePassManager.h" |
| 83 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
| 84 | #include "llvm/CodeGen/TargetInstrInfo.h" |
| 85 | #include "llvm/CodeGen/TargetOpcodes.h" |
| 86 | #include "llvm/CodeGen/TargetRegisterInfo.h" |
| 87 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| 88 | #include "llvm/InitializePasses.h" |
| 89 | #include "llvm/MC/LaneBitmask.h" |
| 90 | #include "llvm/MC/MCInstrDesc.h" |
| 91 | #include "llvm/Pass.h" |
| 92 | #include "llvm/Support/CommandLine.h" |
| 93 | #include "llvm/Support/Debug.h" |
| 94 | #include "llvm/Support/raw_ostream.h" |
| 95 | #include <cassert> |
| 96 | #include <cstdint> |
| 97 | #include <utility> |
| 98 | |
| 99 | using namespace llvm; |
| 100 | using RegSubRegPair = TargetInstrInfo::RegSubRegPair; |
| 101 | using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx; |
| 102 | |
| 103 | #define DEBUG_TYPE "peephole-opt" |
| 104 | |
| 105 | // Optimize Extensions |
| 106 | static cl::opt<bool> Aggressive("aggressive-ext-opt" , cl::Hidden, |
| 107 | cl::desc("Aggressive extension optimization" )); |
| 108 | |
| 109 | static cl::opt<bool> |
| 110 | DisablePeephole("disable-peephole" , cl::Hidden, cl::init(Val: false), |
| 111 | cl::desc("Disable the peephole optimizer" )); |
| 112 | |
| 113 | /// Specifiy whether or not the value tracking looks through |
| 114 | /// complex instructions. When this is true, the value tracker |
| 115 | /// bails on everything that is not a copy or a bitcast. |
| 116 | static cl::opt<bool> |
| 117 | DisableAdvCopyOpt("disable-adv-copy-opt" , cl::Hidden, cl::init(Val: false), |
| 118 | cl::desc("Disable advanced copy optimization" )); |
| 119 | |
| 120 | static cl::opt<bool> DisableNAPhysCopyOpt( |
| 121 | "disable-non-allocatable-phys-copy-opt" , cl::Hidden, cl::init(Val: false), |
| 122 | cl::desc("Disable non-allocatable physical register copy optimization" )); |
| 123 | |
| 124 | // Limit the number of PHI instructions to process |
| 125 | // in PeepholeOptimizer::getNextSource. |
| 126 | static cl::opt<unsigned> |
| 127 | RewritePHILimit("rewrite-phi-limit" , cl::Hidden, cl::init(Val: 10), |
| 128 | cl::desc("Limit the length of PHI chains to lookup" )); |
| 129 | |
| 130 | // Limit the length of recurrence chain when evaluating the benefit of |
| 131 | // commuting operands. |
| 132 | static cl::opt<unsigned> MaxRecurrenceChain( |
| 133 | "recurrence-chain-limit" , cl::Hidden, cl::init(Val: 3), |
| 134 | cl::desc("Maximum length of recurrence chain when evaluating the benefit " |
| 135 | "of commuting operands" )); |
| 136 | |
| 137 | STATISTIC(NumReuse, "Number of extension results reused" ); |
| 138 | STATISTIC(NumCmps, "Number of compares eliminated" ); |
| 139 | STATISTIC(NumImmFold, "Number of move immediate folded" ); |
| 140 | STATISTIC(NumLoadFold, "Number of loads folded" ); |
| 141 | STATISTIC(NumSelects, "Number of selects optimized" ); |
| 142 | STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized" ); |
| 143 | STATISTIC(NumRewrittenCopies, "Number of copies rewritten" ); |
| 144 | STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed" ); |
| 145 | |
| 146 | namespace { |
| 147 | |
| 148 | class ValueTrackerResult; |
| 149 | class RecurrenceInstr; |
| 150 | |
| 151 | /// Interface to query instructions amenable to copy rewriting. |
| 152 | class Rewriter { |
| 153 | protected: |
| 154 | MachineInstr &CopyLike; |
| 155 | int CurrentSrcIdx = 0; ///< The index of the source being rewritten. |
| 156 | public: |
| 157 | Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {} |
| 158 | virtual ~Rewriter() = default; |
| 159 | |
| 160 | /// Get the next rewritable source (SrcReg, SrcSubReg) and |
| 161 | /// the related value that it affects (DstReg, DstSubReg). |
| 162 | /// A source is considered rewritable if its register class and the |
| 163 | /// register class of the related DstReg may not be register |
| 164 | /// coalescer friendly. In other words, given a copy-like instruction |
| 165 | /// not all the arguments may be returned at rewritable source, since |
| 166 | /// some arguments are none to be register coalescer friendly. |
| 167 | /// |
| 168 | /// Each call of this method moves the current source to the next |
| 169 | /// rewritable source. |
| 170 | /// For instance, let CopyLike be the instruction to rewrite. |
| 171 | /// CopyLike has one definition and one source: |
| 172 | /// dst.dstSubIdx = CopyLike src.srcSubIdx. |
| 173 | /// |
| 174 | /// The first call will give the first rewritable source, i.e., |
| 175 | /// the only source this instruction has: |
| 176 | /// (SrcReg, SrcSubReg) = (src, srcSubIdx). |
| 177 | /// This source defines the whole definition, i.e., |
| 178 | /// (DstReg, DstSubReg) = (dst, dstSubIdx). |
| 179 | /// |
| 180 | /// The second and subsequent calls will return false, as there is only one |
| 181 | /// rewritable source. |
| 182 | /// |
| 183 | /// \return True if a rewritable source has been found, false otherwise. |
| 184 | /// The output arguments are valid if and only if true is returned. |
| 185 | virtual bool getNextRewritableSource(RegSubRegPair &Src, |
| 186 | RegSubRegPair &Dst) = 0; |
| 187 | |
| 188 | /// Rewrite the current source with \p NewReg and \p NewSubReg if possible. |
| 189 | /// \return True if the rewriting was possible, false otherwise. |
| 190 | virtual bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) = 0; |
| 191 | }; |
| 192 | |
| 193 | /// Rewriter for COPY instructions. |
| 194 | class CopyRewriter : public Rewriter { |
| 195 | public: |
| 196 | CopyRewriter(MachineInstr &MI) : Rewriter(MI) { |
| 197 | assert(MI.isCopy() && "Expected copy instruction" ); |
| 198 | } |
| 199 | virtual ~CopyRewriter() = default; |
| 200 | |
| 201 | bool getNextRewritableSource(RegSubRegPair &Src, |
| 202 | RegSubRegPair &Dst) override { |
| 203 | if (++CurrentSrcIdx > 1) |
| 204 | return false; |
| 205 | |
| 206 | // The rewritable source is the argument. |
| 207 | const MachineOperand &MOSrc = CopyLike.getOperand(i: CurrentSrcIdx); |
| 208 | Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg()); |
| 209 | // What we track are the alternative sources of the definition. |
| 210 | const MachineOperand &MODef = CopyLike.getOperand(i: 0); |
| 211 | Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); |
| 212 | return true; |
| 213 | } |
| 214 | |
| 215 | bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { |
| 216 | MachineOperand &MOSrc = CopyLike.getOperand(i: CurrentSrcIdx); |
| 217 | MOSrc.setReg(NewReg); |
| 218 | MOSrc.setSubReg(NewSubReg); |
| 219 | return true; |
| 220 | } |
| 221 | }; |
| 222 | |
| 223 | /// Helper class to rewrite uncoalescable copy like instructions |
| 224 | /// into new COPY (coalescable friendly) instructions. |
| 225 | class UncoalescableRewriter : public Rewriter { |
| 226 | int NumDefs; ///< Number of defs in the bitcast. |
| 227 | |
| 228 | public: |
| 229 | UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) { |
| 230 | NumDefs = MI.getDesc().getNumDefs(); |
| 231 | } |
| 232 | |
| 233 | /// \see See Rewriter::getNextRewritableSource() |
| 234 | /// All such sources need to be considered rewritable in order to |
| 235 | /// rewrite a uncoalescable copy-like instruction. This method return |
| 236 | /// each definition that must be checked if rewritable. |
| 237 | bool getNextRewritableSource(RegSubRegPair &Src, |
| 238 | RegSubRegPair &Dst) override { |
| 239 | // Find the next non-dead definition and continue from there. |
| 240 | if (CurrentSrcIdx == NumDefs) |
| 241 | return false; |
| 242 | |
| 243 | while (CopyLike.getOperand(i: CurrentSrcIdx).isDead()) { |
| 244 | ++CurrentSrcIdx; |
| 245 | if (CurrentSrcIdx == NumDefs) |
| 246 | return false; |
| 247 | } |
| 248 | |
| 249 | // What we track are the alternative sources of the definition. |
| 250 | Src = RegSubRegPair(0, 0); |
| 251 | const MachineOperand &MODef = CopyLike.getOperand(i: CurrentSrcIdx); |
| 252 | Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); |
| 253 | |
| 254 | CurrentSrcIdx++; |
| 255 | return true; |
| 256 | } |
| 257 | |
| 258 | bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { |
| 259 | return false; |
| 260 | } |
| 261 | }; |
| 262 | |
| 263 | /// Specialized rewriter for INSERT_SUBREG instruction. |
| 264 | class InsertSubregRewriter : public Rewriter { |
| 265 | public: |
| 266 | InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) { |
| 267 | assert(MI.isInsertSubreg() && "Invalid instruction" ); |
| 268 | } |
| 269 | |
| 270 | /// \see See Rewriter::getNextRewritableSource() |
| 271 | /// Here CopyLike has the following form: |
| 272 | /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx. |
| 273 | /// Src1 has the same register class has dst, hence, there is |
| 274 | /// nothing to rewrite. |
| 275 | /// Src2.src2SubIdx, may not be register coalescer friendly. |
| 276 | /// Therefore, the first call to this method returns: |
| 277 | /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). |
| 278 | /// (DstReg, DstSubReg) = (dst, subIdx). |
| 279 | /// |
| 280 | /// Subsequence calls will return false. |
| 281 | bool getNextRewritableSource(RegSubRegPair &Src, |
| 282 | RegSubRegPair &Dst) override { |
| 283 | // If we already get the only source we can rewrite, return false. |
| 284 | if (CurrentSrcIdx == 2) |
| 285 | return false; |
| 286 | // We are looking at v2 = INSERT_SUBREG v0, v1, sub0. |
| 287 | CurrentSrcIdx = 2; |
| 288 | const MachineOperand &MOInsertedReg = CopyLike.getOperand(i: 2); |
| 289 | Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg()); |
| 290 | const MachineOperand &MODef = CopyLike.getOperand(i: 0); |
| 291 | |
| 292 | // We want to track something that is compatible with the |
| 293 | // partial definition. |
| 294 | if (MODef.getSubReg()) |
| 295 | // Bail if we have to compose sub-register indices. |
| 296 | return false; |
| 297 | Dst = RegSubRegPair(MODef.getReg(), |
| 298 | (unsigned)CopyLike.getOperand(i: 3).getImm()); |
| 299 | return true; |
| 300 | } |
| 301 | |
| 302 | bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { |
| 303 | if (CurrentSrcIdx != 2) |
| 304 | return false; |
| 305 | // We are rewriting the inserted reg. |
| 306 | MachineOperand &MO = CopyLike.getOperand(i: CurrentSrcIdx); |
| 307 | MO.setReg(NewReg); |
| 308 | MO.setSubReg(NewSubReg); |
| 309 | return true; |
| 310 | } |
| 311 | }; |
| 312 | |
| 313 | /// Specialized rewriter for EXTRACT_SUBREG instruction. |
| 314 | class : public Rewriter { |
| 315 | const TargetInstrInfo &; |
| 316 | |
| 317 | public: |
| 318 | (MachineInstr &MI, const TargetInstrInfo &TII) |
| 319 | : Rewriter(MI), TII(TII) { |
| 320 | assert(MI.isExtractSubreg() && "Invalid instruction" ); |
| 321 | } |
| 322 | |
| 323 | /// \see Rewriter::getNextRewritableSource() |
| 324 | /// Here CopyLike has the following form: |
| 325 | /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx. |
| 326 | /// There is only one rewritable source: Src.subIdx, |
| 327 | /// which defines dst.dstSubIdx. |
| 328 | bool (RegSubRegPair &Src, |
| 329 | RegSubRegPair &Dst) override { |
| 330 | // If we already get the only source we can rewrite, return false. |
| 331 | if (CurrentSrcIdx == 1) |
| 332 | return false; |
| 333 | // We are looking at v1 = EXTRACT_SUBREG v0, sub0. |
| 334 | CurrentSrcIdx = 1; |
| 335 | const MachineOperand & = CopyLike.getOperand(i: 1); |
| 336 | // If we have to compose sub-register indices, bail out. |
| 337 | if (MOExtractedReg.getSubReg()) |
| 338 | return false; |
| 339 | |
| 340 | Src = |
| 341 | RegSubRegPair(MOExtractedReg.getReg(), CopyLike.getOperand(i: 2).getImm()); |
| 342 | |
| 343 | // We want to track something that is compatible with the definition. |
| 344 | const MachineOperand &MODef = CopyLike.getOperand(i: 0); |
| 345 | Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg()); |
| 346 | return true; |
| 347 | } |
| 348 | |
