1 | //===----- SchedulePostRAList.cpp - list scheduler ------------------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This implements a top-down list scheduler, using standard algorithms. |
10 | // The basic approach uses a priority queue of available nodes to schedule. |
11 | // One at a time, nodes are taken from the priority queue (thus in priority |
12 | // order), checked for legality to schedule, and emitted if legal. |
13 | // |
14 | // Nodes may not be legal to schedule either due to structural hazards (e.g. |
15 | // pipeline or resource constraints) or because an input to the instruction has |
16 | // not completed execution. |
17 | // |
18 | //===----------------------------------------------------------------------===// |
19 | |
20 | #include "llvm/CodeGen/PostRASchedulerList.h" |
21 | #include "llvm/ADT/Statistic.h" |
22 | #include "llvm/Analysis/AliasAnalysis.h" |
23 | #include "llvm/CodeGen/AntiDepBreaker.h" |
24 | #include "llvm/CodeGen/LatencyPriorityQueue.h" |
25 | #include "llvm/CodeGen/MachineDominators.h" |
26 | #include "llvm/CodeGen/MachineFunctionPass.h" |
27 | #include "llvm/CodeGen/MachineLoopInfo.h" |
28 | #include "llvm/CodeGen/MachineRegisterInfo.h" |
29 | #include "llvm/CodeGen/RegisterClassInfo.h" |
30 | #include "llvm/CodeGen/ScheduleDAGInstrs.h" |
31 | #include "llvm/CodeGen/ScheduleDAGMutation.h" |
32 | #include "llvm/CodeGen/ScheduleHazardRecognizer.h" |
33 | #include "llvm/CodeGen/TargetInstrInfo.h" |
34 | #include "llvm/CodeGen/TargetPassConfig.h" |
35 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
36 | #include "llvm/Config/llvm-config.h" |
37 | #include "llvm/InitializePasses.h" |
38 | #include "llvm/Pass.h" |
39 | #include "llvm/Support/CommandLine.h" |
40 | #include "llvm/Support/Debug.h" |
41 | #include "llvm/Support/ErrorHandling.h" |
42 | #include "llvm/Support/raw_ostream.h" |
43 | #include "llvm/Target/TargetMachine.h" |
44 | using namespace llvm; |
45 | |
46 | #define DEBUG_TYPE "post-RA-sched" |
47 | |
48 | STATISTIC(NumNoops, "Number of noops inserted" ); |
49 | STATISTIC(NumStalls, "Number of pipeline stalls" ); |
50 | STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies" ); |
51 | |
52 | // Post-RA scheduling is enabled with |
53 | // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to |
54 | // override the target. |
55 | static cl::opt<bool> |
56 | EnablePostRAScheduler("post-RA-scheduler" , |
57 | cl::desc("Enable scheduling after register allocation" ), |
58 | cl::init(Val: false), cl::Hidden); |
59 | static cl::opt<std::string> |
60 | EnableAntiDepBreaking("break-anti-dependencies" , |
61 | cl::desc("Break post-RA scheduling anti-dependencies: " |
62 | "\"critical\", \"all\", or \"none\"" ), |
63 | cl::init(Val: "none" ), cl::Hidden); |
64 | |
65 | // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod |
66 | static cl::opt<int> |
67 | DebugDiv("postra-sched-debugdiv" , |
68 | cl::desc("Debug control MBBs that are scheduled" ), |
69 | cl::init(Val: 0), cl::Hidden); |
70 | static cl::opt<int> |
71 | DebugMod("postra-sched-debugmod" , |
72 | cl::desc("Debug control MBBs that are scheduled" ), |
73 | cl::init(Val: 0), cl::Hidden); |
74 | |
75 | AntiDepBreaker::~AntiDepBreaker() = default; |
76 | |
77 | namespace { |
78 | class PostRAScheduler { |
79 | const TargetInstrInfo *TII = nullptr; |
80 | MachineLoopInfo *MLI = nullptr; |
81 | AliasAnalysis *AA = nullptr; |
82 | const TargetMachine *TM = nullptr; |
83 | RegisterClassInfo RegClassInfo; |
84 | |
85 | public: |