| 349 | bool (Register NewReg, unsigned NewSubReg) override { |
| 350 | // The only source we can rewrite is the input register. |
| 351 | if (CurrentSrcIdx != 1) |
| 352 | return false; |
| 353 | |
| 354 | CopyLike.getOperand(i: CurrentSrcIdx).setReg(NewReg); |
| 355 | |
| 356 | // If we find a source that does not require to extract something, |
| 357 | // rewrite the operation with a copy. |
| 358 | if (!NewSubReg) { |
| 359 | // Move the current index to an invalid position. |
| 360 | // We do not want another call to this method to be able |
| 361 | // to do any change. |
| 362 | CurrentSrcIdx = -1; |
| 363 | // Rewrite the operation as a COPY. |
| 364 | // Get rid of the sub-register index. |
| 365 | CopyLike.removeOperand(OpNo: 2); |
| 366 | // Morph the operation into a COPY. |
| 367 | CopyLike.setDesc(TII.get(Opcode: TargetOpcode::COPY)); |
| 368 | return true; |
| 369 | } |
| 370 | CopyLike.getOperand(i: CurrentSrcIdx + 1).setImm(NewSubReg); |
| 371 | return true; |
| 372 | } |
| 373 | }; |
| 374 | |
| 375 | /// Specialized rewriter for REG_SEQUENCE instruction. |
| 376 | class RegSequenceRewriter : public Rewriter { |
| 377 | public: |
| 378 | RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) { |
| 379 | assert(MI.isRegSequence() && "Invalid instruction" ); |
| 380 | CurrentSrcIdx = -1; |
| 381 | } |
| 382 | |
| 383 | /// \see Rewriter::getNextRewritableSource() |
| 384 | /// Here CopyLike has the following form: |
| 385 | /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2. |
| 386 | /// Each call will return a different source, walking all the available |
| 387 | /// source. |
| 388 | /// |
| 389 | /// The first call returns: |
| 390 | /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx). |
| 391 | /// (DstReg, DstSubReg) = (dst, subIdx1). |
| 392 | /// |
| 393 | /// The second call returns: |
| 394 | /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx). |
| 395 | /// (DstReg, DstSubReg) = (dst, subIdx2). |
| 396 | /// |
| 397 | /// And so on, until all the sources have been traversed, then |
| 398 | /// it returns false. |
| 399 | bool getNextRewritableSource(RegSubRegPair &Src, |
| 400 | RegSubRegPair &Dst) override { |
| 401 | // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc. |
| 402 | CurrentSrcIdx += 2; |
| 403 | if (static_cast<unsigned>(CurrentSrcIdx) >= CopyLike.getNumOperands()) |
| 404 | return false; |
| 405 | |
| 406 | const MachineOperand &MOInsertedReg = CopyLike.getOperand(i: CurrentSrcIdx); |
| 407 | Src.Reg = MOInsertedReg.getReg(); |
| 408 | Src.SubReg = MOInsertedReg.getSubReg(); |
| 409 | |
| 410 | // We want to track something that is compatible with the related |
| 411 | // partial definition. |
| 412 | Dst.SubReg = CopyLike.getOperand(i: CurrentSrcIdx + 1).getImm(); |
| 413 | |
| 414 | const MachineOperand &MODef = CopyLike.getOperand(i: 0); |
| 415 | Dst.Reg = MODef.getReg(); |
| 416 | assert(MODef.getSubReg() == 0 && "cannot have subregister def in SSA" ); |
| 417 | return true; |
| 418 | } |
| 419 | |
| 420 | bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override { |
| 421 | MachineOperand &MO = CopyLike.getOperand(i: CurrentSrcIdx); |
| 422 | MO.setReg(NewReg); |
| 423 | MO.setSubReg(NewSubReg); |
| 424 | return true; |
| 425 | } |
| 426 | }; |
| 427 | |
| 428 | class PeepholeOptimizer : private MachineFunction::Delegate { |
| 429 | const TargetInstrInfo *TII = nullptr; |
| 430 | const TargetRegisterInfo *TRI = nullptr; |
| 431 | MachineRegisterInfo *MRI = nullptr; |
| 432 | MachineDominatorTree *DT = nullptr; // Machine dominator tree |
| 433 | MachineLoopInfo *MLI = nullptr; |
| 434 | |
| 435 | public: |
| 436 | PeepholeOptimizer(MachineDominatorTree *DT, MachineLoopInfo *MLI) |
| 437 | : DT(DT), MLI(MLI) {} |
| 438 | |
| 439 | bool run(MachineFunction &MF); |
| 440 | /// Track Def -> Use info used for rewriting copies. |
| 441 | using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>; |
| 442 | |
| 443 | /// Sequence of instructions that formulate recurrence cycle. |
| 444 | using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>; |
| 445 | |
| 446 | private: |
| 447 | bool optimizeCmpInstr(MachineInstr &MI); |
| 448 | bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB, |
| 449 | SmallPtrSetImpl<MachineInstr *> &LocalMIs); |
| 450 | bool optimizeSelect(MachineInstr &MI, |
| 451 | SmallPtrSetImpl<MachineInstr *> &LocalMIs); |
| 452 | bool optimizeCondBranch(MachineInstr &MI); |
| 453 | |
| 454 | bool optimizeCoalescableCopyImpl(Rewriter &&CpyRewriter); |
| 455 | bool optimizeCoalescableCopy(MachineInstr &MI); |
| 456 | bool optimizeUncoalescableCopy(MachineInstr &MI, |
| 457 | SmallPtrSetImpl<MachineInstr *> &LocalMIs); |
| 458 | bool optimizeRecurrence(MachineInstr &PHI); |
| 459 | bool findNextSource(const TargetRegisterClass *DefRC, unsigned DefSubReg, |
| 460 | RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap); |
| 461 | bool isMoveImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, |
| 462 | DenseMap<Register, MachineInstr *> &ImmDefMIs); |
| 463 | bool foldImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, |
| 464 | DenseMap<Register, MachineInstr *> &ImmDefMIs, |
| 465 | bool &Deleted); |
| 466 | |
| 467 | /// Finds recurrence cycles, but only ones that formulated around |
| 468 | /// a def operand and a use operand that are tied. If there is a use |
| 469 | /// operand commutable with the tied use operand, find recurrence cycle |
| 470 | /// along that operand as well. |
| 471 | bool findTargetRecurrence(Register Reg, |
| 472 | const SmallSet<Register, 2> &TargetReg, |
| 473 | RecurrenceCycle &RC); |
| 474 | |
| 475 | /// If copy instruction \p MI is a virtual register copy or a copy of a |
| 476 | /// constant physical register to a virtual register, track it in the |
| 477 | /// set CopySrcMIs. If this virtual register was previously seen as a |
| 478 | /// copy, replace the uses of this copy with the previously seen copy's |
| 479 | /// destination register. |
| 480 | bool foldRedundantCopy(MachineInstr &MI); |
| 481 | |
| 482 | /// Is the register \p Reg a non-allocatable physical register? |
| 483 | bool isNAPhysCopy(Register Reg); |
| 484 | |
| 485 | /// If copy instruction \p MI is a non-allocatable virtual<->physical |
| 486 | /// register copy, track it in the \p NAPhysToVirtMIs map. If this |
| 487 | /// non-allocatable physical register was previously copied to a virtual |
| 488 | /// registered and hasn't been clobbered, the virt->phys copy can be |
| 489 | /// deleted. |
| 490 | bool |
| 491 | foldRedundantNAPhysCopy(MachineInstr &MI, |
| 492 | DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs); |
| 493 | |
| 494 | bool isLoadFoldable(MachineInstr &MI, |
| 495 | SmallSet<Register, 16> &FoldAsLoadDefCandidates); |
| 496 | |
| 497 | /// Check whether \p MI is understood by the register coalescer |
| 498 | /// but may require some rewriting. |
| 499 | static bool isCoalescableCopy(const MachineInstr &MI) { |
| 500 | // SubregToRegs are not interesting, because they are already register |
| 501 | // coalescer friendly. |
| 502 | return MI.isCopy() || |
| 503 | (!DisableAdvCopyOpt && (MI.isRegSequence() || MI.isInsertSubreg() || |
| 504 | MI.isExtractSubreg())); |
| 505 | } |
| 506 | |
| 507 | /// Check whether \p MI is a copy like instruction that is |
| 508 | /// not recognized by the register coalescer. |
| 509 | static bool isUncoalescableCopy(const MachineInstr &MI) { |
| 510 | return MI.isBitcast() || (!DisableAdvCopyOpt && (MI.isRegSequenceLike() || |
| 511 | MI.isInsertSubregLike() || |
| 512 | MI.isExtractSubregLike())); |
| 513 | } |
| 514 | |
| 515 | MachineInstr &rewriteSource(MachineInstr &CopyLike, RegSubRegPair Def, |
| 516 | RewriteMapTy &RewriteMap); |
| 517 | |
| 518 | // Set of copies to virtual registers keyed by source register. Never |
| 519 | // holds any physreg which requires def tracking. |
| 520 | DenseMap<RegSubRegPair, MachineInstr *> CopySrcMIs; |
| 521 | |
| 522 | // MachineFunction::Delegate implementation. Used to maintain CopySrcMIs. |
| 523 | void MF_HandleInsertion(MachineInstr &MI) override {} |
| 524 | |
| 525 | bool getCopySrc(MachineInstr &MI, RegSubRegPair &SrcPair) { |
| 526 | if (!MI.isCopy()) |
| 527 | return false; |
| 528 | |
| 529 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
| 530 | unsigned SrcSubReg = MI.getOperand(i: 1).getSubReg(); |
| 531 | if (!SrcReg.isVirtual() && !MRI->isConstantPhysReg(PhysReg: SrcReg)) |
| 532 | return false; |
| 533 | |
| 534 | SrcPair = RegSubRegPair(SrcReg, SrcSubReg); |
| 535 | return true; |
| 536 | } |
| 537 | |
| 538 | // If a COPY instruction is to be deleted or changed, we should also remove |
| 539 | // it from CopySrcMIs. |
| 540 | void deleteChangedCopy(MachineInstr &MI) { |
| 541 | RegSubRegPair SrcPair; |
| 542 | if (!getCopySrc(MI, SrcPair)) |
| 543 | return; |
| 544 | |
| 545 | auto It = CopySrcMIs.find(Val: SrcPair); |
| 546 | if (It != CopySrcMIs.end() && It->second == &MI) |
| 547 | CopySrcMIs.erase(I: It); |
| 548 | } |
| 549 | |
| 550 | void MF_HandleRemoval(MachineInstr &MI) override { deleteChangedCopy(MI); } |
| 551 | |
| 552 | void MF_HandleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID) override { |
| 553 | deleteChangedCopy(MI); |
| 554 | } |
| 555 | }; |
| 556 | |
| 557 | class PeepholeOptimizerLegacy : public MachineFunctionPass { |
| 558 | public: |
| 559 | static char ID; // Pass identification |
| 560 | |
| 561 | PeepholeOptimizerLegacy() : MachineFunctionPass(ID) { |
| 562 | initializePeepholeOptimizerLegacyPass(*PassRegistry::getPassRegistry()); |
| 563 | } |
| 564 | |
| 565 | bool runOnMachineFunction(MachineFunction &MF) override; |
| 566 | |
| 567 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
| 568 | AU.setPreservesCFG(); |
| 569 | MachineFunctionPass::getAnalysisUsage(AU); |
| 570 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
| 571 | AU.addPreserved<MachineLoopInfoWrapperPass>(); |
| 572 | if (Aggressive) { |
| 573 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
| 574 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
| 575 | } |
| 576 | } |
| 577 | |
| 578 | MachineFunctionProperties getRequiredProperties() const override { |
| 579 | return MachineFunctionProperties().setIsSSA(); |
| 580 | } |
| 581 | }; |
| 582 | |
| 583 | /// Helper class to hold instructions that are inside recurrence cycles. |
| 584 | /// The recurrence cycle is formulated around 1) a def operand and its |
| 585 | /// tied use operand, or 2) a def operand and a use operand that is commutable |
| 586 | /// with another use operand which is tied to the def operand. In the latter |
| 587 | /// case, index of the tied use operand and the commutable use operand are |
| 588 | /// maintained with CommutePair. |
| 589 | class RecurrenceInstr { |
| 590 | public: |
| 591 | using IndexPair = std::pair<unsigned, unsigned>; |
| 592 | |
| 593 | RecurrenceInstr(MachineInstr *MI) : MI(MI) {} |
| 594 | RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2) |
| 595 | : MI(MI), CommutePair(std::make_pair(x&: Idx1, y&: Idx2)) {} |
| 596 | |
| 597 | MachineInstr *getMI() const { return MI; } |
| 598 | std::optional<IndexPair> getCommutePair() const { return CommutePair; } |
| 599 | |
| 600 | private: |
| 601 | MachineInstr *MI; |
| 602 | std::optional<IndexPair> CommutePair; |
| 603 | }; |
| 604 | |
| 605 | /// Helper class to hold a reply for ValueTracker queries. |
| 606 | /// Contains the returned sources for a given search and the instructions |
| 607 | /// where the sources were tracked from. |
| 608 | class ValueTrackerResult { |
| 609 | private: |
| 610 | /// Track all sources found by one ValueTracker query. |
| 611 | SmallVector<RegSubRegPair, 2> RegSrcs; |
| 612 | |
| 613 | /// Instruction using the sources in 'RegSrcs'. |
| 614 | const MachineInstr *Inst = nullptr; |
| 615 | |
| 616 | public: |
| 617 | ValueTrackerResult() = default; |
| 618 | |
| 619 | ValueTrackerResult(Register Reg, unsigned SubReg) { addSource(SrcReg: Reg, SrcSubReg: SubReg); } |
| 620 | |
| 621 | bool isValid() const { return getNumSources() > 0; } |
| 622 | |
| 623 | void setInst(const MachineInstr *I) { Inst = I; } |
| 624 | const MachineInstr *getInst() const { return Inst; } |
| 625 | |
| 626 | void clear() { |
| 627 | RegSrcs.clear(); |
| 628 | Inst = nullptr; |
| 629 | } |
| 630 | |
| 631 | void addSource(Register SrcReg, unsigned SrcSubReg) { |
| 632 | RegSrcs.push_back(Elt: RegSubRegPair(SrcReg, SrcSubReg)); |
| 633 | } |
| 634 | |
| 635 | void setSource(int Idx, Register SrcReg, unsigned SrcSubReg) { |
| 636 | assert(Idx < getNumSources() && "Reg pair source out of index" ); |
| 637 | RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg); |
| 638 | } |
| 639 | |
| 640 | int getNumSources() const { return RegSrcs.size(); } |
| 641 | |
| 642 | RegSubRegPair getSrc(int Idx) const { return RegSrcs[Idx]; } |
| 643 | |
| 644 | Register getSrcReg(int Idx) const { |
| 645 | assert(Idx < getNumSources() && "Reg source out of index" ); |
| 646 | return RegSrcs[Idx].Reg; |
| 647 | } |
| 648 | |
| 649 | unsigned getSrcSubReg(int Idx) const { |
| 650 | assert(Idx < getNumSources() && "SubReg source out of index" ); |
| 651 | return RegSrcs[Idx].SubReg; |
| 652 | } |
| 653 | |
| 654 | bool operator==(const ValueTrackerResult &Other) const { |
| 655 | if (Other.getInst() != getInst()) |
| 656 | return false; |
| 657 | |
| 658 | if (Other.getNumSources() != getNumSources()) |
| 659 | return false; |
| 660 | |
| 661 | for (int i = 0, e = Other.getNumSources(); i != e; ++i) |
| 662 | if (Other.getSrcReg(Idx: i) != getSrcReg(Idx: i) || |
| 663 | Other.getSrcSubReg(Idx: i) != getSrcSubReg(Idx: i)) |
| 664 | return false; |
| 665 | return true; |
| 666 | } |
| 667 | }; |
| 668 | |
| 669 | /// Helper class to track the possible sources of a value defined by |
| 670 | /// a (chain of) copy related instructions. |
| 671 | /// Given a definition (instruction and definition index), this class |
| 672 | /// follows the use-def chain to find successive suitable sources. |
| 673 | /// The given source can be used to rewrite the definition into |
| 674 | /// def = COPY src. |
| 675 | /// |
| 676 | /// For instance, let us consider the following snippet: |
| 677 | /// v0 = |
| 678 | /// v2 = INSERT_SUBREG v1, v0, sub0 |
| 679 | /// def = COPY v2.sub0 |
| 680 | /// |
| 681 | /// Using a ValueTracker for def = COPY v2.sub0 will give the following |
| 682 | /// suitable sources: |
| 683 | /// v2.sub0 and v0. |
| 684 | /// Then, def can be rewritten into def = COPY v0. |
| 685 | class ValueTracker { |
| 686 | private: |
| 687 | /// The current point into the use-def chain. |
| 688 | const MachineInstr *Def = nullptr; |
| 689 | |
| 690 | /// The index of the definition in Def. |
| 691 | unsigned DefIdx = 0; |
| 692 | |
| 693 | /// The sub register index of the definition. |
| 694 | unsigned DefSubReg; |
| 695 | |
| 696 | /// The register where the value can be found. |
| 697 | Register Reg; |
| 698 | |
| 699 | /// MachineRegisterInfo used to perform tracking. |
| 700 | const MachineRegisterInfo &MRI; |
| 701 | |
| 702 | /// Optional TargetInstrInfo used to perform some complex tracking. |
| 703 | const TargetInstrInfo *TII; |
| 704 | |
| 705 | /// Dispatcher to the right underlying implementation of getNextSource. |
| 706 | ValueTrackerResult getNextSourceImpl(); |
| 707 | |
| 708 | /// Specialized version of getNextSource for Copy instructions. |
| 709 | ValueTrackerResult getNextSourceFromCopy(); |
| 710 | |
| 711 | /// Specialized version of getNextSource for Bitcast instructions. |
| 712 | ValueTrackerResult getNextSourceFromBitcast(); |
| 713 | |
| 714 | /// Specialized version of getNextSource for RegSequence instructions. |
| 715 | ValueTrackerResult getNextSourceFromRegSequence(); |
| 716 | |
| 717 | /// Specialized version of getNextSource for InsertSubreg instructions. |
| 718 | ValueTrackerResult getNextSourceFromInsertSubreg(); |
| 719 | |
| 720 | /// Specialized version of getNextSource for ExtractSubreg instructions. |
| 721 | ValueTrackerResult getNextSourceFromExtractSubreg(); |
| 722 | |
| 723 | /// Specialized version of getNextSource for SubregToReg instructions. |
| 724 | ValueTrackerResult getNextSourceFromSubregToReg(); |
| 725 | |
| 726 | /// Specialized version of getNextSource for PHI instructions. |
| 727 | ValueTrackerResult getNextSourceFromPHI(); |
| 728 | |
| 729 | public: |
| 730 | /// Create a ValueTracker instance for the value defined by \p Reg. |
| 731 | /// \p DefSubReg represents the sub register index the value tracker will |
| 732 | /// track. It does not need to match the sub register index used in the |
| 733 | /// definition of \p Reg. |
| 734 | /// If \p Reg is a physical register, a value tracker constructed with |
| 735 | /// this constructor will not find any alternative source. |
| 736 | /// Indeed, when \p Reg is a physical register that constructor does not |
| 737 | /// know which definition of \p Reg it should track. |
| 738 | /// Use the next constructor to track a physical register. |
| 739 | ValueTracker(Register Reg, unsigned DefSubReg, const MachineRegisterInfo &MRI, |
| 740 | const TargetInstrInfo *TII = nullptr) |
| 741 | : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) { |
| 742 | if (!Reg.isPhysical()) { |
| 743 | Def = MRI.getVRegDef(Reg); |
| 744 | DefIdx = MRI.def_begin(RegNo: Reg).getOperandNo(); |
| 745 | } |
| 746 | } |
| 747 | |
| 748 | /// Following the use-def chain, get the next available source |
| 749 | /// for the tracked value. |
| 750 | /// \return A ValueTrackerResult containing a set of registers |
| 751 | /// and sub registers with tracked values. A ValueTrackerResult with |
| 752 | /// an empty set of registers means no source was found. |
| 753 | ValueTrackerResult getNextSource(); |
| 754 | }; |
| 755 | |
| 756 | } // end anonymous namespace |
| 757 | |
| 758 | char PeepholeOptimizerLegacy::ID = 0; |
| 759 | |
| 760 | char &llvm::PeepholeOptimizerLegacyID = PeepholeOptimizerLegacy::ID; |
| 761 | |
| 762 | INITIALIZE_PASS_BEGIN(PeepholeOptimizerLegacy, DEBUG_TYPE, |
| 763 | "Peephole Optimizations" , false, false) |
| 764 | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) |
| 765 | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) |
| 766 | INITIALIZE_PASS_END(PeepholeOptimizerLegacy, DEBUG_TYPE, |
| 767 | "Peephole Optimizations" , false, false) |
| 768 | |
| 769 | /// If instruction is a copy-like instruction, i.e. it reads a single register |
| 770 | /// and writes a single register and it does not modify the source, and if the |
| 771 | /// source value is preserved as a sub-register of the result, then replace all |
| 772 | /// reachable uses of the source with the subreg of the result. |
| 773 | /// |
| 774 | /// Do not generate an EXTRACT that is used only in a debug use, as this changes |
| 775 | /// the code. Since this code does not currently share EXTRACTs, just ignore all |
| 776 | /// debug uses. |
| 777 | bool PeepholeOptimizer::optimizeExtInstr( |
| 778 | MachineInstr &MI, MachineBasicBlock &MBB, |
| 779 | SmallPtrSetImpl<MachineInstr *> &LocalMIs) { |
| 780 | Register SrcReg, DstReg; |
| 781 | unsigned SubIdx; |
| 782 | if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx)) |
| 783 | return false; |
| 784 | |
| 785 | if (DstReg.isPhysical() || SrcReg.isPhysical()) |
| 786 | return false; |
| 787 | |
| 788 | if (MRI->hasOneNonDBGUse(RegNo: SrcReg)) |
| 789 | // No other uses. |
| 790 | return false; |
| 791 | |
| 792 | // Ensure DstReg can get a register class that actually supports |
| 793 | // sub-registers. Don't change the class until we commit. |
| 794 | const TargetRegisterClass *DstRC = MRI->getRegClass(Reg: DstReg); |
| 795 | DstRC = TRI->getSubClassWithSubReg(RC: DstRC, Idx: SubIdx); |
| 796 | if (!DstRC) |
| 797 | return false; |
| 798 | |
| 799 | // The ext instr may be operating on a sub-register of SrcReg as well. |
| 800 | // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit |
| 801 | // register. |
| 802 | // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of |
| 803 | // SrcReg:SubIdx should be replaced. |
| 804 | bool UseSrcSubIdx = |
| 805 | TRI->getSubClassWithSubReg(RC: MRI->getRegClass(Reg: SrcReg), Idx: SubIdx) != nullptr; |
| 806 | |
| 807 | // The source has other uses. See if we can replace the other uses with use of |
| 808 | // the result of the extension. |
| 809 | SmallPtrSet<MachineBasicBlock *, 4> ReachedBBs; |
| 810 | for (MachineInstr &UI : MRI->use_nodbg_instructions(Reg: DstReg)) |
| 811 | ReachedBBs.insert(Ptr: UI.getParent()); |
| 812 | |
| 813 | // Uses that are in the same BB of uses of the result of the instruction. |
| 814 | SmallVector<MachineOperand *, 8> Uses; |
| 815 | |
| 816 | // Uses that the result of the instruction can reach. |
| 817 | SmallVector<MachineOperand *, 8> ExtendedUses; |
| 818 | |
| 819 | bool ExtendLife = true; |
| 820 | for (MachineOperand &UseMO : MRI->use_nodbg_operands(Reg: SrcReg)) { |
| 821 | MachineInstr *UseMI = UseMO.getParent(); |
| 822 | if (UseMI == &MI) |
| 823 | continue; |
| 824 | |
| 825 | if (UseMI->isPHI()) { |
| 826 | ExtendLife = false; |
| 827 | continue; |
| 828 | } |
| 829 | |
| 830 | // Only accept uses of SrcReg:SubIdx. |
| 831 | if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx) |
| 832 | continue; |
| 833 | |
| 834 | // It's an error to translate this: |
| 835 | // |
| 836 | // %reg1025 = <sext> %reg1024 |
| 837 | // ... |
| 838 | // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4 |
| 839 | // |
| 840 | // into this: |
| 841 | // |
| 842 | // %reg1025 = <sext> %reg1024 |
| 843 | // ... |
| 844 | // %reg1027 = COPY %reg1025:4 |
| 845 | // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4 |
| 846 | // |
| 847 | // The problem here is that SUBREG_TO_REG is there to assert that an |
| 848 | // implicit zext occurs. It doesn't insert a zext instruction. If we allow |
| 849 | // the COPY here, it will give us the value after the <sext>, not the |
| 850 | // original value of %reg1024 before <sext>. |
| 851 | if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG) |
| 852 | continue; |
| 853 | |
| 854 | MachineBasicBlock *UseMBB = UseMI->getParent(); |
| 855 | if (UseMBB == &MBB) { |
| 856 | // Local uses that come after the extension. |
| 857 | if (!LocalMIs.count(Ptr: UseMI)) |
| 858 | Uses.push_back(Elt: &UseMO); |
| 859 | } else if (ReachedBBs.count(Ptr: UseMBB)) { |
| 860 | // Non-local uses where the result of the extension is used. Always |
| 861 | // replace these unless it's a PHI. |
| 862 | Uses.push_back(Elt: &UseMO); |
| 863 | } else if (Aggressive && DT->dominates(A: &MBB, B: UseMBB)) { |
| 864 | // We may want to extend the live range of the extension result in order |
| 865 | // to replace these uses. |
| 866 | ExtendedUses.push_back(Elt: &UseMO); |
| 867 | } else { |
| 868 | // Both will be live out of the def MBB anyway. Don't extend live range of |
| 869 | // the extension result. |
| 870 | ExtendLife = false; |
| 871 | break; |
| 872 | } |
| 873 | } |
| 874 | |
| 875 | if (ExtendLife && !ExtendedUses.empty()) |
| 876 | // Extend the liveness of the extension result. |
| 877 | Uses.append(in_start: ExtendedUses.begin(), in_end: ExtendedUses.end()); |
| 878 | |
| 879 | // Now replace all uses. |
| 880 | bool Changed = false; |
| 881 | if (!Uses.empty()) { |
| 882 | SmallPtrSet<MachineBasicBlock *, 4> PHIBBs; |
| 883 | |
| 884 | // Look for PHI uses of the extended result, we don't want to extend the |
| 885 | // liveness of a PHI input. It breaks all kinds of assumptions down |
| 886 | // stream. A PHI use is expected to be the kill of its source values. |
| 887 | for (MachineInstr &UI : MRI->use_nodbg_instructions(Reg: DstReg)) |
| 888 | if (UI.isPHI()) |
| 889 | PHIBBs.insert(Ptr: UI.getParent()); |