86 | PostRAScheduler(MachineFunction &MF, MachineLoopInfo *MLI, AliasAnalysis *AA, |
87 | const TargetMachine *TM) |
88 | : TII(MF.getSubtarget().getInstrInfo()), MLI(MLI), AA(AA), TM(TM) {} |
89 | bool run(MachineFunction &MF); |
90 | }; |
91 | |
92 | class PostRASchedulerLegacy : public MachineFunctionPass { |
93 | public: |
94 | static char ID; |
95 | PostRASchedulerLegacy() : MachineFunctionPass(ID) {} |
96 | |
97 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
98 | AU.setPreservesCFG(); |
99 | AU.addRequired<AAResultsWrapperPass>(); |
100 | AU.addRequired<TargetPassConfig>(); |
101 | AU.addRequired<MachineDominatorTreeWrapperPass>(); |
102 | AU.addPreserved<MachineDominatorTreeWrapperPass>(); |
103 | AU.addRequired<MachineLoopInfoWrapperPass>(); |
104 | AU.addPreserved<MachineLoopInfoWrapperPass>(); |
105 | MachineFunctionPass::getAnalysisUsage(AU); |
106 | } |
107 | |
108 | MachineFunctionProperties getRequiredProperties() const override { |
109 | return MachineFunctionProperties().setNoVRegs(); |
110 | } |
111 | |
112 | bool runOnMachineFunction(MachineFunction &Fn) override; |
113 | }; |
114 | char PostRASchedulerLegacy::ID = 0; |
115 | |
116 | class SchedulePostRATDList : public ScheduleDAGInstrs { |
117 | /// AvailableQueue - The priority queue to use for the available SUnits. |
118 | /// |
119 | LatencyPriorityQueue AvailableQueue; |
120 | |
121 | /// PendingQueue - This contains all of the instructions whose operands have |
122 | /// been issued, but their results are not ready yet (due to the latency of |
123 | /// the operation). Once the operands becomes available, the instruction is |
124 | /// added to the AvailableQueue. |
125 | std::vector<SUnit *> PendingQueue; |
126 | |
127 | /// HazardRec - The hazard recognizer to use. |
128 | ScheduleHazardRecognizer *HazardRec; |
129 | |
130 | /// AntiDepBreak - Anti-dependence breaking object, or NULL if none |
131 | AntiDepBreaker *AntiDepBreak; |
132 | |
133 | /// AA - AliasAnalysis for making memory reference queries. |
134 | AliasAnalysis *AA; |
135 | |
136 | /// The schedule. Null SUnit*'s represent noop instructions. |
137 | std::vector<SUnit *> Sequence; |
138 | |
139 | /// Ordered list of DAG postprocessing steps. |
140 | std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; |
141 | |
142 | /// The index in BB of RegionEnd. |
143 | /// |
144 | /// This is the instruction number from the top of the current block, not |
145 | /// the SlotIndex. It is only used by the AntiDepBreaker. |
146 | unsigned EndIndex = 0; |
147 | |
148 | public: |
149 | SchedulePostRATDList( |
150 | MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA, |
151 | const RegisterClassInfo &, |
152 | TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, |
153 | SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs); |
154 | |
155 | ~SchedulePostRATDList() override; |
156 | |
157 | /// startBlock - Initialize register live-range state for scheduling in |
158 | /// this block. |
159 | /// |
160 | void startBlock(MachineBasicBlock *BB) override; |
161 | |
162 | // Set the index of RegionEnd within the current BB. |
163 | void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; } |
164 | |
165 | /// Initialize the scheduler state for the next scheduling region. |
166 | void enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, |
167 | MachineBasicBlock::iterator end, |
168 | unsigned regioninstrs) override; |
169 | |
170 | /// Notify that the scheduler has finished scheduling the current region. |
171 | void exitRegion() override; |
172 | |