| 890 | |
| 891 | const TargetRegisterClass *RC = MRI->getRegClass(Reg: SrcReg); |
| 892 | for (MachineOperand *UseMO : Uses) { |
| 893 | MachineInstr *UseMI = UseMO->getParent(); |
| 894 | MachineBasicBlock *UseMBB = UseMI->getParent(); |
| 895 | if (PHIBBs.count(Ptr: UseMBB)) |
| 896 | continue; |
| 897 | |
| 898 | // About to add uses of DstReg, clear DstReg's kill flags. |
| 899 | if (!Changed) { |
| 900 | MRI->clearKillFlags(Reg: DstReg); |
| 901 | MRI->constrainRegClass(Reg: DstReg, RC: DstRC); |
| 902 | } |
| 903 | |
| 904 | // SubReg defs are illegal in machine SSA phase, |
| 905 | // we should not generate SubReg defs. |
| 906 | // |
| 907 | // For example, for the instructions: |
| 908 | // |
| 909 | // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc |
| 910 | // %3:gprc_and_gprc_nor0 = COPY %0.sub_32:g8rc |
| 911 | // |
| 912 | // We should generate: |
| 913 | // |
| 914 | // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc |
| 915 | // %6:gprc_and_gprc_nor0 = COPY %1.sub_32:g8rc_and_g8rc_nox0 |
| 916 | // %3:gprc_and_gprc_nor0 = COPY %6:gprc_and_gprc_nor0 |
| 917 | // |
| 918 | if (UseSrcSubIdx) |
| 919 | RC = MRI->getRegClass(Reg: UseMI->getOperand(i: 0).getReg()); |
| 920 | |
| 921 | Register NewVR = MRI->createVirtualRegister(RegClass: RC); |
| 922 | BuildMI(BB&: *UseMBB, I: UseMI, MIMD: UseMI->getDebugLoc(), |
| 923 | MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: NewVR) |
| 924 | .addReg(RegNo: DstReg, flags: 0, SubReg: SubIdx); |
| 925 | if (UseSrcSubIdx) |
| 926 | UseMO->setSubReg(0); |
| 927 | |
| 928 | UseMO->setReg(NewVR); |
| 929 | ++NumReuse; |
| 930 | Changed = true; |
| 931 | } |
| 932 | } |
| 933 | |
| 934 | return Changed; |
| 935 | } |
| 936 | |
| 937 | /// If the instruction is a compare and the previous instruction it's comparing |
| 938 | /// against already sets (or could be modified to set) the same flag as the |
| 939 | /// compare, then we can remove the comparison and use the flag from the |
| 940 | /// previous instruction. |
| 941 | bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) { |
| 942 | // If this instruction is a comparison against zero and isn't comparing a |
| 943 | // physical register, we can try to optimize it. |
| 944 | Register SrcReg, SrcReg2; |
| 945 | int64_t CmpMask, CmpValue; |
| 946 | if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, Mask&: CmpMask, Value&: CmpValue) || |
| 947 | SrcReg.isPhysical() || SrcReg2.isPhysical()) |
| 948 | return false; |
| 949 | |
| 950 | // Attempt to optimize the comparison instruction. |
| 951 | LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI); |
| 952 | if (TII->optimizeCompareInstr(CmpInstr&: MI, SrcReg, SrcReg2, Mask: CmpMask, Value: CmpValue, MRI)) { |
| 953 | LLVM_DEBUG(dbgs() << " -> Successfully optimized compare!\n" ); |
| 954 | ++NumCmps; |
| 955 | return true; |
| 956 | } |
| 957 | |
| 958 | return false; |
| 959 | } |
| 960 | |
| 961 | /// Optimize a select instruction. |
| 962 | bool PeepholeOptimizer::optimizeSelect( |
| 963 | MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { |
| 964 | unsigned TrueOp = 0; |
| 965 | unsigned FalseOp = 0; |
| 966 | bool Optimizable = false; |
| 967 | SmallVector<MachineOperand, 4> Cond; |
| 968 | if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable)) |
| 969 | return false; |
| 970 | if (!Optimizable) |
| 971 | return false; |
| 972 | if (!TII->optimizeSelect(MI, NewMIs&: LocalMIs)) |
| 973 | return false; |
| 974 | LLVM_DEBUG(dbgs() << "Deleting select: " << MI); |
| 975 | MI.eraseFromParent(); |
| 976 | ++NumSelects; |
| 977 | return true; |
| 978 | } |
| 979 | |
| 980 | /// Check if a simpler conditional branch can be generated. |
| 981 | bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) { |
| 982 | return TII->optimizeCondBranch(MI); |
| 983 | } |
| 984 | |
| 985 | /// Try to find a better source value that shares the same register file to |
| 986 | /// replace \p RegSubReg in an instruction like |
| 987 | /// `DefRC.DefSubReg = COPY RegSubReg` |
| 988 | /// |
| 989 | /// When true is returned, the \p RewriteMap can be used by the client to |
| 990 | /// retrieve all Def -> Use along the way up to the next source. Any found |
| 991 | /// Use that is not itself a key for another entry, is the next source to |
| 992 | /// use. During the search for the next source, multiple sources can be found |
| 993 | /// given multiple incoming sources of a PHI instruction. In this case, we |
| 994 | /// look in each PHI source for the next source; all found next sources must |
| 995 | /// share the same register file as \p Reg and \p SubReg. The client should |
| 996 | /// then be capable to rewrite all intermediate PHIs to get the next source. |
| 997 | /// \return False if no alternative sources are available. True otherwise. |
| 998 | bool PeepholeOptimizer::findNextSource(const TargetRegisterClass *DefRC, |
| 999 | unsigned DefSubReg, |
| 1000 | RegSubRegPair RegSubReg, |
| 1001 | RewriteMapTy &RewriteMap) { |
| 1002 | // Do not try to find a new source for a physical register. |
| 1003 | // So far we do not have any motivating example for doing that. |
| 1004 | // Thus, instead of maintaining untested code, we will revisit that if |
| 1005 | // that changes at some point. |
| 1006 | Register Reg = RegSubReg.Reg; |
| 1007 | SmallVector<RegSubRegPair, 4> SrcToLook; |
| 1008 | RegSubRegPair CurSrcPair = RegSubReg; |
| 1009 | SrcToLook.push_back(Elt: CurSrcPair); |
| 1010 | |
| 1011 | unsigned PHICount = 0; |
| 1012 | do { |
| 1013 | CurSrcPair = SrcToLook.pop_back_val(); |
| 1014 | // As explained above, do not handle physical registers |
| 1015 | if (CurSrcPair.Reg.isPhysical()) |
| 1016 | return false; |
| 1017 | |
| 1018 | ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII); |
| 1019 | |
| 1020 | // Follow the chain of copies until we find a more suitable source, a phi |
| 1021 | // or have to abort. |
| 1022 | while (true) { |
| 1023 | ValueTrackerResult Res = ValTracker.getNextSource(); |
| 1024 | // Abort at the end of a chain (without finding a suitable source). |
| 1025 | if (!Res.isValid()) |
| 1026 | return false; |
| 1027 | |
| 1028 | // Insert the Def -> Use entry for the recently found source. |
| 1029 | auto [InsertPt, WasInserted] = RewriteMap.try_emplace(Key: CurSrcPair, Args&: Res); |
| 1030 | |
| 1031 | if (!WasInserted) { |
| 1032 | const ValueTrackerResult &CurSrcRes = InsertPt->second; |
| 1033 | |
| 1034 | assert(CurSrcRes == Res && "ValueTrackerResult found must match" ); |
| 1035 | // An existent entry with multiple sources is a PHI cycle we must avoid. |
| 1036 | // Otherwise it's an entry with a valid next source we already found. |
| 1037 | if (CurSrcRes.getNumSources() > 1) { |
| 1038 | LLVM_DEBUG(dbgs() |
| 1039 | << "findNextSource: found PHI cycle, aborting...\n" ); |
| 1040 | return false; |
| 1041 | } |
| 1042 | break; |
| 1043 | } |
| 1044 | |
| 1045 | // ValueTrackerResult usually have one source unless it's the result from |
| 1046 | // a PHI instruction. Add the found PHI edges to be looked up further. |
| 1047 | unsigned NumSrcs = Res.getNumSources(); |
| 1048 | if (NumSrcs > 1) { |
| 1049 | PHICount++; |
| 1050 | if (PHICount >= RewritePHILimit) { |
| 1051 | LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n" ); |
| 1052 | return false; |
| 1053 | } |
| 1054 | |
| 1055 | for (unsigned i = 0; i < NumSrcs; ++i) |
| 1056 | SrcToLook.push_back(Elt: Res.getSrc(Idx: i)); |
| 1057 | break; |
| 1058 | } |
| 1059 | |
| 1060 | CurSrcPair = Res.getSrc(Idx: 0); |
| 1061 | // Do not extend the live-ranges of physical registers as they add |
| 1062 | // constraints to the register allocator. Moreover, if we want to extend |
| 1063 | // the live-range of a physical register, unlike SSA virtual register, |
| 1064 | // we will have to check that they aren't redefine before the related use. |
| 1065 | if (CurSrcPair.Reg.isPhysical()) |
| 1066 | return false; |
| 1067 | |
| 1068 | // Keep following the chain if the value isn't any better yet. |
| 1069 | const TargetRegisterClass *SrcRC = MRI->getRegClass(Reg: CurSrcPair.Reg); |
| 1070 | if (!TRI->shouldRewriteCopySrc(DefRC, DefSubReg, SrcRC, |
| 1071 | SrcSubReg: CurSrcPair.SubReg)) |
| 1072 | continue; |
| 1073 | |
| 1074 | // We currently cannot deal with subreg operands on PHI instructions |
| 1075 | // (see insertPHI()). |
| 1076 | if (PHICount > 0 && CurSrcPair.SubReg != 0) |
| 1077 | continue; |
| 1078 | |
| 1079 | // We found a suitable source, and are done with this chain. |
| 1080 | break; |
| 1081 | } |
| 1082 | } while (!SrcToLook.empty()); |
| 1083 | |
| 1084 | // If we did not find a more suitable source, there is nothing to optimize. |
| 1085 | return CurSrcPair.Reg != Reg; |
| 1086 | } |
| 1087 | |
| 1088 | /// Insert a PHI instruction with incoming edges \p SrcRegs that are |
| 1089 | /// guaranteed to have the same register class. This is necessary whenever we |
| 1090 | /// successfully traverse a PHI instruction and find suitable sources coming |
| 1091 | /// from its edges. By inserting a new PHI, we provide a rewritten PHI def |
| 1092 | /// suitable to be used in a new COPY instruction. |
| 1093 | static MachineInstr &insertPHI(MachineRegisterInfo &MRI, |
| 1094 | const TargetInstrInfo &TII, |
| 1095 | const SmallVectorImpl<RegSubRegPair> &SrcRegs, |
| 1096 | MachineInstr &OrigPHI) { |
| 1097 | assert(!SrcRegs.empty() && "No sources to create a PHI instruction?" ); |
| 1098 | |
| 1099 | const TargetRegisterClass *NewRC = MRI.getRegClass(Reg: SrcRegs[0].Reg); |
| 1100 | // NewRC is only correct if no subregisters are involved. findNextSource() |
| 1101 | // should have rejected those cases already. |
| 1102 | assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand" ); |
| 1103 | Register NewVR = MRI.createVirtualRegister(RegClass: NewRC); |
| 1104 | MachineBasicBlock *MBB = OrigPHI.getParent(); |
| 1105 | MachineInstrBuilder MIB = BuildMI(BB&: *MBB, I: &OrigPHI, MIMD: OrigPHI.getDebugLoc(), |
| 1106 | MCID: TII.get(Opcode: TargetOpcode::PHI), DestReg: NewVR); |
| 1107 | |
| 1108 | unsigned MBBOpIdx = 2; |
| 1109 | for (const RegSubRegPair &RegPair : SrcRegs) { |
| 1110 | MIB.addReg(RegNo: RegPair.Reg, flags: 0, SubReg: RegPair.SubReg); |
| 1111 | MIB.addMBB(MBB: OrigPHI.getOperand(i: MBBOpIdx).getMBB()); |
| 1112 | // Since we're extended the lifetime of RegPair.Reg, clear the |
| 1113 | // kill flags to account for that and make RegPair.Reg reaches |
| 1114 | // the new PHI. |
| 1115 | MRI.clearKillFlags(Reg: RegPair.Reg); |
| 1116 | MBBOpIdx += 2; |
| 1117 | } |
| 1118 | |
| 1119 | return *MIB; |
| 1120 | } |
| 1121 | |
| 1122 | /// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find |
| 1123 | /// the new source to use for rewrite. If \p HandleMultipleSources is true and |
| 1124 | /// multiple sources for a given \p Def are found along the way, we found a |
| 1125 | /// PHI instructions that needs to be rewritten. |
| 1126 | /// TODO: HandleMultipleSources should be removed once we test PHI handling |
| 1127 | /// with coalescable copies. |
| 1128 | static RegSubRegPair |
| 1129 | getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII, |
| 1130 | RegSubRegPair Def, |
| 1131 | const PeepholeOptimizer::RewriteMapTy &RewriteMap, |
| 1132 | bool HandleMultipleSources = true) { |
| 1133 | RegSubRegPair LookupSrc(Def.Reg, Def.SubReg); |
| 1134 | while (true) { |
| 1135 | ValueTrackerResult Res = RewriteMap.lookup(Val: LookupSrc); |
| 1136 | // If there are no entries on the map, LookupSrc is the new source. |
| 1137 | if (!Res.isValid()) |
| 1138 | return LookupSrc; |
| 1139 | |
| 1140 | // There's only one source for this definition, keep searching... |
| 1141 | unsigned NumSrcs = Res.getNumSources(); |
| 1142 | if (NumSrcs == 1) { |
| 1143 | LookupSrc.Reg = Res.getSrcReg(Idx: 0); |
| 1144 | LookupSrc.SubReg = Res.getSrcSubReg(Idx: 0); |
| 1145 | continue; |
| 1146 | } |
| 1147 | |
| 1148 | // TODO: Remove once multiple srcs w/ coalescable copies are supported. |
| 1149 | if (!HandleMultipleSources) |
| 1150 | break; |
| 1151 | |
| 1152 | // Multiple sources, recurse into each source to find a new source |
| 1153 | // for it. Then, rewrite the PHI accordingly to its new edges. |
| 1154 | SmallVector<RegSubRegPair, 4> NewPHISrcs; |
| 1155 | for (unsigned i = 0; i < NumSrcs; ++i) { |
| 1156 | RegSubRegPair PHISrc(Res.getSrcReg(Idx: i), Res.getSrcSubReg(Idx: i)); |
| 1157 | NewPHISrcs.push_back( |
| 1158 | Elt: getNewSource(MRI, TII, Def: PHISrc, RewriteMap, HandleMultipleSources)); |
| 1159 | } |
| 1160 | |
| 1161 | // Build the new PHI node and return its def register as the new source. |
| 1162 | MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst()); |
| 1163 | MachineInstr &NewPHI = insertPHI(MRI&: *MRI, TII: *TII, SrcRegs: NewPHISrcs, OrigPHI); |
| 1164 | LLVM_DEBUG(dbgs() << "-- getNewSource\n" ); |
| 1165 | LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI); |
| 1166 | LLVM_DEBUG(dbgs() << " With: " << NewPHI); |
| 1167 | const MachineOperand &MODef = NewPHI.getOperand(i: 0); |
| 1168 | return RegSubRegPair(MODef.getReg(), MODef.getSubReg()); |
| 1169 | } |
| 1170 | |
| 1171 | return RegSubRegPair(0, 0); |
| 1172 | } |
| 1173 | |
| 1174 | bool PeepholeOptimizer::optimizeCoalescableCopyImpl(Rewriter &&CpyRewriter) { |
| 1175 | bool Changed = false; |
| 1176 | // Get the right rewriter for the current copy. |
| 1177 | // Rewrite each rewritable source. |
| 1178 | RegSubRegPair Dst; |
| 1179 | RegSubRegPair TrackPair; |
| 1180 | while (CpyRewriter.getNextRewritableSource(Src&: TrackPair, Dst)) { |
| 1181 | if (Dst.Reg.isPhysical()) { |
| 1182 | // Do not try to find a new source for a physical register. |
| 1183 | // So far we do not have any motivating example for doing that. |
| 1184 | // Thus, instead of maintaining untested code, we will revisit that if |
| 1185 | // that changes at some point. |
| 1186 | continue; |
| 1187 | } |
| 1188 | |
| 1189 | const TargetRegisterClass *DefRC = MRI->getRegClass(Reg: Dst.Reg); |
| 1190 | |
| 1191 | // Keep track of PHI nodes and its incoming edges when looking for sources. |
| 1192 | RewriteMapTy RewriteMap; |
| 1193 | // Try to find a more suitable source. If we failed to do so, or get the |
| 1194 | // actual source, move to the next source. |
| 1195 | if (!findNextSource(DefRC, DefSubReg: Dst.SubReg, RegSubReg: TrackPair, RewriteMap)) |
| 1196 | continue; |
| 1197 | |
| 1198 | // Get the new source to rewrite. TODO: Only enable handling of multiple |
| 1199 | // sources (PHIs) once we have a motivating example and testcases for it. |
| 1200 | RegSubRegPair NewSrc = getNewSource(MRI, TII, Def: TrackPair, RewriteMap, |
| 1201 | /*HandleMultipleSources=*/false); |
| 1202 | assert(TrackPair.Reg != NewSrc.Reg && |
| 1203 | "should not rewrite source to original value" ); |
| 1204 | if (!NewSrc.Reg) |
| 1205 | continue; |
| 1206 | |
| 1207 | // Rewrite source. |
| 1208 | if (CpyRewriter.RewriteCurrentSource(NewReg: NewSrc.Reg, NewSubReg: NewSrc.SubReg)) { |
| 1209 | // We may have extended the live-range of NewSrc, account for that. |
| 1210 | MRI->clearKillFlags(Reg: NewSrc.Reg); |
| 1211 | Changed = true; |
| 1212 | } |
| 1213 | } |
| 1214 | |
| 1215 | // TODO: We could have a clean-up method to tidy the instruction. |
| 1216 | // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0 |
| 1217 | // => v0 = COPY v1 |
| 1218 | // Currently we haven't seen motivating example for that and we |
| 1219 | // want to avoid untested code. |
| 1220 | NumRewrittenCopies += Changed; |
| 1221 | return Changed; |
| 1222 | } |
| 1223 | |
| 1224 | /// Optimize generic copy instructions to avoid cross register bank copy. |
| 1225 | /// The optimization looks through a chain of copies and tries to find a source |
| 1226 | /// that has a compatible register class. |
| 1227 | /// Two register classes are considered to be compatible if they share the same |
| 1228 | /// register bank. |
| 1229 | /// New copies issued by this optimization are register allocator |
| 1230 | /// friendly. This optimization does not remove any copy as it may |
| 1231 | /// overconstrain the register allocator, but replaces some operands |
| 1232 | /// when possible. |
| 1233 | /// \pre isCoalescableCopy(*MI) is true. |
| 1234 | /// \return True, when \p MI has been rewritten. False otherwise. |
| 1235 | bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) { |
| 1236 | assert(isCoalescableCopy(MI) && "Invalid argument" ); |
| 1237 | assert(MI.getDesc().getNumDefs() == 1 && |
| 1238 | "Coalescer can understand multiple defs?!" ); |
| 1239 | const MachineOperand &MODef = MI.getOperand(i: 0); |
| 1240 | // Do not rewrite physical definitions. |
| 1241 | if (MODef.getReg().isPhysical()) |
| 1242 | return false; |
| 1243 | |
| 1244 | switch (MI.getOpcode()) { |
| 1245 | case TargetOpcode::COPY: |
| 1246 | return optimizeCoalescableCopyImpl(CpyRewriter: CopyRewriter(MI)); |
| 1247 | case TargetOpcode::INSERT_SUBREG: |
| 1248 | return optimizeCoalescableCopyImpl(CpyRewriter: InsertSubregRewriter(MI)); |
| 1249 | case TargetOpcode::EXTRACT_SUBREG: |
| 1250 | return optimizeCoalescableCopyImpl(CpyRewriter: ExtractSubregRewriter(MI, *TII)); |
| 1251 | case TargetOpcode::REG_SEQUENCE: |
| 1252 | return optimizeCoalescableCopyImpl(CpyRewriter: RegSequenceRewriter(MI)); |
| 1253 | default: |
| 1254 | // Handle uncoalescable copy-like instructions. |
| 1255 | if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() || |
| 1256 | MI.isExtractSubregLike()) |
| 1257 | return optimizeCoalescableCopyImpl(CpyRewriter: UncoalescableRewriter(MI)); |
| 1258 | return false; |
| 1259 | } |
| 1260 | } |
| 1261 | |
| 1262 | /// Rewrite the source found through \p Def, by using the \p RewriteMap |
| 1263 | /// and create a new COPY instruction. More info about RewriteMap in |
| 1264 | /// PeepholeOptimizer::findNextSource. Right now this is only used to handle |
| 1265 | /// Uncoalescable copies, since they are copy like instructions that aren't |
| 1266 | /// recognized by the register allocator. |
| 1267 | MachineInstr &PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike, |
| 1268 | RegSubRegPair Def, |
| 1269 | RewriteMapTy &RewriteMap) { |
| 1270 | assert(!Def.Reg.isPhysical() && "We do not rewrite physical registers" ); |
| 1271 | |
| 1272 | // Find the new source to use in the COPY rewrite. |
| 1273 | RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap); |
| 1274 | |
| 1275 | // Insert the COPY. |
| 1276 | const TargetRegisterClass *DefRC = MRI->getRegClass(Reg: Def.Reg); |
| 1277 | Register NewVReg = MRI->createVirtualRegister(RegClass: DefRC); |
| 1278 | |
| 1279 | MachineInstr *NewCopy = |
| 1280 | BuildMI(BB&: *CopyLike.getParent(), I: &CopyLike, MIMD: CopyLike.getDebugLoc(), |
| 1281 | MCID: TII->get(Opcode: TargetOpcode::COPY), DestReg: NewVReg) |
| 1282 | .addReg(RegNo: NewSrc.Reg, flags: 0, SubReg: NewSrc.SubReg); |
| 1283 | |
| 1284 | if (Def.SubReg) { |
| 1285 | NewCopy->getOperand(i: 0).setSubReg(Def.SubReg); |
| 1286 | NewCopy->getOperand(i: 0).setIsUndef(); |
| 1287 | } |
| 1288 | |
| 1289 | LLVM_DEBUG(dbgs() << "-- RewriteSource\n" ); |
| 1290 | LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike); |
| 1291 | LLVM_DEBUG(dbgs() << " With: " << *NewCopy); |
| 1292 | MRI->replaceRegWith(FromReg: Def.Reg, ToReg: NewVReg); |
| 1293 | MRI->clearKillFlags(Reg: NewVReg); |
| 1294 | |
| 1295 | // We extended the lifetime of NewSrc.Reg, clear the kill flags to |
| 1296 | // account for that. |
| 1297 | MRI->clearKillFlags(Reg: NewSrc.Reg); |
| 1298 | |
| 1299 | return *NewCopy; |
| 1300 | } |
| 1301 | |
| 1302 | /// Optimize copy-like instructions to create |
| 1303 | /// register coalescer friendly instruction. |
| 1304 | /// The optimization tries to kill-off the \p MI by looking |
| 1305 | /// through a chain of copies to find a source that has a compatible |
| 1306 | /// register class. |
| 1307 | /// If such a source is found, it replace \p MI by a generic COPY |
| 1308 | /// operation. |
| 1309 | /// \pre isUncoalescableCopy(*MI) is true. |
| 1310 | /// \return True, when \p MI has been optimized. In that case, \p MI has |
| 1311 | /// been removed from its parent. |
| 1312 | /// All COPY instructions created, are inserted in \p LocalMIs. |
| 1313 | bool PeepholeOptimizer::optimizeUncoalescableCopy( |
| 1314 | MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) { |
| 1315 | assert(isUncoalescableCopy(MI) && "Invalid argument" ); |
| 1316 | UncoalescableRewriter CpyRewriter(MI); |
| 1317 | |
| 1318 | // Rewrite each rewritable source by generating new COPYs. This works |
| 1319 | // differently from optimizeCoalescableCopy since it first makes sure that all |
| 1320 | // definitions can be rewritten. |
| 1321 | RewriteMapTy RewriteMap; |
| 1322 | RegSubRegPair Src; |
| 1323 | RegSubRegPair Def; |
| 1324 | SmallVector<RegSubRegPair, 4> RewritePairs; |
| 1325 | while (CpyRewriter.getNextRewritableSource(Src, Dst&: Def)) { |
| 1326 | // If a physical register is here, this is probably for a good reason. |
| 1327 | // Do not rewrite that. |
| 1328 | if (Def.Reg.isPhysical()) |
| 1329 | return false; |
| 1330 | |
| 1331 | // FIXME: Uncoalescable copies are treated differently by |
| 1332 | // UncoalescableRewriter, and this probably should not share |
| 1333 | // API. getNextRewritableSource really finds rewritable defs. |
| 1334 | const TargetRegisterClass *DefRC = MRI->getRegClass(Reg: Def.Reg); |
| 1335 | |
| 1336 | // If we do not know how to rewrite this definition, there is no point |
| 1337 | // in trying to kill this instruction. |
| 1338 | if (!findNextSource(DefRC, DefSubReg: Def.SubReg, RegSubReg: Def, RewriteMap)) |
| 1339 | return false; |
| 1340 | |
| 1341 | RewritePairs.push_back(Elt: Def); |
| 1342 | } |
| 1343 | |
| 1344 | // The change is possible for all defs, do it. |
| 1345 | for (const RegSubRegPair &Def : RewritePairs) { |
| 1346 | // Rewrite the "copy" in a way the register coalescer understands. |
| 1347 | MachineInstr &NewCopy = rewriteSource(CopyLike&: MI, Def, RewriteMap); |
| 1348 | LocalMIs.insert(Ptr: &NewCopy); |
| 1349 | } |
| 1350 | |
| 1351 | // MI is now dead. |
| 1352 | LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI); |
| 1353 | MI.eraseFromParent(); |
| 1354 | ++NumUncoalescableCopies; |
| 1355 | return true; |
| 1356 | } |
| 1357 | |
| 1358 | /// Check whether MI is a candidate for folding into a later instruction. |
| 1359 | /// We only fold loads to virtual registers and the virtual register defined |
| 1360 | /// has a single user. |
| 1361 | bool PeepholeOptimizer::isLoadFoldable( |
| 1362 | MachineInstr &MI, SmallSet<Register, 16> &FoldAsLoadDefCandidates) { |
| 1363 | if (!MI.canFoldAsLoad() || !MI.mayLoad()) |
| 1364 | return false; |
| 1365 | const MCInstrDesc &MCID = MI.getDesc(); |
| 1366 | if (MCID.getNumDefs() != 1) |
| 1367 | return false; |
| 1368 | |
| 1369 | Register Reg = MI.getOperand(i: 0).getReg(); |
| 1370 | // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting |
| 1371 | // loads. It should be checked when processing uses of the load, since |
| 1372 | // uses can be removed during peephole. |
| 1373 | if (Reg.isVirtual() && !MI.getOperand(i: 0).getSubReg() && |
| 1374 | MRI->hasOneNonDBGUser(RegNo: Reg)) { |
| 1375 | FoldAsLoadDefCandidates.insert(V: Reg); |
| 1376 | return true; |
| 1377 | } |
| 1378 | return false; |
| 1379 | } |
| 1380 | |
| 1381 | bool PeepholeOptimizer::isMoveImmediate( |
| 1382 | MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, |
| 1383 | DenseMap<Register, MachineInstr *> &ImmDefMIs) { |
| 1384 | const MCInstrDesc &MCID = MI.getDesc(); |
| 1385 | if (MCID.getNumDefs() != 1 || !MI.getOperand(i: 0).isReg()) |
| 1386 | return false; |
| 1387 | Register Reg = MI.getOperand(i: 0).getReg(); |
| 1388 | if (!Reg.isVirtual()) |