173 | /// Schedule - Schedule the instruction range using list scheduling. |
174 | /// |
175 | void schedule() override; |
176 | |
177 | void EmitSchedule(); |
178 | |
179 | /// Observe - Update liveness information to account for the current |
180 | /// instruction, which will not be scheduled. |
181 | /// |
182 | void Observe(MachineInstr &MI, unsigned Count); |
183 | |
184 | /// finishBlock - Clean up register live-range state. |
185 | /// |
186 | void finishBlock() override; |
187 | |
188 | private: |
189 | /// Apply each ScheduleDAGMutation step in order. |
190 | void postProcessDAG(); |
191 | |
192 | void ReleaseSucc(SUnit *SU, SDep *SuccEdge); |
193 | void ReleaseSuccessors(SUnit *SU); |
194 | void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); |
195 | void ListScheduleTopDown(); |
196 | |
197 | void dumpSchedule() const; |
198 | void emitNoop(unsigned CurCycle); |
199 | }; |
200 | } // namespace |
201 | |
202 | char &llvm::PostRASchedulerID = PostRASchedulerLegacy::ID; |
203 | |
204 | INITIALIZE_PASS(PostRASchedulerLegacy, DEBUG_TYPE, |
205 | "Post RA top-down list latency scheduler" , false, false) |
206 | |
207 | SchedulePostRATDList::SchedulePostRATDList( |
208 | MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA, |
209 | const RegisterClassInfo &RCI, |
210 | TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, |
211 | SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs) |
212 | : ScheduleDAGInstrs(MF, &MLI), AA(AA) { |
213 | |
214 | const InstrItineraryData *InstrItins = |
215 | MF.getSubtarget().getInstrItineraryData(); |
216 | HazardRec = |
217 | MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer( |
218 | InstrItins, DAG: this); |
219 | MF.getSubtarget().getPostRAMutations(Mutations); |
220 | |
221 | assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE || |
222 | MRI.tracksLiveness()) && |
223 | "Live-ins must be accurate for anti-dependency breaking" ); |
224 | AntiDepBreak = ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) |
225 | ? createAggressiveAntiDepBreaker(MFi&: MF, RCI, CriticalPathRCs) |
226 | : ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) |
227 | ? createCriticalAntiDepBreaker(MFi&: MF, RCI) |
228 | : nullptr)); |
229 | } |
230 | |
231 | SchedulePostRATDList::~SchedulePostRATDList() { |
232 | delete HazardRec; |
233 | delete AntiDepBreak; |
234 | } |
235 | |
236 | /// Initialize state associated with the next scheduling region. |
237 | void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb, |
238 | MachineBasicBlock::iterator begin, |
239 | MachineBasicBlock::iterator end, |
240 | unsigned regioninstrs) { |
241 | ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs); |
242 | Sequence.clear(); |
243 | } |
244 | |
245 | /// Print the schedule before exiting the region. |
246 | void SchedulePostRATDList::exitRegion() { |
247 | LLVM_DEBUG({ |
248 | dbgs() << "*** Final schedule ***\n" ; |
249 | dumpSchedule(); |
250 | dbgs() << '\n'; |
251 | }); |
252 | ScheduleDAGInstrs::exitRegion(); |
253 | } |
254 | |
255 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
256 | /// dumpSchedule - dump the scheduled Sequence. |
257 | LLVM_DUMP_METHOD void SchedulePostRATDList::dumpSchedule() const { |
258 | for (const SUnit *SU : Sequence) { |
259 | if (SU) |
260 | dumpNode(*SU); |
261 | else |
262 | dbgs() << "**** NOOP ****\n" ; |
263 | } |
264 | } |
265 | #endif |
266 | |
267 | static bool enablePostRAScheduler(const TargetSubtargetInfo &ST, |
268 | CodeGenOptLevel OptLevel) { |