| 1389 | return false; |
| 1390 | |
| 1391 | int64_t ImmVal; |
| 1392 | if (!MI.isMoveImmediate() && !TII->getConstValDefinedInReg(MI, Reg, ImmVal)) |
| 1393 | return false; |
| 1394 | |
| 1395 | ImmDefMIs.insert(KV: std::make_pair(x&: Reg, y: &MI)); |
| 1396 | ImmDefRegs.insert(V: Reg); |
| 1397 | return true; |
| 1398 | } |
| 1399 | |
| 1400 | /// Try folding register operands that are defined by move immediate |
| 1401 | /// instructions, i.e. a trivial constant folding optimization, if |
| 1402 | /// and only if the def and use are in the same BB. |
| 1403 | bool PeepholeOptimizer::foldImmediate( |
| 1404 | MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs, |
| 1405 | DenseMap<Register, MachineInstr *> &ImmDefMIs, bool &Deleted) { |
| 1406 | Deleted = false; |
| 1407 | for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) { |
| 1408 | MachineOperand &MO = MI.getOperand(i); |
| 1409 | if (!MO.isReg() || MO.isDef()) |
| 1410 | continue; |
| 1411 | Register Reg = MO.getReg(); |
| 1412 | if (!Reg.isVirtual()) |
| 1413 | continue; |
| 1414 | if (ImmDefRegs.count(V: Reg) == 0) |
| 1415 | continue; |
| 1416 | DenseMap<Register, MachineInstr *>::iterator II = ImmDefMIs.find(Val: Reg); |
| 1417 | assert(II != ImmDefMIs.end() && "couldn't find immediate definition" ); |
| 1418 | if (TII->foldImmediate(UseMI&: MI, DefMI&: *II->second, Reg, MRI)) { |
| 1419 | ++NumImmFold; |
| 1420 | // foldImmediate can delete ImmDefMI if MI was its only user. If ImmDefMI |
| 1421 | // is not deleted, and we happened to get a same MI, we can delete MI and |
| 1422 | // replace its users. |
| 1423 | if (MRI->getVRegDef(Reg) && |
| 1424 | MI.isIdenticalTo(Other: *II->second, Check: MachineInstr::IgnoreVRegDefs)) { |
| 1425 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 1426 | if (DstReg.isVirtual() && |
| 1427 | MRI->getRegClass(Reg: DstReg) == MRI->getRegClass(Reg)) { |
| 1428 | MRI->replaceRegWith(FromReg: DstReg, ToReg: Reg); |
| 1429 | MI.eraseFromParent(); |
| 1430 | Deleted = true; |
| 1431 | } |
| 1432 | } |
| 1433 | return true; |
| 1434 | } |
| 1435 | } |
| 1436 | return false; |
| 1437 | } |
| 1438 | |
| 1439 | // FIXME: This is very simple and misses some cases which should be handled when |
| 1440 | // motivating examples are found. |
| 1441 | // |
| 1442 | // The copy rewriting logic should look at uses as well as defs and be able to |
| 1443 | // eliminate copies across blocks. |
| 1444 | // |
| 1445 | // Later copies that are subregister extracts will also not be eliminated since |
| 1446 | // only the first copy is considered. |
| 1447 | // |
| 1448 | // e.g. |
| 1449 | // %1 = COPY %0 |
| 1450 | // %2 = COPY %0:sub1 |
| 1451 | // |
| 1452 | // Should replace %2 uses with %1:sub1 |
| 1453 | bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI) { |
| 1454 | assert(MI.isCopy() && "expected a COPY machine instruction" ); |
| 1455 | |
| 1456 | RegSubRegPair SrcPair; |
| 1457 | if (!getCopySrc(MI, SrcPair)) |
| 1458 | return false; |
| 1459 | |
| 1460 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 1461 | if (!DstReg.isVirtual()) |
| 1462 | return false; |
| 1463 | |
| 1464 | if (CopySrcMIs.insert(KV: std::make_pair(x&: SrcPair, y: &MI)).second) { |
| 1465 | // First copy of this reg seen. |
| 1466 | return false; |
| 1467 | } |
| 1468 | |
| 1469 | MachineInstr *PrevCopy = CopySrcMIs.find(Val: SrcPair)->second; |
| 1470 | |
| 1471 | assert(SrcPair.SubReg == PrevCopy->getOperand(1).getSubReg() && |
| 1472 | "Unexpected mismatching subreg!" ); |
| 1473 | |
| 1474 | Register PrevDstReg = PrevCopy->getOperand(i: 0).getReg(); |
| 1475 | |
| 1476 | // Only replace if the copy register class is the same. |
| 1477 | // |
| 1478 | // TODO: If we have multiple copies to different register classes, we may want |
| 1479 | // to track multiple copies of the same source register. |
| 1480 | if (MRI->getRegClass(Reg: DstReg) != MRI->getRegClass(Reg: PrevDstReg)) |
| 1481 | return false; |
| 1482 | |
| 1483 | MRI->replaceRegWith(FromReg: DstReg, ToReg: PrevDstReg); |
| 1484 | |
| 1485 | // Lifetime of the previous copy has been extended. |
| 1486 | MRI->clearKillFlags(Reg: PrevDstReg); |
| 1487 | return true; |
| 1488 | } |
| 1489 | |
| 1490 | bool PeepholeOptimizer::isNAPhysCopy(Register Reg) { |
| 1491 | return Reg.isPhysical() && !MRI->isAllocatable(PhysReg: Reg); |
| 1492 | } |
| 1493 | |
| 1494 | bool PeepholeOptimizer::foldRedundantNAPhysCopy( |
| 1495 | MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs) { |
| 1496 | assert(MI.isCopy() && "expected a COPY machine instruction" ); |
| 1497 | |
| 1498 | if (DisableNAPhysCopyOpt) |
| 1499 | return false; |
| 1500 | |
| 1501 | Register DstReg = MI.getOperand(i: 0).getReg(); |
| 1502 | Register SrcReg = MI.getOperand(i: 1).getReg(); |
| 1503 | if (isNAPhysCopy(Reg: SrcReg) && DstReg.isVirtual()) { |
| 1504 | // %vreg = COPY $physreg |
| 1505 | // Avoid using a datastructure which can track multiple live non-allocatable |
| 1506 | // phys->virt copies since LLVM doesn't seem to do this. |
| 1507 | NAPhysToVirtMIs.insert(KV: {SrcReg, &MI}); |
| 1508 | return false; |
| 1509 | } |
| 1510 | |
| 1511 | if (!(SrcReg.isVirtual() && isNAPhysCopy(Reg: DstReg))) |
| 1512 | return false; |
| 1513 | |
| 1514 | // $physreg = COPY %vreg |
| 1515 | auto PrevCopy = NAPhysToVirtMIs.find(Val: DstReg); |
| 1516 | if (PrevCopy == NAPhysToVirtMIs.end()) { |
| 1517 | // We can't remove the copy: there was an intervening clobber of the |
| 1518 | // non-allocatable physical register after the copy to virtual. |
| 1519 | LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing " |
| 1520 | << MI); |
| 1521 | return false; |
| 1522 | } |
| 1523 | |
| 1524 | Register PrevDstReg = PrevCopy->second->getOperand(i: 0).getReg(); |
| 1525 | if (PrevDstReg == SrcReg) { |
| 1526 | // Remove the virt->phys copy: we saw the virtual register definition, and |
| 1527 | // the non-allocatable physical register's state hasn't changed since then. |
| 1528 | LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI); |
| 1529 | ++NumNAPhysCopies; |
| 1530 | return true; |
| 1531 | } |
| 1532 | |
| 1533 | // Potential missed optimization opportunity: we saw a different virtual |
| 1534 | // register get a copy of the non-allocatable physical register, and we only |
| 1535 | // track one such copy. Avoid getting confused by this new non-allocatable |
| 1536 | // physical register definition, and remove it from the tracked copies. |
| 1537 | LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI); |
| 1538 | NAPhysToVirtMIs.erase(I: PrevCopy); |
| 1539 | return false; |
| 1540 | } |
| 1541 | |
| 1542 | /// \bried Returns true if \p MO is a virtual register operand. |
| 1543 | static bool isVirtualRegisterOperand(MachineOperand &MO) { |
| 1544 | return MO.isReg() && MO.getReg().isVirtual(); |
| 1545 | } |
| 1546 | |
| 1547 | bool PeepholeOptimizer::findTargetRecurrence( |
| 1548 | Register Reg, const SmallSet<Register, 2> &TargetRegs, |
| 1549 | RecurrenceCycle &RC) { |
| 1550 | // Recurrence found if Reg is in TargetRegs. |
| 1551 | if (TargetRegs.count(V: Reg)) |
| 1552 | return true; |
| 1553 | |
| 1554 | // TODO: Curerntly, we only allow the last instruction of the recurrence |
| 1555 | // cycle (the instruction that feeds the PHI instruction) to have more than |
| 1556 | // one uses to guarantee that commuting operands does not tie registers |
| 1557 | // with overlapping live range. Once we have actual live range info of |
| 1558 | // each register, this constraint can be relaxed. |
| 1559 | if (!MRI->hasOneNonDBGUse(RegNo: Reg)) |
| 1560 | return false; |
| 1561 | |
| 1562 | // Give up if the reccurrence chain length is longer than the limit. |
| 1563 | if (RC.size() >= MaxRecurrenceChain) |
| 1564 | return false; |
| 1565 | |
| 1566 | MachineInstr &MI = *(MRI->use_instr_nodbg_begin(RegNo: Reg)); |
| 1567 | unsigned Idx = MI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr); |
| 1568 | |
| 1569 | // Only interested in recurrences whose instructions have only one def, which |
| 1570 | // is a virtual register. |
| 1571 | if (MI.getDesc().getNumDefs() != 1) |
| 1572 | return false; |
| 1573 | |
| 1574 | MachineOperand &DefOp = MI.getOperand(i: 0); |
| 1575 | if (!isVirtualRegisterOperand(MO&: DefOp)) |
| 1576 | return false; |
| 1577 | |
| 1578 | // Check if def operand of MI is tied to any use operand. We are only |
| 1579 | // interested in the case that all the instructions in the recurrence chain |
| 1580 | // have there def operand tied with one of the use operand. |
| 1581 | unsigned TiedUseIdx; |
| 1582 | if (!MI.isRegTiedToUseOperand(DefOpIdx: 0, UseOpIdx: &TiedUseIdx)) |
| 1583 | return false; |
| 1584 | |
| 1585 | if (Idx == TiedUseIdx) { |
| 1586 | RC.push_back(Elt: RecurrenceInstr(&MI)); |
| 1587 | return findTargetRecurrence(Reg: DefOp.getReg(), TargetRegs, RC); |
| 1588 | } else { |
| 1589 | // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx. |
| 1590 | unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex; |
| 1591 | if (TII->findCommutedOpIndices(MI, SrcOpIdx1&: Idx, SrcOpIdx2&: CommIdx) && CommIdx == TiedUseIdx) { |
| 1592 | RC.push_back(Elt: RecurrenceInstr(&MI, Idx, CommIdx)); |
| 1593 | return findTargetRecurrence(Reg: DefOp.getReg(), TargetRegs, RC); |
| 1594 | } |
| 1595 | } |
| 1596 | |
| 1597 | return false; |
| 1598 | } |
| 1599 | |
| 1600 | /// Phi instructions will eventually be lowered to copy instructions. |
| 1601 | /// If phi is in a loop header, a recurrence may formulated around the source |
| 1602 | /// and destination of the phi. For such case commuting operands of the |
| 1603 | /// instructions in the recurrence may enable coalescing of the copy instruction |
| 1604 | /// generated from the phi. For example, if there is a recurrence of |
| 1605 | /// |
| 1606 | /// LoopHeader: |
| 1607 | /// %1 = phi(%0, %100) |
| 1608 | /// LoopLatch: |
| 1609 | /// %0<def, tied1> = ADD %2<def, tied0>, %1 |
| 1610 | /// |
| 1611 | /// , the fact that %0 and %2 are in the same tied operands set makes |
| 1612 | /// the coalescing of copy instruction generated from the phi in |
| 1613 | /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and |
| 1614 | /// %2 have overlapping live range. This introduces additional move |
| 1615 | /// instruction to the final assembly. However, if we commute %2 and |
| 1616 | /// %1 of ADD instruction, the redundant move instruction can be |
| 1617 | /// avoided. |
| 1618 | bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) { |
| 1619 | SmallSet<Register, 2> TargetRegs; |
| 1620 | for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) { |
| 1621 | MachineOperand &MO = PHI.getOperand(i: Idx); |
| 1622 | assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction" ); |
| 1623 | TargetRegs.insert(V: MO.getReg()); |
| 1624 | } |
| 1625 | |
| 1626 | bool Changed = false; |
| 1627 | RecurrenceCycle RC; |
| 1628 | if (findTargetRecurrence(Reg: PHI.getOperand(i: 0).getReg(), TargetRegs, RC)) { |
| 1629 | // Commutes operands of instructions in RC if necessary so that the copy to |
| 1630 | // be generated from PHI can be coalesced. |
| 1631 | LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI); |
| 1632 | for (auto &RI : RC) { |
| 1633 | LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI())); |
| 1634 | auto CP = RI.getCommutePair(); |
| 1635 | if (CP) { |
| 1636 | Changed = true; |
| 1637 | TII->commuteInstruction(MI&: *(RI.getMI()), NewMI: false, OpIdx1: (*CP).first, |
| 1638 | OpIdx2: (*CP).second); |
| 1639 | LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI())); |
| 1640 | } |
| 1641 | } |
| 1642 | } |
| 1643 | |
| 1644 | return Changed; |
| 1645 | } |
| 1646 | |
| 1647 | PreservedAnalyses |
| 1648 | PeepholeOptimizerPass::run(MachineFunction &MF, |
| 1649 | MachineFunctionAnalysisManager &MFAM) { |
| 1650 | MFPropsModifier _(*this, MF); |
| 1651 | auto *DT = |
| 1652 | Aggressive ? &MFAM.getResult<MachineDominatorTreeAnalysis>(IR&: MF) : nullptr; |
| 1653 | auto *MLI = &MFAM.getResult<MachineLoopAnalysis>(IR&: MF); |
| 1654 | PeepholeOptimizer Impl(DT, MLI); |
| 1655 | bool Changed = Impl.run(MF); |
| 1656 | if (!Changed) |
| 1657 | return PreservedAnalyses::all(); |
| 1658 | |
| 1659 | auto PA = getMachineFunctionPassPreservedAnalyses(); |
| 1660 | PA.preserve<MachineDominatorTreeAnalysis>(); |
| 1661 | PA.preserve<MachineLoopAnalysis>(); |
| 1662 | PA.preserveSet<CFGAnalyses>(); |
| 1663 | return PA; |
| 1664 | } |
| 1665 | |
| 1666 | bool PeepholeOptimizerLegacy::runOnMachineFunction(MachineFunction &MF) { |
| 1667 | if (skipFunction(F: MF.getFunction())) |
| 1668 | return false; |
| 1669 | auto *DT = Aggressive |
| 1670 | ? &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree() |
| 1671 | : nullptr; |
| 1672 | auto *MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
| 1673 | PeepholeOptimizer Impl(DT, MLI); |
| 1674 | return Impl.run(MF); |
| 1675 | } |
| 1676 | |
| 1677 | bool PeepholeOptimizer::run(MachineFunction &MF) { |
| 1678 | |
| 1679 | LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n" ); |
| 1680 | LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n'); |
| 1681 | |
| 1682 | if (DisablePeephole) |
| 1683 | return false; |
| 1684 | |
| 1685 | TII = MF.getSubtarget().getInstrInfo(); |
| 1686 | TRI = MF.getSubtarget().getRegisterInfo(); |
| 1687 | MRI = &MF.getRegInfo(); |
| 1688 | MF.setDelegate(this); |
| 1689 | |
| 1690 | bool Changed = false; |
| 1691 | |
| 1692 | for (MachineBasicBlock &MBB : MF) { |
| 1693 | bool SeenMoveImm = false; |
| 1694 | |
| 1695 | // During this forward scan, at some point it needs to answer the question |
| 1696 | // "given a pointer to an MI in the current BB, is it located before or |
| 1697 | // after the current instruction". |
| 1698 | // To perform this, the following set keeps track of the MIs already seen |
| 1699 | // during the scan, if a MI is not in the set, it is assumed to be located |
| 1700 | // after. Newly created MIs have to be inserted in the set as well. |
| 1701 | SmallPtrSet<MachineInstr *, 16> LocalMIs; |
| 1702 | SmallSet<Register, 4> ImmDefRegs; |
| 1703 | DenseMap<Register, MachineInstr *> ImmDefMIs; |
| 1704 | SmallSet<Register, 16> FoldAsLoadDefCandidates; |
| 1705 | |
| 1706 | // Track when a non-allocatable physical register is copied to a virtual |
| 1707 | // register so that useless moves can be removed. |
| 1708 | // |
| 1709 | // $physreg is the map index; MI is the last valid `%vreg = COPY $physreg` |
| 1710 | // without any intervening re-definition of $physreg. |
| 1711 | DenseMap<Register, MachineInstr *> NAPhysToVirtMIs; |
| 1712 | |
| 1713 | CopySrcMIs.clear(); |
| 1714 | |
| 1715 | bool = MLI->isLoopHeader(BB: &MBB); |
| 1716 | |
| 1717 | for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end(); |
| 1718 | MII != MIE;) { |
| 1719 | MachineInstr *MI = &*MII; |
| 1720 | // We may be erasing MI below, increment MII now. |
| 1721 | ++MII; |
| 1722 | LocalMIs.insert(Ptr: MI); |
| 1723 | |
| 1724 | // Skip debug instructions. They should not affect this peephole |
| 1725 | // optimization. |
| 1726 | if (MI->isDebugInstr()) |
| 1727 | continue; |
| 1728 | |
| 1729 | if (MI->isPosition()) |
| 1730 | continue; |
| 1731 | |
| 1732 | if (IsLoopHeader && MI->isPHI()) { |
| 1733 | if (optimizeRecurrence(PHI&: *MI)) { |
| 1734 | Changed = true; |
| 1735 | continue; |
| 1736 | } |
| 1737 | } |
| 1738 | |
| 1739 | if (!MI->isCopy()) { |
| 1740 | for (const MachineOperand &MO : MI->operands()) { |
| 1741 | // Visit all operands: definitions can be implicit or explicit. |
| 1742 | if (MO.isReg()) { |
| 1743 | Register Reg = MO.getReg(); |
| 1744 | if (MO.isDef() && isNAPhysCopy(Reg)) { |
| 1745 | const auto &Def = NAPhysToVirtMIs.find(Val: Reg); |
| 1746 | if (Def != NAPhysToVirtMIs.end()) { |
| 1747 | // A new definition of the non-allocatable physical register |
| 1748 | // invalidates previous copies. |
| 1749 | LLVM_DEBUG(dbgs() |
| 1750 | << "NAPhysCopy: invalidating because of " << *MI); |
| 1751 | NAPhysToVirtMIs.erase(I: Def); |
| 1752 | } |
| 1753 | } |
| 1754 | } else if (MO.isRegMask()) { |
| 1755 | const uint32_t *RegMask = MO.getRegMask(); |
| 1756 | for (auto &RegMI : NAPhysToVirtMIs) { |
| 1757 | Register Def = RegMI.first; |
| 1758 | if (MachineOperand::clobbersPhysReg(RegMask, PhysReg: Def)) { |
| 1759 | LLVM_DEBUG(dbgs() |
| 1760 | << "NAPhysCopy: invalidating because of " << *MI); |
| 1761 | NAPhysToVirtMIs.erase(Val: Def); |
| 1762 | } |
| 1763 | } |
| 1764 | } |
| 1765 | } |
| 1766 | } |
| 1767 | |
| 1768 | if (MI->isImplicitDef() || MI->isKill()) |
| 1769 | continue; |
| 1770 | |
| 1771 | if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) { |
| 1772 | // Blow away all non-allocatable physical registers knowledge since we |
| 1773 | // don't know what's correct anymore. |
| 1774 | // |
| 1775 | // FIXME: handle explicit asm clobbers. |
| 1776 | LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to " |
| 1777 | << *MI); |
| 1778 | NAPhysToVirtMIs.clear(); |
| 1779 | } |
| 1780 | |
| 1781 | if ((isUncoalescableCopy(MI: *MI) && |
| 1782 | optimizeUncoalescableCopy(MI&: *MI, LocalMIs)) || |
| 1783 | (MI->isCompare() && optimizeCmpInstr(MI&: *MI)) || |
| 1784 | (MI->isSelect() && optimizeSelect(MI&: *MI, LocalMIs))) { |
| 1785 | // MI is deleted. |
| 1786 | LocalMIs.erase(Ptr: MI); |
| 1787 | Changed = true; |
| 1788 | continue; |
| 1789 | } |
| 1790 | |
| 1791 | if (MI->isConditionalBranch() && optimizeCondBranch(MI&: *MI)) { |
| 1792 | Changed = true; |
| 1793 | continue; |
| 1794 | } |
| 1795 | |
| 1796 | if (isCoalescableCopy(MI: *MI) && optimizeCoalescableCopy(MI&: *MI)) { |
| 1797 | // MI is just rewritten. |
| 1798 | Changed = true; |
| 1799 | continue; |
| 1800 | } |
| 1801 | |
| 1802 | if (MI->isCopy() && (foldRedundantCopy(MI&: *MI) || |
| 1803 | foldRedundantNAPhysCopy(MI&: *MI, NAPhysToVirtMIs))) { |
| 1804 | LocalMIs.erase(Ptr: MI); |
| 1805 | LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n" ); |
| 1806 | MI->eraseFromParent(); |
| 1807 | Changed = true; |
| 1808 | continue; |
| 1809 | } |
| 1810 | |
| 1811 | if (isMoveImmediate(MI&: *MI, ImmDefRegs, ImmDefMIs)) { |
| 1812 | SeenMoveImm = true; |
| 1813 | } else { |
| 1814 | Changed |= optimizeExtInstr(MI&: *MI, MBB, LocalMIs); |
| 1815 | // optimizeExtInstr might have created new instructions after MI |
| 1816 | // and before the already incremented MII. Adjust MII so that the |
| 1817 | // next iteration sees the new instructions. |
| 1818 | MII = MI; |
| 1819 | ++MII; |
| 1820 | if (SeenMoveImm) { |
| 1821 | bool Deleted; |
| 1822 | Changed |= foldImmediate(MI&: *MI, ImmDefRegs, ImmDefMIs, Deleted); |
| 1823 | if (Deleted) { |
| 1824 | LocalMIs.erase(Ptr: MI); |
| 1825 | continue; |
| 1826 | } |
| 1827 | } |
| 1828 | } |
| 1829 | |
| 1830 | // Check whether MI is a load candidate for folding into a later |
| 1831 | // instruction. If MI is not a candidate, check whether we can fold an |
| 1832 | // earlier load into MI. |
| 1833 | if (!isLoadFoldable(MI&: *MI, FoldAsLoadDefCandidates) && |
| 1834 | !FoldAsLoadDefCandidates.empty()) { |
| 1835 | |
| 1836 | // We visit each operand even after successfully folding a previous |
| 1837 | // one. This allows us to fold multiple loads into a single |
| 1838 | // instruction. We do assume that optimizeLoadInstr doesn't insert |
| 1839 | // foldable uses earlier in the argument list. Since we don't restart |
| 1840 | // iteration, we'd miss such cases. |
| 1841 | const MCInstrDesc &MIDesc = MI->getDesc(); |
| 1842 | for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands(); ++i) { |
| 1843 | const MachineOperand &MOp = MI->getOperand(i); |
| 1844 | if (!MOp.isReg()) |
| 1845 | continue; |
| 1846 | Register FoldAsLoadDefReg = MOp.getReg(); |
| 1847 | if (FoldAsLoadDefCandidates.count(V: FoldAsLoadDefReg)) { |
| 1848 | // We need to fold load after optimizeCmpInstr, since |
| 1849 | // optimizeCmpInstr can enable folding by converting SUB to CMP. |
| 1850 | // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and |
| 1851 | // we need it for markUsesInDebugValueAsUndef(). |
| 1852 | Register FoldedReg = FoldAsLoadDefReg; |
| 1853 | MachineInstr *DefMI = nullptr; |
| 1854 | if (MachineInstr *FoldMI = |
| 1855 | TII->optimizeLoadInstr(MI&: *MI, MRI, FoldAsLoadDefReg, DefMI)) { |
| 1856 | // Update LocalMIs since we replaced MI with FoldMI and deleted |
| 1857 | // DefMI. |
| 1858 | LLVM_DEBUG(dbgs() << "Replacing: " << *MI); |
| 1859 | LLVM_DEBUG(dbgs() << " With: " << *FoldMI); |
| 1860 | LocalMIs.erase(Ptr: MI); |
| 1861 | LocalMIs.erase(Ptr: DefMI); |
| 1862 | LocalMIs.insert(Ptr: FoldMI); |
| 1863 | // Update the call info. |
| 1864 | if (MI->shouldUpdateAdditionalCallInfo()) |
| 1865 | MI->getMF()->moveAdditionalCallInfo(Old: MI, New: FoldMI); |
| 1866 | MI->eraseFromParent(); |
| 1867 | DefMI->eraseFromParent(); |
| 1868 | MRI->markUsesInDebugValueAsUndef(Reg: FoldedReg); |
| 1869 | FoldAsLoadDefCandidates.erase(V: FoldedReg); |
| 1870 | ++NumLoadFold; |
| 1871 | |
| 1872 | // MI is replaced with FoldMI so we can continue trying to fold |
| 1873 | Changed = true; |
| 1874 | MI = FoldMI; |
| 1875 | } |
| 1876 | } |
| 1877 | } |
| 1878 | } |
| 1879 | |
| 1880 | // If we run into an instruction we can't fold across, discard |
| 1881 | // the load candidates. Note: We might be able to fold *into* this |
| 1882 | // instruction, so this needs to be after the folding logic. |
| 1883 | if (MI->isLoadFoldBarrier()) { |
| 1884 | LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI); |
| 1885 | FoldAsLoadDefCandidates.clear(); |
| 1886 | } |
| 1887 | } |
| 1888 | } |
| 1889 | |
| 1890 | MF.resetDelegate(delegate: this); |
| 1891 | return Changed; |
| 1892 | } |
| 1893 | |
| 1894 | ValueTrackerResult ValueTracker::getNextSourceFromCopy() { |
| 1895 | assert(Def->isCopy() && "Invalid definition" ); |
| 1896 | // Copy instruction are supposed to be: Def = Src. |
| 1897 | // If someone breaks this assumption, bad things will happen everywhere. |
| 1898 | // There may be implicit uses preventing the copy to be moved across |
| 1899 | // some target specific register definitions |
| 1900 | assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 && |
| 1901 | "Invalid number of operands" ); |
| 1902 | assert(!Def->hasImplicitDef() && "Only implicit uses are allowed" ); |
| 1903 | assert(!Def->getOperand(DefIdx).getSubReg() && "no subregister defs in SSA" ); |
| 1904 | |
| 1905 | // Otherwise, we want the whole source. |
| 1906 | const MachineOperand &Src = Def->getOperand(i: 1); |
| 1907 | if (Src.isUndef()) |
| 1908 | return ValueTrackerResult(); |
| 1909 | return ValueTrackerResult(Src.getReg(), Src.getSubReg()); |
| 1910 | } |
| 1911 | |
| 1912 | ValueTrackerResult ValueTracker::getNextSourceFromBitcast() { |
| 1913 | assert(Def->isBitcast() && "Invalid definition" ); |
| 1914 | |
| 1915 | // Bail if there are effects that a plain copy will not expose. |
| 1916 | if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects()) |
| 1917 | return ValueTrackerResult(); |
| 1918 | |
| 1919 | // Bitcasts with more than one def are not supported. |
| 1920 | if (Def->getDesc().getNumDefs() != 1) |
| 1921 | return ValueTrackerResult(); |
| 1922 | |
| 1923 | assert(!Def->getOperand(DefIdx).getSubReg() && "no subregister defs in SSA" ); |
| 1924 | |
| 1925 | unsigned SrcIdx = Def->getNumOperands(); |
| 1926 | for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx; |
| 1927 | ++OpIdx) { |
| 1928 | const MachineOperand &MO = Def->getOperand(i: OpIdx); |
| 1929 | if (!MO.isReg() || !MO.getReg()) |
| 1930 | continue; |
| 1931 | // Ignore dead implicit defs. |
| 1932 | if (MO.isImplicit() && MO.isDead()) |
| 1933 | continue; |
| 1934 | assert(!MO.isDef() && "We should have skipped all the definitions by now" ); |