269 | // Check for explicit enable/disable of post-ra scheduling. |
270 | if (EnablePostRAScheduler.getPosition() > 0) |
271 | return EnablePostRAScheduler; |
272 | |
273 | return ST.enablePostRAScheduler() && |
274 | OptLevel >= ST.getOptLevelToEnablePostRAScheduler(); |
275 | } |
276 | |
277 | bool PostRAScheduler::run(MachineFunction &MF) { |
278 | const auto &Subtarget = MF.getSubtarget(); |
279 | // Check that post-RA scheduling is enabled for this target. |
280 | if (!enablePostRAScheduler(ST: Subtarget, OptLevel: TM->getOptLevel())) |
281 | return false; |
282 | |
283 | TargetSubtargetInfo::AntiDepBreakMode AntiDepMode = |
284 | Subtarget.getAntiDepBreakMode(); |
285 | if (EnableAntiDepBreaking.getPosition() > 0) { |
286 | AntiDepMode = (EnableAntiDepBreaking == "all" ) |
287 | ? TargetSubtargetInfo::ANTIDEP_ALL |
288 | : ((EnableAntiDepBreaking == "critical" ) |
289 | ? TargetSubtargetInfo::ANTIDEP_CRITICAL |
290 | : TargetSubtargetInfo::ANTIDEP_NONE); |
291 | } |
292 | SmallVector<const TargetRegisterClass *, 4> CriticalPathRCs; |
293 | Subtarget.getCriticalPathRCs(CriticalPathRCs); |
294 | RegClassInfo.runOnMachineFunction(MF); |
295 | |
296 | LLVM_DEBUG(dbgs() << "PostRAScheduler\n" ); |
297 | |
298 | SchedulePostRATDList Scheduler(MF, *MLI, AA, RegClassInfo, AntiDepMode, |
299 | CriticalPathRCs); |
300 | |
301 | // Loop over all of the basic blocks |
302 | for (auto &MBB : MF) { |
303 | #ifndef NDEBUG |
304 | // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod |
305 | if (DebugDiv > 0) { |
306 | static int bbcnt = 0; |
307 | if (bbcnt++ % DebugDiv != DebugMod) |
308 | continue; |
309 | dbgs() << "*** DEBUG scheduling " << MF.getName() << ":" |
310 | << printMBBReference(MBB) << " ***\n" ; |
311 | } |
312 | #endif |
313 | |
314 | // Initialize register live-range state for scheduling in this block. |
315 | Scheduler.startBlock(BB: &MBB); |
316 | |
317 | // Schedule each sequence of instructions not interrupted by a label |
318 | // or anything else that effectively needs to shut down scheduling. |
319 | MachineBasicBlock::iterator Current = MBB.end(); |
320 | unsigned Count = MBB.size(), CurrentCount = Count; |
321 | for (MachineBasicBlock::iterator I = Current; I != MBB.begin();) { |
322 | MachineInstr &MI = *std::prev(x: I); |
323 | --Count; |
324 | // Calls are not scheduling boundaries before register allocation, but |
325 | // post-ra we don't gain anything by scheduling across calls since we |
326 | // don't need to worry about register pressure. |
327 | if (MI.isCall() || TII->isSchedulingBoundary(MI, MBB: &MBB, MF)) { |
328 | Scheduler.enterRegion(bb: &MBB, begin: I, end: Current, regioninstrs: CurrentCount - Count); |
329 | Scheduler.setEndIndex(CurrentCount); |
330 | Scheduler.schedule(); |
331 | Scheduler.exitRegion(); |
332 | Scheduler.EmitSchedule(); |
333 | Current = &MI; |
334 | CurrentCount = Count; |
335 | Scheduler.Observe(MI, Count: CurrentCount); |
336 | } |
337 | I = MI; |
338 | if (MI.isBundle()) |
339 | Count -= MI.getBundleSize(); |
340 | } |
341 | assert(Count == 0 && "Instruction count mismatch!" ); |
342 | assert((MBB.begin() == Current || CurrentCount != 0) && |
343 | "Instruction count mismatch!" ); |
344 | Scheduler.enterRegion(bb: &MBB, begin: MBB.begin(), end: Current, regioninstrs: CurrentCount); |
345 | Scheduler.setEndIndex(CurrentCount); |
346 | Scheduler.schedule(); |
347 | Scheduler.exitRegion(); |
348 | Scheduler.EmitSchedule(); |
349 | |
350 | // Clean up register live-range state. |
351 | Scheduler.finishBlock(); |
352 | |
353 | // Update register kills |