| 1935 | if (SrcIdx != EndOpIdx) |
| 1936 | // Multiple sources? |
| 1937 | return ValueTrackerResult(); |
| 1938 | SrcIdx = OpIdx; |
| 1939 | } |
| 1940 | |
| 1941 | // In some rare case, Def has no input, SrcIdx is out of bound, |
| 1942 | // getOperand(SrcIdx) will fail below. |
| 1943 | if (SrcIdx >= Def->getNumOperands()) |
| 1944 | return ValueTrackerResult(); |
| 1945 | |
| 1946 | const MachineOperand &DefOp = Def->getOperand(i: DefIdx); |
| 1947 | |
| 1948 | // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY |
| 1949 | // will break the assumed guarantees for the upper bits. |
| 1950 | for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(Reg: DefOp.getReg())) { |
| 1951 | if (UseMI.isSubregToReg()) |
| 1952 | return ValueTrackerResult(); |
| 1953 | } |
| 1954 | |
| 1955 | const MachineOperand &Src = Def->getOperand(i: SrcIdx); |
| 1956 | if (Src.isUndef()) |
| 1957 | return ValueTrackerResult(); |
| 1958 | return ValueTrackerResult(Src.getReg(), Src.getSubReg()); |
| 1959 | } |
| 1960 | |
| 1961 | ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() { |
| 1962 | assert((Def->isRegSequence() || Def->isRegSequenceLike()) && |
| 1963 | "Invalid definition" ); |
| 1964 | |
| 1965 | assert(!Def->getOperand(DefIdx).getSubReg() && "illegal subregister def" ); |
| 1966 | |
| 1967 | SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs; |
| 1968 | if (!TII->getRegSequenceInputs(MI: *Def, DefIdx, InputRegs&: RegSeqInputRegs)) |
| 1969 | return ValueTrackerResult(); |
| 1970 | |
| 1971 | // We are looking at: |
| 1972 | // Def = REG_SEQUENCE v0, sub0, v1, sub1, ... |
| 1973 | // |
| 1974 | // Check if one of the operands exactly defines the subreg we are interested |
| 1975 | // in. |
| 1976 | for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) { |
| 1977 | if (RegSeqInput.SubIdx == DefSubReg) |
| 1978 | return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg); |
| 1979 | } |
| 1980 | |
| 1981 | const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); |
| 1982 | |
| 1983 | // If we did not find an exact match, see if we can do a composition to |
| 1984 | // extract a sub-subregister. |
| 1985 | for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) { |
| 1986 | LaneBitmask DefMask = TRI->getSubRegIndexLaneMask(SubIdx: DefSubReg); |
| 1987 | LaneBitmask ThisOpRegMask = TRI->getSubRegIndexLaneMask(SubIdx: RegSeqInput.SubIdx); |
| 1988 | |
| 1989 | // Check that this extract reads a subset of this single reg_sequence input. |
| 1990 | // |
| 1991 | // FIXME: We should be able to filter this in terms of the indexes directly |
| 1992 | // without checking the lanemasks. |
| 1993 | if ((DefMask & ThisOpRegMask) != DefMask) |
| 1994 | continue; |
| 1995 | |
| 1996 | unsigned ReverseDefCompose = |
| 1997 | TRI->reverseComposeSubRegIndices(a: RegSeqInput.SubIdx, b: DefSubReg); |
| 1998 | if (!ReverseDefCompose) |
| 1999 | continue; |
| 2000 | |
| 2001 | unsigned ComposedDefInSrcReg1 = |
| 2002 | TRI->composeSubRegIndices(a: RegSeqInput.SubReg, b: ReverseDefCompose); |
| 2003 | |
| 2004 | // TODO: We should be able to defer checking if the result register class |
| 2005 | // supports the index to continue looking for a rewritable source. |
| 2006 | // |
| 2007 | // TODO: Should we modify the register class to support the index? |
| 2008 | const TargetRegisterClass *SrcRC = MRI.getRegClass(Reg: RegSeqInput.Reg); |
| 2009 | const TargetRegisterClass *SrcWithSubRC = |
| 2010 | TRI->getSubClassWithSubReg(RC: SrcRC, Idx: ComposedDefInSrcReg1); |
| 2011 | if (SrcRC != SrcWithSubRC) |
| 2012 | return ValueTrackerResult(); |
| 2013 | |
| 2014 | return ValueTrackerResult(RegSeqInput.Reg, ComposedDefInSrcReg1); |
| 2015 | } |
| 2016 | |
| 2017 | // If the subreg we are tracking is super-defined by another subreg, |
| 2018 | // we could follow this value. However, this would require to compose |
| 2019 | // the subreg and we do not do that for now. |
| 2020 | return ValueTrackerResult(); |
| 2021 | } |
| 2022 | |
| 2023 | ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() { |
| 2024 | assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) && |
| 2025 | "Invalid definition" ); |
| 2026 | assert(!Def->getOperand(DefIdx).getSubReg() && "no subreg defs in SSA" ); |
| 2027 | |
| 2028 | RegSubRegPair BaseReg; |
| 2029 | RegSubRegPairAndIdx InsertedReg; |
| 2030 | if (!TII->getInsertSubregInputs(MI: *Def, DefIdx, BaseReg, InsertedReg)) |
| 2031 | return ValueTrackerResult(); |
| 2032 | |
| 2033 | // We are looking at: |
| 2034 | // Def = INSERT_SUBREG v0, v1, sub1 |
| 2035 | // There are two cases: |
| 2036 | // 1. DefSubReg == sub1, get v1. |
| 2037 | // 2. DefSubReg != sub1, the value may be available through v0. |
| 2038 | |
| 2039 | // #1 Check if the inserted register matches the required sub index. |
| 2040 | if (InsertedReg.SubIdx == DefSubReg) { |
| 2041 | return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg); |
| 2042 | } |
| 2043 | // #2 Otherwise, if the sub register we are looking for is not partial |
| 2044 | // defined by the inserted element, we can look through the main |
| 2045 | // register (v0). |
| 2046 | const MachineOperand &MODef = Def->getOperand(i: DefIdx); |
| 2047 | // If the result register (Def) and the base register (v0) do not |
| 2048 | // have the same register class or if we have to compose |
| 2049 | // subregisters, bail out. |
| 2050 | if (MRI.getRegClass(Reg: MODef.getReg()) != MRI.getRegClass(Reg: BaseReg.Reg) || |
| 2051 | BaseReg.SubReg) |
| 2052 | return ValueTrackerResult(); |
| 2053 | |
| 2054 | // Get the TRI and check if the inserted sub-register overlaps with the |
| 2055 | // sub-register we are tracking. |
| 2056 | const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); |
| 2057 | if ((TRI->getSubRegIndexLaneMask(SubIdx: DefSubReg) & |
| 2058 | TRI->getSubRegIndexLaneMask(SubIdx: InsertedReg.SubIdx)) |
| 2059 | .any()) |
| 2060 | return ValueTrackerResult(); |
| 2061 | // At this point, the value is available in v0 via the same subreg |
| 2062 | // we used for Def. |
| 2063 | return ValueTrackerResult(BaseReg.Reg, DefSubReg); |
| 2064 | } |
| 2065 | |
| 2066 | ValueTrackerResult ValueTracker::() { |
| 2067 | assert((Def->isExtractSubreg() || Def->isExtractSubregLike()) && |
| 2068 | "Invalid definition" ); |
| 2069 | // We are looking at: |
| 2070 | // Def = EXTRACT_SUBREG v0, sub0 |
| 2071 | |
| 2072 | // Bail if we have to compose sub registers. |
| 2073 | // Indeed, if DefSubReg != 0, we would have to compose it with sub0. |
| 2074 | if (DefSubReg) |
| 2075 | return ValueTrackerResult(); |
| 2076 | |
| 2077 | RegSubRegPairAndIdx ; |
| 2078 | if (!TII->getExtractSubregInputs(MI: *Def, DefIdx, InputReg&: ExtractSubregInputReg)) |
| 2079 | return ValueTrackerResult(); |
| 2080 | |
| 2081 | // Bail if we have to compose sub registers. |
| 2082 | // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0. |
| 2083 | if (ExtractSubregInputReg.SubReg) |
| 2084 | return ValueTrackerResult(); |
| 2085 | // Otherwise, the value is available in the v0.sub0. |
| 2086 | return ValueTrackerResult(ExtractSubregInputReg.Reg, |
| 2087 | ExtractSubregInputReg.SubIdx); |
| 2088 | } |
| 2089 | |
| 2090 | ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() { |
| 2091 | assert(Def->isSubregToReg() && "Invalid definition" ); |
| 2092 | // We are looking at: |
| 2093 | // Def = SUBREG_TO_REG Imm, v0, sub0 |
| 2094 | |
| 2095 | // Bail if we have to compose sub registers. |
| 2096 | // If DefSubReg != sub0, we would have to check that all the bits |
| 2097 | // we track are included in sub0 and if yes, we would have to |
| 2098 | // determine the right subreg in v0. |
| 2099 | if (DefSubReg != Def->getOperand(i: 3).getImm()) |
| 2100 | return ValueTrackerResult(); |
| 2101 | // Bail if we have to compose sub registers. |
| 2102 | // Likewise, if v0.subreg != 0, we would have to compose it with sub0. |
| 2103 | if (Def->getOperand(i: 2).getSubReg()) |
| 2104 | return ValueTrackerResult(); |
| 2105 | |
| 2106 | return ValueTrackerResult(Def->getOperand(i: 2).getReg(), |
| 2107 | Def->getOperand(i: 3).getImm()); |
| 2108 | } |
| 2109 | |
| 2110 | /// Explore each PHI incoming operand and return its sources. |
| 2111 | ValueTrackerResult ValueTracker::getNextSourceFromPHI() { |
| 2112 | assert(Def->isPHI() && "Invalid definition" ); |
| 2113 | ValueTrackerResult Res; |
| 2114 | |
| 2115 | // Return all register sources for PHI instructions. |
| 2116 | for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) { |
| 2117 | const MachineOperand &MO = Def->getOperand(i); |
| 2118 | assert(MO.isReg() && "Invalid PHI instruction" ); |
| 2119 | // We have no code to deal with undef operands. They shouldn't happen in |
| 2120 | // normal programs anyway. |
| 2121 | if (MO.isUndef()) |
| 2122 | return ValueTrackerResult(); |
| 2123 | Res.addSource(SrcReg: MO.getReg(), SrcSubReg: MO.getSubReg()); |
| 2124 | } |
| 2125 | |
| 2126 | return Res; |
| 2127 | } |
| 2128 | |
| 2129 | ValueTrackerResult ValueTracker::getNextSourceImpl() { |
| 2130 | assert(Def && "This method needs a valid definition" ); |
| 2131 | |
| 2132 | assert(((Def->getOperand(DefIdx).isDef() && |
| 2133 | (DefIdx < Def->getDesc().getNumDefs() || |
| 2134 | Def->getDesc().isVariadic())) || |
| 2135 | Def->getOperand(DefIdx).isImplicit()) && |
| 2136 | "Invalid DefIdx" ); |
| 2137 | if (Def->isCopy()) |
| 2138 | return getNextSourceFromCopy(); |
| 2139 | if (Def->isBitcast()) |
| 2140 | return getNextSourceFromBitcast(); |
| 2141 | // All the remaining cases involve "complex" instructions. |
| 2142 | // Bail if we did not ask for the advanced tracking. |
| 2143 | if (DisableAdvCopyOpt) |
| 2144 | return ValueTrackerResult(); |
| 2145 | if (Def->isRegSequence() || Def->isRegSequenceLike()) |
| 2146 | return getNextSourceFromRegSequence(); |
| 2147 | if (Def->isInsertSubreg() || Def->isInsertSubregLike()) |
| 2148 | return getNextSourceFromInsertSubreg(); |
| 2149 | if (Def->isExtractSubreg() || Def->isExtractSubregLike()) |
| 2150 | return getNextSourceFromExtractSubreg(); |
| 2151 | if (Def->isSubregToReg()) |
| 2152 | return getNextSourceFromSubregToReg(); |
| 2153 | if (Def->isPHI()) |
| 2154 | return getNextSourceFromPHI(); |
| 2155 | return ValueTrackerResult(); |
| 2156 | } |
| 2157 | |
| 2158 | ValueTrackerResult ValueTracker::getNextSource() { |
| 2159 | // If we reach a point where we cannot move up in the use-def chain, |
| 2160 | // there is nothing we can get. |
| 2161 | if (!Def) |
| 2162 | return ValueTrackerResult(); |
| 2163 | |
| 2164 | ValueTrackerResult Res = getNextSourceImpl(); |
| 2165 | if (Res.isValid()) { |
| 2166 | // Update definition, definition index, and subregister for the |
| 2167 | // next call of getNextSource. |
| 2168 | // Update the current register. |
| 2169 | bool OneRegSrc = Res.getNumSources() == 1; |
| 2170 | if (OneRegSrc) |
| 2171 | Reg = Res.getSrcReg(Idx: 0); |
| 2172 | // Update the result before moving up in the use-def chain |
| 2173 | // with the instruction containing the last found sources. |
| 2174 | Res.setInst(Def); |
| 2175 | |
| 2176 | // If we can still move up in the use-def chain, move to the next |
| 2177 | // definition. |
| 2178 | if (!Reg.isPhysical() && OneRegSrc) { |
| 2179 | MachineRegisterInfo::def_iterator DI = MRI.def_begin(RegNo: Reg); |
| 2180 | if (DI != MRI.def_end()) { |
| 2181 | Def = DI->getParent(); |
| 2182 | DefIdx = DI.getOperandNo(); |
| 2183 | DefSubReg = Res.getSrcSubReg(Idx: 0); |
| 2184 | } else { |
| 2185 | Def = nullptr; |
| 2186 | } |
| 2187 | return Res; |
| 2188 | } |
| 2189 | } |
| 2190 | // If we end up here, this means we will not be able to find another source |
| 2191 | // for the next iteration. Make sure any new call to getNextSource bails out |
| 2192 | // early by cutting the use-def chain. |
| 2193 | Def = nullptr; |
| 2194 | return Res; |
| 2195 | } |
| 2196 | |