354 | Scheduler.fixupKills(MBB); |
355 | } |
356 | |
357 | return true; |
358 | } |
359 | |
360 | bool PostRASchedulerLegacy::runOnMachineFunction(MachineFunction &MF) { |
361 | if (skipFunction(F: MF.getFunction())) |
362 | return false; |
363 | |
364 | MachineLoopInfo *MLI = &getAnalysis<MachineLoopInfoWrapperPass>().getLI(); |
365 | AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); |
366 | const TargetMachine *TM = |
367 | &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); |
368 | PostRAScheduler Impl(MF, MLI, AA, TM); |
369 | return Impl.run(MF); |
370 | } |
371 | |
372 | PreservedAnalyses |
373 | PostRASchedulerPass::run(MachineFunction &MF, |
374 | MachineFunctionAnalysisManager &MFAM) { |
375 | MFPropsModifier _(*this, MF); |
376 | |
377 | MachineLoopInfo *MLI = &MFAM.getResult<MachineLoopAnalysis>(IR&: MF); |
378 | auto &FAM = MFAM.getResult<FunctionAnalysisManagerMachineFunctionProxy>(IR&: MF) |
379 | .getManager(); |
380 | AliasAnalysis *AA = &FAM.getResult<AAManager>(IR&: MF.getFunction()); |
381 | PostRAScheduler Impl(MF, MLI, AA, TM); |
382 | bool Changed = Impl.run(MF); |
383 | if (!Changed) |
384 | return PreservedAnalyses::all(); |
385 | |
386 | PreservedAnalyses PA = getMachineFunctionPassPreservedAnalyses(); |
387 | PA.preserveSet<CFGAnalyses>(); |
388 | PA.preserve<MachineDominatorTreeAnalysis>(); |
389 | PA.preserve<MachineLoopAnalysis>(); |
390 | return PA; |
391 | } |
392 | |
393 | /// StartBlock - Initialize register live-range state for scheduling in |
394 | /// this block. |
395 | /// |
396 | void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) { |
397 | // Call the superclass. |
398 | ScheduleDAGInstrs::startBlock(BB); |
399 | |
400 | // Reset the hazard recognizer and anti-dep breaker. |
401 | HazardRec->Reset(); |
402 | if (AntiDepBreak) |
403 | AntiDepBreak->StartBlock(BB); |
404 | } |
405 | |
406 | /// Schedule - Schedule the instruction range using list scheduling. |
407 | /// |
408 | void SchedulePostRATDList::schedule() { |
409 | // Build the scheduling graph. |
410 | buildSchedGraph(AA); |
411 | |
412 | if (AntiDepBreak) { |
413 | unsigned Broken = |
414 | AntiDepBreak->BreakAntiDependencies(SUnits, Begin: RegionBegin, End: RegionEnd, |
415 | InsertPosIndex: EndIndex, DbgValues); |
416 | |
417 | if (Broken != 0) { |
418 | // We made changes. Update the dependency graph. |
419 | // Theoretically we could update the graph in place: |
420 | // When a live range is changed to use a different register, remove |
421 | // the def's anti-dependence *and* output-dependence edges due to |
422 | // that register, and add new anti-dependence and output-dependence |
423 | // edges based on the next live range of the register. |
424 | ScheduleDAG::clearDAG(); |
425 | buildSchedGraph(AA); |
426 | |
427 | NumFixedAnti += Broken; |
428 | } |
429 | } |
430 | |
431 | postProcessDAG(); |
432 | |
433 | LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n" ); |
434 | LLVM_DEBUG(dump()); |
435 | |
436 | AvailableQueue.initNodes(sunits&: SUnits); |
437 | ListScheduleTopDown(); |
438 | AvailableQueue.releaseState(); |
439 | } |
440 | |
441 | /// Observe - Update liveness information to account for the current |
442 | /// instruction, which will not be scheduled. |
443 | /// |
444 | void SchedulePostRATDList::Observe(MachineInstr &MI, unsigned Count) { |
445 | if (AntiDepBreak) |
446 | AntiDepBreak->Observe(MI, Count, InsertPosIndex: EndIndex); |
447 | } |
448 | |
449 | /// FinishBlock - Clean up register live-range state. |
450 | /// |
451 | void SchedulePostRATDList::finishBlock() { |
452 | if (AntiDepBreak) |
453 | AntiDepBreak->FinishBlock(); |
454 | |
455 | // Call the superclass. |
456 | ScheduleDAGInstrs::finishBlock(); |
457 | } |
458 | |
459 | /// Apply each ScheduleDAGMutation step in order. |
460 | void SchedulePostRATDList::postProcessDAG() { |
461 | for (auto &M : Mutations) |
462 | M->apply(DAG: this); |
463 | } |
464 | |
465 | //===----------------------------------------------------------------------===// |
466 | // Top-Down Scheduling |
467 | //===----------------------------------------------------------------------===// |
468 | |
469 | /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to |
470 | /// the PendingQueue if the count reaches zero. |
471 | void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) { |
472 | SUnit *SuccSU = SuccEdge->getSUnit(); |
473 | |
474 | if (SuccEdge->isWeak()) { |
475 | --SuccSU->WeakPredsLeft; |
476 | return; |
477 | } |
478 | #ifndef NDEBUG |
479 | if (SuccSU->NumPredsLeft == 0) { |
480 | dbgs() << "*** Scheduling failed! ***\n" ; |
481 | dumpNode(*SuccSU); |
482 | dbgs() << " has been released too many times!\n" ; |
483 | llvm_unreachable(nullptr); |
484 | } |
485 | #endif |
486 | --SuccSU->NumPredsLeft; |
487 | |
488 | // Standard scheduler algorithms will recompute the depth of the successor |
489 | // here as such: |
490 | // SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency()); |
491 | // |
492 | // However, we lazily compute node depth instead. Note that |
493 | // ScheduleNodeTopDown has already updated the depth of this node which causes |
494 | // all descendents to be marked dirty. Setting the successor depth explicitly |
495 | // here would cause depth to be recomputed for all its ancestors. If the |
496 | // successor is not yet ready (because of a transitively redundant edge) then |
497 | // this causes depth computation to be quadratic in the size of the DAG. |
498 | |
499 | // If all the node's predecessors are scheduled, this node is ready |
500 | // to be scheduled. Ignore the special ExitSU node. |
501 | if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) |
502 | PendingQueue.push_back(x: SuccSU); |
503 | } |
504 | |
505 | /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors. |
506 | void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) { |
507 | for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); |
508 | I != E; ++I) { |
509 | ReleaseSucc(SU, SuccEdge: &*I); |
510 | } |
511 | } |
512 | |
513 | /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending |
514 | /// count of its successors. If a successor pending count is zero, add it to |
515 | /// the Available queue. |
516 | void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { |
517 | LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: " ); |
518 | LLVM_DEBUG(dumpNode(*SU)); |
519 | |
520 | Sequence.push_back(x: SU); |
521 | assert(CurCycle >= SU->getDepth() && |
522 | "Node scheduled above its depth!" ); |
523 | SU->setDepthToAtLeast(CurCycle); |
524 | |
525 | ReleaseSuccessors(SU); |
526 | SU->isScheduled = true; |
527 | AvailableQueue.scheduledNode(SU); |
528 | } |
529 | |
530 | /// emitNoop - Add a noop to the current instruction sequence. |
531 | void SchedulePostRATDList::emitNoop(unsigned CurCycle) { |
532 | LLVM_DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n'); |
533 | HazardRec->EmitNoop(); |
534 | Sequence.push_back(x: nullptr); // NULL here means noop |
535 | ++NumNoops; |
536 | } |
537 | |
538 | /// ListScheduleTopDown - The main loop of list scheduling for top-down |
539 | /// schedulers. |
540 | void SchedulePostRATDList::ListScheduleTopDown() { |
541 | unsigned CurCycle = 0; |
542 | |
543 | // We're scheduling top-down but we're visiting the regions in |
544 | // bottom-up order, so we don't know the hazards at the start of a |
545 | // region. So assume no hazards (this should usually be ok as most |
546 | // blocks are a single region). |
547 | HazardRec->Reset(); |
548 | |
549 | // Release any successors of the special Entry node. |
550 | ReleaseSuccessors(SU: &EntrySU); |
551 | |
552 | // Add all leaves to Available queue. |
553 | for (SUnit &SUnit : SUnits) { |
554 | // It is available if it has no predecessors. |
555 | if (!SUnit.NumPredsLeft && !SUnit.isAvailable) { |
556 | AvailableQueue.push(U: &SUnit); |
557 | SUnit.isAvailable = true; |
558 | } |
559 | } |
560 | |
561 | // In any cycle where we can't schedule any instructions, we must |
562 | // stall or emit a noop, depending on the target. |
563 | bool CycleHasInsts = false; |
564 | |
565 | // While Available queue is not empty, grab the node with the highest |
566 | // priority. If it is not ready put it back. Schedule the node. |
567 | std::vector<SUnit*> NotReady; |
568 | Sequence.reserve(n: SUnits.size()); |
569 | while (!AvailableQueue.empty() || !PendingQueue.empty()) { |
570 | // Check to see if any of the pending instructions are ready to issue. If |
571 | // so, add them to the available queue. |
572 | unsigned MinDepth = ~0u; |
573 | for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { |
574 | if (PendingQueue[i]->getDepth() <= CurCycle) { |
575 | AvailableQueue.push(U: PendingQueue[i]); |
576 | PendingQueue[i]->isAvailable = true; |
577 | PendingQueue[i] = PendingQueue.back(); |
578 | PendingQueue.pop_back(); |
579 | --i; --e; |
580 | } else if (PendingQueue[i]->getDepth() < MinDepth) |
581 | MinDepth = PendingQueue[i]->getDepth(); |
582 | } |
583 | |
584 | LLVM_DEBUG(dbgs() << "\n*** Examining Available\n" ; |
585 | AvailableQueue.dump(this)); |
586 | |
587 | SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr; |
588 | bool HasNoopHazards = false; |
589 | while (!AvailableQueue.empty()) { |
590 | SUnit *CurSUnit = AvailableQueue.pop(); |
591 | |
592 | ScheduleHazardRecognizer::HazardType HT = |
593 | HazardRec->getHazardType(CurSUnit, Stalls: 0/*no stalls*/); |
594 | if (HT == ScheduleHazardRecognizer::NoHazard) { |
595 | if (HazardRec->ShouldPreferAnother(CurSUnit)) { |
596 | if (!NotPreferredSUnit) { |
597 | // If this is the first non-preferred node for this cycle, then |
598 | // record it and continue searching for a preferred node. If this |
599 | // is not the first non-preferred node, then treat it as though |
600 | // there had been a hazard. |
601 | NotPreferredSUnit = CurSUnit; |
602 | continue; |
603 | } |
604 | } else { |
605 | FoundSUnit = CurSUnit; |
606 | break; |
607 | } |
608 | } |
609 | |
610 | // Remember if this is a noop hazard. |
611 | HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard; |
612 | |
613 | NotReady.push_back(x: CurSUnit); |
614 | } |
615 | |
616 | // If we have a non-preferred node, push it back onto the available list. |
617 | // If we did not find a preferred node, then schedule this first |
618 | // non-preferred node. |
619 | if (NotPreferredSUnit) { |
620 | if (!FoundSUnit) { |
621 | LLVM_DEBUG( |
622 | dbgs() << "*** Will schedule a non-preferred instruction...\n" ); |
623 | FoundSUnit = NotPreferredSUnit; |
624 | } else { |
625 | AvailableQueue.push(U: NotPreferredSUnit); |
626 | } |
627 | |
628 | NotPreferredSUnit = nullptr; |
629 | } |
630 | |
631 | // Add the nodes that aren't ready back onto the available list. |
632 | if (!NotReady.empty()) { |
633 | AvailableQueue.push_all(Nodes: NotReady); |
634 | NotReady.clear(); |
635 | } |
636 | |
637 | // If we found a node to schedule... |
638 | if (FoundSUnit) { |
639 | // If we need to emit noops prior to this instruction, then do so. |
640 | unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit); |
641 | for (unsigned i = 0; i != NumPreNoops; ++i) |
642 | emitNoop(CurCycle); |
643 | |
644 | // ... schedule the node... |
645 | ScheduleNodeTopDown(SU: FoundSUnit, CurCycle); |
646 | HazardRec->EmitInstruction(FoundSUnit); |
647 | CycleHasInsts = true; |
648 | if (HazardRec->atIssueLimit()) { |
649 | LLVM_DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle |
650 | << '\n'); |
651 | HazardRec->AdvanceCycle(); |
652 | ++CurCycle; |
653 | CycleHasInsts = false; |
654 | } |
655 | } else { |
656 | if (CycleHasInsts) { |
657 | LLVM_DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n'); |
658 | HazardRec->AdvanceCycle(); |
659 | } else if (!HasNoopHazards) { |
660 | // Otherwise, we have a pipeline stall, but no other problem, |
661 | // just advance the current cycle and try again. |
662 | LLVM_DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n'); |
663 | HazardRec->AdvanceCycle(); |
664 | ++NumStalls; |
665 | } else { |
666 | // Otherwise, we have no instructions to issue and we have instructions |
667 | // that will fault if we don't do this right. This is the case for |
668 | // processors without pipeline interlocks and other cases. |
669 | emitNoop(CurCycle); |
670 | } |
671 | |
672 | ++CurCycle; |
673 | CycleHasInsts = false; |
674 | } |
675 | } |
676 | |
677 | #ifndef NDEBUG |
678 | unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false); |
679 | unsigned Noops = llvm::count(Sequence, nullptr); |
680 | assert(Sequence.size() - Noops == ScheduledNodes && |
681 | "The number of nodes scheduled doesn't match the expected number!" ); |
682 | #endif // NDEBUG |
683 | } |
684 | |
685 | // EmitSchedule - Emit the machine code in scheduled order. |
686 | void SchedulePostRATDList::EmitSchedule() { |
687 | RegionBegin = RegionEnd; |
688 | |
689 | // If first instruction was a DBG_VALUE then put it back. |
690 | if (FirstDbgValue) |
691 | BB->splice(Where: RegionEnd, Other: BB, From: FirstDbgValue); |
692 | |
693 | // Then re-insert them according to the given schedule. |
694 | for (unsigned i = 0, e = Sequence.size(); i != e; i++) { |
695 | if (SUnit *SU = Sequence[i]) |
696 | BB->splice(Where: RegionEnd, Other: BB, From: SU->getInstr()); |
697 | else |
698 | // Null SUnit* is a noop. |
699 | TII->insertNoop(MBB&: *BB, MI: RegionEnd); |
700 | |
701 | // Update the Begin iterator, as the first instruction in the block |
702 | // may have been scheduled later. |
703 | if (i == 0) |
704 | RegionBegin = std::prev(x: RegionEnd); |
705 | } |
706 | |
707 | // Reinsert any remaining debug_values. |
708 | for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator |
709 | DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { |
710 | std::pair<MachineInstr *, MachineInstr *> P = *std::prev(x: DI); |
711 | MachineInstr *DbgValue = P.first; |
712 | MachineBasicBlock::iterator OrigPrivMI = P.second; |
713 | BB->splice(Where: ++OrigPrivMI, Other: BB, From: DbgValue); |
714 | } |
715 | DbgValues.clear(); |
716 | FirstDbgValue = nullptr; |
717 | } |
718 | |